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Abstract

Vocal animals produce multiple categories of calls with high between- and within-subject
variability, over which listeners must generalize to accomplish call categorization. The
behavioral strategies and neural mechanisms that support this ability to generalize are largely
unexplored. We previously proposed a theoretical model that accomplished call categorization
by detecting features of intermediate complexity that best contrasted each call category from all
other categories. We further demonstrated that some neural responses in the primary auditory
cortex were consistent with such a model. Here, we asked whether a feature-based model could
predict call categorization behavior. We trained both the model and guinea pigs on call
categorization tasks using natural calls. We then tested categorization by the model and guinea
pigs using temporally and spectrally altered calls. Both the model and guinea pigs were
surprisingly resilient to temporal manipulations, but sensitive to moderate frequency shifts.
Critically, model performance quantitatively matched guinea pig behavior to a remarkable
degree. By adopting different model training strategies and examining features that contributed
to solving specific tasks, we could gain insight into possible strategies used by animals to
categorize calls. Our results validate a model that uses the detection of intermediate-complexity

contrastive features to accomplish call categorization.

Introduction

Communication sounds such as human speech or animal vocalizations (calls) are typically
produced with tremendous subject-to-subject and trial-to-trial variability. These sounds are also
typically encountered in highly variable listening conditions - in the presence of noise,
reverberations, and competing sounds. A central function of auditory processing is to extract the
underlying meaningful signal being communicated so that appropriate behavioral responses can
be produced. A key step in this process is a many-to-one mapping that bins communication
sounds, perhaps carrying similar ‘meanings’ or associated with specific behavioral responses,
into distinct categories. To accomplish this, the auditory system must generalize over the
aforementioned variability in the production and transmission of communication sounds. We
previously proposed, based on a model of visual categorization (Ullman et al., 2002) , a
theoretical model that identified distinctive acoustic features that were highly likely to be found
across most exemplars of a category and were most contrastive with respect to other

categories. Using these ‘most informative features (MIFs)’, the model accomplished auditory
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categorization with high accuracy (Liu et al., 2019). We further showed in a guinea pig (GP)
animal model that neurons in the superficial layers of the primary auditory cortex (A1)
demonstrated call-feature-selective responses and complex receptive fields that were consistent
with model-predicted features, providing support for the model at the neurophysiological level
(Montes-Lourido et al., 2021a). In this study, we investigated whether the feature-based model
held true at a behavioral level, by determining whether the model, trained solely using natural
GP calls, could predict GP behavioral performance in categorizing both natural calls as well as

calls with altered spectral and temporal features.

Studies in a wide range of species have probed the impact of alterations to spectral and
temporal cues on call recognition. For example, in humans, it has been shown that speech
recognition relies primarily on temporal envelope cues based on experiments that measured
recognition performance when subjects were presented with noise-vocoded speech at different
spectral resolutions (Shannon et al., 1995; Smith et al., 2002). However, recognition is also
remarkably resilient when the envelope is altered because of tempo changes - for example,
word intelligibility is resilient to a large degree of time-compression of speech (Janse et al.,
2003). Results from other mammalian species are broadly consistent with findings in humans. In
gerbils, it has been shown that firing rate patterns of A1 neurons could be used to reliably
classify calls that were composed of only four spectral bands (Ter-Mikaelian et al., 2013). In
GPs, small neuronal populations have been shown to be resistant to such degradations as well
(Aushana et al., 2018). Slow amplitude modulation cues have been proposed as a critical cue
for the neuronal discriminability of calls (Souffi et al., 2020), but behaviorally, call identification
can be resilient to large changes in these cues. For example, mice can discriminate between
calls that have been doubled or halved in length (Neilans et al., 2014). This remarkable
tolerance to cue variations might be related to the wide range of variations with which calls are
produced in different behavioral contexts. For example, for luring female mice and during direct
courtship, male mice modify many call parameters including sequence length and complexity
(Chabout et al., 2015). Along the spectral dimension, mouse call discrimination can be robust to
changes in long-term spectra, including moderate frequency shifts and removal of frequency
modulations (Neilans et al., 2014). Indeed, it has been suggested that the bandwidth of
ultrasonic vocalizations is more important for communication than the precise frequency
contours of these calls (Screven and Dent, 2016). Again, given that mice also modify the
spectral features of their calls in a context-dependent manner (Chabout et al., 2015), it stands to

reason that their perception of call identity is also robust to alterations of spectral features.
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Overall, these studies suggest that calls encode varying levels of information. Whereas the
specific parameters of a given call utterance might carry rich information about the identity
(Boinski and Mitchell, 1997; Miller et al., 2010; Gamba et al., 2012; Fukushima et al., 2015) and
85 internal state of the caller as well as social context (Seyfarth and Cheney, 2006; Coye et al.,
2016), call category identity encompasses all these variations. In some behavioral situations,
listeners might need to be sensitive to these specific parameter variations - for example, for
courtship, female mice have been shown to exhibit a high preference for temporal regularity of
male calls (Perrodin et al., 2020). But in other situations, animals must and do generalize over
90 this variability to extract call identity, which is critical for providing an appropriate behavioral
response. What mechanisms enable animals to generalize over this tremendous variability with
which calls are heard and how they accomplish call categorization, however, is not well-

understood.

In this study, based on our earlier modeling and neurophysiological results (Liu et al., 2019;
95 Montes-Lourido et al., 2021a), we hypothesized that animals can generalize over this production
variability and achieve call categorization by detecting features of intermediate complexity within
these calls. To test this hypothesis, we trained feature-based models and GPs to classify
multiple categories of natural, spectrotemporally rich GP calls. We then tested the
categorization performance of both the model and GPs with manipulated versions of the calls.
100 We found that the feature-based model of auditory categorization, trained solely using natural
GP calls, could capture GP behavioral responses to manipulated calls with remarkably high
explanatory power. By comparing different model versions, we could derive further insight into
possible behavioral strategies used by GPs to solve these call categorization tasks. Examining
the factors contributing to high model performance in different conditions also provided insight
105 into why a feature-based encoding strategy is highly advantageous. Overall, results provide
support at a behavioral level for a feature-based auditory categorization model, further validating

our model as a novel and powerful approach to deconstruct complex auditory behaviors.

Results

Guinea pigs learn to report call category in a Go/No-go task
110 We trained GPs on call categorization tasks using a Go/No-go task structure. Animals initiated
trials by moving to the ‘home base’ region of the behavioral arena (Fig. 1A, B). Stimuli were

presented from an overhead speaker. On hearing Go stimuli, GPs were trained to move to a
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reward region, where they received a food pellet reward. The correct response to No-go stimuli
was to remain in the home base. We trained two cohorts of GPs to categorize two pairs of call
115 categories - Cohort 1 was trained on chuts (Go) vs. purrs (No-go), calls that had similar spectral
content (long-term spectral power) but different temporal (overall envelope) structure (Fig. 1C),
and Cohort 2 was trained on wheeks (Go) vs. whines (No-go), calls that had similar temporal
structure but different spectral content (Fig. 1D). GPs were trained on this task over multiple
short sessions everyday (~6 sessions of ~40 trials each, ~10 minutes per session; see Materials
120 and Methods). On each trial, we presented a randomly chosen exemplar from an initial training
set of 8 exemplars per category. We estimated hit rates and FA rates from all trials in a given
day and computed a sensitivity index (d’). GPs were considered trained when d’ reliably crossed
a threshold of 1.5. On average, GPs acquired this task after ~ 2 - 3 weeks of training (~4000

total trials, ~250 trials per exemplar; Figure 1 — figure supplement 1).

125 To gain insight into possible behavioral strategies that GPs might adopt to solve the
categorization task, we examined trends of behavioral performance over the training period.
Initially, GPs exhibited low hit rates as well as low FA rates, suggesting that they did not
associate the auditory stimulus with reward (Figure 1 — figure supplement 1D). Note that this
initial phase was not recorded for the first cohort (chuts vs. purrs task, Figure 1 — figure

130 supplement 1A). Within 2 - 3 days, GPs formed a stimulus-reward association and exhibited
‘Go’ responses for all stimuli but did not discriminate between Go and No-go stimulus
categories. This resulted in high hit rates as well as FA rates, but low d’. For the remainder of
the training period, hit rates remained stable whereas FA rates gradually declined, suggesting
that the improvements to d’ resulted from GPs learning to suppress responses to No-go stimuli

135 (Figure 1 —figure supplement 1A, B, D, E).

