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Abstract

Vocal  animals  produce  multiple  categories  of  calls  with  high  between-  and  within-subject

variability,  over  which  listeners  must  generalize  to  accomplish  call  categorization.  The

behavioral strategies and neural mechanisms that support this ability to generalize are largely

unexplored. We previously proposed a theoretical model that accomplished call categorization

by detecting features of intermediate complexity that best contrasted each call category from all

other categories. We further demonstrated that some neural responses in the primary auditory

cortex were consistent with such a model. Here, we asked whether a feature-based model could

predict  call  categorization  behavior.  We  trained  both  the  model  and  guinea  pigs  on  call

categorization tasks using natural calls. We then tested categorization by the model and guinea

pigs  using  temporally  and  spectrally  altered  calls.  Both  the  model  and  guinea  pigs  were

surprisingly  resilient  to  temporal  manipulations,  but  sensitive  to  moderate  frequency  shifts.

Critically,  model  performance  quantitatively  matched  guinea  pig  behavior  to  a  remarkable

degree. By adopting different model training strategies and examining features that contributed

to solving  specific  tasks,  we could  gain  insight  into  possible  strategies  used by animals  to

categorize calls. Our results validate a model that uses the detection of intermediate-complexity

contrastive features to accomplish call categorization.

Introduction

Communication  sounds such as  human speech  or  animal  vocalizations  (calls)  are  typically

produced with tremendous subject-to-subject and trial-to-trial variability. These sounds are also

typically  encountered  in  highly  variable  listening  conditions  -  in  the  presence  of  noise,

reverberations, and competing sounds. A central function of auditory processing is to extract the

underlying meaningful signal being communicated so that appropriate behavioral responses can

be produced. A key step in this process is a many-to-one mapping that bins communication

sounds, perhaps carrying similar ‘meanings’ or associated with specific behavioral responses,

into  distinct  categories.  To  accomplish  this,  the  auditory  system  must  generalize  over  the

aforementioned variability in the production and transmission of  communication sounds.  We

previously  proposed,  based  on  a  model  of  visual  categorization  (Ullman  et  al.,  2002) ,  a

theoretical model that identified distinctive acoustic features that were highly likely to be found

across  most  exemplars  of  a  category  and  were  most  contrastive  with  respect  to  other

categories. Using these ‘most informative features (MIFs)’, the model accomplished auditory
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categorization with high accuracy  (Liu et al., 2019). We further showed in a guinea pig (GP)

animal  model  that  neurons  in  the  superficial  layers  of  the  primary  auditory  cortex  (A1)

demonstrated call-feature-selective responses and complex receptive fields that were consistent

with model-predicted features, providing support for the model at the neurophysiological level

(Montes-Lourido et al., 2021a). In this study, we investigated whether the feature-based model

held true at a behavioral level, by determining whether the model, trained solely using natural

GP calls, could predict GP behavioral performance in categorizing both natural calls as well as

calls with altered spectral and temporal features.

Studies  in  a  wide  range  of  species  have  probed  the  impact  of  alterations  to  spectral  and

temporal cues on call  recognition. For example, in humans, it  has been shown that speech

recognition relies primarily on temporal envelope cues based on experiments that measured

recognition performance when subjects were presented with noise-vocoded speech at different

spectral resolutions  (Shannon et al.,  1995; Smith et al.,  2002). However,  recognition is also

remarkably resilient when the envelope is altered because of tempo changes - for example,

word intelligibility  is resilient  to a large degree of time-compression of speech  (Janse et al.,

2003). Results from other mammalian species are broadly consistent with findings in humans. In

gerbils,  it  has been shown that  firing rate patterns of A1 neurons could be used to reliably

classify calls that were composed of only four spectral bands  (Ter-Mikaelian et al., 2013). In

GPs, small neuronal populations have been shown to be resistant to such degradations as well

(Aushana et al., 2018). Slow amplitude modulation cues have been proposed as a critical cue

for the neuronal discriminability of calls (Souffi et al., 2020), but behaviorally, call identification

can be resilient to large changes in these cues. For example, mice can discriminate between

calls  that  have  been  doubled  or  halved  in  length  (Neilans  et  al.,  2014).  This  remarkable

tolerance to cue variations might be related to the wide range of variations with which calls are

produced in different behavioral contexts. For example, for luring female mice and during direct

courtship, male mice modify many call parameters including sequence length and complexity

