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ABSTRACT  14 

Machine learning approaches have been applied to identify transcription factor (TF)-DNA interaction 15 

important for gene regulation and expression. However, due to the enormous search space of the 16 

genome, it is challenging to build models capable of surveying entire reference genomes, especially in 17 

species where models were not trained. In this study, we surveyed a variety of methods for classification 18 

of epigenomics data in an attempt to improve the detection for 12 members of the Auxin Response 19 

Factor (ARF) binding DNAs from maize and soybean as assessed by DNA Affinity Purification and 20 

sequencing (DAP-seq). We used the classification for prediction by minimizing the genome search 21 

space by only surveying unmethylated regions (UMRs).  For identification of DAP-seq binding events 22 

within the UMRs, we achieved 93.54% accuracy, 6.2% false positive, and a 43.29% false negative rate 23 

across 12 members of ARFs of maize on average by encoding DNA with count vectorization for k-mer 24 

with a logistic regression classifier with up-sampling and feature selection. Importantly, feature 25 

selection helps to uncover known and potentially novel ARF binding motifs. This demonstrates an 26 

independent method for identification of transcription factor binding sites. Finally, we tested the model 27 

built with maize DAP-seq data and applied it directly to the soybean genome and found unacceptably 28 

high false positive rates, which accounted for more than 40% across the ARF TFs tested. The findings 29 

in this study suggest the potential use of various methods to predict TF-DNA interactions within and 30 

between species with varying degrees of success. 31 

 32 
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BACKGROUND  36 

 37 

Uncovering TF-DNA binding mechanisms and associated DNAs bound by TFs is important because of 38 

the impact gene expression has on phenotypic variation. One aspect that significantly modulates this 39 

process is the binding of transcription factors (TFs) (Cheng, et al., 2012). TFs bind to specific DNA 40 

sequences in the genome including promoters, enhancers and silencers to initiate, enhance or repress 41 

gene expression (Latchman, 1997). Alterations to TF-DNA binding sequences causes phenotypic 42 

variation by altering the levels of gene expression (Epstein, 2009; Pennacchio, et al., 2013). For example, 43 

in maize, the emergence of the enhancer for the TEOSINTE BRANCHED (Tb1) gene causes greater 44 

apical dominance due to higher Tb1 expression compared to its ancient progenitor teosinte (Studer, et 45 

al., 2011). This particular domesticated DNA region for Tb1 is located 65 kilobase pair (kbp) upstream 46 

and it functions as an enhancer (Bulger and Groudine, 2011; Studer, et al., 2011). The distal TF-DNA 47 

binding by enhancers make them challenging to detect compared to promoters that are located 50-100 48 

base pairs (bp) upstream of the transcriptional start site (Siggers and Gordaˆn, 2014). Moreover, the 49 

various patterns of TF binding make them difficult to predict compared to promoters that are bound by 50 

general TFs including TFIIB, TFIID and RNAPII (Haberle and Stark, 2018).  51 

 52 

Many experimental and computational techniques have been developed in an attempt to identify DNA 53 

regions where TFs bind. Chromatin Immunoprecipitation (ChIP) has been widely used to detect 54 

enhancers and silencers based on TF binding as well as chromatin modifications associated with DNA-55 

bound TF (Huang, et al., 2019; Lu, et al., 2019; Oka, et al., 2017; Park, 2009; Ricci, et al., 2019). ChIP 56 

identifies DNA-interacting TFs by treating the cells with formaldehyde to crosslink TFs with DNA in 57 

vivo. Next, cells are lysed and chromatin is isolated and further fragmented. Crosslinked TF-DNA 58 

interactions are then captured by specific antibodies against the TF of interest. The frequency and 59 

strength of TF-DNA interactions are measured in a quantitative manner genome wide upon high-60 

throughput sequencing, which is referred to as ChIP-seq. Although ChIP-seq is the gold standard for 61 

identifying TF-DNA interactions, it is difficult to perform and is especially challenging in species where 62 
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antibodies are not easily obtained for performing immunoprecipitations of TFs of interest (Park, 2009). 63 

This limitation of ChIP-seq has led to the innovation of another technique to study TF-DNA interactions 64 

that is referred to as DNA Affinity Purification and sequencing (DAP-seq) (Bartlett, et al., 2017; 65 

O’Malley, et al., 2016). ChIP-seq captures DNA associated TFs in vivo, whereas DAP-seq identifies 66 

TF-DNA interactions in vitro (Bartlett, et al., 2017). For DAP-seq, fragmented genomic DNA with 67 

adaptors and affinity-tagged TFs are prepared separately (Bartlett, et al., 2017). TFs are then combined 68 

with the adapter-ligated fragmented DNA to allow for sequence-specific binding to genomic DNA in 69 

vitro, which is measured using high-throughput sequencing. As DAP-seq does not require a TF-specific 70 

antibody to capture TF-DNA complexes, it allows for screening of high numbers of TF-DNA 71 

interactions in comparison to ChIP-seq. Regardless, both methods have proven useful for the 72 

investigation of the genome-wide location of enhancers and silencers. 73 

 74 

Computational approaches to predict TF-DNA interactions are actively being developed, despite the 75 

existence of experimental methods (Li, et al., 2018). The major driving force is that experimental 76 

methods are cumbersome and are not as scalable as computational methods. The most widely used 77 

computational approach is a supervised motif search using a position specific score matrix (PSSM) also 78 

known as position weight matrix (PWM) (Stormo, et al., 1982). Most motifs are ~4-12 bp and  PSSM 79 

builds the probability for the occurrence of each nucleotide at specific positions based on known TF 80 

binding motifs of interest (Mrázek, 2009). A sliding window-based approach is used where the window 81 

size is the size of the motif, and each sequence is scored against the PSSM to predict TF binding sites 82 

genome wide (Mrázek, 2009). As more motifs for diverse TFs are actively studied, this method can be 83 

expanded to predict regions bound by multiple TFs. However, as supervised motif searches do not 84 

provide accuracy about the search, it is challenging to identify functional TF-DNA bound regions. A 85 

major limitation is that this approach only finds sequences with a pattern match (Weirauch, et al., 2014). 86 