While these data were averaged over all sessions daily for further analyses, we noticed within-
day trends in performance that might provide insight into the behavioral state of the GPs. We
analyzed performance across intra-day sessions, averaged over four days after the animals
acquired the task (Figure 1 — figure supplement 1C, F). In early sessions, both hit rates and FA
140 rates were high, suggesting that the GPs weighted the food reward highly, risking punishments
(air puffs/time outs) in the process. In subsequent sessions, both the hit rate and FA rate
declined, suggesting that the GPs shifted to a punishment-avoidance strategy. Despite these
possible changes in decision criteria used by the GPs, they maintained consistent performance,
as d’ remained consistent across sessions. Therefore, in all further analyses, we used d’ values

145 averaged over all sessions as a performance metric.

10 5


https://doi.org/10.1101/2022.03.09.483596
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.09.483596; this version posted March 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

> @
A . e B
A
> KF |
s AR
aive Food
ompserver [0)
b {
: : é
< £
o
BE
C Go stim. No-Go stim.
10

Purr
(Courtship)

0

B

10 ,

Y Whine

5 (Displeasure)
OIS

[}

g_ /A

3 02

= 1.10

Time (s)

Figure 1: Call categorization behavior in GPs. (A) Behavioral set up, indicating home base
region for trial initiation (yellow) and reward area (green). Some naive animals observed expert
animals performing the task to speed up task acquisition. (B) Video tracking was employed to

150 detect GP position and trigger task events (stimulus presentation, reward delivery, etc.). (C)
Spectrograms of example chut calls (Go stimuli for Cohort 1) and purr calls (No-go stimuli for
Cohort 1). (D) Spectrograms of example wheek calls (Go stimuli for Cohort 2) and whine calls
(No-go stimuli for Cohort 2).

A feature-based computational model can be trained to accomplish call
155 categorization
In parallel, we extended a feature-based model that we previously developed for auditory
categorization (Liu et al., 2019) to accomplish GP call categorization in a Go/No-go framework.
Briefly, we implemented a three-layer model consisting of a spectrotemporal representation
layer, a feature-detection (FD) layer, and a winner-take-all (WTA) layer. The spectrotemporal
160 layer was a biophysically realistic model of the auditory periphery (Zilany et al., 2014). For the
FD layer, we used greedy search optimization and information theoretic principles to derive a
set of most informative features (MIFs) for each call type that was optimal for the categorization
of that call type from all other call types (Fig. 2A, B; Liu et al., 2019). We derived 5 distinct sets
of MIFs for each call type that could accomplish categorization (see Materials and Methods).

165 We refer to models using these distinct MIF sets as different instantiations of the model.
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Figure 2: Framework of the model trained to perform call categorization tasks. (A) and (B)
Example cochleagrams for target (A) and distractor (B) calls. Cochleagram rows were
normalized to set the maximum value as 1 and then smoothed for display. White rectangles
170 denote detected MIFs for that call. For an input call, the target (green) FD stage response is the
sum of all detected target MIF weights normalized by the sum of all MIF weights for that call
type. The distractor response (red) is similarly computed. (C) The output of the winner-take-all
stage is determined based on the difference between the target and distractor FD stage
responses. Dots represent the winner-take-all outputs for all calls used for training the models.
175 Rows represent the five instantiations of the model with different MIF sets. MIF, maximally
informative features; det, detected MIFs; all, all MIFs.
Call-specific MIF sets in the FD layer showed near-perfect performance [area under the curve,
or AUC > 0.97 for all 20 MIF sets (4 call categories x 5 instantiations per category), mean =
0.994] in categorizing target GP calls from other calls in the training dataset. Similar to results
180 from (Liu et al., 2019, the number of MIFs for each instantiation of the model ranged from 8 to
20 (mean = 16.5), with MIFs spanning ~3 octaves in bandwidth and ~110 ms in duration on
average (Table 1). To assess the performance of the WTA layer based on these training data,
we estimated d’ using equation 1 (Materials and Methods). The WTA output also showed near
perfect performance for classifying the target from the distractor for both chuts vs. purrs (mean

185 d’=4.65) and wheeks vs. whines (mean d’ = 3.69) tasks (Fig. 2C).
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15

Table 1: Properties of MIFs.

Call Instantiation | Number of | MIF duration (ms) MIF Bandwidth (octaves)

name MIFs
(mean  std) (mean % std)

Chut 1,2,3,4,5 20, 20, 20, 20,20 | 88+ 63, 106 + 53, 108 + 56, | 4.0 £ 2.0, 4.4 + 1.2, 3.1 £ 1.9,
109 + 64, 133 + 47 37+1.9,26+1.8

Purr 1,2,3,4,5 8,9, 20, 20, 20 91+49,83+£43, 11649, |26+12,28+12, 3114,
116 + 56, 86 + 63 32+15,36+1.2

Wheek 1,2,3,4,5 8,14,13,11,12 | 144 +£47,99+58,104 +68, | 2.3+ 1.6, 2.6 £ 1.8, 2.9 + 2.2,
116 £ 62, 114 £ 65 21£11,25+17

Whine 1,2,3,4,5 20, 20, 15, 20,20 | 109 + 55, 111 + 68, 133 + | 3.5+ 1.8, 3.4 £ 1.6, 2.6 + 1.4,
37,117 £ 51,108 £ 70 32+15,39+16

Summary 16.5+4.7 109 + 57 32+17

190 Both guinea pigs and the model generalize to new exemplars
To determine if GPs learned to report call category or if they simply remembered the specific
call exemplars on which they were trained, we tested whether their performance generalized to
a new set of Go and No-go stimuli (8 exemplars each) that the GPs had not encountered
before. On each generalization day, we ran four sessions of ~40 ftrials each, with the first two

195 sessions containing only training exemplars and the last two sessions containing only new
exemplars. All GPs achieved a high-performance level (d’ > 1) to the new exemplars by
generalization day 2 (Fig. 3), i.e., after being exposed to only a few repetitions of the new
exemplars (~5 trials per new exemplar on generalization day 1). As an additional control to
ensure that GPs did not rapidly learn reward associations for the new exemplars, for GPs

200 performing the wheeks vs. whines task (n = 3), we also quantified generalization performance
when the regular training exemplars and a second new set of exemplars were presented in an
interleaved manner (400 trials with an 80/20 mix of training and new exemplars). GPs achieved
d’ > 1 for new exemplars in this interleaved set as well, further supporting the notion that GPs

were truly reporting call category.
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Similar to GPs, to test model generalization, we quantified model performance for new call
exemplars (Fig. 3B, D). Models using different MIF sets, i.e., all instantiations of the model for
chut, purr, wheek, and whine classification achieved high categorization performance (d’> 1) for
the new exemplars. In summary, GPs as well as the feature-based model could rapidly

generalize to novel exemplars.
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Figure 3: GP and model performance generalizes to new exemplars. (A) and (C) Hit (green)
and False Alarm (red) rates of GPs when categorizing new exemplars as a function of
generalization day. We presented ~5 trials of each new exemplar per day. Dark lines
correspond to average over subjects, faint lines correspond to individual subjects. (B) and (D)
Quantification of generalization performance. Black line corresponds to average d’, gray lines
are d’ values of individual subjects. GPs achieved a d’ > 1 by generalization day 2, i.e., after
exposure to only ~5 trials of each new exemplar on day 1. The feature-based model (orange)
also generalized to new exemplars that were not part of the model’s training set of calls.

Both guinea pigs and the model exhibit similar categorization-in-noise
thresholds

Real-world communication typically occurs in noisy listening environments. To test how well
GPs could maintain categorization in background noise, we assessed their performance when
call stimuli were masked by additive white Gaussian noise at several SNRs for both Go and No-
Go stimuli. Experiments were conducted in a block design, using a fixed SNR level per session
(~40 trials) and testing 5 or 6 SNR levels each day. At the most favorable SNR (>20 dB), GPs
exhibited high hit rates and low FA rates, leading to high d’ (>2) for both call groups (Fig. 4).

