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Abstract 

(143 / 150 words) 

Organoids enable disease modeling in complex and structured human tissue, in vitro. Like most 3D 

models, they lack sufficient oxygen supply, leading to cellular stress. These negative effects are 

particularly prominent in complex models, like brain organoids, where they can prevent proper 

lineage commitment. Here, we analyze brain organoid and fetal single cell RNA sequencing 

(scRNAseq) data from published and new datasets totaling over 190,000 cells. We describe a unique 

stress signature found in all organoid samples, but not in fetal samples. We demonstrate that cell 

stress is limited to a defined organoid cell population, and present Gruffi, an algorithm that uses 

granular functional filtering to identify and remove stressed cells from any organoid scRNAseq 

dataset in an unbiased manner. Our data show that adverse effects of cell stress can be corrected 

by bioinformatic analysis, improving developmental trajectories and resemblance to fetal data. 

Introduction 

Organoids are 3D stem cell cultures that enable human tissue modeling with unprecedented 

structure and complexity (Eiraku et al., 2008; Kadoshima et al., 2013; Lancaster et al., 2013; Paşca 

et al., 2015; Qian et al., 2016). At the same time, single cell transcriptomics has become widely used 

for their characterization. Alongside these recent technological breakthroughs, it has become clear 

that 3D tissue culture is affected by limited oxygen and nutrient supply to the center of the tissue.  
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As most models lack functional vascularization (Garreta et al., 2021), and therefore rely on limited 

passive transport across the tissue, diffusion-limited hypoxia is an intrinsic problem in organoids. 

Nutrient-, and in particular oxygen-limitation are long-known phenomena in tissue models (Malda et 

al., 2007; Volkmer et al., 2008). Oxygen restriction causes widespread metabolic changes by 

activating the hypoxia-, glycolysis-, and ER stress- pathways, furthermore it affects differentiation 

and proliferation (Kültz, 2005; Mohyeldin et al., 2010). 

Brain organoids are among the most complex and physically largest organoids and are therefore 

most affected by the limited nutrient supply of the center (Qian et al., 2019). Nevertheless, this 

problem has only been recently addressed in brain organoids (Bhaduri et al., 2020; Giandomenico 

et al., 2019; Mansour et al., 2018; Qian et al., 2020) and its extent is still debated.  

It therefore remains an open question if stress is a global or a local issue, thus, how far it affects the 

3D tissue culture model. A recent paper claimed that in vitro conditions lead to a pervasive stress 

across the whole organoid, causing immaturity, misspecification, and dissimilarity to fetal tissue 

(Bhaduri et al., 2020). These observations are in contrast to the previous understanding of spatially 

limited stress (Qian et al., 2019). This raises the question: how should we handle the data affected 

by an artificial stress signature? It is unclear if stress is an ‘acute’ signature on top of a cell 's original 

state, or if stress is leading to a completely different cell fate. While the same stress pathways are 

also active in the fetal brain, reports disagree on whether it is equivalent to those observed in vitro 

(Bhaduri et al., 2020; Gordon et al., 2021). 

Experimental solutions emerged in protocols which increase convection with bioreactors, orbital 

shakers, or microfluidics. Despite these efforts, 3D cultures above ~500 μm radius develop a necrotic 

core with healthy tissue limited to the surface ~100-300 μm. Further developments involve organoid 

implantation in vivo resulting in subsequent vascularization (Mansour et al., 2018), section culture 

(Giandomenico et al., 2019; Qian et al., 2020), or bioengineering solutions (Garreta et al., 2021). 

These approaches aim to increase nutrient supply, but neither is currently as scalable as the 

standard organoid culture which therefore remains the mainstay of organoid research. Until a widely 

applicable and scalable experimental solution emerges, tissue health and cellular stress persist as 

a problem for the field.  

While most large single-cell RNA-seq studies on diverse brain organoid systems reported glycolytic 

or ER stressed clusters (Kanton et al., 2019; Tanaka et al., 2020; Velasco et al., 2019), there is no 

consensus on how to identify them, what is happening in these cells, and what are the consequences 

of stressed cells on the organoid? To measure the prevalence and consequences of stress in brain 

organoids, we analyzed differentiation, maturation, and identity of ~160,000 single cells from newly 

presented and published cortical and cerebral organoid (together: brain organoids) datasets.  

We found stressed cells in all organoid samples, forming a distinct subpopulation. Stressed cells 

showed widespread transcriptional changes beyond stress pathway activity, we therefore call it 

‘stressed-state’. We do not find this stress-state in vivo, therefore it is likely an artifact. Eliminating 
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artificial cell populations is essential to truly recapitulate in vivo conditions. As stressed cells are 

currently unavoidable, we developed granular functional filtering (Gruffi), an unbiased computational 

algorithm to isolate stressed cells. Gruffi can clarify developmental trajectories and increase 

similarity of in vitro fetal datasets.  

Results 

A distinct population of ER stressed- and glycolytic-cells exist in all analyzed 

organoids 

We reanalyzed recent, landmark single cell transcriptomics studies and performed new experiments 

(Bhaduri et al., 2020; Eichmüller et al., 2022; Kanton et al., 2019; Khan et al., 2020; Velasco et al., 

2019) (Fig 1A) to answer 3 questions: What stress pathways are active in organoids? Does stress 

occur in all or only certain organoid protocols? Is cellular stress limited to a group of cells or is it 

pervasive?  

We included all those mature, wild type samples that were prepared on the 10X Chromium single-

cell platform starting from .fastq files using the same pipeline (methods). To focus on stress in the 

neural lineage, we removed all cells that are not part of brain development and are a result of 

mispatterning, sometimes observed in organoids. For a proportional representation of datasets, we 

sub-sampled ~160K from a total of 300K cells. 

Cellular stress can lead to a perturbation of essential processes, thus affecting cell quality in 

scRNAseq. Therefore, we applied a minimal filtering, keeping all cells with >500 genes, less than 

20% mitochondrial- and 30% ribosomal-reads (Ilicic et al., 2016; Luecken and Theis, 2019). This 

resulted in a median depth of 3651 UMI/cell (methods). We integrated and analyzed the resulting 

datasets in Seurat (v4), and found the previously reported cell types (Fig 1B). The UMAP separated 

dividing cells and glia cells from neurons (horizontally) and excitatory- from interneurons (vertically). 

Besides, there were multiple clusters in the center of the UMAP, which were less well defined by 

marker gene expression. 

Stress is a common hallmark of the two largest unidentified clusters 

Differential gene expression and QC-metric analysis revealed that the ‘unidentified’ central clusters 

consisted of cells uniquely expressing stress markers and low-quality cells (Fig 1C, Fig EV1A and 

B). The stress genes were part of endoplasmic reticulum (ER) stress: CHOP (or DDIT3), XBP1, 

DDIT4, P4HB (Rashid et al., 2015); glycolysis (ENO, HK2, PGK1, GAPDH), and hypoxia: PDK1, 

PHD, GLUT1 (or SLC2A1) (Lee et al., 2020)(Fig 1C and Fig EV1C-J). 

To better understand the nature of stress in these cells, we analyzed all significantly enriched genes 

in the stress-clusters. We found that, in either cluster, more than half of the top 50 coding genes 

were part of ‘response to stress’ (GO:0006950), and apoptosis related terms were among the 

strongest enriched terms (Table S1). The biggest enriched stress pathways were 'regulation of cell 
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death' (GO:0010941), 'response to hypoxia' (GO:0001666), and 'response to endoplasmic reticulum 

stress' (GO:0034976). Surprisingly, metabolic terms were both among the strongest and largest 

enriched terms, highlighting that metabolic shift is a hallmark of stressed cells in organoids.  

We then calculated the GO-term enrichment within the 150 strongest enriched coding genes of both 

stress clusters together, and visualized these on the protein-protein interaction (PPI) map (Fig 1E, 

methods). We highlighted enriched GO-terms (FDR < 5e-7) forming connected PPI clusters, 

revealing the interplay of glycolysis, hypoxia, unfolded protein response, and translation with the 

general stress response (Fig 1E, Table S1). To identify all genes co-regulated with stress, we applied 

scWGCNA (single cell weighted gene co-expression network analysis, (Morabito et al., 2021)) and 

found 12 gene modules (Appendix Figure S1A), one of which was specific to stressed cells (Stress 

module Fig 1F). Gene set enrichment analysis (GSEA) on the stress module identified the strongest 

enrichment for “response to hypoxia”, “cellular response to ER stress”, and GO-terms of glycolytic 

processes (Fig 1G, Appendix Figure S1B). To test whether stress occurred in all samples, we 

quantified the contribution of each dataset to the stress clusters. We found that all datasets contained 

stressed cells, to a generally high (median 13%), but highly variable fraction (50% CV, Fig 1F). Thus, 

stressed cells are a general feature of organoids regardless of conditions, lab of origin or protocol 

used.  

While the initial clustering-based approach identified cells with stress signatures, it had three major 

limitations. First, while some clusters are too large and comprise mixed populations (Appendix Figure 

S1C), others can be too small to find marker genes by differential gene expression analysis (DGEA). 

