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ABSTRACT

Genome-wide association studies (GWAS) of eye disorders have identified hundreds of genetic
variants associated with ocular disease. However, the vast majority of these variants are
noncoding, making it challenging to interpret their function. Here, we present a joint single-cell
atlas of gene expression and chromatin accessibility of the adult human retina with >50,000 cells,
which we used to analyze noncoding single-nucleotide polymorphisms (SNPs) implicated by
GWAS of age-related macular degeneration, glaucoma, diabetic retinopathy, myopia, and type 2
macular telangiectasia. We integrate this atlas with a HiChIP enhancer connectome, expression
quantitative trait loci (eQTL) data, and base-resolution deep learning models to predict
noncoding SNPs with causal roles in eye disease, assess SNP impact on transcription factor
binding, and define their known and novel target genes. Our efforts nominate pathogenic SNP-
target gene interactions for multiple vision disorders and provide a potentially powerful resource

for interpreting noncoding variation in the eye.
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INTRODUCTION

Genome-wide association studies (GWAS) of eye disorders such as glaucoma, myopia, and age-
related macular degeneration (AMD) have uncovered hundreds of genetic polymorphisms
associated with ocular disease'™. However, the vast majority of variants identified by GWAS
reside in noncoding regions of the genome, making it challenging to interpret their function®. To
better understand how noncoding variants mechanistically contribute to ocular pathology, it
would be valuable to map in which cell types their corresponding loci are active. This
information would provide novel insights into the cellular biology of genetically complex eye

diseases and help nominate specific cell types as targets for therapies.

A recent advance in studying the noncoding genome has been the development of single-cell
multiomic technologies such as paired single-cell RNA sequencing (scCRNA-seq) and single-cell
assay for transposase-accessible chromatin sequencing (SCATAC-seq). While scRNA-seq can
classify the different cell types of a tissue based on their transcriptional profiles, its combination
with scATAC-seq allows for the additional mapping of cell type-specific chromatin accessibility.
Together, these techniques can reveal the activity of noncoding DNA elements identified by
GWAS and have been used to interrogate risk variants for conditions including Alzheimer’s

disease, Parkinson’s disease, autism spectrum disorder, and autoimmunity™.

Investigations into the noncoding genome have likewise benefitted from analytical innovations,

such as the application of convolutional neural network (CNN)-based deep learning to predict

10—

the effects of noncoding polymorphisms'®™2. Progress in this area has recently led to models

with resolution down to a single nucleotide, enabling accurate determination of the critical bases
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within cis-regulatory sequences®*%*3, These models offer a validated approach to prioritize
noncoding variants with functional relevance and are particularly suitable for tissues in which

experimental manipulation is difficult.

Here, we generated a joint SCRNA- and sCATAC-seq atlas of the adult human retina composed of
>50,000 cells and used it to analyze noncoding single-nucleotide polymorphisms (SNPs)
implicated by GWAS of five eye diseases: AMD, glaucoma, diabetic retinopathy (DR), myopia,
and type 2 macular telangiectasia (MacTel). Layering this atlas with a HiChIP enhancer
connectome™®, expression quantitative trait loci (eQTL) data®®, and base-resolution deep learning
models'?, we then predicted noncoding SNPs with causal roles in eye disease. Our efforts
nominate pathogenic SNP-target gene interactions for multiple vision disorders and provide a

potentially powerful resource for interpreting noncoding variation in the eye.

RESULTS

Single-cell multiomicsreveal the gene expression and chromatin accessibility landscapes of
cell typesin the human retina

To generate a single-cell multiome of the human retina, we performed joint sScRNA- and
SCATAC-seq profiling on eight postmortem retinas from four individuals who had no history of
eye disease (Supplementary Table 1). Following quality control filtering (Extended Data Fig. 1la-
) and removal of putative doublets (Extended Data Fig. 2a,b), we obtained a total of 51,645
human retinal cells in 22 clusters which we assigned to 13 different cell types (Fig. 1a,b and
Extended Data Fig. 2c). These included abundant cell types like rod photoreceptors and Muller

glia, as well as rarer cell types such as astrocytes and microglia, which each constituted only
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0.4% of profiled cells (Fig. 1c and Supplementary Table 2). Consistent with published sSCRNA-

seq studies of the human retina'®*®

, we observed cell type-specific expression of many genes,
including PDEGA in rod photoreceptors, GRIK1 in OFF-cone bipolar cells, RLBP1 in Miiller
glia, GRM6 in ON-cone and rod bipolar cells, PRKCA in rod bipolar cells, ARR3 in cone
photoreceptors, GAD1 in GABAergic (GABA-) amacrine cells, ONECUTL1 in horizontal cells,
SLC6A9 in All- and other glycinergic (gly-) amacrine cells, NEFL in retinal ganglion cells,
GJD2 in All-amacrine cells, GFAP in astrocytes, and C1QA in microglia (Fig. 1d). In addition,

we identified a list of candidate marker genes based on differential expression for each of the 13

cell types (Supplementary Data 1).

