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Abstract. The unexpected contamination of normal samples with tumour cells reduces
variant detection sensitivity, compromising downstream analyses in canonical
tumour-normal analyses. Leveraging whole-genome sequencing data available at
Genomics England, we develop a tool for normal sample contamination assessment,
which we validate in silico and against minimal residual disease testing. From a
systematic review of 771 patients with haematological malignancies and sarcomas, we
find contamination across a range of cancer clinical indications and DNA sources, with
highest prevalence in saliva samples from acute myeloid leukaemia patients, and sorted
CD3+ T-cells from myeloproliferative neoplasms. Further exploration reveals 108
hotspot mutations in genes associated with haematological cancers at risk of being
subtracted by standard variant calling pipelines. Our work highlights the importance of
contamination assessment for accurate somatic variants detection in research and
clinical settings, especially with large-scale sequencing projects being utilised to deliver
accurate data from which to make clinical decisions for patient care.
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Introduction

In popular experimental designs for cancer bulk DNA sequencing - whole-exome
sequencing (WES) or whole-genome sequencing (WGS) - individual tumour samples are
matched with a reference “normal” sample from the same patient, usually obtained from
peripheral blood, saliva, or a skin biopsy 2. Analysis is performed by first detecting
variants with respect to the human reference genome in both normal and tumour
samples, followed by subtraction of the patient-specific variants from the tumour to
select variants that are private to the tumour sample 3. However, this experimental
design is only effective if the matched normal sample is free of contaminating tumour
cells, an assumption not often emphasised (Figure 1a,b) *°. When DNA derived from the
normal sample is contaminated by tumour DNA, standard bioinformatics pipelines can
mistakenly subtract genuine somatic mutations from the set of mutations identified in
the tumour sample due to evidence for a mutation being present in the normal sample,
resulting in a reduction in sensitivity for true somatic mutations (i.e. higher number of
false negatives). Based on the clonal evolution model ¢, the probability of false negative
increases with the fraction of cells harbouring the mutation (due to a higher likelihood
that the variant will be present in the sequencing data for the normal sample), resulting
in a bias towards erroneous subtraction of somatic variants at high allele frequency in
the tumour. High allele frequency variants are of the greatest importance because they
triggered tumour formation and determined the subsequent clonal evolution patterns ’.

More recently, in order to adapt the canonical bioinformatics somatic analysis approach
to accommodate tumour in normal (TIN) contamination, a model for normal
contamination was introduced into somatic variant calling algorithms *. However, these
tools require an estimate of the TIN contamination level as an input parameter, and only
support low contamination levels. Computationally, only one tool is available to assess
tumour contamination of normal samples 8. At high levels of TIN, however, the only
alternative to a canonical tumour-matched-normal design is currently a tumour-only
pipeline, using population germline frequency databases to filter likely germline variants
from the set of putative somatic mutations. This approach attempts to minimise the
rate of false negatives, a fundamental requirement for clinical reporting where the
failure to identify actionable somatic mutations can be detrimental to patient care, but
leaves many ultra-rare germline variants of indeterminate origin

Here we present TINC, a computational method to assess the level of TIN
contamination applicable for tumour and matched normal pairs, leveraging
state-of-the-art tools for measuring clonal evolution from WGS. We demonstrate the
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performance of TINC with simulated data and by comparison with orthogonal minimal
residual disease (MRD) test data for 70 leukaemia patients. By applying TINC to
sequencing data from 771 participants in the Genomics England 100,000 Genome
Project (Turnbull et al. 2018), including 617 patients with haematological malignancies,
we detect tumour contamination in normal samples from different germline sources
across several tumour types. Assessment of sample quality is essential in clinical
reporting where treatment decisions are based on genomic data. The level of
contamination predicted by TINC provides reassurance for clinicians and clinical
scientists for the accuracy of variant detection in the somatic analysis, and can
highlight the risk that clinically relevant variants may not have been reliably detected.
Therefore, we propose that TIN is an essential metric for clinical analysis and reporting
of WGS data.

Results

The TINC method

We have developed TINC, an approach for tumour-in-normal contamination assessment,
leveraging the concept of tumour clonal evolution. It is freely available as an
open-source R package (Data Availability). TINC uses the variant allele frequencies
(VAFs) of somatic single nucleotide variants (SNVs) detected in tumour and normal
samples to identify clonal somatic mutations (i.e. those detected in all tumour cells
sampled) and evaluate their level in the normal sample. From the observed VAFs, TINC
determines scores for the percentage of tumour cells in the tumour (usually referred to
as tumour purity) and in the normal sample, which are called Tumour in Tumour (TIT)
and Tumour in Normal (TIN) scores respectively. These scores can be expressed as
units of read fractions (i.e., percentage of reads in the sequencing data for the normal
sample that are derived from the tumour).

TINC first identifies high-confidence clonal somatic mutations in the tumour sample
(grey, yellow and red lineages in Figure 1c-e), which are then used to estimate tumour
purity (TIT score). Support for these clonal variants is then assessed in the normal
sample to determine the level of tumour-in-normal contamination (TIN score, Figure 1e).
Specifically, TINC targets the ancestor of the tumour cells found in both the tumour and
normal samples, i.e., the most recent common ancestor (MRCA) of the sequenced cells
(yellow and grey lineages in Figure 1c-e) which can not be directly sampled or
sequenced. Due to sampling differences, private mutations are anticipated in the
different tumour cell lineages present in the tumour and the normal samples (red and
blue lineages in Figure 1c-e). Note that clonal somatic mutations can be mistakenly
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labelled as private tumour mutations due to the difference in sequencing read depth
between tumour (about 100x) and normal (about 30x), as well as sequencing noise that
obscure support for clonal somatic mutations in normal samples. Therefore, the
assessment of clonal mutations in the normal sample is impacted by the tumour
architecture and data quality at variant sites. Building from the expected tumour
architecture, we are able to model the anticipated data distribution in both samples for
somatic variants of the various cell lineages (Figure 1e).

Using TINC, clonal mutations are identified with the MOBSTER machine learning model
for subclonal deconvolution from WGS °. MOBSTER integrates population genetics and
machine learning to cluster somatic variants based on their VAF, decoupling clones that
undergo positive selection from neutral mutations. Read counts for high-confidence
clonal somatic mutations identified by MOBSTER are then fitted to a Binomial mixture in
the matched normal sample. From the analysis of the tumour and normal samples,
TINC obtains the information to compute TIT and TIN scores (Online Methods).

