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ABSTRACT

Machine learning approaches have been applied to identify transcription factor (TF)-DNA interaction
important for gene regulation and expression. However, due to the enormous search space of the
genome, it is challenging to build models capable of surveying entire reference genomes, especially in
species where models were not trained. In this study, we surveyed a variety of methods for classification
of epigenomics data in an attempt to improve the detection for 12 members of the Auxin Response
Factor (ARF) binding DNAs from maize and soybean as assessed by DNA Affinity Purification and
sequencing (DAP-seq). We used the classification for prediction by minimizing the genome search
space by only surveying unmethylated regions (UMRs). For identification of DAP-seq binding events
within the UMRs, we achieved 93.54% accuracy, 6.2% false positive, and a 43.29% false negative rate
across 12 members of ARFs of maize on average by encoding DNA with count vectorization for k-mer
with a logistic regression classifier with up-sampling and feature selection. Importantly, feature
selection helps to uncover known and potentially novel ARF binding motifs. This demonstrates an
independent method for identification of transcription factor binding sites. Finally, we tested the model
built with maize DAP-seq data and applied it directly to the soybean genome and found unacceptably
high false positive rates, which accounted for more than 40% across the ARF TFs tested. The findings
in this study suggest the potential use of various methods to predict TF-DNA interactions within and

between species with varying degrees of success.
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BACKGROUND

Uncovering TF-DNA binding mechanisms and associated DNAs bound by TFs is important because of
the impact gene expression has on phenotypic variation. One aspect that significantly modulates this
process is the binding of transcription factors (TFs) (Cheng, et al., 2012). TFs bind to specific DNA
sequences in the genome including promoters, enhancers and silencers to initiate, enhance or repress
gene expression (Latchman, 1997). Alterations to TF-DNA binding sequences causes phenotypic
variation by altering the levels of gene expression (Epstein, 2009; Pennacchio, et al., 2013). For example,
in maize, the emergence of the enhancer for the TEOSINTE BRANCHED (Tbl) gene causes greater
apical dominance due to higher 7h/ expression compared to its ancient progenitor teosinte (Studer, et
al., 2011). This particular domesticated DNA region for 751 is located 65 kilobase pair (kbp) upstream
and it functions as an enhancer (Bulger and Groudine, 2011; Studer, et al., 2011). The distal TF-DNA
binding by enhancers make them challenging to detect compared to promoters that are located 50-100
base pairs (bp) upstream of the transcriptional start site (Siggers and Gorda™n, 2014). Moreover, the
various patterns of TF binding make them difficult to predict compared to promoters that are bound by

general TFs including TFIIB, TFIID and RNAPII (Haberle and Stark, 2018).

Many experimental and computational techniques have been developed in an attempt to identify DNA
regions where TFs bind. Chromatin Immunoprecipitation (ChIP) has been widely used to detect
enhancers and silencers based on TF binding as well as chromatin modifications associated with DNA-
bound TF (Huang, et al., 2019; Lu, et al., 2019; Oka, et al., 2017; Park, 2009; Ricci, et al., 2019). ChIP
identifies DNA-interacting TFs by treating the cells with formaldehyde to crosslink TFs with DNA in
vivo. Next, cells are lysed and chromatin is isolated and further fragmented. Crosslinked TF-DNA
interactions are then captured by specific antibodies against the TF of interest. The frequency and
strength of TF-DNA interactions are measured in a quantitative manner genome wide upon high-
throughput sequencing, which is referred to as ChIP-seq. Although ChIP-seq is the gold standard for

identifying TF-DNA interactions, it is difficult to perform and is especially challenging in species where
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antibodies are not easily obtained for performing immunoprecipitations of TFs of interest (Park, 2009).
This limitation of ChIP-seq has led to the innovation of another technique to study TF-DNA interactions
that is referred to as DNA Affinity Purification and sequencing (DAP-seq) (Bartlett, et al., 2017,
O’Malley, et al., 2016). ChIP-seq captures DNA associated TFs in vivo, whereas DAP-seq identifies
TF-DNA interactions in vitro (Bartlett, et al., 2017). For DAP-seq, fragmented genomic DNA with
adaptors and affinity-tagged TFs are prepared separately (Bartlett, et al., 2017). TFs are then combined
with the adapter-ligated fragmented DNA to allow for sequence-specific binding to genomic DNA in
vitro, which is measured using high-throughput sequencing. As DAP-seq does not require a TF-specific
antibody to capture TF-DNA complexes, it allows for screening of high numbers of TF-DNA
interactions in comparison to ChIP-seq. Regardless, both methods have proven useful for the

investigation of the genome-wide location of enhancers and silencers.

Computational approaches to predict TF-DNA interactions are actively being developed, despite the
existence of experimental methods (Li, et al., 2018). The major driving force is that experimental
methods are cumbersome and are not as scalable as computational methods. The most widely used
computational approach is a supervised motif search using a position specific score matrix (PSSM) also
known as position weight matrix (PWM) (Stormo, et al., 1982). Most motifs are ~4-12 bp and PSSM
builds the probability for the occurrence of each nucleotide at specific positions based on known TF
binding motifs of interest (Mrazek, 2009). A sliding window-based approach is used where the window
size is the size of the motif, and each sequence is scored against the PSSM to predict TF binding sites
genome wide (Mrazek, 2009). As more motifs for diverse TFs are actively studied, this method can be
expanded to predict regions bound by multiple TFs. However, as supervised motif searches do not
provide accuracy about the search, it is challenging to identify functional TF-DNA bound regions. A
major limitation is that this approach only finds sequences with a pattern match (Weirauch, et al., 2014).
This leads to a high number of false positives, which misleads the characterization of true TF bound
regions (Sieclemann, et al., 2021). Moreover, motif based method searches can miss functional TF-DNA