Using shared barcodes from joint multiomic profiling, we next assigned scATAC-seq profiles to
the 13 cell types characterized above by sScRNA-seq. Peak calling performed on scATAC-seq
profiles from each cell type combined into pseudo-bulk ATAC replicates uncovered a total of
620,386 chromatin accessibility peaks (Fig. 2a and Supplementary Data 2). These SCATAC
peaks included >90% of peaks from published bulk ATAC-seq of the human retina (Fig. 2b)*°,
indicating that single-cell multiomics can recapitulate bulk ATAC-seq data. Conversely, more
than half of SCATAC peaks were unique to the single-cell dataset (Fig. 2b), and nearly 40% of
SCATAC peaks were accessible in only one cell type (Extended Data Fig. 3a). Supporting this,
we found 197,826 scATAC marker peaks enriched in a cell type-specific manner (Fig. 2c and

Supplementary Data 3), including many located near cell type-specific genes (Fig. 2d).

With these scATAC peaks, we then conducted motif enrichment analysis to predict what

transcription factors (TFs) might be active in each cell type (Fig. 3a and Supplementary Data 4).
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In accord with published literature, we observed enrichment of binding motifs for TFs with
known cell type-specific functions, such as OTX2 in photoreceptors and bipolar cells?,
ONECUT family members in horizontal cells®*, POU4F family members in retinal ganglion
cells??, and SPI1 (PU.1) in microglia®®. For some TFs, cell type-specific activity was also
supported by footprinting analysis of SCATAC peaks (Fig. 3b), which revealed motif centers to
be protected from Tn5 transposition, consistent with TF occupancy. These data offer a cell type-
specific catalog of candidate TFs in the adult retina and may aid our understanding of gene-

regulatory networks controlling vision.

Single-cell multiomics uncover the cellular contexts of variantsimplicated by ocular disease
GWAS

Using our single-cell multiome, we sought to better understand risk loci identified by GWAS of
complex eye disorders. To this end, we compiled of a list of 1,331 unique index SNPs from the
NHGRI-EBI GWAS Catalog representing GWAS hits for five eye diseases: AMD, glaucoma,
DR, myopia, and MacTel (Fig. 4a and Supplementary Table 3)?*. The vast majority (96.5%) of
these SNPs localize to noncoding regions of the genome and thus cannot be interpreted with
scRNA-seq data alone. We performed linkage disequilibrium (LD) expansion on all index SNPs
to include nearby variants with high probability of coinheritance (LD R* >0.9 based on phase 3
genotypes from the 1000 Genomes Project) (Extended Fig. 3b)?°. From this, we obtained a total

of 7,034 unique noncoding SNPs in loci associated with eye disorders (Supplementary Data 5).

To determine in which retinal cell types each of the 7,034 SNPs might be active, we overlapped

SNP locations with sScCATAC peaks from our dataset. We found that 1,152 SNPs (16.4%)
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overlapped with a sSCATAC peak (Fig. 4b and Extended Data Fig. 3c), and that most SNP-
containing peaks were present in only one or two cell types (Extended Fig. 3d). We next
conducted two orthogonal analyses to refine our list of SNPs for those more likely to possess
gene regulatory functions (Fig. 4c). First, we identified SNPs in SCATAC peaks that were co-
accessible with peaks in promoter regions, reasoning that this would select for SNPs in active
enhancers. We found 39,552 such promoter peaks in the human retina, 58.3% of which were co-
accessible with at least one sSCATAC peak (Fig. 4d). Leveraging our paired sScRNA- and
SCATAC-seq data, we also searched for SNPs in peaks that had at least one predicted target gene
based on same-cell correlations between peak accessibility and gene expression. Using this
method, we predicted target genes for 199,055 (32.1%) of the 620,386 scATAC peaks in our
dataset (Fig. 4e). For nearly half (44.3%) of these peaks, our predictions differed from the
nearest gene on the linear genome (Extended Data Fig. 3e), suggesting that noncoding SNPs do

not necessarily regulate their nearest gene.

We identified 241 SNPs in sSCATAC peaks that were co-accessible with promoter peaks and 374
SNPs that had predicted target genes, with 202 SNPs meeting both criteria. As an example, we
examined rs4821699 residing in an intron of TRIOBP on chromosome 22. This locus has been
implicated in glaucoma by multiple GWAS and encodes a protein thought to regulate
cytoskeletal organization®?*%’. We observed that rs4821699 was most accessible in retinal
ganglion cells (Fig. 4f), the major cell type that undergoes degeneration during glaucoma. Based
on correlations with gene expression, the peak containing this SNP was furthermore predicted to
target TRIOBP. We hypothesize that rs4821699 might therefore play a role in glaucoma by

altering TRIOBP expression in retinal ganglion cells.
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A handful of SNPs associated with eye diseases have been experimentally studied using retinal
organoids derived from induced pluripotent stem cells. One such SNP is rs17421627, an index
SNP from GWAS of MacTel representing a T-to-G substitution on chromosome 5>, We
determined rs17421627 to be one of only five SNPs for MacTel with a predicted target gene and
found the SNP to be most accessible in Mdiller glia and astrocytes (Fig. 4f). Using linked gene
expression data, we also predicted rs17421627 to act on LINC00461, a long noncoding RNA.
Consistent with these predictions, deletion of the locus containing rs17421627 in human retinal
organoids has been shown to significantly downregulate LINC00461 with the strongest effect in
Miiller glia®®. These examples illustrate how single-cell multiomics can reveal the cellular targets

of noncoding variants in the retina and nominate how they might contribute to eye disorders.

