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Abstract

Wool traits of rabbits are important in fiber production and model organism research
on hair growth, while the genetic architecture remains obscure. In this study, we
focused on wool characteristics in Angora rabbits, a well-known fiber breed.
Balancing genotyping cost and variant detection, we proposed low-coverage whole
genome sequencing (LCS) followed by genotype imputation for genotyping. Different
genotype imputation strategies, sequencing coverages and sample sizes were
compared, and we found by BaseVar + STITCH, genotyping reached high accuracy
(>0.97) at a depth of 1.0X and a sample size > 300. Multivariate GWAS followed by
conditional GWAS and confidence interval estimation of QTLs were used to reveal
the genetic architecture of wool traits. Six QTLs were detected with phenotypic
variation contribution ranging from 0.42% to 7.50%. Gene-level mapping implicated
FGF10 associated with fiber growth and diameter, which supported previous function
research on fibroblast growth factor family in other species and provided genetic
information for wool rabbit breeding. We suggest LCS as a cost-effective alternative
for assessing common variants. GWAS combined with LCS can excavate QTLs and
fine-map genes associated with quantitative traits. This study provides a powerful
analysis mentality for investigating complex traits, which lays the foundation for
genomic breeding.

Keywords: low-coverage sequencing; GWAS; wool traits; genetic architecture;
rabbits

INTRODUCTION

Genome-wide association studies (GWAS) have delivered new insights into the
biology and genetic architecture of complex traits. In the past decades, GWAS
accelerated the rate of gene discovery to an unprecedented scale, identifying many
replicated genetic variants associated with complex diseases and quantitative traits in
livestock, plants, humans and model organisms (da Silva Xavier et al., 2013, Huang et
al., 2017, Freebern et al., 2020, Qin et al., 2021). Phenotypic variations of complex
traits are always caused by the cumulative effect of numerous common variants, i.e.,
polygenic, so high marker density GWAS could provide novel insights into the
genomic architecture (Kainer et al., 2019). The traditional approach for high marker
density requires two distinct genetic testing technologies: high coverage sequencing
of whole genome and a genome-wide genotyping array followed by imputation.
Considering the cost of population sequencing and the case of lacking in chip array,
low-coverage whole genome sequencing (LCS) followed by imputation is a much
more affordable alternative for assessing common genetic variants and testing the
association of millions of variants (Loos, 2020). Furthermore, it has been proposed to
increase the discovery power of trait-associated and/or causative genetic variants
(Ros-Freixedes et al., 2017, Loos, 2020). At the present stage, LCS has been widely
used to accurately assess common variants in GWAS. Studies showed that 0.5-1X
LCS performed comparably to commonly used low-density GWAS arrays (Martin et
al., 2021). LCS at a depth of 1X was able to find signals missed by standard
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imputation of SNP arrays (Gilly et al., 2016). A more systematic examination of the
power of GWAS suggested that 1X LCS sequencing allows discovering up to twice as
many associations as standard SNP array imputation (Gilly et al., 2019). LCS at a
depth of >4X captured variants of all frequencies more accurately than all commonly
used GWAS arrays investigated at a comparable cost (Martin et al., 2021).

The LCS approach (LCS followed by imputation) exploits the fact that individuals
in the same cohort are sufficiently related to share large genome segments (Ros-
Freixedes et al., 2017). Missing genotypes in LCS data are imputed using local
linkage patterns to infer unknown genotypes in target samples from known genotypes.
Current available tools for imputation of LCS data include STITCH (Davies et al.,
2016), Beagle (Browning S.R. and B.L., 2007), Genelmp (Spiliopoulou et al., 2017),
GLIMPSE (Rubinacci et al., 2021) and loimpute (Wasik et al., 2021). The methods
are two typical ways to obtain imputed genotypes: with a haplotype reference panel
and without reference panels. STITCH (Davies et al., 2016) imputes genotype based
only on sequencing read data, without requiring additional reference panels or array
data, and is applicable in settings of extremely low sequencing coverage (Liu et al.,
2018a, Meier et al., 2021). The others are imputation tools based on reference panel
information, for example, GLIMPSE phases and imputes LCS data using large
reference panels (Rubinacci et al.,, 2021). In addition, Beagle is developed for
genotype imputation tailored to work both with and without reference panels
(Browning S.R. and B.L., 2007).

Since both library and sequencing costs decrease, LCS has become increasingly
attractive for obtaining genotyping information of farm animals (Meier et al., 2021).
Angora rabbits are well known farm animals for wool production. The economic
value of Angora wool depends mainly on the texture of rabbit hair including fiber
diameter, length and so on. In this study, we generated the accurate and dense
genotypes of Angora rabbits with a cost-efficient LCS approach by demonstrating the
imputation performance across five levels of sequencing coverages and six levels of
sample sizes using three imputation strategies (BaseVar + STITCH, Bcftools +
Beagle4 and GATK + Beagle5). To reveal the genetic architecture of complex wool
traits in Angora rabbits, we performed GWAS of six important economic traits at
various time points with high resolution. Furthermore, we developed a conditional
GWAS and the drop (A) in log-transformed P values in multivariate linear mixed
model to confirm confidence intervals of QTLs which aided in candidate genes
identification in high-resolution.