interactions for a number of reasons; 1) Some TF binding sequences do not have motifs (Inukai, et al.,
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90  2017), 2) Some TF binding sequences have multiple binding motifs (Nakagawa, et al., 2013), and 3)
91  Recognition by TFs is also dependent upon sequences surrounding the motifs, so it is not enough to
92  only identify the motifs alone (Inukai, et al., 2017).
93
94  Machine learning algorithms offer one possible solution for identifying the genome-wide landscape of
95  TF-DNA interactions. Machine learning algorithms can learn and predict complicated patterns from
96 data and provide accuracy about the prediction, a challenge that is suited for detection of TF-DNA
97  interactions. In a study by Zamanighomi et al., motifs from DNA-binding domains were predicted with
98 60% accuracy using epigenomic data, although these models had relatively low specificity
99  (Zamanighomi, et al., 2017). In contrast, a study by Meja-Guerra et al. predicted TF-DNA interactions
100  withalogistic linear algorithm and achieved >90% accuracy (Mej#a-Guerra and Buckler, 2019). In this
101  study, they used the flanking sequences around motifs to classify them into two classes, 1) TF binding
102  sequences and 2) Non-TF binding sequences (Mejia-Guerra and Buckler, 2019). However, there are
103  some limitations to these models; the models did not use the entire genome, but instead relied on
104  simulated data. Lastly, Cochran et al. used deep learning to predict TF-DNA bound by several TFs,
105  however, they reported high false positives (Cochran, et al., 2021). Collectively, these studies show the
106  potential use of machine learning algorithms to identify functional TF bound regions, yet also highlight
107  the challenging nature of this pursuit.
108
109  The development of experimental and computational approaches will enable the discovery of plant TF
110  bound regions and their associated TFs important for gene regulation and phenotypic variation (Weber,
111 etal., 2016). In this study, we use the well characterized Auxin Response Factor (ARF) family of TFs
112  to build predictive models for detection of TF-DNA interactions. ARF TFs control target gene
113  expression by responding to the plant hormone auxin and genome-wide maps of TF-DNA interactions
114 has been generated in maize and Arabidopsis (Galli, et al., 2018; O’Malley, et al., 2016; Oh, et al., 2014;
115  Ulmasov, et al., 1999; Wei, et al., 2021). As auxin plays a crucial role in plant growth and development,

116  this TF family is an important test case for understanding our ability to predict TF-DNA interactions in
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117  plants (Li, et al., 2016). Here, we built a variety of models using ARF DAP-seq data from maize and
118  applied some of them to the soybean genome to test their functionality. DAP-seq data for 12 members
119  of the maize ARF TF family were tested with soybean genomic DNA to evaluate the validity of these
120  models. Overall, our results show that count vectorization for k-mer and logistic regression models are
121 effective at predicting TF-DNA interactions in maize, yet suffer from a high false positive rate when
122  applied to the soybean genome. Collectively, this study shows the potential use of machine learning
123 algorithms to identify TF-DNA interactions.

124

125

126 RESULTS

127  Preprocessing of data

128  To determine the ability to build machine learning (ML) models to predict TF-DNA interactions, we
129  used previously published DAP-seq data from the maize ARF family (Galli, et al., 2018). We also
130  performed DAP-seq using the same maize ARFs on soybean genomic DNA libraries. 12 ARF datasets
131  were subsequently used for the analysis, as they had greater than a 1.5% FRiP (fraction of reads in peaks)
132 score in both maize and soybean. Out of the 12 selected ARFs, six belong to clade A (ARF4, ARF16,
133  ARF18, ARF27, ARF29, ARF34) and six to clade B (ARF7, ARF10, ARF14, ARF25, ARF36, ARF39).
134  Clade A ARFs are known for their roles in transcriptional activation, whereas clade B ARFs are likely
135 acting as repressors of transcription, in antagonism to clade A ARFs (Kato, et al., 2015; Kato, et al.,
136  2020). Previous studies in Arabidopsis and maize reveal that clade A ARFs bind to the TGTCGG motif,
137  whereas clade B ARFs prefer TGTC motifs with a cytosine tail such as TGTCCCCC (Boer, et al., 2014;
138  Galli, et al., 2018). Because this TF family is so well characterized, it provides a unique opportunity to
139 test the ability to build ML models to predict TF-DNA interactions across plant genomes.

140

141  For the 12 maize ARF datasets we selected to build ML models, there was an average of 37,840 binding
142  events from the DAP-seq data, which accounts for 0.35% of the maize genome. This creates a unique

143  challenge for machine learning models that rely on classification techniques, as the majority of the
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144 genome search space is devoid of ARF binding events. This leads to unbalanced data between bound
145  and unbound regions and artificially inflates the prediction of classes with the higher numbers in the
146  training datasets used. To generate a more balanced dataset, we limited the genome search space to
147  Unmethylated Regions (UMRs), which are highly enriched for TF-DNA interactions compared to
148  methylated regions in the maize genome (Crisp, et al., 2020). A previous analysis of UMRs in maize
149  identified ~100,000 regions, which accounted for ~5.8% (123,146,800 bp) of the maize genome (Crisp,
150 etal., 2020). A total of 11,149 ARF DAP-seq binding events overlapped a UMR, which accounted for
151 1.82% of the UMRs in maize (Supplementary Table 1). The percentage of ARF-bound regions increased
152  about fivefold upon using UMRs compared to whole genome and helped to reduce the massive
153  unbalanced data issue, however, 98% of the regions used in classifications are still unbound according
154  to the DAP-seq data.