I ntegration of single-cell multiome with HiChlP and eQTL data validates SNP-target gene
predictions

To further prioritize our list of SNPs, we combined our data with two complementary methods
for identifying functional SNP-gene interactions genome-wide (Fig. 5a). We first performed
HiChIP for acetylated histone H3 lysine 27 (H3K27ac), a mark of active enhancers and
promoters®, to characterize the three-dimensional (3D) enhancer “connectome” of the human
retina (Extended Data Fig. 4a,b)'**". We uncovered 16,692 loop anchors connected by 9,670
HiChIP loops, including several linking regions of chromatin accessibility to the transcription
start sites (TSSs) of cell type-specific genes (Extended Data Fig. 4c). Of these loops, >95%
overlapped with a SCATAC peak in both anchors, and >99% overlapped with a peak in at least

one anchor (Fig. 5b). This result shows that accessible chromatin sites identified in SCATAC-seq
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data possess biochemical characteristics of active enhancers and supports their connection to
target genes. We additionally analyzed our list of SNPs using published human retina eQTL data
from the Eye Genotype Expression (EyeGEXx) database™. For >90% of SNPs in SCATAC peaks,
retina eQTL data was available (Fig. 5c), enabling genes whose mRNA expression in the human

retina changed with specific SNPs to be identified at the bulk tissue level.

We found 187 disease-associated SNPs in SCATAC peaks that were linked to a gene by a
H3K27ac HIChlIP loop. These included rs9966620, the top SNP from a GWAS of DR
representing a G-to-A transition in an intron of TTC39C on chromosome 18%. Using our
multiome, we determined that the sSCATAC peak containing rs9966620 was most accessible in
rods (Fig. 5d). However, this peak also correlated with the expression of multiple target genes,
hampering efforts to interpret how the SNP might function. Incorporating our HiChIP data, we
were able to locate a 3D loop connecting rs9966620 with a region 75 kilobases (kb) upstream.
This region intersected the TSS of only one gene, TTC39C-ASL, suggesting that rs9966620 may

modulate DR risk by interacting with TTC39C-ASL in rods.

We additionally detected 596 disease-associated SNPs in SCATAC peaks that were significantly
associated with a gene by eQTL analysis. One example was rs2730260, a SNP in an intron of
VIPR2 that has been implicated in myopia®. This locus encodes one of two known receptors for
vasoactive intestinal peptide (VIP), a signaling molecule involved in visual processing®. We
found that rs2730260 resided in a chromatin accessibility peak specific to Muller glia that again
had multiple predicted target genes (Fig. 5d). This ambiguity was clarified by retina eQTL data,

which showed that variation at rs2730260 significantly correlated with the expression of only
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VIPR2 (Fig. 5e), supporting this gene as the SNP’s primary target. Integration of eQTL data
similarly improved our interpretation of rs66475830 on chromosome 6 in the FRK-NT5DC1-
COL10A1 risk locus for AMD?***. This region contains nearly 20 genes within a span of a
megabase (Mb), making it particularly difficult to functionally annotate GWAS hits. From our
single-cell data, we determined rs66475830 to be accessible in amacrine and horizontal cells and
predicted TSPYL1 and TSPYL4 as target genes (Fig. 5d). Retina eQTL analysis revealed that
variation at this position was significantly associated with TSPYL4 expression, but not that of

other nearby genes (Fig. 5e), nominating TSPYL4 as the effector gene of rs66475830.

Lastly, we identified many SNP-target gene relationships supported by both HiChIP and eQTL
data, such as rs77272443 and rs4102217 located in risk loci for myopia and glaucoma,
respectively®”*®. For both of these SNPs, HiChIP and eQTL analyses again refined target gene
predictions (Extended Data Fig. 5a,b), demonstrating how the combination of single-cell

multiomics with other assays can enhance interpretation of noncoding variants in eye disease.

I ntegration of single-cell multiome with base-resolution deep lear ning nominates functional
mechanisms for disease-associated SNPs

CNN-based deep learning models have proven capable of discerning disease-associated SNPs
from other noncoding variants®'°**. As a final method to prioritize SNPs in our dataset, we
therefore trained CNNs derived from the BPNet architecture on sSCATAC-seq profiles for each of
the 13 retinal cell types (Fig. 6a and Extended Data Fig. 6a,b)'2. At each SNP region, we
compared the projected per-base change in chromatin accessibility between reference and

alternate alleles using models specific to the different cell types. These calculations allowed us to
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identify “high effect” SNPs, which we defined as SNPs predicted to cause a statistically
significant (false discovery rate <0.01) absolute log2 fold change of allele-specific read counts

>0.5 in local chromatin accessibility in any cell type.

We found 23 SNPs (2.0%) residing in SCATAC peaks that qualified as high effect, a greater
percentage than among index SNPs, LD expanded SNPs, random SNPs matched for GC content,
and random SNPs residing in SCATAC peaks (Fig. 6b and Supplementary Data 7). One of the top
scoring SNPs was rs1532278, an index SNP associated with myopia and residing in an intron of
CLU on chromosome 8. Our atlas predicted rs1532278 to regulate CLU, a notion reinforced by
eQTL data, and determined the SNP to be accessible in nine of 13 retinal cell types (Fig. 6¢,d).
Despite this, base-resolution models projected a T-to-C transition at rs1532278 to alter chromatin
accessibility only in Muller glia, specifically by disrupting the motif of a homeodomain TF. Our
findings suggest that even though rs1532278 is accessible across multiple cell types, its
functional impact in the retina might be restricted to Muller glia due to a cell type-specific
homeodomain TF. We speculate that this TF could be LHX2 given its robust expression in

Miiller glia by both our scRNA-seq data (Fig. 6e) as well as data from animal models™.