Second, cluster boundaries are often not well-defined, especially when dealing with developmental 

trajectories. Third, the resulting limitations in DGEA obstruct the identification of stress genes so that 

results vary by the dataset and parameters used. Together, these limitations affecting DE could 

explain why previous studies identified disparate gene sets, like ‘Glycolytic cells’ in (Kanton et al., 

2019; Nowakowski et al., 2017) vs. ‘ER stressed cells’ in (Bhaduri et al., 2020; Tanaka et al., 2020). 

To overcome these issues, we tested different clustering resolutions (Appendix Figure S1D). As 

none of these could separate the distinct populations of cells within ‘Stressed Neurons’ (Fig 1B), we 

concluded that a new approach is needed to identify and exclude stressed cells. 

 

Granular functional filtering identifies stressed cells unbiasedly 

Functional scoring highlights cellular stress regardless of cluster boundaries 

To universally identify stressed cells, we established a sample- and data-independent definition for 

stressed genes. Using gene lists from well-characterized pathways defined as GO-terms (methods), 

we aggregated information from all genes per pathway by an expression-scoring method widely used 

for cell cycle scoring (Tirosh et al., 2016). Therein, we downloaded gene lists per GO-term from 

Ensembl, calculated their average expression and normalized it to randomly sampled control genes 

of matching expression level (methods). Finally, we evaluated if functional scoring helps to 
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characterize stressed cells. We found that high scores for 'glycolytic process' (GO:0006096) and 

'response to endoplasmic reticulum stress' (GO:0034976), were the strongest signatures of stress-

clusters (Fig 2A) and provided clearer separation between stressed and non-stressed cells than 

cluster boundaries. Importantly, high scores marked mostly overlapping cell populations. The 

coactivation of additional scores, such as 'response to starvation' (GO:0042594, Fig EV1F) and 

'cellular response to hypoxia' (GO:0071456, Fig EV1G) corroborated a complex stress-identity. 

Comparing neuronal and glial cell types revealed that all non-dividing glial cells showed higher ER 

stress scores (Fig 2B). We therefore designed our algorithm to accommodate for cell-type specific 

background when identifying stressed cells.  

Change of cellular identity in stressed cells  

Besides increased stress-gene expression, stress clusters were characterized by low expression of 

pan-neural markers (NEUROD6, DCX, MAP2, NCAM1, ELAVL4; Appendix Figure S1E). To test if 

this marker depletion is also reflected by a general change in glial or neural fates, we extended our 

scoring approach. We calculated scores for the two cardinal cell states in neural development, 

neurogenesis (GO:0022008), and gliogenesis (GO:0042063). Both terms were depleted in stressed 

cells (Fig 2A). Compared to both glial and neural clusters, stressed cells also showed remarkably 

low scores for 'cell differentiation' (GO:0030154), and 'forebrain development' (GO:0030900), 

suggesting that stressed cells are in a more ‘basal’ state compared to differentiating neurons 

(Appendix Figure S2 AB).Thus, chronic stress in organoids comes at the expense of neurogenic cell 

differentiation and leads to a switch in cell fate. We therefore refer to the reduced expression of 

marker genes as the ‘stress identity’. As stressed cells lose both glial and neuronal identity and stop 

differentiating, it explains why these cells occupy the middle of the UMAP (Fig 2A). 

Granular evaluation overcomes noise inherent to single-cell data 

Single-cell gene expression measurements are inherently noisy. While GO-scores are computed 

across multiple genes per cell, these may still suffer from high variability and noise. Indeed, some 

cells within the stress-clusters showed low stress-scores, even if clustering together (Fig 2A). At the 

same time, sporadic cells in well-defined cell types showed high stress-scores. These cells 

expressed stress genes inconsistently, but expressed respective cell type markers, which are 

otherwise absent in stress-identity. 

To overcome variability in single cell measurements, one can either denoise the data, e.g., by model-

based imputations, or group cells and evaluate them together. Many different imputation methods 

have been developed recently, however, imputed values often vary (Hou et al., 2020), and they can 

induce false signals (Andrews and Hemberg, 2018). This is probably due to the complexity of the 

imputation problem. We therefore took a grouping approach where we partitioned cells into groups 

of 100-200 cells by ultra-high-resolution SNN-clustering in PCA-space (Methods) resulting in small 

groups of cells, that we term granules. 
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The ultra-high-resolution clustering approach can overcome the problems of boundaries by breaking 

down the data into minute groups of cells. To get sufficient coverage for robust gene scoring, and 

because clustering creates some very small granules, we added a reclassification step, where cells 

in granules with <30 cells are reassigned to the closest granule above threshold (Methods).  

To test the granular approach, we compared stressed cells identified by Gruffi’s granular method 

(gSC) and stressed cells identified on single-cell scores (scSC). We compared cells only identified 

by either, both or neither of the approaches. First of all, scSC were evenly scattered across all 

clusters, while most gSC were close to stress-clusters and the cells identified by both methods 

(Appendix Figure S2C). By definition, single-cell selection on stress-scores identified the cells with 

highest stress-scores. However, scSC showed less of all other features defining stress-identity: lack 

of cell differentiation, lower mitochondrial and higher ribosomal mRNA content. Granular 

identification found cells that shared these features more with stress-identity (Appendix Figure S2D-

I). We implemented both methods in Gruffi, but we concluded that the granular approach is more 

suitable if one aims to exclude stress-identity, whereas the single cell approach is more suitable if 

one aims to simply find cells with the highest stress gene expression, but otherwise properly 

specified cells. 

Granular functional filtering (Gruffi) isolates and removes stressed cells 

As clustering-based identification failed to detect stressed cells specifically and robustly, we built on 

the concepts above and developed Granular Functional Filtering or Gruffi (Fig 2B). Gruffi takes a 

number of Gene Ontology Pathways (1) to obtain corresponding gene sets (2), and computes cell-

wise GO scores (2). At the same time, it identifies a suitable resolution (I), clusters cells in granules 

(II), and reassigns cells of too small granules (III). Merging these, it then computes the multiple 

granule scores (4), estimates a threshold separating stressed and non-stressed cells (5) and assigns 

a ‘stress’ label integrating multiple scores (6).  

To uniformly determine the prevalence of stressed cells across organoids and protocols, we applied 

Gruffi to the integrated organoid dataset. After pathway scores calculation, we estimated the optimal 

clustering resolution, which was 1009 granules with a median of 154 cells (Fig 2C). Stress 

identification must be robust across all datasets, therefore we incorporated 3 scores: the two most 

specific pathways: 'glycolytic process' (GO:0006096) and 'response to endoplasmic reticulum stress' 

(GO:0034976), and a negative filter on ‘gliogenesis’ (GO:0042043) score accounting for the higher 

native expression of ER genes in glia. Addition of further negative filters did not improve 

identification; however, we implemented this option in our algorithm. 

Gruffi then calculated the average and cell number normalized functional scores per granule (Fig 

2D) resulting in a 3-dimensional functional score for each granule. This combinatorial approach is 

flexible to the type and number of scores used, which may be useful for applications beyond its 

original scope. Next, Gruffi estimated the thresholds separating stressed from normal cells, 

accounting for score variability among non-stressed cells (Methods). At this point the retrieved 
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thresholds can and are advised to be inspected and refined via the implemented interactive Shiny 

App interface. Throughout our analysis presented here, we did not further adjust the by Gruffi initially 

estimated thresholds. Finally, combining all thresholds, Gruffi classified stressed and non-stressed 

cells (Fig 2F), which largely overlapped with the expression of key stress markers, and with high 

stress scores (Fig 1C). While this suggested a correct identification, we continued the in-depth 

analysis of stressed cells. 

Stress has a profound, yet limited transcriptional effect and stress-identity is 

not present in vivo. 

Stressed cells show a profound transcriptomic change  

As all samples had stress-identity cells, we searched for their defining features and their 

consequences on the whole organoid. Stressed cells fell in two distinct clusters with either a more 

glial or a more neural character (Fig 1). We therefore divided Gruffi’s stressed cells into these two 

categories to investigate the heterogeneity of stress response in organoids (methods). We quantified 

the total expression of mitochondrially encoded genes and of ribosomal mRNAs, which correspond 

respectively to ~2% and ~10% of the total transcriptome, respectively. These are widely used to 

assess quality and cell state in scRNAseq (Luecken and Theis, 2019). We hypothesized that chronic 

hypoxia and glycolysis diminish the need for oxidative phosphorylation, which may translate to fewer 

mitochondrial UMIs. Indeed, stressed neurons showed 52%, whereas stressed progenitors showed 

a 25% reduction in mitochondrial read fractions, as compared to their non-stressed counterparts (Fig 

3A). In contrast, ribosomal mRNA fractions were 40% and 23% higher, respectively (Table S2), 

perhaps to compensate for ER-dysfunction (MWW p.val < 2e-16 in all cases) 

Increased catabolism in stressed cells 

Because we saw the decrease in mitochondrial mRNAs, we looked for transcriptomic signatures for 

the active degradation of mitochondria. To that end, we applied Gruffi’s scoring method for relevant 

GO terms, and found opposite signs: both stressed groups showed positive scores for ‘autophagy 

of the mitochondrion’ (GO:0000422) on average, while normal cells do not (Fig 3A). At the same 

time the groups scored similarly for ‘autophagy’ (GO:0006914) (Appendix Figure S3A, Table S2). 