This leads to a high number of false positives, which misleads the characterization of true TF bound 87 

regions (Sielemann, et al., 2021). Moreover, motif based method searches can miss functional TF-DNA 88 

interactions for a number of reasons; 1) Some TF binding sequences do not have motifs (Inukai, et al., 89 
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2017), 2) Some TF binding sequences have multiple binding motifs (Nakagawa, et al., 2013), and 3) 90 

Recognition by TFs is also dependent upon sequences surrounding the motifs, so it is not enough to 91 

only identify the motifs alone (Inukai, et al., 2017). 92 

 93 

Machine learning algorithms offer one possible solution for identifying the genome-wide landscape of 94 

TF-DNA interactions. Machine learning algorithms can learn and predict complicated patterns from 95 

data and provide accuracy about the prediction, a challenge that is suited for detection of TF-DNA 96 

interactions. In a study by Zamanighomi et al., motifs from DNA-binding domains were predicted with 97 

60% accuracy using epigenomic data, although these models had relatively low specificity 98 

(Zamanighomi, et al., 2017). In contrast, a study by Mejía-Guerra et al. predicted TF-DNA interactions 99 

with a logistic linear algorithm and achieved >90% accuracy (Mejía-Guerra and Buckler, 2019). In this 100 

study, they used the flanking sequences around motifs to classify them into two classes, 1) TF binding 101 

sequences and 2) Non-TF binding sequences (Mejía-Guerra and Buckler, 2019). However, there are 102 

some limitations to these models; the models did not use the entire genome, but instead relied on 103 

simulated data. Lastly, Cochran et al. used deep learning to predict TF-DNA bound by several TFs, 104 

however, they reported high false positives (Cochran, et al., 2021). Collectively, these studies show the 105 

potential use of machine learning algorithms to identify functional TF bound regions, yet also highlight 106 

the challenging nature of this pursuit. 107 

 108 

The development of experimental and computational approaches will enable the discovery of plant TF 109 

bound regions and their associated TFs important for gene regulation and phenotypic variation (Weber, 110 

et al., 2016). In this study, we use the well characterized Auxin Response Factor (ARF) family of TFs 111 

to build predictive models for detection of TF-DNA interactions. ARF TFs control target gene 112 

expression by responding to the plant hormone auxin and genome-wide maps of TF-DNA interactions 113 

has been generated in maize and Arabidopsis (Galli, et al., 2018; O’Malley, et al., 2016; Oh, et al., 2014; 114 

Ulmasov, et al., 1999; Wei, et al., 2021). As auxin plays a crucial role in plant growth and development, 115 

this TF family is an important test case for understanding our ability to predict TF-DNA interactions in 116 
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plants (Li, et al., 2016). Here, we built a variety of models using ARF DAP-seq data from maize and 117 

applied some of them to the soybean genome to test their functionality. DAP-seq data for 12 members 118 

of the maize ARF TF family were tested with soybean genomic DNA to evaluate the validity of these 119 

models. Overall, our results show that count vectorization for k-mer and logistic regression models are 120 

effective at predicting TF-DNA interactions in maize, yet suffer from a high false positive rate when 121 

applied to the soybean genome. Collectively, this study shows the potential use of machine learning 122 

algorithms to identify TF-DNA interactions. 123 

 124 

 125 

RESULTS  126 

Preprocessing of data  127 

To determine the ability to build machine learning (ML) models to predict TF-DNA interactions, we 128 

used previously published DAP-seq data from the maize ARF family (Galli, et al., 2018). We also 129 

performed DAP-seq using the same maize ARFs on soybean genomic DNA libraries. 12 ARF datasets 130 

were subsequently used for the analysis, as they had greater than a 1.5% FRiP (fraction of reads in peaks) 131 

score in both maize and soybean. Out of the 12 selected ARFs, six belong to clade A (ARF4, ARF16, 132 

ARF18, ARF27, ARF29, ARF34) and six to clade B (ARF7, ARF10, ARF14, ARF25, ARF36, ARF39). 133 

Clade A ARFs are known for their roles in transcriptional activation, whereas clade B ARFs are likely 134 

acting as repressors of transcription, in antagonism to clade A ARFs (Kato, et al., 2015; Kato, et al., 135 

2020). Previous studies in Arabidopsis and maize reveal that clade A ARFs bind to the TGTCGG motif, 136 

whereas clade B ARFs prefer TGTC motifs with a cytosine tail such as TGTCCCCC (Boer, et al., 2014; 137 

Galli, et al., 2018). Because this TF family is so well characterized, it provides a unique opportunity to 138 

test the ability to build ML models to predict TF-DNA interactions across plant genomes. 139 

 140 

For the 12 maize ARF datasets we selected to build ML models, there was an average of 37,840 binding 141 

events from the DAP-seq data, which accounts for 0.35% of the maize genome. This creates a unique 142 

challenge for machine learning models that rely on classification techniques, as the majority of the 143 
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genome search space is devoid of ARF binding events. This leads to unbalanced data between bound 144 

and unbound regions and artificially inflates the prediction of classes with the higher numbers in the 145 

training datasets used. To generate a more balanced dataset, we limited the genome search space to 146 

Unmethylated Regions (UMRs), which are highly enriched for TF-DNA interactions compared to 147 

methylated regions in the maize genome (Crisp, et al., 2020). A previous analysis of UMRs in maize 148 

identified ~100,000 regions, which accounted for ~5.8% (123,146,800 bp) of the maize genome (Crisp, 149 

et al., 2020). A total of 11,149 ARF DAP-seq binding events overlapped a UMR, which accounted for 150 

1.82% of the UMRs in maize (Supplementary Table 1). The percentage of ARF-bound regions increased 151 

about fivefold upon using UMRs compared to whole genome and helped to reduce the massive 152 

unbalanced data issue, however, 98% of the regions used in classifications are still unbound according 153 

to the DAP-seq data.  154 

 155 

Unbalanced data leads to high accuracy of ML models, yet they are accompanied by a high false positive 156 

rate (FPR), as in this case ARF-bound regions would be falsely classified as ARF non-bound regions. 157 

