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ABSTRACT 

Genome-wide association studies (GWAS) of eye disorders have identified hundreds of genetic 

variants associated with ocular disease. However, the vast majority of these variants are 

noncoding, making it challenging to interpret their function. Here, we present a joint single-cell 

atlas of gene expression and chromatin accessibility of the adult human retina with >50,000 cells, 

which we used to analyze noncoding single-nucleotide polymorphisms (SNPs) implicated by 

GWAS of age-related macular degeneration, glaucoma, diabetic retinopathy, myopia, and type 2 

macular telangiectasia. We integrate this atlas with a HiChIP enhancer connectome, expression 

quantitative trait loci (eQTL) data, and base-resolution deep learning models to predict 

noncoding SNPs with causal roles in eye disease, assess SNP impact on transcription factor 

binding, and define their known and novel target genes. Our efforts nominate pathogenic SNP-

target gene interactions for multiple vision disorders and provide a potentially powerful resource 

for interpreting noncoding variation in the eye. 
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INTRODUCTION 

Genome-wide association studies (GWAS) of eye disorders such as glaucoma, myopia, and age-

related macular degeneration (AMD) have uncovered hundreds of genetic polymorphisms 

associated with ocular disease1–5. However, the vast majority of variants identified by GWAS 

reside in noncoding regions of the genome, making it challenging to interpret their function6. To 

better understand how noncoding variants mechanistically contribute to ocular pathology, it 

would be valuable to map in which cell types their corresponding loci are active. This 

information would provide novel insights into the cellular biology of genetically complex eye 

diseases and help nominate specific cell types as targets for therapies. 

 

A recent advance in studying the noncoding genome has been the development of single-cell 

multiomic technologies such as paired single-cell RNA sequencing (scRNA-seq) and single-cell 

assay for transposase-accessible chromatin sequencing (scATAC-seq). While scRNA-seq can 

classify the different cell types of a tissue based on their transcriptional profiles, its combination 

with scATAC-seq allows for the additional mapping of cell type-specific chromatin accessibility. 

Together, these techniques can reveal the activity of noncoding DNA elements identified by 

GWAS and have been used to interrogate risk variants for conditions including Alzheimer’s 

disease, Parkinson’s disease, autism spectrum disorder, and autoimmunity7–9. 

 

Investigations into the noncoding genome have likewise benefitted from analytical innovations, 

such as the application of convolutional neural network (CNN)-based deep learning to predict 

the effects of noncoding polymorphisms10–12. Progress in this area has recently led to models 

with resolution down to a single nucleotide, enabling accurate determination of the critical bases 
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within cis-regulatory sequences8,12,13. These models offer a validated approach to prioritize 

noncoding variants with functional relevance and are particularly suitable for tissues in which 

experimental manipulation is difficult. 

 

Here, we generated a joint scRNA- and scATAC-seq atlas of the adult human retina composed of 

>50,000 cells and used it to analyze noncoding single-nucleotide polymorphisms (SNPs) 

implicated by GWAS of five eye diseases: AMD, glaucoma, diabetic retinopathy (DR), myopia, 

and type 2 macular telangiectasia (MacTel). Layering this atlas with a HiChIP enhancer 

connectome14, expression quantitative trait loci (eQTL) data15, and base-resolution deep learning 

models12, we then predicted noncoding SNPs with causal roles in eye disease. Our efforts 

nominate pathogenic SNP-target gene interactions for multiple vision disorders and provide a 

potentially powerful resource for interpreting noncoding variation in the eye. 

 

RESULTS 

Single-cell multiomics reveal the gene expression and chromatin accessibility landscapes of 

cell types in the human retina 

To generate a single-cell multiome of the human retina, we performed joint scRNA- and 

scATAC-seq profiling on eight postmortem retinas from four individuals who had no history of 

eye disease (Supplementary Table 1). Following quality control filtering (Extended Data Fig. 1a-

f) and removal of putative doublets (Extended Data Fig. 2a,b), we obtained a total of 51,645 

human retinal cells in 22 clusters which we assigned to 13 different cell types (Fig. 1a,b and 

Extended Data Fig. 2c). These included abundant cell types like rod photoreceptors and Müller 

glia, as well as rarer cell types such as astrocytes and microglia, which each constituted only 
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0.4% of profiled cells (Fig. 1c and Supplementary Table 2). Consistent with published scRNA-

seq studies of the human retina16–18, we observed cell type-specific expression of many genes, 

including PDE6A in rod photoreceptors, GRIK1 in OFF-cone bipolar cells, RLBP1 in Müller 

glia, GRM6 in ON-cone and rod bipolar cells, PRKCA in rod bipolar cells, ARR3 in cone 

photoreceptors, GAD1 in GABAergic (GABA-) amacrine cells, ONECUT1 in horizontal cells, 

SLC6A9 in AII- and other glycinergic (gly-) amacrine cells, NEFL in retinal ganglion cells, 

GJD2 in AII-amacrine cells, GFAP in astrocytes, and C1QA in microglia (Fig. 1d). In addition, 

we identified a list of candidate marker genes based on differential expression for each of the 13 

cell types (Supplementary Data 1). 

