

Bartonella taylorii*: A model organism for studying *Bartonella* infection *in vitro* and *in vivo

1 **Katja Fromm¹, Alexandra Boegli², Monica Ortelli¹, Alexander Wagner³, Erwin Bohn⁴, Silke**
2 **Malmsheimer⁵, Samuel Wagner^{5,6,7} and Christoph Dehio^{1*}**

3 ¹Biozentrum, University of Basel, 4056 Basel, Switzerland

4 ²Current address: Faculty of Biology and Medicine, Department of Biochemistry, Université de
5 Lausanne, 1066 Epalinges, Switzerland

6 ³Current address: Maucher Jenkins, Freiburg, Germany

7 ⁴Institute of Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection
8 Medicine (IMIT), University of Tübingen, Tübingen, Germany

9 ⁵Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and
10 Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany

11 ⁶Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany

12 ⁷Partner-site Tübingen, German Center for Infection Research (DZIF), Tübingen, Germany

13

14 ***Correspondence:**

15 Corresponding author

16 christoph.dehio@unibas.ch

17

18 **Keywords:** *Bartonella*, effector proteins, type IV secretion system, luciferase, NanoLuc, STAT3

19 **Abstract**

20 *Bartonella* spp. are Gram-negative facultative intracellular pathogens that infect diverse mammals and
21 cause a long-lasting intra-erythrocytic bacteremia in their natural host. These bacteria translocate
22 *Bartonella* effector proteins (Beps) into host cells via their VirB/VirD4 type 4 secretion system (T4SS)
23 in order to subvert host cellular functions, thereby leading to the downregulation of innate immune
24 responses. Most studies on the functional analysis of the VirB/VirD4 T4SS and the Beps were
25 performed with the major zoonotic pathogen *Bartonella henselae* for which efficient *in vitro* infection
26 protocols have been established. However, its natural host, the cat, is unsuitable as an experimental
27 infection model. *In vivo* studies were mostly confined to rodent models using rodent-specific
28 *Bartonella* species, while the *in vitro* infection protocols devised for *B. henselae* are not transferable
29 for those pathogens. The disparities of *in vitro* and *in vivo* studies in different species has hampered
30 progress in our understanding of *Bartonella* pathogenesis. Here we describe the murine-specific strain
31 *B. taylorii* IBS296 as a new model organism facilitating the study of bacterial pathogenesis both *in*
32 *vitro* in cell cultures and *in vivo* in laboratory mice. We implemented the split NanoLuc luciferase-
33 based translocation assay to study BepD translocation through the VirB/VirD4 T4SS. We found
34 increased effector-translocation into host cells if the bacteria were grown on tryptic soy agar (TSA)
35 plates and experienced a temperature shift immediately before infection. The improved infectivity *in*
36 *vitro* could be correlated to an upregulation of the VirB/VirD4 T4SS. Using our adapted infection
37 protocols, we showed BepD-dependent immunomodulatory phenotypes *in vitro*. In mice, the
38 implemented growth conditions enabled infection by a massively reduced inoculum without having an
39 impact on the course of the intra-erythrocytic bacteremia. The established model opens new avenues
40 to study the role of the VirB/VirD4 T4SS and the translocated Bep effectors *in vitro* and *in vivo*.

41 1 Introduction

42 Bartonellae are Gram-negative facultative intracellular pathogens, which infect diverse mammals
43 including humans. Clinically relevant infections with *Bartonella* are caused by zoonotic *Bartonella*
44 *henselae*, the agent of the cat scratch disease (CSD) (Huarcaya et al., 2002; Khalfe and Lin, 2022) or
45 human-specific species such as *Bartonella bacilliformis*, the agent of the life-threatening Carrion's
46 disease, and *Bartonella quintana*, which causes trench fever (Maguina et al., 2009; Mada et al., 2022).
47 Bartonellae are highly host-restricted pathogens. After transmission by an arthropod vector, the
48 bacteria enter the dermis and eventually seed into the blood stream where they cause a long-lasting
49 intra-erythrocytic bacteremia as hallmark of infection in their natural host (Seubert et al., 2002; Chomel
50 et al., 2009; Harms and Dehio, 2012). Infections of incidental hosts are not associated with intra-
51 erythrocytic persistence but clinical manifestations caused by several zoonotic species can range from
52 mild symptoms to severe diseases (Chomel and Kasten, 2010; Wagner and Dehio, 2019).

53 Previous studies demonstrated that the progression to the blood stream requires a functional
54 VirB/VirD4 type 4 secretion system (T4SS) (Schulein and Dehio, 2002). T4SS are multi-protein
55 complexes embedded into the cell envelop. In Bartonellae, VirB2-11 are assembled to the functional
56 T4SS that facilitates substrate translocation. The ATPase VirD4, also referred to as the type 4 secretion
57 (T4S) coupling protein (T4CP), is essential for substrate recognition and entry into the T4SS (Berge et
58 al., 2017; Waksman, 2019). In *Bartonella* species the *virB2* promoter (*PvirB2*) drives expression of the
59 *virB2-11 operon*. This promoter and the separate promoter of *virD4* are controlled by the BatR/BatS
60 two-component system. Upregulated expression of the VirB/VirD4 T4SS in *B. henselae* is linked to
61 the BatR/BatS two-component system activated at physiological pH and the alternative sigma factor
62 RpoH1. Induction of RpoH1 is mediated by the stringent response, which relies on the accumulation
63 of the second messenger guanosine tetra- and pentaphosphate (both referred to as ppGpp) in the
64 bacterial cytosol. (Quebatte et al., 2010; Quebatte et al., 2013).

65 The VirB/VirD4 T4SS is important to translocate multiple *Bartonella* effector proteins (Beps) into
66 mammalian host cells to subvert host cellular functions, e.g. to dampen innate immune responses
67 (Wagner et al., 2019; Fromm and Dehio, 2021). Different *Bartonella* species translocate discrete
68 cocktails of Beps into host cells (Harms et al., 2017b). While some orthologs share a conserved
69 function (Sorg et al., 2020), other Beps seem to vary in a species-specific manner (Schmid et al., 2006a;
70 Wang et al., 2019). Extensive studies focusing on the role of the VirB/VirD4 T4SS and the translocated
71 Beps have been performed *in vitro* and *in vivo*. However, experimental studies on these bacteria in the
72 natural host share the problem that either the host as model is hardly available or protocols for *in vitro*
73 studies are missing. *B. henselae* is among the best-characterized *Bartonella* species and *in vitro*
74 infection protocols using various cell lines or primary cells were published (Musso et al., 2001;
75 McCord et al., 2005; Ma and Ma, 2016; Sorg et al., 2020; Marlaire and Dehio, 2021). Investigating *B.*
76 *henselae* in its natural host, the cat, is laborious and expensive (Chomel et al., 1996; Foil et al., 1998).
77 In a mouse infection model *B. henselae* failed to establish long-lasting intra-erythrocytic bacteremia
78 and pathology also differed from infections in the natural host (Regnath et al., 1998; Kunz et al., 2008).
79 On the other hand, several rodent infection models with rodent-specific species were published that

80 recapitulate the long-lasting intra-erythrocytic infection course characteristic for the natural host
81 (Boulouis et al., 2001; Koesling et al., 2001; Schulein and Dehio, 2002; Deng et al., 2016; Siewert et
82 al., 2021). However, besides an erythrocyte invasion model no *in vitro* protocols were established to
83 study the interaction of those species with cells of their natural hosts (Vayssier-Taussat et al., 2010).
84 Establishing for at least one *Bartonella* strain an experimental model for *in vitro* and *in vivo* studies
85 would help studying the role of the VirB/VirD4 T4SS and its translocated Beps in the context of
86 infection in the natural reservoir.

87 In this study, we investigated *Bartonella taylorii* IBS296 as a model organism to study VirB/VirD4
88 and Bep effector-related functions *in vitro* and *in vivo*. We confirmed that *B. taylorii* is dampening the
89 innate immune response *in vitro* in a VirB/VirD4 and BepD-dependent manner. Further, we established
90 the split NanoLuc luciferase-based translocation assay (Westerhausen et al., 2020) to study BepD
91 translocation through the VirB/VirD4 T4SS. In addition, we improved the previously established
92 mouse infection model for *B. taylorii* (Siewert et al., 2021) by lowering the inoculum by several orders
93 of magnitude without affecting course of bacteremia. Our findings provide the basis for more extensive
94 studies focusing on the immunomodulatory function of *B. taylorii* *in vitro* and *in vivo*.

95

96 2 Materials and methods

97 2.1 Bacterial Strains and growth conditions

98 All bacterial strains used in this study are listed in table 1. *E. coli* strains were cultivated in lysogeny
99 broth (LB) or on solid agar plates (LA) supplemented with appropriate antibiotics at 37°C overnight.

100 *Bartonella* strains were grown at 35°C and 5% CO₂ on Columbia blood agar (CBA) or tryptic soy agar
101 (TSA) plates supplemented with 5% defibrinated sheep blood and appropriate antibiotics. *Bartonella*
102 strains stored as frozen stocks at -80°C were inoculated on CBA or TSA plates for 3 days and
103 subsequently expanded on fresh plates for 2 days. Prior to infection *Bartonella* strains were cultured
104 in M199 medium supplemented with 10% heat-inactivated fetal calf serum (FCS) for 24 h at an optical
105 density (OD_{600 nm}) of 0.5 at 28°C or 35°C and 5% CO₂.

106 Antibiotics or supplements were used in the following concentrations: kanamycin at 30 µg/ml,
107 streptomycin at 100 µg/ml, isopropyl-β-D-thiogalactoside (IPTG) at 100 µM and diaminopimelic acid
108 (DAP) at 1 mM.

109 2.2 Construction of strains and plasmids

110 DNA manipulations were performed according to standard techniques and all cloned inserts were DNA
111 sequenced to confirm sequence integrity. For protein complementation/overexpression in *Bartonella*
112 selected genes were cloned into plasmid pBZ485_empty under the control of the taclac promoter.
113 Chromosomal deletions or insertions of *B. taylorii* were generated by a two-step gene replacement
114 procedure as previously described (Schulein and Dehio, 2002). A detailed description for the

115 construction of each plasmid is presented in table 2. The sequence of all oligonucleotide primers used
116 in this study is listed in table 3.

117 Plasmids were introduced into *Bartonella* strains by conjugation from *E. coli* strain MFDpir using two-
118 parental mating as described previously (Harms et al., 2017b).

119 **2.3 Cell Lines and Culture Conditions**

120 JAWS II (ATCC CRL-11904) cell line is a GM-CSF-dependent DC line established from bone marrow
121 cells of a p53-knockout C57BL/6 mouse (Jiang et al., 2008). JAWS II cells were cultured at 37°C in
122 5% CO₂ in complete culture medium consisting of MDM with 20% FCS, 4 mM L-glutamine, 1 mM
123 sodium pyruvate and 5 ng/ml GM-CSF. RAW 264.7 (ATCC TIB-71) cell line is a murine macrophage
124 cell line originating from an adult male BALB/c mouse (Raschke et al., 1978). RAW 264.7 and RAW
125 264.7 LgBiT (obtained from S. Wagner, University Tübingen, Germany) cells were cultured at 37°C
126 and 5% CO₂ in DMEM Glutamax supplemented with 10% FCS. RAW 264.7 LgBiT cells were treated
127 with 2 ng/mL puromycin to select for stably transduced cells.

128 **2.4 Cell Infections**

129 *B. henselae* and *B. taylorii* strains were cultured as described above. One day before infection, 1 x 10⁵
130 cells (JAWS II) or 5 x 10⁵ cells (RAWs) were seeded per well in 12-well plates. 1 x 10⁴ cells (RAWs
131 LgBiT) per well were seeded in white 96-well plates (Corning, no. CLS3610). 1 h prior to infection
132 bacterial cultures were supplemented with 100 μM IPTG to induce protein expression, if required.
133 Cells were washed once with infection medium (DMEM Glutamax, supplemented with 1% FCS) and
134 infected with a multiplicity of infection (MOI) of 50 bacteria per cell, if not stated otherwise. Bacterial
135 attachment was synchronized by centrifugation at 500 g for 3 min. Infected cells were incubated at
136 37°C and 5% CO₂ for the indicated times. If indicated, cells were stimulated with 100 ng/ml LPS
137 (lipopolysaccharides from *E. coli* O26:B6, Sigma-Aldrich) during the last 2 h of infection at 37°C and
138 5% CO₂. Supernatants were analyzed by Ready-SET-Go! ELISA kits for TNF-α. Adherent cells were
139 harvested, lysed and analyzed by immunoblot. For monitoring effector injection, luminescence reading
140 was carried out in the Synergy H4 plate reader (BioTek).