RESULTS

LCS imputation pipeline

In order to accurately capture variants in the rabbit genome, we compared three
genotyping pipelines using LCS data, and used the high-depth sequencing data results
on chromosome 11 (chrll) as the gold standard for accuracy evaluation (Fig. 1).
Chrl1 was used because of its similar LD extent to the whole genome (shown in the
results of genetic architecture below) and the medium length. Genotypic imputation of
genetic variants was performed in the 600 rabbits with a down-sampled sequencing
depth of 2X. Among the reference-panel-free methods, highly accurate genotypes
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were obtained using the pipeline BaseVar + STITCH with an average GC of 99.08%
and an average GA of 0.98, while by neither Beftools + Beagle4 nor GATK + Beagle5,
GC didn’t exceed 95.73%, and GA didn’t exceed 0.88 (Fig. 2A-B, Table S1).

The pattern of imputation performance in relation to minor allele frequency (MAF)
was investigated among the pipelines. Using the pipeline BaseVar + STITCH, high
and steady imputation accuracy (an average GC of 98.98% and GC ranging from
98.82% to 99.31%, an average GA of 0.98 and GA ranging from 0.97 to 0.98) was
obtained for common variants with MAF ranging from 0.05 to 0.5. However, in the
MAF range, imputation accuracy was a bit poor and greatly affected by MAF with
GC waving from 84.66% to 93.10% and GA waving from 0.75 to 0.80 by Bcftools +
Beagle4, and it was worse and more fluctuant by GATK + Beagle5 with GC waving
from 64.02% to 80.60% and GA waving from 0.42 to 0.63. For SNPs with MAF
lower than 0.05, both the genotypic accuracy and the genotypic concordance tended to
decrease and were hugely affected by MAF (Fig. 2C-D, Table S2), showing the
imputation accuracy of rare variants could be highly influenced by MAF. Based on
the above results, the pipeline BaseVar + STITCH performed best and was used for
the subsequent analyses.

Effect of sample size and sequencing depth on imputation

In order to examine the influence of sample size and sequence coverage to imputation
accuracy, we performed genotypic imputation by the pipeline BaseVar + STITCH
with different numbers of samples (100, 200, 300, 400, 500 and 600) and sequencing
depths (0.1X, 0.5X, 1.0X, 1.5X, 2.0X) in this population. As expected, genotypic
concordance and genotypic accuracy generally increased as sample size and
sequencing depth increased. Especially, when sample size increased from 100 to 300
and sequence coverage increased from 0.1X to 1.0X, the imputation accuracy was
hugely improved. For the > 1X coverage, a sample size >300 had little effect on
imputation performance, and showed to guarantee the credibility of genotyping (Fig.
2E-F, Table S3).

Tagging SNPs

We retained 18,577,154 high-quality imputed SNPs by a two-step imputation using
STITCH followed by Beagle and stringent quality control. The SNP density
corresponded to 1 SNP per 150 bp in the rabbit genome. The variants were distributed
uniformly across the genome (Fig. 3A). The majority of the identified SNPs were
located in intergenic regions (57.78%) and intronic regions (35.50%). The exonic
regions contained 0.52% of the SNPs. A total of 72,552 synonymous SNPs and
23,328 nonsynonymous SNPs of exons were identified, for a
nonsynonymous/synonymous ratio of 0.32 (Table S4).

Genetic architecture

The population structure of the 629 rabbits was assessed by performing PCA. The
relationships between the first five principal components show no distinct evidence of
population structure (Fig. 3B). LD analysis indicated that the physical distance
between SNPs occurred at ~6.5kb (r2=0.50, Fig. 3C and Table S5). The average
pairwise LD r2 values decreased to 0.16 at 500 kb and to 0.11 at 1 Mb. The
distribution of r2 with respect to the physical distance for each chromosome was
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different. The slowest LD decay was observed for chrl5, and the fastest was observed
for chr21. Chrll showed similar LD extent to the whole genome. Combining CLR
and Pi analyses, we identified 151 potential selective-sweep regions overlapping with
309 candidate genes (Fig. S1, Table S6). The regions displayed significant
overrepresentation of genes involved in immunity (P = 4.10E-12) and vitamin B6
metabolism (P = 1.30E-04) (Table S7). Immune system is one of the strongly targeted
functions by natural selection during evolution because it serves as the backbone of
defence against pathogens (Quintana-Murci, 2019, Barreiro and Quintana-Murci,
2020, Gerardo et al., 2020). Vitamin B6 is actively involved in protein metabolism as
a catalyst in the body. It activates the enzymes and chemical reactions that start the
metabolism of the hair proteins, keratin and melanin, in the hair follicles. This makes
the hair follicles get enough keratin and melanin, which promotes hair growth and
hair renewal. On the basis of clinical and trichological studies, vitamin B6 was
revealed to induces improvement in the hair condition and reduce the hair loss
(Brzezinska-Wcislo, 2001, D'Agostini et al., 2007). In addition, several regions
involving in tryptophan, valine, leucine, isoleucine, nicotinate, nicotinamide, tyrosine
and retinol metabolism showed selective signatures (Table S7).