 

Using shared barcodes from joint multiomic profiling, we next assigned scATAC-seq profiles to 

the 13 cell types characterized above by scRNA-seq. Peak calling performed on scATAC-seq 

profiles from each cell type combined into pseudo-bulk ATAC replicates uncovered a total of 

620,386 chromatin accessibility peaks (Fig. 2a and Supplementary Data 2). These scATAC 

peaks included >90% of peaks from published bulk ATAC-seq of the human retina (Fig. 2b)19, 

indicating that single-cell multiomics can recapitulate bulk ATAC-seq data. Conversely, more 

than half of scATAC peaks were unique to the single-cell dataset (Fig. 2b), and nearly 40% of 

scATAC peaks were accessible in only one cell type (Extended Data Fig. 3a). Supporting this, 

we found 197,826 scATAC marker peaks enriched in a cell type-specific manner (Fig. 2c and 

Supplementary Data 3), including many located near cell type-specific genes (Fig. 2d). 

 

With these scATAC peaks, we then conducted motif enrichment analysis to predict what 

transcription factors (TFs) might be active in each cell type (Fig. 3a and Supplementary Data 4). 
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In accord with published literature, we observed enrichment of binding motifs for TFs with 

known cell type-specific functions, such as OTX2 in photoreceptors and bipolar cells20, 

ONECUT family members in horizontal cells21, POU4F family members in retinal ganglion 

cells22, and SPI1 (PU.1) in microglia23. For some TFs, cell type-specific activity was also 

supported by footprinting analysis of scATAC peaks (Fig. 3b), which revealed motif centers to 

be protected from Tn5 transposition, consistent with TF occupancy. These data offer a cell type-

specific catalog of candidate TFs in the adult retina and may aid our understanding of gene-

regulatory networks controlling vision. 

 

Single-cell multiomics uncover the cellular contexts of variants implicated by ocular disease 

GWAS 

Using our single-cell multiome, we sought to better understand risk loci identified by GWAS of 

complex eye disorders. To this end, we compiled of a list of 1,331 unique index SNPs from the 

NHGRI-EBI GWAS Catalog representing GWAS hits for five eye diseases: AMD, glaucoma, 

DR, myopia, and MacTel (Fig. 4a and Supplementary Table 3)24. The vast majority (96.5%) of 

these SNPs localize to noncoding regions of the genome and thus cannot be interpreted with 

scRNA-seq data alone. We performed linkage disequilibrium (LD) expansion on all index SNPs 

to include nearby variants with high probability of coinheritance (LD R2 >0.9 based on phase 3 

genotypes from the 1000 Genomes Project) (Extended Fig. 3b)25. From this, we obtained a total 

of 7,034 unique noncoding SNPs in loci associated with eye disorders (Supplementary Data 5).  

 

To determine in which retinal cell types each of the 7,034 SNPs might be active, we overlapped 

SNP locations with scATAC peaks from our dataset. We found that 1,152 SNPs (16.4%) 
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overlapped with a scATAC peak (Fig. 4b and Extended Data Fig. 3c), and that most SNP-

containing peaks were present in only one or two cell types (Extended Fig. 3d). We next 

conducted two orthogonal analyses to refine our list of SNPs for those more likely to possess 

gene regulatory functions (Fig. 4c). First, we identified SNPs in scATAC peaks that were co-

accessible with peaks in promoter regions, reasoning that this would select for SNPs in active 

enhancers. We found 39,552 such promoter peaks in the human retina, 58.3% of which were co-

accessible with at least one scATAC peak (Fig. 4d). Leveraging our paired scRNA- and 

scATAC-seq data, we also searched for SNPs in peaks that had at least one predicted target gene 

based on same-cell correlations between peak accessibility and gene expression. Using this 

method, we predicted target genes for 199,055 (32.1%) of the 620,386 scATAC peaks in our 

dataset (Fig. 4e). For nearly half (44.3%) of these peaks, our predictions differed from the 

nearest gene on the linear genome (Extended Data Fig. 3e), suggesting that noncoding SNPs do 

not necessarily regulate their nearest gene. 

 

We identified 241 SNPs in scATAC peaks that were co-accessible with promoter peaks and 374 

SNPs that had predicted target genes, with 202 SNPs meeting both criteria. As an example, we 

examined rs4821699 residing in an intron of TRIOBP on chromosome 22. This locus has been 

implicated in glaucoma by multiple GWAS and encodes a protein thought to regulate 

cytoskeletal organization2,26,27. We observed that rs4821699 was most accessible in retinal 

ganglion cells (Fig. 4f), the major cell type that undergoes degeneration during glaucoma. Based 

on correlations with gene expression, the peak containing this SNP was furthermore predicted to 

target TRIOBP. We hypothesize that rs4821699 might therefore play a role in glaucoma by 

altering TRIOBP expression in retinal ganglion cells.  
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A handful of SNPs associated with eye diseases have been experimentally studied using retinal 

organoids derived from induced pluripotent stem cells. One such SNP is rs17421627, an index 

SNP from GWAS of MacTel representing a T-to-G substitution on chromosome 55,28. We 

determined rs17421627 to be one of only five SNPs for MacTel with a predicted target gene and 

found the SNP to be most accessible in Müller glia and astrocytes (Fig. 4f). Using linked gene 

expression data, we also predicted rs17421627 to act on LINC00461, a long noncoding RNA. 

Consistent with these predictions, deletion of the locus containing rs17421627 in human retinal 

organoids has been shown to significantly downregulate LINC00461 with the strongest effect in 

Müller glia29. These examples illustrate how single-cell multiomics can reveal the cellular targets 

of noncoding variants in the retina and nominate how they might contribute to eye disorders. 