141 **2.5 Quantification of Cytokine Levels in Culture Supernatants**

142 TNF-α was quantified in cell culture supernatants of infected cells by Ready-SET-Go! ELISA kits
143 (Thermo Fisher Scientific, Cat. 88-7324-77) according to the manufacturer's instructions. 96-well
144 assay plates (Costar no. 9018) were coated overnight at 4°C with capture antibody in coating buffer.
145 The plates were washed with wash buffer (PBS containing 0.05% Tween-20) and incubated at RT for
146 1 h with assay diluent (provided in the kit) to block unspecific binding. Samples were added directly
147 to the plate or after pre-dilution in assay diluent. Pre-dilutions used for TNF-α quantification: JAWS
148 II (1 to 4 for samples with LPS stimulation; no pre-dilution for unstimulated samples), RAW264.7 (1
149 to 6 for samples with LPS stimulation; no pre-dilution for unstimulated samples). Subsequently samples
150 were diluted twice by serial 2-fold dilutions on the plate. The respective lyophilized standard was
151 resolved as requested, added to the plate and diluted by serial 2-fold dilutions. The plate was incubated

152 at 4°C overnight. 5 wash steps were performed. After addition of the respective detection antibody, the
153 plate was incubated 1 hour at RT. Horseradish peroxidase-conjugated avidin was added for 30 min at
154 room temperature after another 5 washing steps. After 7 washes ELISA substrate solution was added
155 for 5 to 15 min at RT and the reaction stopped by adding 1M H₃PO₄. Absorbance was read at 450 and
156 570 nm. At least three independent experiments (n = 3) were performed in technical triplicates.

157 **2.6 SDS-PAGE, western blotting and immunodetection**

158 SDS-PAGE and immunoblotting were performed as described (Schulein et al., 2005). To verify
159 expression levels of the protein of interest, JAWS II or RAW 264.7 cells were collected and washed in
160 ice-cold PBS. Cell pellets were lysed by adding Novagen's PhosphoSafe extraction buffer (Merck, Cat.
161 71296) complemented with cOmplete Mini EDTA-free protease inhibitor cocktail (Roche,
162 11836170001). Lysate protein concentrations were quantified using the Pierce BCA Protein Assay kit
163 (Thermo Fisher Scientific, Cat. 23225). Lysates with equal protein concentrations were mixed with 5x
164 SDS sample buffer, and resolved on 4 – 20% precast protein TGX gels (BioRad, Cat. 456-1093, Cat.
165 456-1096). Pre-stained Precision Plus Protein Dual Color Standard (BioRad, Cat. 1610374) was used
166 as protein size reference. Proteins were transferred onto Amersham Protran® Nitocellulose Blotting
167 membrane (0.45 µm pore size) or Amersham Hybond® PVDF membrane (0.2 µm pore size).
168 Membranes were probed with primary antibodies directed against the protein of interest (α-actin
169 (Milipore, Cat. MAB1501), α-pSTAT3 (Y705) (Cell Signaling Technology, Cat. 9145), α-STAT3
170 (Cell Signaling Technology, Cat. 12640), α-FLAG (Sigma-Aldrich, Cat. F1804). Detection was
171 performed with horseradish peroxidase-conjugated antibodies directed against rabbit or mouse IgG
172 (HRP-linked α-mouse IgG (Cell Signaling Technology, Cat. 7076), HRP-linked α-rabbit IgG (Cell
173 Signaling Technology, Cat. 7074)). Immunoblots were developed using LumiGLO®
174 chemiluminescent substrate (Seracare, Cat. 5430) and imaged using the Fusion FX device (Vilber).
175 Signal quantification was performed using the Fusion FX7 Edge software. If required, images were
176 adjusted in brightness and contrast using the ImageJ software.

177 **2.7 Determination of promoter expression by flow cytometry**

178 Bartonellae were grown on CBA or TSA plates as described above. Bacteria were resuspended in M199
179 + 10% FCS, diluted to a final concentration of OD_{600 nm} = 0.5 and incubated for 24 h at 28°C or 35°C
180 at 5% CO₂. The bacteria were harvested, centrifuged at 1900 g for 4 min and washed in FACS buffer
181 (2% FCS in PBS). After another centrifugation step, the supernatant was aspirated, bacteria fixed in
182 3.7% PFA for 10 min at 4°C and finally resuspended in FACS buffer. Expression of the *PvirB2:gfp*
183 promoter was evaluated by measuring the GFP fluorescence signal using the BD LSRFortessa. Data
184 analysis was performed using FlowJo v10.6.2.

185 **2.8 NanoLuc-based effector translocation assay**

186 To assess whether the HiBiT-FLAG fragment, HiBiT-FLAG-BepD_{Bhe} and HiBiT-FLAG-BepD_{Bta} can
187 complement LgBiT to a functional luciferase, we used the Nano-Glo HiBiT lytic detection system
188 (Promega, Cat. N3030). Bacteria were cultured as previously indicated. 5 x 10⁸ bacteria were
189 resuspended in 100 µL PBS and supplemented with 100 µL LSC buffer containing the substrate (1/50

190 v/v) and the LgBiT protein (1:100 v/v). The luminescent signal was measured using the Synergy H4
191 plate reader.

192 RAW LgBiT macrophages were infected as described previously. Effector translocation into
193 macrophages was quantified by measuring the luminescent signal using the Synergy H4 plate reader.
194 The Nano-Glo live cell reagent (Promega, Cat. N2011) was prepared as advised by manufacturer. After
195 24 h of infection, supernatant was aspirated and cells were gently washed in pre-warmed PBS. A final
196 volume of 100 uL PBS per well was supplemented with 25 uL of the Nano-Glo live cell assay buffer
197 containing the substrate for luminescence measurement in the Synergy H4 plate reader. The following
198 settings were used: temperature 37°C, shaking sequence 30 sec at 300-500 rpm, delay 10 min,
199 autoscale, integration time 5 sec. At least three independent experiments (n = 3) were performed in
200 technical triplicates.

201 **2.9 Mouse experimentation**

202 Mice handling was performed in strict accordance with the Federal Veterinary Office of Switzerland
203 and local animal welfare bodies. All animal work was approved by the Veterinary Office of the Canton
204 Basel City (license number 1741). All animals were housed at SPF (specific pathogen free) conditions
205 and provided water and food ad libitum. The animal room was on a 12 light/12 dark cycle, and cage
206 bedding changed every week. Female C57BL/6JRj mice were purchased from Janvier Labs.

207 Animals were infected *i.d.* with the indicated cfu bacteria in PBS. Blood was drawn in 3.8 % sodium
208 citrate from the tail vein several days post infection. Whole blood was frozen at -80°C, thawed and
209 plated on CBA plates in serial dilutions to determine blood cfu count.

210 **2.10 Statistical Analysis**

211 Graphs were generated with GraphPad Prism 8. Statistical analyses were performed using one-way
212 ANOVA with multiple comparisons (Tukey's multiple comparison test). For the graphs presented in
213 the figures, significance was denoted as non-significant (ns) (p > 0.05); * p < 0.05; ** p < 0.01; *** p
214 < 0.001; **** p < 0.0001. Number of independent biological replicates is indicated as n in the figure
215 legends.

216

217 **3 Results**

218 **3.1 Establishment of a cell culture assay for BepD translocation via the *B. taylorii* VirB/VirD4 219 T4SS**

220 *In vitro* infection protocols devised for *B. henselae* enable an efficient and fast translocation of Beps
221 via the VirB/VirD4 T4SS into eukaryotic host cells (Schmid et al., 2006b; Sorg et al., 2020). Inside
222 host cells, the *Bartonella* effector protein D of *B. henselae* (BepD_{Bhe}) interacts via phospho-tyrosine
223 domains (pY domains) with the transcription factor Signal Transducer and Activator of Transcription

224 3 (STAT3) and the Abelson tyrosine kinase (c-ABL). c-ABL then phosphorylates STAT3 on Y705
225 resulting in a downregulation of pro-inflammatory cytokine secretion. The orthologue effector encoded
226 in *B. taylorii*, BepD_{Bta}, is also translocated and exhibits a conserved function when ectopically
227 expressed in *B. henselae* (Sorg et al., 2020). We ectopically expressed BepD_{Bhe} and BepD_{Bta} in *B.*
228 *henselae* Δ bepA-G, a genomic deletion mutant lacking all *bep* genes. We infected the mouse dendritic
229 cell line JAWS II at a multiplicity of infection (MOI) of 50 for 6 h. Bacteria expressing BepD_{Bhe} or
230 BepD_{Bta} facilitated STAT3 phosphorylation to a similar extend ((Sorg et al., 2020), suppl. Figure S1A).
231 To establish an *in vitro* infection protocol for *B. taylorii*, which enables the effector translocation via
232 the VirB/VirD4 T4SS, we used the BepD-dependent STAT3 phosphorylation as sensitive readout.

233 We infected JAWS II cells with *B. taylorii* IBS296 Sm^R, used as wild-type strain, and the T4S-deficient
234 Δ virD4 mutant. Corresponding *B. henselae* strains served as controls. The bacteria were grown on
235 Columbia blood agar (CBA) plates and the VirB/VirD4 system was induced by overnight culturing in
236 M199 + 10% FCS (Quebatte et al., 2013; Sorg et al., 2020). We performed time-course experiments to
237 compare the STAT3 phosphorylation at early time-points after infection. We quantified the
238 phosphorylated STAT3 over the total STAT3. Cells infected for 24 h with the translocation-deficient
239 Δ virD4 mutants served as controls and did not show enhanced STAT3 activation. *B. henselae* wild-
240 type triggered STAT3 phosphorylation 1 hour post infection (hpi). However, *B. taylorii* did not induce
241 STAT3 phosphorylation in JAWS II cells within 6 hpi (Figure 1A and 1B). STAT3 phosphorylation
242 was observed only after 24 h in cells infected with *B. taylorii* (suppl. Figure S1B). Since BepD of *B.*
243 *taylorii* triggered the STAT3 phosphorylation at early time points when expressed in *B. henselae*
244 (suppl. Figure S1A), we speculated that other than described for the *B. henselae* VirB/VirD4 T4SS, the
245 one of *B. taylorii* was not induced during the first hours of infection. To test whether the induction of
246 VirB/VirD4 T4SS can be further enhanced, we optimized the culture conditions. In previous studies,
247 different *Bartonella* species isolated from their natural hosts were cultured on tryptic soy agar (TSA)
248 plates instead of CBA (Li et al., 2015; Stepanic et al., 2019). Compared to the Δ virD4 mutant, *B.*
249 *taylorii* wild-type harvested from TSA plates induced STAT3 phosphorylation already after 3 hpi. At
250 6 hpi cells infected with *B. taylorii* showed STAT3 phosphorylation to comparable levels as triggered
251 by *B. henselae* grown on CBA (Figure 1C and 1D).

252 To exclude potential influence on the STAT3 phosphorylation mediated by other effectors present in
253 *B. taylorii*, we infected JAWS II cells with mutants lacking single *bep* genes. *B. taylorii* encodes five
254 Beps, namely BepA-BepI. BepA, BepC and BepI harbor an N-terminal FIC (filamentation induced by
255 cyclic AMP) domain. BepD and BepF contain EPIYA-related motifs in their N-terminus (suppl. Figure
256 S1C). However, BepD_{Bta} is the only effector, which induces STAT3 phosphorylation in infected JAWS
257 II cells (suppl. Figure S1D).

258 Next, we tested if *B. taylorii* downregulates the secretion of pro-inflammatory cytokines in a
259 VirB/VirD4 T4SS-dependent manner as previously published for *B. henselae* (Sorg et al., 2020). We
260 infected JAWS II for 6 h or 24 h with *B. taylorii* wild-type and the Δ virD4 mutant. Corresponding *B.*
261 *henselae* strains served as controls. During the last 2 h of infection, JAWS II cells were co-stimulated
262 with *Escherichia coli* LPS as potent TLR4 ligand to increase TNF- α secretion (Sorg et al., 2020). Cells

263 infected with *B. henselae* wild-type secreted significantly lower TNF- α concentrations compared to
264 the $\Delta virD4$ mutant at 6 and 24 hpi. While no discernable inhibitory effect was displayed 6 hpi, *B.*
265 *taylorii* recovered from CBA plates impaired TNF- α secretion at 24 hpi in a VirD4-dependnet manner.
266 Surprisingly, bacteria recovered from TSA plates did not impair the TNF- α secretion after 6 hpi,
267 although the STAT3 phosphorylation was induced. At 24 hpi, *B. taylorii* cultured on TSA reduced the
268 TNF- α secretion much more efficiently compared to bacteria grown on CBA plates (Figure 1E-H).

269 *B. henselae* significantly decreases TNF- α secretion at 6 hpi, whereas infection with *B. taylorii* did not
270 reduce the TNF- α concentration in the supernatant of infected JAWS II cells. One explanation might
271 be an earlier onset of STAT3 activation induced by *B. henselae* than by *B. taylorii*. We thus propose
272 that growing *B. taylorii* on TSA plates results in a more efficient downregulation of the innate immune
273 response *in vitro*, while effector translocation into eukaryotic host cells might still occur later compared
274 to infections with *B. henselae*.