155

156  Unbalanced data leads to high accuracy of ML models, yet they are accompanied by a high false positive
157  rate (FPR), as in this case ARF-bound regions would be falsely classified as ARF non-bound regions.
158  This poses a challenge for evaluation of preprocessing of data, such as changes in bin sizes and labeling
159  methods used for classification. Therefore, we used the same amount of input data for each class (ARF
160  bound versus ARF non-bound) to find the optimal setting for data preprocessing. Because UMRs are
161  longer than the DAP-seq peaks, we partitioned each subregion of a UMR into one of two classes (ARF
162  bound and ARF non-bound) based on DAP-seq binding events (Figure 1). As with any protein-DNA
163  enrichment-based sequencing assay, there is a distribution of sequenced fragments that decays over
164  distance from the specific interaction site (summit), which is often attributed to
165  sonication/fragmentation used in the assay. This produces regions that are challenging to classify as
166  ARF bound or ARF non bound, which led us to classify the sequences flanking the summit as

167  ‘ambiguous regions’. These regions were subsequently tested as ARF-bound or ARF-non-bound
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168  regions. We evaluated 75, 100, 125, 150, 175 and 200bp windows for classifications to identify the
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Figure 1. Experimental design and data processing. A diagram representing a whole experimental design for
this research. After pre-processing of data, this research consists of two major steps for analysis: (1) Build the
best model for 12 ARF members in maize; (2) Apply the model built by maize to soybean UMR.

169  optimal window size for the analysis.

170  We built models using all combinations of bin sizes and labelling methods using a grid search to the
171  combination that produced optimal results. When ambiguous regions were considered as ARF-bound
172  regions, the FPR was 24.49%, which is higher than the 6.73% observed when they were considered as
173  ARF-non-bound regions (Supplementary Table 2). On the other hand, considering ambiguous regions
174  as ARF-bound regions had higher false negative rate (FNR) compared to ARF-non-bound regions with
175  ~14% difference. As reducing the FPR is crucial to improve the classification performance from
176  imbalanced data, we labelled ambiguous regions as ARF-non bound for subsequent analysis. Among

177  the five bin sizes evaluated, the 125bp bin had the lowest FNR (18.87%). Thus, we found that
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178  partitioning (bin size=125bp) and labeling the ambiguous regions as ARF-non-bound regions were the
179  most optimal for use in the next steps. This classification scheme resulted in a range from ~1:50-1:700
180  (average 1:134) for the ratio of ARF-bound events to ARF-non-bound events for the 12 ARFs evaluated

181  in this study (Supplementary Table 3).

182  Building the best prediction models for identification of TF-DNA interactions in maize

183  Two distinct encoding methods such as one-hot encoding and count vectorization for k-mer have been
184  used for DNA sequences for ML approaches (Yang, et al., 2020). We compared the two encoding
185  methods with processed data with ARF bound and ARF non-bound in a 1:2 ratio to evaluate them
186  without issues from imbalanced data. One-hot encoding implements the transformation of four
187  nucleotides into binary information, that allowed us to apply a convolutional neural network (CNN)
188  model as previously described (Quang and Xie, 2016). For the balanced data, one-hot encoding
189  produced an accuracy of 56%, which was substantially lower than the 88.1% observed using count
190  vectorization with k-mer and logistic regression. Thus, we applied count vectorization with k-mer and
191  logistic regression for all subsequent analyses. To find the optimal length of the k-mer used to build
192  models, we tested a range from 5-mer to 9-mer and ultimately selected to use a 7-mer, as it produced
193  the lowest FNR of 31% (Supplementary Table 4).

194

195  The average number of events in each class for the 12 ARFs used in this study was 917,948.08 ARF-
196  non-bound and 6,833 ARF-bound regions, which results in a 134:1 ratio. To reduce any effects due to
197  individual ARFs, we randomly selected the average number of DAP-seq binding events (37,840) to
198  produce the balanced data by random sampling, which resulted in a similar ratio (153:1) to the average
199  number for ARF-non-bound and ARF-bound regions. The more imbalanced data in random sampling
200  compared to the 1:2 ratio used above resulted in an increased FNR from ~31% to almost 98%, which
201  implies that almost all regions were classified into the ARF-non-bound class as this class is so dominant
202  (Table 1).

203
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204 One of the main factors that affects performance in ML is feature selection. Features are inherent
205  properties of the data that ML models use to make predictions, as features distinguish different classes
206  (Saeys, etal., 2007). We performed feature selection for two main reasons; 1) to improve the prediction
207  performance by reducing the FNR and 2) to help identify features that are more likely to affect
208  predictions. We used the frequency of 7-mer sequences within 125bp bin as features, as they potentially
209  represent transcription factor binding sites. We also considered the pattern of features from the forward
210  strand the same as the reverse strand, as ARFs recognize the patterns from both strands. This resulted
211  in 8,192 (4 nucleotides’ divided by 2) features that were further reduced to 7,560 using entropy to
212 eliminate features that have low complexity sequences (e.g. “AAAAAAA”). For feature selection, we
213  filtered 2,222 features that had low variance in frequency across each 125bp window, as they do not
214 provide enough information to help distinguish the window. After feature selection there were 5,338

215  features that we used to evaluate the effect of feature selection, which reduced the FNR to 95.67% from

Randomly sampling 1:2 ratio of ARF-bound and ARF-non-bound

Accuracy FPR FNR

. 56.0 59.33 26.66

One hot encoding + CNN +0.99 +26.5 +05 54

o . - . 85.0 5.0 31.33

Count vectorization with bag of k-mer +logistic regression +0.0 +0.0 +0.57

Randomly sampling 1:153 ratio of ARF-bound and ARF-non-bound

Accuracy FPR FNR
Count vectorization with bag of k-mer +Logistic 99.0 0.0 98.0
regression +0.0 +0.0 +0.0

Count vectorization with bag of k-mer +Logistic 99.3 0.07 95.67
regression +0.0 0.0 +0.09

+ Feature Selection

Count vectorization with bag of k-mer +Logistic

regression
+ Feature Selection + Down-sampling

Count vectorization with bag of k-mer +Logistic

regression
+ Feature Selection + Up-sampling

Table 1. The performance of models using maize data from random sampling for 12 members of ARFs.