With increasing noise level (i.e., decreasing SNR), we observed a decrease in hit rate and an
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increase in FA, as expected, with a concomitant significant decrease in d’ (repeated measures
ANOVA,; p = 0.002 for chuts vs. purrs and p = 0.020 for wheeks vs. whines for the effect of
SNR). At the most adverse SNR (-18 dB) for both call groups, hit and FA rates were similar,
suggesting that the animals were performing at chance level. To estimate the SNR
230 corresponding to the performance threshold (@’ = 1) for call categorization in noise, we fit a
psychometric function to the behavioral d’ data (see Materials and Methods). We obtained
performance thresholds (SNR at which d’ = 1) for both the chuts vs. purrs (-6.8 dB SNR) and
wheeks vs. whines (-11 dB SNR) tasks that were qualitatively similar to human speech

discrimination performance in white noise (Phatak and Allen, 2007).
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Figure 4: Call categorization is robust to degradation by noise. (A) and (C) Hit (green) and
False Alarm (red) rates of GPs categorizing calls with additive white noise at different SNRs. (B)
and (D) Sensitivity index (d’) as a function of SNR. Black symbols correspond to the mean d’
across animals (n = 4); error bars correspond to s.e.m. Black line corresponds to a
240 psychometric function fit to the behavioral data. Orange symbols correspond to the mean d’
across 5 instantiations of the model, error bars correspond to s.e.m. Orange line corresponds to
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a psychometric function fit to the model data. Dashed blue line signifies d’ = 1. SNR, signal-to-
noise ratio; MAE, mean absolute error. Asterisk indicates significant difference from
performance in the clean condition (p < 0.05, FDR-corrected paired t-test).

245 We also tested the performance of the feature-based model (trained on clean stimuli) on the
same set of noisy stimuli as the behavioral paradigm. Model performance trends mirrored
behavior, with a higher threshold for the chuts vs. purrs task (-5.4 dB SNR) compared to the
wheeks vs. whines task (-15 dB SNR). Although the model over-performed for the wheeks vs.
whines task, it could explain a high degree of variance (R? = 0.94 for both tasks) of GP call-in-

250 noise categorization behavior.

Stimulus information might be available to GPs in short-duration segments
of calls

Several studies across species, including humans (Marslen-Wilson and Zwitserlood, 1989;
Salasoo and Pisoni, 1985), birds (Knudsen and Gentner, 2010; Toarmino et al., 2011), sea-lions
255 (Pitcher et al., 2012), and mice (Holfoth et al., 2014), have suggested that the initial parts of
calls might be the most critical parts for recognition. We reasoned that if that were the case for
GPs as well, and later call segments did not add much information for call categorization, we
might observe a plateauing of behavioral performance after a certain length of call was
presented. To test this, we presented call segments of different lengths (50 - 800 ms) beginning
260 at the call onsets (Fig. 5A, D) to estimate the minimum call duration required for successful
categorization by GPs. Trials were presented in a randomized manner in sessions of ~40 ftrials,
i.e., each trial could be a Go or No-go stimulus of any segment length. We did not observe
systematic changes to d’ values when comparing the first and second halves of the entire set of
trials used for testing, demonstrating that the GPs were not learning the specific manipulated
265 exemplars that we presented. GPs showed d’ values > 1 for as small as 75 ms segments for
both tasks, and as expected, the performance stabilized for all longer segment lengths (Fig. 5B,
C, E, F). The manipulation overall did not have any significant effect on the d’ values (repeated
measures ANOVA; p = 0.072 for chuts vs. purrs and p = 0.201 for wheeks vs. whines). These
data suggest that short-duration segments of calls carry sufficient information for call
270 categorization, at least in the tested one-vs.-one scenarios. The fact that call category can be
extracted from the earliest occurrences of such segments suggests two possibilities: 1) A large
degree of redundancy is present in calls, or 2) the repeated segments can be used to derive

information beyond call category (for example, caller identity or emotional valence).
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Model performance, however, only crossed a d’ value of 1 for ~150 ms call segments, and
275 performance only plateaued after a 200 ms duration (Fig. 5C, F). This observation could reflect
the fact that the MIFs identified for categorization were on average about 110 ms long. Despite
these differences, model performance was in general agreement with behavioral performance
for both the chuts vs. purrs and wheeks vs. whines tasks (R? = 0.674 and 0.444 respectively).
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280 Figure 5: GPs can obtain information for categorization from short-duration segments of
calls. (A) and (D) Schematic showing truncation of stimuli at different segment lengths from the
onset of calls. (B) and (E) Average (n = 3 GPs) hit rate (green) and false alarm rates (red) as a
function of stimulus segment length. (C) and (F) Black symbols correspond to average GP d’ (n
= 3 GPs), error bars correspond to 1 s.e.m. Orange symbols correspond to average model d’ (n

285 =5 model instantiations), error bars correspond to 1 s.e.m. Dashed blue line denotes d’ = 1.

Temporal manipulations had little effect on model performance and guinea
pig behavior

To investigate the importance of temporal cues for GP call categorization, we introduced several
gross temporal manipulations to the calls. We first started by changing the tempo of the calls,
290 i.e., stretching/compressing the calls without introducing alterations to the long-term spectra of
calls (Fig. 6A, D). This resulted in calls that were ~0.45, 0.5, ~0.56, ~0.63, ~0.77, ~1.43, 2.5 and
5 times the original lengths of the calls. As earlier, we presented stimuli in randomized order and
verified that d’ did not vary systematically between the first and second half of trials, suggesting

that the GPs were not learning new associations for the manipulated exemplars. GP behavioral
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performance remained surprisingly robust to these perturbations, showing high hit rates and low
FA rates (Fig. 6B, E) leading to similar d’ across probed conditions (Fig. 6C, F; repeated
295 measures ANOVA; p = 0.105 for chuts vs. purrs and p = 0.325 for wheeks vs. whines).

A D
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Figure 6: Call categorization is resistant to changes in tempo. (A) and (D) Schematic
showing changes to call tempo without affecting spectral content. (B) and (E) Average (n = 4
GPs for chuts vs. purrs; n = 3 GPs for wheeks vs. whines) hit rate (green) and false alarm rates
300 (red) as a function of tempo change, expressed as times change in call duration (1 corresponds
to the natural call). (C) and (F) Black points correspond to average GP d’, error bars correspond
to 1 s.e.m. Orange points correspond to average model d’ (n = 5 model instantiations), error
bars correspond to 1 s.e.m. Dashed blue line denotes d’ = 1.
Similarly, model performance was also remarkably resistant to tempo manipulations. Note that
305 while the model qualitatively captured GP behavioral trends, we obtained low R? values likely
because of random fluctuations in behavior (e.g., motivation) across conditions that are
unrelated to stimulus parameters. The relatively low mean absolute error (MAE) for the tempo
manipulations (comparable with MAEs of the SNR manipulation which showed high R? values)

confirmed the correspondence between model and behavior.

310 The tempo manipulations lengthened or shortened both syllables and inter-syllable intervals
(ISlIs). Because a recent study in mice (Perrodin et al., 2020) suggested that regularity of ISI
values might be crucial for detection of male courtship songs by female mice, we next asked
whether GPs used individual syllables or temporal patterns of calls for call categorization. First,

as a low-level control, we replaced the ISIs of calls with silence instead of the low level of
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315 background noise present in recordings to ensure that GPs were not depending on any residual
ISI information (silent ISI). Second, since many call categories show a distribution of ISI lengths
(Fig. 7A, E), we replaced the ISI lengths in a call with ISI values randomly sampled from the ISI
distribution of the same call category (random ISI). The hit and FA rates for both silent and
random ISI stimuli were comparable to the regular calls for both categorization tasks (Fig. 7C,
320 G), and thus, no significant difference in d’ values was observed across these conditions (Fig.
7D, H; repeated measures ANOVA; p = 0.536 for chuts vs. purrs and p = 0.365 for wheeks vs.

whines).

