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Abstract 

Wool traits of rabbits are important in fiber production and model organism research 

on hair growth, while the genetic architecture remains obscure. In this study, we 

focused on wool characteristics in Angora rabbits, a well-known fiber breed. 

Balancing genotyping cost and variant detection, we proposed low-coverage whole 

genome sequencing (LCS) followed by genotype imputation for genotyping. Different 

genotype imputation strategies, sequencing coverages and sample sizes were 

compared, and we found by BaseVar + STITCH, genotyping reached high accuracy 

(>0.97) at a depth of 1.0X and a sample size > 300. Multivariate GWAS followed by 

conditional GWAS and confidence interval estimation of QTLs were used to reveal 

the genetic architecture of wool traits. Six QTLs were detected with phenotypic 

variation contribution ranging from 0.42% to 7.50%. Gene-level mapping implicated 

FGF10 associated with fiber growth and diameter, which supported previous function 

research on fibroblast growth factor family in other species and provided genetic 

information for wool rabbit breeding. We suggest LCS as a cost-effective alternative 

for assessing common variants. GWAS combined with LCS can excavate QTLs and 

fine-map genes associated with quantitative traits. This study provides a powerful 

analysis mentality for investigating complex traits, which lays the foundation for 

genomic breeding. 

Keywords: low-coverage sequencing; GWAS; wool traits; genetic architecture; 

rabbits 

 

 

INTRODUCTION 

Genome-wide association studies (GWAS) have delivered new insights into the 

biology and genetic architecture of complex traits. In the past decades, GWAS 

accelerated the rate of gene discovery to an unprecedented scale, identifying many 

replicated genetic variants associated with complex diseases and quantitative traits in 

livestock, plants, humans and model organisms (da Silva Xavier et al., 2013, Huang et 

al., 2017, Freebern et al., 2020, Qin et al., 2021). Phenotypic variations of complex 

traits are always caused by the cumulative effect of numerous common variants, i.e., 

polygenic, so high marker density GWAS could provide novel insights into the 

genomic architecture (Kainer et al., 2019). The traditional approach for high marker 

density requires two distinct genetic testing technologies: high coverage sequencing 

of whole genome and a genome-wide genotyping array followed by imputation. 

Considering the cost of population sequencing and the case of lacking in chip array, 

low-coverage whole genome sequencing (LCS) followed by imputation is a much 

more affordable alternative for assessing common genetic variants and testing the 

association of millions of variants (Loos, 2020). Furthermore, it has been proposed to 

increase the discovery power of trait-associated and/or causative genetic variants 

(Ros-Freixedes et al., 2017, Loos, 2020). At the present stage, LCS has been widely 

used to accurately assess common variants in GWAS. Studies showed that 0.5-1X 

LCS performed comparably to commonly used low-density GWAS arrays (Martin et 

al., 2021). LCS at a depth of 1X was able to find signals missed by standard 
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imputation of SNP arrays (Gilly et al., 2016). A more systematic examination of the 

power of GWAS suggested that 1X LCS sequencing allows discovering up to twice as 

many associations as standard SNP array imputation (Gilly et al., 2019). LCS at a 

depth of ≥4X captured variants of all frequencies more accurately than all commonly 

used GWAS arrays investigated at a comparable cost (Martin et al., 2021).  

The LCS approach (LCS followed by imputation) exploits the fact that individuals 

in the same cohort are sufficiently related to share large genome segments (Ros-

Freixedes et al., 2017). Missing genotypes in LCS data are imputed using local 

linkage patterns to infer unknown genotypes in target samples from known genotypes. 

Current available tools for imputation of LCS data include STITCH (Davies et al., 

2016), Beagle (Browning S.R. and B.L., 2007), GeneImp (Spiliopoulou et al., 2017), 

GLIMPSE (Rubinacci et al., 2021) and loimpute (Wasik et al., 2021). The methods 

are two typical ways to obtain imputed genotypes: with a haplotype reference panel 

and without reference panels. STITCH (Davies et al., 2016) imputes genotype based 

only on sequencing read data, without requiring additional reference panels or array 

data, and is applicable in settings of extremely low sequencing coverage (Liu et al., 

2018a, Meier et al., 2021). The others are imputation tools based on reference panel 

information, for example, GLIMPSE phases and imputes LCS data using large 

reference panels (Rubinacci et al., 2021). In addition, Beagle is developed for 

genotype imputation tailored to work both with and without reference panels 

(Browning S.R. and B.L., 2007). 

Since both library and sequencing costs decrease, LCS has become increasingly 

attractive for obtaining genotyping information of farm animals (Meier et al., 2021). 