Balanced data were used to evaluate two encoding methods (one-hot encoding and count vectorization with k-

mer). To make the data, peaks from 12 member of ARFs were randomly picked to evaluate additional methods

81.66 18.32 19.35
+0.08 +0.08 +0.56

90.64 9.18 34.47
+0.02 +0.02 +0.27

of classification that resulted in variable performance.
216 98% (Table 1). This demonstrates that the model we built achieved a higher performance with a smaller

217  number of features.
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218

219  In addition to feature selection, we performed down-sampling and up-sampling to balance the training
220  set and lower the false negative rate. Up-sampling increases the sample size for ARF-bound regions in
221  thetraining data by randomly selecting greater numbers of ARF-bound regions whereas down-sampling
222  decreases the sample size for non-ARF bound regions in the training data by randomly choosing less
223 numbers of non-ARF bound regions. Down-sampling and up-sampling reduced the FNR to 19.35% and
224  34.47%, respectively (Table 1). The FPR was higher in down-sampling (18.32%) compared to up-
225  sampling (9.18%). As the ARF-non-bound regions that are falsely classified into ARF-bound regions
226  are reduced to 9.18% using up-sampling, we chose to implement the up-sampling method as it was the
227  optimized method.

228

229  When the optimized method is applied to the 12 ARFs, an accuracy of 93.64%, a FPR of 6.2% and a
230  FNR of 43% was observed on average across all TFs tested (Figure 2A). The high FNRs are due to the
231  high number of ARF-bound regions that are falsely classified as ARF-non-bound regions. Clade A had
232  aFNR of 28%, which is lower than the FNR of 57.7% observed for clade B. Considering that clade A
233  has a higher number of ARF-bound regions on average from the DAP-seq data, this results in less
234  imbalanced class numbers compared to clade B, which likely explains the differences in the FNRs. A
235  significant correlation of the ratio for the two classes and the FNR was observed, which demonstrates
236  thatthe imbalanced data affects the FNR (Figure 2B). In contrast, the FPR showed a negative correlation
237  with the greater number of imbalanced classes (Figure 2B). The FPR is calculated by dividing the FP
238 by sum of the FP and the TN. When the data are more imbalanced with a greater number of ARF-non-
239  bound regions, a greater number of ARF-non-bound regions (Negative) are classified as TN or FN. This
240  explains the negative correlation observed between the FNR and the FPR (Figure 2B); ARF34 had the
241  lowest FNR (18.1%) and the highest FPR (12%), whereas ARF39 had the highest FNR (74.52%) and

242  the lowest FPR (1.14%) (Figure 2C).

11


https://doi.org/10.1101/2022.03.10.483780
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.10.483780; this version posted March 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A
100 100
75 75 Accuracy
FPR
(%) 50 (%) 50
FNR
25 25
0 0
ARF4 ARF16 ARF18 ARF27 ARF29 ARF34 ARF7 ARF10 ARF14 ARF25 ARF36 ARF39
Clade A Clade B
B C ARF34
’ 1257
R=099,p<22e-16 ,e . R=-0.93,p<22e-1 Expected
.’ \
’ 10.0
60 °, A
s L RN ]
/. A J
o ’ w 75 AN
z 4 o ~
w 4 w ~
40 .0 50 N ARF39
. . L
y LN
’ ~ Expected
& 25 N .
~
20 " N, e
200 400 600 200 400 600

The number of ARF—-non-bound/
The number of ARF bound

The number of ARF-non-bound/
The number of ARF bound

Figure 2. The performance of classification on prediction of binding for 12 ARFs from maize. (A)
The accuracy (ACC), FPR and FNR for the classification of maize genome. (B) The correlation between
FNR and the ratio of ARF non-bound/bound regions. Each dot represents an ARF that was tested. (C) Venn
diagrams of the predicted number of TF-DNA interactions and the empirical results determined using DAP-

243

244 Evaluation of features

245  The features used to build the logistic regression model distinguished ARF-bound and ARF-non bound
246  regions in the maize genome with high accuracy. Even though the motif information is not used in the
247  classification, the features used to build the predictions are expected to find the pattern of sequences
248  where the ARFs are more likely to bind. To find which features negatively or positively affected the
249  prediction, we investigated how much each feature affects the performance of the prediction. We
250  defined the feature by log transformation of the coefficients of the logistic regression model for each of
251  the ARFs. Selected features with high or low scores are indicative of genomic sequences where ARFs
252 are more or less likely to bind. As the motif sequences for clade A and clade B from DAP-seq peaks are
253  distinct in terms of the tails of cytosines (Figure 3A), we calculated the feature score individually for
254  each clade. We identified the top 15 features with highest or lowest feature score out of the 5,338 total
255  features (Figure 3B).

256
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257  In clade A, “TGGTCGG”, “TGTCGGG”, “CGGTCGG”, “TGTCGGC” and “GTGTCGG” were the
258  most important for model performance. Out of the top 15 features with the highest score, nine features
259  contained the known ARF “TGTC” motif. Most of the features that have “TGTC” had a tail of “G” in
260  clade A. The top five features identified in clade B were “CTGTCGG”, “TGTTCCC”, “GTGTCGG”,
261 “CGGTCGG” and “TGGTCGG”. In clade B, out of the top 15 features with the highest score, eight
262  features had “TGTC”; one with “C” tail and the other with “T” and six with “G” tails. The high feature
263  scores for “TGTC” followed with “G” are not consistent with the motif sequences from DAP-seq peaks.
264  Motif sequences from peaks have no following nucleotides in clade A and “C” tails in Clade B. The top
265 15 features in clade A and B with the lowest scores showed various patterns of 7-mers of nucleotides.
266  Two of them in clade A contained the “TGTC” sequences followed with “A”. It is expected that the

267  nucleotide that follows “TGTC” has an important role in the prediction; “G” tails can positively affect
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£os i £os | TCCC
1 2 3 4 5 6 1 2 3 4 5 6 7 8
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Figure 3. (A) Top motif identified for maize ARF clade A and clade B by identifying the combined peaks
from clade A and clade B DAP-seq data. (B) The features with highest score or lowest score. The bar
represents the average of feature score, and error bar represents standard deviation among ARFs in clade A
or B. The upper box shows features with the top 15 highest feature score while the lower box shows features
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268  the prediction whereas “A” tails negatively affect the prediction. The features that have negative effects
269  provides clues about which sequences ARFs do not prefer.