(Chabout et al., 2015). Along the spectral dimension, mouse call discrimination can be robust to

changes in long-term spectra, including moderate frequency shifts and removal of frequency

modulations  (Neilans  et  al.,  2014).  Indeed,  it  has  been  suggested  that  the  bandwidth  of

ultrasonic  vocalizations  is  more  important  for  communication  than  the  precise  frequency

contours  of  these  calls  (Screven  and  Dent,  2016).  Again,  given  that  mice  also  modify  the

spectral features of their calls in a context-dependent manner (Chabout et al., 2015), it stands to

reason that their perception of call identity is also robust to alterations of spectral features.
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Overall,  these studies suggest  that  calls  encode varying levels  of  information.  Whereas the

specific  parameters of  a given call  utterance might  carry rich information about  the identity

(Boinski and Mitchell, 1997; Miller et al., 2010; Gamba et al., 2012; Fukushima et al., 2015) and

internal state of the caller as well as social context (Seyfarth and Cheney, 2006; Coye et al.,

2016), call category identity encompasses all these variations. In some behavioral situations,

listeners might need to be sensitive to these specific parameter variations - for example, for

courtship, female mice have been shown to exhibit a high preference for temporal regularity of

male calls (Perrodin et al., 2020). But in other situations, animals must and do generalize over

this variability to extract call  identity, which is critical  for providing an appropriate behavioral

response. What mechanisms enable animals to generalize over this tremendous variability with

which  calls  are  heard  and  how  they  accomplish  call  categorization,  however,  is  not  well-

understood.

In this study, based on our earlier modeling and neurophysiological results  (Liu et al.,  2019;

Montes-Lourido et al., 2021a), we hypothesized that animals can generalize over this production

variability and achieve call categorization by detecting features of intermediate complexity within

these  calls.  To  test  this  hypothesis,  we  trained  feature-based  models  and  GPs to  classify

multiple  categories  of  natural,  spectrotemporally  rich  GP  calls.  We  then  tested  the

categorization performance of both the model and GPs with manipulated versions of the calls.

We found that the feature-based model of auditory categorization, trained solely using natural

GP calls,  could capture GP behavioral  responses to manipulated calls with remarkably high

explanatory power. By comparing different model versions, we could derive further insight into

possible behavioral strategies used by GPs to solve these call categorization tasks. Examining

the factors contributing to high model performance in different conditions also provided insight

into why a feature-based encoding strategy is highly  advantageous.  Overall,  results provide

support at a behavioral level for a feature-based auditory categorization model, further validating

our model as a novel and powerful approach to deconstruct complex auditory behaviors.

Results

Guinea pigs learn to report call category in a Go/No-go task

We trained GPs on call categorization tasks using a Go/No-go task structure. Animals initiated

trials by moving to the ‘home base’ region of the behavioral arena (Fig. 1A, B). Stimuli were

presented from an overhead speaker. On hearing Go stimuli, GPs were trained to move to a
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reward region, where they received a food pellet reward. The correct response to No-go stimuli

was to remain in the home base. We trained two cohorts of GPs to categorize two pairs of call

categories - Cohort 1 was trained on chuts (Go) vs. purrs (No-go), calls that had similar spectral

content (long-term spectral power) but different temporal (overall envelope) structure (Fig. 1C),

and Cohort 2 was trained on wheeks (Go) vs. whines (No-go), calls that had similar temporal

structure but different spectral content (Fig. 1D). GPs were trained on this task over multiple

short sessions everyday (~6 sessions of ~40 trials each, ~10 minutes per session; see Materials

and Methods). On each trial, we presented a randomly chosen exemplar from an initial training

set of 8 exemplars per category. We estimated hit rates and FA rates from all trials in a given

day and computed a sensitivity index (d’). GPs were considered trained when d’ reliably crossed

a threshold of 1.5. On average, GPs acquired this task after ~ 2 - 3 weeks of training (~4000

total trials, ~250 trials per exemplar; Figure 1 – figure supplement 1). 

To  gain  insight  into  possible  behavioral  strategies  that  GPs  might  adopt  to  solve  the

categorization task, we examined trends of behavioral  performance over the training period.

Initially,  GPs exhibited  low hit  rates  as  well  as  low FA rates,  suggesting  that  they  did  not

associate the auditory stimulus with reward (Figure 1 – figure supplement 1D). Note that this

initial  phase  was  not  recorded  for  the  first  cohort  (chuts  vs.  purrs  task,  Figure  1  –  figure

supplement 1A). Within 2 - 3 days, GPs formed a stimulus-reward association and exhibited

‘Go’  responses  for  all  stimuli  but  did  not  discriminate  between  Go  and  No-go  stimulus

categories. This resulted in high hit rates as well as FA rates, but low d’. For the remainder of

the training period, hit rates remained stable whereas FA rates gradually declined, suggesting

that the improvements to d’ resulted from GPs learning to suppress responses to No-go stimuli

(Figure 1 – figure supplement 1A, B, D, E).