 

Integration of single-cell multiome with HiChIP and eQTL data validates SNP-target gene 

predictions 

To further prioritize our list of SNPs, we combined our data with two complementary methods 

for identifying functional SNP-gene interactions genome-wide (Fig. 5a). We first performed 

HiChIP for acetylated histone H3 lysine 27 (H3K27ac), a mark of active enhancers and 

promoters30, to characterize the three-dimensional (3D) enhancer “connectome” of the human 

retina (Extended Data Fig. 4a,b)14,31. We uncovered 16,692 loop anchors connected by 9,670 

HiChIP loops, including several linking regions of chromatin accessibility to the transcription 

start sites (TSSs) of cell type-specific genes (Extended Data Fig. 4c). Of these loops, >95% 

overlapped with a scATAC peak in both anchors, and >99% overlapped with a peak in at least 

one anchor (Fig. 5b). This result shows that accessible chromatin sites identified in scATAC-seq 
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data possess biochemical characteristics of active enhancers and supports their connection to 

target genes. We additionally analyzed our list of SNPs using published human retina eQTL data 

from the Eye Genotype Expression (EyeGEx) database15. For >90% of SNPs in scATAC peaks, 

retina eQTL data was available (Fig. 5c), enabling genes whose mRNA expression in the human 

retina changed with specific SNPs to be identified at the bulk tissue level. 

 

We found 187 disease-associated SNPs in scATAC peaks that were linked to a gene by a 

H3K27ac HiChIP loop. These included rs9966620, the top SNP from a GWAS of DR 

representing a G-to-A transition in an intron of TTC39C on chromosome 1832. Using our 

multiome, we determined that the scATAC peak containing rs9966620 was most accessible in 

rods (Fig. 5d). However, this peak also correlated with the expression of multiple target genes, 

hampering efforts to interpret how the SNP might function. Incorporating our HiChIP data, we 

were able to locate a 3D loop connecting rs9966620 with a region 75 kilobases (kb) upstream. 

This region intersected the TSS of only one gene, TTC39C-AS1, suggesting that rs9966620 may 

modulate DR risk by interacting with TTC39C-AS1 in rods. 

 

We additionally detected 596 disease-associated SNPs in scATAC peaks that were significantly 

associated with a gene by eQTL analysis. One example was rs2730260, a SNP in an intron of 

VIPR2 that has been implicated in myopia33. This locus encodes one of two known receptors for 

vasoactive intestinal peptide (VIP), a signaling molecule involved in visual processing34. We 

found that rs2730260 resided in a chromatin accessibility peak specific to Müller glia that again 

had multiple predicted target genes (Fig. 5d). This ambiguity was clarified by retina eQTL data, 

which showed that variation at rs2730260 significantly correlated with the expression of only 
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VIPR2 (Fig. 5e), supporting this gene as the SNP’s primary target. Integration of eQTL data 

similarly improved our interpretation of rs66475830 on chromosome 6 in the FRK-NT5DC1-

COL10A1 risk locus for AMD35,36. This region contains nearly 20 genes within a span of a 

megabase (Mb), making it particularly difficult to functionally annotate GWAS hits. From our 

single-cell data, we determined rs66475830 to be accessible in amacrine and horizontal cells and 

predicted TSPYL1 and TSPYL4 as target genes (Fig. 5d). Retina eQTL analysis revealed that 

variation at this position was significantly associated with TSPYL4 expression, but not that of 

other nearby genes (Fig. 5e), nominating TSPYL4 as the effector gene of rs66475830. 

 

Lastly, we identified many SNP-target gene relationships supported by both HiChIP and eQTL 

data, such as rs77272443 and rs4102217 located in risk loci for myopia and glaucoma, 

respectively37,38. For both of these SNPs, HiChIP and eQTL analyses again refined target gene 

predictions (Extended Data Fig. 5a,b), demonstrating how the combination of single-cell 

multiomics with other assays can enhance interpretation of noncoding variants in eye disease. 

 

Integration of single-cell multiome with base-resolution deep learning nominates functional 

mechanisms for disease-associated SNPs 

CNN-based deep learning models have proven capable of discerning disease-associated SNPs 

from other noncoding variants8,10,11. As a final method to prioritize SNPs in our dataset, we 

therefore trained CNNs derived from the BPNet architecture on scATAC-seq profiles for each of 

the 13 retinal cell types (Fig. 6a and Extended Data Fig. 6a,b)12. At each SNP region, we 

compared the projected per-base change in chromatin accessibility between reference and 

alternate alleles using models specific to the different cell types. These calculations allowed us to 
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identify “high effect” SNPs, which we defined as SNPs predicted to cause a statistically 

significant (false discovery rate <0.01) absolute log2 fold change of allele-specific read counts 

>0.5 in local chromatin accessibility in any cell type. 

 

We found 23 SNPs (2.0%) residing in scATAC peaks that qualified as high effect, a greater 

percentage than among index SNPs, LD expanded SNPs, random SNPs matched for GC content, 

and random SNPs residing in scATAC peaks (Fig. 6b and Supplementary Data 7). One of the top 

scoring SNPs was rs1532278, an index SNP associated with myopia and residing in an intron of 

CLU on chromosome 83. Our atlas predicted rs1532278 to regulate CLU, a notion reinforced by 

eQTL data, and determined the SNP to be accessible in nine of 13 retinal cell types (Fig. 6c,d). 

Despite this, base-resolution models projected a T-to-C transition at rs1532278 to alter chromatin 

accessibility only in Müller glia, specifically by disrupting the motif of a homeodomain TF. Our 

findings suggest that even though rs1532278 is accessible across multiple cell types, its 

functional impact in the retina might be restricted to Müller glia due to a cell type-specific 

homeodomain TF. We speculate that this TF could be LHX2 given its robust expression in 

Müller glia by both our scRNA-seq data (Fig. 6e) as well as data from animal models39.  