Another high effect SNP was rs1874459 located in an intron of CDH11 on chromosome 16, a
locus implicated by multiple GWAS for glaucoma®?. Using our multiome, we found rs1874459
to be most accessible in rod bipolar cells and predicted CDH11 as one of its target genes, an idea
supported by eQTL data (Fig. 6c¢,f). Incorporating base-resolution models, we then determined
that the G-to-C transversion represented by rs1874459 introduced a new basic helix-loop-helix

(bHLH) domain, which was expected to increase accessibility in rod bipolar, OFF-cone bipolar,
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ON-cone bipolar, gly-amacrine, and All-amacrine cells. Of the bHLH TFs, members of the
neuroD and neurogenin families in particular were predicted by motif analysis to be significantly
enriched in these five cell types (Fig. 3a and Supplementary Data 4). We thus compared all
neuroD and neurogenin family members using our ScRNA-seq data, which revealed only
NEURODA4 to be specific to bipolar and amacrine cells (Fig. 6g), consistent with its role in
specifying these cell types during development*®*!. Together, our results suggest that rs1874459
may act on CDH11 in bipolar and amacrine cells by creating a new bHLH domain recognized by

NEURODA.

DISCUSSION

In this study, we applied single-cell multiomics, HiChIP, eQTL analysis, and base-resolution
deep learning to the human retina to decipher the role of noncoding risk variants in five eye
diseases. Integrating these methods allowed us to predict gene and cellular targets in the retina
for hundreds of SNPs and nominate dozens as pathogenic and meriting functional validation.
From an initial list of >7,000 noncoding SNPs, we identified 1,152 located in chromatin
accessibility peaks. We subsequently focused on SNPs 1) that were co-accessible with a
promoter, 2) whose accessibility correlated with the expression of a nearby gene, 3) that were
linked to a gene in 3D space by a H3K27ac HiChIP loop, 4) that demonstrated significant
association with a gene based on retina eQTL data, and 5) that were predicted to alter local
chromatin accessibility as determined by base-resolution models. We propose that SNPs meeting
most or all of these criteria (Extended Data Fig. 7a-e and Supplementary Data 5) be prioritized in

future validation efforts.
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Our findings build upon recent works that used primarily fetal tissue and stem cell-derived
organoids to map cell type-specific chromatin accessibility in the human retina®**?. Datasets
from these studies offer a rich resource for decoding retinal development, but might not fully
recapitulate the biology of the mature retina, making them potentially less suitable for studying
eye disorders that present later in life. Here, we not only generated a single-cell multiome of the
adult human retina to pinpoint cellular targets for disease-associated SNPs, but also combined it
with multiple orthogonal analyses to define putative SNP-target gene interactions. By performing
base-resolution deep learning, we were further able to uncover insights not readily apparent from
single-cell, HiChlIP, and eQTL data, such as the predicted impact of SNPs on TF binding and the
directionality of these effects. To facilitate its use, our atlas is publicly available at

https://eyemultiome.su.domains/.

Finally, it should be noted that the majority of SNPs we examined did not overlap with any
chromatin accessibility peaks, suggesting that they were not active in the retina. We hypothesize
that many of these unassigned SNPs may instead function in other parts of the eye and thus could
not be captured by our analysis. For instance, although the neural retina is damaged in AMD and
DR, the retinal pigment epithelium and vasculature, respectively, are thought to be the primary
sites of pathology****. In glaucoma, the trabecular meshwork and ciliary body can modulate
disease severity as evidenced by treatments that act on these tissues*. Likewise, the choroid and
sclera may be involved in myopia given that they elongate alongside the retina with increasing
nearsightedness*®. Multiomic characterization of these additional ocular regions would enable a

more complete understanding of how noncoding SNPs contribute to vision disorders.
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METHODS

Human tissues

Postmortem adult human retinas were procured from consented donors by Lions VisionGift
(Portland, OR, USA) or Lions Gift of Sight (St Paul, MN, USA) under protocols approved by the
Eye Bank Association of America. None of the donors had a history of ocular disease. De-
identified retinas were flash-frozen in liquid nitrogen with a maximum death-to-preservation

interval of 12 hours and shipped to Stanford University for processing.

Nucle isolation
Nuclei were isolated from frozen retinas using the Omni-ATAC protocol

(https://doi.org/10.17504/protocols.io.6t8herw)*’. Briefly, tissues were Dounce homogenized in

cold homogenization buffer containing 0.3% IGEPAL CA-630 in the presence of protease and
RNase inhibitors to release nuclei from frozen cells. Nuclei were subsequently purified via
iodixanol gradient centrifugation and washed with ATAC resuspension buffer containing RNase
inhibitor and 0.1% Tween-20 before permeabilization following the 10x Genomics demonstrated
protocol for complex tissues (CG000375, Rev. B). After resuspension in diluted nuclei buffer,
nuclei were counted using a manual hemocytometer to achieve a targeted nuclei recovery of

10,000 nuclei per sample.

scRNA- and scATAC-seq library generation
Joint sScRNA- and scATAC-seq libraries were prepared using the 10x Genomics Single Cell

Multiome ATAC + Gene Expression kit according to manufacturer’s instructions. Libraries were
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sequenced with paired-end 150-bp reads on an Illumina NovaSeq 6000 to a target depth of 250

million read pairs per sample.