Translation in ER stressed cells might lead to protein degradation via the ubiquitin-dependent ERAD 

pathway. Therefore, we calculated the corresponding score (GO:0030433), and as for mitophagy, 

found that stressed cells scored positively, while normal cells scored negatively (Fig 3A, Table S2). 

Altogether, these changes show that stress induces major changes to the cell’s physiology and 

metabolism that go beyond acute stress response. 

Finally, we analyzed cell types by clustering PROGENy’s activity-score across signaling pathways 

and clusters (Schubert et al., 2018). We found that stressed cells form an outgroup and are marked 

by the upregulation of Hypoxia and VEGF pathways, and the downregulation of the PI3K pathway, 

highlighting oxygen deficiency and quiescence (Fig 3B, methods). To ask how stressed cells 

identified by Gruffi differ from those identified by the naïve approach of identifying stress by clustering 
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(Fig 1), we subcategorized stressed cells identified in only one of the two classifications. The 

complete lack of separation of cells found by the naïve approach contrasted the salient stress 

features found by Gruffi (Fig 3B). 

The presence of stressed cells does not affect specification and maturation of non-stressed 

neurons1 

A previous study reported that stress in organoids leads to impaired cell-type fidelity, and incomplete 

maturation as a global phenomenon in organoids (Bhaduri et al., 2020). To test those effects, we 

compared cell types in the organoid datasets to fetal cortical data of comparable age (de la Torre-

Ubieta et al., 2018; Polioudakis et al., 2019) (methods). We defined the fetal brain as the reference 

data and constructed modules from co-expressed genes (Table S3, methods) as described before 

(Trapnell et al., 2014). The resulting 65 aggregated gene modules were then used to calculate 

Pearson correlation across clusters and then visualized in a heatmap (Fig 3C). Major cell types 

(excitatory neurons, interneurons, and progenitors) formed the largest clusters across the dataset. 

Most organoid cell types pairwise best matched the corresponding fetal cell type, indicating that 

organoids undergo proper cell type specification unlike suggested previously (Bhaduri et al., 2020). 

Stressed neurons, however, were uncorrelated to all cell types, except stressed progenitors (Fig 

3C). This dissimilarity to all fetal and organoid cell types, along with the analyses above, indicated 

that stress neurons lost most of their identity and formed a new transcriptional cell-state. 

Interestingly, while stressed progenitors showed a similarity to stressed neurons, they also showed 

a strong progenitor identity, suggesting either an increased robustness or more distinct 

transcriptome of the progenitor state. Altogether we found no evidence of imparied  cell-type fidelity 

in organoids, as cell types in organoids match respective cell types in vivo, and that stressed cells 

show little resemblance to cell types found in the fetal cortex. 

Stressed cells in organoids have no fetal counterpart 

Stressed cells might also exist in vivo, even if they did not form a recognized cluster in published 

studies. While some previous reports have argued that stressed cells similar to organoids exist in 

vivo (Gordon et al., 2021; Tanaka et al., 2020), others claim that it is an artifactual population specific 

to organoids (Bhaduri et al., 2020). Therefore, we integrated the fetal brain dataset with a matching 

number of randomly downsampled cells from the organoid dataset. Using the published fetal cell 

type annotation, we found that the organoid dataset was generally well recapitulating the fetal data 

(Fig 3D). At the same time, CGE and MGE (caudal and medial ganglionic eminences) interneuron 

differences and deep layer excitatory neuron differentiation were clearer in fetal data.  

Interestingly, there were two populations entirely of organoid origin: a population near the neural 

trajectory (I) and a progenitor population (II, Fig 3D). To test for stress identity, we calculated stress 

scores as before, and found that precisely these populations score high for ER stress and glycolysis 

(Fig 3E). To quantify stressed cells and validate our method on both datasets, we ran Gruffi on the 

 
1 ALT: No sign of general neural maturation problem and misspecification in organoids 
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integrated object. This identified stressed cells almost exclusively in the two aforementioned 

populations (Fig 3G) and almost exclusively in organoid samples (Fig 3H). Altogether, our analysis 

suggests that stress-identity is an in vitro artifact and there is minimal to no stress-identity in vivo.  

Stressed cells do not affect the maturation of other cells, but their removal 

improves data quality and interpretability. 

The removal of stressed cells reveals clear trajectories that recapitulate fetal neurodevelopment 

Removing stressed cells might create a better model of the fetal brain development. Stress genes 

majorly contribute to variable genes, which determine both clustering and visualization (Luecken and 

Theis, 2019). We therefore removed all stressed and low-quality cells, reidentified variable genes, 

and recalculated all dependent representations (PCA, UMAP, snn-graph) and downstream analysis 

with identical parameters.  

Starting from the progenitors, the resulting UMAP revealed 3 trajectories ("E", "I" & "MB" in Fig 4. A-

B), representing cortical excitatory, cortical inhibitory, and midbrain neurons, respectively. Before 

removing stressed cells, no midbrain trajectory was visible although midbrain cells were obviously 

present (Fig 1B). Instead, midbrain cells were linked to their progenitors only by a small, separated 

population of the ‘yellow’ cluster. After stressed cell removal, these trajectories now lead to distinct 

populations of mature neurons, as opposed to the continuum of connected clusters before Gruffi 

(before stress removal). Notably, this lineage separation recapitulates fetal neurodevelopment. 

To ensure the robustness of our approach we repeated the analysis on a single dataset (Fig EV2A 

to E), as well as downsampling the full dataset to ~8200 cells, which is the typical output of a single 

10X experiment (Fig 4C-D). Both analyses revealed that expected lineage trajectories are missing 

or broken in the UMAPs before Gruffi (midbrain in Fig 4A, and excitatory neurons in Fig 4C), but 

they are correctly recovered after running Gruffi (B, D). Correct and continuous trajectories in low 

dimensional representations are essential for most pseudotime methods that use these as basis for 

pseudotemporal cell assignment.  

We then tested if our method can be applied to independent datasets by re-analyzing the data from 

a recent publication reporting a large "undefined" cluster (Samarasinghe et al., 2021). We ran Gruffi 

on the precomputed R data object obtained from the authors and marked stressed cells (Fig EV3A 

and B). This dataset is particularly well suited to demonstrate the versatility of Gruffi, as it contained 

secretory choroid plexus cells, which are undergoing high physiological ER-stress due to secretion. 

We therefore derived a choroid plexus score as an additional negative filter score. As no GO-term 

exists for choroid plexus, we turned to the recent publication of choroid plexus organoids (Pellegrini 

et al., 2020) identified marker genes, and derived the choroid plexus score (methods). Gruffi labeled 

74% of the "Undefined" cluster as stressed and an average of 1% of cells from other clusters (Table 

S4). We then performed DGEA on stressed vs. non-stressed cell and GO-term enrichment on all 

enriched coding genes (methods). Visualization of enrichments on the protein interaction network 
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using STRING (Fig EV3C) showed that apoptosis, stress, unfolded protein response, and hypoxia 

dominate cells identified as stressed in this dataset as well. 

 

Organoids show proper cell type specification along the excitatory lineage  

A previous study reported that stress in organoids not only leads to impaired cell-type fidelity but 

also incomplete maturation (Bhaduri et al., 2020). To investigate whether stressed-identity cells 

affect specification along the excitatory lineage, we compared progenitor and neuron signatures 

(methods, Table S5). This led to the expected bimodal separation of the fetal samples (Fig EV4A). 

As this dataset was used to derive the signatures, we confirmed the separation of neurons vs 

progenitors using an independent fetal dataset with multiple samples around mid-gestation (Fig 4C, 

Fig EV4B). Next, we asked how organoid samples separate using those signatures. We calculated 

signature scores on Bhaduri et al. organoid datasets and reproduced the previously reported lack of 

specification (Fig 4D). In contrast, when testing the other datasets analyzed in this study, we 

detected a fetal-like specification (Fig 4E, Fig EV4C-F), suggesting proper specification in most 

organoid datasets.  

Nevertheless, organoid cells still separated less than fetal cells, and more cells were scoring low on 

both progenitor and neural axes. As stressed cells are characterized by the lack of both glial and 

neural signatures (Fig 2A), we hypothesized that stressed cells may populate the area between 

neurons and progenitors. After annotating stressed cells, we found two populations in between 

progenitors and neurons: stressed cells and intermediate progenitors, or IPCs. After stress removal, 

most of those remaining cells are IPCs (Fig 4F, in red), which are indeed a transitory stage between 

glia and neurons. Altogether, we find no evidence for general misspecification in organoids. Instead, 

progenitors and excitatory neurons properly separate, while two specific populations, IPCs, and 

stressed cells, lack specific neuronal or progenitor signatures. 

