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ABSTRACT 

Parkinson’s disease (PD) is a common, devastating, and incurable neurodegenerative disorder. 

Several molecular mechanisms have been proposed to drive PD, with genetic and pathological 

evidence pointing towards aberrant protein homeostasis and mitochondrial dysfunction. PD is 
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clinically highly heterogeneous, it is likely that different mechanisms underlie the pathology in 

different individuals, each requiring a specific targeted treatment. Recent advances in stem cell 

technology and fluorescent live-cell imaging have enabled the generation of patient-derived 

neurons with different mechanistic subtypes of PD. Here, we performed multi-dimensional 

fluorescent labelling of organelles in iPSC-derived neurons, in healthy control cells, and in four 

different disease subclasses. We generated a machine learning-based model that can 

simultaneously predict the presence of disease, and its primary mechanistic subtype. We 

independently trained a series of classifiers using both quantitative single-cell fluorescence 

variables and images to build deep neural networks. Quantitative cellular profile-based classifiers 

achieve an accuracy of 82%, whilst image based deep neural networks predict control, and four 

distinct disease subtypes with an accuracy of 95%. The classifiers achieve their accuracy across 

all subtypes primarily utilizing the organellar features of the mitochondria, with additional 

contribution of the lysosomes, confirming their biological importance in PD. Taken together, we 

show that machine learning approaches applied to patient-derived cells are able to predict 

disease subtypes, demonstrating that this approach may be used to guide personalized treatment 

approaches in the future. 

 

INTRODUCTION  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that encompasses several 

pathogenic processes that converge on the accumulation of misfolded α-synuclein in Lewy bodies 

and neurites, and degeneration of dopaminergic neurons in the substantia nigra, resulting in an 

array of motor, cognitive, neuropsychiatric and autonomic deficits (Braak et al., 2003; Spillantini 

et al., 1997; Weinreb et al., 1996). The age of onset, rate of disease progression and severity of 

motor and non-motor symptoms display considerable individual variation (reviewed here (Cheng 
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et al., 2010)). This is most likely due to differences in the underlying molecular mechanisms 

occurring in different subtypes of the disease (reviewed here (Kusumoto and Yuasa, 2019)). 

Critically, there are currently no approaches to define the molecular heterogeneity, and therefore 

no opportunity to understand the mechanisms that may drive the different phenotypic subtypes. 

Furthermore, the lack of mechanistic understanding in PD, and of how best to target the condition, 

has led to the absence of any cure, or even any disease-modifying therapy to date. 

Clinicians have increasingly adopted a patient centric approach to the symptomatic treatment of 

PD, using multiple drugs and delivery systems according to specific individual needs of patients. 

However, when considering how to achieve disease modification, the majority of studies still utilize 

a “one-size-fits-all” approach. This may be fundamentally flawed as it is unlikely that there is a 

single solution or treatment that works for all patients, and a more “precise” approach based on 

the molecular underpinnings of the disease in each patient may be the best way forward. Thus, 

an unmet challenge is to make an early and accurate molecular level diagnosis of the condition, 

as this would enable the field to consider targeted interventions appropriate to an individual’s 

condition, and offer an opportunity to do this at the earliest possible time. 

To address this challenge, we applied a deep learning approach to cellular models of PD to 

generate a predictive model of different mechanisms of disease. PD is known to be caused by a 

complex interplay of genetic and environmental drivers. Two common and critical pathways that 

drive pathology include (i) the accumulation of insoluble aggregates of the protein alpha-

synuclein, implying that protein misfolding and impaired protein homeostasis causes a 

‘proteinopathy’, or a ‘synucleinopathy’ (Campbell et al., 2020; Spillantini et al., 1997) and (ii) the 

accumulation of abnormal mitochondria with impaired bioenergetic function, and reduced 

mitochondrial clearance (Angelova et al., 2018) and reviewed here (Deas et al., 2011)). To model 

PD, we utilized patient-derived iPSC derived cortical neurons: these are a robust preclinical cell 

model for disease, recapitulating the human genomic and proteomic environment of a 
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differentiated cell type that is affected in disease (Laperle et al., 2020; Rowe and Daley, 2019; 

Takahashi and Yamanaka, 2006). We defined four cellular subtypes that map to both of these 

two key pathways that lead to disease: (i) patients with mutations in the SNCA gene develop an 

autosomal dominant aggressive form of Parkinson’s with predominant protein aggregation, that 

is caused directly by the mutation in the SNCA gene: therefore, iPSC derived neurons from a 

patient with SNCA triplication were used to model ‘familial proteinopathy’. (ii) protein aggregates 

are known to spread from cell to cell in the brain in a prion-like manner, inducing proteotoxic 

stress: we exposed healthy iPSC derived neurons to aggregates of alpha-synuclein to recapitulate 

the ‘environmental proteinopathy’ (Cremades et al., 2012; Ludtmann et al., 2018). (iii) exposure 

to pesticides with subsequent mitochondrial complex 1 impairment can induce PD, and patients 

with PD exhibit widespread impairment of complex 1 dependent respiration: we applied a complex 

1 inhibitor, rotenone to generate a model of ‘toxin induced mitochondrial dysfunction’ (iv) 

mutations in the PINK1 and PARKIN genes cause autosomal recessive early onset PD, and these 

mutations directly result in impaired clearance of damaged mitochondria (mitophagy), resulting in 

the accumulation of abnormal mitochondria in neurons (Deas et al., 2011): we applied an inducer 

of mitophagy, oligomycin/antimycin, to generate a model of ‘Mitophagy induced PD’. 