275 **3.2 Implementing the split-NanoLuc translocation assay to study effector translocation via the**
276 **VirB/VirD4 T4SS**

277 We aimed at improving the effector translocation via the VirB/VirD4 T4SS of *B. taylorii*. To study
278 effector translocation under various conditions, we implemented the split NanoLuc (NLuc) luciferase-
279 based translocation assay for the VirB/VirD4 T4SS in *Bartonella*. This assay was developed to assess
280 effector injection via the type III secretion system of *Salmonella enterica* serovar Typhimurium in
281 HeLa cells (Westerhausen et al., 2020). Split NLuc is composed of a small fragment (HiBiT, 1.3 kDa),
282 which is fused to the bacterial effectors, and a larger fragment (LgBiT, 18 kDa), which is stably
283 expressed in RAW264.7 macrophages (RAW LgBiT). Different studies already demonstrated
284 successful infection of murine macrophage cell lines by *B. henselae* (Musso et al., 2001; Sorg et al.,
285 2020). Moreover, we already showed that BepD of *B. taylorii* is triggering STAT3 phosphorylation in
286 eukaryotic host cells (suppl. Figure S1F). Therefore, we designed fusion proteins harboring HiBiT and
287 a triple-FLAG epitope tag at the N-terminus of BepD_{Bhe} or BepD_{Bta} that are expressed under the control
288 of an IPTG-inducible promoter. The fusion proteins were ectopically expressed in the translocation-
289 deficient $\Delta virD4$ mutants or the Bep-deficient mutant of *B. henselae* (Δ bepA-G) or *B. taylorii* (Δ bepA-
290 I). As control, bacteria expressing only the HiBiT-FLAG fragment were created. The expression of
291 *pHiBiT-FLAG-bepD_{Bhe}* and *pHiBiT-FLAG-bepD_{Bta}* after 1 h IPTG-induction was confirmed by
292 immunoblotting using the triple-FLAG epitope tag in bacterial lysates (suppl. Figure S2A and S2B).
293 We could not detect the HiBiT-FLAG fragment (estimated mass 4.3 kDa), most likely due to the low
294 molecular mass and possible degradation. Next, we tested whether the HiBiT-FLAG fragment, HiBiT-
295 FLAG-BepD_{Bhe} and HiBiT-FLAG-BepD_{Bta} can complement LgBiT to a functional luciferase. We
296 could detect high luminescent signals of lysed bacteria expressing either HiBiT-FLAG-BepD_{Bhe} or
297 HiBiT-FLAG-BepD_{Bta}. Expression of the HiBiT-FLAG fragment also lead to detectable albeit lower
298 luminescent signal (suppl. Figure S2C and S2D).

299 To estimate the translocation of the HiBiT fused effectors, we infected RAW LgBiT macrophages for
300 24 h. Complementation of LgBiT with HiBiT to a functional luciferase should only occur if host cells
301 were infected with *Bartonella* strains harboring a functional T4SS. The luciferase converts the substrate

302 furimazine into a bioluminescent signal (Figure 2A). We observed increased luminescent signals inside
303 host cells after infection with *B. henselae* Δ bepA-G pHiBiT-FLAG-bepD_{Bhe} (suppl. Figure S2E) or *B.*
304 *taylorii* Δ bepA-I pHiBiT-FLAG-bepD_{Bta} (suppl. Figure S2F), which increased in a MOI-dependent
305 manner. With MOI 50 or higher, significantly increased signals compared to the translocation-deficient
306 mutants were observed for *B. henselae* and *B. taylorii* infection. Therefore, the following experiments
307 were performed at MOI 50.

308 Bartonellae are transmitted via blood-sucking arthropods and experience a temperature shift during
309 their infection cycle from ambient temperature of the arthropod vector to warm-blooded body
310 temperature of the mammalian hosts. *Bartonella* virulence factors have been shown to undergo
311 differential regulation in response to temperature (Abromaitis and Koehler, 2013; Tu et al., 2016). To
312 assess the influence of the temperature on the translocation efficiency, we cultivated the bacteria at
313 28°C or 35°C in M199 + 10% FCS before infection. RAW LgBiT macrophages were infected at MOI
314 50 for 24 h. We observed significant higher luminescence compared to the Δ virD4 mutants if cells
315 were infected with *B. henselae* Δ bepA-G pHiBiT-bepD_{Bhe} (Figure 2B) or *B. taylorii* Δ bepA-I pHiBiT-
316 bepD_{Bta} (Figure 2C). The luminescent signals significantly increased if bacteria were cultured at 28°C
317 prior to infection instead of 35°C for both *Bartonella* strains (Figure 2B and 2C).

318 We also investigated the influence of decreased temperature in *B. taylorii* overnight cultures on the
319 BepD-dependent STAT3 activation in RAW macrophages. While infection with the translocation-
320 deficient Δ virD4 mutant or the bacteria lacking bepD did not trigger STAT3 activation, we found
321 higher levels of phosphorylated STAT3 at 3 hpi if *B. taylorii* wild-type was cultured at 28°C. The
322 amount of pSTAT3 was quantified over STAT3 (Figure 2D and 2E). A similar phenotype was also
323 observed 6 hpi (suppl. Figure 2G and 2H), although less prominently. This might indicate that BepD
324 translocation is improved at earlier time points if bacteria are cultured at lower temperatures. The
325 incubation at 28°C prior to infection triggers a stronger STAT3 phosphorylation *in vitro*, which seems
326 to correlate with a higher translocation of BepD into host cells.

327 **3.3 Increased effector translocation correlates with upregulated expression of the VirB/VirD4 328 T4SS**

329 Changing the agar plates from CBA to TSA and incubating the overnight culture in M199 at 28°C
330 instead of 35°C markedly improved the luminescent signal in the translocation assay and the STAT3
331 activation in infected RAW macrophages. Next, we tested whether the enhanced downregulation of
332 the innate immune response after infection with *B. taylorii* recovered from TSA correlates with an
333 upregulation of the VirB/VirD4 T4SS. We generated reporter strains expressing GFP under the control
334 of the *virB2* promoter (*PvirB2*) of *B. henselae* or *B. taylorii*, driving expression of the *virB* operon. The
335 expression of the GFP promoter fusions in *Bartonella* carrying the *pCD366*-derived reporter plasmids
336 was probed using flow cytometry. As shown previously for *B. henselae* (Quebatte et al., 2010; Harms
337 et al., 2017b) only part of the *B. taylorii* population grown on CBA expressed GFP. In comparison, *B.*
338 *taylorii* cultured on TSA displayed higher fluorescence with almost the entire population being GFP-
339 positive, indicating that these bacteria upregulate expression of the VirB/VirD4 T4SS. However, the
340 incubation at lower temperature did not significantly change the GFP expression (Figure 2F and 2G).

341 The VirB/VirD4 T4SS expression appears to be similar compared to bacteria cultured at 35°C,
342 although we observed increased effector translocation when the bacteria were cultured at lower
343 temperature prior to infection.

344 Furthermore, we wanted to test, whether the improved culture conditions (Figure 3A) had an impact
345 on the TNF- α secretion after infection by *B. taylorii* at early time points. Thus, we infected RAW
346 macrophages with *B. taylorii* wild-type, the Bep-deficient mutant (Δ bepA-I), a strain lacking only
347 BepD (Δ bepD) or the translocation-deficient mutant Δ virD4. The BepD-dependent STAT3
348 phosphorylation was observed in cells infected with the wild-type at 6 hpi. As expected, the mutants
349 lacking BepD or VirD4 did not trigger increased STAT3 activation (Figure 3B). Compared to wild-
350 type infections, cells infected with the Δ virD4 mutant secreted significantly higher levels of TNF- α
351 secretion. Surprisingly, the TNF- α levels of Δ bepD and Δ bepA-I strains were lowered to similar extend
352 (Figure 3C). 20 h after infection, macrophages infected with the Δ bepD and Δ bepA-I mutants showed
353 elevated TNF- α secretion compared to wild-type infected cells. However, cells infected with the
354 translocation-deficient Δ virD4 mutant secreted significantly higher levels of TNF- α compared to both
355 Δ bep mutants (Figure 3E), although these strains are unable to trigger STAT3 activation to the same
356 extend as the wild-type (Figure 3D).

357 Our data provides evidence that the cultivation of *B. taylorii* prior to infection determines its capacity
358 to dampen the innate immune response *in vitro*. We could correlate this phenotype to an increased
359 expression of the VirB/VirD4 T4SS if bacteria are cultured on TSA plates. However, the lowered
360 temperature seems to not affect the expression of the T4SS indicating that there might be other
361 regulation mechanisms involved, e.g. the effector expression or assembly of the translocation
362 machinery.

363 **3.4 Bacterial culture conditions optimized for VirB/VirD4 expression correlate with high 364 infectivity in the mouse model**

365 Finally, we tested whether our adapted growth conditions also influence *B. taylorii* *in vivo* infections.
366 Previous studies described that mice inoculated with 10^7 colony forming units (cfu) bacteria remained
367 abacteremic until 5-7 days post infection (dpi). The infection peaked around day 12-14 days with
368 approximately 10^5 bacteria per ml blood. The bacteremia is cleared within 50 days (Siewert et al.,
369 2021), displaying similar kinetics compared to the infection of rats with *B. tribocorum* (Okujava et al.,
370 2014). We compared the course of bacteremia in wild-type C57BL/6 mice inoculated with different
371 cfus of *B. taylorii* cultured on CBA or TSA plates. Bacteria cultured on TSA plates caused bacteremia
372 independent of the amount of inoculated bacteria, leading to infection rates of 100% even with an
373 inoculum of 10^2 . Bacteria grown on CBA plates showed reduced infectivity (Figure 4A). Interestingly,
374 if the bacteria were able to invade the blood stream, the bacteremia kinetics were similar independent
375 on the growth conditions and inoculum (Figure 4B-4D).

376 **4 Discussion**

377 Typically, *in vitro* studies focusing on the effector translocation via the VirB/VirD4 T4SS of *Bartonella*
378 were conducted with *B. henselae*. In contrast, *in vivo* studies were mostly performed with rodent-
379 specific strains, while *in vitro* infection protocols for those bacteria were missing. Our study
380 characterized the mouse-specific *B. taylorii* strain IBS296 as a suitable model to study effector
381 translocation *in vitro*. The main advantage over previously described species is the use of a murine
382 infection model (Siewert et al., 2021), allowing robust and easy to perform *in vitro* and *in vivo* studies
383 with the same strain.

384 Growing bacteria on TSA allowed a drastic reduction of the inoculum *in vivo* while the infection rate
385 in C57BL/6 mice remained unchanged. Compared to high-dose infections (10^7 cfu, (Siewert et al.,
386 2021)), bacteremia kinetics were similar in onset, duration and clearance if mice were infected with
387 10^2 cfu. The lower infection dose might better reflect the natural infection via bacteria-containing feces
388 of the arthropod vector scratched into the skin. In experimentally infected fleas the amount of bacteria
389 within their faeces peaked with an average of 9×10^4 bacteria, which drastically decreased several days
390 after infection (Bouhsira et al., 2013). Thus, we consider an infection with 10^2 - 10^4 bacteria as
391 physiological.

392 We introduced the split NLuc translocation assay as a tool to study effector translocation into host cells
393 via the VirB/VirD4 T4SS. The split NLuc translocation assay had previously been described for
394 studying protein trafficking in mammalian cells (Rouault et al., 2017) and protein secretion in Gram-
395 positive bacteria (Wang et al., 2018). Protein secretion to the periplasm via the Sec system or into host
396 cells via T3SS was shown by utilizing similar approaches in Gram-negative bacteria (Pereira et al.,
397 2019; Westerhausen et al., 2020). Adopting this translocation assay for studying effector translocation
398 via the VirB/VirD4 T4SS in *B. taylorii*, we could show that incubating the bacteria at 28°C instead of
399 35°C prior to infection improved effector translocation. Additionally, we observed increased STAT3
400 activation in response to effector translocation when cells were infected with bacteria cultured at lower
401 temperatures. Temperature shift from ambient temperature to 37°C has been shown to regulate
402 virulence factors in several pathogens, such as *Salmonella*, *Shigella* and *Yersinia* (Cornelis et al., 1987;
403 Prosseda et al., 1998; Shapiro and Cowen, 2012; Lam et al., 2014). In the human-specific pathogen *B.*
404 *quintana* the alternative sigma factor RpoE is upregulated at lower temperature and high haemin
405 concentrations (Abromaitis and Koehler, 2013). These conditions recapitulate the environment of the
406 arthropod gut and support a role in the adaptation to the vector. In *B. henselae*, RpoE was also found
407 to negatively regulate the transcription of *badA*, which encodes the BadA adhesin (Tu et al., 2016).
408 BadA is an important virulence factor that interacts with endothelial cells in the mammalian host (Riess
409 et al., 2004). In contrast, BadA was described to negatively affect the function of the VirB/VirD4 T4SS
410 (Lu et al., 2013). No evidence was reported that RpoE has direct effects on the *virB* operon as neither
411 the genomic deletion nor ectopic overexpression did influence *virB* promoter activity (Quebatte et al.,
412 2013). However, we cannot exclude that RpoE might affect the function of the VirB/VirD4 T4SS via
413 other regulation mechanisms. We observed upregulated expression of the VirB/VirD4 T4SS in *B.*

414 *taylorii* cultured on TSA, which might influence the expression of BadA, therefore allowing to monitor
415 effector translocation *in vitro*.

416 The expression and activation of the VirB/VirD4 T4SS in *B. henselae* is regulated by the alternative
417 sigma factor RpoH1. Levels of RpoH1 are under the control of the stringent response, an adaptive
418 mechanism that allows pathogens to respond to changes in the microenvironments (Dalebroux et al.,
419 2010; Quebatte et al., 2013). Quebatte et al. showed that the stringent response components SpoT and
420 DksA are key regulators of *B. henselae* virulence by controlling the levels of RpoH1 (Quebatte et al.,
421 2013). Additionally, induction of the VirB/VirD4 T4SS also requires an active BatR/BatS two-
422 component system (TCS). The BatR/BatS TCS is activated in neutral pH range (pH 7.0 to 7.8)
423 suggesting that this system is discriminating between the mammalian host (neutral pH in blood and
424 most tissues) and the midgut of the arthropod vector (alkaline pH) (Quebatte et al., 2010). Genes of the
425 BatR regulon and the SpoT/DksA/RpoH1 are conserved amongst Bartonellae (Quebatte et al., 2010;
426 Quebatte et al., 2013), indicating that the expression of the VirB/VirD4 T4SS relies on the same
427 pathways in various *Bartonella* species. However, environmental signals and nutritional states
428 triggering these pathways are not fully understood. We showed that the activation of the VirB/VirD4
429 T4SS in *B. taylorii* required different culture conditions compared to *B. henselae*. It is thus tempting
430 to speculate that *B. taylorii* may have different metabolic capabilities as *B. henselae* resulting in the
431 observed differences in VirB/VirD4 regulation.