The presence of stressed cells does not affect the maturation of other cell types 

Besides a lack of cell type specification, incomplete maturation due to stress was previously 

suggested (Bhaduri et al., 2020). As a positive control for maturation, we took two media conditions 

that affected maturation  (Eichmüller et al., 2022). We grew pairwise matched samples in two 

different media conditions, then analyzed together (Fig 4G). We calculated the pseudo-temporal 

trajectory of the excitatory lineage and graded each dataset for maturation along this trajectory (Fig 

EV4G, methods).  

Our results showed that the fraction of stressed cells does not explain maturation differences (Fig 

4H), but the choice of media does: low-nutrient media improved neural maturation. To understand 

the impact on maturation on single cell level, we plotted individual cells along the maturation 

trajectory, split by media condition (Fig 4I). Additionally, to assess expression changes associated 

with mature states we generate scores for mature neurons (Fig 4I, Fig EV4H to J, Table S6). This 

revealed that while organoids grown in either condition had abundant excitatory neurons, those in 
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HN media remained mostly immature, while organoids grown in LN media contained more mature 

neurons (Fig 4I, Fig EV4J to L). In sum, the presence and abundance of stressed cells in a sample 

have negligible effects on neural maturation, while measurable differences arise by the choice of 

media. 

Discussion 

Brain organoids generate complex, structured tissue in vitro (Eiraku et al., 2008; Kadoshima et al., 

2013; Lancaster et al., 2013; Paşca et al., 2015; Qian et al., 2016). Besides their tremendous 

potential for modeling human diseases (Sidhaye and Knoblich, 2021), it is critical to understand and 

account for their limitations. Here, we showed that a population of stressed cells exists in all analyzed 

organoid samples, and that this is a biologically distinct population, which is not found in vivo. We 

provide an in-depth analysis of these cells that hopefully will help to decipher the needs of 3D tissue 

in culture.  

While an experimental solution is the end goal, stress is present in published and current 

experiments. To tackle this issue, we developed Gruffi, an in silico tool to bioinformatically identify 

and remove these cells, based on stress pathway activity scoring. Gruffi comes with a graphical and 

interactive interface. It integrates into a typical single-cell analysis workflow using Seurat, but can be 

used in other pipelines as well. The resulting stress-decontaminated samples displayed a clearer 

representation of the fetal neural development and showed higher similarity to in vivo samples. Even 

if future organoid protocols may resolve cellular stress, earlier published data still suffers from stress, 

which negatively impacts data integration. Gruffi, however, can recover such data for comparison, 

reducing the need for performing new experiments. 

We observed diverse stress pathway activity, and it is important to understand how they are 

connected on a cell biological level. Our results are compatible with earlier observations that the 

organoid core, but not surface, is hypoxic (Qian et al., 2019), explaining why stress characterizes 

only in a defined set of cells. The central role of hypoxia can explain the other transcriptional shifts. 

The lack of oxygen triggers a metabolic shift, from oxidative phosphorylation to anaerobic glycolysis.  

Hypoxia also triggers ER stress, in two ways. First, glycolysis is much less efficient in energy 

production, leading to energy depletion, and consequently stronger metabolite transport is needed. 

These transporters are secreted via the ER-pathway (Loike et al., 1992), triggering unfolded protein 

response (UPR) (Lee et al., 2020). At the same time, the depletion of energy leads to a pH 

imbalance, affecting organelles that rely on ATP-dependent transporters for ion homeostasis 

(Chiche et al., 2010).  

Our results are consistent with a previous observation that acute hypoxia in cortical spheroids 

triggers a strong ER-stress response (Pașca et al., 2019). However, a simplistic, one-dimensional 

distance-to-surface model of nutrient availability cannot explain the heterogeneity of stress marker 

expression. It is an interesting future direction to determine different cellular niches, e.g. by local 
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variation in oxygen and nutrient levels. Similarly, an interesting question for future studies is, how 

cellular heterogeneity leads to the differential expression of stress markers in close neighboring cells. 

Importantly, stress identification is just the first application and proof of principle for granular 

functional filtering. This flexible framework can be extended to many other applications in single-cell 

analysis. As long as a group of cells form an identity, so that they group together in any low 

dimensional representation, and coexpress a defined geneset (GO-terms, KEGG-pathways, etc.), 

the cells can be identified, studied and removed. Here, we applied Gruffi to remove stressed cells 

from brain organoid datasets, but we think that there are many other applications possible, such as 

selecting cells from a lineage or cells responding to a treatment. Currently, brain organoids are the 

largest and longest-cultured 3D organoid systems and are therefore particularly affected by stress. 

As 3D tissue models and investigations become ever more sophisticated, cell culture induced 

artifacts are more important to account for. Therefore, we expect that our approach will find many 

applications beyond its original scope. 
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Data and code availability 

The single-cell RNA-sequencing data have been uploaded to Gene Expression Omnibus (GEO) 

under reference number GSE1XXXXXXXXX (ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 

GSE1XXXXXXXXX). We used publicly available raw  sequencing data from the following 

publications (Bhaduri et al., 2020; Eichmüller et al., 2022; Kanton et al., 2019; Polioudakis et al., 

2019, 2019; Velasco et al., 2019) and obtained wild type patient data from the authors of , complying 

with ethical and data safety requirements (Khan et al., 2020; Samarasinghe et al., 2021). The Gruffi 

package will be available under github.com/jn-goe/gruffi. The code for analysis will be accessible on 

Github: github.com/vertesy/Limited.Stress.in.Brain.organoids. The following custom function 

libraries were used for the analysis: Stringendo, ReadWriter, CodeAndRoll2, MarkdownHelpers, 

ggExpress, Seurat.Utils, all freely available under github.com/vertesy.  
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Figure Legends 

Main Figure Legends (see separate files for higher resolution) 

Fig. 1: A distinct population of ER-stressed- and glycolytic-cells exist in all 

analyzed organoids 
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(A) The list of samples and datasets analyzed in this study encompasses mature cortical organoids 

from multiple key publications. (B) UMAP embedding of the integrated dataset. Clustering with cell 

type annotation shows the expected neural cell types, but also reveals two stressed subpopulations. 

(C) Key marker genes for glycolysis, hypoxia or (D)  ER-stress are specifically enriched in stress 

clusters. (E) Protein-protein interaction map of GO-term enrichments on the top 150 stressed-cluster 

enriched genes (by log fold change). Highlighted terms: Cellular response to stress (red, 

GO:0033554, 2e-07, 0.47); Response to hypoxia (blue, GO:0001666, 3e-10, 0.9); Response to 

unfolded protein (yellow, GO:0006986, 2e-06, 0.97); Glycolytic process (limegreen, GO:0006096, 

1e-05, 1.36); Protein localization to endoplasmic reticulum (cyan, GO:0070972, FDR: 2e-20, strength 

1.35) – covering nearly the same ribosomal genes as: Translational initiation (GO:0006413, 2e-20, 

1.35 ). (F) WGCNA analysis (see Appendix Figure S1 for other modules) of variable genes identifies 

a gene module specific to stressed cells, (G) which is enriched in stress related terms (H) Percentage 

of low quality cells; cells in stressed-neuron and -progenitor clusters and their union, quantified 

across all datasets. 

Fig. 2: Granular functional filtering identifies stressed cells unbiasedly 

 
 

Granular functional filtering identifies stressed cells unbiasedly (A) Gene-set scores per cell for the 

two strongest stress signatures (ER-stress and glycolysis) and the two cardinal processes in the 
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developing brain (neurogenesis and gliogenesis). The complementary expression signatures 

suggest a mutually exclusive neural- or stressed- fate. (B) Overview of Gruffi’s stress classification. 

After preprocessing steps including the computation of PCA and UMAP embeddings, a Gene 

Ontology pathway is selected, respective gene sets are retrieved, and per cell GO-scores are 

calculated. At the same time, an ideal clustering resolution is estimated, such that cells are assigned 

to granules of (in median) ~100-200 cells, and small clusters (<30) are reclassified. Next, to 

overcome high variability and detection noise caused by single cell resolution, average and cell 

number normalized granule scores are calculated, and respective score-thresholds are estimated 

based on the scores dispersion of the first peak. Finally, stressed granules are identified by a 

combination of scores, and isolated from the dataset for separate analysis or dataset cleaning and 

further downstream analysis is possible.(C) Gruffi defined 995 granules by snn clustering containing 

a median of 156 cells. (D) Granule granule scores for glycolysis shown on UMAP. (E) 3 dimensional 

stress score threshold estimation by Gruffi using default setting, requiring high glycolytic and ER-

stress, low gliogenesis score to define stressed cells. (F) Stressed cells classified by Gruffi based 

on ER-stress, glycolysis and gliogenesis are highlighted on the UMAP. 