In order to explore further detect genomic footprints of selection, 14 domesticated
rabbits were sampled from the population to analyze genetic diversity and population
structure by comparing to their wild progenitor, 14 wild rabbits (Oryctolagus
cuniculus). A maximum-likelihood tree showed that the genotypes were classified into
obvious two divergent groups (Fig. 4A). The PCA showed diversity among the rabbit
genotypes with the first two principal components explaining 8.26% and 1.48% of the
genetic variance, respectively (Fig. 4B). For the Angora population, all individuals
were grouped together and showed a consistent genetic relationship, while for the
wild population, the individuals were relative dispersive probably because of different
geographical origins. What’s more, population structure was assessed for K values
ranging from 1 to 5. the most significant change of likelihood occurred when K
increased from 1 to 2 (Fig. 4C). Thus, the most likely value of K was 2. At K = 2, the
two populations were separated from each other, and their genetic backgrounds are
clearly significantly different. Such a partitioning of the population was consistent
with significant delta K values (Fig. 4D). This was also in accordance with the
maximum-likelihood tree (Fig. 4A). LD was calculated to provide information for
population history. LD between markers decreased as physical distance between
markers increased, and the degree of LD attenuation hugely differed between the two
populations. From the current samples, the wild population exhibited an extremely
rapid LD decay, indicating the high diversity of the wild ancestors. However, the
Angora population showed a slow decay of LD, and markers separated by 350 kb
showed r* higher than 0.2, suggesting high inbreeding potentially due to artificial
selection (Fig. 4E and Table S8). Furthermore, using the top 5% of Fsr values
and 6 ratio (cutoffs: F'st> 1.87 and logz (6x ratio (0x wild/Ox Angora) >4.09), we identified
464 candidate domestication regions overlapping 775 genes under selection in the
domestic rabbits (Fig. 4F, Table S9 and S10). The enrichment of genes was mainly
involved in nervous system probably reflecting tameness and aggression during
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domestication (Carneiro et al., 2014).

Genome-wide association analyses

Phenotypes of six traits (LFW, DFW, CVDFW, LCW, RCW and BW) and genotypes
including up to 18,577,154 autosomal SNPs after imputation were available for 629
rabbits. For association testing, we used multivariate linear mixed model as
implemented in our developed software GMAT (https://github.com/chaoning/GMAT).
After LD-based pruning with PLINK, there were 391,976 SNPs in approximate
linkage equilibrium with each other and the genome-wide significance level was
1.28e-8 after Bonferroni correction. We showed significant SNPs associated with
DFW, CVDFW, LFW and BW in Table S11-S14. Circle Manhattan plot showing
significant associations between SNPs and the three traits (DFW, CVDFW, LFW and
BW) was given in Fig. 5. Quantile-quantile plot and Manhattan plot for each trait
were given in Fig. S2-S3. To sum up, a total of six (five non-overlapping) quantitative
trait loci (QTLs, Table 1) were identified for the traits of CVDFW, DFW and BW, and
totally 6 independent top significant SNPs are located for the three traits. No QTLs
were identified for LFW, LCW or RCW.

Conditional genome-wide association studies were applied with significant lead
SNPs regarded as fixed regression. No significant SNPs were located after conditional
analyses, which indicated all the significant SNPs in each QTL were in linkage
disequilibrium with the most significant SNP and the causal SNP might be at or
nearby it. To assist gene identification, the 95% confidence interval (95%CI) of each
QTL was estimated using simulations based on the drop in logarithm of P values
(Nicod et al., 2016). Among the QTLs, the width of 95%CI averaged 0.71 Mb (7.43
kb - 1.46 Mb) with 67% less than 1 Mb (Table 1).

Heritability estimation based on genome-wide SNPs and by QTLs

SNP-based heritability was estimated for the six traits resulting in a range of 7.45-
39.05% indicating a low to medium heritability, with a mean value of 18.98% (Table
S15). Among them, the heritability was highest for BW, and lowest for CVDFW. In
order to assess the heritability explained by detected QTLs, the effect size of the
overall decreased proportion of heritability was analyzed by using the most significant
SNPs distributed in these QTLs as fixed effects. The QTLs associated with the three
traits explained 2.28-8.52% of the phenotypic variation (Table S16). Among them,
DFW exhibited the highest QTL effect with a high phenotypic variation explained by
QTL2 (7.50%). CVDFW showed a low QTL effect, similar to its SNP-based
heritability.