Angora rabbits are well known farm animals for wool production. The economic 

value of Angora wool depends mainly on the texture of rabbit hair including fiber 

diameter, length and so on. In this study, we generated the accurate and dense 

genotypes of Angora rabbits with a cost-efficient LCS approach by demonstrating the 

imputation performance across five levels of sequencing coverages and six levels of 

sample sizes using three imputation strategies (BaseVar + STITCH, Bcftools + 

Beagle4 and GATK + Beagle5). To reveal the genetic architecture of complex wool 

traits in Angora rabbits, we performed GWAS of six important economic traits at 

various time points with high resolution. Furthermore, we developed a conditional 

GWAS and the drop (∆) in log-transformed P values in multivariate linear mixed 

model to confirm confidence intervals of QTLs which aided in candidate genes 

identification in high-resolution.  

RESULTS 

LCS imputation pipeline 

In order to accurately capture variants in the rabbit genome, we compared three 

genotyping pipelines using LCS data, and used the high-depth sequencing data results 

on chromosome 11 (chr11) as the gold standard for accuracy evaluation (Fig. 1). 

Chr11 was used because of its similar LD extent to the whole genome (shown in the 

results of genetic architecture below) and the medium length. Genotypic imputation of 

genetic variants was performed in the 600 rabbits with a down-sampled sequencing 

depth of 2X. Among the reference-panel-free methods, highly accurate genotypes 
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were obtained using the pipeline BaseVar + STITCH with an average GC of 99.08% 

and an average GA of 0.98, while by neither Bcftools + Beagle4 nor GATK + Beagle5, 

GC didn’t exceed 95.73%, and GA didn’t exceed 0.88 (Fig. 2A-B, Table S1).  

The pattern of imputation performance in relation to minor allele frequency (MAF) 

was investigated among the pipelines. Using the pipeline BaseVar + STITCH, high 

and steady imputation accuracy (an average GC of 98.98% and GC ranging from 

98.82% to 99.31%, an average GA of 0.98 and GA ranging from 0.97 to 0.98) was 

obtained for common variants with MAF ranging from 0.05 to 0.5. However, in the 

MAF range, imputation accuracy was a bit poor and greatly affected by MAF with 

GC waving from 84.66% to 93.10% and GA waving from 0.75 to 0.80 by Bcftools + 

Beagle4, and it was worse and more fluctuant by GATK + Beagle5 with GC waving 

from 64.02% to 80.60% and GA waving from 0.42 to 0.63. For SNPs with MAF 

lower than 0.05, both the genotypic accuracy and the genotypic concordance tended to 

decrease and were hugely affected by MAF (Fig. 2C-D, Table S2), showing the 

imputation accuracy of rare variants could be highly influenced by MAF. Based on 

the above results, the pipeline BaseVar + STITCH performed best and was used for 

the subsequent analyses. 

Effect of sample size and sequencing depth on imputation 

In order to examine the influence of sample size and sequence coverage to imputation 

accuracy, we performed genotypic imputation by the pipeline BaseVar + STITCH 

with different numbers of samples (100, 200, 300, 400, 500 and 600) and sequencing 

depths (0.1X, 0.5X, 1.0X, 1.5X, 2.0X) in this population. As expected, genotypic 

concordance and genotypic accuracy generally increased as sample size and 

sequencing depth increased. Especially, when sample size increased from 100 to 300 

and sequence coverage increased from 0.1X to 1.0X, the imputation accuracy was 

hugely improved. For the > 1X coverage, a sample size >300 had little effect on 

imputation performance, and showed to guarantee the credibility of genotyping (Fig. 

2E-F, Table S3). 

Tagging SNPs 

We retained 18,577,154 high-quality imputed SNPs by a two-step imputation using 

STITCH followed by Beagle and stringent quality control. The SNP density 

corresponded to 1 SNP per 150 bp in the rabbit genome. The variants were distributed 

uniformly across the genome (Fig. 3A). The majority of the identified SNPs were 

located in intergenic regions (57.78%) and intronic regions (35.50%). The exonic 

regions contained 0.52% of the SNPs. A total of 72,552 synonymous SNPs and 

23,328 nonsynonymous SNPs of exons were identified, for a 

nonsynonymous/synonymous ratio of 0.32 (Table S4). 

Genetic architecture 

The population structure of the 629 rabbits was assessed by performing PCA. The 

relationships between the first five principal components show no distinct evidence of 

population structure (Fig. 3B). LD analysis indicated that the physical distance 

between SNPs occurred at ~6.5 kb (r2 = 0.50, Fig. 3C and Table S5). The average 

pairwise LD r2 values decreased to 0.16 at 500 kb and to 0.11 at 1 Mb. The 

distribution of r2 with respect to the physical distance for each chromosome was 
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different. The slowest LD decay was observed for chr15, and the fastest was observed 

for chr21. Chr11 showed similar LD extent to the whole genome. Combining CLR 

and Pi analyses, we identified 151 potential selective-sweep regions overlapping with 

309 candidate genes (Fig. S1, Table S6). The regions displayed significant 

overrepresentation of genes involved in immunity (P = 4.10E-12) and vitamin B6 

metabolism (P = 1.30E-04) (Table S7). Immune system is one of the strongly targeted 

functions by natural selection during evolution because it serves as the backbone of 

defence against pathogens (Quintana-Murci, 2019, Barreiro and Quintana-Murci, 

2020, Gerardo et al., 2020). Vitamin B6 is actively involved in protein metabolism as 

a catalyst in the body. It activates the enzymes and chemical reactions that start the 

metabolism of the hair proteins, keratin and melanin, in the hair follicles. This makes 

the hair follicles get enough keratin and melanin, which promotes hair growth and 

hair renewal. On the basis of clinical and trichological studies, vitamin B6 was 

revealed to induces improvement in the hair condition and reduce the hair loss 

(Brzezinska-Wcislo, 2001, D'Agostini et al., 2007). In addition, several regions 

involving in tryptophan, valine, leucine, isoleucine, nicotinate, nicotinamide, tyrosine 

and retinol metabolism showed selective signatures (Table S7).  