432 We could show that *B. taylorii* lacking all Beps impaired the TNF- α secretion to a larger extend than
433 the effector translocation-deficient $\Delta virD4$ mutant. The TNF- α secretion is likewise impaired following
434 infection with the $\Delta bepD$ and the full Bep deletion mutant $\Delta bepA-I$ at 6 hpi, but significantly increased
435 in cells infected with the $\Delta virD4$ mutant. Furthermore, we saw differences in the TNF- α secretion when
436 comparing $\Delta bepA-I$ and $\Delta virD4$ mutant at later time points. This observation suggests that some
437 *Bartonella* species harbour at least one additional effector that is translocated via the VirB/VirD4
438 T4SS. All Beps harbor a bipartite secretion signal composed of one or several Bep intracellular delivery
439 (BID) domains followed by a positively charged tail sequence. It was shown that complete or partial
440 deletion of the BID domain strongly impairs the secretion via the VirB/VirD4 T4SS (Schulein et al.,
441 2005; Schmid et al., 2006b). However, other bacteria expressing a homologous T4SS, like
442 *Agrobacterium tumefaciens*, secrete effector proteins without BID domains. Positively charged amino
443 acids in the C-terminus of recognized effectors serve as translocation signal. For example, the last C-
444 terminal 20 amino acids of VirF of *A. tumefaciens* are sufficient to serve as translocation signal
445 (Vergunst et al., 2005). Here we provide data suggesting that *B. taylorii* might harbour other effector
446 proteins probably lacking BID domains, which might be translocated by the VirB/VirD4 T4SS. We
447 suggest to employ the NLuc translocation assay to study the translocation of putative new effectors in
448 *Bartonella* as this system provides high signal-to noise ratios, is easy to perform and allows high-
449 throughput screening.

450 Taken together, this study characterized *B. taylorii* IBS296 as suitable model organism allowing for
451 the first time to directly compare host-pathogen interaction *in vitro* and in rodent hosts using the same
452 *Bartonella* species.

453 **5 Conflict of Interest**

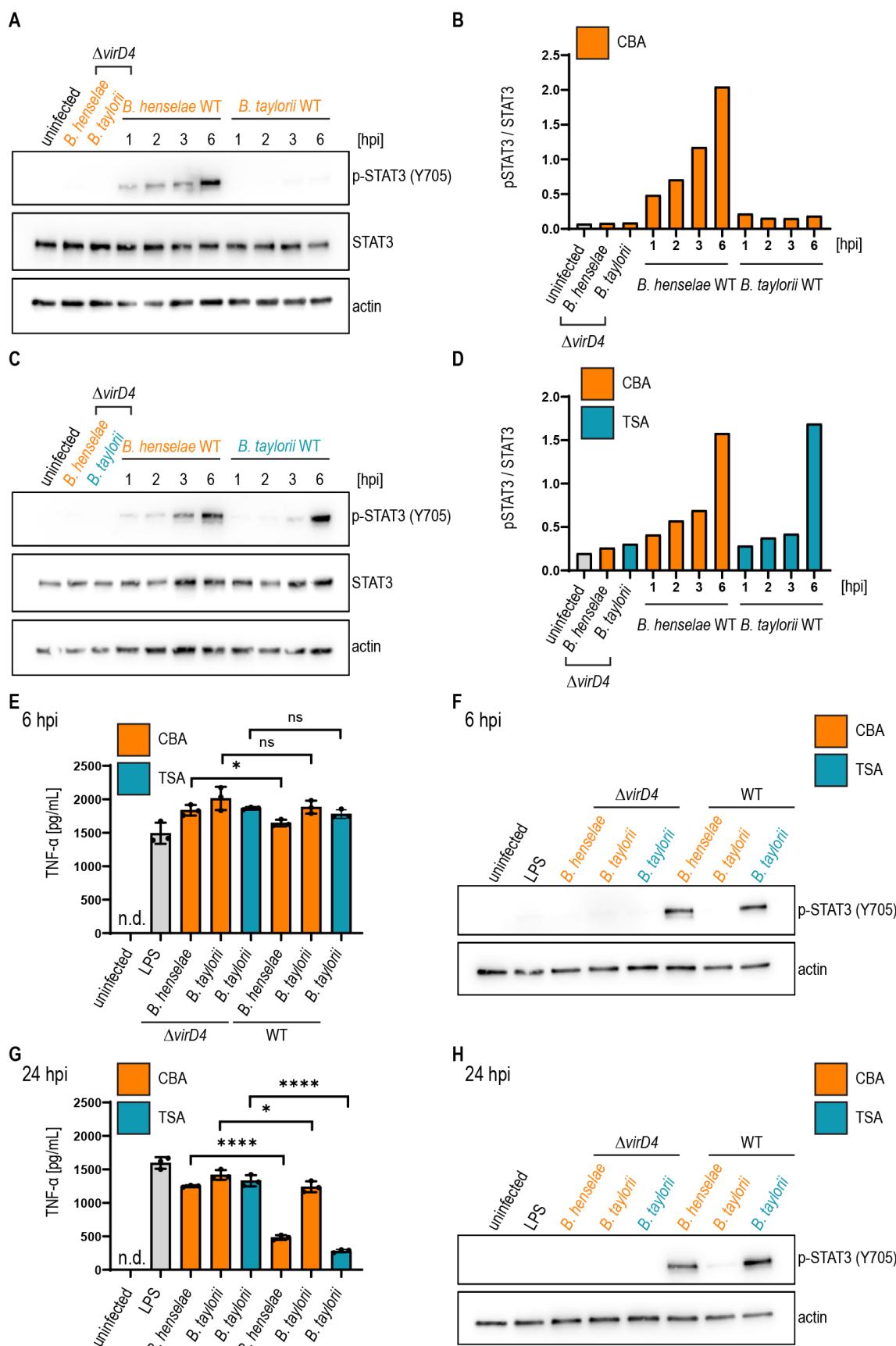
454 The authors declare no competing interests.

455

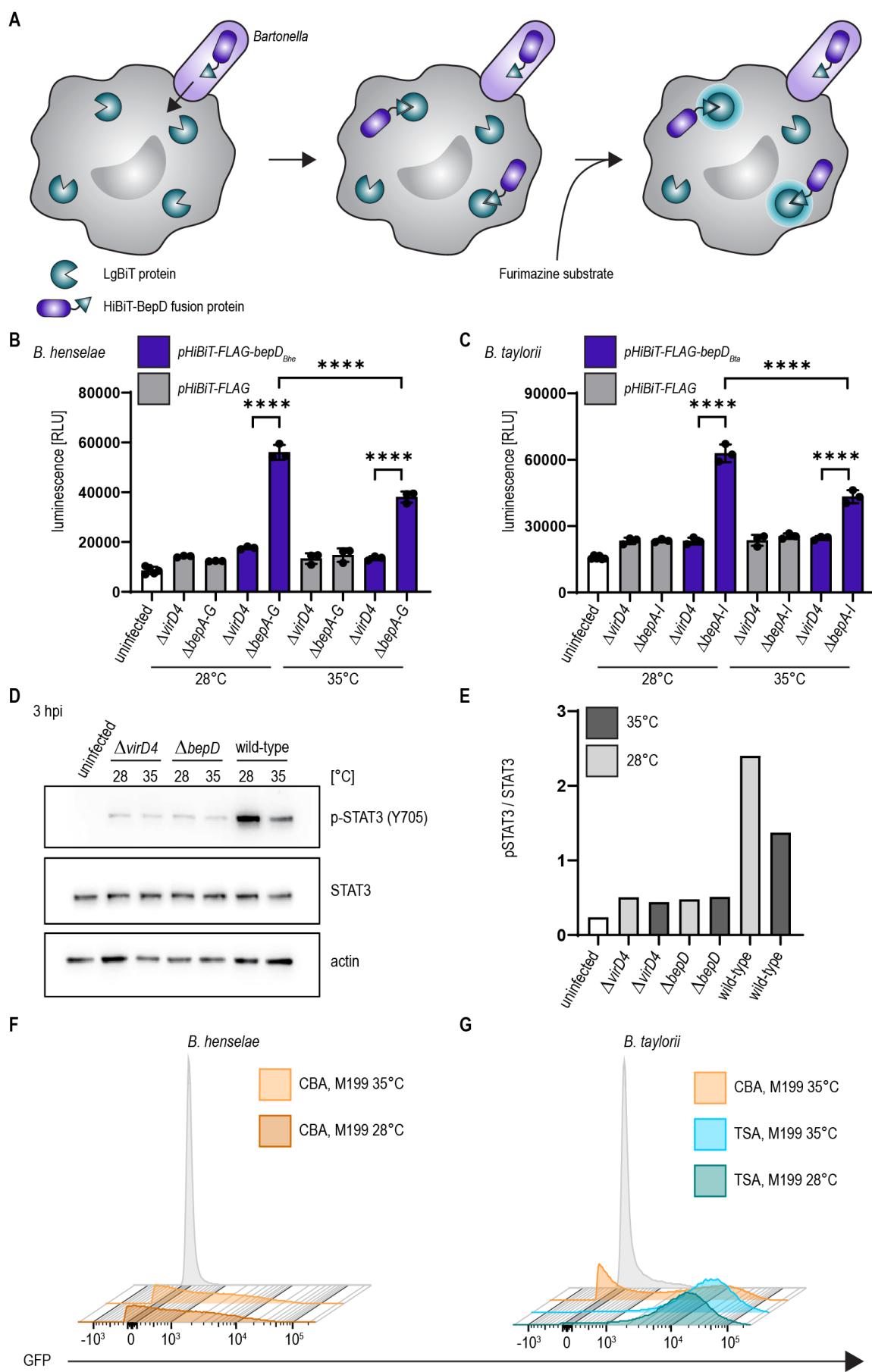
456 **6 Author Contributions**

457 K. F. and C. D. conceptualized the studies and designed all experiments. K. F. designed the figures.
458 K. F. (cell infections, Nano-Luc translocation assay, animal work, flow cytometry, cloning, western
459 blotting, ELISA); A. B. (cell infections, western blotting, ELISA); M. O. (Nano-Luc translocation
460 assay, cloning); A. W. (cloning); E. B. (generation LgBiT RAW macrophages); S. M. (cloning); S.
461 W. (experimental design) conducted the experiments, collected and analysed the data. K. F. and C. D.
462 wrote the manuscript. All authors have read and approved the final version of the manuscript.

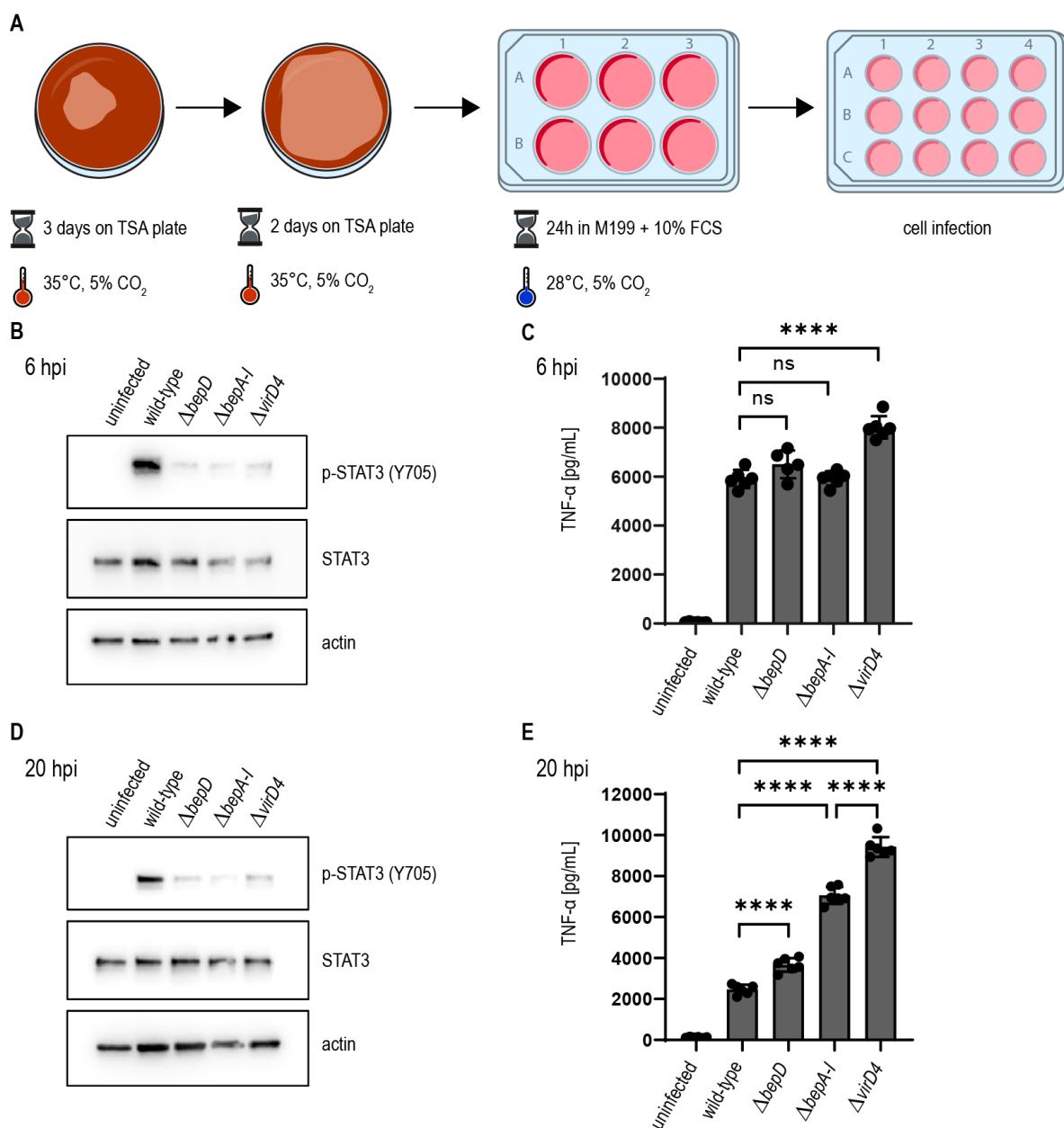
463


464 **7 Funding**

465 This work was supported by the Swiss National Science Foundation (SNSF, www.snf.ch) grant
466 310030B_201273 to C. D. and a “Fellowship for Excellence” by the Werner Siemens-Foundation to
467 K. F.