Candidate genes identification in high-resolution QTLs

The number of annotated genes covered by the QTLs (for 95%CI) ranged from 0 to
61, with a mean of 12 genes (Table 1 and Table S17). Among them, three contained
less than 10 genes in the 95% confidence interval. Two QTLs for DFW did not
overlap any gene because of small width, then we found the nearest upstream and
downstream genes to the QTLs with distances of 243,754 bp and 279,302 bp away
from QTL1 and 474,777 bp and 37,659 bp away from QTL2. QTLs containing
smaller numbers of genes were focused on because they provided a starting point for
functional investigations. For rabbit wool traits, the QTL for CVDFW on chrll
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contained six genes. Among them, FGF10 caught our attention. The most significant
locus (chrll: 65,412,003 bp, P = 1.42E-11) associated with fine fiber was detected
closest to the FGF10 gene (chrll: 64,989,932-65,080,400) that was also the nearest
gene to the QTL for DFW (chrll: 64,944,841-64,952,273). Fibroblast growth factor
10 (FGF10) is a member of the fibroblast growth factor (FGF) family possessing
broad mitogenic and cell survival activities and famous for regulation of hair
morphogenesis and cycle hair growth in human and mice (Greco et al., 2009,
Kinoshita-Ise et al., 2020).

For body weight, QTLs located in chr2 and chr12 contained four and three genes,
respectively. Among the genes, several have been announced the association in
previous studies. FAMI184B was associated with chicken body weight by genome-
wide study (Zhang et al., 2015, Fan et al., 2017). The DCAF16-NCAPG region was
susceptible for average daily gain in cattle from the multi-strategy GWASs (Zhang et
al., 2016). NCAPG-LCORL 1is known as a locus for adult human height, and have
been detected for association with body weight/height in cattle and horses and for
selective sweep in dogs and pigs (Takasuga, 2016).

DISCUSSION

Wool traits are important in rabbits, because the fur is one of the most preferred
natural fibers among the textile industries. A well-known breed for fiber production is
the Angora rabbit. The fibers obtained from its wool are usually chosen for the
production of luxury textile materials. In addition, the rabbit was first and has long
been used as models to improve the understanding of human maladies, and was
crucial (Esteves et al., 2018), for example, a wool rabbit is considered as an extra
model in terms of hair growth. However, there is not an abundance of research on
rabbit fiber, with the most studies on hair growth being focused on humans, sheep and
mice (Chai et al., 2019, Gur-Cohen et al., 2019, Plowman et al., 2020, Zhao et al.,
2021a). In this study, we focus on wool characteristics such as diameter and length
that are essential parameters of the wool trait applied in wool rabbit breeding, as well
as important indicators of the spinning efficiency of the wool. To investigate the
genetic foundation underlying wool traits of Angora rabbits, firstly we cost-effectively
explore high-density SNP markers using ultra-low coverage whole genome
sequencing combined with three genotype imputation strategies (BaseVar + STITCH,
Bceftools + Beagle4 and GATK + Beagle5) and with several levels of sequencing
coverages and sample sizes to guarantee imputation performance; then we perform
GWAS and conditional GWAS in multivariate linear mixed model in sequence, and
map QTLs into 95% confidence intervals for candidate genes of high-resolution to
dissect the genetic architecture of complex wool traits in rabbits.

Genotype imputation carried out across the whole genome boosts the number of
SNPs. It has been used widely in GWAS to provide a high-resolution view of an
associated region, and to increases the chance that a causal SNP can be directly
identified (Marchini J. and B., 2010). LCS combined with imputation plays out
advantages in obtaining genotyping information since both DNA library and
sequencing cost decreased (Nicod et al., 2016, Meier et al., 2021) especially when
lacking in microarray (Davies et al., 2016, Davies et al., 2021). It shows to increase
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performance in a number of scenarios with different outcomes and study designs. We
refined and compared genetic variant imputation pipelines using commonly used tools
for sequence data and tools specially designed for LCS data based on non-reference
panels. Beagle, as one of the most frequently used imputation tools, was attempted to
determine whether suitable for LCS data following the conventional SNP calling
software Bcftools/GATK. STITCH and its ally BaseVar, which were designed for
genotype imputation in LCS data, were applied in this study. As expected, STITCH
following BaseVar greatly outperformed the other pipelines, showing GATK is not
suitable for LCS data. As a proof of principle, we imputed genotypes for five levels of
LCS coverages in overlapping samples of six sizes to assess how sequencing depth
and sample size influence power in imputation. We unraveled that sample size hugely
affected imputation accuracy at an ultra-low sequencing coverage (<1.0X). At a
sequencing depth of 1.0X, the high imputation accuracy by BaseVar + STITCH could
be reached and remain stable with genotypic concordance >98.84% and genotypic
accuracy >0.97 when a sample size was larger than 300. The patterns of imputation
accuracy in different strategies and with several levels of sequencing coverages and
sample sizes in this study are in line with previous studies (Davies et al., 2016, Yang
etal., 2021, Zhao et al., 2021b).