While these data were averaged over all sessions daily for further analyses, we noticed within-

day trends in performance that might provide insight into the behavioral state of the GPs. We

analyzed performance across intra-day sessions, averaged over four days after the animals

acquired the task (Figure 1 – figure supplement 1C, F). In early sessions, both hit rates and FA

rates were high, suggesting that the GPs weighted the food reward highly, risking punishments

(air  puffs/time outs)  in  the  process.  In  subsequent  sessions,  both the hit  rate  and FA rate

declined, suggesting that the GPs shifted to a punishment-avoidance strategy. Despite these

possible changes in decision criteria used by the GPs, they maintained consistent performance,

as d’ remained consistent across sessions. Therefore, in all further analyses, we used d’ values

averaged over all sessions as a performance metric.
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Figure 1: Call categorization behavior in GPs. (A) Behavioral set up, indicating home base
region for trial initiation (yellow) and reward area (green). Some naive animals observed expert
animals performing the task to speed up task acquisition. (B) Video tracking was employed to
detect GP position and trigger task events (stimulus presentation, reward delivery, etc.).  (C)
Spectrograms of example chut calls (Go stimuli for Cohort 1) and purr calls (No-go stimuli for
Cohort 1). (D) Spectrograms of example wheek calls (Go stimuli for Cohort 2) and whine calls
(No-go stimuli for Cohort 2).

A feature-based computational model can be trained to accomplish call 
categorization

In  parallel,  we  extended  a  feature-based  model  that  we  previously  developed  for  auditory

categorization (Liu et al., 2019) to accomplish GP call categorization in a Go/No-go framework.

Briefly,  we implemented a three-layer  model  consisting  of  a  spectrotemporal  representation

layer, a feature-detection (FD) layer, and a winner-take-all (WTA) layer. The spectrotemporal

layer was a biophysically realistic model of the auditory periphery (Zilany et al., 2014). For the

FD layer, we used greedy search optimization and information theoretic principles to derive a

set of most informative features (MIFs) for each call type that was optimal for the categorization

of that call type from all other call types (Fig. 2A, B; Liu et al., 2019). We derived 5 distinct sets

of MIFs for each call type that could accomplish categorization (see Materials and Methods).

We refer to models using these distinct MIF sets as different instantiations of the model.
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Figure 2: Framework of the model trained to perform call categorization tasks. (A) and (B)
Example  cochleagrams  for  target  (A)  and  distractor  (B)  calls.  Cochleagram  rows  were
normalized to set the maximum value as 1 and then smoothed for display. White rectangles
denote detected MIFs for that call. For an input call, the target (green) FD stage response is the
sum of all detected target MIF weights normalized by the sum of all MIF weights for that call
type. The distractor response (red) is similarly computed. (C) The output of the winner-take-all
stage  is  determined  based  on  the  difference  between  the  target  and  distractor  FD  stage
responses. Dots represent the winner-take-all outputs for all calls used for training the models.
Rows represent  the five instantiations of  the model  with different  MIF sets.  MIF,  maximally
informative features; det, detected MIFs; all, all MIFs. 

Call-specific MIF sets in the FD layer showed near-perfect performance [area under the curve,

or AUC > 0.97 for all 20 MIF sets (4 call categories x 5 instantiations per category), mean =

0.994] in categorizing target GP calls from other calls in the training dataset. Similar to results

from (Liu et al., 2019, the number of MIFs for each instantiation of the model ranged from 8 to

20 (mean = 16.5), with MIFs spanning ~3 octaves in bandwidth and ~110 ms in duration on

average (Table 1). To assess the performance of the WTA layer based on these training data,

we estimated d’ using equation 1 (Materials and Methods). The WTA output also showed near

perfect performance for classifying the target from the distractor for both chuts vs. purrs (mean

d’ = 4.65) and wheeks vs. whines (mean d’ = 3.69) tasks (Fig. 2C). 
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Table 1: Properties of MIFs. 