270

271 It was unexpected that the features with “TGTC” with “G” tails have positive effects on the
272 classification, considering that maize ARF motifs from PWM had “TGTC” with “C” tails. To find if the
273  ARF-bound regions have abundant features with “G” tails that affects the classification, we examined
274  the frequency of features in ARF-bound regions. In clade A, “TGTCGGC”, “TTGTCGG”,
275  “GCTGCTG”, “CTGTCGG” and “CTGCTGC” were the top 5 most abundant features across clade A.
276  In clade B, features of “CTGCTGC”, “GCTGCTG”, “TGCTGCT”, “TGTCGGC” and “CTGTCGG”
277  had dominant frequencies. They had “G” or “GG” sequences after “TGTC”. This implies that there are
278  some binding sites that are overlooked by the PWM approach. This is one advantage of our approach
279  to extract features from classifications for motif identification, as traditional motif detection methods
280  do not provide sequence information for regions that have negative relationships with peaks.

281

282

283  Evaluation of the efficacy of using the TF-DNA prediction models built using maize on the
284  soybean genome.

285 Many DNAs-bound TF are predicted to be conserved across evolution if they are important for
286  conservation of specific traits or responses to the environment. This is especially true of the ARF gene
287  family, as they have a conserved N-terminal DNA binding domain and in most cases a conserved C-
288  terminal dimerization domain across plant species (Tiwari, et al., 2003). In Arabidopsis, ARFs bind to
289  the “TGTCTC” motif and some ARFs that are important for transcriptional activation show a preference
290  for binding the “TGTCGG” motif (Freire-Rios, et al., 2020). Additionally, the promoter regions for
291  auxin-responsive genes in soybean are enriched for the “TGTCTC” motif (Guilfoyle, et al., 1998). Thus,
292  we hypothesized that the model we built using the maize genome to predict TF-DNA interactions could
293  be applied to the soybean genome. Considering maize is a monocot and soybean is a dicot, which have

294  significant time since divergence (Chaw, et al., 2004), if the model can successfully predict TF:DNA
14
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295 interactions in soybean it would provide strong evidence that this model can be used to robustly predict
296  TF:DNA interactions in other species that lack experimental data.

297

298  To test this hypothesis, we produced DAP-seq data for the same maize ARFs used in the first part of
299  this study using soybean genomic DNA as input. To evaluate the quality of the DAP-seq data we
300  produced using soybean genomic DNA, which is referred to as ZmARF to distinguish them with the
301  AREF binding events in the maize genome. We investigated sequence alignment rates, peak shape and
302  the fraction of reads in peaks (FRiP) at the 0.00001 FDR threshold, as we did for the maize DAP-seq
303  data (Schmitz, et al., 2021). The DAP-seq libraries for the 12 ZmARFs showed more than 95% of
304  alignment rates (Supplementary Table 5). Mapped data showed strong peak signals with low
305  background noise (Supplementary Figure 1 and Figure 4A). Collectively, these DAP-seq experiments
306  had a FRiP score of 10.59% on average with a range from 1.6-24% (Figure 4B). All ZmARFs except
307  ARFI18 had greater than a 2% FRiP score. Using the newly produced DAP-seq data, we identified ARF-
308  bound regions and identified sequence motifs for all 12 ARFs tested to evaluate conservation of motif
309  preferences (Figure 3B). In maize, the ARF binding motif predominantly clusters based on evolution of
310  the ARF gene family (Galli, et al., 2018). The Pairwise Pearson correlation showed that binding profiles
311  clustered according to their clade A or B phylogenetic classification (Supplementary Figure 2). However,
312  the motifs identified using the maize ARFs screened against soybean genomic DNA showed that clade
313 A ARF motifs (ZmARF4, ZmARF16, ZmARF18, ZmARF27, ZmARF29 and ZmARF34) clustered
314  together, whereas clade B ARF motifs were distributed across the tree (Figure 4C). For example,
315 ZmARF25 is a member of clade B, however it groups with clade A. The top enriched motif in the
316 ZmARF7- and ZmARF10-bound soybean genomic DNA datasets were more diverse compared to other
317  ZmARFs, although the reason for this is unknown at this time. Lastly, the binding motifs detected for
318  clade B in soybean did not possess the long tail of “C” that is common in maize. It’s actually consistent
319  with a previous result that investigated maize clade B ARF binding to Arabidopsis DNA (Galli, et al.,
320  2018).

321
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322  We used same data preprocessing methods we used for maize and applied them to the soybean DAP-
323  seq data. In maize, the use of UMRs reduced the data imbalance issue as fivefold more DAP-seq peaks
324 were located in UMRs compared to the entire genome. In soybean, the use of UMRs actually resulted
325  in a small increase in the overlap with DAP-seq binding events (0.35%) compared to ratio observed
326  across the genome (0.3%) (Supplementary Table 6). This is in large part due to the fact that soybean
327  genome is less methylated than the maize genome. Nonetheless, we divided each UMR into 125bp bins
328  and labelled them using the same method as we did for maize. Approximately 2,325,855 ZmARF-non-
329  bound regions and 3,185 ZmARF-bound regions were identified for each ZmARF tested on average
330  (Supplementary Table 7). Compared to the maize data which showed 1:134 ratio for bound vs unbound
331  regions, soybean was significantly more imbalanced showing a 1: 1,575 ratio. We used the same model
332 with maize by training and testing with soybean DAP-seq data (Figure 4D). Some ARFs such as ARF18
333  and ARF29 showed over a 50% FNR, which implies that the high number of ARF-bound regions are
334  falsely predicted as ARF-non-bound regions. These results are somewhat consistent with what we
335  observed in maize, if we consider that the soybean data has a significant imbalance due to a minority
336  of ARF-bound regions, which is associated with a high FNR in both experiments (Supplementary Figure
337  3).Regardless, the soybean DAP-seq data was tested using the most optimal prediction model used for
338  the maize ARF-binding data, which universally showed that the accuracies of predictions were below