We simultaneously fluorescently labelled specific cellular compartments (the nucleus, 

mitochondria and lysosomes), and we performed high content live single cell imaging of iPSC 

derived neurons. Notably, the multiplexed imaging was designed to capture specific organellar 

dysfunction that has been previously validated for relevance in disease. Using data from 8 

different plates (total 1,560,315 cells), we generated a number of models to predict disease state 

and disease subtype.  We generated two broad types of classifier (i) a prediction classifier based 

on features automatically extracted (56 features), providing deep profiling of cellular phenotypes: 

this classifier has the advantage of high explainability using the ranking of features (ii) prediction 

classifiers based on images and deep neural network analyses, utilizing the power of computer 
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vision to extract large amounts of unbiased information: this classifier has very high accuracy, but 

with less explainability. In this study we compared the two approaches to define the presence of 

disease within a group of neurons and the origin, or cause, of that disease subtype. Our work 

identifies the specific features in neurons that are able to predict different cellular subtypes of the 

disease, and therefore provides valuable biological insights into the mechanisms of PD. 

 

 

 

Table 1. Pathological details of the cellular subtypes of PD. Subtype 1: Cells generated with 3x SNCA 

mutation represent ‘familial proteinopathy’. Subtype 2: ‘Environmental proteinopathy’ was induced by 

exposing cells to exogenous protein aggregates. Subtype 3: Toxin-induced mitochondrial dysfunction was 

obtained by exposing cells to rotenone, a Complex 1 inhibitor. Subtype 4: We induced mitophagy using 

stimulation with oligomycin/antimycin, to represent our fourth subtype. 

 

RESULTS 

Induced pluripotent stem cell derived neurons as a model for human Parkinson’s 
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Human iPSCs were generated through reprogramming skin cells from healthy donors or PD 

patients carrying SNCA triplication, which causes a familial early onset aggressive form of PD, 

with widespread proteinopathy. Neuronal differentiation was performed through dual SMAD 

inhibition using SB431542 (10 μM, Tocris) and dorsomorphin dihydrochloride (1 μM, Tocris) using 

a protocol adapted from (Shi et al., 2012), see the schematic in Figure 1a). 20,000 - 40,000 cells 

were plated onto a 96-well plate at day 50, and maintained until use (> day 60). Upon terminal 

differentiation, the culture is highly enriched with populations of neurons displaying neuronal 

markers (MAP2: 90.01 ± 3.516%, Figure 1bi) with both lower- (TRB1: 46.67 ± 4.985%, CTIP2: 

47.30 ± 5.037, Figure 1bii) and upper-layer neuronal markers (SATB2: 41.15 ± 4.501%, Figure 

1biii). Neuronal cultures responded to physiological concentration of glutamate (5 uM) which 

induces the opening of potential-sensitive Ca2+ channels that are specific for neurons, thus 

confirming the majority of the population are glutamatergic neurons (62.92 ± 3.819%, Figure 1c). 

A key hallmark of PD is the accumulation of intraneuronal aggregates, consisting of 

phosphorylated alpha-synuclein. hiPSC-derived neurons carrying 3x SNCA mutation express 

more phosphorylated forms of α-Syn compared to control iPSC-derived neurons (Figure 1di & ii).  

Our data demonstrate that we are able to generate human neurons with the functional and 

molecular identity of neurons from the human cortex, and that the Subtype 1: familial 

proteinopathy, exhibits the pathological hallmark of a proteinopathy (Angelova et al., 2020; 

Ludtmann et al., 2018; Whiten et al., 2018). 
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Figure 1. Generation a human PD model using hiPSCs. a. Schematic showing hiPSC derived neuronal 

differentiation strategy. Fibroblasts from patients with PD or healthy donors are reprogrammed into hiPSC 

and differentiated into cortical neurons using protocol from (Shi et al., 2012). bi-iv. Characterization of iPSC 

derived neurons using ICC for the representative images of i) MAP2, neuronal marker, ii) Tbr1 and CTIP2, 

deep cortical layer, iii) Satb2, upper cortical layer and iv) the quantification   c. Calcium imaging measured 

with Fura-2 shows the hiPSC-derived cortical neurons exhibit calcium signal in response to physiological 

concentration (5 µM) of glutamate. di-ii. hiPSC-derived neurons from PD patients with 3xSNCA mutation 

display increase phosphorylated α-Syn (aggregated form of α-Syn).  
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Development of a classifier to identify disease states in PD 

Mitochondrial dysfunction and synucleinopathy are two primary pathologies of PD which are 

induced by various conditions (Gandhi et al., 2009; Hsieh et al., 2016; Spillantini et al., 1997). We 

established a set of disease states (four subtypes as described in Table 1) led by two primary 

pathologies; α-Syn aggregation and mitochondrial dysfunction. The 3x SNCA and oligomer 

disease states belong to the aggregation pathway, while Complex 1 inhibition and impaired 

mitophagy are associated with mitochondrial toxicity. To establish Subtype 1: a familial 

proteinopathy, we differentiated neurons with iPSC derived from PD patients carrying 3x SNCA 

which are reported to have elevated aggregation levels in neurons (Figure 1di & ii) (Angelova et 

al., 2020; Ludtmann et al., 2018). We also established Subtype 2; an ‘environmental 

proteinopathy’ by treating cells with α-Syn oligomers, toxic soluble species of ɑ-Syn which results 

in oligomer induced toxicity (Angelova et al., 2020; Ludtmann et al., 2018; Whiten et al., 2018). 