TINC can also utilise allele-specific tumour Copy Number Alteration (CNA) calls to retain
SNVs in a subset of genomic intervals with the copy number state (e.g. heterozygous
diploid or tetraploid) spanning the largest proportion of the tumour genome. By
incorporating CNAs in the logic, TINC normalises the observed VAFs in the tumour
sample for chromosome copy number and therefore is resilient to confounding effects
of CNAs. Incorporation of copy number data is only performed for tumours for which
the most extensive copy number state is one of 1:0 (loss of heterozygosity, LOH), 1:1
(heterozygous diploid), 2:0 (copy-neutral LOH), 2:1 (triploid) or 2:2 (tetraploid
genome-doubled), representing the majority of copy number states observed for cancer
genomes '°. For such cases, only SNVs residing within regions of the most prevalent
copy number state are used in TIN estimation. The SNV-only analysis (i.e. not
incorporating CNA data) requires that the tumour genome does not harbour a high

number of CNAs as otherwise the value of VAF is cofounded by copy number variations
10

In silico validation of TINC performance

The performance of TINC was assessed using WGS data generated by Genomics
England for participants recruited as a part of 100,000 Genomes Project (Turnbull et al.
2018). Synthetic test data were generated by artificially contaminating normal BAM files
with sequencing reads sampled from the corresponding tumour BAM file (Methods).
Variant calling of the synthetic samples was performed using the Genomics England
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bioinformatics pipeline and the generated SNV and CNA calls analysed with the TINC
package (Figure 2a).

Synthetic TINC test data were generated using high-quality WGS data derived from
seven patients diagnosed with haematological malignancies (acute lymphoid
leukaemia, ALL; acute myeloid leukaemia, AML; multiple myeloma, MM) and five
patients diagnosed with lung cancer (adenocarcinoma or squamous cell carcinoma), for
whom the normal sample sequenced was not affected by tumour contamination. In
total, artificially contaminated WGS data were generated for thirty-nine haematological
tumour-normal pairs and thirty lung cancer tumour-normal pairs, with a range of TIN
contamination from 0% to 25%.

TINC successfully estimated the correct level of contamination for the majority of
synthetic WGS samples, in both haematological and lung cancers (Figure 2b,c,

R°=0.95p<22x10 "andR° = 0.85 p < 3.3 x 10" ", correspondingly). These
data demonstrated the benefit of incorporating CNAs, particularly for cancers with high
chromosomal instability, where failing to account for CNAs can result in overestimation
of TIN contamination (Supplementary Figure S1a,b). Notably, the lung cancer samples
used here showed a high level of copy number variation, with an average of 78% of the
genome covered by CNAs (Supplementary Figure S2). For a number of cases, the level
of contamination was underestimated at higher levels of TIN contamination. This
decrease in performance was attributed to the impact of high levels of TIN
contamination on somatic variant detection. At high levels of TIN contamination, the
somatic variants with the highest VAF in the normal sample are likely to be subtracted
from the somatic variant set. This results in an underestimate of the TIN score since the
variant set used for the estimation of TIN score is biassed towards variants with lower
VAF in the normal sample. This effect is illustrated in Figure 2b and 2c by the gradient
colour representing the decreasing fraction of clonal mutations used in TIN score
estimation for increasing levels of TIN contamination. This limitation is unlikely to
impact clinical reporting in practice, as the effect is only significant for samples with a
level of TIN far higher than would be considered acceptable for clinical-grade analyses.
At very high levels of TIN contamination the majority of clonal somatic variants are
subtracted during the somatic variant calling, leaving only subclonal variants which can
lead to a strong underestimation of TIT score. However, the implementation of
appropriate quality control thresholds can be used to prevent this scenario resulting in
high TIN contamination going undetected.

To further assess TINC's performance, we compared outcomes with the only alternative
method available to assess tumour contamination of normal samples, DeTiN
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(Taylor-Weiner et al. 2018). DeTiN was found to perform well with WGS data, generating

results similar to TINC (R * scores exceeding 0.9 for both cohorts, note that R *score is
calculated for TIN/TIT ratio) (Figure 2d,e, and Supplementary Figure S1). However, TINC
is more flexible as it can process copy number segments regardless of which CNA
caller has been used. In contrast, DeTiN requires mean allele fraction of minor parental
allele at each segment and two centred segment copy ratio data. In addition, TINC
generates absolute TIN and TIT values which are directly compatible with orthogonal
minimal residual disease (MRD) tests used in clinical practice. The DeTIN ratio can be
converted to absolute TIN value if a separate calculation for the tumour purity estimate
(TIT score) is performed using copy number calling data and used for calibration.
However, TINC is able to estimate absolute TIN value without resorting to any additional
external inputs.

Experimental validation of TINC performance

To further validate TINC, contamination estimates for a cohort of participants in the
100,000 Genomes Project with haematological cancers (see Contamination analysis of
clinical samples) were compared either with molecular Minimal Residual Disease (MRD)
test using real-time PCR assessment of rearranged immunoglobulin/T-cell receptor
genes or flow cytometry test for leukaemia-associated immunophenotype (Figure 3;
FACS sequential gating strategies in Supplementary Figure S3). For 53 ALL and 10 AML
samples assessed (Figure 3), the estimates from TINC and MRD were consistent, with
the same four of 63 samples considered as being contaminated (i.e. TIN contamination
>1%). In order to extend experimental validation to additional samples with TIN, we
included in our validation cohort seven additional ALL samples not meeting the 100,000
Genomes Project sample collection criteria (Figure 3). Consistent with observations
from the in silico validation experiment, the TIN value was underestimated when
compared with experimental data but still very significant for samples with high TIN.

TINC implementation in a high throughput bioinformatics pipeline

TINC has been implemented as an essential quality control step for contamination
assessment in the high-throughput bioinformatics pipeline at Genomics England (Figure
4a). Using variant call format (VCF) files generated in the somatic SNV and CNA
detection components of the analysis pipeline, TINC classifies normal samples as
“PASS”, “FAIL" or “Cannot estimate TINC reliably”, based on the level of TIN and TIT
detected. For all analysed samples, TIT and TIN scores are presented as read-fractions
(RF), i.e. the fraction of reads in a given sample originating from the tumour. Samples
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with TIN >1% are classified as “FAIL" indicating an alternative analysis not reliant on the
matched normal sample should be conducted (for example, using an unmatched
normal sample from another individual). As deconvolution of the VAF distribution is
typically unreliable for tumour samples with low tumour purity, samples with a TIT score
estimated at <25% are considered as not eligible for TIN estimation (cluster of samples
with clonal/total mutations ratio = 1 on Figure 4b) and classified as “Can’t estimate TIN
reliably”. This cutoff has been estimated using a cohort of 617 whole-genome samples
(see Contamination analysis of clinical samples), and accounts for i) samples with
genuinely low tumour purity and for ii) samples for which TIT is underestimated due to
high TIN (i.e., extreme high TIN causing catastrophic subtraction of clonal somatic
SNVs).