This poses a challenge for evaluation of preprocessing of data, such as changes in bin sizes and labeling 158 

methods used for classification. Therefore, we used the same amount of input data for each class (ARF 159 

bound versus ARF non-bound) to find the optimal setting for data preprocessing. Because UMRs are 160 

longer than the DAP-seq peaks, we partitioned each subregion of a UMR into one of two classes (ARF 161 

bound and ARF non-bound) based on DAP-seq binding events (Figure 1). As with any protein-DNA 162 

enrichment-based sequencing assay, there is a distribution of sequenced fragments that decays over 163 

distance from the specific interaction site (summit), which is often attributed to 164 

sonication/fragmentation used in the assay. This produces regions that are challenging to classify as 165 

ARF bound or ARF non bound, which led us to classify the sequences flanking the summit as 166 

‘ambiguous regions’. These regions were subsequently tested as ARF-bound or ARF-non-bound 167 
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regions. We evaluated 75, 100, 125, 150, 175 and 200bp windows for classifications to identify the 168 

optimal window size for the analysis.  169 

We built models using all combinations of bin sizes and labelling methods using a grid search to the 170 

combination that produced optimal results. When ambiguous regions were considered as ARF-bound 171 

regions, the FPR was 24.49%, which is higher than the 6.73% observed when they were considered as 172 

ARF-non-bound regions (Supplementary Table 2). On the other hand, considering ambiguous regions 173 

as ARF-bound regions had higher false negative rate (FNR) compared to ARF-non-bound regions with 174 

~14% difference. As reducing the FPR is crucial to improve the classification performance from 175 

imbalanced data, we labelled ambiguous regions as ARF-non bound for subsequent analysis. Among 176 

the five bin sizes evaluated, the 125bp bin had the lowest FNR (18.87%). Thus, we found that 177 

 

Figure 1. Experimental design and data processing. A diagram representing a whole experimental design for 

this research. After pre-processing of data, this research consists of two major steps for analysis: (1) Build the 

best model for 12 ARF members in maize; (2) Apply the model built by maize to soybean UMR. 
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partitioning (bin size=125bp) and labeling the ambiguous regions as ARF-non-bound regions were the 178 

most optimal for use in the next steps. This classification scheme resulted in a range from ~1:50-1:700 179 

(average 1:134) for the ratio of ARF-bound events to ARF-non-bound events for the 12 ARFs evaluated 180 

in this study (Supplementary Table 3).  181 

Building the best prediction models for identification of TF-DNA interactions in maize  182 

Two distinct encoding methods such as one-hot encoding and count vectorization for k-mer have been 183 

used for DNA sequences for ML approaches (Yang, et al., 2020). We compared the two encoding 184 

methods with processed data with ARF bound and ARF non-bound in a 1:2 ratio to evaluate them 185 

without issues from imbalanced data. One-hot encoding implements the transformation of four 186 

nucleotides into binary information, that allowed us to apply a convolutional neural network (CNN) 187 

model as previously described (Quang and Xie, 2016). For the balanced data, one-hot encoding 188 

produced an accuracy of 56%, which was substantially lower than the 88.1% observed using count 189 

vectorization with k-mer and logistic regression. Thus, we applied count vectorization with k-mer and 190 

logistic regression for all subsequent analyses. To find the optimal length of the k-mer used to build 191 

models, we tested a range from 5-mer to 9-mer and ultimately selected to use a 7-mer, as it produced 192 

the lowest FNR of 31% (Supplementary Table 4). 193 

 194 

The average number of events in each class for the 12 ARFs used in this study was 917,948.08 ARF-195 

non-bound and 6,833 ARF-bound regions, which results in a 134:1 ratio. To reduce any effects due to 196 

individual ARFs, we randomly selected the average number of DAP-seq binding events (37,840) to 197 

produce the balanced data by random sampling, which resulted in a similar ratio (153:1) to the average 198 

number for ARF-non-bound and ARF-bound regions. The more imbalanced data in random sampling 199 

compared to the 1:2 ratio used above resulted in an increased FNR from ~31% to almost 98%, which 200 

implies that almost all regions were classified into the ARF-non-bound class as this class is so dominant 201 

(Table 1).  202 

 203 
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One of the main factors that affects performance in ML is feature selection. Features are inherent 204 

properties of the data that ML models use to make predictions, as features distinguish different classes 205 

(Saeys, et al., 2007). We performed feature selection for two main reasons; 1) to improve the prediction 206 

performance by reducing the FNR and 2) to help identify features that are more likely to affect 207 

predictions. We used the frequency of 7-mer sequences within 125bp bin as features, as they potentially 208 

represent transcription factor binding sites. We also considered the pattern of features from the forward 209 

strand the same as the reverse strand, as ARFs recognize the patterns from both strands. This resulted 210 

in 8,192 (4 nucleotides7 divided by 2) features that were further reduced to 7,560 using entropy to 211 

eliminate features that have low complexity sequences (e.g. “AAAAAAA”). For feature selection, we 212 

filtered 2,222 features that had low variance in frequency across each 125bp window, as they do not 213 

provide enough information to help distinguish the window. After feature selection there were 5,338 214 

features that we used to evaluate the effect of feature selection, which reduced the FNR to 95.67% from 215 

98% (Table 1). This demonstrates that the model we built achieved a higher performance with a smaller 216 

number of features.  217 

Randomly sampling 1:2 ratio of ARF-bound and ARF-non-bound 

 Accuracy FPR FNR 

One hot encoding + CNN 
56.0 

±0.99 

59.33 

±26.5 

26.66 

±25.54 

Count vectorization with bag of k-mer +logistic regression 
85.0 

±0.0 

5.0 

±0.0 

31.33 

±0.57 

Randomly sampling 1:153 ratio of ARF-bound and ARF-non-bound 

 Accuracy FPR FNR 

Count vectorization with bag of k-mer +Logistic 

regression 

99.0 

±0.0 

0.0 

±0.0 

98.0 

±0.0 

Count vectorization with bag of k-mer +Logistic 

regression 

+ Feature Selection 

99.3 

±0.0 

0.07 

±0.0 

95.67 

±0.09 

Count vectorization with bag of k-mer +Logistic 

regression 

+ Feature Selection + Down-sampling 

81.66 

±0.08 

18.32 

±0.08 

19.35 

±0.56 

Count vectorization with bag of k-mer +Logistic 

regression 

+ Feature Selection + Up-sampling 

90.64 

±0.02 

9.18 

±0.02 

34.47 

±0.27 

Table 1. The performance of models using maize data from random sampling for 12 members of ARFs. 