For Subtype 3: the mitochondrial toxic state was induced by disrupting the mitochondrial electron 

transport chain using Rotenone (5 µM, mitochondrial complex 1 inhibitor) (Abramov et al., 2010; 

Esteras et al., 2017; Reeve et al., 2015). For Subtype 4: mitophagy, a process of eliminating 

unhealthy mitochondria was induced by co-treating with Oligomycin A (1 µM, Sigma) and 

Antimycin (1 µM, Sigma) (Soutar et al., 2018). We adopted live-cell imaging of multiplexed dyes 

to reveal the organelles of the hiPSC-derived neurons (nucleus, mitochondria and lysosomes). In 

particular, we selected tracker dyes for organelles that are involved in the four subtypes: 

mitochondria and lysosomes. We demonstrate that the signal from these fluorescent dyes varies 

depending on the health of the organelles and that this requires live imaging, as such changes of 

organelle function and organellar networks are not apparent with fixation (Figure 2a & b). 

Rotenone, a complex 1 inhibitor of electron transport chain (ETC), depolarizes mitochondrial 

membrane potential labelled with Tetramethylrhodamine, Methyl Ester (TMRM, p = 0.0046, 

Figure 2ai & ii), resulting in loss of fluorescent intensity of TMRM. Lysosomal activity is also 
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elevated by Chloroquine which is labelled with Lysotracker (p = 0.0020, Figure 2bi & bii), resulting 

in an increase in fluorescence.  

To collect the dataset, the hiPSC derived neurons were labelled with live-cell imaging dyes, 

Hoechst3334, TMRM and Lysotracker deep red to label nucleus, mitochondria and lysosome 

respectively. Cell images were obtained using a high-content screening system to generate a 

large high-quality dataset. We also used SytoxGreen (labeling cells that have lost membrane 

integrity indicating cell death) to define a ‘live cell’ that describes the three organelle features in 

the same single cell unit by setting a fluorescent threshold (A.U 500 < live cells). We collected the 

data for AI models across a range of neuronal inductions (n = 6) and different plates (n = 8) in 

order to capture the inherent variation between cells, the hiPSC system, and the variation in 

conditions for dye loading and cellular imaging. We acquired the data in two formats 1) tabular 

data, which consisted of 56 mitochondrial, lysosomal, and nuclear features extracted from the 

Columbus Image Data Storage and Analysis System (PerkinElmer) and 2) 1024 x 1024 raw 

images, which we further segmented into smaller 8 x 8 tiles. We generated tabular and image 

models to identify disease status and the cellular subtypes of PD in human cells. These models 

consist of five classes; one control and four disease subtypes in an ‘all-in-one’ model 

(experimental process is described in Figure 2c). 
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Figure 2.  Workflow to develop a classifier to make a prediction of cellular subtypes in PD. a & b. 

High-throughput imaging enables visualization of mitochondrial depolarization by Complex 1 inhibitor, 

Rotenone (5 µM, ai & ii) and lysosomal activation by Chloroquine (1 µM, bi & ii). c-f. A schematic illustration 

to describe the experimental process to build the models. c. (1) Live-cell imaging with Opera Phenix high-

content screening system (PerkinElmer): cells are loaded with live-cell imaging dyes. Representative 

images for the three channels; Hoechst 33342; nucleic labelling within 387/11 nm excitation and 417-447 

nm emission, TMRM; mitochondrial labelling within 505 nm excitation and 515 nm emission, Lysotracker 

deep red; lysosomal labelling within 614 nm excitation and 647 nm emission. (2) Columbus Image Data 

Storage and Analysis System (PerkinElmer) was used to extract 56 morphological features (SFigure 1a & 

2a) and whole images. (3) Models are trained on tabular data extracted from cell profiling features or images 

uniformly gridded by 8 x 8 segmented cropped images and categorically labelled and fed into the neural 

network. (4) The learned model enables the prediction of healthy or four disease subtypes (SNCA x3 genes, 

α-Syn Oligomer, mitochondrial Complex 1 inhibition and induction of Mitophagy based on primary PD 

pathology as described in Table 1. 

 

 

A classifier trained on cell profiles of key organelles predicts disease states 

We built a classifier to predict five classes; four disease and one healthy state, using tabular data 

based on the nucleus, mitochondria and lysosome features extracted from the live high-content 

imaging platform. Organelle features extracted included cell areas, expression intensity, the 

number of spots, roundness, length and width. We also included SER textural features which 

measure local patterns of pixel intensity providing the structural information of the organelle 

loading (reviewed here (Di Cataldo and Ficarra, 2017) (Cretin et al., 2021). We designed, trained 

and evaluated a Dense Neural Network by splitting the entire dataset (n = 1,560,315 identified 

cells) into training (40%), validation (30%) and test datasets (30%). The confusion matrix 
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demonstrates that overall, the correct label was identified 82% of the time in the five-class model. 