In order to mitigate the potential loss in variant calling sensitivity due to TIN
contamination, in the Genomics England bioinformatics pipeline (Pipeline 2.0), small
variants and structural variants in haematological samples with TIN >1% or samples
where TIN can't be estimated are also analysed in a parallel pipeline, without subtraction
using the patient’s germline (tumour only). In this pipeline, filtering of contaminating
germline variants is performed for variants with population allele frequency >0.01 in
population databases, and potential sequencing artefacts using a Panel of Normals
(PON) approach (Online Methods). The results of the two pipelines are subsequently
merged and analysed together in the annotation and interpretation workflow (Figure 5a).
This hybrid configuration allows high-confidence somatic variants from the paired
tumour-normal pipeline to be combined with variants of uncertain origin from tumour
only pipeline, to ensure no reduction in overall sensitivity. The filtering thresholds have
been optimised to reduce the number of non-somatic variants in clinically relevant
genes returned using the tumour-only pipeline without compromising sensitivity for
identifying true somatic variants selected from a manually curated set of 65
haematological samples (Figure 5b,c). In order to demonstrate sensitivity for somatic
variant detection despite increasingly high levels of TIN contamination, we compared
the sensitivity of the paired tumour-normal pipeline (Figure 5d) with the tumour-only
pipeline (Figure 5e).

Contamination analysis of clinical samples

To assess the clinical impact of implementing TINC in a bioinformatics pipeline, TINC
was used to analyse 771 tumour-normal pairs from participants in the 100,000
Genomes Project with either haematological cancer (n=617) or sarcoma (n=154). All
samples were re-analysed through the Genomics England Pipeline 2.0 (Online
Methods). Since TIN contamination is not expected to be a frequent occurrence for
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sarcoma samples, these samples were included as a control group for comparison.
Normal DNA used for WGS was derived from blood, cultured fibroblast, saliva or skin
biopsy samples. TIN scores were determined only for the samples with TIT score above
25%.

The haematological malignancy samples covered a wide range of the most common
clinical indications: AML (n=168), chronic lymphocytic leukaemia (CLL, n=158), MM
(n=87), ALL (n=90), myeloproliferative neoplasm (MPN, n=58), chronic myeloid
leukaemia (CML, n=57), diffuse large B-cell ymphoma (DLCBL, n=23), low and moderate
grade non-Hodgkin B-cell lymphoma (Low/mid grade NHL, n=20) and high-risk
myelodysplastic syndrome (High-risk MDS, n=20). Normal sample collection was
performed according to criteria established for the 100,000 Genomes Project
(Supplementary Table 1).

Of the 771 cases assessed, CNA and SNV data were incorporated for 758 cases, with
TIN score estimated using SNV data only (due to sample ploidy not matching TINC
criteria) for 13 cases. The proportion of cases for which TIN contamination was
observed (tumour read fraction in normal sample >1%) varied across the cancer
subtypes (Figure 6a-c). As expected, no normal samples derived from the cultured
fibroblasts had TIN >1%. Notably, the two cancer subtypes with the highest fraction of
contaminated samples were MPN and AML. 22 of 24 (91%) of sorted CD3+ T
cell-derived normal samples for MPN cases and 43 of 114 (38%) saliva-derived normal
samples for AML cases were found to be contaminated, consistent with previous
reports """, It is worth noting that saliva samples were accepted as a normal sample in
myeloid malignancies only if sufficient treatment has been given to remove all
circulating myeloid cells from the peripheral blood, e.g. after administration of
anthracycline chemotherapy in patients receiving intensive induction in AML.

In contrast, among the sarcoma samples, only 2% were found to be contaminated (4 out
of 154, 3 out 4 with TINC below 2%). This can be explained by the fact that two of the
contaminated normal samples for sarcoma patients were derived from fresh frozen
muscle tissue, which can present a higher risk for contamination than blood in patients
with solid cancers. In an additional group of ALL cases for whom the sample collection
procedures did not meet the criteria specified for the 100,000 Genomes Project, 11 of
46 (24%) showed contamination. A full description of the samples tested and the TINC
results are provided in Supplementary Figures S4-7.

To assess the incidence of essential somatic variants being at risk of inappropriate
subtraction during tumour-normal analysis, we computed the read-support in tumour
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and normal samples for hotspot mutations in the AML and MPN patient cohorts. We
focused on genes with the highest prevalence of somatic mutations in haematopoietic
and lymphoid tissue in COSMIC " JAK2, FLT3, DNMT3A, TP53, KIT, NRAS and IDH2, and
defined hotspot mutations as those found in at least 100 samples in COSMIC. Of 108
high-confidence hotspot mutations with VAF in tumour >5% identified in the AML and
MPN samples, 51 had a VAF >1% in the normal sample and 27 >5% (Supplementary
Figure S8). We found hotspot mutations with a VAF >10% in the normal samples in 6
AML cases with DNMT3A p.R882X, 5 with IDH2 p.R140Q, 3 with JAK2 p.V617F and 1
with TP53 p.R273X, IDH2 p.R172K and NRAS p.Q617X, and in 4 MPN cases with JAK2
p.V617F.

This set of mutations overlaps with those commonly found in clonal haematopoiesis of
indeterminate potential (CHIP) ', the presence of a pre-cancerous clonally expanded
hematopoietic stem cell population, caused by a somatic mutation that can, potentially,
cause malignant transformation. In order to investigate further the relationship between
CHIP and TIN contamination, we scanned the sequencing data for the normal samples
in the cohort of 168 AML patients for the presence of 168 point mutations previously
reported in genes linked with CHIP and myeloid malignancies (IDH2, PRPF8, PPM1D,
SRSF2, TP53, GNB1, ASXL1, GNAS, RUNX1, SF3B1, DNMT3A, MYD88, CCND3, TET2 and
JAK2) '®. We observed a weak correlation between TIN score and VAF for the CHIP
mutations in normal samples (Supplementary Figure S9) that can reflect complex
phylogenetic relationships between the hematopoietic and the AML clones. Overall we
demonstrated that TINC was able to flag normal samples with recurrent CHIP
mutations, and to trigger a hybrid pipeline that includes tumour-only analysis in order to
report the true extent of tumour mutations (including CHIP).