468

469 **8 Acknowledgements**


470 We specially want to thank Lena Siewert, Jaroslaw Sedzicki and Maxime Québatte for helpful
471 comments and critical reading of the manuscript.

473 **Figure 1: *B. taylorii* grown on TSA trigger a stronger STAT3 activation compared to bacteria**
474 **grown on CBA.** (A) JAWS II cells were infected at MOI 50. At the depicted time points cells were
475 harvested and analyzed by immunoblot with specific antibodies against p-STAT3 (Y705), STAT3 and
476 actin. Phosphorylated STAT3 was quantified over the total amount of STAT3. Shown is an
477 immunoblot of JAWSII cell lysates infected with *B. henselae* wild-type or $\Delta virD4$, *B. taylorii* wild-
478 type or $\Delta virD4$ grown on CBA (orange). Cells were infected for 24 h with $\Delta virD4$ mutants. (B)
479 Quantification of immunoblot shown in (A). (C) Shown is an immunoblot of JAWSII cell lysates
480 infected with *B. henselae* wild-type or $\Delta virD4$, *B. taylorii* wild-type or $\Delta virD4$ grown on TSA (blue).
481 Cells were infected for 24 h with $\Delta virD4$ mutants. (D) Quantification of immunoblot shown in (C). (E)
482 and (G) JAWS II dendritic cells were infected as described in (A). During the last two hours of
483 infection, cells were treated with 100 ng/mL LPS. (E) 6 hpi supernatant was harvested and TNF- α
484 concentration was assessed by ELISA. (F) Cells in (E) were analyzed by Western Blot for
485 phosphorylated STAT3 (Y705). Actin was used as loading control. (G) After 24 hpi TNF- α
486 concentration in the cell culture supernatant was assessed by ELISA. (H) Cells in (G) were analyzed
487 by Western Blot for phosphorylated STAT3 (Y705). Data for immunoblots were acquired by pooling
488 three technical replicates. Data from one representative experiment (n = 3) are presented.

490 **Figure 2: Temperature shift increases effector translocation** (A) Schematic overview showing the
491 split NLuc assay principle. Bacteria were allowed to infect RAW LgBiT macrophages for 24 h. HiBiT-
492 BepD was translocated inside host cells via the VirB/VirD4 T4SS. The substrate Furimazine was added
493 and luminescence measured. (B) Bacteria were cultured in M199 + 10% FCS for 24 h at 28°C or 35°C
494 prior to infection. RAW LgBiT macrophages were infected at MOI 50 for 24 h with *B. henselae* Δ bepA-
495 G or Δ virD4 containing pHiBiT-bepD_{Bhe} (blue) or pHiBiT (grey). Luminescence of the complemented
496 split NLuc was measured. (C) RAW LgBiT were infected for 24 h with *B. taylorii* Δ bepA-I or Δ virD4
497 containing pHiBiT-bepD_{Bta} (blue) or the control pHiBiT-FLAG (grey) either cultured in M199 + 10%
498 FCS at 28°C or 35°C for 24 h prior to infection. Luminescence of the complemented split NLuc was
499 measured. (D) RAW 264.7 macrophages were infected for 3 h at MOI 50 with *B. taylorii* wild-type,
500 the BepD-deficient mutant Δ bepD or the translocation-deficient mutant Δ virD4. Bacteria were cultured
501 in M199 + 10% FCS at 28°C or 35°C for 24 h prior to infection. Cell lysates were analyzed by Western
502 Blot for phosphorylated STAT3 (Y705), STAT3 and actin. Immunoblot analyzing cell lysates of cells
503 infected for 3 h with bacteria grown at 28°C (light grey) or 35°C (dark grey). (E) Quantification of
504 pSTAT3 signal over STAT3 control of immunoblot shown in (D). Bacteria were grown at 28°C (light
505 grey) or 35°C (dark grey). (F+G) *B. henselae* or *B. taylorii* expressing GFP under the corresponding
506 virB2 promoter on a plasmid were grown on CBA (orange) or TSA (blue) plates and cultured for 24 h
507 in M199 + 10% FCS at 28°C or 35°C. GFP expression was analyzed by FACS measurement. Bacteria
508 containing the empty plasmid (pCD366, grey) were used as control. Data for immunoblots were
509 acquired by pooling three technical replicates. All experiments were performed in three independent
510 biological replicates. Data were analyzed using one-way ANOVA with multiple comparisons (Tukey's
511 multiple comparison test), *** p < 0.0001.

512

513 **Figure 3: *B. taylorii* efficiently downregulates the innate immune response using the novel *in vitro***

514 **infection protocol.** (A) Scheme of *B. taylorii* culture conditions used for infection. (B-E) RAW 264.7

515 macrophages were infected at MOI 50 with *B. taylorii* wild-type, the Δ bepD or Δ bepA-I mutants or the

516 translocation-deficient mutant Δ virD4. Secreted TNF- α was quantified by ELISA. Cells were

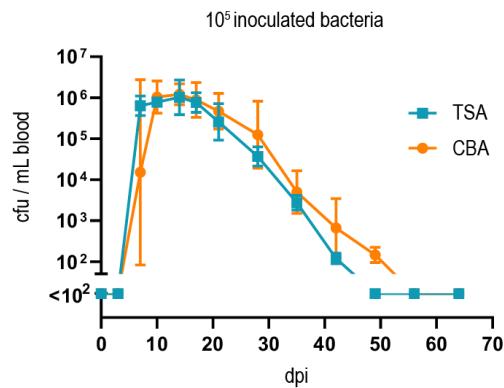
517 harvested, lysed, and analyzed by immunoblot using specific antibodies against p-STAT3 (Y705),

518 STAT3 and actin. (B) Immunoblot of cellular lysates after 6 h infection. (C) TNF- α secreted by cells

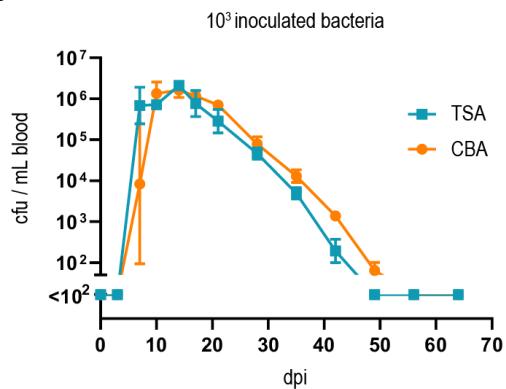
519 in (B) was quantified by ELISA. (D) Immunoblot of RAW macrophages infected for 20 h. (E) TNF- α

520 secreted by cells in (D) was quantified by ELISA. Data for immunoblots were acquired by pooling

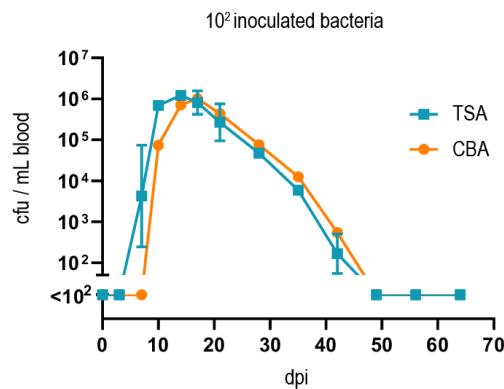
521 three technical replicates. Data representative for three independent biological replicates. Data were


522 analyzed using one-way ANOVA with multiple comparisons (Tukey's multiple comparison test), ns =

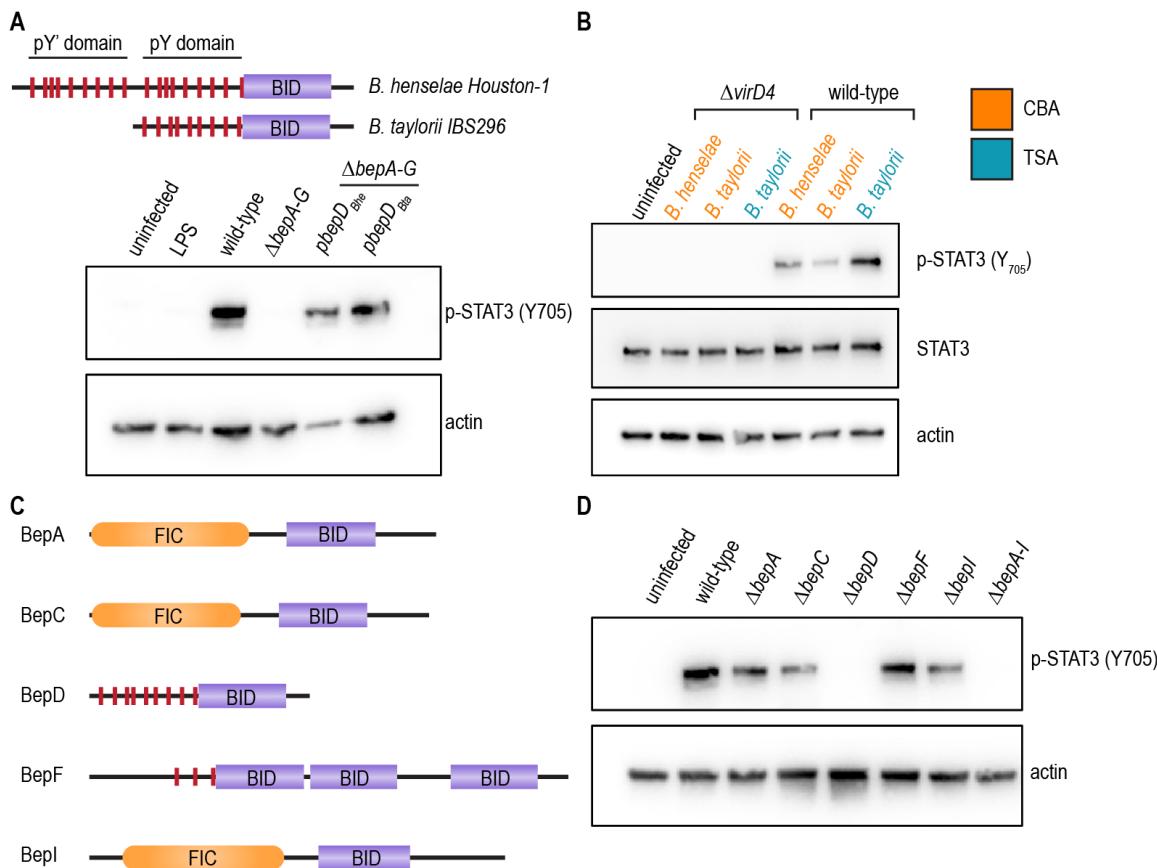
523 not significant, **** p < 0.0001.