However, whilst some of the classes had an accuracy close to the model’s overall accuracy 

(SNCA x3: 84%, Oligomer: 82%, Mitophagy: 81%), specific disease subtypes had very high 

accuracy, notably complex 1 dysfunction (Complex 1: 98%), whilst the control state had slightly 

lower accuracy (Control: 69%, Figure 3bi). The accuracy of the model with all five classes was 

over 80% (SFigure 1bi), which was cross-validated using Stratified K-Fold Cross Validator 

(accuracy 81.3 ± 0.32 %, Figure 3bii), where the split of the dataset was randomized 10 times 

independently to validate the accuracy of the model. Next, we explored the feature importance of 

the model to understand the cellular features that drive accurate prediction using SHapley 

Additive exPlanation (SHAP) values on the entire test set. SHAP is an estimated value of 

importance for each feature in the model, and one dot represents each feature per cell (Lundberg 

et al., 2017). The ranked features based on their SHAP values, colored by their importance for 

each class, indicates that the majority of the features that explain the model’s predictions originate 

from mitochondria terms (‘TMRM’ related features, Figure 3c. Details of the features are described 

in SFigure 1a). This is highlighted for all disease subtypes where TMRM readouts are the highest 

SHAP based features, followed by the nucleus and lysosome features (Figure 3c). We then 

explored the top 10 features with the highest importance for each disease subtype individually to 

ascertain which organelle is driving the prediction for each pathway, and to understand the 

relationship between feature value and SHAP value (Figure 3di-v). Importantly, this demonstrates 

that out of the top 10 features for subtype 1 (SNCA x3), 5 were lysosomal, 3 were mitochondrial, 

and 2 were nuclear (Figure 3di); for subtype 2 (Oligomer), 7 were mitochondrial, 2 were nuclear, 

and 1 was lysosomal (Figure 3dii); for subtype 3 (Complex 1), 7 were mitochondrial, 2 were 

lysosomal, and 1 was nuclear (Figure 3diii); and for subtype 4 (Mitophagy), 6 were mitochondrial, 

2 were nuclear, and 2 were lysosomal (Figure 3div). Interestingly, this shows that whilst 

mitochondrial features are clearly critical to the model’s prediction, nuclear and lysosomal features 

are also important, with each featuring in the top 10 features for all disease subtypes. Finally, we 
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selected the two most important features to the model’s overall prediction, two mitochondrial 

textural features (TMRM SER Valley and TMRM SER Dark), to assess if there is a significant 

difference across the five classes. The scatter graphs demonstrate that there is a significant 

difference in these features across the five classes (Figure 3ei & ii, p < 0.0001 between all groups), 

further demonstrating the importance of mitochondrial features in differentiating between disease 

states and healthy control. 
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Figure 3. A classifier trained on cell profiles of key organelles predicts disease states with 82% 

accuracy. a. An illustration of workflow for machine learning with tabular data. bi & ii. Classification 

performance by a confusion matrix (bi) and the Stratified K-Fold Cross-Validation (bii) trained on cell profile 

tabular data. In the confusion matrix, the numbers from the confusion matrices denote the matching 

accuracy between true and predicted labels (true positive) and the diagonal elements correspond to 

precision. c. Feature ranking based on their SHAP values colored by class. di-v. A SHAP summary plot for 

the top 10 most important features based on their SHAP values for each of the classes: 3x SNCA (di), 

Oligomer (dii), Complex 1 (diii), Mitophagy (dvi) and Control (dv). Dots are colored according to the values 

of features for each cell, red represents high feature values, and blue represents lower feature values. A 

positive SHAP indicates an increased probability to predict each state (‘positive’ impact on the output) and 

vice versa. e. Random selection of 10 wells to test top two features measuring local patterns of pixel 

intensity   shows an effect of cellular subtype across 5 groups (One-Way ANOVA p < 0.0005, n = number 

of wells). Note. Control: healthy group, 3x SNCA: SNCA mutation, Oligomer: treatment with α-Syn 

Oligomer, Complex 1: treatment with mitochondrial Complex 1 inhibition, Mitophagy: co-treatment with 

Antimycin and Oligomycin to induce Mitophagy. 

 

 

A model of the interaction between organelles predicts aggregation vs mitochondria 

phenotypes. 

In PD, the contact between mitochondria and lysosome is known to play a critical role in the 

homeostasis of organellar networks within the cell, for both damaged mitochondrial clearance 

(mitophagy) as well as lysosomal degradation of mitochondrial-derived vesicles. We demonstrate 

the presence of organellar contacts between mitochondria and lysosomes using super resolution 

microscopy in Figure 4a (Wong et al., 2018). Therefore, we reasoned that the contacts between 

mitochondria and lysosomes, captured in the multiplexed imaging platform, may reflect the index 
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of mitophagy, and therefore provide an additional feature to predict mechanistic subtype. Of note, 

the use of a membrane potential dye such as TMRM will preferentially detect healthier 

mitochondria due to the nature of the dye loading.  