Comparing to SNP chips, LCS surmounts the problem induced by the
ascertainment of common arrays, accurately captures genetic variation in an unbiased
manner, effectively identifies novel variation, and enhances variant discovery
particularly in underrepresented populations (Martin et al., 2021). In terms of cost,
LCS at the sequencing depth of 1X is comparable to and can even be lower than SNP
array. In addition, despite the decrease in unit sequencing cost, the cost of high-depth
sequencing of a large population remains substantial. Comparing to high-coverage
sequencing, LCS can self-evidently save tens of times of genotyping cost per sample
in the meantime providing enough allele information, which makes it practicable to
sequencing larger samples. Therefore, we strongly corroborate that low coverage
sequencing combining with genotype imputation provides a cost-effective and
powerful alternative to SNP arrays and high-depth sequencing for more powerful
genetic analyses.

With a large sample size and a high-resolution genome-screen, recombination
events could be contained to accurately detect causative variants that underlie a
quantitative trait(Ros-Freixedes et al., 2017, Loos, 2020). Using whole-genome SNPs
explored by low coverage sequencing combining with genotype imputation in a
population of 629 rabbits, six QTLs associated with growth and wool traits were
recognized, with phenotypic variations ranging from 0.42% to 7.50%. After fine
mapping, we focus on the FGFI0 gene associated with fiber growth and diameter.
Several FGF members, including FGF10, are reported to regulate cycle hair growth
mainly to promote the hair follicle (HF) telogen anagen transition via providing the
stimulatory signals to the HF stem cells and/or their progenies residing in the HF
bulge and secondary hair germ (Greco et al., 2009, Mardaryev et al., 2010, Wei-hong
Lin, 2015). In addition, FGFs might play an important role in hair morphogenesis. For
example, FGF2 (Takabayashi et al., 2016), FGF7 (Seo et al., 2016), FGF9
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(Kinoshita-Ise et al., 2020), FGF10 (Schlake, 2005) and so on have been studied to
contribute to a different fiber diameter in human and mice. What’s more, FGF7 and
FGF10 efficiently and specifically bind to FGFR2-IIIb, one of several diverse protein
variants with distinct binding characteristics encoded by the FGFR2 gene. Transgenic
mice deficient for FGFR2-11Ib suffer from abnormally thin hairs, characterized by
single columns of medulla cells in all hair types (Schlake, 2005).

Response to strong artificial selection acts on standing genetic variation and
completely fixed mutations across many genomic regions, which reflected the long-
term directional selection history for wool traits of the Angora rabbit population and
probably explained few QTLs detected for some fiber traits. The LD decay and
quantile-quantile plots reflected the strong artificial selection. LD extended over a
long distance in the Angora rabbit genome, in which markers were separated by 300
kb showing 7? higher than 0.2. Quantile-quantile plots showed deviation from the
expected values extended over a large range of P values. What’s more, few QTLs
detected for other fiber traits might be due to polygenic genetic architectures, i.e.,
small effect of individual mutations contributing to the total genetic variation but not
reaching the significant level for a typical complex trait.

CONCLUSIONS

Low coverage sequencing combined with genotype imputation allows accurate
achievement of high-density genotypes even without a good reference panel. GWAS
based on LCS data excavates QTLs and fine-maps genes associated with quantitative
traits. This study provides a cost-effective analysis pipeline for facilitating our
understanding of genetic architecture of complex traits, which lays the foundation for
genomic breeding. As accumulation of sequence data, we wish the pipeline will
contribute to comprehend genetic mechanism behind important economic traits and to
increase genetic progress in livestock.

MATERIALS AND METHODS

Animals and phenotypes

A total of 629 Agora rabbits (298 males and 331 females) used for this study were
from same batch. All rabbits were housed under the same conditions on a farm,
including diet, water and temperature. The experimental procedures in this study were
approved by the Animal Care and Use Committee of Shandong Agricultural
University. The associated wool traits including length of fine wool (LFW), diameter
of fine wool (DFW), coefficient of variation of diameter of fine wool (CVDFW),
length of coarse wool (LCW) and rate of coarse wool (RCW) were measured at 70,
140 and 210 days of age. The wool samples from center of lateral body were shaved
with clippers. In addition, body weight (BW) was measured including weaning weight
at 35 days and body weight at 70, 140 and 210 days of age.

Sequencing

Ear samples were collected from the individuals. Genomic DNA was isolated using
the Qiagen MinElute Kit. Genomic DNA from each sample was used to construct a
paired-end library (PE150) with an insert size of ~350 bp. All libraries were
sequenced on the BGISEQ-500 platform. An average of 3.84X genomic coverage for
627 samples was sequenced, with the read depth varying from 1.51X to 8.03X. In
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addition, 15 samples were deep-sequenced at 10X coverage for genotype validation.
We generated a total of 7305 gigabases of genomic sequence data.