The availability of WGS allows us to examine the extent of contamination for all tumour
clonal mutations, going beyond hotspot ones (which are usually clonal). In Figure 7 and
Supplementary Figures S10-S11 we report two example cases of AML patients from the
100,000 Genomes Project with tumour in normal contamination. In the first case, 982
diploid SNVs are analysed by the TINC test (see Figure 7a-c for VAF distribution in
tumour and normal samples), of which 378 are identified as clonal mutations by
deconvolution analysis (teal dots on Figure 7e). Deconvolution analysis identified two
clusters of subclonal mutations in addition to the clonal cluster (green and blue peaks in
Figure 7d, top). The allele fraction in the normal sample for the clonal variants peaks at
~8% (Figure 7d, bottom), indicating that approximately 16% of cells sampled in the
normal sample are of tumour origin (Figure 7f). In this case, the analysis performed
during the 100,000 Genomes Project (Genomics England pipeline 1.0, Online Methods)
failed to detect a driver somatic hotspot variant in the JAK2 gene
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(ENST00000381652:p.V617F) due to TIN contamination (variant supported by 50 out of
110 paired reads in the tumour, and 4 out of 34 in the normal; Figure 7a). Additionally, a
frameshift deletion in TP53 (ENST00000269305:c.594delA) was observed at 28% VAF in
the normal sample raising uncertainty as to whether this variant is germline or somatic
(variant supported by 41 out of 90 paired reads in the tumour, and 6 out of 21 in the
normal), a classification that is important for clinical reporting. Additionally, if somatic,
as this variant has a higher VAF in the normal sample than all other somatic variants
(Figure 7a) one can hypothesise that it is a marker of CHIP. In the second example case,
358 clonal SNVs are used to estimate TIN contamination, again at approximately 16%
tumour cells in the normal sample (Figure 7g-i). Analogous to somatic small variant
calling, somatic structural variant calling also requires the subtraction of germline
variants and therefore TIN can result in false negatives. In this case, a diagnostic
somatic PML-RARA fusion was not detected due to TIN contamination (variant
supported by 25 out of 150 paired reads in the tumour, and 6 out of 52 in the normal),
which would affect patient diagnostic classification . Further examples of the
determination of TIN status using tumour-normal pairs from participants with MPNs are
shown in Supplementary Figures S12-S13.

Discussion

Typical tumour-normal analyses utilise a normal sample to identify the patient’s
germline variants, which are then subtracted from the variants identified in the tumour
to define the tumour-specific somatic mutations. This approach is successful when
high-quality normal samples are available, but somatic variant detection is significantly
impacted by poor-quality normal samples, particularly those in which there is
contaminating tumour DNA. The incidence of contaminated normal samples has been
understudied, thus some tumour type and normal source combinations may have an
unforeseen prevalence of TIN contamination, making them unsuitable for a canonical
tumour-normal analysis.

Our computational technology to assess TIN contamination exploits tumour
evolutionary principles to quantify the proportion of contaminating tumour cells in a
normal sample, using WGS data for paired tumour and normal samples. The score
generated by TINC is simple to interpret and can resist confounding factors such as
tumour CNAs and tumour sample purity. Furthermore, it can be computed automatically
by integrating different data types, regardless of the variant calling methodologies used.
The TIN score therefore allows an informed decision-making process to either proceed
with variant interpretation and reporting, or whether alternative variant calling
procedures are required, such as tumour-only analysis.
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By applying TINC to WGS data from a large cohort of tumour-normal pairs, we have
performed a thorough investigation of TIN contamination in the most common types of
haematological cancers and sources of normal DNA. Haematological cancers were the
ideal candidates for this assessment due to the natural spread of tumour cells in the
bloodstream. Previous studies have demonstrated that saliva DNA from MPN patients
can be positive for JAK2 p.V617F mutations '>'®. A more recent study also reported
contamination in saliva samples of MPN patients due to leucocyte presence in the oral
mucosa, and suggested the use of CD3+ T cells as a source of normal sample .
Strikingly, we found that WGS data for normal DNA derived from sorted CD3+ T cells for
MPN patients show clear signs of contamination and exhibit JAK2 mutations with high
read support.

We also found a high prevalence of TIN contamination in saliva samples for AML
patients. Similar to our findings, other studies report the oral cavity presents the first
clinical manifestations of leukaemia ', with gingival infiltration of AML cells
demonstrated by biopsy °?' and most commonly seen in acute monocytic leukaemia
and acute myelomonocytic leukaemia 3?2,

Given the incidence of these tumour types and current standard practices for normal
sample collection, findings with our TINC tool are crucial for improving best practice
guidelines for sample handling and highlight the importance of thorough quality control
processes, particularly when genomic data are used to inform clinical decisions. Failure
to identify TIN contamination increases the potential for false negative somatic
variants, particularly those that occurred within the earliest stages of tumorigenesis and
thus have the highest representation in the sequencing data. These mutations could
determine disease course (Levine, Jenkins, and Copeland 2019), stratify patients with
respect to treatment response (McGranahan and Swanton 2017), and inform targets for
therapy (McGranahan et al. 2016), so failure to detect them carries a high risk for
clinical reporting, familial screening, and basic cancer research.

Reassuringly, our findings demonstrated the validity of specific normal DNA sources
(e.g., cultured fibroblasts) for haematological cancers, and the overall lack of
contamination in a class of solid tumours (sarcomas). This analysis could be extended
to a broader range of cancer types, especially focusing on those that have begun to
spread (such as in late-stage patients) and might present contamination. However, the
high incidence and level of contamination observed for other tumour and DNA source
types highlights the importance of bioinformatics pipelines that can accommodate TIN
contamination. Some variant calling algorithms are now attempting to mitigate the
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impact of contaminated normal samples 4 but this is more difficult for complex and
structural variants for which variant calling from short read data is more challenging
and less well established.

The high proportion and high level of contamination observed for some haematological
cancer subtypes demonstrates the importance of careful consideration of normal
sample source and collection protocols. It is paramount that bioinformatics pipelines
are capable of detecting and reporting TIN contamination and subsequently mitigating
the impact on somatic variant detection. Thus we recommend that the assessment of
tumour-in-normal contamination using a tool such as TINC becomes part of standard
quality control procedures for tumour-normal matched pair analyses, especially in
clinical settings where data are being used in patient care.

Methods

Ethics

Approval for the 100,000 Genomes Genomics England project was obtained from the national
research ethics committee (IRAS ID 166046). Participants were selected on the basis of having
been identified by healthcare professionals and researchers within the NHS as having a cancer
diagnosis. The participants were recruited across 13 NHS Genomic Medicine Centres and
written informed consent was obtained from the participants.

The TINC method

TINC tracks putative clonal somatic SNVs in the tumour and normal samples to determine the
overall purity of the tumour (TIT score), and the contamination of tumour cells in the normal
biopsy (TIN score). As input it requires the read counts of somatic SNVs (e.g. Strelka2 VCF file)
and, if available, the CNA segments (e.g. Canvas VCF file).

TIT and TIN scores are computed as fractions (0 to 1). These can be represented either as the
fraction of tumour cells or the fraction of reads originating from tumour DNA in the normal
sample. These values are equivalent if the tumour genome is diploid. The conversion between
the two values (cell fraction and read fraction) requires the knowledge of tumour CNAs in order
to normalise observed VAF values for the tumour ploidy profile.

Bulk tumour deconvolution. The subset of clonal SNVs is derived from the input set of somatic

variants using the MOBSTER mixture model ®*. For data x, the likelihood is that of a (k + 1
)-dimensional Dirichlet mixture
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k
f(x16,m) = mPL(x|8) + I mBeta(x|6) (1)
i=2

Here 6 are model parameters considering the density function PL(x|0) of a Pareto Type-l power
law, and Beta(x|0) for a Beta distribution; 1t are mixing proportions representing the proportion
of mutations assigned to each cluster.