339  59% with greater than a 55% FPR (Figure 3E).
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Figure 4. (A) ZmARF DAP-seq peaks in soybean. (B) FRiP (fraction of reads in peaks) of soybean DAP-
seq data. (C) Dendrogram of the top maize and soybean ARFs based on profiles of the binding motif
sequences. (D) The prediction performance of the model when it is built and evaluated against soybean
data. (E) The prediction performance when we build the model with maize data and apply it to soybean
data.
341
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343

344 DISCUSSION

345 In this study, we compared the performance of classification in terms of the encoding methods and
346  classification algorithms such as one-hot encoding with neural network algorithms and k-mer
347  vectorization with logistic regression. Previous studies used one-hot encoding and neural network
348  algorithms for genomic sequences and achieved high performance to identify TF binding motifs
349  (Alipanahi, et al., 2015; Kelley, et al., 2016). Moreover, one-hot encoding with neural network
350 algorithms showed high performance for classifying TF binding sequences (Mejia-Guerra and Buckler,
351  2019). In this study, one-hot encoding with neural network algorithms showed lower performance than
352  k-mer vectorization with logistic regression. Although previous studies using one-hot encoding with
353  neural network algorithms found the motif sequences among TF binding regions by predicting binding
354  scores (Alipanahi, et al., 2015), this study used classification methods to classify the long length of the
355  sequences into TF-bound sequences or TF non-bound sequences. In classification, k-mer scans ~100bp
356  sequences with a small unit of length to identify the specific sequence that TFs bind, whereas the one-
357  hot encoding method recognizes the sequences as whole images. This implies that classifying ~100bp
358  sequences requires features that can specify distinguishing characteristics. This creates some limitations,
359  especially for shorting binding motifs within the 100bp input windows, that could be mitigated using
360 additional inputs such as using accessible chromatin regions that are enriched for TF binding (Kelley,
361 etal, 2016).

362

363  We built a model using 12 members of ARF TF gene family in maize and evaluated the prediction
364  performances between clade A and B. Although we showed that the FNR and the FPR are correlated
365  with the ratio of number of imbalanced classes, there are still other factors that can affect the
366  performance. The differences of the performance between the clades were higher than the differences
367  between ARFs within a clade. We expected that long tale of ““C” in clade B should provide an advantage
368  using k-mer vectorization, because the tail of Cs included in the 7-mer provides greater numbers of

369  distinct characteristics of features. Furthermore, clade A binds to tandem repeat in auxin response
18
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370  elements, which can make finding binding events more difficult (Chandler, 2016). However, clade B
371  showed lower performance compared to clade A in terms of the FNR. Therefore, the evaluation of
372  features showed that the “C” tails after “TGTC” did not improve the performance, as the features with
373 high impact had “G” tails not “C”. The unexpected result of the G tails could be due to the 7-mer length
374  of the feature we used or result from the high FNR. Furthermore, the FNR and FPR are more affected
375 by the imbalanced number of classes. Collectively, this implies that data imbalance influences the
376  prediction performance more than the structure of motifs does.

377

378  Classification of data with imbalanced class distribution is well known to negatively impact
379  performance (Estabrooks, et al., 2004). It is well established the majority of eukaryotic genomes are
380  comprised on non-coding DNA sequence, a subset of which includes TF bound DNA sequences (Elkon
381  and Agami, 2017). This feature of eukaryotic genomes leads to an unbalanced data issue, as the ratio of
382  non- TF bound DNAs is much higher than that of TF bound DNA. Our research shows that the
383  prediction comparing the data with balanced data and unbalanced data showed that imbalanced data can
384  increase the FNR to 98% from 31.33%. The high FNR suggests that ARF-bound regions are falsely
385  classified as ARF-non-bound regions. The algorithm in training steps recognized that the number of
386  ARF-non-bound regions are more abundant than ARF-bound regions, thus it causes incentives of
387  classifying the samples to ARF-non-bound regions. To reduce the drawback from the imbalanced
388  number of classes, we added more weight to the minority class (ARF-bound regions) in the logistic
389  regression, however, this did not show an improvement in classification performance (Li, et al., 2010).
390  Subsampling for class imbalances, including down-sampling and up-sampling, were performed (Sun,
391 etal., 2009). Even though this led to a reduction of the FNR using up-sampling, it increased the FPR
392 by falsely classifying the ARF-non-bound regions as ARF-bound regions. The up-sampling methods
393  makes algorithms more likely to classify samples to ARF-bound regions in the training set, but in the
394  test set the true number of ARF-bound regions is much lower than ARF-bound regions. This implies
395 that implementing classification algorithms has some drawbacks to identifying TF-DNA interactions

396  given that most regions of genomes are not bound by TFs.
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397

398

399  We validated the model established with maize against the soybean genome to determine if the model
400  can be used to robustly predict TF-DNA interactions in other plant species. As ARFs share similar motif
401  sequences between plant species (Tiwari, et al., 2003), we hypothesized that the model built using maize
402  ARF DAP-seq data would predict ARF binding regions successfully. However, the application of the
403  model to a different plant species showed high FPRs and low accuracies compared to the model tested
404  with the same species. It is possible the divergence time between maize (monocot) and soybean (dicot)
405  is too large preventing cross species application of these models (Chaw, et al., 2004). We found two
406  main differences between maize and soybean DAP-seq data; 1) Motif shape and 2) The ratio of class
407  number of ARF-bound and ARF-non-bound regions. Some ARFs such as ZmARF25, ZmARF27,
408 ZmARF29 and ZmARF34, when tested with soybean genomic DNA did not show enrichment for
409  binding the core motif of “TGTC”. Moreover, some members shared the same core motif of “TGTC”,
410  but the sequences around “TGTC” were different. For example, ZmARF36 tested with maize genomic
411 DNA had “C” tails after “TGTC” but when tested with soybean genomic DNA had “T” tails.
412  Furthermore, the expanded proportion of UMRs present in soybean compared to maize led to greater
413  imbalanced data when trying to predict ZmARF-bound regions in the soybean. It is assumed that the
414  different distribution of ARF binding events between maize and soybean lead to an ‘Out of Distribution’
415  effect (Arjovsky, 2020). The model was designed to learn generalizable knowledge from the maize
416  training data and it expected that the soybean test data would share the same distribution with the maize
417  training data. This implies that the data distribution between the soybean and the maize genome are
418  sufficiently different enough making it challenging to apply the same prediction model. Although this
419  study shows the limitation of application to different species it is possible it could be improved in the
420  future by focusing on more closely related species. Regardless, this study presents a unique approach
421  and demonstrates the potential use of machine learning algorithms to identify TF-DNA interactions in
422  plant genomes.