In order to explore further detect genomic footprints of selection, 14 domesticated 

rabbits were sampled from the population to analyze genetic diversity and population 

structure by comparing to their wild progenitor, 14 wild rabbits (Oryctolagus 

cuniculus). A maximum-likelihood tree showed that the genotypes were classified into 

obvious two divergent groups (Fig. 4A). The PCA showed diversity among the rabbit 

genotypes with the first two principal components explaining 8.26% and 1.48% of the 

genetic variance, respectively (Fig. 4B). For the Angora population, all individuals 

were grouped together and showed a consistent genetic relationship, while for the 

wild population, the individuals were relative dispersive probably because of different 

geographical origins. What’s more, population structure was assessed for K values 

ranging from 1 to 5. the most significant change of likelihood occurred when K 

increased from 1 to 2 (Fig. 4C). Thus, the most likely value of K was 2. At K = 2, the 

two populations were separated from each other, and their genetic backgrounds are 

clearly significantly different. Such a partitioning of the population was consistent 

with significant delta K values (Fig. 4D). This was also in accordance with the 

maximum-likelihood tree (Fig. 4A). LD was calculated to provide information for 

population history. LD between markers decreased as physical distance between 

markers increased, and the degree of LD attenuation hugely differed between the two 

populations. From the current samples, the wild population exhibited an extremely 

rapid LD decay, indicating the high diversity of the wild ancestors. However, the 

Angora population showed a slow decay of LD, and markers separated by 350 kb 

showed r2 higher than 0.2, suggesting high inbreeding potentially due to artificial 

selection (Fig. 4E and Table S8). Furthermore, using the top 5% of FST values 

and θπ ratio (cutoffs: FST > 1.87 and log2 (θπ ratio (θπ wild/θπ Angora) ≥4.09), we identified 

464 candidate domestication regions overlapping 775 genes under selection in the 

domestic rabbits (Fig. 4F, Table S9 and S10). The enrichment of genes was mainly 

involved in nervous system probably reflecting tameness and aggression during 
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domestication (Carneiro et al., 2014).  

Genome-wide association analyses 

Phenotypes of six traits (LFW, DFW, CVDFW, LCW, RCW and BW) and genotypes 

including up to 18,577,154 autosomal SNPs after imputation were available for 629 

rabbits. For association testing, we used multivariate linear mixed model as 

implemented in our developed software GMAT (https://github.com/chaoning/GMAT). 

After LD-based pruning with PLINK, there were 391,976 SNPs in approximate 

linkage equilibrium with each other and the genome-wide significance level was 

1.28e-8 after Bonferroni correction. We showed significant SNPs associated with 

DFW, CVDFW, LFW and BW in Table S11-S14. Circle Manhattan plot showing 

significant associations between SNPs and the three traits (DFW, CVDFW, LFW and 

BW) was given in Fig. 5. Quantile-quantile plot and Manhattan plot for each trait 

were given in Fig. S2-S3. To sum up, a total of six (five non-overlapping) quantitative 

trait loci (QTLs, Table 1) were identified for the traits of CVDFW, DFW and BW, and 

totally 6 independent top significant SNPs are located for the three traits. No QTLs 

were identified for LFW, LCW or RCW.  

Conditional genome-wide association studies were applied with significant lead 

SNPs regarded as fixed regression. No significant SNPs were located after conditional 

analyses, which indicated all the significant SNPs in each QTL were in linkage 

disequilibrium with the most significant SNP and the causal SNP might be at or 

nearby it. To assist gene identification, the 95% confidence interval (95%CI) of each 

QTL was estimated using simulations based on the drop in logarithm of P values  

(Nicod et al., 2016). Among the QTLs, the width of 95%CI averaged 0.71 Mb (7.43 

kb - 1.46 Mb) with 67% less than 1 Mb (Table 1). 

Heritability estimation based on genome-wide SNPs and by QTLs 

SNP-based heritability was estimated for the six traits resulting in a range of 7.45-

39.05% indicating a low to medium heritability, with a mean value of 18.98% (Table 

S15). Among them, the heritability was highest for BW, and lowest for CVDFW. In 

order to assess the heritability explained by detected QTLs, the effect size of the 

overall decreased proportion of heritability was analyzed by using the most significant 

SNPs distributed in these QTLs as fixed effects. The QTLs associated with the three 

traits explained 2.28-8.52% of the phenotypic variation (Table S16). Among them, 

DFW exhibited the highest QTL effect with a high phenotypic variation explained by 

QTL2 (7.50%). CVDFW showed a low QTL effect, similar to its SNP-based 

heritability.  