 

Another high effect SNP was rs1874459 located in an intron of CDH11 on chromosome 16, a 

locus implicated by multiple GWAS for glaucoma2,26. Using our multiome, we found rs1874459 

to be most accessible in rod bipolar cells and predicted CDH11 as one of its target genes, an idea 

supported by eQTL data (Fig. 6c,f). Incorporating base-resolution models, we then determined 

that the G-to-C transversion represented by rs1874459 introduced a new basic helix-loop-helix 

(bHLH) domain, which was expected to increase accessibility in rod bipolar, OFF-cone bipolar, 
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ON-cone bipolar, gly-amacrine, and AII-amacrine cells. Of the bHLH TFs, members of the 

neuroD and neurogenin families in particular were predicted by motif analysis to be significantly 

enriched in these five cell types (Fig. 3a and Supplementary Data 4). We thus compared all 

neuroD and neurogenin family members using our scRNA-seq data, which revealed only 

NEUROD4 to be specific to bipolar and amacrine cells (Fig. 6g), consistent with its role in 

specifying these cell types during development40,41. Together, our results suggest that rs1874459 

may act on CDH11 in bipolar and amacrine cells by creating a new bHLH domain recognized by 

NEUROD4.  

 

DISCUSSION 

In this study, we applied single-cell multiomics, HiChIP, eQTL analysis, and base-resolution 

deep learning to the human retina to decipher the role of noncoding risk variants in five eye 

diseases. Integrating these methods allowed us to predict gene and cellular targets in the retina 

for hundreds of SNPs and nominate dozens as pathogenic and meriting functional validation. 

From an initial list of >7,000 noncoding SNPs, we identified 1,152 located in chromatin 

accessibility peaks. We subsequently focused on SNPs 1) that were co-accessible with a 

promoter, 2) whose accessibility correlated with the expression of a nearby gene, 3) that were 

linked to a gene in 3D space by a H3K27ac HiChIP loop, 4) that demonstrated significant 

association with a gene based on retina eQTL data, and 5) that were predicted to alter local 

chromatin accessibility as determined by base-resolution models. We propose that SNPs meeting 

most or all of these criteria (Extended Data Fig. 7a-e and Supplementary Data 5) be prioritized in 

future validation efforts. 
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Our findings build upon recent works that used primarily fetal tissue and stem cell-derived 

organoids to map cell type-specific chromatin accessibility in the human retina29,42. Datasets 

from these studies offer a rich resource for decoding retinal development, but might not fully 

recapitulate the biology of the mature retina, making them potentially less suitable for studying 

eye disorders that present later in life. Here, we not only generated a single-cell multiome of the 

adult human retina to pinpoint cellular targets for disease-associated SNPs, but also combined it 

with multiple orthogonal analyses to define putative SNP-target gene interactions. By performing 

base-resolution deep learning, we were further able to uncover insights not readily apparent from 

single-cell, HiChIP, and eQTL data, such as the predicted impact of SNPs on TF binding and the 

directionality of these effects. To facilitate its use, our atlas is publicly available at 

https://eyemultiome.su.domains/. 

 

Finally, it should be noted that the majority of SNPs we examined did not overlap with any 

chromatin accessibility peaks, suggesting that they were not active in the retina. We hypothesize 

that many of these unassigned SNPs may instead function in other parts of the eye and thus could 

not be captured by our analysis. For instance, although the neural retina is damaged in AMD and 

DR, the retinal pigment epithelium and vasculature, respectively, are thought to be the primary 

sites of pathology43,44. In glaucoma, the trabecular meshwork and ciliary body can modulate 

disease severity as evidenced by treatments that act on these tissues45. Likewise, the choroid and 

sclera may be involved in myopia given that they elongate alongside the retina with increasing 

nearsightedness46. Multiomic characterization of these additional ocular regions would enable a 

more complete understanding of how noncoding SNPs contribute to vision disorders.  
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METHODS 

Human tissues 

Postmortem adult human retinas were procured from consented donors by Lions VisionGift 

(Portland, OR, USA) or Lions Gift of Sight (St Paul, MN, USA) under protocols approved by the 

Eye Bank Association of America. None of the donors had a history of ocular disease. De-

identified retinas were flash-frozen in liquid nitrogen with a maximum death-to-preservation 

interval of 12 hours and shipped to Stanford University for processing. 

 

Nuclei isolation 

Nuclei were isolated from frozen retinas using the Omni-ATAC protocol 

(https://doi.org/10.17504/protocols.io.6t8herw)47. Briefly, tissues were Dounce homogenized in 

cold homogenization buffer containing 0.3% IGEPAL CA-630 in the presence of protease and 

RNase inhibitors to release nuclei from frozen cells. Nuclei were subsequently purified via 

iodixanol gradient centrifugation and washed with ATAC resuspension buffer containing RNase 

inhibitor and 0.1% Tween-20 before permeabilization following the 10x Genomics demonstrated 

protocol for complex tissues (CG000375, Rev. B). After resuspension in diluted nuclei buffer, 

nuclei were counted using a manual hemocytometer to achieve a targeted nuclei recovery of 

10,000 nuclei per sample.  

 

scRNA- and scATAC-seq library generation 

Joint scRNA- and scATAC-seq libraries were prepared using the 10x Genomics Single Cell 

Multiome ATAC + Gene Expression kit according to manufacturer’s instructions. Libraries were 
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sequenced with paired-end 150-bp reads on an Illumina NovaSeq 6000 to a target depth of 250 

million read pairs per sample. 

