bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Planemo: a command-line toolkit for developing, deploying,
and executing scientific data analyses

Simon Bray', Matthias Bernt?, Nicola Soranzo®, Marius van den Beek®*, Bérénice Batut', Helena

Rasche®, Martin Cech®, Peter Cock’, Anton Nekrutenko?, Bjérn Griining' and John Chilton*

1. Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University
Freiburg, Georges-Kdhler-Allee 106, 79110 Freiburg, Germany

2. Department of Computational Biology, Helmholtz Centre for Environmental Research
GmbH - UFZ, Permoserstralle 15, 04318 Leipzig, Germany
Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
Department of Biochemistry & Molecular Biology, The Pennsylvania State University,
University Park, PA, USA

5. Avans Hogeschool, Breda, Netherlands
Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK


https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Abstract

There are thousands of well-maintained high-quality open-source software utilities for all
aspects of scientific data analysis. For over a decade, the Galaxy Project has been providing
computational infrastructure and a unified user interface for these tools to make them accessible
to a wide range of researchers. In order to streamline the process of integrating tools and
constructing workflows as much as possible, we have developed Planemo, a software
development kit for tool and workflow developers and Galaxy power users. Here we outline
Planemo’s implementation and describe its broad range of functionality for designing, testing
and executing Galaxy tools, workflows and training material. In addition, we discuss the
philosophy underlying Galaxy tool and workflow development, and how Planemo encourages
the use of development best practices, such as test-driven development, by its users, including
those who are not professional software developers. Planemo is a mature project widely used

within the Galaxy community which has been downloaded over 80,000 times.


https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

The Galaxy project provides web browser access to command-line scientific software, together
with the necessary compute resources, in a convenient, shareable and reproducible way, to
researchers around the world [1]. Over eight thousand tools are available for installation onto
any Galaxy server; users can run these individually, connect multiple tools together to form
workflows, and finally perform complex analyses, without the need to access a command line.
While Galaxy itself does not require any significant computational skills to use, development and
maintenance of new tools and workflows benefit from sophisticated infrastructure with both
human and automated components. The process of integrating software into Galaxy requires
knowledge of both the command-line interface of the underlying software and the schema used
by Galaxy to define tools, in order to be able to write a ‘Galaxy tool wrapper’ mapping dataset
inputs, parameter inputs and outputs between them. Once written, wrappers, as well as other
Galaxy artifacts such as workflows or training material [2], are amenable to routine processes
such as testing, deployment and regular updates, all of which can be automated using
continuous integration (Cl) systems. Here we present Planemo, a versatile library and command
line application which is used extensively as a software development kit by Galaxy or Common
Workflow Language (CWL) [3] tool, workflow and training material developers, and as a toolkit
for Galaxy ‘power users’. Planemo provides a simple but powerful command-line interface for
tool and workflow development and deployment, which encourages and enforces good
practices for software development. In addition, it enables automated deployment of developed
tools and automatic updates of the software dependencies used internally by each Galaxy tool.
The testing functionality included in Planemo has been successfully integrated into Cl workflows
of the major tool and workflow repositories, which helps to ensure the creation of high quality

tool wrappers and workflows.

Planemo is structured into numerous subcommands, which provide a broad range of
functionality. Here we discuss a selection of the most important functionalities, grouped around
the following themes: 1) development of Galaxy tools, workflows, tutorials, and CWL tools; 2)
deployment of the developed tools and workflows; 3) automated tool and workflow dependency
updates and 4) tool and workflow execution. Table 1 summarizes this functionality, and Fig. 1
provides a graphical overview. In addition to its use as a command-line application, Planemo
can also be used as a library by other projects. An example is the Planemo Training
Development Kit project (hitps://github.com/galaxyproject/ptdk), which provides Planemo’s

functionality for creating training material for Galaxy workflows via a webserver.


https://paperpile.com/c/Seamz5/O6nc
https://paperpile.com/c/Seamz5/S7oN
https://paperpile.com/c/Seamz5/XrwI
https://github.com/bebatut/ptdk
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Methods

Software design

Planemo is implemented as a Python package and distributed via GitHub, PyPl and Bioconda
[4]. As already described in the Introduction, Planemo is a highly flexible, multifunctional
software, which can be used for: 1) different types of artifacts (e.g. tools, workflows), 2) different
workflow/tool languages and management systems (e.g. Galaxy, CWL), 3) different tasks (e.g.
linting, testing, executing). To handle this variety, Planemo defines two central abstractions:
Runnables and Engines. Runnables include tools and workflows written for either Galaxy or
CWL,; an Engine provides access to an external piece of software (such as Toil or Galaxy)
capable of executing a particular Runnable. Each Engine has various methods (e.g. run(),

test()), which define a particular interaction with a Runnable.

Engines are provided for both local and external Galaxy servers, as well as for cwltool [5] and
Toil [6]. These interact with their respective workflow management systems via the cwltool and
Toil Python modules (for CWL), and via the BioBlend library [7], which provides access to the

Galaxy API through Python. Numerous lower-level functions and classes are provided to

connect the Engines with the underlying functionality.

Some tasks cannot be easily described in the context of these abstractions; for example, linting
of tool or workflow definitions requires only that the structured document containing the
definition be compared with a schema. Other examples include the functionality for automatic
updates of software dependencies and generation of training material. Planemo handles these

cases using separate classes and functions.

Planemo is most frequently used as a command-line application, using a command-line
interface written using the Click package to provide a straightforward way to access the
components described above. Multiple subcommands expose some of the most important tasks
a user might want to perform. For example, a user could run "planemo test tool.xml' to
test a Galaxy tool wrapper. Planemo will detect the type of Runnable (Galaxy tool) represented
by the filepath and start the appropriate Engine (temporary local Galaxy instance), execute the
Runnable on it, collect the results, and compare them to predefined test data to determine a

pass or fail status. All subcommands can be configured by appending flags and options.


https://paperpile.com/c/Seamz5/LOJ1
https://paperpile.com/c/Seamz5/TIv1
https://paperpile.com/c/Seamz5/mFwg
https://paperpile.com/c/Seamz5/2moW
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Implementation of continuous integration jobs

While Planemo is designed primarily with developers and users in mind, commands often need
to be executed as part of automated continuous integration (Cl) jobs — for example, testing of
newly created Galaxy tools after submission to a GitHub repository. Galaxy tools and workflows
are hosted over multiple repositories; to ensure a unified approach to testing, a GitHub CI action

is provided. The Cl workflow consists of the following components:

1. ldentifying modified tools and repositories using “planemo ci find repos’ and
"planemo ci find tools’.