Candidate genes identification in high-resolution QTLs 

The number of annotated genes covered by the QTLs (for 95%CI) ranged from 0 to 

61, with a mean of 12 genes (Table 1 and Table S17). Among them, three contained 

less than 10 genes in the 95% confidence interval. Two QTLs for DFW did not 

overlap any gene because of small width, then we found the nearest upstream and 

downstream genes to the QTLs with distances of 243,754 bp and 279,302 bp away 

from QTL1 and 474,777 bp and 37,659 bp away from QTL2. QTLs containing 

smaller numbers of genes were focused on because they provided a starting point for 

functional investigations. For rabbit wool traits, the QTL for CVDFW on chr11 
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contained six genes. Among them, FGF10 caught our attention. The most significant 

locus (chr11: 65,412,003 bp, P = 1.42E-11) associated with fine fiber was detected 

closest to the FGF10 gene (chr11: 64,989,932-65,080,400) that was also the nearest 

gene to the QTL for DFW (chr11: 64,944,841-64,952,273). Fibroblast growth factor 

10 (FGF10) is a member of the fibroblast growth factor (FGF) family possessing 

broad mitogenic and cell survival activities and famous for regulation of hair 

morphogenesis and cycle hair growth in human and mice (Greco et al., 2009, 

Kinoshita-Ise et al., 2020).  

For body weight, QTLs located in chr2 and chr12 contained four and three genes, 

respectively. Among the genes, several have been announced the association in 

previous studies. FAM184B was associated with chicken body weight by genome-

wide study (Zhang et al., 2015, Fan et al., 2017). The DCAF16-NCAPG region was 

susceptible for average daily gain in cattle from the multi-strategy GWASs (Zhang et 

al., 2016). NCAPG-LCORL is known as a locus for adult human height, and have 

been detected for association with body weight/height in cattle and horses and for 

selective sweep in dogs and pigs (Takasuga, 2016). 

DISCUSSION 

Wool traits are important in rabbits, because the fur is one of the most preferred 

natural fibers among the textile industries. A well-known breed for fiber production is 

the Angora rabbit. The fibers obtained from its wool are usually chosen for the 

production of luxury textile materials. In addition, the rabbit was first and has long 

been used as models to improve the understanding of human maladies, and was 

crucial (Esteves et al., 2018), for example, a wool rabbit is considered as an extra 

model in terms of hair growth. However, there is not an abundance of research on 

rabbit fiber, with the most studies on hair growth being focused on humans, sheep and 

mice (Chai et al., 2019, Gur-Cohen et al., 2019, Plowman et al., 2020, Zhao et al., 

2021a). In this study, we focus on wool characteristics such as diameter and length 

that are essential parameters of the wool trait applied in wool rabbit breeding, as well 

as important indicators of the spinning efficiency of the wool. To investigate the 

genetic foundation underlying wool traits of Angora rabbits, firstly we cost-effectively 

explore high-density SNP markers using ultra-low coverage whole genome 

sequencing combined with three genotype imputation strategies (BaseVar + STITCH, 

Bcftools + Beagle4 and GATK + Beagle5) and with several levels of sequencing 

coverages and sample sizes to guarantee imputation performance; then we perform 

GWAS and conditional GWAS in multivariate linear mixed model in sequence, and 

map QTLs into 95% confidence intervals for candidate genes of high-resolution to 

dissect the genetic architecture of complex wool traits in rabbits. 

Genotype imputation carried out across the whole genome boosts the number of 

SNPs. It has been used widely in GWAS to provide a high-resolution view of an 

associated region, and to increases the chance that a causal SNP can be directly 

identified (Marchini J. and B., 2010). LCS combined with imputation plays out 

advantages in obtaining genotyping information since both DNA library and 

sequencing cost decreased (Nicod et al., 2016, Meier et al., 2021) especially when 

lacking in microarray (Davies et al., 2016, Davies et al., 2021).  It shows to increase 
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performance in a number of scenarios with different outcomes and study designs. We 

refined and compared genetic variant imputation pipelines using commonly used tools 

for sequence data and tools specially designed for LCS data based on non-reference 

panels. Beagle, as one of the most frequently used imputation tools, was attempted to 

determine whether suitable for LCS data following the conventional SNP calling 

software Bcftools/GATK. STITCH and its ally BaseVar, which were designed for 

genotype imputation in LCS data, were applied in this study. As expected, STITCH 

following BaseVar greatly outperformed the other pipelines, showing GATK is not 

suitable for LCS data. As a proof of principle, we imputed genotypes for five levels of 

LCS coverages in overlapping samples of six sizes to assess how sequencing depth 

and sample size influence power in imputation. We unraveled that sample size hugely 

affected imputation accuracy at an ultra-low sequencing coverage (<1.0X). At a 

sequencing depth of 1.0X, the high imputation accuracy by BaseVar + STITCH could 

be reached and remain stable with genotypic concordance >98.84% and genotypic 

accuracy >0.97 when a sample size was larger than 300. The patterns of imputation 

accuracy in different strategies and with several levels of sequencing coverages and 

sample sizes in this study are in line with previous studies (Davies et al., 2016, Yang 

et al., 2021, Zhao et al., 2021b). 