 

Fig. 3: Stress has a profound, yet limited transcriptional effect, and stress-

identity is not present in vivo. 
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(A) Functional consequences of stress on the transcriptome. Mitochondrial (MT) mRNAs are 

decreased (top), while ribosomal mRNA are increased in stressed neurons and progenitors (second 

from top). Mitochondrial autophagy is increased in stressed cells, possibly explaining the reduced 

MT-mRNA (third from top). increased protein degradation via the ERAD pathway in the ER is a likely 

reason for increased ribosomal reads. (B) Activity of multiple pathways defined by PROGENy clearly 

separates stressed cells. Hypoxia is the only uniquely activated pathway in stressed cells. 

Hierarchical clustering based on pathways independently validates that stressed clusters as 

identified by Gruffi are distinct from other cell types. (C) Correlation of fetal reference to organoid 

clusters. Only clusters that are found in both datasets and stressed cells are shown. Gene modules 

of co-regulated genes were computed in the fetal reference data. Aggregated expression per cluster 

and module was correlated. The color code marks the origin of the clusters (blue for fetal and yellow 

for organoid). Stressed neuron and progenitor clusters are marked in orange. Fetal clusters 

correspond to original clusters with adjusted names (Polioudakis et al., 2019). (D) CCA Integration 

of ~24K fetal cells and an equal number of randomly sampled organoid cells from Fig 1B show that 

most cell types intermingle. Cluster annotation represents the original annotation of the fetal dataset. 

Gray points represent organoid cells. (E) Gruffi’s single-cell pathway scores for ER-stress 

(GO:0034976), glycolytic process (GO:0006096) and gliogenesis (GO:0042063) on UMAP.  Granule 

clustering at resolution 37 (determined by Gruffi), resulting in 249 granules with a median of 193 

cells per granule, after reassignment of small clusters. (F) Stress cell assignment by Gruffi identifies 

the vast majority of stressed cells in organoid samples. (G) Quantification of F. In total 5171 cells 

(10,68 % of all cells) were identified as stressed. 523 of these are fetal (2,16% of fetal cells) and 

4648 cells are from the organoid datasets (19,2% of organoid cells). 
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Fig. 4: Stressed cells do not affect the maturation of other cells, but their 

removal improves data quality and interpretability. 

 
 

 

Lineage trajectories improve with Gruffi. (A-B) UMAPs of the integrated organoid dataset before 

Gruffi (A), and after Gruffi (B). Dotted arrow in (A) highlights the broken trajectory in the development 

of midbrain cells. Dashed arrows in (B) highlight the developmental trajectories of interneurons, 
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midbrain neurons, and cortical excitatory neurons. Clustering and colors are the same as in (Fig 1A). 

(C-D) We repeated the analysis on a smaller subset of the data downsampled to ~8200 cells, a 

typical outcome of a single 10X experiment (this subset does not contain midbrain neurons). Note 

that almost any lineage relationship could be inferred from the representation before Gruffi (A), but 

not that excitatory neurons relate to IPCs (dotted line). After Gruffi (B) the lineage trajectories show 

the known relationships allowing, for instance, pseudotime calculations. (E) Progenitor- (x-axis) vs. 

excitatory neuron- (y-axis) scores on mid-gestational fetal cells (ref Geschwind, Fig EV4B) identifies 

two separate populations. Each cell is colored based on neuronal or progenitor cell cluster identity. 

Color depicts progenitors (green), intermediate progenitor cells (IPC, red) and neurons (blue). 

Additionally, the density of progenitors (blue to yellow) and neurons (blue to red) is shown. The 

margins of the plot depict the density distribution of the three different cell types across the progenitor 

(x-axis, top) and neuron (y-axis, right) score. (F) Example dataset showing impaired cell subtype 

specification, as described in a previous study (ref Bhaduri). (G) Subtype specification of all datasets 

analyzed in this study. While most neurons and progenitors show high values of the respective 

scores, there are some cells without specification to either neurons or progenitors (see Fig EV4C-F 

for individual datasets). (H) Subtype specification after filtering out stressed cells. The remaining 

cells specify properly to neurons and progenitors, with only IPCs localizing between the two 

populations (see Fig E4C-F for individual datasets).  (I) Clustering of dorsal lineage cells of datasets 

grown in two separate media conditions (materials and methods). Pseudotime analysis was 

performed from progenitors (cluster 1) to upper layer (cluster 8) and deep layer neurons (cluster 9, 

see Fig EV4G for pseudotime plot). (J) The maturation along pseudotime is measured as the mean 

pseudotime value of neurons (y-axis) and plotted against the percentage of stressed cells identified 

in the datasets (x-axis). The color code shows the two different media formulations of individual 

datasets (marked by different symbols) and the linear regression model (line with CI). The 

percentage of stressed cells did not correlate with the maturation difference of non-stressed neurons. 

(K) Maturation of deep layer excitatory neurons (DL-EN) in two different media formulations. Cells 

are color coded for clusters (Fig 4I) and plotted along pseudotime (x-axis). The density-count of cells 

along pseudotime is shown behind the dots (yellow area for H-medium, purple area for L-medium, 

right y-axis). The position of the points reflects the expression of a module of co-regulated genes 

enriched in DL-EN (left y-axis, Fig EV4H). While proper maturation indicated by expression of the 

DL-EN module occurs in both media conditions, in L-medium maturation is much more frequent (see 

Fig EV4I-K for upper layer ENs and for individual datasets).  
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Extended View Figure Legends 

Fig EV1 - Metabolic changes and marker genes is stressed cells 
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(A) UMAP of organoid integration shown in Fig 1B colored by number of RNA features per cell

(nFeature_RNA). (B) Low-quality (LQ) cells as determined by expression of less than 1000 features. 

In the background the clustering of Fig 1B is shown. On top per cluster the percentage of LQ cells 

per cluster (color) and the number of LQ cells (size) are depicted. (C) Expression of additional 

endoplasmic reticulum (ER) stress genes enriched in the stress clusters. (D) Expression of additional 

glycolysis genes enriched in the stress clusters. (E) Vimentin (VIM) is expressed in all progenitor 

populations regardless of lineage or stress state. (F-G) Additional GO-terms scores 'response to 

starvation' (GO:0042594) and 'cellular response to hypoxia' (GO:0071456) are also characteristic of 

stressed cells. (H-J) Stress cluster marker genes in relevant significantly associated KEGG 

pathways: HIF-1α  signaling, (Genes: 12, Fold Enrichment: 14.4, FDR: 2.30e-9); Glycolysis, (7, 13.7, 

2.3e-5); Protein processing in the ER, (8, 5.7, 1.9e-3). The top 150 coding stress marker genes were 

used for this analysis (as in Fig 1E). Enriched genes are marked red.  

Fig EV2 – Benchmarking Gruffi on a single-experiment sized dataset 

(A) UMAP plots of one dataset (Velasco 7) cell wise GO score for response to Endoplasmic

Reticulum stress (GO:0034976), glycolytic process (GO:0006096) and gliogenesis (GO:0042063). 

(B) Stress assignment performed on k-nearest-neighbor clustering with resolution 1, 6, 10 and 20

plus reassignment of granules with a cell count below 30 (left to right). Resolution 6 (+ 

reassignment, the proposed resolution for a median cell number between 100 and 200 cells, see 
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Methods), resulted in 53 granules with a median cell number of 197. (C) and (D) Expression 

profiles of markers for progenitor cells (TOP2A, HOPX), Intermediate Progenitors (EOMES), upper 

layer excitatory neurons (SATB) and deep layer excitatory neurons (KAZN) show that the 

developmental trajectory is refined in a newly computed UMAP after stress filtering (D) compared 

to before stress filtering (C). For the new UMAP, we recomputed (and scaled) the most variable 

genes, Principal Components and the UMAP embedding. 

 

Fig EV3 – Stress identification in Samarasinghe et al. 2021 

 
 

(A) Reproduction of Fig 4A UMAP in Samarasinghe 2021. (B) Stress assignment by Gruffi using 

res.25 (auto determined resolution, 260 granules), red is stressed, turquoise is unaffected. (C) 

Protein interaction map of marker genes of stress cells. Response to stress (red, GO:0006950, 

0.02); Apoptotic process (yellow, GO:0006915, FDR=0.0003); PERK-mediated unfolded protein 

response (limegreen, GO:0036499, 0.0221); Response to hypoxia (blue, GO:0001666, 0.0334); 

DGEA and all enrichment terms are in (Table S6). 
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Fig EV4 - Proper specification and maturation in non-stressed cells 
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(A) Progenitor (x-axis) and excitatory neuron scores (y-axis) calculated in fetal brain datasets across 

brain development (materials and methods, Bhaduri et al 2020). Early datasets from Carnegie stage 

13 (CS13) are enriched in progenitors, while late datasets from gestational week (GW) 18 and 22 

show both neurons and progenitors. (B) Progenitor (x-axis) and excitatory neuron scores (y-axis) 

applied to multiple datasets of mid-gestation (Fig 4E) show reliable separation of neurons and 

progenitors, while only intermediate progenitors (IPCs, red) cluster in between the two populations. 