Balanced data were used to evaluate two encoding methods (one-hot encoding and count vectorization with k-

mer). To make the data, peaks from 12 member of ARFs were randomly picked to evaluate additional methods 

of classification that resulted in variable performance.  

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.10.483780doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483780
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

11 

 

 218 

In addition to feature selection, we performed down-sampling and up-sampling to balance the training 219 

set and lower the false negative rate. Up-sampling increases the sample size for ARF-bound regions in 220 

the training data by randomly selecting greater numbers of ARF-bound regions whereas down-sampling 221 

decreases the sample size for non-ARF bound regions in the training data by randomly choosing less 222 

numbers of non-ARF bound regions. Down-sampling and up-sampling reduced the FNR to 19.35% and 223 

34.47%, respectively (Table 1). The FPR was higher in down-sampling (18.32%) compared to up-224 

sampling (9.18%). As the ARF-non-bound regions that are falsely classified into ARF-bound regions 225 

are reduced to 9.18% using up-sampling, we chose to implement the up-sampling method as it was the 226 

optimized method.  227 

 228 

When the optimized method is applied to the 12 ARFs, an accuracy of 93.64%, a FPR of 6.2% and a 229 

FNR of 43% was observed on average across all TFs tested (Figure 2A). The high FNRs are due to the 230 

high number of ARF-bound regions that are falsely classified as ARF-non-bound regions. Clade A had 231 

a FNR of 28%, which is lower than the FNR of 57.7% observed for clade B. Considering that clade A 232 

has a higher number of ARF-bound regions on average from the DAP-seq data, this results in less 233 

imbalanced class numbers compared to clade B, which likely explains the differences in the FNRs. A 234 

significant correlation of the ratio for the two classes and the FNR was observed, which demonstrates 235 

that the imbalanced data affects the FNR (Figure 2B). In contrast, the FPR showed a negative correlation 236 

with the greater number of imbalanced classes (Figure 2B). The FPR is calculated by dividing the FP 237 

by sum of the FP and the TN. When the data are more imbalanced with a greater number of ARF-non-238 

bound regions, a greater number of ARF-non-bound regions (Negative) are classified as TN or FN. This 239 

explains the negative correlation observed between the FNR and the FPR (Figure 2B); ARF34 had the 240 

lowest FNR (18.1%) and the highest FPR (12%), whereas ARF39 had the highest FNR (74.52%) and 241 

the lowest FPR (1.14%) (Figure 2C).  242 
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 243 

Evaluation of features  244 

The features used to build the logistic regression model distinguished ARF-bound and ARF-non bound 245 

regions in the maize genome with high accuracy. Even though the motif information is not used in the 246 

classification, the features used to build the predictions are expected to find the pattern of sequences 247 

where the ARFs are more likely to bind. To find which features negatively or positively affected the 248 

prediction, we investigated how much each feature affects the performance of the prediction. We 249 

defined the feature by log transformation of the coefficients of the logistic regression model for each of 250 

the ARFs. Selected features with high or low scores are indicative of genomic sequences where ARFs 251 

are more or less likely to bind. As the motif sequences for clade A and clade B from DAP-seq peaks are 252 

distinct in terms of the tails of cytosines (Figure 3A), we calculated the feature score individually for 253 

each clade. We identified the top 15 features with highest or lowest feature score out of the 5,338 total 254 

features (Figure 3B). 255 

 256 

 

Figure 2. The performance of classification on prediction of binding for 12 ARFs from maize. (A) 

The accuracy (ACC), FPR and FNR for the classification of maize genome. (B) The correlation between 

FNR and the ratio of ARF non-bound/bound regions. Each dot represents an ARF that was tested. (C) Venn 

diagrams of the predicted number of TF-DNA interactions and the empirical results determined using DAP-

seq data.  
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In clade A, “TGGTCGG”, “TGTCGGG”, “CGGTCGG”, “TGTCGGC” and “GTGTCGG” were the 257 

most important for model performance. Out of the top 15 features with the highest score, nine features 258 

contained the known ARF “TGTC” motif. Most of the features that have “TGTC” had a tail of “G” in 259 

clade A.  The top five features identified in clade B were “CTGTCGG”, “TGTTCCC”, “GTGTCGG”, 260 

“CGGTCGG” and “TGGTCGG”.  In clade B, out of the top 15 features with the highest score, eight 261 

features had “TGTC”; one with “C” tail and the other with “T” and six with “G” tails. The high feature 262 

scores for “TGTC” followed with “G” are not consistent with the motif sequences from DAP-seq peaks. 263 

Motif sequences from peaks have no following nucleotides in clade A and “C” tails in Clade B. The top 264 

15 features in clade A and B with the lowest scores showed various patterns of 7-mers of nucleotides. 265 

Two of them in clade A contained the “TGTC” sequences followed with “A”. It is expected that the 266 

nucleotide that follows “TGTC” has an important role in the prediction; “G” tails can positively affect 267 

 

Figure 3. (A) Top motif identified for maize ARF clade A and clade B by identifying the combined peaks 

from clade A and clade B DAP-seq data. (B) The features with highest score or lowest score. The bar 

represents the average of feature score, and error bar represents standard deviation among ARFs in clade A 

or B. The upper box shows features with the top 15 highest feature score while the lower box shows features 

with the top 15 lowest features. “TGTC” is indicated with red color of letters. 
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the prediction whereas “A” tails negatively affect the prediction. The features that have negative effects 268 

provides clues about which sequences ARFs do not prefer.  269 

 270 

It was unexpected that the features with “TGTC” with “G” tails have positive effects on the 271 

classification, considering that maize ARF motifs from PWM had “TGTC” with “C” tails. To find if the 272 