scRNA- and scATAC-seq data preprocessing and quality control

Demultiplexed scRNA- and scATAC-seq fastq files were inputted into the Cell Ranger ARC
pipeline (version 2.0.0) from 10x Genomics to generate barcoded count matrices of gene
expression and ATAC data. For each sample, count matrices were loaded in ArchR and selected
for barcodes that appeared in both the SCRNA-seq and SCATAC-seq datasets*®. Samples in
ArchR were quality control filtered for nuclei with 200-50,000 RNA transcripts, <1%
mitochondrial reads, <5% ribosomal reads, TSS enrichment >6, and >2,500 ATAC fragments.
Quality control filtered nuclei subsequently underwent automated removal of doublets using the
filterDoublets function in ArchR, which identifies and removes the nearest neighbors of

simulated doublets®.

scRNA-seq data analysis

scRNA-seq data from nuclei remaining after quality control filtering and automated removal of
doublets were analyzed using Seurat (version 3.1.5)*°. After merging all preprocessed samples
into a single Seurat object, gene expression counts were normalized using the NormalizeData
function, scaled using the ScaleData function, and batch corrected using Harmony®. Graph-
based clustering was then performed on the Harmony-corrected data using the top 20 principal
components at a resolution of 0.5. Cluster identities were manually annotated based on the

16-

expression of genes from published scRNA-seq studies of the human retina*®*®. Marker genes

for each cluster were additionally identified using the FindAllMarkers function with a minimum
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fraction of 0.5 and a log2 fold change of 1 (Supplementary Data 1). Clusters expressing
canonical marker genes from different cell types were designated as putative doublets and
excluded, after which re-clustering was performed using the same parameters. Clusters with no
detected marker genes were also excluded, after which the dataset was also re-clustered. Clusters
in the final dataset representing subpopulations of the same cell type were grouped together for

downstream analyses.

SCATAC-seq data analysis

SCATAC-seq data were analyzed using ArchR (version 1.0.1) based on barcoded cell type
identities from scRNA-seq*®. For each cell type, pseudo-bulk ATAC replicates were created
using the addGroupCoverages function with default parameters, which generated between two to
five replicates depending on how many cells of that type were present in each sample. Chromatin
accessibility peaks on chromosomes 1-22 and X and outside of blacklist regions were then called
using the addReproduciblePeakSet function and MACS2°°2, with sScATAC peaks for each cell
type defined as those present in at least two pseudo-bulk ATAC replicates (Supplementary Data
2). Marker peaks were identified using the getMarkerFeatures function with a log2 fold change
>1 and false discovery rate <0.01 as determined by Wilcoxon pairwise comparisons
(Supplementary Data 3). Promoter peaks were defined as SCATAC peaks within 2,000 bp
upstream or 100 bp downstream of a TSS, and peaks co-accessible to promoter peaks were
identified using the getCoAccessibility function with a correlation cutoff of 0.3 and resolution of
1. Predicted target genes for each scCATAC peak were generated using the getPeak2GeneLinks

function integrating barcode-matched RNA expression data from scRNA-seq with a correlation
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cutoff of 0.3 and resolution of 1. Nearest genes were determined using the BEDTools closest

function based on gene annotations from TxDb.Hsapiens.UCSC.hg38.knownGene*>.

Bulk ATAC-seq data analysis

Bulk ATAC-seq analysis was performed on published ATAC-seq data from five healthy human
retinas™®. After adapter trimming, fastq files were mapped to the hg38 genome using Bowtie2
and filtered to remove PCR duplicates and retain reads from only chromosomes 1-22 and X**.
Peak calling was then conducted individually on each sample using MACS2>, followed by
exclusion of peaks in blacklist regions®’. Peak calls present in at least two of the five retinas were

included in the bulk ATAC-seq peak set.

Sequencing tracks
Sequencing tracks of chromatin accessibility were generated in ArchR using the
plotBrowserTrack function and were normalized by the total number of reads in TSS regions®.

All data were aligned and annotated to the hg38 reference genome.

Motif enrichment analysis

TF motif enrichment analysis was performed on sSCATAC peaks using the peak AnnoEnrichment
function in ArchR with default parameters based on position frequency matrices from JASPAR
2018 (Supplementary Data 4)***°. Footprinting analysis of TFs was conducted using the
getFootprints function in ArchR*. To correct for Tn5 insertion bias, footprinting signals were

divided by the Tn5 insertion signal prior to plotting.
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SNP selection and LD expansion
Index SNPs implicated in AMD, glaucoma, DR, myopia, or MacTel and located on
chromosomes 1-22 and X were collected from the NHGRI-EBI GWAS Catalog, a curated
collection of human GWAS?. LD expansion was then performed using LDIinkR to add any
SNPs in LD with each index SNP*°, defined as a LD R value >0.9 in the phase 3 genotypes of
the 1000 Genomes Project®. LD expanded SNPs were filtered to exclude variants in coding
regions based on annotations in doSNP to obtain the final set of noncoding SNPs
(Supplementary Data 5)°’. A list of all GWAS used in this study is provided in Supplementary

Table 3.