Preprocessing of sequence data

Read quality was assessed using FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) with a focus on base
quality scores, GC content, N content and sequence duplication levels. Adapters and
low-quality bases were removed using Trimmomatic as “java -jar trimmomatic-
0.38.jar PE sample 1.fq.gz sample 2.fq.gz 1 paired.fq.gz 1 unpaired.fq.gz
2 paired.fq.gz 2 unpaired.fq.gz ILLUMINACLIP:TruSeq3-PE.fa:2:30:10
SLIDINGWINDOW:5:20 LEADING:5 TRAILING:5 MINLEN:50” (Bolger et al.,
2014). Sample reads were mapped to the rabbit reference sequence
GCF _000003625.3 (Oryctolagus cuniculus) using BWA-mem (Li and Durbin, 2009).
All PCR duplicates were removed using Picard tools
(https://broadinstitute.github.io/picard/).

Genotyping using high-depth sequencing

Variant calling was performed using GATK4 best practices (McKenna et al., 2010).
Base quality score realignment and recalibration were applied to each sample, and
haplotypecaller was used for variant discovery. Average coverage was estimated using
Qualimap 2.2.1. To simulate low-pass sequencing, the 15 BAM files were
downsampled to 0.1X, 0.5X, 1.0X, 1.5X and 2.0X coverage using Picard.

Genotype imputation using low-coverage sequencing

Due to a lack of a reference panel, the imputation tools that can work without
reference information, STITCH and Beagle, were employed to impute genotype of the
rabbits using low-coverage sequencing data, combining with different variant calling
tools including traditional methods (GATK and SAMtools followed by Bcftools) and
the special method for low-pass WGS data (BaseVar). Three imputation pipelines
were compared, including (1) BaseVar + STITCH: SNPs were called using BaseVar
(Liu et al., 2018b) and imputed genotype dosages at missing sites using STITCH
(Davies et al., 2016); (2) Bceftools + Beagle4 (genotype likelihoods): SNPs were
called using Bcftools (Li, 2011) and then conducted genotype imputation (with
probabilities, dosage genotype) using Beagle v4.1 (Browning and Browning, 2016);
(3) GATK + Beagle5: SNPs were called using GATK (McKenna et al., 2010) and then
conducted genotype imputation using Beagle v5.1 (Browning et al., 2018). The above
two versions of Beagle impute genotypes by different information, Beagle v4.1 infers
genotypes from genotype likelihood input data, while Beagle v5.1 does not have this
capability but provides significantly fast genotype phasing and similar imputation
accuracy (Browning et al., 2018).

Assessing imputation accuracy

The genotypes directly called from high-coverage sequencing are de facto standard
for validating the imputation of untyped SNPs (the measure of imputation quality).
The imputation accuracy was assessed by comparing imputed genotypes to high-
coverage genotypes, and was measured with genotypic concordance and genotypic
accuracy by identifying sites shared across both datasets. Sites were considered shared
if position, reference allele, and alternate allele were identical. Genotypic
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concordance (GC) is defined as the proportion of correctly imputed genotypes which
was identical to the genotype determined using high-coverage sequencing. Genotypic
accuracy (GA) is defined as Pearson correlation coefficient between imputed
genotypes and typed genotypes by high-coverage sequencing. The performance of the
three cost-effective genotype imputation strategies described above was evaluated by
the two criteria. Furthermore, in order to examine the influence of the number of
samples and sequence coverage to imputation representation of population genetic
variations, we compared imputation accuracy of altering sample size and sequencing
depth in this population. Genotypic concordance and genotypic accuracy across
different coverages (0.1X, 0.5X, 1.0X, 1.5X, 2.0X) and populations (100, 200, 300,
400, 500 and 600) by down-sampling were calculated to evaluate the influence of
sequencing depth and sample size on imputation accuracy.

Selection of tagging SNPs and annotation

The SNPs (directly genotyped and imputed by STITCH) were filtered for an
imputation info score >0.4 using Bcftools, and then with ‘MAF > 0.05, genotype
missing rate < 0.1 and a Hardy-Weinberg equilibrium (HWE) p-value > 1E-6’ using
PLINK (Chang et al., 2015). The sites which were missing in 10% of the individuals
after STITCH imputation were then imputed by Beagle v5.1.

SNPs were annotated and categorized as variations in exonic regions, intronic
regions and intergenic regions using ANNOVAR (Wang et al., 2010) based on the
rabbit reference genome. Those in exons were further classified into synonymous or
non-synonymous SNPs.

Population genetics analysis

In the population of 629 rabbit, principal component analyses (PCA) were performed
using the GCTA software (Yang et al., 2011). The first five principal components were
extracted and visualized in R. Linkage disequilibrium (LD) decay was measured
across the whole genome using r* by PopLDdecay (Zhang et al., 2019). In order to
analyze selective sweep regions, CLR were implemented using SweeD (Pavlidis et al.,
2013), and nucleotide diversity (Pi) were implemented using Vcftools (Danecek et al.,
2011) simultaneously with a window size set to 50 kb and a step size of 10 kb. Sliding
windows with the top 1% of CLR and Pi values in the whole genome were regarded
as putative selection regions.