Call

name 

Instantiation Number  of

MIFs

MIF duration (ms)

(mean ± std)

MIF Bandwidth (octaves)

(mean ± std)

Chut 1,2,3,4,5 20, 20, 20, 20, 20 88 ± 63, 106 ± 53, 108 ± 56,

109 ± 64, 133 ± 47 

4.0 ± 2.0, 4.4 ± 1.2, 3.1 ± 1.9,

3.7 ± 1.9, 2.6 ± 1.8

Purr 1,2,3,4,5 8, 9, 20, 20, 20 91 ± 49, 83 ± 43, 116 ± 49,

116 ± 56, 86 ± 63

2.6 ± 1.2, 2.8 ± 1.2, 3.1 ± 1.4,

3.2 ± 1.5, 3.6 ± 1.2

Wheek 1,2,3,4,5 8, 14, 13, 11, 12 144 ± 47, 99 ± 58, 104 ± 68,

116 ± 62, 114 ± 65

2.3 ± 1.6, 2.6 ± 1.8, 2.9 ± 2.2,

2.1 ± 1.1, 2.5 ± 1.7

Whine 1,2,3,4,5 20, 20, 15, 20, 20 109 ± 55, 111 ± 68, 133 ±

37, 117 ± 51, 108 ± 70 

3.5 ± 1.8, 3.4 ± 1.6, 2.6 ± 1.4,

3.2 ± 1.5, 3.9 ± 1.6

Summary 16.5 ± 4.7 109 ± 57 3.2 ± 1.7

Both guinea pigs and the model generalize to new exemplars

To determine if GPs learned to report call category or if they simply remembered the specific

call exemplars on which they were trained, we tested whether their performance generalized to

a new set  of  Go and No-go stimuli  (8  exemplars each) that  the GPs had not  encountered

before. On each generalization day, we ran four sessions of ~40 trials each, with the first two

sessions containing  only  training  exemplars  and the last  two sessions containing  only  new

exemplars.  All  GPs  achieved  a  high-performance  level  (d’ >  1)  to  the  new  exemplars  by

generalization  day 2 (Fig.  3),  i.e.,  after  being exposed to only a few repetitions of  the new

exemplars (~5 trials per new exemplar on generalization day 1).  As an additional control  to

ensure that  GPs did  not  rapidly  learn reward associations  for  the new exemplars,  for  GPs

performing the wheeks vs. whines task (n = 3), we also quantified generalization performance

when the regular training exemplars and a second new set of exemplars were presented in an

interleaved manner (400 trials with an 80/20 mix of training and new exemplars). GPs achieved

d’ > 1 for new exemplars in this interleaved set as well, further supporting the notion that GPs

were truly reporting call category.
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Similar  to GPs, to test  model  generalization,  we quantified model  performance for  new call

exemplars (Fig. 3B, D). Models using different MIF sets, i.e., all instantiations of the model for

chut, purr, wheek, and whine classification achieved high categorization performance (d’ > 1) for

the  new  exemplars.  In  summary,  GPs  as  well  as  the  feature-based  model  could  rapidly

generalize to novel exemplars.

Figure 3: GP and model performance generalizes to new exemplars. (A) and (C) Hit (green)
and  False  Alarm  (red)  rates  of  GPs  when  categorizing  new  exemplars  as  a  function  of
generalization  day.  We  presented  ~5  trials  of  each  new  exemplar  per  day.  Dark  lines
correspond to average over subjects, faint lines correspond to individual subjects.  (B) and (D)
Quantification of generalization performance. Black line corresponds to average d’, gray lines
are d’ values of individual subjects. GPs achieved a  d’ > 1 by generalization day 2, i.e., after
exposure to only ~5 trials of each new exemplar on day 1. The feature-based model (orange)
also generalized to new exemplars that were not part of the model’s training set of calls.

Both guinea pigs and the model exhibit similar categorization-in-noise 
thresholds

Real-world communication typically  occurs in noisy listening environments. To test how well

GPs could maintain categorization in background noise, we assessed their performance when

call stimuli were masked by additive white Gaussian noise at several SNRs for both Go and No-

Go stimuli. Experiments were conducted in a block design, using a fixed SNR level per session

(~40 trials) and testing 5 or 6 SNR levels each day. At the most favorable SNR (>20 dB), GPs

exhibited high hit rates and low FA rates, leading to high  d’ (>2) for both call groups (Fig. 4).

With increasing noise level (i.e., decreasing SNR), we observed a decrease in hit rate and an

9

205

210

215

220

225

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.09.483596doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483596
http://creativecommons.org/licenses/by/4.0/


increase in FA, as expected, with a concomitant significant decrease in d’ (repeated measures

ANOVA; p = 0.002 for chuts vs. purrs and p = 0.020 for wheeks vs. whines for the effect of

SNR).  At the most adverse SNR (-18 dB) for both call groups, hit and FA rates were similar,

suggesting  that  the  animals  were  performing  at  chance  level.  To  estimate  the  SNR

corresponding to the performance threshold (d’ = 1) for call  categorization in noise, we fit  a

psychometric  function  to the behavioral  d’ data  (see Materials  and Methods).  We obtained

performance thresholds (SNR at which d’ = 1) for both the chuts vs. purrs (-6.8 dB SNR) and

wheeks  vs.  whines  (-11  dB  SNR)  tasks  that  were  qualitatively  similar  to  human  speech

discrimination performance in white noise (Phatak and Allen, 2007). 