HiChlP library generation

H3K27ac HiChlIP libraries were prepared as previously reported with minor modifications™.
Briefly, following isolation of nuclei from frozen retinas as described above, ~8 million nuclei
from each sample were washed with nuclei isolation buffer from the diploid chromatin
conformation capture (Dip-C) protocol and fixed with 2% paraformaldehyde at room
temperature for 10 minutes>®. Fixed nuclei were then washed twice with cold 1% bovine serum
albumin in phosphate-buffered saline before resuspension in 0.5% sodium dodecy!l sulfate and
resumption of the published HiChIP protocol. Digestion was performed using the Mbol
restriction enzyme, and sonication was conducted using a Covaris E220 with 5 duty cycles, peak
incident power Jof 140, and 200 cycles per burst _for 4 Iminutes. The ab4729 ChIP validated
antibody from Abcam was used to target H3K27ac. HiChlIP libraries were sequenced with

paired-end 75-bp reads on either an lllumina HiSeq 400 or Illumina NextSeq 550.
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HiChlP data analysis
HiChIP sequencing files were initially processed using the HiC-Pro pipeline (version 2.11.0) to
remove duplicate reads, assign reads to Mbol restriction fragments, filter for valid interactions,
and generate binned interaction matrices™. Filtered read pairs from HiC-Pro were subsequently
converted into .hic files and inputted into HICCUPS from the Juicer pipeline to call loops
(Supplementary Data 6)®. HiChlIP interaction maps depicting all valid interactions identified by

HiC-Pro were visualized using Juicebox®".

eQTL analyss

Retina eQTL data were obtained from the Eye Genotype Expression (EyeGEx) database’. Each
of the 1,152 SNPs overlapping with a SCATAC peak was searched in the database and the
nominal P value of any gene associations with that SNP noted. Adjusted P values were
calculated by multiplying the nominal P value by the number of SNP-gene pairs tested for that

SNP. Interactions with an adjusted P value <0.05 were considered significant.

Deep learning model training

SCATAC-seq reads from the Cell Ranger ARC pipeline were aggregated by cell type to generate
cell type-specific fragments files. The fragments files were converted to BigWig tracks of base-
resolution Tn5 insertion sites with an +4/-4 shift to account for Tn5 shift. For each cell type, in
addition to the peak regions, we selected an equal number of non-peak regions that were matched
for GC content in their peaks. We then trained cell type-specific BPNet models to predict the log
counts and base-resolution Tn5 insertion profiles as previously reported®*2. Briefly, the BPNet

model takes as input a 2,114 bp one-hot encoded input sequence and predicts the ATAC-seq
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profile and log counts in a 1,000 bp window centered at the input sequence. Following BPNet
formulation, we used a multinomial negative log likelihood (MNLL) for the profile output of the
model and a mean square error (MSE) loss for the log counts output of the model. The relative
loss weight used for the counts loss was 0.1 times the mean total counts per region. During each
epoch, training examples were jittered by up to 500 bp on either side and a random half of the
sequences were reverse complemented. Each batch contained a 10:1 ratio of peaks to non-peak
regions. Five models were trained for each cell type corresponding to five disjoint training folds.
Model training was performed using Keras/Tensorflow 2. Code used for model training is

available at https://github.com/kundajelab/retina-models. Models are available at

https://doi.org/10.5281/zenod0.6330053.

SNP scoring with BPNet

To score LD expanded SNPs associated with eye disease, we centered the input window at the
SNP and obtained the log2 fold change in predicted counts between the reference and alternate
alleles for each cell type-specific model. We averaged the log2 fold change over the five model
folds for each SNP and cell type. To obtain P values, we performed one-sided Poisson tests of
the predicted alternate allele count with the rate parameter set to the predicted reference allele
count (counts averaged over five folds). For each SNP, we combined P values across cell types
with Fisher’s method and performed Benjamini-Hochberg correction. SNPs with an absolute
fold-averaged log2 fold change >0.5 and false discovery rate <0.01 were assigned putative “high
effect” annotation. To obtain a background set, random noncoding SNPs were chosen by
shuffling a list of all SNPs from the 1000 Genomes Project®, filtering out coding regions, and

selecting the first 10,000 entries. Only random SNPs localized to chromosomes 1-22 and X were


https://doi.org/10.1101/2022.03.09.483684
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.09.483684; this version posted March 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Wang et al. (CHANG) p. 21
then retained, leaving 9,984 background SNPs. Background SNPs had similar GC content as
disease-associated LD expanded SNPs (51% versus 52%) and were scored as described above.

Base importance tracks were visualized using Logomaker®.

Data availability
Raw and processed scRNA-seq, SCATAC-seq, and HiChIP data from this study have been

uploaded to GEO under the accession number GSE196235. A web page summarizing these data

is additionally available at https://eyemultiome.su.domains/. BPNet models are available at

https://doi.org/10.5281/zen0d0.6330053. All data generated in this study are available upon

reasonable request.

Code availability

Code used for BPNet model training is available at https://github.com/kundajelab/retina-models.

All other custom code used in this study is available upon request.
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FIGURE LEGENDS

Figure 1. Transcriptional profilesfrom joint single-cell RNA- and ATAC-seq identify
major cell types of the human retina.

a, Schematic of the human retina depicting the cell types analyzed in this study. b, Uniform
manifold approximation and projection (UMAP) plot of the 51,645 human retinal cells detected
by scRNA-seq after quality control filtering and removal of putative doublets. Eight postmortem
retinas from four donors were profiled. A total of 22 clusters were resolved and assigned to 13
cell types. c, Frequency of different cell types in the human retina as determined by scRNA-seq.
Numbers above each bar denote absolute counts out of 51,645. d, Dot plot visualizing the
normalized RNA expression of selected marker genes by cell type. The color and size of each

dot correspond to the average expression level and fraction of expressing cells, respectively.