The fit is carried out to select the best possible model, using a score function based on the
principles of the integrated classification likelihood (ICL), which extends the likelihood f(x|6, m)
with a regularisation for the complexity of the model - measured by |8] + || - akin to the
Bayesian information criterion, and include the separation of the clusters through an entropy
term defined over latent variables Z (clustering responsibilities)

ICL = — 2 log(x|8,m) + (|6] + |r|) log(n) + . Z log(zn,k) (2

z
nk

Through a gradient-based procedure MOBSTER optimises the value of k and the presence of the
tail in the data as defined by the PL density, improving largely over standard methods for
subclonal deconvolution °. In general, MOBSTER can be used to study the full tumour
architecture, a more broad and complicated problem than just determining clonal mutations, as
we perform here; nonetheless, the tool is fast and provides precise evolutionary information that
TINC can use to estimate contamination.

From MOBSTER fits we obtain a set of vector-valued latent variables z . reporting the

probability of each input mutation to be part of one of a set of clusters; these contains the
normalised posterior densities

z,, = [mg&B)l/[Trge)] 3

were g(-) are the density functions used in the mixture (power-law and Beta, depending on the
component index i).

By design MOBSTER labels with “C1” (or C1) the set of mutations with the highest VAF. These

should be the clonal mutations we need in TINC, unless there are CNA events in the data and
TINC is run without input CNAs. If that is the case, e.g. the tumour bears some miscalled large
loss of heterozygosity (LOH), then C, might be artifactually related to the CNA event. Mistaking

such a cluster for clonal mutations would inflate TIT and TIN estimates; therefore TINC maps
mutations in C1 to chromosomes, and tests for their enrichment when it is run without CNA

data.
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Mutations mapping is done by a function map(-) that returns the chromosome counts were a
set of mutations map onto the genome. Cluster C1 is rejected - as the putative clonal cluster - by
using an empirical 60/20 rule: if more than 60% of mutations in ¢, map to less than 20% of the

chromosomes (we define this to be the case in which map(C,, 0.6) < 0. 2). The 60/20 cutoffs

are determined from analysis of pan-cancer WGS data at Genomics England.

When C1 is rejected, TINC performs a recursive test for clusters with progressively lower Beta
means, stopping when a suitable cluster is found or all clusters are rejected; in the latter case
TINC determines it is impossible to assess reliable clonal mutations. In practice, the TINC
algorithm selects C such that

map(Ci, 0.6) >0.2 AVj <. map(Cj, 0.6) < 0.2 4)

When TINC is run with CNA data this test is not required since we are already filtering mutations
by the tumour’'s most prevalent karyotype. This choice allows control for CNAs that confound
the VAF distribution .

Note that by running TINC with CNA one elicits the assumption that CNA segments are correct.
We also note that, using CNAs for tumour with high friction of CNAs (i.e., cases with copy
neutral LOH, triploid or tetraploid genomes etc.), the mutations associated with the cluster with
highest VAF are those that happened before the copy number event. In other words, if we work
with a tumour that is prevalently triploid with two and one copies of the major and minor alleles,
the putative subset of clonal mutations that we find in the high-VAF cluster have happened
before the amplification of the major allele.

When TINC has identified a cluster w of putative clonal mutations, it selects the ones with
assignment probability above a threshold z, >0, disregarding all others. l.e., it defines

C={n| Z > z+} (5)

If there are not enough such mutations, z is decreased until we include a predefined number of
mutations that the user can decide. For instance, TINC can be parameterized to search for all
mutations with at least 90% probability to be assigned to the clonal cluster, requiring at least
n = 150 mutations back. With its dynamic-cutoff strategy, TINC might determine that, in order
to select 150 clonal mutations, z, must be decreased to 80%.

Bulk normal deconvolution. Read counts for putative clonal mutations are collected from the
normal biopsy, and then used by TINC to fit a Binomial mixture model. This is available in the
open-source R package BMix °, which provides univariate Binomial and Beta-Binomial mixtures.
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For a set of clonal mutations with associated sequencing depth d > 0, and r > 0 reads with
the alternative allele, we use the likelihood

k
flx = [r,d]|6,m) = ¥ mBin(r|d, 6) (6)
i=1

Here we have a mixture of k = 1 components, where b is a Binomial density function for d trials
with r successes, and unknown success probability p (parameter in 0). In this case BMix
optimises the value of k scoring models similarly to MOBSTER, and then returns clustering
assignments, latent variables, and Binomial parameters Py D, similar to MOBSTER °.

TIT and TIN scores. The computation of TIN and TIT scores is done after deconvolution of
tumour and normal bulks. In both cases TINC uses the same principle to normalise for the
tumour genome karyotype, which requires knowing copy number data or assuming a known
state (e.qg., diploid).

We use our CNAqc open-source R package for WGS to make these conversions ™. For
mutations mapping on a genome segment with m copies of the minor allele, M of the major,
allelic frequency v and mutation multiplicity p (i.e., number of copies of the mutation on the
genome), the tumour purity # is determined by

W+ v@Z —m - M]p =2v (7)

Solving for P we determine the percentage of tumour cells in the biopsy.

When TINC is run without CNA data, the model assumes that the above equation is to be solved
for a diploid tumour (m = M = p = 1).

This equation is used for both TIT and TIN estimation, using different values for v in the tumour,
and in the normal.

e For TIT, v is the mean VAF of clonal mutations identified by TINC (mapping to cluster w
in MOBSTER analysis)

v = mean{VAFx | x € w} (8)

e For TIN, v is expressed as a linear combination of the Binomial peaks and cluster sizes

reported by BMix, i.e., a mean of Dy pkweighted by the mixing proportions T T,

k
v=Yup
i=1
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For the normal biopsy, we use all the mutations determined in the tumour as clonal (red MRCA
in Figure 1b). One could be tempted to subtract those with VAF above 0 from that set, which are
theoretically those accruing from the MRCA of both the cells in the tumour and the normal
(yellow MRCA in Figure 1b). However, we are expecting to work with quite low VAF values
corresponding to a normal with contained levels of contamination. Given the median coverage
of WGS assays available in Genomics England for normal biopsies (30x), we cannot neglect a
strong effect of Binomial sampling (sequencing observational model) on the observed counts.
For this reason, retaining all highly-confident clonal mutations in the tumour is a reasonable
conservative choice. Their effect on TINC estimation is weighted by their proportions, as
obtained from BMix clustering.