ARF-bound regions have abundant features with “G” tails that affects the classification, we examined 273 

the frequency of features in ARF-bound regions. In clade A, “TGTCGGC”, “TTGTCGG”, 274 

“GCTGCTG”, “CTGTCGG” and “CTGCTGC” were the top 5 most abundant features across clade A. 275 

In clade B, features of “CTGCTGC”, “GCTGCTG”, “TGCTGCT”, “TGTCGGC” and “CTGTCGG” 276 

had dominant frequencies. They had “G” or “GG” sequences after “TGTC”. This implies that there are 277 

some binding sites that are overlooked by the PWM approach. This is one advantage of our approach 278 

to extract features from classifications for motif identification, as traditional motif detection methods 279 

do not provide sequence information for regions that have negative relationships with peaks.  280 

 281 

 282 

Evaluation of the efficacy of using the TF-DNA prediction models built using maize on the 283 

soybean genome.  284 

Many DNAs-bound TF are predicted to be conserved across evolution if they are important for 285 

conservation of specific traits or responses to the environment. This is especially true of the ARF gene 286 

family, as they have a conserved N-terminal DNA binding domain and in most cases a conserved C-287 

terminal dimerization domain across plant species (Tiwari, et al., 2003). In Arabidopsis, ARFs bind to 288 

the “TGTCTC” motif and some ARFs that are important for transcriptional activation show a preference 289 

for binding the “TGTCGG” motif (Freire-Rios, et al., 2020). Additionally, the promoter regions for 290 

auxin-responsive genes in soybean are enriched for the “TGTCTC” motif (Guilfoyle, et al., 1998). Thus, 291 

we hypothesized that the model we built using the maize genome to predict TF-DNA interactions could 292 

be applied to the soybean genome. Considering maize is a monocot and soybean is a dicot, which have 293 

significant time since divergence (Chaw, et al., 2004), if the model can successfully predict TF:DNA 294 
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interactions in soybean it would provide strong evidence that this model can be used to robustly predict 295 

TF:DNA interactions in other species that lack experimental data.  296 

 297 

To test this hypothesis, we produced DAP-seq data for the same maize ARFs used in the first part of 298 

this study using soybean genomic DNA as input. To evaluate the quality of the DAP-seq data we 299 

produced using soybean genomic DNA, which is referred to as ZmARF to distinguish them with the 300 

ARF binding events in the maize genome. We investigated sequence alignment rates, peak shape and 301 

the fraction of reads in peaks (FRiP) at the 0.00001 FDR threshold, as we did for the maize DAP-seq 302 

data (Schmitz, et al., 2021). The DAP-seq libraries for the 12 ZmARFs showed more than 95% of 303 

alignment rates (Supplementary Table 5). Mapped data showed strong peak signals with low 304 

background noise (Supplementary Figure 1 and Figure 4A). Collectively, these DAP-seq experiments 305 

had a FRiP score of 10.59% on average with a range from 1.6-24% (Figure 4B).  All ZmARFs except 306 

ARF18 had greater than a 2% FRiP score. Using the newly produced DAP-seq data, we identified ARF-307 

bound regions and identified sequence motifs for all 12 ARFs tested to evaluate conservation of motif 308 

preferences (Figure 3B). In maize, the ARF binding motif predominantly clusters based on evolution of 309 

the ARF gene family (Galli, et al., 2018). The Pairwise Pearson correlation showed that binding profiles 310 

clustered according to their clade A or B phylogenetic classification (Supplementary Figure 2). However, 311 

the motifs identified using the maize ARFs screened against soybean genomic DNA showed that clade 312 

A ARF motifs (ZmARF4, ZmARF16, ZmARF18, ZmARF27, ZmARF29 and ZmARF34) clustered 313 

together, whereas clade B ARF motifs were distributed across the tree (Figure 4C). For example, 314 

ZmARF25 is a member of clade B, however it groups with clade A. The top enriched motif in the 315 

ZmARF7- and ZmARF10-bound soybean genomic DNA datasets were more diverse compared to other 316 

ZmARFs, although the reason for this is unknown at this time. Lastly, the binding motifs detected for 317 

clade B in soybean did not possess the long tail of “C” that is common in maize. It’s actually consistent 318 

with a previous result that investigated maize clade B ARF binding to Arabidopsis DNA (Galli, et al., 319 

2018). 320 

 321 
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We used same data preprocessing methods we used for maize and applied them to the soybean DAP-322 

seq data. In maize, the use of UMRs reduced the data imbalance issue as fivefold more DAP-seq peaks 323 

were located in UMRs compared to the entire genome. In soybean, the use of UMRs actually resulted 324 

in a small increase in the overlap with DAP-seq binding events (0.35%) compared to ratio observed 325 

across the genome (0.3%) (Supplementary Table 6). This is in large part due to the fact that soybean 326 

genome is less methylated than the maize genome. Nonetheless, we divided each UMR into 125bp bins 327 

and labelled them using the same method as we did for maize. Approximately 2,325,855 ZmARF-non-328 

bound regions and 3,185 ZmARF-bound regions were identified for each ZmARF tested on average 329 

(Supplementary Table 7). Compared to the maize data which showed 1:134 ratio for bound vs unbound 330 

regions, soybean was significantly more imbalanced showing a 1: 1,575 ratio. We used the same model 331 

with maize by training and testing with soybean DAP-seq data (Figure 4D). Some ARFs such as ARF18 332 

and ARF29 showed over a 50% FNR, which implies that the high number of ARF-bound regions are 333 

falsely predicted as ARF-non-bound regions. These results are somewhat consistent with what we 334 

observed in maize, if we consider that the soybean data has a significant imbalance due to a minority 335 

of ARF-bound regions, which is associated with a high FNR in both experiments (Supplementary Figure 336 

3). Regardless, the soybean DAP-seq data was tested using the most optimal prediction model used for 337 

the maize ARF-binding data, which universally showed that the accuracies of predictions were below 338 

59% with greater than a 55% FPR (Figure 3E).  339 
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 340 