Comparing to SNP chips, LCS surmounts the problem induced by the 

ascertainment of common arrays, accurately captures genetic variation in an unbiased 

manner, effectively identifies novel variation, and enhances variant discovery 

particularly in underrepresented populations (Martin et al., 2021).  In terms of cost, 

LCS at the sequencing depth of 1X is comparable to and can even be lower than SNP 

array. In addition, despite the decrease in unit sequencing cost, the cost of high-depth 

sequencing of a large population remains substantial. Comparing to high-coverage 

sequencing, LCS can self-evidently save tens of times of genotyping cost per sample 

in the meantime providing enough allele information, which makes it practicable to 

sequencing larger samples. Therefore, we strongly corroborate that low coverage 

sequencing combining with genotype imputation provides a cost-effective and 

powerful alternative to SNP arrays and high-depth sequencing for more powerful 

genetic analyses.  

With a large sample size and a high-resolution genome-screen, recombination 

events could be contained to accurately detect causative variants that underlie a 

quantitative trait(Ros-Freixedes et al., 2017, Loos, 2020). Using whole-genome SNPs 

explored by low coverage sequencing combining with genotype imputation in a 

population of 629 rabbits, six QTLs associated with growth and wool traits were 

recognized, with phenotypic variations ranging from 0.42% to 7.50%. After fine 

mapping, we focus on the FGF10 gene associated with fiber growth and diameter. 

Several FGF members, including FGF10, are reported to regulate cycle hair growth 

mainly to promote the hair follicle (HF) telogen anagen transition via providing the 

stimulatory signals to the HF stem cells and/or their progenies residing in the HF 

bulge and secondary hair germ (Greco et al., 2009, Mardaryev et al., 2010, Wei-hong 

Lin, 2015). In addition, FGFs might play an important role in hair morphogenesis. For 

example, FGF2  (Takabayashi et al., 2016), FGF7 (Seo et al., 2016), FGF9 
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(Kinoshita-Ise et al., 2020), FGF10 (Schlake, 2005) and so on have been studied to 

contribute to a different fiber diameter in human and mice. What’s more, FGF7 and 

FGF10 efficiently and specifically bind to FGFR2-IIIb, one of several diverse protein 

variants with distinct binding characteristics encoded by the FGFR2 gene. Transgenic 

mice deficient for FGFR2-IIIb suffer from abnormally thin hairs, characterized by 

single columns of medulla cells in all hair types (Schlake, 2005).  

Response to strong artificial selection acts on standing genetic variation and 

completely fixed mutations across many genomic regions, which reflected the long-

term directional selection history for wool traits of the Angora rabbit population and 

probably explained few QTLs detected for some fiber traits. The LD decay and 

quantile-quantile plots reflected the strong artificial selection. LD extended over a 

long distance in the Angora rabbit genome, in which markers were separated by 300 

kb showing r2 higher than 0.2. Quantile-quantile plots showed deviation from the 

expected values extended over a large range of P values. What’s more, few QTLs 

detected for other fiber traits might be due to polygenic genetic architectures, i.e., 

small effect of individual mutations contributing to the total genetic variation but not 

reaching the significant level for a typical complex trait.  

CONCLUSIONS 

Low coverage sequencing combined with genotype imputation allows accurate 

achievement of high-density genotypes even without a good reference panel. GWAS 

based on LCS data excavates QTLs and fine-maps genes associated with quantitative 

traits. This study provides a cost-effective analysis pipeline for facilitating our 

understanding of genetic architecture of complex traits, which lays the foundation for 

genomic breeding. As accumulation of sequence data, we wish the pipeline will 

contribute to comprehend genetic mechanism behind important economic traits and to 

increase genetic progress in livestock. 

MATERIALS AND METHODS 

Animals and phenotypes 

A total of 629 Agora rabbits (298 males and 331 females) used for this study were 

from same batch. All rabbits were housed under the same conditions on a farm, 

including diet, water and temperature. The experimental procedures in this study were 

approved by the Animal Care and Use Committee of Shandong Agricultural 

University. The associated wool traits including length of fine wool (LFW), diameter 

of fine wool (DFW), coefficient of variation of diameter of fine wool (CVDFW), 

length of coarse wool (LCW) and rate of coarse wool (RCW) were measured at 70, 

140 and 210 days of age. The wool samples from center of lateral body were shaved 

with clippers. In addition, body weight (BW) was measured including weaning weight 

at 35 days and body weight at 70, 140 and 210 days of age. 