TIT and TIN scores can be finally converted to units of read counts by solving for another
equation. If we denote with A the tumour cellular fraction, the read counts fraction 7 is

_ Am+ M) (10)

N=m+m+z-2x
This equation follows from simple arguments about allele multiplicity "2,

Complementary multivariate analysis. A variational Binomial mixture model is used jointly on
read counts data of both the tumour and normal biopsies; this is available through the VIBER
open-source R package °, which is designed to implement multi-dimensional mixtures with
arbitrary dimensions.

This type of mixture is semi-parametric and determines the number of clusters in an automatic
fashion via variational inference, using the likelihood function

k
f(x|6,m) = El mBin(r |d, Gi,t)Bin(rn|dn, Giln) (11)

where the counts are considered for both the normal (dn and rn) and tumour (dt and rt) assays.

Here we are assuming that the counts are independent, as obtained from two sequencing runs.

From VIBER outputs TINC checks the position of the clonal mutations identified for tracking.
When these associate a single cluster - as one might expect - we can obtain an alternative TIT
and TIN set of scores; TINC uses these to confirm the original estimates obtained by using
MOBSTER and BMix, and reports this further evidence to the user. However, we note that results
from this joint analysis do not fully count as a joint recalling step of somatic variants, as
available by default in DeTIN 8 for instance. This is because the input to this analysis is obtained
from the standard paired tumour-normal workflow, and therefore the input itself is affected by
the false negative calls. In the future, however, one might think of extending TINC by
implementing a straightforward recalling step through a pileup of variant read counts data from
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both the tumour and normal samples. In this sense, since VIBER outputs are already available
inside the TINC object, adding this feature should not be complicated besides the cost of
preparing the data by a pileup.

Comparison with DeTIN

DeTIN ® was run with both somatic single-nucleotide variants (SSNVs) and allele-specific
somatic copy-number alterations (aSCNAs) as input. DeTiN estimates contamination for each
of these somatic variant types separately, and then combines them into a single value which we
report here.

SSNVs were generated with the Genomics England Pipeline 2.0. We used GATK's (v4.0.4.0) CNA
analysis suite (https://qgithub.com/broadinstitute/gatk), utilising a panel of normals, to generate
the aSCNAs input required for DeTIN.

Mapping/variant calling pipeline

Genomics England Pipeline 2.0 (implemented in November 2020). All samples were sequenced
on HiSeq platform to an average coverage of 100x for tumour and 30x for normal. Read
alignment against the human reference genome GRCh38+Decoy+EBV was performed with
DRAGEN software (version 3.2.22). Small variant calling together with tumour-normal
subtraction was performed using Strelka (version 2.9.9).

In addition to default Strelka filters we applied the following additional filters in order to reduce
the false positive rate in the set of somatic variants:

1. Variants with a population germline allele frequency above 1% in the Genomics England
dataset of >6,000 unrelated individuals or gnomAD v2 datasets;

2. Recurrent somatic variants with frequency above 5% in the Genomics England dataset;

3. Variants overlapping simple repeats as defined by Tandem Repeats Finder;

4. Small indels in regions with high levels of sequencing noise where at least 10% of the
basecalls in a window extending 50 bases to either side of the indel's call have been
filtered out by Strelka due to the poor quality;

5. SNVs resulting from systematic mapping and calling of artefacts. We tested whether the
ratio of tumour allele depths at each somatic SNV site were significantly different to the
ratio of allele depths at this site in a panel of normals (PoN) using Fisher's exact test.
The PoN was composed of a cohort of 7000 non-tumour genomes from the Genomics
England dataset, and at each genomic site only individuals not carrying the relevant
alternate allele were included in the count of allele depths. The mpileup function in
bcftools v1.9 was used to count allele depths in the PoN, and to replicate Strelka filters
duplicate reads were removed and quality thresholds set at mapping quality >= 5 and
base quality >= 5. All somatic SNVs with a Fisher’s exact test phred score < 50 were
filtered.
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Copy number aberrations were identified with Canvas 1.39. Structural variants were identified
with Manta (version 1.5). Population germline allele frequency for the breakpoints of a given
structural variant is based on two internal panels of normals: GESG, which consists of germline
variants coming from single germline analysis of about 2,200 samples, and GECG, which
consists of the variants detected as germline in paired tumour-normal variant calling for about
2,500 cancer samples. If a variant has two breakpoints, maximal value of allele frequency
among the two is reported.

Genomics England Pipeline 2.0 for samples with TIN contamination. Haematological
samples with TIN > 1% or where TIN can't be estimated (e.g. due to TIT content < 25%) are
also analysed in the parallel pipeline run without subtracting variants from the patient’s
germline. Gender-matched platinum genome is used as a normal sample to satisfy input
requirements for Strelka and Manta. Subsequent filtering of variants with population
frequency >0.01 and variants highlighted with PoN (see above) significantly reduces
contamination by unsubtracted germline variants and sequencing artefacts. The results of
two pipeline runs are subsequently merged and analysed together in the annotation and
interpretation workflow. In the WGS analysis results high-confidence somatic variants from
the paired tumour-normal pipeline are highlighted with SOMATIC flag while the outcomes of
tumour only pipeline that pass filters are presented as variants of UNCERTAIN origin.

In silico contamination data generation

Tumour-in-normal contamination was generated in silico for cohorts of haematological and lung
cancer tumour-normal pairs, with samples selected based on a Ccube tumour purity estimate >
30% and baseline normal samples checked to ensure they were not contaminated ?°. Various
levels of tumour-in-normal contamination were created for each tumour-normal pair by using
samtools to combine fractions of the normal and tumour BAM files. The level of contamination
was calculated accounting for the purity of the tumour sample predetermined with Ccube 2.
Using the in silico contaminated normal bam files TINC R package input was generated using
the Genomics England pipeline outlined above.

Fluorescence-activated cell sorting (FACS) for quantifying MRD

A sequential gating strategy is applied at diagnosis to establish and define patients
leukaemia-associated aberrant phenotype (LAIP) using comprehensive 8 colour panels (8-9
antibodies for B-ALL) and BD FACS Canto Il instrument. Data is analysed using FACS DIVA
software (BD). Once established, the same sequential LAIP gating is applied to all follow up
samples to quantify MRD. MRD events found in the final LAIP gate are reported as a percentage
divided by the total number of CD45 positive “live” WBC events analysed. A “different from
normal” approach is also utilised when LAIP is similar to normal BM haematopoiesis or where
there is marked regeneration in LAIP gates at later time points.
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Standard Flow MRD Panels include:

B-ALL MRD
CD19, CD20, CD66c/CD123, CD38, CD10, CD45, CD34, CD81
CD19, CD20, CD73/CD304, CD38, CD10, CD45, CD34, CD81

AML MRD
CD45, CD34, CD13, CD33, HLA DR, CD117,CD11b, CD15
CD45, CD34, CD56, CD33, CD38,CD117,CD11b, CD15

T-ALL MRD
CD56/TCR alpha/beta/TCR gamma/delta (cocktail), CD99, CD45, CD5, CD7,CD3, CD4, CD8
CD56/TCR alpha/beta/TCR gamma/delta (cocktail), CD2, CD45, CD5, CD7,CD3, CD4, CD8

Analysis of patients data

Samples and data collection. All samples as well as sample metadata were collected as part of
Genomics England 100,000 Genomes Project 2. Sample Specifications for haematological
cancers are described in Supplementary Table 1.