A

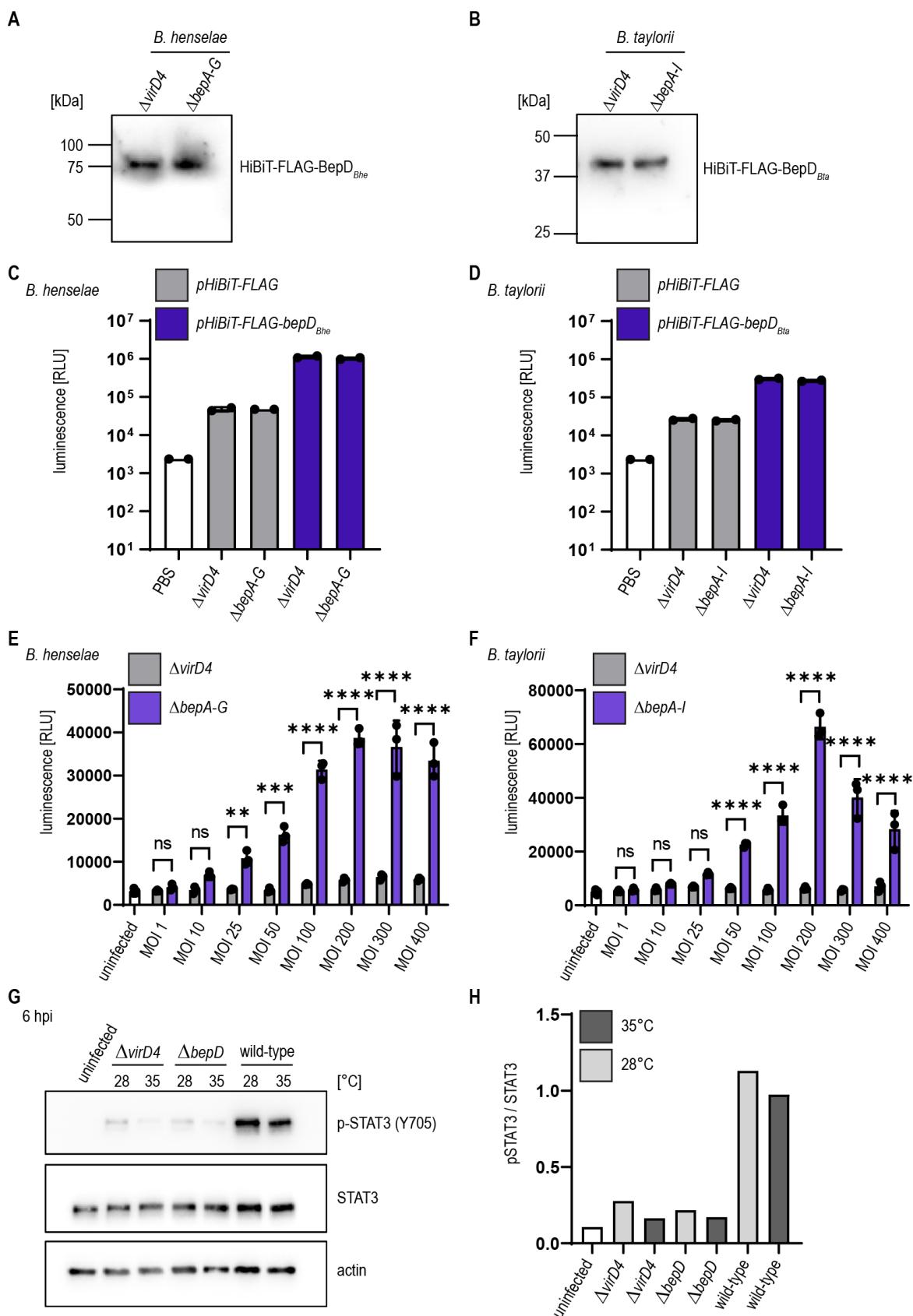
inoculum	CBA	TSA
10 ⁵ cfu	5 of 9	9 of 9
10 ³ cfu	6 of 9	9 of 9
10 ² cfu	2 of 9	9 of 9


B

C



D



524

525 **Figure 4: Growth on TSA primes *B. taylorii* for high infectivity in mice.** (A) Table represents
526 number of mice developing bacteremia vs mice remaining abacteremic after infection with *B. taylorii*
527 for 9 animals per condition. C57BL/6 mice were infected *i.d.* with 10², 10³ or 10⁵ cfu of *B. taylorii*
528 wild-type either grown on CBA (orange) or TSA (blue) plates. Shown are data pooled from three
529 independent experiments. Bacteremia kinetics in infected mice shown for (B) 10⁵, (C) 10³ and (D) 10².
530 At several time points after infection, blood was drawn from the tail vein and plated on CBA plates to
531 assess the amount of bacteria inside the blood. Data plotted as mean bacteremia. Figures show
532 representative data from at least three independent experiments.

534 **Figure S1: BepD_{Bta} ortholog of *B. taylorii* activates STAT3.** (A) BepD domain architecture of *B.*
535 *henselae* Houston-1 and *B. taylorii* IBS296. *B. henselae* harbors 18 tyrosine residues (red) embedded
536 within the two pY' and pY domains. BepD of *B. taylorii* contains only the pY domain with 9 tyrosine
537 residues. JAWS II dendritic cells were infected at MOI 50 with *B. henselae* wild-type, the Bep-deficient
538 strain Δ bepA-G, its BepD_{Bhe}-expressing derivative Δ bepA-G pbepD_{Bhe} or its BepD_{Bta}-expressing
539 derivative Δ bepA-G pbepD_{Bta}. At 6 hpi, cells were harvested, lysed, and analyzed by immunoblot with
540 specific antibodies against phosphorylated STAT3 (Y705) and actin. (B) Data contributes to figure 1C-
541 F. JAWS II cells were infected at MOI 50 for 24 h with the wild-type or the Δ virD4 mutant of *B.*
542 *henselae* or *B. taylorii* grown on CBA (orange) or TSA (blue). Cells were harvested, lysed and analyzed
543 by immunoblot using specific antibodies against p-STAT3 (Y705), STAT3 and actin. Total amount of
544 STAT3 was used to quantify the phosphorylation of STAT3. (C) Domain architecture of the Bep
545 repertoire present in *B. taylorii*. FIC domains are displayed in orange, BID domains shown in purple
546 and phosphorylation motifs are shown as red, vertical lines. (D) JAWS II dendritic cells were infected
547 at MOI 50 with *B. taylorii* wild-type, the Bep-deficient strain Δ bepA-I or single-bep deletions. At 6 hpi
548 cells were harvested, lysed and analyzed by Western Blot for phosphorylated STAT3 (Y705) and actin.
549 Data was acquired by pooling three technical replicates and performed in three independent biological
550 experiments. FIC = filamentation induced by cyclic AMP; BID = *Bartonella* effector protein
551 intracellular delivery

553 **Figure S2: BepD_{Bhe} and BepD_{Bta} are translocated inside RAW macrophages in a virD4- and dose-
554 dependent manner.** Immunoblot using specific antibody against the FLAG-epitope. The calculated
555 molecular mass of (A) HiBiT-FLAG-BepD_{Bhe} is 63.6 kDa and the calculated molecular mass of (B)
556 HiBiT-FLAG-BepD_{Bta} is 42.6 kDa. The interaction of HiBiT-FLAG (grey), HiBiT-FLAG-BepD_{Bhe} or
557 HiBiT-FLAG-BepD_{Bta} (both shown in blue) with LgBiT was tested using the Nano-Glo HiBiT lytic
558 detection system. Lysed bacteria were supplemented with the purified LgBiT protein and the substrate
559 and luminescence measured using the Synergy H4 plate reader for (C) *B. henselae* or (D) *B. taylorii*.
560 (E) RAW LgBiT macrophages were infected with *B. henselae* Δ bepA-G (blue) or Δ virD4 (grey)
561 containing *pHiBiT-FLAG-bepD_{Bhe}* for 24 h with the indicated MOIs, washed and supplemented with
562 the NLuc substrate. Luminescence was measured in the Synergy H4 plate reader. (F) RAW LgBiT
563 macrophages were infected with *B. taylorii* Δ bepA-I (blue) or Δ virD4 (grey) containing *pHiBiT-FLAG-*
564 *bepD_{Bta}* and luminescence measured after 24 hpi. (G) RAW 264.7 macrophages were infected at MOI
565 50 with *B. taylorii* wild-type, the BepD-deficient mutant Δ bepD or the translocation-deficient mutant
566 Δ virD4. Cell lysates were analyzed by Western Blot for phosphorylated STAT3 (Y705), STAT3 and
567 actin. Immunoblot analyzing cell lysates of cells infected for 6 h with bacteria grown at 28°C (light
568 grey) or 35°C (dark grey). (E) Quantification of pSTAT3 signal over STAT3 control of immunoblot
569 shown in (D). Data was analyzed using one-way ANOVA with multiple comparisons (Tukey's
570 multiple comparison test), ns = not significant, ** p < 0.01, *** p < 0.001, **** p < 0.0001

571 Table 1. List and construction of all bacterial strains of this study

Strain	Genotype	Reference/Source	Identifier/Description
<i>Escherichia coli</i>			
Novablue	<i>endA1 hsdR17 (r_{K12}⁻ m_{K12}⁺) supE44 thi-1 recA1 gyrA96 relA1 lac F'[proA⁺B⁺ lacI^qZΔM15::Tn10]</i>	Novagen	Standard cloning strain
HST08	<i>F-, endA1, supE44, thi-1, recA1, relA1, gyrA96, phoA, Φ80d lacZΔM15, Δ (lacZYA - argF) U169, Δ (mrr - hsdRMS - mcrBC), ΔmcrA, λ-</i>	Takara	Standard cloning strain
JKE201	MFDpir ΔmcrA Δ(mrr-hsdRMS-mcrBC) <i>aac(3)IV::lacI^q</i>	(Harms et al., 2017b)	derivative of MFDpir lacking EcoKI, the three type IV restriction systems, restored gentamicin sensitivity, harboring <i>lacI^q</i> allele
<i>Bartonella henselae</i>			
<i>B. henselae</i> Houston-1	<i>rpsL</i>	(Schmid et al., 2004)	RSE247, spontaneous SmR strain of <i>B. henselae</i> ATCC49882T, serving as wild-type
	<i>rpsL pCD366</i>	(Quebatte et al., 2010)	MQB1610; RSE247 containing pCD366
	<i>rpsL pAH196</i>	(Harms et al., 2017b)	MQB1612; RSE247 containing pAH196_Bhe
	<i>rpsL ΔvirD4</i>	(Schulein et al., 2005)	GS0221; virD4 deletion mutant, derivative of RSE247
	<i>rpsL ΔvirD4 / pHiBiT-FLAG</i>	This study	KFB286; GS0221 containing pKF059
	<i>rpsL ΔvirD4 / pHiBiT-FLAG-bepD_{Bhe}</i>	This study	MOB120; GS0221 containing pMO006

	<i>rpsL ΔbepA-G</i>	(Schulein et al., 2005)	MSE150; bepA-bepG deletion mutant, derivative of RSE247
	<i>rpsL ΔbepA-G / pbepD_{Bhe}</i>	(Schulein et al., 2005)	PG4D03; MSE150 containing pPG104
	<i>rpsL ΔbepA-G / pbepD_{Bta}</i>	(Sorg et al., 2020)	LUB242; MSE150 containing pLU058
	<i>rpsL ΔbepA-G / pHiT-FLAG</i>	This study	KFB276; MSE150 containing pKF059
	<i>rpsL ΔbepA-G / pHiT-FLAG-bepD_{Bhe}</i>	This study	MOB121; MSE150 containing pMO006
<i>Bartonella taylorii</i>			
<i>B. taylorii IBS296 Sm^R</i>	<i>rpsL</i>	(Sorg et al., 2020)	KFB030, spontaneous SmR strain of <i>B. taylorii IBS296</i> , serving as wild-type, derivative of LUB046
	<i>rpsL pCD366</i>	This study	KFB266; KFB030 containing pCD366
	<i>rpsL pAH196_Btay</i>	(Harms et al., 2017b)	KFB063; LUB046 containing pAH196_Btay
	<i>rpsL ΔvirD4</i>	This study	KFB146; <i>virD4</i> deletion mutant of KFB030
	<i>rpsL ΔvirD4 / pHiT-FLAG</i>	This study	KFB291, KFB146 containing pKF059
	<i>rpsL ΔvirD4 / pHiT-FLAG-bepD_{Bta}</i>	This study	KFB233, KFB146 containing pKF027
	<i>rpsL ΔbepA</i>	This study	KFB068; <i>bepA</i> deletion mutant of KFB030
	<i>rpsL ΔbepC</i>	This study	KFB085, <i>bepC</i> deletion mutant of KFB030
	<i>rpsL ΔbepD</i>	This study	KFB070; <i>bepD</i> deletion mutant of KFB030
	<i>rpsL ΔbepF</i>	This study	KFB097; <i>bepF</i> deletion mutant of KFB030

	<i>rpsL ΔbepI</i>	This study	KFB101; <i>bepI</i> deletion mutant of KFB030
	<i>rpsL ΔbepA-I</i>	This study	KFB072; <i>bepA-bepI</i> deletion mutant of KFB030
	<i>rpsL ΔbepA-I / pHiBiT-FLAG</i>	This study	KFB287; KFB072 containing pKF059
	<i>rpsL ΔbepA-I / pHiBiT-FLAG- bepD_{Bta}</i>	This study	KFB263; KFB072 containing pKF027