Figure 2. Chromatin accessibility profilesfrom joint single-cell RNA- and ATAC-seq of the
human retinareveal cell type-specific epigenetic landscapes.

a, Number of chromatin accessibility peaks for each cell type as determined by scCATAC-seq.
Peaks were required to be present in a least two pseudo-bulk ATAC replicates (n = 2 for
Astrocyte and Microglia, n = 5 for all other cell types). b, Overlap of SCATAC peaks with peaks
from published human retina bulk ATAC-seq data. Overlapping was defined as peaks with any
overlapping bases. c, Heatmap of SCATAC marker peaks enriched in each cell type. Each column
represents a marker peak. d, Sequencing tracks of chromatin accessibility near selected marker
genes by cell type. Each track represents the aggregate sSCATAC signal of all cells from the given
cell type normalized by the total number of reads in TSS regions. Genes in the sense direction

(TSS on the left) are shown in red, while genes in the antisense direction (TSS on the right) are
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shown in blue. Coordinates for each region: PDEGA (chr5:149924792-149964793), GRIK1
(chr21:29905031-29955033), RLBP1 (chr15:89201750-89241751), GRM6
(chr5:178975297-179015298), NIF3L1 (chr2:200874325-200914327), ARR3
(chrX:70248304-70288305), GAD2 (chr10:26186306—26246307), ONECUT1
(chr15:52781076-52821078), SLC6A9 (chr1:44005465-44035467), NEFL
(chr8:24937109-24977110), CALB2 (chrl16:71323711-71368713), PAX2

(chr10:100715602-100755603), HLA-DRA (chr6:32419841-32459842).

Figure 3. Motif analysis of accessible DNA regionsin the human retina predicts cell type-
specific transcription factors.

a, Heatmap of selected TF binding motifs enriched in each cell type. Darker colors indicate more
significant enrichment. b, Footprinting analysis of selected TFs across cell types. Footprints were

corrected for Tn5 insertion bias by dividing the footprinting signal by the Tn5 insertion signal.

Figure 4. Single-cell multiomics pinpoint the cellular targets of noncoding variantsin eye
diseases.

a, Overview of SNP selection for interrogating ocular disease GWAS. Index SNPs obtained from
GWAS of each disease were subjected to LD expansion, and the resulting noncoding SNPs
intersected with SCATAC peaks. b, Percentage of LD expanded SNPs from each disease that
overlapped with chromatin accessibility peaks for each cell type. ¢, Schematic of promoter co-
accessibility and predicted target gene analyses. Co-accessible was defined as SCATAC peaks
whose accessibility showed a correlation score >0.3. Predicted target genes were defined as

genes whose RNA expression showed a correlation score >0.3 relative to the accessibility of the
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tested SCATAC peak. d, Number of SCATAC peaks co-accessible with each promoter peak. e,
Number of predicted target genes for each sSCATAC peak. f, Sequencing tracks of chromatin
accessibility near rs4821699 (chr22:37719685) and rs17421627 (chr5:88551768). Genes in the
sense and antisense directions are shown in red and blue, respectively. The location of each SNP
is depicted by a vertical gray line. Gray arcs indicate predicted target genes for the SCATAC peak

containing the SNP of interest.

Figure5. Integration of single-cell multiome with HiChlP and eQTL data prioritizes
functional noncoding polymor phismsin the human retina.

a, Schematic of H3K27ac HiChIP and eQTL analyses used to prioritize SNPs. b, Overlap of
HiChIP loop anchors (n = 2 biological replicates) with sScCATAC peaks. ¢, Percentage of SNPs in
SCATAC peaks for each disease with available retina eQTL data. d, Sequencing tracks of
chromatin accessibility near rs9966620 (chr18:24100771), rs2730260 (chr7:159054238), and
rs66475830 (chr6:116087639). Genes in the sense and antisense directions are shown in red and
blue, respectively. The location of each SNP is depicted by a vertical gray line. Gray arcs
indicate predicted target genes for the SCATAC peak containing the SNP of interest. The black
arc overlapping with rs9966620 indicates a H3K27ac HiChIP loop with the region encompassed
by the opposite anchor highlighted in purple. e, Significance of SNP-gene associations for
rs2730260 or rs66475830 and their nearby genes as determined by retina eQTL analysis.
Adjusted P values for each gene were calculated by multiplying the nominal P value listed in the