2. Linting of Galaxy tools using "planemo lint'.

3. Testing the tools — as this is the most time-consuming step, the tools found are chunked
and multiple jobs run in parallel.
Linting of Python and R scripts packaged together with the tools.
If the PR is approved and merged: deployment to the Toolshed with “planemo

shed _update’.

Definition of terms

Planemo’s features rely on and are interdependent with a variety of other subprojects within and

related to the Galaxy community. We therefore first outline a few of these.

IUC: The Intergalactic Utilities Commission [8] maintains a central repository of Galaxy tool
wrappers, currently hosted on GitHub. New wrappers are added by means of a GitHub pull
request, reviewed by IUC members, and are tested by automated CI. After approval, the tool is
automatically deployed to the Galaxy ToolShed. Tools are subject to further automatic updates,
as new versions of software dependencies are released. The IUC serves as a model for smaller
communities developing wrappers for more specialized tools (for example, Galaxy-P [9] for

proteomics) and has developed a set of guidelines for tool development.

Bioconda/BioContainers: Each Galaxy tool has certain dependencies, which are typically
installed either using the Conda package manager [10] or within a container (Docker [11] or
Singularity [12]). Development and maintenance of the necessary Conda packages or
containers is performed by the Bioconda and Biocontainers [14] communities, which collaborate

closely with the Galaxy project.


https://paperpile.com/c/Seamz5/Wpfi
https://paperpile.com/c/Seamz5/YqTS
https://paperpile.com/c/Seamz5/xV9E
https://paperpile.com/c/Seamz5/JluZ
https://paperpile.com/c/Seamz5/hz3B
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ToolShed: A central ‘app store’ for Galaxy tools Any user can upload to the ToolShed [13], but
most high-quality tools are developed collaboratively on an open platform like GitHub (for

example by the IUC) and deployed automatically.

IWC: maintains a set of curated workflows [14], consisting of multiple component Galaxy tools,
which are hosted on GitHub and deployed to Dockstore [15] and the Workflow Hub [16],
analogously to the development and deployment of Galaxy tools to the ToolShed by the IUC.

Galaxy Training Network: A repository for tutorials, each describing a method for data analysis
in Galaxy [1]. Each tutorial is made up of multiple steps and therefore corresponds to a Galaxy

workflow, which forms the skeleton around which the tutorial is built.

Continuous Integration (Workflow): A workflow run remotely on a build server which tests and

deploys Galaxy artifacts developed. It should not be confused with a Galaxy workflow.

Tool: Artifact defined by a tool wrapper and stored in the ToolShed, allowing users to access the

functionality of the underlying software via Galaxy.

Galaxy Tool Wrapper: Structured document defining a Galaxy tool; it maps dataset inputs and

outputs and other parameters between the underlying command-line tool and the Galaxy API.

Galaxy Workflow: a directed acyclic graph in which nodes can be dataset inputs or outputs,
parameter inputs, or tools. More informally, a combination of multiple individual tools into a

single pipeline, which once assembled can be executed as if it were a single tool.

Collection: a group of individual datasets linked together in a directory-like structure. When a
tool is run on a collection, individual jobs are generated for each of the datasets which make up
the collection. In combination with workflows, collections allow Galaxy users to scale up

analyses to deal with large sets of data.

Documentation

Planemo’s documentation is hosted on a ReadTheDocs site: hitps://planemo.readthedocs.io. In

addition, several tutorials are available as part of the Galaxy Training Network:

e Creating Galaxy tools from Conda through deployment:

https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tu

torial.html


https://paperpile.com/c/Seamz5/Eieg
https://paperpile.com/c/Seamz5/K2gE
https://paperpile.com/c/Seamz5/qDRk
https://paperpile.com/c/Seamz5/ld9P
https://paperpile.com/c/Seamz5/O6nc
https://planemo.readthedocs.io
https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tutorial.html
https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tutorial.html
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

e Creating training material with Planemo:

https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-
tutorial/tutorial.html

e Automating Galaxy workflows using the command line:

https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflo
w-automation/tutorial.html

e Test-driven development with Planemo:

https://planemo.readthedocs.io/en/latest/writing advanced.html#test-driven-development



https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-tutorial/tutorial.html
https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflow-automation/tutorial.html
https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflow-automation/tutorial.html
https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Results and Discussion
Galaxy tool development

A Galaxy tool is defined by a wrapper for an underlying software (or code), which maps its
dataset inputs, parameter inputs and outputs to a command-line script executed by Galaxy.
When running a tool in the Galaxy interface, a user selects their preferred choices for the
exposed dataset and parameter inputs. The Galaxy server then constructs the command,
schedules it as a job onto appropriate compute resources, collects the results once the job has

completed, and returns them to the user.

Writing Galaxy tool wrappers requires a thorough knowledge of the underlying software and also
an understanding of the Galaxy tool schema which defines how Galaxy wrappers are written.
The tool schema is defined in a simple manner, in order to make the process of wrapping
software as accessible as possible [17]. Planemo provides several helpful features which assist
tool developers in creating high-quality wrappers that meet community-defined standards, such
as those [18] developed by the Intergalactic Utility Commission (IUC). These features are
implemented as subcommands, e.g. ‘planemo test’. Planemo also helps to enforce software
development best practices such as writing tests for all tools and linting the wrapper definitions
to avoid bugs and ensure a coherent and readable style. Further support for tool development
standards is provided by the Galaxy Language Server [19], an implementation of the Language
Server Protocol [20] and a Visual Studio Code extension for Galaxy tools, which can be used

side-by-side with Planemo.