 

scRNA- and scATAC-seq data preprocessing and quality control 

Demultiplexed scRNA- and scATAC-seq fastq files were inputted into the Cell Ranger ARC 

pipeline (version 2.0.0) from 10x Genomics to generate barcoded count matrices of gene 

expression and ATAC data. For each sample, count matrices were loaded in ArchR and selected 

for barcodes that appeared in both the scRNA-seq and scATAC-seq datasets48. Samples in 

ArchR were quality control filtered for nuclei with 200-50,000 RNA transcripts, <1% 

mitochondrial reads, <5% ribosomal reads, TSS enrichment >6, and >2,500 ATAC fragments. 

Quality control filtered nuclei subsequently underwent automated removal of doublets using the 

filterDoublets function in ArchR, which identifies and removes the nearest neighbors of 

simulated doublets48. 

 

scRNA-seq data analysis 

scRNA-seq data from nuclei remaining after quality control filtering and automated removal of 

doublets were analyzed using Seurat (version 3.1.5)49. After merging all preprocessed samples 

into a single Seurat object, gene expression counts were normalized using the NormalizeData 

function, scaled using the ScaleData function, and batch corrected using Harmony50. Graph-

based clustering was then performed on the Harmony-corrected data using the top 20 principal 

components at a resolution of 0.5. Cluster identities were manually annotated based on the 

expression of genes from published scRNA-seq studies of the human retina16–18. Marker genes 

for each cluster were additionally identified using the FindAllMarkers function with a minimum 
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fraction of 0.5 and a log2 fold change of 1 (Supplementary Data 1). Clusters expressing 

canonical marker genes from different cell types were designated as putative doublets and 

excluded, after which re-clustering was performed using the same parameters. Clusters with no 

detected marker genes were also excluded, after which the dataset was also re-clustered. Clusters 

in the final dataset representing subpopulations of the same cell type were grouped together for 

downstream analyses. 

 

scATAC-seq data analysis 

scATAC-seq data were analyzed using ArchR (version 1.0.1) based on barcoded cell type 

identities from scRNA-seq48. For each cell type, pseudo-bulk ATAC replicates were created 

using the addGroupCoverages function with default parameters, which generated between two to 

five replicates depending on how many cells of that type were present in each sample. Chromatin 

accessibility peaks on chromosomes 1-22 and X and outside of blacklist regions were then called 

using the addReproduciblePeakSet function and MACS251,52, with scATAC peaks for each cell 

type defined as those present in at least two pseudo-bulk ATAC replicates (Supplementary Data 

2). Marker peaks were identified using the getMarkerFeatures function with a log2 fold change 

≥1 and false discovery rate ≤0.01 as determined by Wilcoxon pairwise comparisons 

(Supplementary Data 3). Promoter peaks were defined as scATAC peaks within 2,000 bp 

upstream or 100 bp downstream of a TSS, and peaks co-accessible to promoter peaks were 

identified using the getCoAccessibility function with a correlation cutoff of 0.3 and resolution of 

1. Predicted target genes for each scATAC peak were generated using the getPeak2GeneLinks 

function integrating barcode-matched RNA expression data from scRNA-seq with a correlation 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.09.483684doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483684
http://creativecommons.org/licenses/by/4.0/


Wang et al. (CHANG) p. 17

cutoff of 0.3 and resolution of 1. Nearest genes were determined using the BEDTools closest 

function based on gene annotations from TxDb.Hsapiens.UCSC.hg38.knownGene53. 

 

Bulk ATAC-seq data analysis 

Bulk ATAC-seq analysis was performed on published ATAC-seq data from five healthy human 

retinas19. After adapter trimming, fastq files were mapped to the hg38 genome using Bowtie2 

and filtered to remove PCR duplicates and retain reads from only chromosomes 1-22 and X54. 

Peak calling was then conducted individually on each sample using MACS251, followed by 

exclusion of peaks in blacklist regions52. Peak calls present in at least two of the five retinas were 

included in the bulk ATAC-seq peak set.   

 

Sequencing tracks 

Sequencing tracks of chromatin accessibility were generated in ArchR using the 

plotBrowserTrack function and were normalized by the total number of reads in TSS regions48. 

All data were aligned and annotated to the hg38 reference genome. 

 

Motif enrichment analysis 

TF motif enrichment analysis was performed on scATAC peaks using the peakAnnoEnrichment 

function in ArchR with default parameters based on position frequency matrices from JASPAR 

2018 (Supplementary Data 4)48,55. Footprinting analysis of TFs was conducted using the 

getFootprints function in ArchR48. To correct for Tn5 insertion bias, footprinting signals were 

divided by the Tn5 insertion signal prior to plotting. 
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SNP selection and LD expansion 

Index SNPs implicated in AMD, glaucoma, DR, myopia, or MacTel and located on 

chromosomes 1-22 and X were collected from the NHGRI-EBI GWAS Catalog, a curated 

collection of human GWAS24. LD expansion was then performed using LDlinkR to add any 

SNPs in LD with each index SNP56, defined as a LD R2 value >0.9 in the phase 3 genotypes of 

the 1000 Genomes Project25. LD expanded SNPs were filtered to exclude variants in coding 

regions based on annotations in dbSNP to obtain the final set of noncoding SNPs 

(Supplementary Data 5)57. A list of all GWAS used in this study is provided in Supplementary 

Table 3. 

 

HiChIP library generation 

H3K27ac HiChIP libraries were prepared as previously reported with minor modifications14. 