Here we trained a ML model using overlapping mitochondrial and lysosomal features, that is, the 

lysosomal spots that are within mitochondrial areas. We tested whether the model can distinguish 

the two primary pathologies of aggregation and mitochondrial dysfunction: we combined the 

SNCAx3 mutation and oligomer treatment into one single aggregation class, and combined the 

mitochondrial complex I function and mitophagy into one single mitochondria class.  (aggregation 

vs mitochondrial toxicity; cell profile features are shown in SFigure 2a). This model predicted the 

correct mitochondrial label with 100% accuracy, and 99% accuracy for aggregation labels 

highlighting that the organellar interactions are highly informative in differentiating mitochondrial 

toxicity from aggregation toxicity in PD (Figure 4bi & ii). We cross-validated this result using 

Stratified K-Fold Cross Validator, observing an accuracy of 99.97 ± 0.46% across 10 independent 

runs (Figure 4biii). The model based on the interaction of organelles alone, showed a much lower 

performance in classifying the subtypes of the two main pathways (see the confusion matrix, 

SFigure 2d). We next looked at this feature importance between the two primary pathologies in 

more detail. SHAP analysis showed that the number of lysosomal spots and the lysosomal spot 

to region intensity within the mitochondria are the key features driving the accurate prediction 

between aggregation and mitochondrial toxicity (Figure 4ci & ii). This suggests that lysosomal 

contacts with the mitochondria may be a key feature in both aggregation and mitochondrial forms 

of PD. Finally, by plotting the top two features identified across plates, we show that there is an 

also significant change between those two forms of PD. Together, we show that a model based 

on the interaction between two organelles may be a predictor of broad disease type, and that data 

from both organelles can be used to accurately distinguish and predict aggregation from 

mitochondrial pathologies in PD.    
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Figure 4. Interaction between cellular organelle networks classifies into aggregation and 

mitochondrial toxicity phenotypes. a. Super-resolution images of mitochondrial and lysosomal co-

localization. Mitochondria are labeled with TOM 20 and lysosome with LAMP1. bi-iii. ROC-AUG curve of 

classification performance (bi), the confusion matrix (bii) and by Stratified K-Fold Cross Validation (biii) 

trained on the selected cell profile tabular data (mitochondria and lysosome contact). The selected tabular 

data from mitochondria and lysosome colocalization showing highly accurate prediction to identify the two 

disease states of mitochondrial toxicity and aggregation (> 99% accuracy). In the confusion matrix, the 
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numbers from the confusion matrices denote the matching accuracy between true and predicted labels and 

the diagonal elements correspond to precision. ci. Feature ranking that drives the prediction of aggregation 

based on their SHAP values colored by their importance. cii. A SHAP summary plot of top 10 features to 

classify the groups into mitochondrial toxicity (aggregation group is shown as a mirror of this SHAP values, 

and therefore it is not presented). di & ii. Random selection of 12-22 wells to compare the top two features 

(‘Number of Spots’ indicates the number of lysosomal spots within mitochondria, and ‘Spot of Region 

Intensity’ indicates the lysosomal intensity co-localized with mitochondria) showing that there is a statistical 

significance between mitochondrial toxicity and aggregation groups (Two Sample test p < 0.0001). Note. 

Aggregation: combining subtypes of 3x SNCA and Oligomer. Mitochondrial toxicity: combining subtypes of 

Complex 1 and Mitophagy.   

 

 

Convolutional Neural Network accurately predicts the disease states.   

We then created an image based classifier to distinguish between the different disease subtypes. 

The images were split into 5 classes; four disease pathways and one control as previously done 

for the tabular data-based classifier. The images were sliced into 8 x 8 tiled images, containing 1-

20 cells per image, allowing preservation of the information contained in neuronal projections and 

the cell-cell contacts immediately surrounding neurons (reviewed here (Petralia et al., 2015)). We 

then trained a convolutional neural network to distinguish the 5 classes (see the schematic shown 

in Figure 5a). The confusion matrix from this model shows a true positive rate of > 90% for all five 

classes (average accuracy 95%, 3x SNCA: 89%, Oligomer: 99%, Complex I: 99%, Mitophagy: 

94%, Control: 94%, Figure 5bi), highlighting a high accuracy to classify the disease states and 

control, especially when compared to the model trained on cell profiling tabular data (average 

accuracy: 82%). We cross-validated our results using Stratified K-Fold Cross Validator and 

showed 95.7% accuracy (Figure 5bii). 
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We next employed the SHAP DeepExplainer method, which indicates how much each pixel 

contributes to the probability positively or negatively, in an attempt to understand which aspects 

of the image the model is using to make its predictions (Lundburg et al., 2007). It confirms that 

mitochondria along with the lysosomes are the major contributors driving the accurate prediction, 

and not the nucleus nor the negative space between cells (Figure 5c). Given the consistent result 

of the essential role of mitochondria to classify the disease states, we lastly explored whether 

images of mitochondria alone could accurately predict the disease states. We trained on images 

of mitochondria or lysosomes alone or the combination of both organelles. The true positive rate 

of models created for mitochondria is 87% (Figure 6ai, SFigure 4a), 82% for only lysosomes 

(Figure 6bi, SFigure 4b) and 90% for the duet images (Figure 6ci, SFigure 4c) and it was cross-

validated using Stratified K-Fold showing above 82% accuracy (Figure 6aii, bii and cii). Taken 

together, we show that a deep neural network using image data provides a much more robust 

way to differentiate subtypes of PD, and identify which organelle is driving the pathology.  
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Figure 5. A classifier trained by images using Deep Neural Network accurately discriminates PD 

pathology. a. Illustration of workflow for Deep learning with images. bi & ii. Deep learning classification 

performance trained on 8 x 8 tiled images by the confusion matrix (bi) and the Stratified K-Fold Cross-