Identification of potential CHIP variants. The list of 168 CHIP-associated SNVs was compiled
from the literature '°, gathering pathogenic variants in the genes known to drive CHIP and
myeloid malignancies and identified in at least three cases in the cohort of 46,706 unrelated
healthy individuals. For example, variants in the following genes were included: IDH2, PRPFS,
PPM1D, SRSF2, TP53, GNB1, ASXL1, GNAS, RUNX1, SF3B1, DNMT3A, MYD88, CCND3, TET2 and
JAK2. Genomic data from the normal samples of 168 AML patients was scanned with bcftools
mpileup to calculate support for CHIP-associated variants. In order to examine relationships
between CHIP and contamination estimated by TINC, VAF of CHIP-associated mutation in
normal samples was correlated with TIN score (in Read Fraction units with SNVs and CNAs
used in calculation).

Data availability

TINC results used to produce figures in the manuscript are provided as a Source Data
file, in Excel format with multiple sheets and anonymised sample IDs. Original sample
IDs are available with a copy of the data stored in the Genomics England Research
Environment, in the “/published_data_archive/paper_data/paper_data_RR306" folder. The
description of the data available in the Genomics England Research Environment for
this paper will be available under

https://re-docs.genomicsengland.co.uk/tinc_publication/.
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The sequencing data and variant calls supporting the findings of this study are available
within the Genomics England Research Environment, a secure cloud workspace. To
access genomic and clinical data within this Research Environment, researchers must
first apply to become a member of either the Genomics England Clinical Interpretation
Partnership, GECIP (https://www.genomicsengland.co.uk/research/academic) or the

Discovery Forum (industry partners
https://www.genomicsengland.co.uk/research/research-environment). The process for
joining the GECIP is described at

https://www.genomicsengland.co.uk/research/academic/join-gecip and consists of the
following steps:

1. Your institution will need to sign a participation agreement available at
https://files.genomicsengland.co.uk/documents/Genomics-England-GeCIP-Participatio
n-Agreement-v2.0.pdf and email the signed version to
gecip-help@genomicsengland.co.uk.

2. Once you have confirmed your institution is registered and have found a GECIP
domain of interestt you can apply through the online form at
https://www.genomicsengland.co.uk/research/academic/join-gecip. Once your
Research Portal account is created you will be able to log in and track your application.
3. The domain lead will review your application within 10 working days.

4, Your institution will validate your affiliation.

5. You will complete our online Information Governance training and will be granted
access to the Research Environment within 2 hours of passing the online training.

Code availability

TINC (https://github.com/caravagnalab/TINC/) is available as an open source R
package hosted at GitHub, and the release used for this manuscript is available at a
Zenodo repository 28,

The TINC website at https://caravagnalab.github.io/TINC/ presents detailed manuals
and RMarkdown vignettes for all TINC analyses.

The source code to replicate all the figures of this paper is available within the
Genomics England Research environment (under the
“/published_data_archive/paper_data/paper_data_RR306" folder). A copy of this data
with anonymised sample identifiers is also available in a Zenodo repository %°.
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Figure 1. TINC method. a Cellular composition of a bulk tumour and normal sample (e.g. peripheral blood,
saliva, or skin biopsy). Ideally, there would be no cross-contamination between tumour and normal
samples (pink and teal cells show perfect separation). In reality, all tumour samples contain normal cells.
For a paired analysis, challenges in somatic variant detection arise when the normal sample is
contaminated with tumour cells, resulting in subtraction of true somatic variants and a decrease in variant
detection sensitivity. b The level of contamination of a bulk sample can be defined as the fraction of
tumour cells in the sample. With perfect sampling tumour purity (TIT score) equals 1, and
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tumour-in-normal contamination (TIN score) equals 0; for most real-life samples, TIT < 1. TIN > 0 in
normal sample with tumour contamination. ¢ Tumour cell phylogeny showing cell divisions as a tree
representing the evolutionary relationship between sampled tumour cells. Colours represent distinct Most
Recent Common Ancestors (MRCAs) of the tumour cells, according to sampling. With TIN contamination,
phylogenetically related tumour cells are found in both samples (yellow and grey trunk). Tumour cells
found in the tumour and the normal carry common as well as private mutations (red for the tumour and
blue for the normal). TIN and TIT are determined using the mutations accrued up to the yellow MRCA, an
ancestral cell common to the tumour cells present in both samples. d Summary phylogenetic tree for the
cell divisions in panel (c) shows a branching effect that describes a lineage division and spatial sampling
bias. e Expected cell fraction distribution for tumour cells in tumour and normal samples carrying
ancestral (yellow and grey) and private (blue and red) mutations for a case with TIT=75% and TIN=25% .
Somatic mutations common to tumour cells found in both samples including the key tumour truncal
driver mutations, which are frequently subtracted in tumour-normal analysis, are the yellow and grey
cluster. Mutations only found in the tumour cells within the normal sample (shown in blue) have no read
support in the tumour and are not considered by standard somatic variant callers.
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Figure 2. In silico validation of TINC performance. a Generation of test data by in silico contamination of
patient WGS datasets. A range of TIN levels were generated from tumour and normal BAM files, injecting
tumour reads in the normal BAM to achieve a desired level of TIN contamination. Somatic variant calling
of small variants and CNAs was performed by pairing the original tumour BAM with the in silico
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contaminated normal, and the resulting calls used for TINC analysis. b Performance of TINC with the in
silico contaminated haematological cancer samples. The scatter plot compares the expected TIN
contamination (based on in silico contamination) to TINC estimates. Both axes report the score in read
fractions for the tumour (RF). Each point is coloured by the percentage of clonal mutations used by TINC,
relative to the original uncontaminated sample. The fraction of clonal mutations decreases with
increasing contamination, due to the limitations of variant callers that fail to report genuine somatic
variants (false negatives). With few clonal mutations, identifying clonal peaks is more difficult; in this case
clonal variants are also biased towards those with lower support in the normal sample. Line fits were
performed by linear regression (tests with Pearson method with two-sided p-value and squared
correlation coefficient). ¢ Performance of TINC with lung cancer samples contaminated in silico. The
same information available in panel (b) is provided. These tumours have a higher fraction of CNAs
compared with haematological cancers that are represented by triangles and squares. Fits and tests are
as in panel (b). d,e Performance of DeTiN and TINC on the haematological and lung cancer samples
shown in panels (b) and (c). Consistent with the definition of DeTin, the relative tumour DNA abundance in
the normal and tumour samples is shown on the x-axis. This plot is restricted to cases with a maximum
ratio of 20%, which includes samples within the anticipated contamination range for use in clinical
reporting (full plot, Supplementary Figure S1). The y-axis shows the ratio between TIN and TIT scores
returned by the two tools. Fits and tests are as in panel (b). Source data are provided as a Source Data
file.
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Figure 3. Validation of TINC by comparison with orthogonal test data generated either by flow cytometry
or molecular Minimal Residual Disease (MRD) test. Here 63 patients are recruited through the 100,000
Genomes Project (10 AMLs and 53 ALLs), while 7 ALLs are not (criteria for project enrollment reported in
Supplementary Table 1). The threshold for TIN contamination (>1% TIN) is shown with the dashed vertical
line. Source data are provided as a Source Data file.
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Figure 4. TINC test implementation in Genomics England pipeline. a Somatic SNVs are used in TIN
assessment; by default all variants are used. If run with CNA integration, only SNVs mapping to the most
prevalent copy state are used. The supported copy states are 1:0 (loss of heterozygosity, LOH), 1:1
(heterozygous diploid), 2:0 (copy-neutral LOH), 2:1 (triploid) or 2:2 (tetraploid genome-doubled) TIN
contamination is estimated for samples with tumour purity (TIT score) >25%. Samples that can be
analysed are assigned a TIN score, which can be converted in tumour read fractions (RF) detected in the
normal sample, and used to determine a final status for the presence or absence of contamination. The
threshold implemented at Genomics England to determine PASS status (TIN contamination undetected)
versus FAIL (TIN contamination detected), is set to 1% RF. b Scatter plot reporting the ratio between the
number of clonal mutations over total mutational burden, against estimated sample purity (TIT) for 617
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WGS samples of haematological cancers. When clonal/total mutations ratio = 1, TINC did not separate
clonal somatic variants from subclonal variants and TIN estimates are less reliable. The majority of
samples with ratio = 1 are clustered with TIT score < 25%. The colour of each point represents the sample
contamination as estimated by our method; the vertical dashed line represents the 25% purity cutoff for
TINC analysis adopted in Genomics England. Further details on this cohort and contamination