Finally, because the Go/No-go stimuli categories vary in their ISI distributions (Fig. 7A, E),
particularly chuts vs. purrs, we generated chimeric calls with syllables of one category and ISI
325 values of the other category (for example chut syllables with purr ISls). Since we combined
properties of two call categories, we presented chimeric stimuli in a catch-trial design (see
Materials and Methods) and compared the Go response rates using syllable identity as the label
for a category. While the response rates were marginally lower for the chimeric chuts (chut
syllables with purr ISI values) compared to regular chuts (paired t test; p = 0.039), responses
330 were unaltered for regular and chimeric purrs (paired t test; p = 0.415), chimeric wheeks (paired
t test; p = 0.218), and chimeric whines (paired t test; p = 0.099) (Fig. 7B, F). Consistent with
these behavioral trends, model performance was also largely unaffected by these ISI

manipulations.
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335 Figure 7: Call categorization is resistant to manipulations to the inter-syllable interval. (A)
and (E) Distribution of ISI lengths for the call types used in the categorization tasks. (B) and (F)
Comparison of the Go rates for natural and chimeric calls. We compared Go rates rather than o’
because chimeric calls were presented in a catch trial design (see main text and Materials and
Methods). Chim. refers to chimeric calls with one call’'s syllables and the other call's ISls. For

340 example, chimeric chuts have chut syllables and purr ISls. Label on x-axis refers to syllable
identity. (C) and (G) Comparison of hit (green) and FA (red) rates for regular calls, calls where
we replaced IS| values with values drawn from the same calls’ ISI distributions, and calls where
we replaced the inter-syllable interval with silence (rather than background noise). (D) and (H)
Comparison of GP (black; n = 3 GPs) and model (orange; n = 5 instantiations) d’ values across

345 these manipulations. Error bars correspond to 1 s.e.m.

As a more drastic manipulation, we tested the effects of temporally reversing the calls (Fig. 8A,
D). Given that both chuts and purrs are calls with temporally symmetric spectrotemporal
features, compared to natural calls, we observed no changes in the hit and FA rates (Fig. 8B) or
d’ values for reversed calls (Fig. 8C; paired t-test; p = 0.582). Wheeks and whines, however,

350 show strongly asymmetric spectrotemporal features. Interestingly, reversal did not significantly
affect the categorization performance for this task as well (Fig. 8E, F; paired t test; p = 0.151).
Similar to GP behavior, the model also maintained robust performance (d’ > 1) for call reversal
conditions with only a slight decrease in d’. Overall, these results suggest that GP behavioral
performance is astonishingly tolerant of temporal manipulations such as tempo changes, ISI

355 manipulations, and call reversal, and this tolerance can be largely captured by the feature-

based model.
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Figure 8: Call categorization is resistant to time-reversal. (A) and (D) Schematics showing
spectrogram and waveform of natural (left) and reversed (right) purr (A) and wheek (D) calls.

360 (B) and (E) Average (n=3 GPs) hit rate (green) and FA rate (red) for natural and reversed calls.
(C) and (F) Average performance of GPs (black; n = 3 GPs) and model (orange; n = 5 model
instantiations) for natural and reversed calls.
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Spectral manipulations cause similar degradation in model performance
and guinea pig behavior

365 Because temporal manipulations did not significantly affect GP behavioral or model
classification performance, we reasoned that categorization was primarily being driven by
within-syllable spectral cues. To ascertain the impact of spectral manipulations on call
categorization, we varied the fundamental frequency (FO) of the calls from one octave lower (-
50%) to one octave higher (+100%) than the regular calls without altering call lengths (Fig. 9A,

370 D). As earlier, we verified that d’ did not vary systematically between the first and second half of
trials, suggesting that the GPs were not learning new associations for the manipulated
exemplars. For chuts vs. purrs categorization, both increases and decreases to the FO of the
calls significantly affected behavioral performance. Particularly, we saw a rise in FA rates (Fig.
9B) as the FO deviated farther from the natural values, leading to a significant drop of d’ values

375 at several conditions (Fig. 9C; repeated measures ANOVA; overall p = 0.006 for effect of FO
change). For the FO-shifted wheeks vs. whines as well, we observed higher FA rates (Fig. 9E)
leading to decreasing d’ values upon deviating farther from the natural values, although the
effect was not as pronounced (Fig. 9F; repeated measures ANOVA; overall p = 0.114). Model
performance mirrored these behavioral trends as evidenced by high R? (0.723 and 0.468 for

380 chuts vs. purrs and wheeks vs. whines respectively) and low MAE values.
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Figure 9: Call categorization is sensitive to fundamental frequency (FO0) shifts. (A) and (D)
Schematics showing spectrograms of natural calls (middle) and versions where the FO has been
decreased (left) or increased (right). (B) and (E) Average (n = 4 GPs for chuts vs. purrs; n = 3
385 GPs for wheeks vs. whines) hit rate (green) and FA rate (red) for FO-shifted calls Note that 0%
change in FO is the natural call, -50% change corresponds to shifting FO one octave lower, and
100% change corresponds to shifting FO one octave higher than the natural call. (C) and (F)
Average performance of GPs (black) and model (orange; n = 5 model instantiations) for natural
and FO-shifted calls. Asterisk indicates significant difference from performance for the natural
390 (unaltered) call (p < 0.05, FDR-corrected paired t-test).
Finally, because wheeks and whines differ in their spectral content at high frequencies (Fig. 1D),
we asked whether GPs exclusively used the higher harmonics of wheeks to accomplish the
categorization task. To answer this question, we low-pass filtered both wheeks and whines at 3
kHz (Fig. 10A), removing the higher harmonics of the wheeks while leaving the fundamental
395 relatively unaffected. Although GP performance showed a decreasing trend for the filtered calls
(Fig. 10B, C), it was not significantly different from regular calls (paired t test; p = 0.169),
indicating that the higher harmonics might be an important but not the sole cue used by GPs for
the task. Similar to behavior, the model performed slightly poorly but above a d’ of 1 in the low-

pass filtered condition.
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Figure 10: Call categorization is mildly affected by low-pass filtering. (A) Schematic

spectrograms of natural calls (top) and low-pass filtered (bottom) wheek and whine calls. (B)

Average (n = 3 GPs) hit rate (green) and FA rate (red) for natural and low-pass filtered (cutoff =

3 KHz) calls. (C) Average performance of GPs (black) and model (orange; n = 5 model
405 instantiations) for natural and low-pass filtered calls.
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Feature-based model explains a high degree of variance in guinea pig
behavior

The feature-based model was developed purely based on theoretical principles, made minimal
assumptions, was trained only on natural GP calls, and had no access to GP behavioral data.
For training the model, we used exemplars that clearly provided net evidence for the presence
of one category or the other (Fig. 3C; green and red tick marks in Fig. 11A, D). We tested the
model (and GPs), however, with manipulated stimuli that spanned a large range of net evidence
values (histograms in Fig. 11A, D), with many stimuli close to the decision boundary (blue ticks
correspond to an SNR value of -18 dB). Despite the difficulty imposed by this wide range of
manipulations, the model explained a high degree of variance in GP behavior as evidenced by
high R? and low MAE across individual paradigms (call manipulations) as well as overall (Fig. 11

B-F; R?= 0.60 for chuts vs. purrs and 0.37 for wheeks vs. whines across all tasks).
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Figure 11: Feature-based model explains a high degree of variance in GP behavior (A)
Stacked distributions of the evidence for the presence of Go (green) and No-go (red) stimuli
(across all manipulations for the chuts vs. purrs task), showing that the output is generally > 0
for chuts (green; Go stimulus) and < 0 for purrs (red; No-go stimulus). The evidence for easy
tasks, such as generalizing to new natural chuts (green ticks) or purrs (red ticks), is typically well
away from 0 (decision boundary). In contrast, the evidence for difficult tasks, such as the -18 dB
SNR condition (blue ticks), falls near 0. Dashed black line corresponds to the winner-take-all
output as a probability of reporting a Go response. (B - C) Compared to the model trained with
the specific task performed by the GP (chuts vs. purrs; one vs. one), the model trained to
classify each call type from all other call types (one vs. many) was more predictive of behavior
as indicated by higher R? (B) and lower MAE (C). (D - F) Same as A - C but for the wheeks vs.
whines task. MAE, mean absolute error.
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430 Comparing models with different training procedures yields insight into
guinea pig behavioral strategy
The high explanatory power of the feature-based model could be leveraged to gain further
insight into what information the GPs were using or learning to accomplish these categorization
tasks. On the one hand, because GPs are exposed to these call categories from birth, the GPs
435 may simply be employing the features that they have already acquired for call categorization
over their lifetimes to solve our specific categorization tasks. The model presented so far is
aligned with this possibility - we trained features to categorize one call type from all other call
types (one vs. many categorization) and used a large number of call exemplars for training.
Alternatively, GPs could be de-novo learning stimulus features that distinguished between the
440 particular Go and No-go exemplars we presented during training. To test this possibility, we re-
trained the model only using the 8 exemplars each of targets and distractors that we used to
train GPs for one vs. one categorization. When tested on manipulated calls, the one vs. one
model typically performed poorly compared to the original one vs. many model. Compared to
the one vs. many model, the one vs. one model was less consistent with behavior as indicated
445 by lower R? (Fig. 11B, E) and higher MAE values (Fig. 11C, F). These results thus suggest that
rather than re-learning new task-specific features, GPs might be using call features that they
had acquired previously over their lifespan to solve our call categorization task. These results
also suggest that training a feature-based categorization system (in-silico or in-vivo) on
exemplars that capture within-category variability is critical to obtain a system that can flexibly
450 adapt and maintain robust performance to unheard stimuli that exhibit large natural or artificial

variations.