A common starting point for tool development is the "tool init’ subcommand. To use this,
the developer provides a variety of options, including an example command line, tool name,
inputs, outputs and software requirements, from which Planemo generates a skeleton tool
wrapper. Most of the "tool init’ parameters are optional, but the more that are provided, the

more detailed the initial skeleton will be.

The developer can then inspect and edit the generated file, adding more parameters and
increasing the complexity of the wrapper logic by incorporating conditionals and repeat
elements if necessary. As they continue to edit, they can use the "1int’ subcommand to
validate the wrapper under development. Planemo’s linting forces wrappers to match Galaxy’s
tool schema, ensuring stylistic consistency and preventing some errors such as mismatched file

formats. Crucially, Planemo recommends that wrappers define at least one test case to ensure


https://paperpile.com/c/Seamz5/R1S7
https://paperpile.com/c/Seamz5/BKRR
https://paperpile.com/c/Seamz5/DMav
https://paperpile.com/c/Seamz5/ck1R
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the development of high-quality, portable, reliable and functional tools, and this recommendation
is strictly enforced by the IUC’s and other tool repositories. Once tests are defined, together with
an initial tool definition, the developer can start to run the tests using the "test’ subcommand.
This launches a transient Galaxy server on the developer’s computer, installs the Galaxy tool
under development, together with all software dependencies, and executes the tests specified
within the tool wrapper. The results of the tests are then returned to the developer, by default
using a report defined using JSON and HTML, although other format types are also supported
(xUnit, jUnit, Markdown and Allure).

Planemo encourages the use of test-driven development [21], a software development principle
which states test cases should be written before a new feature is developed. Test-driven
development is an industry-wide best practice. Defining extensive test cases at the start of the
process covering the required features provides a focus for development, and results in more
robust and better documented code containing fewer bugs. The tool developer is forced to
adopt the perspective of the Galaxy user from the start to consider possible use-cases of the
software for which tests need to be written. Initial test failures lead to iterative refinement of the

wrapper, until a fully-functional Galaxy tool, which passes all tests, is produced.

Once tests are passing, the developer should optimize the tool interface which is presented to
the user of the tool. To facilitate this, Planemo provides the "serve’ subcommand, which
launches a Galaxy server with the new tool installed, allowing the developer to inspect the
rendering of the wrapper in the graphical interface and to perform manual testing. The
developer should also improve the documentation of the tool, by annotating each of the tool
parameters, as well as writing a help section to explain the tool’s aim and usage, which appears

beneath the tool parameters in the graphical interface.

Common Workflow Language tool development

In addition to Galaxy tools, Planemo also acts as a software development kit for CWL tools. The
same subcommands described can be used for this purpose, including ‘tool init’and
‘test’. By appending the "--cwl’ argument to the ‘tool init’ subcommand, Planemo
generates a template for a CWL tool definition, rather than a Galaxy wrapper. The test and lint
commands then detect that the input file is a CWL wrapper and process it accordingly. Tools are
tested by executing with the CWL engine cwltool and comparing the result with test data or
specified assertions, in the same way as for Galaxy tools. The completed wrapper can be run

using any CWL engine, such as cwltool, Toil, Arvados [22] or Galaxy.


https://paperpile.com/c/Seamz5/NaMt
https://paperpile.com/c/Seamz5/ueQa
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Galaxy workflow development

Workflows are created in Galaxy by connecting together multiple tools (i.e. an output of one tool
becomes an input for the following one) in order to automate complex analyses. Unlike tools,
workflows can be defined and edited in Galaxy’s graphical workflow editor; often the starting
point is an interactive analysis (a Galaxy history) from which a workflow can be extracted
automatically. It is also possible to manually author workflows in the gxformat2 workflow
language [23], and the user can switch between manually writing workflows and editing in the
graphical interface using the ‘'workflow edit’ subcommand, which spins up a Galaxy
instance with the workflow under development pre-installed for editing. Planemo additionally
facilitates the creation of test cases by providing the option of generating them automatically

from a pre-existing workflow invocation.

Once a draft version of the workflow exists, it should be iteratively improved in the same way as
for tools, using the same lint, test and serve subcommands already introduced. The

‘'workflow lint’ subcommand checks workflows for errors and conformance with best
practices—a command-line interface mirroring functionality which is also provided by the Galaxy
graphical workflow editor. For example, workflows which are missing test cases, labeled
outputs, or essential metadata fail linting. Running the "test™ subcommand launches a local
Galaxy instance, installs the tools used in the workflow, uploads the workflow and executes it on
the provided input test data. In the same way as for tool testing, the workflow outputs are
downloaded and compared to the test data, resulting in either a pass or fail status. In some
cases, it can be convenient to run testing on an existing public server, such as

https://usegalaxy.org, https://usegalaxy.eu, or https://usegalaxy.org.au; this is also supported by

Planemo. Running the "serve’ subcommand provides a local Galaxy server with the workflow
and the needed tools pre-installed, which can be used for workflow development and

fine-tuning.

The philosophy of Galaxy tool and workflow development

After the previous discussion of the process of tool and workflow development, the question
arises how software complexity should be divided between the tool and the workflow level.
Should most of the effort go into developing workflows, keeping tools as simple as possible and
flexibly rewrapping the underlying software depending on the demands of a particular workflow,
or should developers invest time creating complex and multifunctional tools which can be

reused without modification in multiple workflows?

10


https://paperpile.com/c/Seamz5/FInT
https://usegalaxy.org
https://usegalaxy.eu
https://usegalaxy.org.au
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Galaxy leans heavily towards the second of these two options, as does CWL, though the
following discussion will focus on Galaxy. Galaxy encourages the creation of modular tools
which are usable in isolation, so they can be used interchangeably in multiple different
workflows. Tools generally encapsulate most of the complexity of the underlying software,
allowing workflows to be simply constructed in a graphical interface by connecting the
component tools. Workflows can thus be thought of as complex structures built from the same
fundamental building blocks, which can be constructed without knowledge of the internal
functionality of the individual tools. This has several advantages with regard to the user
experience: building workflows becomes a far less daunting task, and tools can also be used
individually in the graphical interface, which makes Galaxy accessible to new users and enables

its use as a teaching environment for scientific analysis.