Domestication and centuries of selective breeding have changed genomes of rabbit
breeds to respond to environmental challenges and human needs. In order to explore
further detect genomic footprints of selection, 14 domesticated rabbits were sampled
from the population to analyze genetic diversity and population structure by
comparing to their wild progenitor, 14 wild rabbits (Oryctolagus cuniculus). A
maximum-likelihood tree was constructed using the phylogeny program 1Q-TREE2.
PCA of the first two principal components was visualized. Linkage disequilibrium
(LD) decay was compared between two groups. The genetic structure of the two
populations was analyzed with ADMIXTURE (Alexander et al., 2009) with K values
ranging from 1 to 5. K-value (K = 2) had the lowest cross validation error (CV-error).
Pi analysis was applied to estimate the degree of variability within each group, and
the fixation statistic F'st was applied to explain population differentiation on the basis
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of the variance of allele frequencies between two groups. Both Piand Fst were
calculated using a sliding window analysis with a window size of 50 kb and a step
size of 10 kb by Vcftools. The candidate selective sweeps discovered with the top 5%
of Pi and Fsr were treated as highly divergent windows. Adjacent windows were
merged into a single divergent region and annotated.

Functional enrichment analysis was performed by the Database for Annotation,
Visualization and Integrated Discovery (DAVID) to analyze gene ontology (GO) and
Kyoto Encyclopedia of Gene and Genome (KEGG) pathway (Huang d W et al., 2009).
The P-value of the gene enrichment was corrected by Benjamini-Hochberg FDR
(false discovery rate).

Estimation of whole-genome SNP-based heritability

In our studies, we used three-trait model to analyze wool traits at three time points and
four-trait model for body weight. The three-trait model for the heritability estimations
of different traits is formulated as

y=,®X)b+u+e (1)
where
Y, u, ¢
y=|y, [,u=|u, |,e=|e, (2)
Y; u; ¢,

Here, y, is a vector of phenotypic values for the trait at the ith time point; b, is a
vector of fixed effects (population mean, sex and rabbit house); u, is a vector of

additive polygenic genetic effects; e, is a vector of residual errors. X is the design

matrix for the fixed effects; ® is the Kronecker product. The distributions of the

random effects are

ul el
u, [~N(0,%, ®K),|e, [~ N(0,Z, ®I) 3)
u, e,

Here, 2., and 2, are a 3x3 covariance matrix for the additive polygenic effects and

residual errors; K is the genomic relationship matrix. The additive heritability for the
trait at the ith time point is defined as

>
hz. — u,ii 4
“TTE v

e,ii

where X .. is the additive genetic variance for the ith time point, i.e., the ith diagonal

u,ii

element of X ; 2, . is the residual variance for the ith time point, i.e., the ith

u,ii
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diagonal element of 2, .

GWAS
We add the SNP as the fixed effects into the equation (1) to perform multivariate
GWAS. The model is formulated as

y=(I,®X)b+(I, ®W)a+u+e (5)

where a= [al a, a3]‘. Here, «; is the SNP effect for the trait at the ith time point

and w is a vector of SNP genotypes assigned a value of 0, 1 or 2, respectively, for aa,
Aa and AA. ® is the Kronecker product. We constructed the Wald Chi-square test

statistics to test the significance of the SNP effects
-1

0?1 0?1
[&I a, ds] var| a, a, NZZG) (6)
C%3 C%3

Bonferroni correction was adopted to adjust for multiple testing to control false-
positive rates. The threshold for genome-wide significance was 0.05/N, where N was
the number of effective SNP calculated by the PLINK “--indep-pairwise 50 5 0.2”
command (Purcell et al., 2007).

Conditional GWAS

To confirm whether the significant SNPs within clusters of loci are independent or
linked due to high linkage disequilibrium, we also performed conditional GWAS with
significant lead SNP regarded as fixed effect. The model is formulated as

y=L®X)b+(,®w, )a, +(1, Ow)a+u+e @)

where a,,,, is the lead SNP effect and w,,, is a vector of SNP genotypes for the lead

SNP.

Confidence interval

Confidence intervals were estimated by drop log(P) method similarly to previous
study (Nicod et al., 2016). In the study, we expanded it into multivariate linear mixed
model. Using the SNP effects estimated with equation (5), we first removed the effect
of lead SNP at each QTL from the phenotype vector. We random selected 1,000 SNPs
within the candidate QTL region and assigned them with effect of lead SNP. The
effects of simulated causal SNPs were added to the above residual phenotype vector,
one at a time, to produce 1000 simulated datasets. A local association analysis of the
region using the equation (5) with the simulated phenotype was performed, and the
drop in log(P) value between top SNP and simulated causal SNP was recorded for
each dataset. Across the 1,000 simulations, we estimated the distribution of these
drops in log(P) and used the 95th percentile to determine confidence intervals for the
original phenotype data.

Heritability estimation of QTL

We use the following model to estimate as the QTL heritability
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y=LoX)b+(,®w,, o, +tute (8)
With the lead SNP added into model, we re-calculated the whole-genome SNP-based

heritability, which was defined as h'i,i . The QTL heritability was estimated using the

following equation

By =1, —h", ©)

a,i

where hf,i is the whole-genome SNP-based heritability from equation (4).