The effect of training our model on the one vs. many categorization task using a large number of
call exemplars for training was that the model learned features that truly captured the within-
and outside-class variability of calls. This resulted in a model that accurately predicted GP
455 performance across a range of stimulus manipulations. To understand how the model was able
to achieve robustness to stimulus variations, and to gain insight into how GPs may flexibly
weight features differently across the various stimulus manipulations, we examined the relative
detection rates of various model MIFs across different stimulus paradigms in which we observed

strong behavioral effects (Figure 12, Figure 12 — supplement 1).
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Figure 12: Different subsets of MIFs are flexibly recruited to solve categorization tasks
for different manipulations. (A) We estimated the relative detection rate (i.e., the difference
between the detection rate of a given MIF for all target and all distractor calls) of all MIFs (discs)
for each behavioral paradigm (e.g., SNR). Colors denote different instantiations of the MIFs.

465 Disc diameter is monotonically proportional to the relative detection rate, using a power-law
relationship (fourth power) to highlight the most robust features. While MIFs of all center
frequencies (CFs) and bandwidths were uniformly recruited for generalizing calls of chut call
type, MIFs with lower CFs were preferentially selected for SNR conditions, likely because high-
frequency chut features were masked by white noise. In contrast, MIFs with high CF were

470 preferred by the model to solve the FO-shift task. (B) Similar results were obtained for purrs. (C)
MIFs of all durations and bandwidths were uniformly recruited for generalizing calls of chut call
type. In contrast, shorter duration MIFs were preferred for segment-length conditions whereas
longer-duration MIFs were preferentially recruited for FO-shift conditions. (D) Results were
similar for purrs (for wheeks and whines, see Figure 12 — figure supplement 1).
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475 In Figure 12, we examine the relative detection rates of MIFs (discs, ~20 MIFs per instantiation)
from different model instantiations (colors, 5 instantiations) for the Go and No-go stimuli. That is,
we computed the difference between the rate of detection of each MIF in response to Go stimuli
and No-go stimuli, and plotted this difference (disc areas) as a function of MIF tuning properties
(CF, bandwidth, and duration). For the generalization stimuli, i.e., new natural calls on which the

480 model had not been trained, almost all MIFs showed relatively large net detection rates which
resulted in plots (Figure 12A-D, left panels) with discs of about equal area. Note however, that
the learned MIFs are spread out across a range of CFs, bandwidths, and durations. Given these
data alone, one might argue that learning ~20 MIFs per call category is highly redundant, and
that high performance could be achieved using only a subset of these MIFs. But examining

485 which features maintain high relative detection rates in other stimulus paradigms underscores
the utility of learning this wide feature set. When we added white noise to the stimulus, low-CF
features showed higher relative detection rates (Fig. 12A, B; right top) and thus contributed
more towards categorization. This could likely be attributed to GP calls having high power at
low-frequencies, resulting in more favorable local SNRs at lower frequencies. But when we

490 altered stimulus FO, high-CF features contributed more towards categorization (Fig. 12A, B;
right bottom). Similarly, low-duration, high-bandwidth features contributed more when
categorizing time-restricted calls, whereas high-duration, low-bandwidth features contributed
more when categorizing FO-shifted calls (Fig. 12C, D). That the model quantitatively matched
GP behavior suggests that a similar strategy might be employed by GPs as well. Note that our

495 contention is not that the precise MIFs obtained in our model are also the precise MIFs used by
the GPs — indeed, we were able to train several distinct MIF sets that were equally proficient at
categorizing calls. Rather, we are proposing a framework in which GPs learn intermediate-
complexity features that account for within-category variability and best contrast a call category
from all other categories, and similar to the model, recruit different subsets of these features to

500 solve different categorization tasks.

Discussion

In this study, we trained GPs to report call categories using an appetitive Go/No-go task. We
then tested GP call categorization when we challenged them with spectrally and temporally
manipulated calls. We found that GPs maintained their call categorization across a wide range
505 of gross temporal manipulations such as changes to tempo and altered ISI distributions. In
contrast, GP behavior was strongly affected by altering the FO of calls. In parallel, we extended

a previously developed feature-based model of auditory categorization by adding a winner-take-
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all feature-integration stage that enabled us to obtain a categorical decision from the model on a
trial-by-trial basis. We trained the model using natural GP calls. When we challenged the model
510 with the identical stimuli used in the GP experiments, we obtained model responses that
quantitatively matched GP behavior to a remarkable degree. We had previously reported
electrophysiological support for the feature-based model by demonstrating that a large fraction
of neurons in the superficial layers of auditory cortex exhibited feature-selective responses,
resembling the feature-detection stage of the model (Montes-Lourido et al., 2021a). The results
515 described in the present manuscript lend further support to the model at a behavioral level.
Taken together, these studies strongly suggest how a spectral content-based representation of
sounds at lower levels of auditory processing can be transformed into a goal-directed

representation at higher processing stages by extracting and integrating task-relevant features.

The feature-based model was highly predictive of GP behavior although it was conceptualized
520 from purely theoretical considerations, trained only using natural GP calls, and implemented
without access to any behavioral data. Insights from behavioral observations could be used to
further refine the model. For example, our data indicated that GPs altered their behavioral
strategy over the course of multiple sessions within a given day. This could possibly reflect an
early impulsivity in their decision-making brought on by food deprivation (evidenced by a high
525 false alarm rate) that gradually switches to a punishment-avoidance strategy with increasing
satiation (although d’ remains consistent across sessions). In contrast, the model is based on
minimal assumptions and applies a static decision criterion (with a small amount of error) across
all trials. It is possible that some of the remaining unexplained variance in the behavior could be
captured by including these nuances in the model. Nevertheless, the fact that the model could
530 explain much of the behavioral trends we observed suggests that the fundamental strategy
employed by the model - that of detecting features of intermediate complexity to generalize over
within-category variability - also lies at the core of GP behavior. Furthermore, we could leverage
the model to gain insight into possible behavioral strategies used by GPs in performing the
tasks. For example, we could compare models trained to categorize calls in one vs. many or
535 one vs. one conditions to ask which scenario was more consistent with GP behavior: 1) whether
the GPs used prior features that they acquired over their lifetimes to categorize a given call type
from all other calls, or 2) whether GPs were de-novo learning new features to solve the
particular categorization task on which they were trained. The model trained on call features that
distinguish a particular call from all other calls was more closely aligned with GP behavioral

540 data, supporting the first possibility, that GPs use features that they had already learned to solve
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our particular task. Examining how different subsets of features could be employed to solve
different categorization tasks revealed possible strategies that GPs might use to flexibly recruit
different feature representations to solve our tasks. While we have used GPs as an animal
model for call categorization in this study, we have previously shown that the feature-based
545 model shows high performance across species (GPs, marmosets and macaques), and have
feature-selective responses in marmosets and GPs (Liu et al., 2019). Thus, it is likely that our
model reflects general principles that are applicable across species, and offers a powerful new

approach to deconstruct complex auditory behaviors.

