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Abstract

Summary: In the exploratory data analysis of single-cell or spatial genomic data, single cells or spatial
spots are often visualized using a two-dimensional plot where cell clusters or spot clusters are marked with
different colors. With tens of clusters, current visualization methods often assigns visually similar colors to
spatially neighboring clusters, making it hard to identify the distinction between clusters. To address this
issue, we developed Palo that optimizes the color palette assignment for single-cell and spatial data in a
spatially-aware manner. Palo identifies pairs of clusters that are spatially neighboring to each other and
assigns visually distinct colors to those neighboring pairs. We demonstrate that Palo leads to improved
visualization in real single-cell and spatial genomic datasets.
Availability: Palo R package is freely available at https://github.com/Winnie09/Palo.
Contact: zhicheng.ji@duke.edu

1 Introductions
Data visualization is a key step in exploring the underlying structure
of single-cell and spatial genomic data. For single-cell sequencing data
(e.g. single-cell RNA-seq [1]), cells are commonly projected into a low
dimensional space using methods such as PCA [2], UMAP [3], or tSNE
[4] and visualized by a 2-D scatterplot where the two axes represent two
reduced dimensions. Cells with the same cell type or cluster are shown
with the same color. For spatial transcriptomics data [5], spatial spots are
visualized by a 2-D spatial map where the two axes represent the two spatial
coordinates of the tissue slide. Similarly, spots with the same cluster are
shown with the same color. The visualization guides downstream analyses
such as cell type identification [6], trajectory reconstruction [7, 8], and
differential gene analysis [9, 10].

In many cases, cells or spots are grouped into tens of clusters to reflect
their heterogeneity, thus tens of different colors are needed to visualize
the different clusters. This will inevitably lead to similar colors in the
color palette that are hard for human eyes to perceive and differentiate.
As existing methods (e.g., ggplot2 [11]) assign colors to clusters
either alphabetically or in a random order, it is highly likely that some
spatially neighboring clusters are assigned similar colors that are hard for
human eyes to differentiate. Figure 1A shows an example of visualizing

a single-cell RNA-seq dataset with different T cells subsets [12]. The
geom_point() function inggplot2R package [11] is used to generate
the plot with the default color palette and settings. Multiple neighboring
clusters (e.g., CD4-Treg and CD4-Tfh(2)) share similar colors that are hard
to differentiate, and their boundaries are hard to perceive. This problem
cannot be solved by merely randomly permuting and reassigning colors to
clusters (Figure 1B), and there are still neighboring clusters with similar
colors (e.g., CD4-Treg and CD4-Tfh(2). Figure 1C shows an example of
visualizing Visium spatial transcriptomics data of a mouse brain [13]. The
plot is generated using the SpatialDimPlot() function in Seurat

R package [14] with the default color palette and settings. Similarly, there
are neighboring clusters (e.g., clusters 8,9,10) that share similar colors and
are not visually distinct. Randomly permuting and reassigning the color
palette (Figure 1D) still results in neighboring clusters with similar colors
(e.g., clusters 5,11).

The visualization issue discussed above may cause misinterpretation
of the data. For example, it may create false impressions of cell type
abundances or spatial interactions between spot clusters. It cannot be
directly addressed by existing visualization methods such as ASAP [15],
dittoSeq [16], SPRING [17], and SCUBI [18] which focus on other aspects
of visualization. To address this issue, we developed Palo to optimize
the color palette assignments to cell or spot clusters in a spatially-aware
manner. Palofirst calculates the spatial overlap score between each pair of
clusters. It then identifies a color palette that assigns visually distinct colors
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to cluster pairs with high spatial overlap scores (Figure 1E). We applied
Palo to both the single-cell RNA-seq dataset (Figure 1F) and the spatial
dataset (Figure 1G). The results show that Palo resolves the visualization
issue, and spatially neighboring clusters are assigned visually distinct
colors. The optimized color palette by Palo improves the visualization
and identification of boundaries between spatially neighboring clusters.