 341 

  342 

Figure 4. (A) ZmARF DAP-seq peaks in soybean. (B) FRiP (fraction of reads in peaks) of soybean DAP-

seq data. (C) Dendrogram of the top maize and soybean ARFs based on profiles of the binding motif 

sequences. (D) The prediction performance of the model when it is built and evaluated against soybean 

data. (E) The prediction performance when we build the model with maize data and apply it to soybean 

data. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.10.483780doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483780
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

18 

 

 343 

DISCUSSION  344 

In this study, we compared the performance of classification in terms of the encoding methods and 345 

classification algorithms such as one-hot encoding with neural network algorithms and k-mer 346 

vectorization with logistic regression. Previous studies used one-hot encoding and neural network 347 

algorithms for genomic sequences and achieved high performance to identify TF binding motifs 348 

(Alipanahi, et al., 2015; Kelley, et al., 2016). Moreover, one-hot encoding with neural network 349 

algorithms showed high performance for classifying TF binding sequences (Mejía-Guerra and Buckler, 350 

2019). In this study, one-hot encoding with neural network algorithms showed lower performance than 351 

k-mer vectorization with logistic regression. Although previous studies using one-hot encoding with 352 

neural network algorithms found the motif sequences among TF binding regions by predicting binding 353 

scores (Alipanahi, et al., 2015), this study used classification methods to classify the long length of the 354 

sequences into TF-bound sequences or TF non-bound sequences. In classification, k-mer scans ~100bp 355 

sequences with a small unit of length to identify the specific sequence that TFs bind, whereas the one-356 

hot encoding method recognizes the sequences as whole images. This implies that classifying ~100bp 357 

sequences requires features that can specify distinguishing characteristics. This creates some limitations, 358 

especially for shorting binding motifs within the 100bp input windows, that could be mitigated using 359 

additional inputs such as using accessible chromatin regions that are enriched for TF binding (Kelley, 360 

et al., 2016).  361 

 362 

We built a model using 12 members of ARF TF gene family in maize and evaluated the prediction 363 

performances between clade A and B. Although we showed that the FNR and the FPR are correlated 364 

with the ratio of number of imbalanced classes, there are still other factors that can affect the 365 

performance. The differences of the performance between the clades were higher than the differences 366 

between ARFs within a clade. We expected that long tale of “C” in clade B should provide an advantage 367 

using k-mer vectorization, because the tail of Cs included in the 7-mer provides greater numbers of 368 

distinct characteristics of features. Furthermore, clade A binds to tandem repeat in auxin response 369 
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elements, which can make finding binding events more difficult (Chandler, 2016). However, clade B 370 

showed lower performance compared to clade A in terms of the FNR. Therefore, the evaluation of 371 

features showed that the “C” tails after “TGTC” did not improve the performance, as the features with 372 

high impact had “G” tails not “C”. The unexpected result of the G tails could be due to the 7-mer length 373 

of the feature we used or result from the high FNR. Furthermore, the FNR and FPR are more affected 374 

by the imbalanced number of classes. Collectively, this implies that data imbalance influences the 375 

prediction performance more than the structure of motifs does.  376 

 377 

Classification of data with imbalanced class distribution is well known to negatively impact 378 

performance (Estabrooks, et al., 2004). It is well established the majority of eukaryotic genomes are 379 

comprised on non-coding DNA sequence, a subset of which includes TF bound DNA sequences (Elkon 380 

and Agami, 2017). This feature of eukaryotic genomes leads to an unbalanced data issue, as the ratio of 381 

non- TF bound DNAs is much higher than that of TF bound DNA. Our research shows that the 382 

prediction comparing the data with balanced data and unbalanced data showed that imbalanced data can 383 

increase the FNR to 98% from 31.33%. The high FNR suggests that ARF-bound regions are falsely 384 

classified as ARF-non-bound regions. The algorithm in training steps recognized that the number of 385 

ARF-non-bound regions are more abundant than ARF-bound regions, thus it causes incentives of 386 

classifying the samples to ARF-non-bound regions. To reduce the drawback from the imbalanced 387 

number of classes, we added more weight to the minority class (ARF-bound regions) in the logistic 388 

regression, however, this did not show an improvement in classification performance (Li, et al., 2010). 389 

Subsampling for class imbalances, including down-sampling and up-sampling, were performed (Sun, 390 

et al., 2009). Even though this led to a reduction of the FNR using up-sampling, it increased the FPR 391 

by falsely classifying the ARF-non-bound regions as ARF-bound regions. The up-sampling methods 392 

makes algorithms more likely to classify samples to ARF-bound regions in the training set, but in the 393 

test set the true number of ARF-bound regions is much lower than ARF-bound regions. This implies 394 

that implementing classification algorithms has some drawbacks to identifying TF-DNA interactions 395 

given that most regions of genomes are not bound by TFs. 396 
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 397 

 398 

We validated the model established with maize against the soybean genome to determine if the model 399 

can be used to robustly predict TF-DNA interactions in other plant species. As ARFs share similar motif 400 

sequences between plant species (Tiwari, et al., 2003), we hypothesized that the model built using maize 401 

ARF DAP-seq data would predict ARF binding regions successfully. However, the application of the 402 

model to a different plant species showed high FPRs and low accuracies compared to the model tested 403 

with the same species. It is possible the divergence time between maize (monocot) and soybean (dicot) 404 

is too large preventing cross species application of these models (Chaw, et al., 2004). We found two 405 

main differences between maize and soybean DAP-seq data; 1) Motif shape and 2) The ratio of class 406 

number of ARF-bound and ARF-non-bound regions. Some ARFs such as ZmARF25, ZmARF27, 407 

ZmARF29 and ZmARF34, when tested with soybean genomic DNA did not show enrichment for 408 

binding the core motif of “TGTC”. Moreover, some members shared the same core motif of “TGTC”, 409 

but the sequences around “TGTC” were different. For example, ZmARF36 tested with maize genomic 410 

DNA had “C” tails after “TGTC” but when tested with soybean genomic DNA had “T” tails. 411 