Briefly, following isolation of nuclei from frozen retinas as described above, ~8 million nuclei 

from each sample were washed with nuclei isolation buffer from the diploid chromatin 

conformation capture (Dip-C) protocol and fixed with 2% paraformaldehyde at room 

temperature for 10 minutes58. Fixed nuclei were then washed twice with cold 1% bovine serum 

albumin in phosphate-buffered saline before resuspension in 0.5% sodium dodecyl sulfate and 

resumption of the published HiChIP protocol. Digestion was performed using the MboI 

restriction enzyme, and sonication was conducted using a Covaris E220 with 5 duty cycles, peak 

incident power�of 140, and 200 cycles per burst�for 4�minutes. The ab4729 ChIP validated 

antibody from Abcam was used to target H3K27ac. HiChIP libraries were sequenced with 

paired-end 75-bp reads on either an Illumina HiSeq 400 or Illumina NextSeq 550. 
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HiChIP data analysis 

HiChIP sequencing files were initially processed using the HiC-Pro pipeline (version 2.11.0) to 

remove duplicate reads, assign reads to MboI restriction fragments, filter for valid interactions, 

and generate binned interaction matrices59. Filtered read pairs from HiC-Pro were subsequently 

converted into .hic files and inputted into HiCCUPS from the Juicer pipeline to call loops 

(Supplementary Data 6)60. HiChIP interaction maps depicting all valid interactions identified by 

HiC-Pro were visualized using Juicebox61. 

 

eQTL analysis 

Retina eQTL data were obtained from the Eye Genotype Expression (EyeGEx) database15. Each 

of the 1,152 SNPs overlapping with a scATAC peak was searched in the database and the 

nominal P value of any gene associations with that SNP noted. Adjusted P values were 

calculated by multiplying the nominal P value by the number of SNP-gene pairs tested for that 

SNP. Interactions with an adjusted P value <0.05 were considered significant. 

 

Deep learning model training 

scATAC-seq reads from the Cell Ranger ARC pipeline were aggregated by cell type to generate 

cell type-specific fragments files. The fragments files were converted to BigWig tracks of base-

resolution Tn5 insertion sites with an +4/-4 shift to account for Tn5 shift. For each cell type, in 

addition to the peak regions, we selected an equal number of non-peak regions that were matched 

for GC content in their peaks. We then trained cell type-specific BPNet models to predict the log 

counts and base-resolution Tn5 insertion profiles as previously reported8,12. Briefly, the BPNet 

model takes as input a 2,114 bp one-hot encoded input sequence and predicts the ATAC-seq 
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profile and log counts in a 1,000 bp window centered at the input sequence. Following BPNet 

formulation, we used a multinomial negative log likelihood (MNLL) for the profile output of the 

model and a mean square error (MSE) loss for the log counts output of the model. The relative 

loss weight used for the counts loss was 0.1 times the mean total counts per region. During each 

epoch, training examples were jittered by up to 500 bp on either side and a random half of the 

sequences were reverse complemented. Each batch contained a 10:1 ratio of peaks to non-peak 

regions. Five models were trained for each cell type corresponding to five disjoint training folds. 

Model training was performed using Keras/Tensorflow 2. Code used for model training is 

available at https://github.com/kundajelab/retina-models. Models are available at 

https://doi.org/10.5281/zenodo.6330053. 

 

SNP scoring with BPNet 

To score LD expanded SNPs associated with eye disease, we centered the input window at the 

SNP and obtained the log2 fold change in predicted counts between the reference and alternate 

alleles for each cell type-specific model. We averaged the log2 fold change over the five model 

folds for each SNP and cell type. To obtain P values, we performed one-sided Poisson tests of 

the predicted alternate allele count with the rate parameter set to the predicted reference allele 

count (counts averaged over five folds). For each SNP, we combined P values across cell types 

with Fisher’s method and performed Benjamini-Hochberg correction. SNPs with an absolute 

fold-averaged log2 fold change >0.5 and false discovery rate <0.01 were assigned putative “high 

effect” annotation. To obtain a background set, random noncoding SNPs were chosen by 

shuffling a list of all SNPs from the 1000 Genomes Project25, filtering out coding regions, and 

selecting the first 10,000 entries. Only random SNPs localized to chromosomes 1-22 and X were 
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then retained, leaving 9,984 background SNPs. Background SNPs had similar GC content as 

disease-associated LD expanded SNPs (51% versus 52%) and were scored as described above. 

Base importance tracks were visualized using Logomaker62. 

 

Data availability 

Raw and processed scRNA-seq, scATAC-seq, and HiChIP data from this study have been 

uploaded to GEO under the accession number GSE196235. A web page summarizing these data 

is additionally available at https://eyemultiome.su.domains/. BPNet models are available at 

https://doi.org/10.5281/zenodo.6330053. All data generated in this study are available upon 

reasonable request. 

 

Code availability 

Code used for BPNet model training is available at https://github.com/kundajelab/retina-models. 

All other custom code used in this study is available upon request. 
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FIGURE LEGENDS 

Figure 1. Transcriptional profiles from joint single-cell RNA- and ATAC-seq identify 

major cell types of the human retina.  

a, Schematic of the human retina depicting the cell types analyzed in this study. b, Uniform 

manifold approximation and projection (UMAP) plot of the 51,645 human retinal cells detected 

by scRNA-seq after quality control filtering and removal of putative doublets. Eight postmortem 

retinas from four donors were profiled. A total of 22 clusters were resolved and assigned to 13 

cell types. c, Frequency of different cell types in the human retina as determined by scRNA-seq. 