On the behavioral side, our study of GP call categorization behavior using multiple
550 spectrotemporally rich call types and parametric manipulations of spectral and temporal features
offers comprehensive insight into cues that are critical for call categorization and builds
significantly on previous studies. First, we showed that GPs can categorize calls in challenging
SNRs, and that thresholds vary depending on the call types to be categorized. We
demonstrated that information for GP call categorization was available in short-duration
555 segments of calls, and consistent with some previous studies in other species (Holfoth et al.,
2014; Knudsen and Gentner, 2010; Marslen-Wilson and Zwitserlood, 1989; Pitcher et al., 2012),
GPs could extract call category information soon after call onset. GP call perception was robust
to large temporal manipulations, such as reversal and larger changes to tempo than have been
previously tested (Neilans et al., 2014). These results are also consistent with the resilience of
560 human word identification to large tempo shifts (Janse et al., 2003). Our finding that GP call
categorization performance is robust to ISI manipulations is also not necessarily inconsistent
with results from mice (Perrodin et al., 2020); in that study, while female mice were found to
strongly prefer natural calls compared to calls with ISI manipulations, it is possible that mice still
identified the call category correctly. For gross spectral manipulations, we found that GP call
565 categorization was robust to a larger range of FO shifts than have been previously tested
(Neilans et al., 2014). Critically, for all but one of these manipulations, the feature-based model

captured GP behavioral trends with surprising accuracy both qualitatively and quantitatively.

An analysis of model deviation from behavior could suggest a roadmap for future improvements
to our model that could yield further insight into auditory categorization. The one paradigm
570 where we observed a systematic under-performance of the model compared to GP behavior
was when we presented call segments of varying lengths from call onset. While the GPs were
able to accomplish categorization by extracting information from as little as 75 ms segments, the

model required considerably more information (~150 ms). This is likely because the model was
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based on the detection of informative features that were on average of ~110 ms duration, which
575 were identified from an initial random set of features that could be up to 200 ms in duration. We
set this initial limit based on an upper limit estimated from electrophysiological data recorded
from primary auditory cortex (A1; Montes-Lourido et al., 2021). We consciously did not impose
further restrictions on feature duration or bandwidth to ensure that the model did not make any
assumptions based on observed behavior. It is possible that further restricting feature length to
580 ~100 ms could lead to better matches between model and behavior for this and other
paradigms. We also observed over-performance of the model compared to behavior in some
paradigms. Some of this over-performance might be explained by the fact that the model does
not exhibit motivation changes etc. as outlined above. A second source of this over-
performance might arise from the fact that our model integrates evidence from the FD stage
585 perfectly, i.e., we take the total evidence for the presence of a call category to be the weighted
sum of the log-likelihoods of all detected features (counting detected features only once) over
the entire stimulus, and do not explicitly model a leaky integration of feature evidence over time,
as is the case in evidence-accumulation-to-threshold models (Cheadle et al., 2014; Keung et al.,
2020). Future improvements to the model could include a realistic feature-integration stage,
590 where evidence for a call category is generated when a feature is detected and degrades with a
biologically realistic time constant. In this case, a decision threshold could be reached before
the entire stimulus is heard, but model parameters would need to be derived from or fit to

observed behavioral data (Glaze et al., 2015).

How do the proposed model stages map onto the auditory system? In an earlier study, we
595 provided evidence that feature detection likely occurs in the superficial layers of A1, in that a
large fraction of neurons in this stage exhibit highly selective call responses and complex
spectrotemporal receptive fields (Montes-Lourido et al., 2021a). How and at what stage these
features are combined to encode a call category remains an open question. Neurons in A1 can
acquire categorical or task-relevant responses to simple categories, for example, low vs. high
600 tone frequencies, or low vs. high temporal modulation rates, with training (Bao et al., 2004; Fritz
et al., 2005). In contrast, categorical responses to more complex sounds or non-compact
categories only seem to arise at the level of secondary or higher cortical areas or the prefrontal
cortex (Russ et al., 2008; Yin et al.,, 2020), which may then modulate A1 via descending
connections. These results, taken together with studies that demonstrate enhanced decodability
605 of call identity from the activity of neurons in higher cortical areas (Fukushima et al., 2014;

Grimsley et al., 2012, 2011), suggest that secondary ventral-stream cortical areas, such as the
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ventral-rostral belt in GPs, are promising candidates as the site of evidence integration from call
features. The winner-take-all stage may be implemented via lateral inhibition at the same level
using similar mechanisms as has been suggested in primary visual cortex (Chettih and Harvey,

610 2019) or may require a further upstream layer. Future experiments are necessary to explore
these questions further.

The feature-based model we developed offers a trade-off between performance and biological
interpretability. Modern deep neural network (DNN) based models can attain human-level
performance (for example, in vision: Rajalingham et al., 2015, in audition: Kell et al., 2018) but
615 what features are encoded at the intermediate network layers remain somewhat hard to
interpret. These models also typically require vast quantities of training data. In contrast, our
model is based on an earlier model for visual categorization (Ullman et al.,, 2002) that is
specifically trained to detect characteristic features that contrast the members of a category
from non-members. Thus, we can develop biological interpretations for what features are
620 preferably encoded and more importantly, why certain features are more advantageous to
encode. Because the features used in the model are the most informative parts of the calls
themselves, they can be identified without a parametric search. This approach is especially well-
suited for natural sounds such as calls that are high-dimensional and difficult to parameterize.
We are restricted, however, in that we do not know all possible categorization problems that are
625 relevant to the animal. By choosing well-defined categorization tasks that are ethologically
critical for an animal’s natural behavior (such as call categorization in the present study), we can
maximize the insight that we can derive from these experiments as it pertains to a range of
natural behaviors. In the visual domain, the concept of feature-based object recognition has
yielded insight into how human visual recognition differs from modern machine vision algorithms
630 (Ullman et al., 2016). Our results lay the foundation for pursuing an analogous approach for

understanding auditory recognition in animals and humans.

Materials and Methods

All experimental procedures conformed to the NIH Guide for the use and care of laboratory
animals and were approved by the Institutional Animal Care and Use Committee of the
635 University of Pittsburgh (protocol number 21069431).
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Animals

We acquired data from 4 male and 4 female adult, wild-type, pigmented guinea pigs (GPs) (EIm
Hill Labs, Chelmsford, MA), weighing ~500-1000 g over the course of the experiments. After a
minimum of 2 weeks of acclimatization to handling, animals were placed on a restricted diet for
640 the period of behavioral experiments. During this period, GPs performed auditory tasks for food
pellet rewards (TestDiet, St. Louis, MO). The weight and body condition of animals was closely
monitored and the weight was not allowed to drop below 90% of baseline weight. To maintain
this weight, depending on daily behavioral performance, we supplemented GPs with restricted
amounts of pellets (~10-309), fresh produce (~10-30g), and hay (~10-30g) in their home cages.
645 All animals had free access to water. After behavioral testing for ~2 - 3 weeks, animals were

provided ad-libitum food for 2 - 3 days to obtain an updated estimate of their baseline weights.

Behavioral setup

All behavioral tasks were performed inside a custom behavioral booth (Fig. 1; ~90 cm x 60 cm x
60 cm) lined with ~1.5 cm thick sound attenuating foam (Pinta Acoustic, Minneapolis, MN) (Fig.

650 1A). The booth was divided into two halves (~45 cm x 60 cm x 60 cm each) using transparent
acrylic (McMaster-Carr, Los Angeles, CA). One half contained the behavioral setup. The other
half was sometimes used as an observation chamber in which we placed a naive GP to observe
an expert GP perform tasks; such social learning has been shown to speed up behavioral task
acquisition (Paraouty et al., 2020). The entire booth was uniformly lit with LED lighting. The

655 behavioral chamber contained a ‘home base’ area and a reward region (Fig. 1B). A water bottle
was placed in the home base to motivate animals to stay at/return to the home base after each
trial. A pellet dispenser (ENV-203-45, Med Associates, Fairfax, VT) was used to deliver food
pellets (TestDiet) onto a food receptacle placed in a corner of the reward area. Air puffs were
delivered from a pipette tip placed near the food receptacle directed at the animal’'s snout. The

660 pipette tip was connected using silicone tubing via a pinch valve (EW98302-02, Cole-Palmer
Instrument Co., Vernon Hills, IL) to a regulated air cylinder, with the air pressure regulated to be
about 25 psi.