Another advantage of this approach is the “separation of concerns”, a design principle in
computer science. Different groups of scientists can develop and apply specialized and
complementary areas of knowledge: the tool developer can concentrate on describing and
developing the Galaxy tool, without considering any downstream workflows that will be created
later. On the other hand, the workflow developer can construct complex, high-level pipelines,
without the detailed understanding of the component tools and the command-line possessed by
the tool developer. This has the dual advantage that workflows can be treated on a more
abstract level and that the workflow creation process is made accessible for a far greater

number of users.

Separation of concerns between tools and workflows also benefits security. Executing untrusted
software on a compute cluster is highly undesirable; thus workflows need to be assessed for
security risks before execution. For many workflow management systems, this assessment
must be repeated for each workflow. By contrast, as the Galaxy tool review process involves
checking tools for security issues before merging, a system administrator can deploy tools
developed by the IUC or similar high-trust communities with confidence. The question of
workflow security is thus made redundant: if the component tools are trusted, a workflow based

on those tools can likewise be trusted.

These advantages must be balanced against the time investment required from community
members to build up a diverse set of tools, to allow the construction of scientifically interesting
workflows. Nonetheless, the Galaxy community, facilitated by Planemo, has succeeded in

developing such a toolset and making it available to the scientific community.

11


https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Continuous integration for community repositories

Galaxy has a large and vibrant community of tool and workflow developers, creating Galaxy
tools in a wide range of scientific fields, ranging from genomics to proteomics, computational
chemistry and climate science. As a result, a large number of high quality tools already exist
and are actively maintained over several GitHub repositories, centered around the main IUC
repository; the IWC (see Methods for definition) performs the equivalent function of a repository
for Galaxy workflows. Building these communities has required many years of work by multiple
contributors; in order to streamline the process and ease the burden on the tool developers,
developing infrastructure to facilitate human review and automate as much as possible is

essential. Planemo forms the core of this infrastructure.

Once a developer has completed the tool wrapper or workflow, they can submit it to a
community repository, usually hosted on GitHub, for review. Alternatively, they may also deploy
it themselves (for example, to the ToolShed or WorkflowHub), but submission to a community
repository is encouraged to ensure the code is thoroughly reviewed and to publicize the new
tool or workflow. Community repositories are configured to run the linting and testing checks
already described after submission, via a continuous integration (Cl) workflow. Planemo
provides a couple of simple subcommands, ‘ci find repos’ and ‘ci_ find tools’,to
identify tools which have been added or modified. Both of these allow chunking of tools in order
to parallelize the testing process over multiple ClI jobs. As part of the Cl testing, linting and
testing of the tools is repeated, as well as linting of any Python and R scripts added together
with the new tool wrappers. These steps ensure the submitted tools are of high quality, enforce

consistent standards on the code and reduce the maintenance burden for the entire community.

If all tests pass and the proposed new tool or workflow is accepted by the community, another
Cl job is initiated to deploy it to the ToolShed. This makes use of Planemo’s "shed update’
command, which uses the ToolShed credentials associated with the repository to upload the
newly created tool. Once it is available on the ToolShed, it can easily be installed onto any

Galaxy server.

The entire process, consisting of automated testing, human review and automated deployment,
ensures the creation of high-quality, trustworthy tools which can be safely installed and used. It
requires several more specialized steps, which go beyond the simple Planemo subcommands
that the developer runs on their local machine. To package these Cl workflows into a single unit,

a GitHub Action is provided [24] which can be reused in other tool repositories. New tool

12


https://paperpile.com/c/Seamz5/waP5
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

repositories with the same structure as the IUC repository can be conveniently created from a

template repository created by the Galaxy community [25].

Automation of tool and workflow updates

Another feature offered by Planemo is automatic updates of Galaxy tool and workflow software
dependencies, using the “autoupdate™ subcommand. In combination with separate
autoupdate features already developed by the Bioconda and conda-forge [26] communities, this
forms a sequence of semi-automated software update procedures, which are triggered by an
official release of new source code. After this new release appears, this chain ensures that new
Conda packages, new Docker and Singularity containers, updated Galaxy tools and finally
updated Galaxy workflows are generated (Fig. 2). At each step, a Cl job detects the artifact
published in the previous step and initiates the process of updating a dependent artifact,

generally by means of a GitHub pull request (PR).

The CI pipelines developed by Bioconda and conda-forge monitor the Conda recipes they
maintain, regularly checking the links provided in the recipes for new releases. When the
developers of an upstream software package release a new version, the Cl creates a PR to
update the package recipe. Once the PR is reviewed and merged, newly built packages are

uploaded to the Anaconda repository.

In parallel, a bot [29] running the "autoupdate”™ subcommand monitors the Galaxy tool
wrappers maintained by the IUC, as well as a few other smaller communities, checking the
dependencies defined in the tool wrapper. Once an updated Bioconda or conda-forge package
is published in the step above, the Planemo autoupdate bot detects this and updates the
dependencies section of the Galaxy tool accordingly. A PR is then submitted to the GitHub
repository, to be reviewed and manually updated if necessary, before it is merged and deployed

as described in the “Cl for community repositories” section.

Galaxy tools can specify multiple dependencies. If these dependencies are installed via Conda,
the packages can be simply installed into a single environment, but if dependency installation is
achieved using containers, a new container must be built for each required combination of

dependencies. This is achieved by the ‘mulled build’ infrastructure; a Cl job triggers the building
of a Docker container for each new combination of packages, on publication of new Galaxy tool

versions. Another Cl job is responsible for generating Singularity containers from the new

13


https://paperpile.com/c/Seamz5/KGZM
https://paperpile.com/c/Seamz5/PafE
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Docker containers, which are made available by the BioContainers and Galaxy communities via

a CernVM file system (CVMFS) [27]. These steps do not require manual review.