Numbers above each bar denote absolute counts out of 51,645. d, Dot plot visualizing the 

normalized RNA expression of selected marker genes by cell type. The color and size of each 

dot correspond to the average expression level and fraction of expressing cells, respectively. 

 

Figure 2. Chromatin accessibility profiles from joint single-cell RNA- and ATAC-seq of the 

human retina reveal cell type-specific epigenetic landscapes. 

a, Number of chromatin accessibility peaks for each cell type as determined by scATAC-seq. 

Peaks were required to be present in a least two pseudo-bulk ATAC replicates (n = 2 for 

Astrocyte and Microglia, n = 5 for all other cell types). b, Overlap of scATAC peaks with peaks 

from published human retina bulk ATAC-seq data. Overlapping was defined as peaks with any 

overlapping bases. c, Heatmap of scATAC marker peaks enriched in each cell type. Each column 

represents a marker peak. d, Sequencing tracks of chromatin accessibility near selected marker 

genes by cell type. Each track represents the aggregate scATAC signal of all cells from the given 

cell type normalized by the total number of reads in TSS regions. Genes in the sense direction 

(TSS on the left) are shown in red, while genes in the antisense direction (TSS on the right) are 
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shown in blue. Coordinates for each region: PDE6A (chr5:149924792-149964793), GRIK1 

(chr21:29905031−29955033), RLBP1 (chr15:89201750−89241751), GRM6 

(chr5:178975297−179015298), NIF3L1 (chr2:200874325−200914327), ARR3 

(chrX:70248304−70288305), GAD2 (chr10:26186306−26246307), ONECUT1 

(chr15:52781076−52821078), SLC6A9 (chr1:44005465−44035467), NEFL 

(chr8:24937109−24977110), CALB2 (chr16:71323711−71368713), PAX2 

(chr10:100715602−100755603), HLA-DRA (chr6:32419841−32459842). 

 

Figure 3. Motif analysis of accessible DNA regions in the human retina predicts cell type-

specific transcription factors. 

a, Heatmap of selected TF binding motifs enriched in each cell type. Darker colors indicate more 

significant enrichment. b, Footprinting analysis of selected TFs across cell types. Footprints were 

corrected for Tn5 insertion bias by dividing the footprinting signal by the Tn5 insertion signal. 

 

Figure 4. Single-cell multiomics pinpoint the cellular targets of noncoding variants in eye 

diseases.  

a, Overview of SNP selection for interrogating ocular disease GWAS. Index SNPs obtained from 

GWAS of each disease were subjected to LD expansion, and the resulting noncoding SNPs 

intersected with scATAC peaks. b, Percentage of LD expanded SNPs from each disease that 

overlapped with chromatin accessibility peaks for each cell type. c, Schematic of promoter co-

accessibility and predicted target gene analyses. Co-accessible was defined as scATAC peaks 

whose accessibility showed a correlation score >0.3. Predicted target genes were defined as 

genes whose RNA expression showed a correlation score >0.3 relative to the accessibility of the 
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tested scATAC peak. d, Number of scATAC peaks co-accessible with each promoter peak. e, 

Number of predicted target genes for each scATAC peak. f, Sequencing tracks of chromatin 

accessibility near rs4821699 (chr22:37719685) and rs17421627 (chr5:88551768). Genes in the 

sense and antisense directions are shown in red and blue, respectively. The location of each SNP 

is depicted by a vertical gray line. Gray arcs indicate predicted target genes for the scATAC peak 

containing the SNP of interest. 

 

Figure 5. Integration of single-cell multiome with HiChIP and eQTL data prioritizes 

functional noncoding polymorphisms in the human retina. 

a, Schematic of H3K27ac HiChIP and eQTL analyses used to prioritize SNPs. b, Overlap of 

HiChIP loop anchors (n = 2 biological replicates) with scATAC peaks. c, Percentage of SNPs in 

scATAC peaks for each disease with available retina eQTL data. d, Sequencing tracks of 

chromatin accessibility near rs9966620 (chr18:24100771), rs2730260 (chr7:159054238), and 

rs66475830 (chr6:116087639). Genes in the sense and antisense directions are shown in red and 

blue, respectively. The location of each SNP is depicted by a vertical gray line. Gray arcs 

indicate predicted target genes for the scATAC peak containing the SNP of interest. The black 

arc overlapping with rs9966620 indicates a H3K27ac HiChIP loop with the region encompassed 

by the opposite anchor highlighted in purple. e, Significance of SNP-gene associations for 

rs2730260 or rs66475830 and their nearby genes as determined by retina eQTL analysis. 

Adjusted P values for each gene were calculated by multiplying the nominal P value listed in the 

EyeGEx database by the number of SNP-gene pairs tested for that SNP.  
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Figure 6. Integration of single-cell multiome with base-resolution deep learning nominates 

functional mechanisms for disease-associated SNPs. 

a, Schematic of the CNN-based deep learning pipeline. b, Percentage of noncoding index SNPs 

(n = 1,284), LD expanded SNPs (n = 7,034), LD expanded SNPs in scATAC peaks (n = 1,152), 

randomly selected GC-matched SNPs (n = 9,984), and randomly selected SNPs in scATAC 

peaks (n = 1,160) that were categorized as high effect. c, Top: Predicted per-base accessibility 

for rs1532278 (chr8:27608798) and rs1874459 (chr16:65041801) in Müller glia and rod bipolar 

cells, respectively, as determined by deep learning models. A 100-bp window depicts the 

importance of each base to predicted accessibility at the SNP, and a 1,000-bp window depicts 

predicted per-base counts for the reference (blue) and alternate (orange) alleles. SNP bases are 

highlighted in purple. For rs1874459, similar changes in accessibility were predicted for OFF-

cone bipolar, ON-cone bipolar, gly-amacrine, and AII-amacrine cells. Bottom: Sequencing tracks 

of chromatin accessibility near rs1532278 and rs1874459. Genes in the sense and antisense 

directions are shown in red and blue, respectively. The location of each SNP is depicted by a 

vertical gray line. Gray arcs indicate predicted target genes for the scATAC peak containing the 