The animal’s position within the behavioral chamber was tracked using MATLAB (Mathworks,
Inc., Natick, MA) at a video sampling rate of ~25 fps using a web camera (Lifecam HD-3000,
665 Logitech, Newark, CA) placed on the ceiling of the chamber. Sound was played from a speaker

(Z50, Logitech) located ~40 cm above the animal at ~ 70 dB SPL with a sampling frequency of
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48 KHz. Pellet-delivery, illumination, and air puff hardware were controlled using a digital

input/output device (USB-6501, National Instruments, Austin, TX).

Basic task design

670 All behavioral paradigms were structured as Go/ No-go tasks. GPs were required to wait in the
home base (Fig. 1B) for 3 - 5 s to initiate a trial. A Go or No-go stimulus was presented upon
trial initiation. For Go stimuli, moving to the reward area (Fig. 1B) was scored as a hit and
resulted in a food pellet reward; failure to do so was scored as a miss. For No-go stimuli,
moving to the reward area was scored as a false alarm (FA) and was followed by a mild air puff

675 and brief time-out with the lights turned off (Fig. 1A), whereas staying in the home base was

scored as a correct rejection.

Training GPs via social learning and appetitive reinforcement

Naive animals were initially placed in the observer chamber while an expert GP performed the
task in the active chamber. Such social learning helped accelerate forming an association
680 between sound presentation and food reward (Paraouty et al., 2020). Following an observation
period of 2 - 3 days, naive GPs were placed in the active chamber alone and underwent a
period of Pavlovian conditioning, where Go stimuli were played, and food pellets were
immediately dropped until the animals built an association between the sound and the food
reward. Once GPs began to reliably respond to Go stimuli, No-go stimuli along with the air puff
685 and light-out were introduced at a gradually increasing frequency (until about equal frequency of
both Go and No-go stimuli). We trained 2 cohorts of 4 adult GPs (2 males and 2 females) for

two call categorization tasks (as discussed later), with the overlap of one GP between the tasks.

Stimuli and behavioral paradigms

Learning:

690 In this study, we trained GPs to categorize two similar low frequency, temporally symmetric,
affiliative call categories (‘chuts’ - Go and ‘purrs’ - No-go, Fig. 1C); or two temporally asymmetric
call categories with non-overlapping frequency content (‘wheeks’ - Go and ‘whines’ - No-go, Fig.
1D). All calls were recorded in our laboratory as described earlier (Montes-Lourido et al., 2021b)
and were from animals unfamiliar to the GPs in the present study. Calls were trimmed to ~1s

695 length, normalized by their rms amplitudes, and presented at ~70dB SPL (Fig. 1C, D). Different
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sets of randomly selected calls, each set containing 8 different exemplars, were used for the
learning and generalization phases. Other paradigm-specific stimuli were generated by
manipulating the call sets used during the learning phase as explained below. We first manually
trained animals to associate one corner of the behavioral chamber with food pellet rewards.
700 Following manual training, we began a conditioning phase where we only presented Go stimuli
when the animal was in the home base area followed by automated pellet delivery, gradually
increasing the interval between stimulus and reward. Once animals began moving towards the
reward location in anticipation of the reward, we gradually introduced an increasing proportion of
No-go stimuli, and began tracking the performance of the animal. During the learning phase,
705 animals typically performed the Go/No-go task for 6 sessions each day with ~40 ftrials per

session. Each session typically lasted ~ 15 minutes.

Generalization to new exemplars:

Once animals achieved d’ > 1.5 on the training stimulus set, we replaced all training stimuli with

8 new exemplars of each call category that the animals had not heard before. To minimize
710 exposure to the new exemplars, we tested generalization for about 3 days per animal, with 1-2

sessions with training exemplars and 1-2 sessions of new exemplars.

Call-in-noise:

To generate call-in-noise stimuli at different SNRs, we added white noise of equal length to the
calls (gated noise) such that the signal-to-noise ratio, computed using rms amplitudes, varied
715 between -18 dB and +12 dB SNR (i.e., -18, -12, -6, -3, 0, +3, +6, and +12 dB SNR). This range
of SNRs was chosen to maximize sampling over the steeply growing part of psychometric curve
fits. We presented these stimuli in a block design, measuring GP behavior in sessions of ~40
trials with each session having a unique SNR value. We typically collected data for 3 sessions
for each of the 9 SNR levels including the clean call. SNR data were collected across several
720 days per animal, with different SNRs tested each day to account for possible fluctuations in

motivation levels.

Restricted segments:

To investigate how much information is essential for GPs to successfully categorize calls, we
created call segments of different lengths (50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600
725 700 and 800 ms) from the call onsets. We chose 800 ms as the maximum segment length since

our briefest call was ~800 ms long. We tested GPs on these 13 segment lengths, presenting 5
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repetitions of 8 exemplars per category. A randomized list of all 1040 trials was created (2

categories x 8 exemplars x 13 time-chunk lengths x 5 repetitions) and presented sequentially in

sessions of ~40 trials, completing ~240 trials per day (~5 days to complete the entire list of
730  stimuli).

Tempo manipulation:

To temporally compress or stretch the calls without introducing any alterations to long-term
spectra, we changed the tempo of the calls using Audacity software by -120%, -100%, -80%, -
60%, -30%, +30%, +60% and +80% which resulted in calls that were ~0.45, 0.5, ~0.56, ~0.63,
735 ~0.77, ~1.43, 2.5 and 5 times the original lengths of the calls respectively. As earlier, 720 total

trials were presented (2 categories x 8 exemplars x 9 tempo conditions x 5 repetitions).

ISI manipulations:

To determine if GPs used individual syllables or temporal patterns of syllables for call
categorization, we introduced several inter-syllable interval (ISI) manipulations, while keeping
740 the individual syllables intact. After manually identifying the beginnings and endings of each
syllable within the calls, the syllables and the ISI values were extracted using MATLAB. Since
our recorded calls have some level of background noise, we first created a set of control stimuli
where the audio in the ISI was replaced with silence. As a second control, we changed the ISI
values by randomly drawing ISI values from the ISI distribution of the same call category. Five
745 such new calls were generated from each original call. We acquired behavioral responses using
a randomized presentation strategy as above, split into: 1) 640 trials with regular ISI (with
background recording noise) and silent ISI (2 categories x 8 exemplars x 2 conditions x 20
repetitions), and 2) 400 trials with random within-category ISI values (2 categories x 8
exemplars x 5 random ISI combinations x 5 repetitions). We then generated chimeric calls with
750 syllables belonging to one category and ISI values belonging to the other category (e.g., chut
syllables with purr ISI values). Five such chimeric calls were created per original call. Because
these calls contain information from both categories, we adopted a catch trial design for this
experiment. Natural calls (Syllable and ISI from the same category, both Go and No-go
categories) were presented on 67% of trials, and chimeric calls on 33% of trials (‘catch trials’).
755 We rewarded 50% of the catch trials at random and did not provide any negative reinforcement
(air puff or time-out). Thus, 1200 randomized trials were presented, with 800 trials with regular

calls and 400 catch trials with chimeric calls.
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Call reversal:

As a final gross temporal manipulation, we temporally reversed the calls. We presented a total
760 of 160 trials in randomized order (2 categories x 8 exemplars x 2 conditions x 5 repetitions) for

this experiment.

Fundamental frequency manipulation:

We created calls with fundamental frequency (FO) varying from one octave lower and to one
octave higher by changing the pitch of the calls by -50%, -40%, -30%, -20%, 20%, 40% 50%
765 and 100% using Audacity software. These pitch changes re-interpolated the calls such that call
length and tempo were preserved. A total of 720 trials (2 categories x 8 exemplars x 9 FO

conditions x 5 repetitions) were presented in randomized order for this experiment.

Low pass filtering:

For the wheeks vs. whines task, we low pass filtered both wheeks and whines at 3kHz using a
770 256-point FIR filter in MATLAB. We presented 160 trials (2 categories x 8 exemplars x 2

conditions x 5 repetitions) in randomized order for this experiment.

Analysis of behavioral data

All analysis was performed in MATLAB. Specific functions and toolboxes used are mentioned

where applicable below.

775 To quantify the behavioral performance of the animals, we used sensitivity index or d’ (Green
and Swets, 1966), defined as:

d'=Z|H|-Z|FA| .. (1)

where, H and FA represent the hit rate and FA rate, respectively. To avoid values that approach

infinity, we imposed a floor (0.01) and ceiling (0.99) on hit rates and FA rates.