The Planemo autoupdate bot also monitors the Galaxy workflows maintained by the IWC and
checks whether new versions exist for each of the component tools. Once a new tool version is
created (either by the upstream tool autoupdate step, or a tool developer), the workflow

definition file hosted by the IWC is modified accordingly and a PR submitted for review (Fig. 3).

Execution

Apart from providing assistance with tool and workflow development and deployment, Planemo
is also a useful resource for Galaxy power users who need to launch high-throughput data
analyses. Galaxy is traditionally accessed via a graphical interface in the web browser, and
features such as Galaxy collections already provide a high level of parallelization to users of the
graphical interface. Nonetheless, there are important scenarios in which a user might need to
run individual workflows hundreds or thousands of times, in which the data cannot be grouped
into collections ahead of time—for example, for variant calling of SARS-CoV-2 genomic data, in
which a huge amount of new data is published continuously [28]. As a convenient alternative to
the graphical interface, Planemo allows workflow execution to be scheduled programmatically
using the "run” subcommand, either on a local machine or a larger Galaxy server. ‘planemo
run’ can be embedded in scripts of varying complexity, which can be scheduled and controlled
via Cl systems or message queues to run workflows on demand - such as on new data

appearing or tool updates.

Internally, Planemo executes workflows by submitting them to the chosen server via Galaxy’s
API. Requests to the API are made using BioBlend, a library which wraps many APl endpoints
as Python methods. It is also possible to execute workflows directly using BioBlend, or simply by
making API calls using a tool such as cURL. While this approach does offer a high level of
flexibility, it requires the user to possess a high level of knowledge of the API (for example, the
correct format to submit workflow parameters) and often requires the creation of custom scripts.
By contrast, Planemo’s ‘run’ subcommand offers a high-level interface to execute workflows,
monitor them during execution, and report on their status after completion, packaged as a single

command.

For tool and workflow development, the artifacts under development are generally tested

against an ephemeral local Galaxy instance, which is deleted after use. While this is also

14


https://paperpile.com/c/Seamz5/TcH6
https://paperpile.com/c/Seamz5/lcmU
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

supported by the "run’ subcommand, with the workflow outputs saved to a specified location,
this approach is not scalable for workflows which demand long compute times, with large data
inputs, or with workflows which need to be executed multiple times. In many cases, the user
may prefer to make use of established, stable infrastructures, such as a public Galaxy instance
or a private instance administered by their research group. Planemo allows external Galaxy
instances to be specified for all 'run” and "test’ commands by providing the server URL and
user API authentication key on the command line. As it is inconvenient and insecure to enter the
API key with each command, Planemo also allows users to define profiles, in which the URL
and API key is configured for each server. The user can then define multiple profiles and run
workflows on different servers simply by appending, e.g. --profile usegalaxy-org oOr

‘--profile private-server tothe command.

Planemo provides numerous command line options to configure the workflow execution
process. The name of the history in which the new invocation is created, as well as a list of
Galaxy tags to add, can be specified via the command line. In addition, Planemo and Galaxy
allow both datasets and workflows to be specified via hexadecimal IDs which point towards a
Galaxy object on an external server, rather than by referring to a local path. This has the
advantage of avoiding multiple uploads of the same dataset or workflow, if the workflow has to
be executed multiple times. Planemo can also be configured to either wait until the workflow has
completed, and download the output datasets created, or to terminate once the workflow has
been successfully scheduled. In the latter case, the '1ist invocations’ command can be
used to monitor running workflows and to return the number of jobs which have succeeded,
failed, or incomplete. If jobs have failed—for example, due to transient server issues— the user

can also choose to restart them using the ‘rerun’ subcommand.

Training material

Planemo provides utilities for developing tutorials for different types of data analysis with Galaxy.
The Galaxy Training Network, accessible via https://training.galaxyproject.org, provides a range
of training material including slide decks, tutorials and videos. In particular, the tutorials are
written in Markdown and rendered using Jekyll, and often feature ‘hands-on boxes’ which
describe the exact combination of parameters and input which users need to submit when
running a Galaxy tool. Most tutorials instruct the trainees to run several Galaxy tools in

sequence, and thus correspond to a Galaxy workflow.

15


https://training.galaxyproject.org/
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Planemo provides two subcommands, "training init" and

‘training generate from wf ', which generate a directory structure for a new tutorial,
containing skeleton Markdown files defining the tutorials. These files already contain sections
and hands-on boxes for each tool, with the tool inputs and parameters predefined, ensuring a
high level of consistency in the appearance and quality of the tutorials produced. The training
developer can then take these templates and expand them with additional information,
questions, diagrams and citations to produce the completed training. They also need to provide
input datasets, which are usually stored on Zenodo. To populate a Galaxy server with these
datasets, the training developer should also provide a data library file, which can be generated
usingthe "training fill data library’ subcommand, including the Zenodo links and

file formats of the datasets.

A major aim of the Galaxy Training Network project is improving accessibility for new
contributors, including for scientists who are not comfortable with command-line software. As a
result, the Planemo functionality relating to training material development is provided in
webserver form as the Planemo Training Development Kit (PTDK). The application is written

using Flask and deployed with Heroku; it can be accessed via https://ptdk.herokuapp.com. The

interface allows the selection of the same options as the Planemo commands, with the
additional option of specifying a workflow for generating the training using its ID from one of the

major public Galaxy servers.

Conclusion

We have presented Planemo, a library and application which has already achieved widespread
usage among Galaxy tool, workflow and training material developers, Galaxy power users, and
as part of numerous automated deployment solutions. Planemo provides the developers of
command-line software with an easy way to create a graphical interface, taking advantage of
the many features developed by the Galaxy community and the compute resources provided by
public Galaxy instances. We have described the complex infrastructure the Galaxy community
has developed for creating and interacting with artifacts such as tools, workflows and training
material. Planemo plays the crucial role of bridging the gaps between the human and automated
components of this infrastructure, freeing members of the community to devote their time to

developing, reviewing and performing novel scientific analyses.