assessment are shown in Figure 6. Source data are provided as a Source Data file.
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Figure 5. Hybrid variant calling pipeline for processing of samples with TIN contamination. a Graphical
representation of the pipeline that combines outputs of paired tumour-normal run with high specificity
and reduced sensitivity due to TIN contamination and tumour only run (unmatched normal sample is used
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to satisfy input requirements) with high sensitivity and low specificity due to unsubtracted rare germline
variants. b,c Extensive filtering is therefore implemented to reduce the number of variants in clinically
relevant genes reported from tumour only workflow. Panel of Normals (PoN) is applied to SNVs to reduce
the number of false positive findings due to sequencing artefacts. Population Frequency (PF) filter is
applied to reduce the number of common germline variants in tumour only run. Filtering cut-offs are
optimised for improving specificity without compromising sensitivity. Application of these two filters
significantly reduces the number of SNVs (panel b) and SVs (panel c) that require clinical review. d,e
Sensitivity of SNV calling for samples from Figure 2b with standard paired tumour-normal analysis (panel
d) and with tumour-only pipeline (panel €). Source data are provided as a Source Data file.
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Figure 6. Application of TINC to the 100,000 Genomes Project dataset. a Distribution of the estimated
level of tumour in normal contamination for 771 tumour-normal pairs derived from participants in the
100,000 Genomes Project (n=617 haematological cancers, n=154 sarcomas). Data are shown for
haematological cancers of the subtypes: Acute Lymphoblastic Leukaemia (ALL), Acute Myeloid
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Leukaemia (AML), Chronic Lymphocytic Leukaemia (CLL), Chronic Myeloid Leukaemia (CML), Diffuse
Large B-cell Lymphoma (DLCBL), High-risk Myelodysplastic Syndrome (High-risk MDS), Low and moderate
grade Non-Hodgkin B-cell Lymphoma (Low/mid grade NHL), Multiple Myeloma (MM) and
Myeloproliferative Neoplasm (MPN). Azure bars represent normal samples with TIN score <1% expressed
in read fractions, light grey bars | samples with score <1%. b Distribution of normal sample source for
haematological cancers. The fraction of normal samples for which the DNA was derived from blood,
saliva, fibroblasts or tissue samples is shown for haematological cancers of different subtypes (AML,
MPN, High-risk MDS and CML). ¢ The proportion of normal samples determined to have a PASS or FAIL
status by TINC (1% read fraction threshold) is shown in light grey and azure respectively for AML, MPN,
High-risk MDS and CML cancers. The proportion of cases that could not be analysed by Genomics
England pipeline (tumour purity estimated to be below 25%) is shown in dark grey. Source data are
provided as a Source Data file.
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Figure 7. Examples of TINC test outputs. a Scatter distribution of somatic mutation VAF in tumour and
normal samples (panels a-f represent case 1). VAF is shown for n=982 mutations detected from WGS
data which reside within heterozygous diploid regions in the tumour genome. Two variants of clinical
significance are highlighted; a TP53 frameshift deletion (c.594delA) and a JAK2 V617F mutation. Neither
mutation would be detected using a standard tumour-normal calling pipeline, due to the tumour
contamination in the normal. b,c Histograms of VAF values for tumour and normal samples in panel (a). d
Deconvolution analysis with TINC. n=378 clonal mutations were identified in the tumour using MOBSTER
(upper panel) with mean VAF ~45% (cluster C1). Subsequent deconvolution determines one cluster in the
normal sample for the corresponding mutations with a VAF peak at about ~8% (lower panel). e
Representation of somatic mutation VAF in tumour and normal samples. After deconvolution of somatic
mutations (panel d), clonality can be attributed to the mutations in panel (a) - clonal mutations with teal
dots. f TIT and TIN scores can be determined from the parameters fit by the deconvolution methods,
accounting for the copy state of somatic SNVs. In this case the data indicate an overall tumour purity of
90% (TIT score, high-purity tumour sample) and tumour-in-normal contamination level of ~16% (TIN
score). g Representation of somatic mutation VAF in tumour and normal samples (panels g-i represent
case 2) as in panels (a-c). For this case, a previously identified (by Fluorescence in situ hybridization)
translocation resulting in a PML-RARA fusion was not detected using a standard tumour-normal analysis
pipeline. h Deconvolution identifies a cluster of clonal somatic mutations of n=358 SNVs (cluster C1) with
VAF ~30%. i Representation of contamination in tumour and normal samples. TIT and TIN scores
determined by TINC, expressed in cellular proportions and adjusted for copy number states, show a
tumour purity of ~60% (TIT), and tumour contamination of the normal sample of ~16% (TIN).
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