780 For the learning and generalization data, the d’ value was estimated per session using the H
and FA rates from that session. These session wise hit rates, FA rates and d’ estimates were
averaged for each animal and the mean and standard error of mean (s.e.m.) across all animals

are reported in the results section.
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For all the call manipulation experiments (including call-in-noise), a single hit rate, FA rate and
785 d’ were estimated per condition per animal by pooling data over all trials corresponding to each
condition. The mean and SEM of these indices across all animals are reported in the results

section.

Additionally for the call-in-noise data, we used the ‘fitnlm’ MATLAB function (Statistics toolbox)

to fit psychometric functions of the form (Wichmann and Hill, 2001):
790 wix;o,B,A=(1-4)%F(x;0,p) .. (2)

where F is the Weibull function, defined as Flx;a, B) =1-exp, ais the shift parameter, B is the

slope parameter, and A is the lapse rate.

Statistical analyses

We used paired t tests to compare d’ values across animals in experiments with only two
795 conditions i.e., reversal and low-pass filtering. For the remaining experiments with more than
two conditions, repeated measures ANOVA was performed using the ‘fitrm’ MATLAB function in

the following form:
rm= fitrm|(data,' Cond .1 — Cond. N 1", WithinDesign ', within subject factor | ... (3)

where rm is the repeated measures model. The Greenhouse-Geiser corrected p-values were
800 used to test for overall significance of the manipulations. If there was an overall significant effect
of the manipulation, we used paired t tests with FDR correction for multiple comparisons to
compare the d’ values between natural calls and other manipulated calls. Lastly, for the
swapped ISI stimuli in the ISI manipulation experiments, since we did not have well defined
categories for the chimeric calls, we chose to compare the Go-rates for the stimuli with syllables

805 of one kind using a paired t test.

Feature-based categorization model

To gain insight into what potential spectrotemporal features GPs may be using to accomplish

call categorization in the behavioral tasks, we extended a previously published feature-based

model that achieves high classification performance for categorizing several call types across
810 several species, including GPs (Liu et al., 2019). The model consists of three layers: (1) a

spectrotemporal representational layer, (2) a feature detection (FD) layer, and (3) a competitive
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winner-take-all (WTA) decision layer. The first two layers are closely based on Liu et al. 2019;
we briefly describe these stages below. The WTA layer combines information from the FD layer

to form a Go/No-go decision.

815 The spectrotemporal representational layer consisted of the output of a biologically realistic
model of the auditory periphery (Zilany et al., 2014). Cochleagrams of training and testing calls
were constructed from the inner-hair-cell voltage output of this model (Zilany et al., 2014).
Cochleagrams were constructed using 67 characteristic frequencies logarithmically spaced
between 200 Hz and 20 kHz and were sampled at 1 kHz. Model parameters were set to follow

820 healthy inner and outer hair cell properties and cat frequency tuning.

For the FD layer, we trained four separate sets of feature detectors to classify the four call
types, where each set classified a single call type (e.g., chut) from all other call types (i.e., a
mixture of purr, wheek, whine, and other calls). During training, for each call type, we identified
a set of maximally informative features (MIFs; see Liu et al.,, 2019, based on an algorithm
825 developed by Ullman et al., 2002) that yielded optimal performance in classifying the target call
type from other call types (Fig. 2). To do so, we generated an initial set of 1500 candidate
features by randomly sampling rectangular spectrotemporal blocks from the target call
cochleagrams. We restricted the duration of features to a maximum of 200 ms, based on
typically observed temporal extents of spectrotemporal receptive fields in superficial layers of
830 the GP primary auditory cortex (Montes-Lourido et al., 2021a). Next, we evaluated how well
each feature classified the target call type from other call types. To do so, we obtained the
maximum normalized cross correlation value (1) of each feature with target calls and other
calls. Each feature was assigned a threshold that indicated if the feature was detected in the
stimulus (> ¢threshold) or not (r,,,,<¢ threshold). We used mutual information to determine
835 the utility of each feature in accomplishing the classification task. By testing a range of threshold
values, we obtained the optimal threshold for each feature at which its categorization was
maximal. The log-likelihood ratio of this binary classification was taken to be the weight of each
feature. From this initial random set of 1500 features, we used a greedy search algorithm to
obtain the set of maximally informative and least redundant features that achieved optimal
840 performance to classify the training data set. The maximum number of these features was
constrained to 20. Training performance of the MIF set was assessed by first estimating the
receiver operating characteristic curve and then quantifying the area under the curve (AUC),

using the procedure described in Liu et al., 2019. To ensure robustness of these solutions, we
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generated 5 instantiations of the MIFs for classifying each call type by iteratively determining an
845 MIF set and removing these features from the initial set of features when training the next MIF

set. We verified that training performance did not drop for any of these 5 instantiations.

Next, to compare model performance with guinea pig behavioral performance, we evaluated
model performance in classifying the same stimuli used in the behavioral experiments using the
sensitivity metric, d. To simulate the Go/No-go task, we employed a winner-take-all (WTA)
850 framework, as described below. In a single trial, the stimulus could either be a target (Go
stimulus) or a distractor (No-go stimulus). For this stimulus, we estimated the target FD-layer
response as the sum of detected (target) MIF weights normalized by the sum of all (target) MIF
weights. This normalization scales the model response to a range between 0 (no MIFs
detected) and 1 (all MIFs detected). Similarly, we estimated the distractor model response as
855 the sum of detected (distractor) MIF weights normalized by the sum of all (distractor) MIF
weights. If the target FD-stage response was greater (less) than the distractor FD-stage
response, then the WTA model would predict that the stimulus in that trial was a target
(distractor). To allow for non-zero guess rate and lapse rate, as typically observed in behavioral

data, we set the minimum and maximum Go probability of the WTA output to 0.1 and 0.9 (Fig.
860 2C). These Go probabilities [P, _,|GO|] were realized on a trial-by-trial basis where a random
number (X) drawn from a uniform distribution between 0 and 1 was compared with the WTA

GOJ]. d’ was estimated from

model Go probability to decide the final response [Go if X<Pm.a,,,,(
hit rate and false alarm rate using Eq 1. Identical test stimuli and number of trials were used for
both behavior and model. We treated each of the 5 instantiations of the MIFs as a unique

865 ‘subject’ for analysis.
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Figure 1 — figure supplement 1: Learning rates of GPs performing a call categorization task. (A)
and (D) Probability of Hits (green) and False Alarms (red) as a function training day (averaged over ~6
sessions per day) for the chuts vs. purrs (A) and wheeks vs. whines (D) tasks. Dark lines are
averages of all subjects, faint lines correspond to individual subjects. (B) and (E) Sensitivity index (d’)
as a function of training day. Black line is average over 4 subjects, gray lines are individual subjects.
Subjects were considered trained when their performance showed d’ > 1.5 (dashed blue line). (C) and
(F) Hits and False Alarms of animals as a function of intra-day session number, averaged over four

days after animals acquired the task.
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Figure 12 — figure supplement 1: Different subsets of MIFs are flexibly recruited to solve
categorization tasks for different manipulations (wheeks vs. whines). (A and B) We estimated
the relative detection rate (i.e., the difference between the detection rate of a given MIF for all target
and all distractor calls) of all MIFs (discs) for each behavioral paradigm (e.g., SNR). Colors denote
different instantiations of the MIFs. Disc diameter is monotonically proportional to the relative detection
rate, using a power-law relationship (fourth power) to highlight the most robust features. While MIFs of
all center frequencies (CFs) and bandwidths were uniformly recruited for generalizing calls of each call
type, MIFs with lower CFs were preferentially selected for SNR conditions, likely because high-
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frequency features were masked by white noise. In contrast, MIFs with high CF were preferred by the
model to solve the FO-shift task. These differences were especially apparent for whine calls. (C and D)
MIFs of all durations and bandwidths were uniformly recruited for generalizing calls of each call type.

In contrast, shorter duration MIFs were preferred for segment-length conditions whereas longer-
duration MIFs were preferentially recruited for FO-shift conditions.


https://doi.org/10.1101/2022.03.09.483596
http://creativecommons.org/licenses/by/4.0/