(C) to (F) Examples of pre- and post-filtering plots for subtype specification of individual datasets 

analyzed in this study. After filtering out stressed cells only IPCs remain in between neurons and 

progenitors. (G) 3D UMAP of dorsal lineage also shown in Fig 4I colored for pseudotime. (H) 

Expression of the deep layer excitatory neuron (DL-EN) gene module (Table S7) is specifically 

enriched in the DL-EN cluster (Cluster 9 in Fig 4I). (I) Expression of the upper layer excitatory neuron 

(UL-EN) gene module (Table S7) is specifically enriched in the UL-EN cluster (Cluster 8 in Fig 4I). 

(J) Maturation of UL-EN in two different media formulations analogous to DL-EN maturation in Fig 

4K. Cells are color coded for clusters (Fig 4I) and plotted along pseudotime (x-axis). The density-

count of cells along pseudotime is shown behind the dots (yellow area for H-medium, purple area 

for L-medium, right y-axis). The position of the points reflects the expression of a module of co-

regulated genes enriched in UL-EN (left y-axis, Fig EV4I). While proper maturation indicated by 

expression of the UL-EN module occurs in both media conditions, in L-medium maturation is much 

more frequent. (K) Distribution of cells (black lines) and densities (areas) of individual organoids 

across pseudotime. Organoids derived from the same cell line (A to D) grown in the different media 

conditions (yellow for H-medium, purple for L-medium) are shown on top of each other. (L) Cluster 

contributions per individual organoids (as shown in Fig EV4K). The increased maturation in L-

medium organoids is also reflected by higher proportions of mature cell types (UL- and DL-EN) in L-

medium organoids. Cell numbers were downsampled to account for different library sizes. 
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Supplementary Figure Legends  

Appendix Figure S1 WGCNA modules the limitations of large cluster based 

analysis 

 
(A) UMAP plots of 12 module-scores identified by single cell WGCNA. (B) GSEA of stress module 

(magenta), related to Fig 1G. (C) Heterogeneous composition of the ‘stressed-neuron’ cluster. The 

cluster shows salient and complimentary patterns of mitochondrial (I) or ribosomal (II) read fractions, 
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as well as feature count (III). The expression of GAPDH (IV) signals the population of cells with high 

glycolytic scores. (D) Clustering resolutions 0.1 to 0.5 on integrated organoid dataset. Small 

resolution with large clusters merges stressed and unstressed cell types. With increasing resolution 

cluster boundaries change and make clear identification of stressed cell clusters difficult. (D) 

Expression of  classic or pan-neural markers is diminished in stressed neurons. (E) Expression of  

classic or pan-neural markers is diminished in stressed neurons. 

 

Fig S2 – Differentiation related GO-terms are depleted in stressed cells\ 

 
Stressed clusters showed remarkably low pathway scores for (A) 'forebrain development' 

(GO:0030900) and for (B) 'cell differentiation' (GO:0030154). (C) UMAP comparison of stressed 
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cells identified by Gruffi’s granular method (gSC) and stressed cells identified on single-cell scores 

(scSC). Cells are colored by clusters as in  (Fig. 1), and separated by stress identification classes 

(identified by either, both or neither of the approaches). Class median values for gliogenesis 

('GO:0042063', D); neurogenesis ('GO:0022008', E); forebrain.development ('GO:0030900', F); 

cell.differentiation ('GO:0030154', H); mitochondrial- and ribosomal mRNA content (H, I). 

 

Fig S3 - Mitochondrial and ribosomal balance and degradation pathways in stressed cells 

 

(A) Fraction of mitochondrial reads (lect) per cell shows relative depletion in stressed neurons but 

not glia (right). Fraction of ribosomal reads per cell (middle) shows relative enrichment in stressed 
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glia but not normal progenitors (right). (B) Fraction of mitochondrial reads is significantly higher in 

stressed cells (Kruskal-Wallis Test) (C) Fraction of ribosomal reads is significantly lower in stressed 

cells (Kruskal-Wallis Test) (D) Cluster median fraction of mitochondrial and ribosomal reads. (E) and 

(F) GO-terms score autophagy of mitochondrion (GO:0000422, (E)), but not autophagy 

(GO:0006914, (F))  is characteristic of stressed cells. (G) Cluster median expression of autophagy 

of mitochondrion (GO:0000422) and  autophagy (GO:0006914). (H) GO-terms score ubiquitin-

dependent ERAD pathways (GO:0030433) is specifically upregulated in stressed cells. (I) Cluster 

median expression of ubiquitin-dependent ERAD pathways (GO:0030433) 

 

Supplementary Table Descriptions  

Table S1 

A small, clearly distinct population of ribo-high cells was found to come from a single dataset, and 

constituted mis-patterned, non-neural tissue. This table quantifies the distribution of these ribo-high 

cells (>30% ribosomal reads) across datasets and clusters. 

Table S2 

Comparison of ribosomal, mitochondrial reads and stress scores in stressed and unstressed 

clusters. 

Table S3 

We calculated modules of co-regulated genes on the fetal reference dataset (Polioudakis et al., 

2019), that were subsequently aggregated to correlate fetal and organoid data. 

Table S4 

Samarasinghe DGEA results and stressed-cell enriched coding genes.  STRING DB’s GO - 

Biological Process enrichments on the above gene lists. Terms highlighted in Fig EV3C and 

permalink. 

Table S5 

We calculated differentially expressed genes enriched in excitatory neurons (first tab) and 

progenitors (second tab) in the fetal reference dataset (Bhaduri et al. 2020). The top 30 genes 

were selected for progenitor and excitatory neuron scores, respectively (third tab). 

Table S6 

Gene modules for plotting upper and deep layer neuron scores on pseudotime maturation. Gene 

modules were calculated with monocle3 and respective modules were selected. 
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Experiments 

Stem cell culture  

We obtained the “HPSI0114i-rozh_5” (female) line from the HipSci catalog (Streeter et al. 2017), 

hiPSC cells were cultured following the HipSci guidelines. We also grew organoids from the feeder-

free human ES cell line (H9; WA09 from WiCell, Female). The two iPSC Lines SCCF – 177 (177J 

clone#8, female) and SCCF – 178 (178J clone#5, male) were generated at the IMBA Stem Cell Core 

Facility and are part of the IPSC Biobank. The study was approved by the local ethics committee of 

the Medical University of Vienna (MUV). After informed consent, a skin biopsy was taken from three 

healthy donors and fibroblasts were isolated for iPSC reprogramming. iPSC lines were generated 

using the Sendai virus (CytoTuneTM-iPS 2.0 Sendai Reprogramming Kit, Thermo Fisher Scientific) 
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carrying the Yamanaka reprogramming factors OCT3/4, SOX2, c-MYC and KLF4 factors. All cell 

lines were used within 10 passages from last STR profiling and tested regularly for mycoplasma 

contamination. We additionally used the above cell lines (177 and 178) for the media comparison 

experiments (Fig. 4). The cell lines were evaluated and cultured as the HipSci lines. Briefly, cells 

were seeded on vitronectin (Stemcell Technologies, cat#07180) coated plates and fed every day with 

E8 essential media. Cells were passaged as single cells using Accutase (Sigma) with Revitacell cell 

supplement (1/100, Invitrogen, cat#A2644501), and grew until 70% confluency, then we replated. 

Cultured cell lines were routinely tested for mycoplasma contamination by PCR (Janetzko et al. 

2014).  

Organoid culture  

Organoids were generated as described in (Esk et al. 2020). Briefly, 150 uL/well of Essential 8 media 

supplemented with RevitaCell (1/100) containing the corresponding cell suspension for 9000 

cells/well were plated for each cell line using low attachment 96-well plates (Sigma CLS7007) . Briefly, 

the protocol entailed the following steps: On day 3, media was replaced to Essential 8 media and 

from day 6 on, embryoid bodies were transferred to neural induction media (NI) and 200uL/well was 

exchanged every day. On day 10, when embryoid bodies are about 500-600um in thickness and 

neuroepithelium is evident, the aggregates were transferred to 10 cm dishes and embedded in 

matrigel (MG) droplets. On day 13 and 14, the media was changed to Improved Differentiation Media 

without ascorbic acid (Imp-A) containing 3 uM CHIR. After that, the media was replaced every 3-4 

days. On day 19, the dishes were transferred to an orbital shaker. On day 25, the organoids were 

fed with Improved Differentiation media with ascorbic acid (Imp+A) and the media was replaced 

every 3-4 days. On day 40, the two different culture methods (Brainphys & Imp+A) diverged. The 

“Imp+A” organoids were further cultured in Imp+A supplemented with 1%MG, BDNF (20ng/mL), 

GDNF (20ng/mL) db-cAMP (1mM). The “Brainphys” (BP) organoids were gradually transitioned to 

BP media in 3 feeding steps: 75%-25%: 50%-50%, 25%-75% (Imp+A & BP). From that point they 

were cultured in BP supplemented with 1%MG, BDNF (20ng/mL), GDNF (20ng/mL) db-cAMP 

(1mM). 