EyeGEXx database by the number of SNP-gene pairs tested for that SNP.
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Figure 6. Integration of single-cell multiome with base-resolution deep lear ning nominates
functional mechanismsfor disease-associated SNPs.
a, Schematic of the CNN-based deep learning pipeline. b, Percentage of noncoding index SNPs
(n=1,284), LD expanded SNPs (n = 7,034), LD expanded SNPs in scCATAC peaks (n = 1,152),
randomly selected GC-matched SNPs (n = 9,984), and randomly selected SNPs in sSCATAC
peaks (n = 1,160) that were categorized as high effect. ¢, Top: Predicted per-base accessibility
for rs1532278 (chr8:27608798) and rs1874459 (chr16:65041801) in Miiller glia and rod bipolar
cells, respectively, as determined by deep learning models. A 100-bp window depicts the
importance of each base to predicted accessibility at the SNP, and a 1,000-bp window depicts
predicted per-base counts for the reference (blue) and alternate (orange) alleles. SNP bases are
highlighted in purple. For rs1874459, similar changes in accessibility were predicted for OFF-
cone bipolar, ON-cone bipolar, gly-amacrine, and All-amacrine cells. Bottom: Sequencing tracks
of chromatin accessibility near rs1532278 and rs1874459. Genes in the sense and antisense
directions are shown in red and blue, respectively. The location of each SNP is depicted by a
vertical gray line. Gray arcs indicate predicted target genes for the SCATAC peak containing the
SNP of interest. d,f, Significance of SNP-gene associations for rs1532278 (d) or rs1874459 (f)
and their nearby genes as determined by retina eQTL analysis. Adjusted P values for each gene
were calculated by multiplying the nominal P value listed in the EyeGEX database by the number
of SNP-gene pairs tested for that SNP. e, Dot plot visualizing the normalized RNA expression of
40 different homeodomain TFs in Miiller glia. The selected TFs correspond to the 40
homeodomain factors whose binding motifs were most significantly enriched in Muller glia as
determined by motif analysis (Supplementary Data 4). g, Dot plot visualizing the normalized

RNA expression of neuroD and neurogenin family members by cell type.
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Extended Data Figure 1. Single-cell RNA- and ATAC-seq quality control metrics.

a-f, Violin plots depicting the number of detected genes per nucleus (a), number of detected
RNA transcripts per nucleus (b), percentage of mitochondrial reads (c), percentage of ribosomal
reads (d), TSS enrichment (e), and number of detected fragments per nucleus (f) by retina in the

final dataset. Boxes depict the 25™ percentile, median, and 75™ percentile of each metric.

Extended Data Figure 2. Single-cell RNA-seq cluster assignments.

a, First iteration uniform manifold approximation and projection (UMAP) plot of the SCRNA-seq
dataset after quality control filtering, automated removal of doublets, and exclusion of clusters
with no detected marker genes. Five clusters comprised of putative doublets were subsequently
removed and the dataset re-clustered. b, Second iteration UMAP of the SCRNA-seq dataset. One
cluster comprised of putative doublets was subsequently removed and the dataset re-clustered. c,
Final iteration UMAP of the sScRNA-seq dataset. Clusters representing subpopulations of the

same cell type were grouped together for downstream analyses.

Extended Data Figure 3. Characterization of chromatin accessibility peaks and linkage
disequilibrium expanded SNPs.

a, Number of cell types exhibiting each of the 620,386 scATAC peaks. b, Visual depiction of LD
expansion for the 30 index SNPs on chromosome 1 associated with AMD. Each vertical black
line represents a SNP. ¢, Percentage of noncoding index and LD expanded SNPs from each
disease that overlapped with at least one SCATAC peak. d, Number of cell types exhibiting each

of the 1,152 scATAC peaks that overlapped with a LD expanded SNP. e, Comparison of
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predicted target genes with the nearest gene for each chromatin accessibility peak with at least
one predicted target gene. Same was defined as any of the predicted target genes being the

nearest gene.

Extended Data Figure 4. H3K27ac HiChl P predicts enhancer -promoter interactionsin the
human retina.

a, HIiChIP interaction types by sample. Cis refers to interactions on the same chromosome, while
trans refers to interactions spanning separate chromosomes. b, HiChIP interaction maps at whole
genome, 250-kb, and 5-kb resolution. Sample shown is LGS10D. Signal was normalized to the
square root of coverage. Numbers above the interaction maps indicate maximum signal in each
matrix. ¢, Sequencing tracks of cell type chromatin accessibility and H3K27ac HiChIP loops
overlapping with the TSS of selected marker genes. Genes in the sense and antisense directions
are shown in red and blue, respectively. Regions encompassed by the loop anchors are

highlighted in purple.

Extended Data Figure 5. Integration of single-cell multiome with HiChlP and eQTL data
refines SNP-tar get gene predictions.

a, Sequencing tracks of chromatin accessibility near rs77272443 (chr1:112894884) and
rs4102217 (chrl1:65496424). Genes in the sense and antisense directions are shown in red and
blue, respectively. The location of each SNP is depicted by a vertical gray line. Gray arcs
indicate predicted target genes for the SCATAC peak containing the SNP of interest. Black arcs
overlapping with SNPs indicate H3K27ac HiChIP loops with the regions encompassed by the

opposite anchors highlighted in purple. b, Significance of SNP-gene associations for rs77272443
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or rs4102217 and their 20 nearest genes as determined by retina eQTL analysis. Adjusted P
values for each gene were calculated by multiplying the nominal P value listed in the EyeGEX

database by the number of SNP-gene pairs tested for that SNP.

Extended Data Figure 6. BPNet model perfor mance.
a,b, Correlation scores between predicted and actual observed log counts in only peak (a) or both
peak and non-peak (b) regions on chromosome sequences that were withheld during cell type-

specific model training. Each color represents one of five model folds.

Extended Data Figure 7. Summary of SNP prioritization.

a-e, Total number of prioritization criteria met by LD expanded SNPs in loci associated with
AMD (a), glaucoma (b), DR (c), myopia (d), and MacTel (e). Prioritization criteria were 1) co-
accessibility with a promoter peak, 2) accessibility correlated with expression of a nearby gene,
3) linkage to a gene by H3K27ac HiChlP, 4) significant association with a gene by retina eQTL

data, and 5) high effect designation by deep learning.
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