Sequencing 

Ear samples were collected from the individuals. Genomic DNA was isolated using 

the Qiagen MinElute Kit. Genomic DNA from each sample was used to construct a 

paired-end library (PE150) with an insert size of ~ 350 bp. All libraries were 

sequenced on the BGISEQ-500 platform. An average of 3.84X genomic coverage for 

627 samples was sequenced, with the read depth varying from 1.51X to 8.03X. In 
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addition, 15 samples were deep-sequenced at 10X coverage for genotype validation. 

We generated a total of 7305 gigabases of genomic sequence data.  

Preprocessing of sequence data 

Read quality was assessed using FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) with a focus on base 

quality scores, GC content, N content and sequence duplication levels. Adapters and 

low-quality bases were removed using Trimmomatic as “java -jar trimmomatic-

0.38.jar PE sample_1.fq.gz    sample_2.fq.gz 1_paired.fq.gz 1_unpaired.fq.gz 

2_paired.fq.gz 2_unpaired.fq.gz ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 

SLIDINGWINDOW:5:20 LEADING:5 TRAILING:5 MINLEN:50”  (Bolger et al., 

2014). Sample reads were mapped to the rabbit reference sequence 

GCF_000003625.3 (Oryctolagus cuniculus) using BWA-mem (Li and Durbin, 2009). 

All PCR duplicates were removed using Picard tools 

(https://broadinstitute.github.io/picard/).  

Genotyping using high-depth sequencing 

Variant calling was performed using GATK4 best practices (McKenna et al., 2010). 

Base quality score realignment and recalibration were applied to each sample, and 

haplotypecaller was used for variant discovery. Average coverage was estimated using 

Qualimap 2.2.1. To simulate low-pass sequencing, the 15 BAM files were 

downsampled to 0.1X, 0.5X, 1.0X, 1.5X and 2.0X coverage using Picard. 

Genotype imputation using low-coverage sequencing 

Due to a lack of a reference panel, the imputation tools that can work without 

reference information, STITCH and Beagle, were employed to impute genotype of the 

rabbits using low-coverage sequencing data, combining with different variant calling 

tools including traditional methods (GATK and SAMtools followed by Bcftools) and 

the special method for low-pass WGS data (BaseVar). Three imputation pipelines 

were compared, including (1) BaseVar + STITCH: SNPs were called using BaseVar 

(Liu et al., 2018b) and imputed genotype dosages at missing sites using STITCH 

(Davies et al., 2016); (2) Bcftools + Beagle4 (genotype likelihoods): SNPs were 

called using Bcftools (Li, 2011) and then conducted genotype imputation (with 

probabilities, dosage genotype) using Beagle v4.1 (Browning and Browning, 2016); 

(3) GATK + Beagle5: SNPs were called using GATK (McKenna et al., 2010) and then 

conducted genotype imputation using Beagle v5.1 (Browning et al., 2018). The above 

two versions of Beagle impute genotypes by different information, Beagle v4.1 infers 

genotypes from genotype likelihood input data, while Beagle v5.1 does not have this 

capability but provides significantly fast genotype phasing and similar imputation 

accuracy (Browning et al., 2018). 

Assessing imputation accuracy 

The genotypes directly called from high-coverage sequencing are de facto standard 

for validating the imputation of untyped SNPs (the measure of imputation quality). 

The imputation accuracy was assessed by comparing imputed genotypes to high-

coverage genotypes, and was measured with genotypic concordance and genotypic 

accuracy by identifying sites shared across both datasets. Sites were considered shared 

if position, reference allele, and alternate allele were identical. Genotypic 
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concordance (GC) is defined as the proportion of correctly imputed genotypes which 

was identical to the genotype determined using high-coverage sequencing. Genotypic 

accuracy (GA) is defined as Pearson correlation coefficient between imputed 

genotypes and typed genotypes by high-coverage sequencing. The performance of the 

three cost-effective genotype imputation strategies described above was evaluated by 

the two criteria. Furthermore, in order to examine the influence of the number of 

samples and sequence coverage to imputation representation of population genetic 

variations, we compared imputation accuracy of altering sample size and sequencing 

depth in this population. Genotypic concordance and genotypic accuracy across 

different coverages (0.1X, 0.5X, 1.0X, 1.5X, 2.0X) and populations (100, 200, 300, 

400, 500 and 600) by down-sampling were calculated to evaluate the influence of 

sequencing depth and sample size on imputation accuracy. 

Selection of tagging SNPs and annotation 

The SNPs (directly genotyped and imputed by STITCH) were filtered for an 

imputation info score >0.4 using Bcftools, and then with ‘MAF > 0.05, genotype 

missing rate < 0.1 and a Hardy-Weinberg equilibrium (HWE) p-value > 1E-6’ using 

PLINK (Chang et al., 2015). The sites which were missing in 10% of the individuals 

after STITCH imputation were then imputed by Beagle v5.1.  