Media composition 

NI media: Neural Induction medium consisting of DMEM/F12 (Thermo Fisher Scientific) with 1% N2 

Supplement (Thermo Fisher Scientific), 1% MEM-NEAA (Sigma Aldrich), 1% Glutamax (Thermo 

Fisher Scientific) and 1 ug/ml Heparin. Imp-A: of 50% DMEM/F12 (Thermo Fisher Scientific), 50% 

Neurobasal (Thermo Fisher Scientific), 0.5 % N2 Supplement (Thermo Fisher Scientific), 2% B27 - 

Vitamin A (Thermo Fisher Scientific), 1% Glutamax (Thermo Fisher Scientific), 0.5% MEM-NEAA 

(Sigma Aldrich), 50uM 2-ME solution, 1 % Penicillin/Streptomycin (Sigma Aldrich) and 0.025% 

Insulin solution (Sigma Aldrich). Imp+A (HN): Imp-A with 2.5 mM Ascorbic Acid, 2g/l Bicarbonate 

(Sigma Aldrich). BP (LN): BrainPhys Neuronal Medium (Stem Cell Technologies), 2% B27+A (50X, 

Thermo Fisher Scientific), 1% N2 supplement (Thermo Fisher Scientific), 200 nM Ascorbic Acid 
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(Sigma Aldrich), 0.2% CD Lipid Concentrate (Thermo Fisher Scientific), 7.4% glucose, and 1% 

Penicillin/Streptomycin 

Single-cell sequencing 

Organoids were cultured to 120 days, then washed in PBS and dissociated using the gentleMACS 

Dissociator (Miltenyi Biotec) in program NTDK1 using the enzyme mix: Trypsin (Sigma 

Aldrich)/Accutase (Sigma Aldrich) (1:1) containing 10 U/ml DNaseI (Thermo Fisher Scientific). The 

washed cell suspension was passed through a 70μm cell strainer.  

In the newly generated datasets, we pooled cells from samples from 4 different genotypes and were 

combined in a lane (other cell lines used for other purposes). We additionally used sample barcoding 

using lipid-anchor barcoding following instructions as in (McGinnis et al. 2019) with reagents kindly 

provided by the authors, but we relied on SNP-based cell line demultiplexing as described in (Kang 

et al. 2018) (described in the following section) and sample barcoding was not used. 

Cells were counted and the suspension was loaded onto a Chromium Single Cell 3′ B Chip (10x 

Genomics, PN-1000073) and processed through the Chromium controller to generate single-cell 

GEMs (Gel Beads in Emulsion). scRNA-seq libraries were prepared with the Chromium Single Cell 

3′ Library & Gel Bead Kit v.3 (10x Genomics, PN-1000075).Ready 10X libraries were sequenced 

paired end (R1:28, R2: 89 cycles) on NovaSeq (Illumina).  

Data Analysis 

Public Datasets 

We used the following public datasets for this study: dbGaP Study Accession: phs001836.v1.p1. 

(Polioudakis et al. 2019; de la Torre-Ubieta et al. 2018); ENA  PRJEB33917 (Kanton et al. 2019); 

GEO GSE132672 (Bhaduri et al. 2020); EGA EGAD00001006332 (Eichmüller et al. 2022); GEO 

GSE129519 (Velasco et al. 2019). 

Cell line demultiplexing 

For pooled 10x GEX libraries the donor cell-line of the assayed cells was determined by genotype-

based demultiplexing using souporcell (Heaton et al. 2020). The pipeline was run with default 

settings, providing all donor genotypes through the known_genotypes parameter, and providing the 

cellranger bam, the cellranger filtered barcodes file, and the reference fasta as input. Donor genotype 

vcfs were pre-generated using HaplotypeCaller from the Genome Analysis Toolkit (GATK) v4.1.2.0 

on bwa mem 0.7.17 aligned WGS reads following the nf-core/sarek v2.5.1 pipeline. WGS reads were 

obtained from respective sources: (a) SRA database for H9/SRR6377128, (b) from the ENA 

database for the HIPSCI line  rozh_5/ERR1871976 or (c) WGS data generated by the IMBA stem-

cell facility for SCCF – 177 (177J clone#8, female) and SCCF – 178 (178J clone#5, male). 
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Single-cell analysis 

We first aligned reads to the GRCh38 human reference genome with Cell Ranger 3.1 (10x 

Genomics) using pre-mRNA gene models and default parameters to produce the cell-by-gene, 

Unique Molecular Identifier (UMI) count matrix. UMI counts were then analyzed in R, using the Seurat 

v4. We filtered for high quality cells based on the number of genes detected (>500). Thereafter, 

expression matrices of high quality cells were normalized ("LogNormalize") and scaled to a total 

expression of 10K UMI for each cell. Regression of variables at this step did not improve clustering 

results, hence no variables were regressed nor removed.  

Non-neuronal cell exclusion 

Before integration datasets were checked for quality, as certain IPS lines are prone to 

misdifferentiation. As a consequence, multiple datasets included non-neuronal cells that would 

interfere with the CCA integration, henceforth we applied initial filtering for CNS cells. To exclude 

non-neuronal cells we used a recently published fetal organ atlas (Cao et al. 2019). Processed data 

was downloaded and cell type annotation was modified to reflect major cell types for a basic 

classification. All CNS cell types were grouped together under one annotation to determine properly 

specified clusters. Next, an xgboost classifier was trained to distinguish major cell types on the RNA 

assay data using the top variable genes of the fetal dataset with parameters determined by cross-

validation. This classifier was applied to each dataset: 1. Datasets were pre-processed individually 

and clustered in UMAP space; 2. The expression of the RNA assay was used to classify each cell 

according to the cell groups of the training dataset; 3. Classification was summarized per cluster and 

all clusters that were not classified as CNS cells were filtered out. The cleaned datasets were used 

for CCA integration.  

To establish the maximal mitochondrial-, and ribosomal RNA fractions, we plotted these against 

feature counts and each other, and set thresholds to remove extreme outliers. A group of cells 

showed a distinctly high ribosomal fraction (>30%). We found that these cells correspond to one 

cluster coming from one dataset (Velasco organoid 21, Table S1) and are non neural in gene 

expression. We used the same threshold value for maximal mitochondrial read fraction for simplicity. 

Downstream Analysis 

Variable genes were identified by Seurat's FindVariableFeatures implementation (“FastLogVMR”). 

Next, we aligned and merged sequencing libraries by Seurat's canonical correlation analysis or CCA 

(dimensions: 50) (Butler et al. 2018) using the intersection variable genes across datasets. 

Next, principal components were calculated on the variable genes, and the first 50 components were 

then used to calculate UMAP coordinates. For clustering we used Seurat's implementation of 

snn/Louvain clustering. Therein, we first calculate the k-nearest-neighbor (knn) graph of cells in PCA-

space (dimensions:50). Based on Jaccard similarity scores on the knn graph the shared nearest 

neighbor (snn) graph is computed. Louvain clustering on the snn graph identified clusters of cells. 
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Differentially expressed genes were identified by Wilcoxon-test, and filtered for p-values below 

0.001, and fold change larger than 2.  

We found a group of 1304 interneurons that formed a separate cluster on the very top of the UMAP 

(Fig 1). These constituted 7.61% of all interneurons and were 94% originating from the Kanton S3 

dataset. Both interneuron clusters showed similar expression of classic interneuron markers, and 

pairwise differential gene expression analysis showed no meaningful differences. Therefore, we 

lumped these 2 clusters together 

Integration of organoid and fetal data 

We obtained raw data for fetal cortical single cell datasets covering age comparable to organoid 

datasets (de la Torre-Ubieta et al. 2018; Polioudakis et al. 2019), pre-processed and analyzed it, the 

same way as we did for the organoids. The individual sequencing lanes were merged per fetal 

datasets and integrated with Seurat, as before. The integrated organoid dataset was uniformly 

downsampled to 24211 cells, to match the total sample size of the fetal datasets. The resulting 

individual (original) datasets were then reference-integrated to the fetal dataset as follows: First, 

3000 integration anchors were computed with Seurat’s SelectIntegrationFeatures() and 

FindIntegrationAnchors() functions, where the fetal datasets were defined as reference. By default 

the integration by IntegrateData() was performed using CCA, setting parameter k.weight to 50. 

Further steps, such as the determination of variable features, scaling, the computation of PCA and 

UMAP embeddings and the SNN Graph were performed as for the organoid integration. 

Individual analysis of Velasco 7 dataset (Fig EV2) 

The dataset was filtered for high quality cells with a higher gene count than 1000 and analyzed using 

Seurat as described above including log-normalization, scaling, the computation of the 2000 most 

variable genes, PCA and UMAP embedding computation. 

The Gruffi package 

The Gruffi package contains all functions for the identification, inspection and filtering of stressed 

cells using command line or graphical user interface (Shiny app). Gruffi functions encompass the 

following major steps as in (Fig.2B): (1-3) Accession of GO-term gene sets and single-cell stress 

scoring; (I-III) Data partition into granules and small-granule reclassification; (4) Aggregate score 

calculation per ensemble; (5) Automatic estimation of stress threshold, with possible manual 

adjustment and inspection; (6) Stressed cell assignment and filtering. 