572

573 Table 2: List of plasmids used in this study

Plasmid	Backbone	Description	Reference/Source
pCD366		RSF1010 derivative encoding promoterless gfpmut2	(Dehio et al., 1998)
pAH196_Bhe	pCD366	pCD366 with PvirB2 of <i>B. henselae</i> ahead of gfpmut2	(Harms et al., 2017b)
pAH196_Btay	pCD366	pCD366 with PvirB2 of <i>B. taylorii</i> ahead of gfpmut2	(Harms et al., 2017b)
pTR1000		<i>Bartonella</i> suicide plasmid with <i>kanR</i> / <i>rpsL</i> double-selectable cassette for scarless deletions	(Schulein and Dehio, 2002)
pKF001	pTR1000	pTR1000 with homology sites to delete <i>bepA</i> of <i>Bartonella taylorii</i> (homology regions amplified separately and then fused by SOEing PCR)	This study
pKF002	pTR1000	pTR1000 with homology sites to delete <i>bepD</i> of <i>Bartonella taylorii</i> (homology regions amplified separately and then fused by SOEing PCR)	This study
pKF003	pTR1000	pTR1000 with homology sites to delete <i>bepC-I</i> of <i>Bartonella taylorii</i> (homology regions amplified separately and then fused by SOEing PCR)	This study
pKF005	pTR1000	pTR1000 with homology sites to delete <i>bepC</i> of <i>Bartonella taylorii</i> (homology regions amplified separately and then fused by SOEing PCR)	This study
pKF006	pTR1000	pTR1000 with homology sites to delete <i>bepF</i> of <i>Bartonella taylorii</i> (homology regions amplified separately and then fused by SOEing PCR)	This study
pKF007	pTR1000	pTR1000 with homology sites to delete <i>bepI</i> of <i>Bartonella taylorii</i> (homology regions amplified separately and then fused by SOEing PCR)	This study

pKF008	pTR1000	pTR1000 with homology sites to delete <i>virD4</i> of <i>Bartonella taylorii</i> (homology regions amplified separately and then fused by SOEing PCR)	This study
pBZ485		new <i>E. coli</i> / <i>Bartonella</i> shuttle vector based on pCD341 with <i>Plac</i> (MQ5); RP4 <i>oriT</i>	(Harms et al., 2017a)
pKF059	pBZ485	Derivative of pBZ485, encodes for HiBiT::FLAG	This study
pKF027	pBZ485	Derivative of pBZ485, encodes for HiBiT::FLAG <i>Bta</i> BepD fusion protein	This study
pMO006	pBZ485	Derivative of pBZ485, encodes for HiBiT::FLAG <i>Bhe</i> BepD fusion protein	This study

574

575 Table 3: List of oligonucleotide primers used in this study

Primer	Sequence	Purpose
prKF001	GAGCCGGGATCCTTTTCGCTGTGTGAGC	Δ <i>bepA</i> _US_fw_BamHI
prKF002	TTTGGCATTGTTACCTCC	Δ <i>bepA</i> _US_rv
prKF003	TTATAAGGAGGTAACAATGCCAAAATAATAAAAGTAAA AATTGCAGGATATTCTTTC	Δ <i>bepA</i> _DS_fw
prKF004	GAGCCGTCTAGAATGTAGTTTATTGCCAGGC	Δ <i>bepA</i> _DS_rv_XbaI
prKF005	TATGACAATTGCAAACCC	sequencing Δ <i>bepA</i> _fw
prKF006	TTTATATCCACCAGAACCGG	sequencing Δ <i>bepA</i> _rv
prKF007	ATTGGTATAAAAATAAGCGCC	sequencing Δ <i>bepA</i> _intern
prKF008	GAGCCGGGATCCAACCTGAGAGAACACTGATCC	Δ <i>bepD</i> _US_fw_BamHI
prKF009	CTTTTCATGTATGTTCTTTC	Δ <i>bepD</i> _US_rv
prKF010	TTGAAAGGAAACATACATGAAAAAGGCGATGTAAATA TACATAAACTGTTATC	Δ <i>bepD</i> _DS_fw
prKF011	GAGCCGTCTAGATTGCTTTACAGCCTTGG	Δ <i>bepD</i> _DS_rv_XbaI
prKF012	ATCTGTTGAGGATAGCACCC	sequencing Δ <i>bepD</i> _fw
prKF013	TTTTTCAGCTTCTTGCG	sequencing Δ <i>bepD</i> _rv
prKF014	TTATTGTATTGCTTGCG	sequencing Δ <i>bepD</i> _intern
prKF015	GAGCCGGGATCCATCCTTAATGCTCTTTATCAATCC	Δ <i>bepC-I</i> _US_fw_BamHI
prKF016	CTCTAACATAGGATATCTCCTTAGAGAATAG	Δ <i>bepC-I</i> _US_rv
prKF017	AAGGAGATATCCTATGTTAGAGTGTCTATAAAATTCAA TTTTCAGCC	Δ <i>bepC-I</i> _DS_fw
prKF018	AAGAAAGATTAAAGCCGATATGC	Δ <i>bepC-I</i> _DS_rv_XbaI

prKF019	ATGCAATGATTACAGCTGACG	sequencing Δ bepC-I_fw
prKF020	AATACCTCCCGTATGGC	sequencing Δ bepC-I_rv
prKF021	AAAAATACGGCTCATCAAGG	sequencing Δ bepC-I_intern
prKF026	GAGCCGGGATCCAATCACTTGAGAGAAGCG	Δ bepC_US_fw_BamHI
prKF027	CTCTAACATAGGATATCTCC	Δ bepC_US_rv
prKF028	TCTAAGGAGATATCCTATGTTAGAGACCGGCTAAAAAC TGATATAATT	Δ bepC_DS_fw
prKF029	GAGCCGTCTAGAAAGACGTTCTCCTCTCG	Δ bepC_DS_rv_XbaI
prKF030	AAAAAGCGTGTGTTGTTCG	sequencing Δ bepC_fw
prKF031	AAGAGCAGCACAAAGAGGG	sequencing Δ bepC_rv
prKF032	ATAGTTCTCTGATTGTGGGG	sequencing Δ bepC_intern
prKF033	GAGCCGGGATCCTTGGTAAAATGCTGGG	Δ bepF_US_fw_BamHI
prKF034	TTTTTCATGCCTGTTCC	Δ bepF_US_rv
prKF035	TTGAAAGGAAACAGGCATGAAAAAAACCAGCTAAACT TCATAACCTATTG	Δ bepF_DS_fw
prKF036	GAGCCGTCTAGAAAATTCTAGTCGTGACCTGC	Δ bepF_DS_rv_XbaI
prKF037	TTACTACAGCACCGTTGGC	sequencing Δ bepF_fw
prKF038	AGCGTTTTCTGGATTGG	sequencing Δ bepF_rv
prKF039	TTCTGAGGAGGTAAGGTGC	sequencing Δ bepF_intern
prKF040	GAGCCGGGATCCTACAAACACAAACAAGAAAGCG	Δ bepI_US_fw_BamHI
prKF041	GTCTCTCATAGATGTTCCCTTCAC	Δ bepI_US_rv
prKF042	GTGAAAGGAAACATCTATGAGAGACTGTCTATAAATT CAATTTTCAGC	Δ bepI_DS_fw
prKF043	GAGCCGTCTAGAAAGAAAGATTAAAGCCGATATGC	Δ bepI_DS_rv_XbaI
prKF044	TTATCAAAACCTCCTAAACAACC	sequencing Δ bepI_fw
prKF105	GAGCCGTCTAGATCACTCTGTTCTCGTCTTGC	Δ virD4_US_fw_BamHI
prKF095	GTATTCATTGTCTTACTTCG	Δ virD4_US_rv
prKF096	GAGACAATGAAATACAAAAAGTAAAAATATT	Δ virD4_DS_fw
prKF106	GAGCCGGGATCCTGTGTGGGTTTGATGC	Δ virD4_DS_rv_XbaI
prKF098	AACAAATCCAGAAATGCG	sequencing Δ virD4_fw
prKF099	TAAGCAGCATCAAATTTCG	sequencing Δ virD4_rv
prKF100	TGTGAAAATCGTGGTTATGG	sequencing Δ virD4_intern

prKF164	GAGCCGGGATCCAAGAAGGAGATATAAAATGGTGAG	expression <i>HiBiT-FLAG_fw_BamHI</i> for pKF027
prKF165	ATTCTTTTTTGTACATCGTCATCCTTG	expression <i>HiBiT-FLAG_rv</i> for pKF027
prKF166	ATGACAAAAAAAAGAATCATCCATCCCC	expression <i>bepD_{Bta}_fw</i> for pKF027
prKF167	GAGCCGGTCGACTTACATCGAAAAGCCATT	expression <i>bepD_{Bta}_rv_SalI</i> for pKF027
prMO001	GCGGGATCCAAGAAGGAGATATAAAATGGTGAGC	expression <i>HiBiT-FLAG_fw_BamHI</i> for pMO006
prMO010	GATTTTTTTTGTACATCGTCATCCTTGTAAATC	expression <i>HiBiT-FLAG_rv</i> for pMO006
prMO011	GACGATGACAAAAAAAAAAATCGACCATCCCCTC	expression <i>bepD_{Bhe}_fw</i> for pMO006
prMO012	GCAGGTACCTTACATACCAAAGGCCATT	expression <i>bepD_{Bhe}_rv_KpnI</i> for pMO006

576

577 **9 References**

578 Abromaitis, S., and Koehler, J.E. (2013). The *Bartonella quintana* extracytoplasmic function sigma
579 factor RpoE has a role in bacterial adaptation to the arthropod vector environment. *J Bacteriol*
580 195(11), 2662-2674. doi: 10.1128/JB.01972-12.

581 Berge, C., Waksman, G., and Terradot, L. (2017). Structural and Molecular Biology of Type IV
582 Secretion Systems. *Curr Top Microbiol Immunol* 413, 31-60. doi: 10.1007/978-3-319-75241-
583 9_2.

584 Bouhsira, E., Franc, M., Boulouis, H.J., Jacquiet, P., Raymond-Letron, I., and Lienard, E. (2013).
585 Assessment of persistence of *Bartonella henselae* in *Ctenocephalides felis*. *Appl Environ
586 Microbiol* 79(23), 7439-7444. doi: 10.1128/AEM.02598-13.

587 Boulouis, H.J., Barrat, F., Bermond, D., Bernex, F., Thibault, D., Heller, R., et al. (2001). Kinetics of
588 *Bartonella birtlesii* infection in experimentally infected mice and pathogenic effect on
589 reproductive functions. *Infect Immun* 69(9), 5313-5317. doi: 10.1128/iai.69.9.5313-
590 5317.2001.

591 Chomel, B.B., Boulouis, H.J., Breitschwerdt, E.B., Kasten, R.W., Vayssier-Taussat, M., Birtles, R.J.,
592 et al. (2009). Ecological fitness and strategies of adaptation of *Bartonella* species to their
593 hosts and vectors. *Vet Res* 40(2), 29. doi: 10.1051/vetres/2009011.

594 Chomel, B.B., and Kasten, R.W. (2010). Bartonellosis, an increasingly recognized zoonosis. *J Appl
595 Microbiol* 109(3), 743-750. doi: 10.1111/j.1365-2672.2010.04679.x.

596 Chomel, B.B., Kasten, R.W., Floyd-Hawkins, K., Chi, B., Yamamoto, K., Roberts-Wilson, J., et al.
597 (1996). Experimental transmission of *Bartonella henselae* by the cat flea. *J Clin Microbiol*
598 34(8), 1952-1956. doi: 10.1128/JCM.34.8.1952-1956.1996.

599 Cornelis, G., Vanootegem, J.C., and Sluiters, C. (1987). Transcription of the yop regulon from *Y.*
600 *enterocolitica* requires trans acting pYV and chromosomal genes. *Microb Pathog* 2(5), 367-
601 379. doi: 10.1016/0882-4010(87)90078-7.

602 Dalebroux, Z.D., Svensson, S.L., Gaynor, E.C., and Swanson, M.S. (2010). ppGpp conjures bacterial
603 virulence. *Microbiol Mol Biol Rev* 74(2), 171-199. doi: 10.1128/MMBR.00046-09.

604 Dehio, M., Knorre, A., Lanz, C., and Dehio, C. (1998). Construction of versatile high-level
605 expression vectors for *Bartonella henselae* and the use of green fluorescent protein as a new
606 expression marker. *Gene* 215(2), 223-229. doi: 10.1016/s0378-1119(98)00319-9.

607 Deng, H., Pang, Q., Xia, H., Le Rhun, D., Le Naour, E., Yang, C., et al. (2016). Identification and
608 functional analysis of invasion associated locus B (IalB) in *Bartonella* species. *Microb Pathog*
609 98, 171-177. doi: 10.1016/j.micpath.2016.05.007.

610 Foil, L., Andress, E., Freeland, R.L., Roy, A.F., Rutledge, R., Triche, P.C., et al. (1998).
611 Experimental infection of domestic cats with *Bartonella henselae* by inoculation of
612 *Ctenocephalides felis* (Siphonaptera: Pulicidae) feces. *J Med Entomol* 35(5), 625-628. doi:
613 10.1093/jmedent/35.5.625.

614 Fromm, K., and Dehio, C. (2021). The Impact of *Bartonella* VirB/VirD4 Type IV Secretion System
615 Effectors on Eukaryotic Host Cells. *Frontiers in Microbiology* 12. doi:
616 10.3389/fmicb.2021.762582.

617 Harms, A., and Dehio, C. (2012). Intruders below the radar: molecular pathogenesis of Bartonella
618 spp. *Clin Microbiol Rev* 25(1), 42-78. doi: 10.1128/CMR.05009-11.

619 Harms, A., Liesch, M., Korner, J., Quebatte, M., Engel, P., and Dehio, C. (2017a). A bacterial toxin-
620 antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.
621 *PLoS Genet* 13(10), e1007077. doi: 10.1371/journal.pgen.1007077.

622 Harms, A., Segers, F.H., Quebatte, M., Mistl, C., Manfredi, P., Korner, J., et al. (2017b).
623 Evolutionary Dynamics of Pathoadaptation Revealed by Three Independent Acquisitions of
624 the VirB/D4 Type IV Secretion System in Bartonella. *Genome Biol Evol* 9(3), 761-776. doi:
625 10.1093/gbe/evx042.