2 Data
The single-cell RNA-seq data of different T cell subsets were obtained
from Caushi et al. [12]. Data were processed using the standard Seurat
[14] pipeline to obtain the UMAP coordinates. Cell type information was
obtained from the original publication. The spatial transcriptomics data
of an anterior mouse brain were obtained from [13]. Data were processed
using the standard Seurat [14] pipeline to obtain the spot clusters.

3 Methods
The inputs to Palo are (1) the 2-D coordinates of cells or spots; (2) a
vector indicating clusters of the cells or spots; (3) a vector of user-defined
colors. For single-cell genomic data, the coordinates are usually obtained
by dimension reduction. For spatial data, the coordinates are the spatial
locations of spots in a tissue slide. The output of Palo is the optimized
permutation of the user-defined input color vector assigned to the clusters.
The Palo method consists of the following steps.

3.1 Fit 2D kernel densities

For each cluster, a 2D kernel density function (MASS::kde2d() in R)
with 100× 100 grid points is fitted using the 2-D coordinates of all cells
or spots in the cluster.

3.2 Identify hot grid points

For each cluster, all grid points with density values larger than a cutoff are
treated as the hot grid points. To identify the cutoff, the cluster labels for
all cells or spots are randomly permuted once, and the 2D kernel density
function is refitted for each permuted cluster. For each cluster, the cutoff
is the 95 percentile of the density values across all grid points obtained in
the permutation.

3.3 Calculate overlap scores

For a pair of clusters a and b, an overlap score is calculated as the Jaccard
index Ja,b = |Sa ∩ Sb|/|Sa ∪ Sb|, where Sa and Sb are the sets of hot
grid points of a and b respectively.

3.4 Calculate color dissimilarities

For a pair of colors e and f , the color dissimilarity De,f is defined as the
Euclidean distance between the RGB values of the two colors.

3.5 Optimize color palettes

Let P be a permutation of the user-defined color vector and Pk be the
color assigned to cluster k. A color score is defined as

∑
a∈C,b∈C Ja,b ×

DPa,Pb
, where C = 1, 2, ..., C and C is the total number of clusters.

Palo finds P that maximizes the color score. To do that, Palo first
randomly permutes the user-defined color vector multiple times (1000
times by default) and finds the permutation with the highest color score. It
then fine-tunes the permutation by repeatedly exchanging colors between
a pair of randomly selected clusters. If the exchange results in an increased
color score, the exchange is kept. The exchange is repeated multiple times
(1000 times by default).

Fig. 1: (A-B). Visualization of single-cell RNA-seq data with default
ggplot2 palette (A) or a randomly permuted palette (B). Neighboring
clusters with visually similar colors are circled. (C-D). Visualization
of spatial transcriptomics data with default ggplot2 palette (C) or
a randomly permuted palette (D). Neighboring clusters with visually
similar colors are circled. (E). Schematic of Palo. (F). Visualization of
single-cell RNA-seq data with Palo palette. (G). Visualization of spatial
transcriptomics data with Palo palette.

Implementations
Palo is implemented as an open-source R package. The package has
one function, Palo(), that performs the color palette optimization. The
following R command runs Palo:

pal <- Palo(position,cluster,palette)

Here, position is a cell by reduced dimension coordinate matrix
with two columns (in single-cell data) or a cell by spatial coordinate matrix
with two columns (spatial transcriptomics data); cluster is a vector of
cell or spot clusters; and palette is a user-defined color vector.

The output pal is a named vector of optimized color palette. The
output can be directly fed into other functions in R for plotting. For
example, the following code uses the geom_point() function in
ggplot2 to visualize single-cell data with Palo palette:

ggplot(...) + geom_point() +

scale_color_manual(values=pal)

The following code uses the SpatialDimPlot() function in
Seurat to visualize spatial transcriptomics data with Palo palette:

SpatialDimPlot(...) +

scale_fill_manual(values=pal)
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