Single-cell scoring 

We defined specific GO-terms relevant for functional processes in stress and differentiation. Gene 

lists for each GO-term were downloaded from Ensembl via BiomaRt (Durinck et al. 2009) and 

intersected with detected genes. Alternative database access is also implemented (see R-package 
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documentation). We then generalized a widely used cell-cycle scoring method based on aggregated 

gene set activity (Tirosh et al. 2016), and used its implementation in Seurat (AddModuleScore). 

Briefly, in the AddModuleScore function the following steps have been implemented as in the original: 

(A) Take a target set of genes; (B) Calculate their average expression; (C) Create control sets of 

genes. The control gene-sets are used to control for the cell-to-cell variability in quality and depth. 

To create the control sets, first all genes are binned by expression levels (25 bins), then for each 

gene in the target set, randomly select 100 genes from its expression bin, and finally (D) subtract 

the average of control from each target gene. The expression binning is important, because 

expression levels affect the variability of gene expression (Tirosh et al. 2016). Gene lists of ‘glycolytic 

process’ (GO:0006096) and ‘response to endoplasmic reticulum stress’ (GO:0034976) were 

downloaded and intersected with detected genes, then used to evaluate stress state.  

Data partitioning and reclassification 

 

Gene detection in single cells is noisy. To overcome this noise, we grouped cells into small 

aggregates by high-resolution snn-clustering (as in the manuscript, using the algorithm of Seurat). 

Gruffi’s aut.res.clustering(), finds an optimal granule resolution with a median of 100-200 cells per 

granule (cluster). Next, clustering is performed at the determined resolution, resulting in cells 

separated into 100’s of granules, depending on the size of the dataset. Finally, all cells in granules 

with <30 cells are reassigned to the nearest cluster center in the 3D UMAP space (Euclidean 

distance) using reassign.small.clusters().  

Thresholding and stress annotation 

Finally, the average GO-scores for each granule were calculated, and stress level per granule was 

evaluated. We propose two possible methods to estimate an upper threshold for the assignment of 

stressed granules for one GO term. (a) Determining manually, based on the expression of stress 

genes and stress score values on UMAP. Based on these, an empirical quantile (90% if observing 

10% stressed cells) as threshold can be assigned. (b) Automatic stress threshold estimation by 

Shiny.GO.thresh(). For this, we refer to cell number normalized, mean GO scores per granule. In the 

following this will be referred to as granule score. We assume that: b1) The granules consist of a 

statistically sufficient number of cells. b2) GO scores of non-stressed cells independently follow the 

same unknown distribution. b3) GO scores of stressed cells are significantly higher than GO scores 

of non-stressed cells. b4) The dataset consists of more non-stressed than stressed cells. 

Assumptions b1) and b2) together with cell number normalization allow us to use the central limit 

theorem and hence fit a normal distribution to the granule scores of non-stressed granules. Based 

on b3) and b4) we conclude that respective non-stressed GO-scores are small, and the mean of the 

normal distribution can be estimated by the median of granule scores. The standard variation of the 

normal distribution is now estimated only w.r.t. to GO scores smaller than the median of granule 
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scores. Now the theoretical 99% quantile of the fitted normal distribution can be computed and used 

as an upper threshold.  

Assumption b1) is fulfilled by the automatic clustering resolution search and the reassignment of cell 

granules with less than 30 cells. Although we based our analysis on thresholds retrieved by this 

method, since we cannot assure that assumptions b2) to b4) hold true, we highly recommend further 

inspections and refinements of suggested thresholds in any case. To do so, we propose to visually 

monitor further manual adjustments via the implemented Shiny App interface.  

When considering a combination of GO terms, e.g., response to Endoplasmic Reticulum Stress and 

Glycolytic Process, we combine the respective thresholds such that a cell is assigned as stressed if 

either upper threshold is crossed. In case one additionally wants to include a GO term for non-

stressed cells, e.g., gliogenesis, the above threshold method can be applied, too, but in this case 

granules with a score higher than the threshold are assigned as non-stressed. Finally, based on the 

thresholds on each score, stressed cells are annotated and can be excluded from the dataset. 

Other analyses  

Protein-protein interaction maps  

We selected all genes enriched in either stress clusters and jointly ranked them by descending 

log2FC. We selected the top 150 coding genes, and visualized the ‘high-confidence’ connected 

component of the protein protein interaction network using the STRING database (v11.5) (Szklarczyk 

et al. 2019), links denoting the confidence of connection (permalink: bxso1NJafq8R). 

Pathway visualization using ShinyGO and KEGG 

The top 150 coding genes (as above) were provided for ShinyGO v0.741 ((Ge, Jung, and Yao 2020) 

with default parameters and the background gene list of all 26439 detected genes (from the RNA 

assay). ShinyGO’s visualized enriched KEGG pathways using Pathview and relevant pathways were 

selected.  

Comparison of granular and single-cell scoring 

For granular scoring, we used the annotation and approach from (Fig 2). For single-cell scoring, we 

used the exact same approach, but skipped the granule average calculation of stress scores, and 

instead we calculated the stress threshold on single-cell scores. For fair comparison, we adjusted 

the quantile cutoff parameter in the single-cell scoring so that it results in a similar number of stressed 

cells, as in the granular approach. We then took the symmetric difference of these to find cells only 

flagged by either, but not both methods. Group median values for were plotted for the four categories 

(Both, gSC, scSC, Non-stressed) 
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The separation of stressed neurons 

Stressed cells clearly separated into two major groups, as also seen in (Fig 1). Therefore, we 

separated Gruffi’s classification into two categories. Low resolution clustering (res.0.1.ordered) 

separated glia (cl.1-2) from neurons (remaining clusters) both better (less clustering artifacts) and 

simpler than higher resolutions (0.3, 0.5). Intersecting this binary annotation with Gruffi’s stress 

annotation (T, F), separated cells into the four clusters: Neurons, Stressed Neurons, Stressed 

Progenitors, Progenitors, visible in (Fig S3B).  

Progeny pathway activity scoring  

Progeny pathways scoring was performed as in vignette, with the following parameters top 200 

genes. To visualize the differences between stressed cells identified by typical clustering (Fig. 1B) 

and Gruffi (Fig. 2F), we separated "Stressed Neurons" and "Stressed Prog." clusters into subsets 

identified, or not identified by Gruffi, yielding four groups: "Stressed Prog. (Clustering)", "Stressed 

Prog. (Gruffi)", "Stressed Neurons (Clustering)", "Stressed Neurons (Gruffi)" (Fig S3C). As progeny 

failed to run on the full object, we randomly downsampled the full dataset to 33.3% of the cells (>50K 

cells). We visualized the scores using pheatmap with ward.D2 hierarchical clustering and separated 

the 3 most distinct clusters. For (Fig 3B) we displayed all clusters >2% of all cells (Fig S3D), and all 

clusters are displayed in (Fig S3E). 

Choroid Plexus scoring and stress identification in Samarasinghe et al. 

We obtained the Seurat R object of (Pellegrini et al. 2020)  from cells.ucsc.edu and performed DGEA 

by Wilcoxon test in Seurat. We used the clustering presented in the paper, and contrasted “mature 

choroid plexus” to all other clusters. We calculated a choroid plexus score from the resulting 192 

genes (log2fc>1, p.adj<0.01, pct.expr>33%, Supplementary Table S5) and provided this to Gruffi 

as a negative score (like gliogenesis). We then calculated differential gene expression on stressed 

cells vs. non-stressed cells, as identified by Gruffi. The resulting 16 genes (log2fc>1, p.adj<0.01) 

were then analyzed in STRINGdb as before (permalink: bwEKXY7CP0p8).  

Neural and glial identity scores for cell type specification  

As previously (Bhaduri et al. 2020), we grouped all neural or progenitor classes to define the 

respective tow signatures in fetal samples, based on DGE analysis. After intersection with genes 

that are detected in organoid datasets, the top 30 genes were used for EN, or progenitor signatures 

(Supplementary Table S6). From these, per-cell subtype scores were calculated using the 

AddModuleScore() function of Seurat. XY-scatter density plots were drawn by plotting a progenitor 

score and a neuronal score on the X and Y axis respectively. The cells were colored based on cell 

type reflecting progenitors, neuronal cells and intermediate progenitors (IPCs), that would 

physiologically be an intermediate state. 

Pseudotime analysis of maturation 
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For analysis of the ‘dorsal lineage maturation’ datasets of pairwise H- and L-medium organoids were 

integrated as outlined above. The datasets were then transferred to monocle3 and UMAP was 

calculated with three dimensions. The trajectory graph was constructed on the three dimensional 

dataset from progenitors to mature neurons. In order to compare the maturation of gene expression 

modules of co-regulated genes were calculated with the find_gene_modules() function. A module 

for Upper Layer and Deep Layer Neurons was selected for each mature dataset (Supplementary 

Table S7). To plot maturation in the different datasets each cell was plotted along pseudotime (x) 

versus the expression of the respective score (y). 
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