Data availability

The sequencing data used for analysis is available at NCBI (PRINA810279). SNP-
based heritability, GWAS, conditional GWAS, confidence interval and QTL
heritability estimation were analyzed with our self-written software available at
https://github.com/chaoning/ GMAT.
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Table 1. QTL mappings and the 95% confidence interval (95%CTI) of each QTL

Trait QTL Chr 95%CI1 95%CI width Top SNP Allele0  Allelel MAF P Gene'!

DFW QTL1T 7 138,910,411 139,598,335 687,925 138,975,863 T C 0.053963  1.36E-07 2
QTL2 11 64,944,841 64,952,273 7,433 64,951,174 G C 0.071669  7.12E-23 2

CVDFW  QTL1 11 64,270,630 65,432,659 1,162,030 65,412,003 A T 0.079723  1.42E-11 6

BW QTL1T 2 8,257,045 8,923,024 665,980 8,877,739 G A 0.174952  7.33E-12 4
QTL2 4 36,704,911 38,161,753 1,456,843 38,127,528 A G 0.083174  5.93E-07 61
QTL3 12 148,360,582 148,642,693 282,112 148,369,145 G A 0.083174  4.61E-07 3

1. QTLs for DFW contained no genes, and the nearest genes in the flanking regions were annotated.
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Fig. 1. Analysis pipeline for low coverage sequence data and genetic architecture.
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Fig. 2. Genotype imputation performance compared among the three pipelines (red:
BaseVar + STITCH, green: Bcftools + Beagle4 and blue: GATK + Beagle5) and
different numbers of samples (100, 200, 300, 400, 500 and 600) and sequencing
depths (0.1x, 0.5%, 1.0x, 1.5%, 2.0x) by genotypic concordance (the right ones) and
genotypic accuracy (the left ones). A and B were imputation performance among the
15 individuals, C and D were among different minor allele frequency, and E and F

were among different numbers of samples and sequencing depths.

JENT ) S——— —— - e ——
£ gp .“/\,_H\,/\_,._J/\'/\
3
2 501 AL R Ay » A &
210 N o | e
2 60
T 50
oy
é‘ 40
g 30
2 20
10
0.0 & GA aales 0
1 2: 3 4 5 6 7 & 9 10 11 12 13 14 15
C Individual D
1.0- 100n
-
. 0.9+ &£ 90
Z08- 3 80
s =
;U.?‘ § 0
< 0.67 5 60
205 250
= ~
E 0.4- é 40
27 o -
01 ¥ S - e
0.0 ® CATR Deghs 0 & (AR Bonles.
0 01 02 03 0.4 0.3 001 01 032 03 g 05
E Minor allele frequency F Minor allele frequency
1.0~ 10K — —
e - |
0.5- - <o T
508 o 8
5 = B0
Jo7 =
<06 g7
3 S 4o
15
Eos =
.- i 2 40 > 01X
02- * 05X o + 0.5X
- 10X T 3 e LOX
0l * 15X g * 15X
0.0 8 201 S
100 200 300 400 500 60 100 200 300 400 500 600
Sample size Sample size



https://doi.org/10.1101/2022.03.09.483689
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.09.483689; this version posted March 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Fig. 3. Genetic diversity of the Angora rabbit population. (A) Distribution of SNPs in
1-Mb windows across the genome. (B) Principal component analyses plotting the first
to the fifth dimension. (C) The extent of linkage disequilibrium (LD), values were
mean LD r2 values for all pairs of SNPs binned by distance. The slowest LD decay
was observed for chrl5, and the fastest was observed for chr21. Chrl1 showed similar
LD extent to the whole genome.
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Fig. 4. Genetic diversity between the Angora and wild rabbit populations. (A)
Maximum-likelihood tree. (B) Principal component analysis revealing genetic
differentiation of two populations. (C) Ancestral population analysis (K = 1-5). (D)
Admixture plots based on different number of assumed ancestors. (E) The extent of
LD, in which values were mean LD 12 values for all pairs of SNPs binned by distance.
In all Fig.s, red referred to Angora rabbits and blue referred to wild rabbits. (F)
Genomic regions with strong selective sweep signals in Angora and wild rabbits.
Distributions of © ratios (wild/Angora) and Z(Fst) values were calculated by 50-kb
windows with 10-kb steps. Genomic regions under selection during domestication
were shown as green points located to the top-right regions correspond to the 5% right
tails of empirical log> (mwid/Tangora) ratio distribution and the top 5% empirical Z(Fsr)
distribution. The vertical and horizontal gray lines represent the top 5% value of
log> (mwild/ T angora) (4.09) and Z(Fst) (1.87), respectively.
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Fig. 5. Circle Manhattan plot showing associations between single nucleotide
polymorphisms and diameter of fine wool (DFW), coefficient of variation of diameter
of fine wool (CVDFW), length of fine wool (LFW) and body weight (BW),
respectively (from inside to outside circle), in the Angora rabbit population. The

threshold lines indicated the genome-wide significance level (-logi0(0.05/391,976))
after Bonferroni correction.
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