SNPs were annotated and categorized as variations in exonic regions, intronic 

regions and intergenic regions using ANNOVAR (Wang et al., 2010) based on the 

rabbit reference genome. Those in exons were further classified into synonymous or 

non-synonymous SNPs. 

Population genetics analysis 

In the population of 629 rabbit, principal component analyses (PCA) were performed 

using the GCTA software (Yang et al., 2011). The first five principal components were 

extracted and visualized in R. Linkage disequilibrium (LD) decay was measured 

across the whole genome using r2 by PopLDdecay (Zhang et al., 2019). In order to 

analyze selective sweep regions, CLR were implemented using SweeD (Pavlidis et al., 

2013), and nucleotide diversity (Pi) were implemented using Vcftools (Danecek et al., 

2011) simultaneously with a window size set to 50 kb and a step size of 10 kb. Sliding 

windows with the top 1% of CLR and Pi values in the whole genome were regarded 

as putative selection regions. 

Domestication and centuries of selective breeding have changed genomes of rabbit 

breeds to respond to environmental challenges and human needs. In order to explore 

further detect genomic footprints of selection, 14 domesticated rabbits were sampled 

from the population to analyze genetic diversity and population structure by 

comparing to their wild progenitor, 14 wild rabbits (Oryctolagus cuniculus). A 

maximum-likelihood tree was constructed using the phylogeny program IQ-TREE2. 

PCA of the first two principal components was visualized. Linkage disequilibrium 

(LD) decay was compared between two groups. The genetic structure of the two 

populations was analyzed with ADMIXTURE (Alexander et al., 2009) with K values 

ranging from 1 to 5. K-value (K = 2) had the lowest cross validation error (CV-error). 

Pi analysis was applied to estimate the degree of variability within each group, and 

the fixation statistic FST was applied to explain population differentiation on the basis 
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of the variance of allele frequencies between two groups. Both Pi and FST were 

calculated using a sliding window analysis with a window size of 50 kb and a step 

size of 10 kb by Vcftools. The candidate selective sweeps discovered with the top 5% 

of Pi and FST were treated as highly divergent windows. Adjacent windows were 

merged into a single divergent region and annotated.  

Functional enrichment analysis was performed by the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) to analyze gene ontology (GO) and 

Kyoto Encyclopedia of Gene and Genome (KEGG) pathway (Huang d W et al., 2009). 

The P-value of the gene enrichment was corrected by Benjamini-Hochberg FDR 

(false discovery rate). 

Estimation of whole-genome SNP-based heritability 

In our studies, we used three-trait model to analyze wool traits at three time points and 

four-trait model for body weight.  The three-trait model for the heritability estimations 

of different traits is formulated as 

 3( )=  + +y I X b u e  (1) 

where 
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Here, iy  is a vector of phenotypic values for the trait at the ith time point; ib  is a 

vector of fixed effects (population mean, sex and rabbit house); iu  is a vector of 

additive polygenic genetic effects; ie  is a vector of residual errors. X  is the design 

matrix for the fixed effects;  is the Kronecker product. The distributions of the 

random effects are 
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Here, u  and e  are a 3 3  covariance matrix for the additive polygenic effects and 

residual errors; K  is the genomic relationship matrix. The additive heritability for the 

trait at the ith time point is defined as 

 
,2

,

, ,

u ii

a i

u ii e ii

h


=
 +

 (4) 

where ,u ii  is the additive genetic variance for the ith time point, i.e., the ith diagonal 

element of  u ; ,u ii  is the residual variance for the ith time point, i.e., the ith 
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diagonal element of  e .  

GWAS 

We add the SNP as the fixed effects into the equation (1) to perform multivariate 

GWAS. The model is formulated as 

 3 3( ) ( )=  +  + +y I X b I w α u e  (5) 

where  1 2 3 '  =α . Here, i  is the SNP effect for the trait at the ith time point 

and w  is a vector of SNP genotypes assigned a value of 0, 1 or 2, respectively, for aa, 

Aa and AA.   is the Kronecker product. We constructed the Wald Chi-square test 

statistics to test the significance of the SNP effects 
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Bonferroni correction was adopted to adjust for multiple testing to control false-

positive rates. The threshold for genome-wide significance was 0.05/N, where N was 

the number of effective SNP calculated by the PLINK “--indep-pairwise 50 5 0.2” 

command (Purcell et al., 2007). 

Conditional GWAS 

To confirm whether the significant SNPs within clusters of loci are independent or 

linked due to high linkage disequilibrium, we also performed conditional GWAS with 

significant lead SNP regarded as fixed effect. The model is formulated as 

 3 3 3( ) ( ) ( )lead lead=  +  +  + +y I X b I w α I w α u e  (7) 

where leadα  is the lead SNP effect and leadw  is a vector of SNP genotypes for the lead 

SNP. 