16


https://ptdk.herokuapp.com/
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Acknowledgements

The authors are grateful to the broader Galaxy community for their support and software
development efforts. This work is funded by NIH Grants U41 HG006620 and NSF ABI Grant
1661497. Usegalaxy.eu is supported by the German Federal Ministry of Education and
Research grants 031L0101C and de.NBl-epi to BG. Usegalaxy.org.au is supported by
Bioplatforms Australia and the Australian Research Data Commons through funding from the
Australian Government National Collaborative Research Infrastructure Strategy. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of

the manuscript.

17


https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Tables
Object — Galaxy tool Galaxy workflow CWL Galaxy training
Function | material
Initial template tool init workflow test  tool init training init,
creation init training generat
e from wf
Development test, lint, test, lint, test, lint
serve serve
Deployment test, ci_%*, test, ci_~*, - GTN
shed * shed *
Execution run run run GTN
Automated updates autoupdate autoupdate -

Table 1. Overview of Planemo functionality and subcommands. Columns represent artifacts that can be created or
manipulated with Planemo, rows represent different actions that can be performed on them. Italics represent actions
which are performed without using Planemo: trainings are deployed using Jekyll and executed by users following the

training material in the graphical interface.

18


https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figures

Figure 1. Overview of the use of Planemo for development, deployment, and execution of

Galaxy tools, workflows and training materials. Red = manual work, blue = Planemo commands,

yellow = automated steps, green = created artifacts.

Developer's local machine GitHub repository
IUC /1wcC

P Manual Pull
tool_Init ‘% creation (.l Request

g .
— [ . / Tool shed
mmm_"evew &Y definition update
—
> Workflow

auto
update

Public Galaxy Server
test
remotely
| .]:3
ﬁ
e —
|

Dockstore / WorkflowHub

-

/
g — < < A, oo
® 00
ToolShed
Training .
o @ - -

Multi-container repository

ptdk webserver

19


https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 2. Automation pipeline for Bioconda packages, BioContainers, Galaxy tools and
workflows. Steps marked in red require human review; steps marked in blue are fully

automated.

Galaxy BRI Galax
ToolShed LN SNES server(s)
J
PLAN=MOQ| O update A install [\ update

BIOCONDA PLANTMO PLANTMO
Source PO Ml BioConda EKoXEkq @ watch Galax
° Yy
code © &% il workflow(s)

package Qupdate | Siiaw

release |REREECIINEY

PLAN=MOQ|©create
Y

Docker IR ANGaiciC Il Singularity
i e container
€0 nta ner e create hosted on CVMFS

-
Q’;’: Biocontainers

Q@ create

20


https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 3. An example GitHub pull request created by the Planemo autoupdate bot, updating a
workflow hosted on the IWC.

planemo-autoupdate commented yesterday

Hello! This is an autornated update of the following workflow: workflows/sars-cov-2-variant-calling/sars-cov-2-pe-illumina-
artic-variant-calling. | created this PR because | think one or mare of the component tools are out of date, i.e. there is a newer
version available on the ToolShed.

By comparing with the latest versions available on the ToolShed, it seems the following tools are outdated:

= toolshed.g2.bx.psu.edu/repos/deviean/bwa/bwa_mem/8.7.17.1 should be updated to toolshed.g2.bx.psu.edu/repos
/devteam/bwa/bwa_mem/9.7.17.2

* toolshed.g2.bx.psu.edu/repos/iuc/samtools_view/samtools_view/1.9+galaxy2 should be updated to

toolshed.g2.bx.psu.edu/repos/iuc/samtools_view/samtools_view/1.13

* toolshed.g2.bx.psu.edu/repos/deviean/samtools_stats/samtools_stats/2.0.2+galaxy2 should be updated to

toolshed.g2.bx.psu.edu/repos/devteam/samtools_stats/samtools_stats/2.0.3

* toolshed.g2.bx.psu.edu/repos/iuc/ivar_trim/ivar_trim/1.3.1+galaxye should be updated to

toolshed.g2.bx.psu.edu/repos/iuc/ivar_trim/ivar_trim/1.3.1+galaxy2

* toolshed.g2.bx.psu.edu/repos/iuc/lofreq call/lofreq call/z.1.5+galaxy® Should be updated to
toolshed.g2.bx.psu.edu/repos/iuc/lofreq_call/lofreq _call/2.1.5+galaxyl

* toolshed.g2.bx.psu.edu/repos/iuc/ivar_removereads/ivar_removereads/1.3.1+galaxye should be updated to

toolshed.g2.bx.psu.edu/repos/iuc/ivar_removereads/ivar_removereads/1.3.1+galaxy2

* toolshed.g2.bx.psu.edu/repos/ivc/multige/mulrige/1.0+galaxyl should be updated to
toolshed.g2.bx.psu.edusrepos/iuc/multigc/multiqe/1. 11+galaxye

The workflow release number has been updated from 0.4.2 to 0.4.3.

21


https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

1. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D,
Coraor N, Grining BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H,
Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D. The Galaxy platform for
accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic
Acids Res. Oxford Academic; 2018 May 22;46(W1):W537-W544.

2. Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C, Bretaudeau A,
Brillet-Guéguen L, Cech M, Chilton J, Clements D, Doppelt-Azeroual O, Erxleben A,
Freeberg MA, Gladman S, Hoogstrate Y, Hotz H-R, Houwaart T, Jagtap P, Lariviere D, Le
Corguillé G, Manke T, Mareuil F, Ramirez F, Ryan D, Sigloch FC, Soranzo N, Wolff J,
Videm P, Wolfien M, Wubuli A, Yusuf D, Galaxy Training Network, Taylor J, Backofen R,
Nekrutenko A, Griining B. Community-Driven Data Analysis Training for Biology. Cell Syst.
2018 Jun 27;6(6):752-758.e1. PMCID: PMC6296361

3. Crusoe MR, Abeln S, losup A, Amstutz P, Chilton J, Tijani¢ N, Ménager H, Soiland-Reyes
S, Gavrilovic B, Goble C. Methods Included: Standardizing Computational Reuse and
Portability with the Common Workflow Language. 2021 May 14 [cited 2022 Mar 11];
Available from: http://dx.doi.org/10.1145/3486897

4. Grining B, Dale R, Sjodin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Koster
J, Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the
life sciences. Nat Methods. 2018 Jul;15(7):475-476. PMID: 29967506

5. Common Workflow Language. GitHub - common-workflow-language/cwltool: Common
Workflow Language reference implementation [Internet]. GitHub. [cited 2022 Mar 11].
Available from: https://github.com/common-workflow-language/cwitool

6. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, Pfeil J, Narkizian J,
Deran AD, Musselman-Brown A, Schmidt H, Amstutz P, Craft B, Goldman M, Rosenbloom
K, Cline M, O’Connor B, Hanna M, Birger C, Kent WJ, Patterson DA, Joseph AD, Zhu J,
Zaranek S, Getz G, Haussler D, Paten B. Toil enables reproducible, open source, big
biomedical data analyses. Nat Biotechnol. Nature Publishing Group; 2017 Apr
11;35(4):314-316.

7. Sloggett C, Goonasekera N, Afgan E. BioBlend: automating pipeline analyses within
Galaxy and CloudMan. Bioinformatics. Oxford Academic; 2013 Apr 28;29(13):1685-1686.

8. Intergalactic Utilities Commission [Internet]. [cited 2022 Mar 11]. Available from:
https://galaxyproject.org/iuc/

9. Blank C, Easterly C, Gruening B, Johnson J, Kolmeder CA, Kumar P, May D, Mehta S,
Mesuere B, Brown Z, Elias JE, Hervey WJ, McGowan T, Muth T, Nunn BL, Rudney J,
Tanca A, Griffin TJ, Jagtap PD. Disseminating Metaproteomic Informatics Capabilities and
Knowledge Using the Galaxy-P Framework. Proteomes. Multidisciplinary Digital Publishing
Institute; 2018 Jan 31;6(1):7.

22


http://paperpile.com/b/Seamz5/O6nc
http://paperpile.com/b/Seamz5/O6nc
http://paperpile.com/b/Seamz5/O6nc
http://paperpile.com/b/Seamz5/O6nc
http://paperpile.com/b/Seamz5/O6nc
http://paperpile.com/b/Seamz5/S7oN
http://paperpile.com/b/Seamz5/S7oN
http://paperpile.com/b/Seamz5/S7oN
http://paperpile.com/b/Seamz5/S7oN
http://paperpile.com/b/Seamz5/S7oN
http://paperpile.com/b/Seamz5/S7oN
http://paperpile.com/b/Seamz5/S7oN
http://paperpile.com/b/Seamz5/XrwI
http://paperpile.com/b/Seamz5/XrwI
http://paperpile.com/b/Seamz5/XrwI
http://paperpile.com/b/Seamz5/XrwI
http://dx.doi.org/10.1145/3486897
http://paperpile.com/b/Seamz5/LOJ1
http://paperpile.com/b/Seamz5/LOJ1
http://paperpile.com/b/Seamz5/LOJ1
http://paperpile.com/b/Seamz5/TIv1
http://paperpile.com/b/Seamz5/TIv1
http://paperpile.com/b/Seamz5/TIv1
https://github.com/common-workflow-language/cwltool
http://paperpile.com/b/Seamz5/mFwg
http://paperpile.com/b/Seamz5/mFwg
http://paperpile.com/b/Seamz5/mFwg
http://paperpile.com/b/Seamz5/mFwg
http://paperpile.com/b/Seamz5/mFwg
http://paperpile.com/b/Seamz5/mFwg
http://paperpile.com/b/Seamz5/2moW
http://paperpile.com/b/Seamz5/2moW
http://paperpile.com/b/Seamz5/Wpfi
https://galaxyproject.org/iuc/
http://paperpile.com/b/Seamz5/YqTS
http://paperpile.com/b/Seamz5/YqTS
http://paperpile.com/b/Seamz5/YqTS
http://paperpile.com/b/Seamz5/YqTS
http://paperpile.com/b/Seamz5/YqTS
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10. Conda — conda 4.12.0.post4+8c8af5e3 documentation [Internet]. [cited 2022 Mar 11].
Available from: https://docs.conda.io/projects/conda/en/latest/index.html

11. Empowering App Development for Developers [Internet]. Docker. [cited 2022 Mar 11].
Available from: https://www.docker.com/

12. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute.
PLoS One. Public Library of Science; 2017 May 11;12(5):e0177459.

13. Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N, Team G, Taylor J,
Nekrutenko A. Dissemination of scientific software with Galaxy ToolShed. Genome Biol.
BioMed Central Ltd; 2014 Jan 1;15(2):403. PMCID: PMC4038738

14. Galaxy Project. GitHub - galaxyproject/iwc: Intergalactic Workflow Commission [Internet].
GitHub. [cited 2022 Mar 11]. Available from: https://github.com/galaxyproject/iwc

15. Yuen D, Cabansay L, Duncan A, Luu G, Hogue G, Overbeck C, Perez N, Shands W,
Steinberg D, Reid C, Olunwa N, Hansen R, Sheets E, O’'Farrell A, Cullion K, O’Connor BD,
Paten B, Stein L. The Dockstore: enhancing a community platform for sharing reproducible
and accessible computational protocols. Nucleic Acids Res. Oxford Academic; 2021 May
12;49(W1):W624—-W632.