Furthermore, the expanded proportion of UMRs present in soybean compared to maize led to greater 412 

imbalanced data when trying to predict ZmARF-bound regions in the soybean. It is assumed that the 413 

different distribution of ARF binding events between maize and soybean lead to an ‘Out of Distribution’ 414 

effect (Arjovsky, 2020). The model was designed to learn generalizable knowledge from the maize 415 

training data and it expected that the soybean test data would share the same distribution with the maize 416 

training data. This implies that the data distribution between the soybean and the maize genome are 417 

sufficiently different enough making it challenging to apply the same prediction model. Although this 418 

study shows the limitation of application to different species it is possible it could be improved in the 419 

future by focusing on more closely related species. Regardless, this study presents a unique approach 420 

and demonstrates the potential use of machine learning algorithms to identify TF-DNA interactions in 421 

plant genomes. 422 

 423 
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 424 

MATERIALS AND METHODS  425 

Library preparation and DAP-seq  426 

Genomic DNA libraries for soybean were prepared following the protocols in Bartlett et al(Bartlett, et 427 

al., 2017). Genomic DNA (gDNA) was extracted from leaf tissue using phenol:chloroform:IAA 428 

extraction. Five micrograms of gDNA was diluted in EB (10 mM Tris-HCl, pH 8.5), sonicated to 429 

~200 bp fragments in a Covaris S2 sonicator and purified with AmpureXP beads. Samples were end 430 

repaired using an End-It kit (Lucigen) and purified with AmpureXP beads. Purified samples were A-431 

tailed using Klenow 3–5′exo- for 30 min at room temperature and then purified with AmpureXP beads. 432 

A Y-adapter was ligated as described in Bartlett et al. To attach the protein to the MagneGST 433 

beads(Promega), 20 μl of purified GST-ARF protein (5–20 μg) was diluted in 400 μl of 1X PBS 434 

containing 25 μl of washed beads. In addition to the GST-ARF samples, a negative control GST-HALO 435 

sample was performed using protein expressed in the TNT wheatgerm expression system (Promega). 436 

Beads were washed four times in 1X PBS + NP40 (0.005%) and resuspended in 100 μl of 1X PBS. 1μg 437 

of gDNA library was diluted to a final volume of 60 μl in 1X PBS and added to the protein bound beads. 438 

One microgram of genomic DNA library was diluted to a final volume of 60 μl in 1X PBS and added 439 

to the protein bound beads. Samples were then incubated for 1 hour at room temperature. Beads were 440 

washed in 1xPBS + NP40 and recovered by resuspending in 25 μl EB and boiling. Eluted samples were 441 

enriched and tagged with dual indexed multiplexing barcodes by performing 20 cycles of PCR in a 442 

50 μl reaction51. We sequenced samples on a NExtSeq500 with 75 bp single end reads. A total of 10–443 

30 million reads were obtained for each sample. Maize DAP-seq data were downloaded from GEO 444 

accession GSE111857 produced by Galli, M. et al. (Galli, et al., 2018). 445 

 446 

Peak calling for DAP-seq data  447 

The raw reads were trimmed by filtering out adaptor-only nucleotides with the following parameters 448 

ILLUMINACLIP:TruSeq3-SE:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 449 

MINLEN:50, using Trimmomatic (ver 0.36; (Bolger, et al., 2014)). Trimmed reads were aligned to the 450 
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reference genome (Gmax505 v4.0) using bowtie2 v2.2.853(Langmead and Salzberg, 2012). Mapped 451 

reads with >MAPQ30 were removed to use the reads that are not mapped into multiple locations. We 452 

called the peaks using GEM v2.554 using the GST-HALO negative control sample with following 453 

parameters: --k_min 6 --k_max 20 --outNP –sl --q 5 (Guo, et al., 2012). The samples with more than 454 

2% of FriP at the 0.00001 FDR threshold using ChIPQC v1.8.2 were chosen in all subsequent 455 

analysis(Carroll, et al., 2014). We used motifs discovered by GEM for the first round of motif prediction 456 

(Guo, et al., 2012). We represented sequence logos and dendrogram for motifs for the ARF family using 457 

motifStack based on a position count matrix (PCM) of the motifs (Ou, et al., 2018). The heatmap for 458 

binding events from Pearson correlation was calculated with 10bp bin size using deepTools v 3.5.1 459 

(Ramírez, et al., 2014). For generation of metaplots, the signal densities for DAP-seq data were 460 

calculated with deepTools v 3.5.1 using the following parameters: ‘-a 3000 -b 3000 -bs 10’.  461 

 462 

Identification of UMRs  463 

For UMRs in maize, previously identified maize UMRs (Crisp, et al., 2020) were used. UMRs in 464 

soybean were identified by followed steps. Two replicates of WGBS data for G. max Williams82 465 

(pooled leaves) were downloaded from SRA, which are SRR12494495 and SRR12494496 (Wang, et 466 

al., 2021). Replicates were filtered and mapped individually, then the final mapping files (bams) were 467 

merged to increase coverage for UMR identification. Unmethylated regions (UMRs) were identified as 468 

per (Crisp, et al., 2020). Reads were trimmed using Trim galore! version 0.6.4_dev, powered by 469 

cutadapt v1.18 (Martin, 2011) and quality checked using fastqc v0.11.4. Next, 20 bp was trimmed from 470 

the 5’ ends of both R1 and R2 reads and aligned with bsmap v2.74 (Xi and Li, 2009) to the soybean v4 471 

genome (Gmax_508, phytozome v13) with the following parameters -v 5 to allow 5 mismatches, -r 0 472 

to report only unique mapping pairs, -p 1, -q 20 to allow quality trimming to q20. Conversion efficiency 473 

of 99.5% was determined by appending the chloroplast genome (NC_007942.1) to the v4 reference 474 

genome for mapping. Output SAM files were parsed with SAMtools (Li, et al., 2009) fixsam, sorted 475 

and indexed. Picard MarkDuplicates (v 2.9.0-1) was used to remove duplicates, BamTools filter (v 2.4.0) 476 

to remove improperly paired reads and bamUtils clipOverlap (v 1.0.13) to trim overlapping portion of 477 
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paired-reads so as to only count cytosines once per sequenced molecule. The methylratio.py script from 478 

bsmap v2.74 was used to extract per-site methylation data summaries for each context (CH/CHG/CHH) 479 

and reads were summarised into non-overlapping 100bp windows tiling the genome. WGBS analysis 480 

pipelines are available on github 481 

(https://github.com/pedrocrisp/crisplab_epigenomics/tree/master/methylome). To identify 482 

unmethylated regions, each 100bp tile of the genome was classified into one of six domains or types, 483 

including “missing data” (including “no data” and “no sites”), “High CHH/RdDM”, “Heterochromatin”, 484 