626 Huarcaya, E., Maguina, C., Merello, J., Cok, J., Birtles, R., Infante, B., et al. (2002). A prospective
627 study of Cat-Scratch Disease in Lima-Peru. *Rev Inst Med Trop Sao Paulo* 44(6), 325-330.
628 doi: 10.1590/s0036-46652002000600006.

629 Jiang, X., Shen, C., Rey-Ladino, J., Yu, H., and Brunham, R.C. (2008). Characterization of murine
630 dendritic cell line JAWS II and primary bone marrow-derived dendritic cells in Chlamydia
631 muridarum antigen presentation and induction of protective immunity. *Infect Immun* 76(6),
632 2392-2401. doi: 10.1128/IAI.01584-07.

633 Khalfe, N., and Lin, D. (2022). Diagnosis and interpretation of testing for cat scratch disease. *Proc
634 (Bayl Univ Med Cent)* 35(1), 68-69. doi: 10.1080/08998280.2021.1984791.

635 Koesling, J., Aebischer, T., Falch, C., Schulein, R., and Dehio, C. (2001). Cutting edge: antibody-
636 mediated cessation of hemotropic infection by the intraerythrocytic mouse pathogen
637 *Bartonella grahamii*. *J Immunol* 167(1), 11-14. doi: 10.4049/jimmunol.167.1.11.

638 Kunz, S., Oberle, K., Sander, A., Bogdan, C., and Schleicher, U. (2008). Lymphadenopathy in a
639 novel mouse model of *Bartonella*-induced cat scratch disease results from lymphocyte
640 immigration and proliferation and is regulated by interferon-alpha/beta. *Am J Pathol* 172(4),
641 1005-1018. doi: 10.2353/ajpath.2008.070591.

642 Lam, O., Wheeler, J., and Tang, C.M. (2014). Thermal control of virulence factors in bacteria: a hot
643 topic. *Virulence* 5(8), 852-862. doi: 10.4161/21505594.2014.970949.

644 Li, D.-M., Hou, Y., Song, X.-P., Fu, Y.-Q., Li, G.-C., Li, M., et al. (2015). High Prevalence and
645 Genetic Heterogeneity of Rodent-Borne *Bartonella* Species on Heixiazi Island, China.
646 *Applied and Environmental Microbiology* 81(23), 7981-7992. doi: doi:10.1128/AEM.02041-
647 15.

648 Lu, Y.Y., Franz, B., Truttmann, M.C., Riess, T., Gay-Frairet, J., Faustmann, M., et al. (2013).
649 *Bartonella henselae* trimeric autotransporter adhesin BadA expression interferes with effector
650 translocation by the VirB/D4 type IV secretion system. *Cell Microbiol* 15(5), 759-778. doi:
651 10.1111/cmi.12070.

652 Ma, K.W., and Ma, W. (2016). YopJ Family Effectors Promote Bacterial Infection through a Unique
653 Acetyltransferase Activity. *Microbiol Mol Biol Rev* 80(4), 1011-1027. doi:
654 10.1128/MMBR.00032-16.

655 Mada, P.K., Zulfiqar, H., and Joel Chandranesam, A.S. (2022). "Bartonellosis," in *StatPearls*.
656 (Treasure Island (FL)).

657 Maguina, C., Guerra, H., and Ventosilla, P. (2009). Bartonellosis. *Clin Dermatol* 27(3), 271-280. doi:
658 10.1016/j.cldermatol.2008.10.006.

659 Marlaire, S., and Dehio, C. (2021). Bartonella effector protein C mediates actin stress fiber formation
660 via recruitment of GEF-H1 to the plasma membrane. *PLoS Pathog* 17(1), e1008548. doi:
661 10.1371/journal.ppat.1008548.

662 McCord, A.M., Burgess, A.W., Whaley, M.J., and Anderson, B.E. (2005). Interaction of Bartonella
663 henselae with endothelial cells promotes monocyte/macrophage chemoattractant protein 1
664 gene expression and protein production and triggers monocyte migration. *Infect Immun* 73(9),
665 5735-5742. doi: 10.1128/IAI.73.9.5735-5742.2005.

666 Musso, T., Badolato, R., Ravarino, D., Stornello, S., Panzanelli, P., Merlino, C., et al. (2001).
667 Interaction of Bartonella henselae with the murine macrophage cell line J774: infection and
668 proinflammatory response. *Infect Immun* 69(10), 5974-5980. doi: 10.1128/IAI.69.10.5974-
669 5980.2001.

670 Okujava, R., Guye, P., Lu, Y.Y., Mistl, C., Polus, F., Vayssier-Taussat, M., et al. (2014). A
671 translocated effector required for Bartonella dissemination from derma to blood safeguards
672 migratory host cells from damage by co-translocated effectors. *PLoS Pathog* 10(6),
673 e1004187. doi: 10.1371/journal.ppat.1004187.

674 Pereira, G.C., Allen, W.J., Watkins, D.W., Buddrus, L., Noone, D., Liu, X., et al. (2019). A High-
675 Resolution Luminescent Assay for Rapid and Continuous Monitoring of Protein
676 Translocation across Biological Membranes. *J Mol Biol* 431(8), 1689-1699. doi:
677 10.1016/j.jmb.2019.03.007.

678 Prosseda, G., Fradiani, P.A., Di Lorenzo, M., Falconi, M., Micheli, G., Casalino, M., et al. (1998). A
679 role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia
680 coli. *Res Microbiol* 149(1), 15-25. doi: 10.1016/s0923-2508(97)83619-4.

681 Quebatte, M., Dehio, M., Tropel, D., Basler, A., Toller, I., Raddatz, G., et al. (2010). The BatR/BatS
682 two-component regulatory system controls the adaptive response of Bartonella henselae
683 during human endothelial cell infection. *J Bacteriol* 192(13), 3352-3367. doi:
684 10.1128/JB.01676-09.

685 Quebatte, M., Dick, M.S., Kaeber, V., Schmidt, A., and Dehio, C. (2013). Dual input control:
686 activation of the Bartonella henselae VirB/D4 type IV secretion system by the stringent sigma
687 factor RpoH1 and the BatR/BatS two-component system. *Mol Microbiol* 90(4), 756-775. doi:
688 10.1111/mmi.12396.

689 Raschke, W.C., Baird, S., Ralph, P., and Nakoinz, I. (1978). Functional macrophage cell lines
690 transformed by Abelson leukemia virus. *Cell* 15(1), 261-267. doi: 10.1016/0092-
691 8674(78)90101-0.

692 Regnath, T., Mielke, M.E., Arvand, M., and Hahn, H. (1998). Murine model of Bartonella henselae
693 infection in the immunocompetent host. *Infect Immun* 66(11), 5534-5536. doi:
694 10.1128/IAI.66.11.5534-5536.1998.

695 Riess, T., Andersson, S.G., Lupas, A., Schaller, M., Schafer, A., Kyme, P., et al. (2004). Bartonella
696 adhesin a mediates a proangiogenic host cell response. *J Exp Med* 200(10), 1267-1278. doi:
697 10.1084/jem.20040500.

698 Rouault, A.A.J., Lee, A.A., and Sebag, J.A. (2017). Regions of MRAP2 required for the inhibition of
699 orexin and prokineticin receptor signaling. *Biochim Biophys Acta Mol Cell Res* 1864(12),
700 2322-2329. doi: 10.1016/j.bbamcr.2017.09.008.

701 Schmid, D., Dengjel, J., Schoor, O., Stevanovic, S., and Munz, C. (2006a). Autophagy in innate and
702 adaptive immunity against intracellular pathogens. *J Mol Med (Berl)* 84(3), 194-202. doi:
703 10.1007/s00109-005-0014-4.

704 Schmid, M.C., Scheidegger, F., Dehio, M., Balmelle-Devaux, N., Schulein, R., Guye, P., et al.
705 (2006b). A translocated bacterial protein protects vascular endothelial cells from apoptosis.
706 *PLoS Pathog* 2(11), e115. doi: 10.1371/journal.ppat.0020115.

707 Schmid, M.C., Schulein, R., Dehio, M., Denecker, G., Carena, I., and Dehio, C. (2004). The VirB
708 type IV secretion system of *Bartonella henselae* mediates invasion, proinflammatory
709 activation and antiapoptotic protection of endothelial cells. *Mol Microbiol* 52(1), 81-92. doi:
710 10.1111/j.1365-2958.2003.03964.x.

711 Schulein, R., and Dehio, C. (2002). The VirB/VirD4 type IV secretion system of *Bartonella* is
712 essential for establishing intraerythrocytic infection. *Mol Microbiol* 46(4), 1053-1067.

713 Schulein, R., Guye, P., Rhomberg, T.A., Schmid, M.C., Schroder, G., Vergunst, A.C., et al. (2005).
714 A bipartite signal mediates the transfer of type IV secretion substrates of *Bartonella henselae*
715 into human cells. *Proc Natl Acad Sci U S A* 102(3), 856-861. doi: 10.1073/pnas.0406796102.

716 Seubert, A., Schulein, R., and Dehio, C. (2002). Bacterial persistence within erythrocytes: a unique
717 pathogenic strategy of *Bartonella* spp. *Int J Med Microbiol* 291(6-7), 555-560. doi:
718 10.1078/1438-4221-00167.

719 Shapiro, R.S., and Cowen, L.E. (2012). Thermal control of microbial development and virulence:
720 molecular mechanisms of microbial temperature sensing. *mBio* 3(5). doi:
721 10.1128/mBio.00238-12.

722 Siewert, L.K., Korotaev, A., Sedzicki, J., Fromm, K., Pinschewer, D.D., and Dehio, C. (2021). The
723 Bartonella autotransporter CFA is a protective antigen and hypervariable target
724 of neutralizing antibodies blocking erythrocyte infection. *bioRxiv*, 2021.2009.2029.462357.
725 doi: 10.1101/2021.09.29.462357.

726 Sorg, I., Schmutz, C., Lu, Y.Y., Fromm, K., Siewert, L.K., Bogli, A., et al. (2020). A *Bartonella*
727 Effector Acts as Signaling Hub for Intrinsic STAT3 Activation to Trigger Anti-inflammatory
728 Responses. *Cell Host Microbe* 27(3), 476-485 e477. doi: 10.1016/j.chom.2020.01.015.

729 Stepanic, M., Duvnjak, S., Reil, I., Spicic, S., Kompes, G., and Beck, R. (2019). First isolation and
730 genotyping of *Bartonella henselae* from a cat living with a patient with cat scratch disease in
731 Southeast Europe. *BMC Infect Dis* 19(1), 299. doi: 10.1186/s12879-019-3929-z.

732 Tu, N., Lima, A., Bandeali, Z., and Anderson, B. (2016). Characterization of the general stress
733 response in *Bartonella henselae*. *Microb Pathog* 92, 1-10. doi:
734 10.1016/j.micpath.2015.12.010.

735 Vayssier-Taussat, M., Le Rhun, D., Deng, H.K., Biville, F., Cescau, S., Danchin, A., et al. (2010).
736 The Trw type IV secretion system of *Bartonella* mediates host-specific adhesion to
737 erythrocytes. *PLoS Pathog* 6(6), e1000946. doi: 10.1371/journal.ppat.1000946.

738 Vergunst, A.C., van Lier, M.C., den Dulk-Ras, A., Stuve, T.A., Ouwehand, A., and Hooykaas, P.J.
739 (2005). Positive charge is an important feature of the C-terminal transport signal of the
740 VirB/D4-translocated proteins of *Agrobacterium*. *Proc Natl Acad Sci U S A* 102(3), 832-837.
741 doi: 10.1073/pnas.0406241102.

742 Wagner, A., and Dehio, C. (2019). Role of distinct Type-IV-secretion systems and secreted effector
743 sets in host adaptation by pathogenic *Bartonella* species. *Cell Microbiol*, e13004. doi:
744 10.1111/cmi.13004.

745 Wagner, A., Tittes, C., and Dehio, C. (2019). Versatility of the BID Domain: Conserved Function as
746 Type-IV-Secretion-Signal and Secondarily Evolved Effector Functions Within *Bartonella*-
747 Infected Host Cells. *Front Microbiol* 10, 921. doi: 10.3389/fmicb.2019.00921.

748 Waksman, G. (2019). From conjugation to T4S systems in Gram-negative bacteria: a mechanistic
749 biology perspective. *EMBO Rep* 20(2). doi: 10.15252/embr.201847012.

750 Wang, C., Fu, J., Wang, M., Cai, Y., Hua, X., Du, Y., et al. (2019). *Bartonella quintana* type IV
751 secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin
752 chain. *Cell Microbiol* 21(4), e12984. doi: 10.1111/cmi.12984.

753 Wang, C.Y., Patel, N., Wholey, W.Y., and Dawid, S. (2018). ABC transporter content diversity in
754 *Streptococcus pneumoniae* impacts competence regulation and bacteriocin production. *Proc
755 Natl Acad Sci U S A* 115(25), E5776-E5785. doi: 10.1073/pnas.1804668115.

756 Westerhausen, S., Nowak, M., Torres-Vargas, C.E., Bilitewski, U., Bohn, E., Grin, I., et al. (2020). A
757 NanoLuc luciferase-based assay enabling the real-time analysis of protein secretion and
758 injection by bacterial type III secretion systems. *Mol Microbiol* 113(6), 1240-1254. doi:
759 10.1111/mmi.14490.

760