Validation (bi). A sample is assigned to five classes with the maximum prediction accuracy (95%). c. A 

SHAP DeepExplainer plot summary. Rows show images from the test set, one from each class, and the 
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columns represent each class. The SHAP value for each score is shown below. Orange and blue arrows 

indicate either lysotracker (lysosome) or TMRM (mitochondria) positive areas respectively. Note. Control: 

healthy group, 3x SNCA: SNCA mutation, Oligomer:  treatment with α-Syn Oligomer, Complex 1: treatment 

with mitochondrial Complex 1 inhibition, Mitophagy: co-treatment with Antimycin and Oligomycin to induce 

Mitophagy. 
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Figure 6. Deep Neural Network using mitochondria image alone retains high prediction accuracy. 

a-c. Deep learning classification performance the confusion matrices on trained on 8 x 8 tiled images and 

the Stratified K-Fold Cross-Validation of mitochondria alone (ai & ii), lysosome alone (bi & ii) and both 

together (ci & ii). Note. Control: healthy group, 3x SNCA: SNCA mutation, Oligomer:  treatment with α-Syn 

Oligomer, Complex 1: treatment with mitochondrial Complex 1 inhibition, Mitophagy: co-treatment with 

Antimycin and Oligomycin to induce Mitophagy. 
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Figure 7. A schematic illustration demonstrates how machine learning based classifiers can be 

applied to improve the approach to PD therapeutics. a. Our classifier can classify individuals into PD 

and healthy groups. The PD diagnosed individuals can be further classified based on their mechanistic 

subtype. b. Mechanism-specific targeting drugs can be matched with the PD patients based on their own 

disease subtypes.    

 

 

DISCUSSION  

Genome-wide association studies have identified multiple genetic risk loci relating to protein 

homeostasis, protein trafficking, lysosomal function and mitochondrial function in sporadic 

disease, implicating these pathways in disease pathogenesis (Chang et al., 2017; Ivatt et al., 

2014; Nalls et al., 2011). Here, we used human iPSC-derived cortical neurons, a vulnerable cell 

type in PD, that robustly recapitulate critical cellular phenotypes of PD to successfully model and 

define four mechanistic subtypes of disease based on the presence of a familial mutation, 

proteotoxic stress, mitochondrial stress, and induced mitochondrial clearance. Using live high-

content imaging, we tracked these disease mechanisms through three key organelles. Our 

approach is well placed as a preclinical platform to have high predictive value for disease as it is 

a human model of brain disease in a dish which captures live information on the two critical 
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organelles implicated in PD. This convergence of benefits in our approach enabled us to then 

develop a highly accurate deep learning classifier, able to distinguish the presence or absence of 

disease, and if diseased, the subtype of the disease. 

Using a range of intensity, morphological, and textural features of the mitochondria, lysosomes, 

and nuclei, extracted from the live high-content imaging platform, we trained a model to identify 

the primary pathology in hiPSC-derived cortical neuronal cultures. We demonstrate that this 

method is able to accurately predict between control cells and the four disease pathways. 

Importantly, the use of tabular data in this study enables the ranking of organellar features based 

on their contribution to the model’s prediction (using SHAP), providing unique and critical insight 

into the importance of mitochondrial and lysosomal biology in disease. This explainability 

demonstrates that mitochondrial features contribute most prominently to the overall prediction of 

the classifier, and specifically the prediction of mitochondrial pathways (Complex 1 and 

Mitophagy), with lysosomal and nuclear features also important in the prediction of aggregation 

pathways (3x SNCA and oligomer). Furthermore, when using a similar approach for the 

interaction between mitochondria and lysosomes we demonstrate that tabular data solely on the 

contacts between these organelles is sufficient to distinguish the two key categories: aggregation 

and mitochondrial toxicity pathways with high accuracy. Taken together, these classifiers 

demonstrate that the information contained within the mitochondria and lysosomes 

independently, and the information contained within their interaction (for example when lysosome 

clear mitochondria), are both sufficient to predict, and are therefore likely to be biologically 

relevant, in the four mechanisms in disease described here. 

Whilst models trained on tabular data are advantageous due to the level of explainability they 

provide, they may be susceptible to minor alterations in experimental conditions, such as the 

loading of imaging dyes and the pre-processing of image data. They may also be dependent on 

the software processing that converts the images into tabular data which is subject to another 
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filtering level that carries uncertainty with it. As a result, they may lack generalizability, and perform 

less well. We, therefore, also generated CNN-based image classifiers using the same large 

dataset for the tabular data-based model (Christiansen et al., 2018). We show that deep CNN-

based image classifiers can correctly classify images to accurately identify a disease state from 

a healthy control cell, and this is more generalizable, and shows high performance achieving 

close to 100% accuracy. Nevertheless, both our tabular and image classifier approaches were 

able to accurately discern which underlying pathogenic pathways was driving the disease state 

Our approach offers several advantages to current perspectives to analyzing cell images. 