16. Goble C, Soiland-Reyes S, Bacall F, Owen S, Williams A, Eguinoa |, Droesbeke B, Leo S,
Pireddu L, Rodriguez-Navas L, Fernandez JM, Capella-Gutierrez S, Ménager H, Grlning
B, Serrano-Solano B, Ewels P, Coppens F. Implementing FAIR Digital Objects in the
EOSC-Life Workflow Collaboratory. 2021 Mar 12 [cited 2022 Mar 11]; Available from:
https://zenodo.org/record/4605654

17. Galaxy Tool XML File — Galaxy Project 22.05.dev0 documentation [Internet]. [cited 2022
Mar 11]. Available from: https://docs.galaxyproject.org/en/latest/dev/schema.html

18. Galaxy Intergalactic Utilities Commission Standards and Best Practices — Galaxy IUC
Standards and Best Practices 0.1 documentation [Internet]. [cited 2022 Mar 11]. Available
from: https://galaxy-iuc-standards.readthedocs.io/

19. Galaxy Project. GitHub - galaxyproject/galaxy-language-server: Galaxy Language Server
to help in Galaxy (https://galaxyproject.org/) tool wrappers development [Internet]. GitHub.
[cited 2022 Mar 11]. Available from:
https://github.com/galaxyproject/galaxy-language-server

20. Language Server Protocol [Internet]. Available from:
https://microsoft.github.io/language-server-protocol/

21. Siddiqui S. Learning Test-Driven Development: A Polyglot Guide to Writing Uncluttered
Code. O'Reilly Media; 2021.

22. Arvados [Internet]. Arvados. [cited 2022 Mar 11]. Available from: https://arvados.org/
23. gxformat2 [Internet]. Available from: https://github.com/galaxyproject/gxformat2

24. Galaxy Project. GitHub - galaxyproject/planemo-ci-action: Test, deploy, or lint changed

23


http://paperpile.com/b/Seamz5/xV9E
http://paperpile.com/b/Seamz5/xV9E
https://docs.conda.io/projects/conda/en/latest/index.html
http://paperpile.com/b/Seamz5/JluZ
http://paperpile.com/b/Seamz5/JluZ
https://www.docker.com/
http://paperpile.com/b/Seamz5/hz3B
http://paperpile.com/b/Seamz5/hz3B
http://paperpile.com/b/Seamz5/Eieg
http://paperpile.com/b/Seamz5/Eieg
http://paperpile.com/b/Seamz5/Eieg
http://paperpile.com/b/Seamz5/K2gE
http://paperpile.com/b/Seamz5/K2gE
https://github.com/galaxyproject/iwc
http://paperpile.com/b/Seamz5/qDRk
http://paperpile.com/b/Seamz5/qDRk
http://paperpile.com/b/Seamz5/qDRk
http://paperpile.com/b/Seamz5/qDRk
http://paperpile.com/b/Seamz5/qDRk
http://paperpile.com/b/Seamz5/ld9P
http://paperpile.com/b/Seamz5/ld9P
http://paperpile.com/b/Seamz5/ld9P
http://paperpile.com/b/Seamz5/ld9P
https://zenodo.org/record/4605654
http://paperpile.com/b/Seamz5/R1S7
http://paperpile.com/b/Seamz5/R1S7
https://docs.galaxyproject.org/en/latest/dev/schema.html
http://paperpile.com/b/Seamz5/BKRR
http://paperpile.com/b/Seamz5/BKRR
http://paperpile.com/b/Seamz5/BKRR
https://galaxy-iuc-standards.readthedocs.io/
http://paperpile.com/b/Seamz5/DMav
http://paperpile.com/b/Seamz5/DMav
http://paperpile.com/b/Seamz5/DMav
https://github.com/galaxyproject/galaxy-language-server
http://paperpile.com/b/Seamz5/ck1R
https://microsoft.github.io/language-server-protocol/
http://paperpile.com/b/Seamz5/NaMt
http://paperpile.com/b/Seamz5/NaMt
http://paperpile.com/b/Seamz5/ueQa
https://arvados.org/
http://paperpile.com/b/Seamz5/FInT
https://github.com/galaxyproject/gxformat2
http://paperpile.com/b/Seamz5/waP5
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.483965; this version posted March 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Galaxy tools or workflows using Planemo [Internet]. GitHub. [cited 2022 Mar 11]. Available
from: https://github.com/galaxyproject/planemo-ci-action

25. Galaxy tool repository template [Internet]. Available from:
https://github.com/galaxyproject/galaxy-tool-repository-template

26. conda-forge community. The conda-forge Project: Community-based Software Distribution
Built on the conda Package Format and Ecosystem. 2015 Jul 12 [cited 2022 Mar 11];
Available from: https://zenodo.org/record/4774217

27. Switzerland JBC, Switzerland PBP-S, Thomas Fuhrmann Technische Universitat Minchen,
Midnchen, Germany. CernVM-FS [Internet]. ACM Conferences. [cited 2022 Mar 11].
Available from: https://dl.acm.org/doi/abs/10.1145/2110217.2110225

28. Maier W, Bray S, van den Beek M, Bouvier D, Coraor N, Miladi M, Singh B, De Argila JR,
Baker D, Roach N, Gladman S, Coppens F, Martin DP, Lonie A, Griining B, Kosakovsky
Pond SL, Nekrutenko A. Ready-to-use public infrastructure for global SARS-CoV-2
monitoring. Nat Biotechnol. Nature Publishing Group; 2021 Sep 29;39(10):1178-1179.

24


http://paperpile.com/b/Seamz5/waP5
http://paperpile.com/b/Seamz5/waP5
https://github.com/galaxyproject/planemo-ci-action
http://paperpile.com/b/Seamz5/KGZM
https://github.com/galaxyproject/galaxy-tool-repository-template
http://paperpile.com/b/Seamz5/PafE
http://paperpile.com/b/Seamz5/PafE
http://paperpile.com/b/Seamz5/PafE
https://zenodo.org/record/4774217
http://paperpile.com/b/Seamz5/TcH6
http://paperpile.com/b/Seamz5/TcH6
http://paperpile.com/b/Seamz5/TcH6
https://dl.acm.org/doi/abs/10.1145/2110217.2110225
http://paperpile.com/b/Seamz5/lcmU
http://paperpile.com/b/Seamz5/lcmU
http://paperpile.com/b/Seamz5/lcmU
http://paperpile.com/b/Seamz5/lcmU
https://doi.org/10.1101/2022.03.13.483965
http://creativecommons.org/licenses/by/4.0/