Confidence interval 

Confidence intervals were estimated by drop log(P) method similarly to previous 

study (Nicod et al., 2016). In the study, we expanded it into multivariate linear mixed 

model. Using the SNP effects estimated with equation (5), we first removed the effect 

of lead SNP at each QTL from the phenotype vector. We random selected 1,000 SNPs 

within the candidate QTL region and assigned them with effect of lead SNP. The 

effects of simulated causal SNPs were added to the above residual phenotype vector, 

one at a time, to produce 1000 simulated datasets. A local association analysis of the 

region using the equation (5) with the simulated phenotype was performed, and the 

drop in log(P) value between top SNP and simulated causal SNP was recorded for 

each dataset. Across the 1,000 simulations, we estimated the distribution of these 

drops in log(P) and used the 95th percentile to determine confidence intervals for the 

original phenotype data. 

Heritability estimation of QTL 

We use the following model to estimate as the QTL heritability 
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 3 3( ) ( )lead lead=  +  + +y I X b I w α u e  (8) 

With the lead SNP added into model, we re-calculated the whole-genome SNP-based 

heritability, which was defined as 
2

,'a ih . The QTL heritability was estimated using the 

following equation 

 
2 2 2

, ,'QTL a i a ih h h= −  (9) 

where 
2

,a ih  is the whole-genome SNP-based heritability from equation (4). 

Data availability 

The sequencing data used for analysis is available at NCBI (PRJNA810279). SNP-

based heritability, GWAS, conditional GWAS, confidence interval and QTL 

heritability estimation were analyzed with our self-written software available at 

https://github.com/chaoning/GMAT. 
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Table 1. QTL mappings and the 95% confidence interval (95%CI) of each QTL 

Trait QTL Chr 95%CI 95%CI width Top SNP Allele0 Allele1 MAF P Gene 1 

DFW QTL1 7 138,910,411  139,598,335  687,925  138,975,863  T C 0.053963 1.36E-07 2   
QTL2 11 64,944,841  64,952,273  7,433  64,951,174  G C 0.071669 7.12E-23 2  

CVDFW QTL1 11 64,270,630  65,432,659  1,162,030  65,412,003  A T 0.079723 1.42E-11 6  

BW QTL1 2 8,257,045  8,923,024  665,980  8,877,739  G A 0.174952 7.33E-12 4  
QTL2 4 36,704,911  38,161,753  1,456,843  38,127,528  A G 0.083174 5.93E-07 61 

  QTL3 12 148,360,582  148,642,693  282,112  148,369,145  G A 0.083174 4.61E-07 3 

1. QTLs for DFW contained no genes, and the nearest genes in the flanking regions were annotated. 
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Fig. 1. Analysis pipeline for low coverage sequence data and genetic architecture. 
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Fig. 2. Genotype imputation performance compared among the three pipelines (red: 

BaseVar + STITCH, green: Bcftools + Beagle4 and blue: GATK + Beagle5) and 

different numbers of samples (100, 200, 300, 400, 500 and 600) and sequencing 

depths (0.1×, 0.5×, 1.0×, 1.5×, 2.0×) by genotypic concordance (the right ones) and 

genotypic accuracy (the left ones). A and B were imputation performance among the 

15 individuals, C and D were among different minor allele frequency, and E and F 

were among different numbers of samples and sequencing depths. 
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Fig. 3. Genetic diversity of the Angora rabbit population. (A) Distribution of SNPs in 

1-Mb windows across the genome. (B) Principal component analyses plotting the first 

to the fifth dimension. (C) The extent of linkage disequilibrium (LD), values were 

mean LD r2 values for all pairs of SNPs binned by distance. The slowest LD decay 

was observed for chr15, and the fastest was observed for chr21. Chr11 showed similar 

LD extent to the whole genome. 
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Fig. 4. Genetic diversity between the Angora and wild rabbit populations. (A) 

Maximum-likelihood tree. (B) Principal component analysis revealing genetic 

differentiation of two populations. (C) Ancestral population analysis (K = 1-5). (D) 

Admixture plots based on different number of assumed ancestors. (E) The extent of 

LD, in which values were mean LD r2 values for all pairs of SNPs binned by distance. 

In all Fig.s, red referred to Angora rabbits and blue referred to wild rabbits. (F) 

Genomic regions with strong selective sweep signals in Angora and wild rabbits. 

Distributions of π ratios (wild/Angora) and Z(FST) values were calculated by 50-kb 

windows with 10-kb steps. Genomic regions under selection during domestication 

were shown as green points located to the top-right regions correspond to the 5% right 

tails of empirical log2 (πwild/πAngora) ratio distribution and the top 5% empirical Z(FST) 

distribution. The vertical and horizontal gray lines represent the top 5% value of 

log2 (πwild/πAngora) (4.09) and Z(FST) (1.87), respectively. 
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Fig. 5. Circle Manhattan plot showing associations between single nucleotide 

polymorphisms and diameter of fine wool (DFW), coefficient of variation of diameter 

of fine wool (CVDFW), length of fine wool (LFW) and body weight (BW), 

respectively (from inside to outside circle), in the Angora rabbit population. The 

threshold lines indicated the genome-wide significance level (-log10(0.05/391,976)) 

after Bonferroni correction.  
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