Although traditional methods are capable of quantifying well-defined structural properties, and 

focus on automation and throughput, they do not capture all of the information contained within 

imaging data. Using traditional image processing software, researchers must typically first choose 

which feature (or features) to combine to quantify from a vast array of possible cellular 

phenotypes, such as nuclear fragmentation, protein aggregation, cell density, organelle damage 

and distribution, and changes to cytoskeleton organization. This approach can be challenging and 

time-consuming and may be subject to bias. An alternative approach described here uses 

machine learning to decipher cellular features at high accuracies in an unbiased manner and 

achieve a greater accuracy than using traditional throughput readouts. Similar use of CNNs have 

been used successfully to accurately classify images of iPSC spinal motor neurons taken from 

healthy controls and patients with amyotrophic lateral sclerosis (ALS) (Imamura et al., 2021). 

The high accuracy achieved by our tool was made possible by several conditions. The cell density 

was relatively high (and necessary) in order to provide enough information for the training and 

validation sets, and also, we made use of image preprocessing to increase the number of images 

available to the CNNs. In addition, we trained CNNs, with multiple hidden layers to improve the 

accuracy. Despite the underlying complexity of the deep learning algorithms used, the methods 

and tool used to classify the images was relatively simple (Grafton et al., 2021). Only minimal 
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image processing was needed, with each image being divided into 64 individual “tiles”. While 

training a CNN has been made simpler in recent years with the development of user-friendly 

software applications such as Tensorflow. In addition, the use availability and access to a GPU 

allowed the processing of large amounts of data in a relatively short time (somewhat necessary 

given the number of images to be processed). 

In this study, our approach of creating multiple classifiers based on extracted tabular features and 

image tiles enables us to gain explainability from the tabular data and translate this to the image 

classifier by training models on mitochondria and lysosomes individually, and in combination. We 

demonstrate that the loss of nuclear signal, leaving both the mitochondria and lysosomes, in a 

CNN-image based model does not reduce the accuracy of the model. We further demonstrate 

that a CNN trained on mitochondria alone achieves higher accuracy than the model based on 

lysosomes alone, consistent with the feature importance generated from the tabular models. 

Nevertheless, the approach outlined here demonstrates the power of using deep learning in 

predicting the underlying mechanisms of PD. Importantly, as PD is highly heterogeneous this 

platform may enable the disease mechanism in patient cells to be classified. This may have 

significant clinical implications in both diagnosis and treatment, as the identification of cellular 

mechanisms may indicate their likely response to a proteinopathy treatment (e.g. targeting α-

synuclein) versus a mitochondrial treatment (e.g. antioxidant therapy). Furthermore, this 

approach establishes a drug discovery platform that may be used to assess which pathway 

predominates in an individual, and whether specific medications are capable of reversing robust 

cellular phenotypes, in an unbiased approach (Chandrasekaran et al., 2021). 
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METHODS  

Generation of human iPSC  

We generated neurons derived from human iPSCs (hiPSCs) that are reprogrammed from two 

healthy donors (one generated in house, and one commercial line (ThermoFisherScientific)) or 

PD patients carrying mutations (SNCA triplication, 3x SNCA) who had given signed informed 

consent for the derivation of hiPSC lines from skin biopsy as part of the EU IMI-funded program 

Stem-BANCC (Chen et al., 2019; Devine et al., 2011). All experimental protocols had approval 

from the London-Hampstead Research Ethics Committee and R & D approval from University 

College London Great Ormond Street Institute of Child Health and Great Ormond Street Hospital 

Joint Research Office. The hiPSCs were cultured on Geltrex (ThermoFisherScientific) in E8 media 

(ThermoFisherScientific) or mTeSR (Stem Cell Technologies) and passed using 0.5 mM EDTA 

(ThermoFisherScientific). All lines were mycoplasma tested (all negative) and short tandem 

repeat profiled (all matched) performed by the Francis Crick Institute. 

Generation of high content imaging data and image processing 

We collected sets of z-stack images from various focal planes in the z-axis while the stage was 

fixed in the x and y-axis. To reduce undesirable effects of out-of-focus features, the training 

samples consist of two-dimensional information from maximum intensity projections of the z-stack 

images with fluorescence labels that are pixel registered. The cell profiles based on tabular data 

and the image dataset were separately collected using the Columbus image storage and analysis 

system. 

 

Classifiers trained 
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Tabular data was extracted from 7 plates consisting of four disease and control groups (60 % of 

control is labelled as healthy per plate) using the Columbus Data analysis and Storage system. 

For data exploration and feature engineering, the data points where half the features were missing 

were excluded. This was followed by splitting the dataset into training (n = 13489), validation (n = 

28373) and test (n = 35466) datasets. The features (lists in SFigure 1a) were scaled per control 

in each plate separately using the Power Transformer scaler. The scaling factor, lambda, was 

examined in the training dataset, and features with high variance (lambda >100) were excluded 

(all features showed lower variances and, therefore, all included). We designed and trained a 

Dense Neural Network with python using Tensorflow (Model structure: 3 dense layers using ReLU 

activation, each followed by a Dropout layer with dropout rate of 0.2 and a final dense layer with 

softmax activation). We used Adaptive Moment Estimation as the optimizer, monitoring the 

validation loss to save the best model and plotting the training and validation losses and accuracy. 