“CG only”, “Unmethylated” or “intermediate”, in preferential order as per (Crisp, et al., 2020). 485 

 486 

Producing combined ARF data by random sampling   487 

To test the bin lengths selected and the labelling method used, we produced random sampling data, 488 

which combined data from 12 members of the ARF gene family in maize. For random sampling data, 489 

we randomly selected the average number of peaks (37,840) from peaks from 12 members of the ARF 490 

gene family. Next, we performed data preprocessing by dividing the genome into various bin sizes and 491 

annotating them as ARF-bound or ARF-non-bound. This produced an unbalanced data set. Redundant 492 

regions were removed. Moreover, to produce a balanced random sampling data set, we randomly 493 

selected the same number of ARF-bound in ARF-non-bound regions and assigned half of the ARF-494 

bound regions to ambiguous regions.  495 

 496 

Cross validation 497 

We performed 5-fold cross validation for all predictions by dividing the data into five subsets. We used 498 

four data subsets (80% of data) for training and one data subset (20% of data) for testing with shuffling 499 

the subsets. We repeated it three times to show how the models are generalize dto different combinations 500 

of data sets.  501 

 502 

Features for Count vectorization of k-mer  503 
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To vectorize a sentence in natural language processing, bag of words can be applied(Zhang, et al., 2010). 504 

Bag of words counts the number of the occurrence for each token and uses the vectorization of counts 505 

information for training. Bag of words does not consider the order of words in the sentences. The 506 

genome sequence is read with a k size of sliding windows that is called k-mer. In this case, k is read the 507 

length of the word. For example, when there is a group of sequence of AATTG, tokens of 3-mer is AAT, 508 

ATT, TTG and TGC. To find the optimal length of the k-mer, we tested from 5-mer to 9mer and chose 509 

the length with the lowest FNR. We created sequences that contained the sequence of the feature as 510 

well as its complementary sequence, which were separated with an “N”. For example, for a 125bp 511 

window with 7-mer, which was labelled as an ARF-non-bound region, the possible feature sets used 512 

looked like the following sequences (“AATTGTTNAACAATT”:2, “AATTGGCNGCCAATT”:1,.., 513 

“CCCATACNGTATGGG”:1). In natural language processing, stop words such as “the”, “a”, “an” and 514 

“in” are filtered while tokenization. DNA sequences can have stop words as repeated sequences occur 515 

in multiple copies throughout the genome. The stop words for DNA were defined as the DNA sequences 516 

with low entropy. Thus, the feature with low entropy means the feature have low variances within the 517 

feature. In the previous studies, the repetitive regions are expected to carry little information for TF-518 

DNA binding and low entropy was calculated by adding the probability of appearance of the i-th base 519 

in the token as the equation below(Mejía-Guerra and Buckler, 2019).  520 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑘 − 𝑚𝑒𝑟) =  ∑ 𝑝𝑖 ∗ 𝑙𝑜𝑔2𝑝𝑖 521 

The tokens with lower than 1.3 entropy were considered as stop words according to the TF-DNA 522 

binding database and eliminated. We normalized the frequency of each feature so that all data were on 523 

the same scale for calculation of the variance. We used “scaler.fit_transform” to standardize the values 524 

for features with a standard score. For feature selection, features with low variance were eliminated 525 

using “VarianceThreshold” with a 0.001 threshold. 526 

 527 

One-hot encoding  528 

One-hot encoding can be used to transfer DNA sequences to binary information. Then, learning 529 
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algorithm such as Deep Neural Networks and Convolutional Neural Networks can be adapted to DNA 530 

by considering DNA as a fixed length 1-D sequence with four channels (A,T,G,C)(Alipanahi, et al., 531 

2015). A, C, G, T will be encoded into (1 0 0) , (0 1 0), (0 0 1), (0 0 0) respectively. For example, when 532 

the sequence is ATTGC, then it will be transformed to ((1 0 0), (0 0 0), (0 0 0), (0 0 1), (0 1 0)). As we 533 

use a length of 125 A,T,G,C sequences, the input data will have a 3-D structure with 3*125*the number 534 

of samples. Subsequently the 3-D data structure is flattended using ‘model.add(Flatten())’ 535 

 536 

Down-sampling and Up-sampling  537 

Down-sampling and Up-sampling is re-sampling techniques for training data to balance the training set 538 

and relieve the imbalanced data issue. Down-sampling randomly subsets samples from the class that 539 

has the dominant number of samples to match the least prevalent class(Estabrooks, et al., 2004). As we 540 

have more number of ARF-non bound regions than ARF bound regions, down-sampling randomly 541 

removed some ARF-non bound regions in training set to be matched with the same number of ARF-542 

bound regions in training step. Up-sampling randomly samples the minority class to be the same size 543 

as the majority class in the training set(Estabrooks, et al., 2004). We increased numbers of ARF-bound 544 

regions in training set by randomly adding ARF-bound regions with the same number of ARF non-545 

bound regions. In the test data set, the imbalanced data was used. 546 

 547 

Parameters for the models 548 

For logistic regression we used the ‘LogisticRegression’ function in scikit-learn with L2 regularization 549 

penalty, 1e-4 tolerance, 1.0 C, Liblinear optimization and binary classification. To create the sequential 550 

model we used “tf.keras.models.Sequential” that can create linear sequences of processing layers with 551 

10 epochs, 50 batch sizes, 0.1 validation split, 1 verbose. We used the function of Sequential() and add 552 

the layers with Conv1D() and MaxPooling1D() for 10 epochs, 50 batch sizes. To use 3D data structure 553 

of DNAs, we used the function of Flatten(). 554 

 555 
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