SNP of interest. d,f, Significance of SNP-gene associations for rs1532278 (d) or rs1874459 (f) 

and their nearby genes as determined by retina eQTL analysis. Adjusted P values for each gene 

were calculated by multiplying the nominal P value listed in the EyeGEx database by the number 

of SNP-gene pairs tested for that SNP. e, Dot plot visualizing the normalized RNA expression of 

40 different homeodomain TFs in Müller glia. The selected TFs correspond to the 40 

homeodomain factors whose binding motifs were most significantly enriched in Müller glia as 

determined by motif analysis (Supplementary Data 4). g, Dot plot visualizing the normalized 

RNA expression of neuroD and neurogenin family members by cell type. 
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Extended Data Figure 1. Single-cell RNA- and ATAC-seq quality control metrics. 

a-f, Violin plots depicting the number of detected genes per nucleus (a), number of detected 

RNA transcripts per nucleus (b), percentage of mitochondrial reads (c), percentage of ribosomal 

reads (d), TSS enrichment (e), and number of detected fragments per nucleus (f) by retina in the 

final dataset. Boxes depict the 25th percentile, median, and 75th percentile of each metric.    

 

Extended Data Figure 2. Single-cell RNA-seq cluster assignments.  

a, First iteration uniform manifold approximation and projection (UMAP) plot of the scRNA-seq 

dataset after quality control filtering, automated removal of doublets, and exclusion of clusters 

with no detected marker genes. Five clusters comprised of putative doublets were subsequently 

removed and the dataset re-clustered. b, Second iteration UMAP of the scRNA-seq dataset. One 

cluster comprised of putative doublets was subsequently removed and the dataset re-clustered. c, 

Final iteration UMAP of the scRNA-seq dataset. Clusters representing subpopulations of the 

same cell type were grouped together for downstream analyses.  

 

Extended Data Figure 3. Characterization of chromatin accessibility peaks and linkage 

disequilibrium expanded SNPs.  

a, Number of cell types exhibiting each of the 620,386 scATAC peaks. b, Visual depiction of LD 

expansion for the 30 index SNPs on chromosome 1 associated with AMD. Each vertical black 

line represents a SNP. c, Percentage of noncoding index and LD expanded SNPs from each 

disease that overlapped with at least one scATAC peak. d, Number of cell types exhibiting each 

of the 1,152 scATAC peaks that overlapped with a LD expanded SNP. e, Comparison of 
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predicted target genes with the nearest gene for each chromatin accessibility peak with at least 

one predicted target gene. Same was defined as any of the predicted target genes being the 

nearest gene.  

 

Extended Data Figure 4. H3K27ac HiChIP predicts enhancer-promoter interactions in the 

human retina. 

a, HiChIP interaction types by sample. Cis refers to interactions on the same chromosome, while 

trans refers to interactions spanning separate chromosomes. b, HiChIP interaction maps at whole 

genome, 250-kb, and 5-kb resolution. Sample shown is LGS1OD. Signal was normalized to the 

square root of coverage. Numbers above the interaction maps indicate maximum signal in each 

matrix. c, Sequencing tracks of cell type chromatin accessibility and H3K27ac HiChIP loops 

overlapping with the TSS of selected marker genes. Genes in the sense and antisense directions 

are shown in red and blue, respectively. Regions encompassed by the loop anchors are 

highlighted in purple. 

 

Extended Data Figure 5. Integration of single-cell multiome with HiChIP and eQTL data 

refines SNP-target gene predictions. 

a, Sequencing tracks of chromatin accessibility near rs77272443 (chr1:112894884) and 

rs4102217 (chr11:65496424). Genes in the sense and antisense directions are shown in red and 

blue, respectively. The location of each SNP is depicted by a vertical gray line. Gray arcs 

indicate predicted target genes for the scATAC peak containing the SNP of interest. Black arcs 

overlapping with SNPs indicate H3K27ac HiChIP loops with the regions encompassed by the 

opposite anchors highlighted in purple. b, Significance of SNP-gene associations for rs77272443 
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or rs4102217 and their 20 nearest genes as determined by retina eQTL analysis. Adjusted P 

values for each gene were calculated by multiplying the nominal P value listed in the EyeGEx 

database by the number of SNP-gene pairs tested for that SNP. 

 

Extended Data Figure 6. BPNet model performance. 

a,b, Correlation scores between predicted and actual observed log counts in only peak (a) or both 

peak and non-peak (b) regions on chromosome sequences that were withheld during cell type-

specific model training. Each color represents one of five model folds.  

 

Extended Data Figure 7. Summary of SNP prioritization. 

a-e, Total number of prioritization criteria met by LD expanded SNPs in loci associated with 

AMD (a), glaucoma (b), DR (c), myopia (d), and MacTel (e). Prioritization criteria were 1) co-

accessibility with a promoter peak, 2) accessibility correlated with expression of a nearby gene, 

3) linkage to a gene by H3K27ac HiChIP, 4) significant association with a gene by retina eQTL 

data, and 5) high effect designation by deep learning. 
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