We used SHAP values to explore the feature importance of our 5-class model with a view of 

gaining insight into the cellular features that drive accurate prediction. 

The accuracy of the model was cross-validated using Stratified K-Fold Cross Validator, where the 

split of the dataset was randomized 10 times independently to validate the accuracy of the model. 

Briefly, data were split into 10 stratified folds preserving the percentage of samples of each class 

across the folds. The model was run 10 times with each fold being used as the test set and the 

remianing 9 folds being used as the training set. Each training set returned by StratifiedKFold was 

split further into training and validation datasets using the stratify parameter. The training, 

validation and test dataset went through the steps of feature scaling followed by creating and 

training the model as described in the single runs. The validation loss was monitored, and the 

best model was saved and evaluated on the test dataset. We then average the performance of 

the 10 test datasets and report the mean and standard deviation. 
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The data to highlight the interactions between mitochondria and lysosomes, was generated with 

single-molecule localization microscopy (resolution of 20 nm) to visualize the contacts. The 

tabular data (lists in SFigure 2a) generated from 5 plates (number of cells; controls = 845,143 

mitophagy = 644,457, 3xSNCA = 101,158, a-Syn oligomer =33,671, Complex 1 = 15,751) were 

processed for data exploration and feature engineering. We then split the data into training (n = 

1,049,715), validation (n = 328,036) and test (n= 262,429) datasets. The features were scaled 

per control in each plate separately using the Power Transformer scaler. The scaling factor, 

lambda, was examined in the training dataset and one feature (Lysosome texture SER Hole 0 px) 

with high variance across plates (lambda >50) was excluded from the training, validation and test 

datasets. The controls were excluded from the datasets after feature scaling resulting in n= 

508,415 in the training dataset, 159,234 in the validation and 127,388 in the test dataset. We 

designed and trained a Dense Neural Network using Tensorflow, with the same model structure 

described for the tabular data above and illustrated in Figure 3a. We trained with a batch size of 

256 and stopped if the validation loss did not improve for 50 consecutive epochs or the number 

of epochs exceeded 500. The same model structure was used to build the classifier to predict the 

5 classes.  

For image models, each of the 1024 x 1024 pixels high-throughput images, consisting of 100-400 

neuronal cells (each neuron consists of approximately 900-22,500 pixels), was sliced into an 8 x 

8 tiled image; 3x SNCA (n = 7983), Oligomer (n = 8307), Complex 1 (n = 11875), Mitophagy (n = 

13692), and one control group (n= 22,461) that contained 1-20 cells per sliced image. After 

cropping, dark images due to few numbers of cells contained were removed by applying a cut-off 

of 0.1 on the mean intensity threshold and a variance threshold of 0.0275. The image tiles were 

shuffled and resized to 84 x 84 and split into training (n= 51,454) and test (n= 12,864) datasets. 

The training data was then further split into training (n = 41,163) and validation (n = 10,291) 
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datasets and shuffled before batching. The neural network was implemented using Tensorflow 

(see Figure 5a for the architecture). 

 

Data and software availability  

Image processing pipelines, all tabular data and whole images (before tiling) are publicly available 

as deposited in Zenodo under the access number 5823423 (DOI: 10.5281/zenodo.5823423). The 

codes for the models are available at https://github.com/Minee-Liane-Choi/Gandhi-PD-Classifier-

2022. 
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SUPPLEMENTARY FIGURES 

 

SFigure 1. Supplementary data for the main Figure 3. a. The features regarding three key organelles, 

nucleus (Hoechst3337), mitochondria (TMRM) and lysosome (Lyso) used to train tabular data. 

Morphologically defined features are included such as cell areas, expression intensity, the number of spot, 

roundness, length and width. SER texture features are also included defined as Spot, Hole, Edge, Ridge, 

Valley, Saddle, Bright and Dark which measure local patterns of pixel intensity providing the structural 

information of the organelle loading (reviewed here (Di Cataldo and Ficarra, 2017) (Cretin et al., 2021). b. 

The Loss and Accuracy curve (training and validation).   
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SFigure 2. Supplementary data for the main Figure 4. a. Cell profiling features for the lysosomal features 

that contact mitochondria. b. The plot shows the average scaling factor, with standard error, for control 

distribution across plates for the lysosomal features that contact mitochondria in the training dataset. The 

features were scaled per control in each plate using the Power Transformer scaler. Those with a high 

variance in the scaling factor, lambda, (> 50) in the training dataset, such as ‘Lysosome texture SER Hole’ 

feature were excluded from the training, validation and test dataset. ci & ii. ROC-AUG (ci) and the Loss 

and Accuracy curve (training and validation, cii) by Stratified K-Fold Cross-Validation of the model to identify 

aggregation vs mitochondrial toxicity group. d. Confusion matrix of 5-classes model training on the selected 

data from the mitochondrial and lysosomal co-localization. 
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SFigure 3. Supportive data for the main Figure 5. a. Examples of 8x8 sliced images that merged each 

of Hoechst, TMRM and Lysotracker images from the test set that are predicted above 99.99% accuracy 

from each class. b. The Loss and Accuracy curve (training and validation).   
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SFigure 4. Supplementary data for the main Figure 6. The loss and accuracy curve (training and 

validation) of the tile-based images of mitochondria alone (a), lysosome alone (b) and both together (c).  
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