423
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424
425 MATERIALS AND METHODS

426  Library preparation and DAP-seq

427  Genomic DNA libraries for soybean were prepared following the protocols in Bartlett et al(Bartlett, et
428  al., 2017). Genomic DNA (gDNA) was extracted from leaf tissue using phenol:chloroform:IAA
429  extraction. Five micrograms of gDNA was diluted in EB (10 mM Tris-HCI, pH 8.5), sonicated to
430  ~200bp fragments in a Covaris S2 sonicator and purified with AmpureXP beads. Samples were end
431  repaired using an End-It kit (Lucigen) and purified with AmpureXP beads. Purified samples were A-
432  tailed using Klenow 3—5'exo- for 30 min at room temperature and then purified with AmpureXP beads.
433 A Y-adapter was ligated as described in Bartlett et al. To attach the protein to the MagneGST
434  beads(Promega), 20 ul of purified GST-ARF protein (5-20 pug) was diluted in 400 ul of 1X PBS
435  containing 25 pul of washed beads. In addition to the GST-ARF samples, a negative control GST-HALO
436  sample was performed using protein expressed in the TNT wheatgerm expression system (Promega).
437  Beads were washed four times in 1X PBS +NP40 (0.005%) and resuspended in 100 pl of 1X PBS. 1ug
438  of gDNA library was diluted to a final volume of 60 pl in 1X PBS and added to the protein bound beads.
439  One microgram of genomic DNA library was diluted to a final volume of 60 ul in 1X PBS and added
440  to the protein bound beads. Samples were then incubated for 1 hour at room temperature. Beads were
441  washed in 1xPBS + NP40 and recovered by resuspending in 25 pl EB and boiling. Eluted samples were
442  enriched and tagged with dual indexed multiplexing barcodes by performing 20 cycles of PCR in a
443 50 pl reaction51. We sequenced samples on a NExtSeq500 with 75 bp single end reads. A total of 10—
444 30 million reads were obtained for each sample. Maize DAP-seq data were downloaded from GEO
445  accession GSE111857 produced by Galli, M. et al. (Galli, et al., 2018).

446

447  Peak calling for DAP-seq data

448  The raw reads were trimmed by filtering out adaptor-only nucleotides with the following parameters
449  ILLUMINACLIP:TruSeq3-SE:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

450  MINLEN:50, using Trimmomatic (ver 0.36; (Bolger, et al., 2014)). Trimmed reads were aligned to the
21
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451  reference genome (Gmax505 v4.0) using bowtie2 v2.2.853(Langmead and Salzberg, 2012). Mapped
452  reads with >SMAPQ30 were removed to use the reads that are not mapped into multiple locations. We
453  called the peaks using GEM v2.554 using the GST-HALO negative control sample with following
454  parameters: --k_min 6 --k_max 20 --outNP —sl --q 5 (Guo, et al., 2012). The samples with more than
455 2% of FriP at the 0.00001 FDR threshold using ChIPQC v1.8.2 were chosen in all subsequent
456  analysis(Carroll, et al., 2014). We used motifs discovered by GEM for the first round of motif prediction
457  (Guo, etal., 2012). We represented sequence logos and dendrogram for motifs for the ARF family using
458  motifStack based on a position count matrix (PCM) of the motifs (Ou, et al., 2018). The heatmap for
459  binding events from Pearson correlation was calculated with 10bp bin size using deepTools v 3.5.1
460 (Ramirez, et al., 2014). For generation of metaplots, the signal densities for DAP-seq data were
461  calculated with deepTools v 3.5.1 using the following parameters: ‘-a 3000 -b 3000 -bs 10°.

462

463  ldentification of UMRs

464  For UMRs in maize, previously identified maize UMRs (Crisp, et al., 2020) were used. UMRs in
465  soybean were identified by followed steps. Two replicates of WGBS data for G. max Williams82
466  (pooled leaves) were downloaded from SRA, which are SRR12494495 and SRR12494496 (Wang, et
467  al., 2021). Replicates were filtered and mapped individually, then the final mapping files (bams) were
468  merged to increase coverage for UMR identification. Unmethylated regions (UMRs) were identified as
469  per (Crisp, et al., 2020). Reads were trimmed using Trim galore! version 0.6.4_dev, powered by
470  cutadapt v1.18 (Martin, 2011) and quality checked using fastqc v0.11.4. Next, 20 bp was trimmed from
471  the 5’ ends of both R1 and R2 reads and aligned with bsmap v2.74 (Xi and Li, 2009) to the soybean v4
472  genome (Gmax_508, phytozome v13) with the following parameters -v 5 to allow 5 mismatches, -r 0
473  toreport only unique mapping pairs, -p 1, -q 20 to allow quality trimming to g20. Conversion efficiency
474  of 99.5% was determined by appending the chloroplast genome (NC_007942.1) to the v4 reference
475  genome for mapping. Output SAM files were parsed with SAMtools (Li, et al., 2009) fixsam, sorted
476  andindexed. Picard MarkDuplicates (v 2.9.0-1) was used to remove duplicates, BamTools filter (v 2.4.0)

477  to remove improperly paired reads and bamUtils clipOverlap (v 1.0.13) to trim overlapping portion of
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478  paired-reads so as to only count cytosines once per sequenced molecule. The methylratio.py script from
479  bsmap v2.74 was used to extract per-site methylation data summaries for each context (CH/CHG/CHH)
480  and reads were summarised into non-overlapping 100bp windows tiling the genome. WGBS analysis
481  pipelines are available on github

482  (https://github.com/pedrocrisp/crisplab_epigenomics/tree/master/methylome). To identify

483  unmethylated regions, each 100bp tile of the genome was classified into one of six domains or types,
484  including “missing data” (including “no data” and “no sites”), “High CHH/RdADM”, “Heterochromatin”,
485  “CG only”, “Unmethylated” or “intermediate”, in preferential order as per (Crisp, et al., 2020).

486

487  Producing combined ARF data by random sampling

488  To test the bin lengths selected and the labelling method used, we produced random sampling data,
489  which combined data from 12 members of the ARF gene family in maize. For random sampling data,
490  we randomly selected the average number of peaks (37,840) from peaks from 12 members of the ARF
491  gene family. Next, we performed data preprocessing by dividing the genome into various bin sizes and
492  annotating them as ARF-bound or ARF-non-bound. This produced an unbalanced data set. Redundant
493  regions were removed. Moreover, to produce a balanced random sampling data set, we randomly
494  selected the same number of ARF-bound in ARF-non-bound regions and assigned half of the ARF-
495  bound regions to ambiguous regions.

496

497  Cross validation

498  We performed 5-fold cross validation for all predictions by dividing the data into five subsets. We used
499  four data subsets (80% of data) for training and one data subset (20% of data) for testing with shuffling
500 the subsets. We repeated it three times to show how the models are generalize dto different combinations
501  of data sets.

502

503  Features for Count vectorization of k-mer
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504  Tovectorize a sentence in natural language processing, bag of words can be applied(Zhang, et al., 2010).
505  Bag of words counts the number of the occurrence for each token and uses the vectorization of counts
506 information for training. Bag of words does not consider the order of words in the sentences. The
507  genome sequence is read with a k size of sliding windows that is called k-mer. In this case, k is read the
508 length of the word. For example, when there is a group of sequence of AATTG, tokens of 3-mer is AAT,
509 ATT, TTG and TGC. To find the optimal length of the k-mer, we tested from 5-mer to 9mer and chose
510 the length with the lowest FNR. We created sequences that contained the sequence of the feature as
511  well as its complementary sequence, which were separated with an “N”. For example, for a 125bp
512 window with 7-mer, which was labelled as an ARF-non-bound region, the possible feature sets used
513  looked like the following sequences (“AATTGTTNAACAATT”:2, “AATTGGCNGCCAATT”:1,..,
514  “CCCATACNGTATGGG™:1). In natural language processing, stop words such as “the”, “a”, “an” and
515  “in” are filtered while tokenization. DNA sequences can have stop words as repeated sequences occur
516  inmultiple copies throughout the genome. The stop words for DNA were defined as the DNA sequences
517  with low entropy. Thus, the feature with low entropy means the feature have low variances within the
518  feature. In the previous studies, the repetitive regions are expected to carry little information for TF-
519  DNA binding and low entropy was calculated by adding the probability of appearance of the i-th base

520 in the token as the equation below(Mej#a-Guerra and Buckler, 2019).

521 entropy(k — mer) = Z p; * log,p;

522  The tokens with lower than 1.3 entropy were considered as stop words according to the TF-DNA
523  binding database and eliminated. We normalized the frequency of each feature so that all data were on
524  the same scale for calculation of the variance. We used “scaler.fit_transform” to standardize the values
525  for features with a standard score. For feature selection, features with low variance were eliminated
526  using “VarianceThreshold” with a 0.001 threshold.

527

528  One-hot encoding

529  One-hot encoding can be used to transfer DNA sequences to binary information. Then, learning
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530  algorithm such as Deep Neural Networks and Convolutional Neural Networks can be adapted to DNA
531 by considering DNA as a fixed length 1-D sequence with four channels (A,T,G,C)(Alipanahi, et al.,
532  2015). A, C, G, T will be encoded into (1 0 0), (0 1 0), (00 1), (0 0 0) respectively. For example, when
533  the sequence is ATTGC, then it will be transformed to ((1 0 0), (0 0 0), (00 0), (00 1), (0 1 0)). As we
534  use alength of 125 A,T,G,C sequences, the input data will have a 3-D structure with 3*125*the number
535  of samples. Subsequently the 3-D data structure is flattended using ‘model.add(Flatten())’

536

537  Down-sampling and Up-sampling

538  Down-sampling and Up-sampling is re-sampling techniques for training data to balance the training set
539  and relieve the imbalanced data issue. Down-sampling randomly subsets samples from the class that
540  has the dominant number of samples to match the least prevalent class(Estabrooks, et al., 2004). As we
541  have more number of ARF-non bound regions than ARF bound regions, down-sampling randomly
542  removed some ARF-non bound regions in training set to be matched with the same number of ARF-
543  bound regions in training step. Up-sampling randomly samples the minority class to be the same size
544 as the majority class in the training set(Estabrooks, et al., 2004). We increased numbers of ARF-bound
545  regions in training set by randomly adding ARF-bound regions with the same number of ARF non-
546  bound regions. In the test data set, the imbalanced data was used.

547

548  Parameters for the models

549  For logistic regression we used the ‘LogisticRegression’ function in scikit-learn with L2 regularization
550  penalty, le-4 tolerance, 1.0 C, Liblinear optimization and binary classification. To create the sequential
551  model we used “tf.keras.models.Sequential” that can create linear sequences of processing layers with
552 10 epochs, 50 batch sizes, 0.1 validation split, 1 verbose. We used the function of Sequential() and add
553  the layers with Conv1D() and MaxPooling1D() for 10 epochs, 50 batch sizes. To use 3D data structure
554  of DNAs, we used the function of Flatten().

555
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