Figure 4: Call categorization is robust to degradation by noise. (A) and (C) Hit (green) and
False Alarm (red) rates of GPs categorizing calls with additive white noise at different SNRs. (B)
and (D) Sensitivity index (d’) as a function of SNR. Black symbols correspond to the mean d’
across  animals  (n  =  4);  error  bars  correspond  to  s.e.m.  Black  line  corresponds  to  a
psychometric function fit  to the behavioral data. Orange symbols correspond to the mean  d’
across 5 instantiations of the model, error bars correspond to s.e.m. Orange line corresponds to
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a psychometric function fit to the model data. Dashed blue line signifies d’ = 1. SNR, signal-to-
noise  ratio;  MAE,  mean  absolute  error.  Asterisk  indicates  significant  difference  from
performance in the clean condition (p < 0.05, FDR-corrected paired t-test).

We also tested the performance of the feature-based model (trained on clean stimuli) on the

same set  of  noisy  stimuli  as  the  behavioral  paradigm.  Model  performance  trends  mirrored

behavior, with a higher threshold for the chuts vs. purrs task (-5.4 dB SNR) compared to the

wheeks vs. whines task (-15 dB SNR). Although the model over-performed for the wheeks vs.

whines task, it could explain a high degree of variance (R2 = 0.94 for both tasks) of GP call-in-

noise categorization behavior. 

Stimulus information might be available to GPs in short-duration segments 
of calls

Several  studies  across  species,  including  humans  (Marslen-Wilson  and  Zwitserlood,  1989;

Salasoo and Pisoni, 1985), birds (Knudsen and Gentner, 2010; Toarmino et al., 2011), sea-lions

(Pitcher et al., 2012), and mice  (Holfoth et al., 2014), have suggested that the initial parts of

calls might be the most critical parts for recognition. We reasoned that if that were the case for

GPs as well, and later call segments did not add much information for call categorization, we

might  observe  a  plateauing  of  behavioral  performance  after  a  certain  length  of  call  was

presented. To test this, we presented call segments of different lengths (50 - 800 ms) beginning

at the call  onsets (Fig. 5A, D) to estimate the minimum call duration required for successful

categorization by GPs. Trials were presented in a randomized manner in sessions of ~40 trials,

i.e., each trial could be a Go or No-go stimulus of any segment length. We did not observe

systematic changes to d’ values when comparing the first and second halves of the entire set of

trials used for testing, demonstrating that the GPs were not learning the specific manipulated

exemplars that we presented. GPs showed d’ values > 1 for as small as 75 ms segments for

both tasks, and as expected, the performance stabilized for all longer segment lengths (Fig. 5B,

C, E, F). The manipulation overall did not have any significant effect on the d’ values (repeated

measures ANOVA; p = 0.072 for chuts vs. purrs and p = 0.201 for wheeks vs. whines). These

data  suggest  that  short-duration  segments  of  calls  carry  sufficient  information  for  call

categorization, at least in the tested one-vs.-one scenarios. The fact that call category can be

extracted from the earliest occurrences of such segments suggests two possibilities: 1) A large

degree of redundancy is present in calls, or 2) the repeated segments can be used to derive

information beyond call category (for example, caller identity or emotional valence).
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Model performance, however, only crossed a  d’ value of 1 for ~150 ms call  segments, and

performance only plateaued after a 200 ms duration (Fig. 5C, F). This observation could reflect

the fact that the MIFs identified for categorization were on average about 110 ms long. Despite

these differences, model performance was in general agreement with behavioral performance

for both the chuts vs. purrs and wheeks vs. whines tasks (R2 = 0.674 and 0.444 respectively). 

Figure 5: GPs can obtain information for categorization from short-duration segments of
calls. (A) and (D) Schematic showing truncation of stimuli at different segment lengths from the
onset of calls. (B) and (E) Average (n = 3 GPs) hit rate (green) and false alarm rates (red) as a
function of stimulus segment length. (C) and (F) Black symbols correspond to average GP d’ (n
= 3 GPs), error bars correspond to 1 s.e.m. Orange symbols correspond to average model d’ (n
= 5 model instantiations), error bars correspond to 1 s.e.m. Dashed blue line denotes d’ = 1.

Temporal manipulations had little effect on model performance and guinea 
pig behavior

To investigate the importance of temporal cues for GP call categorization, we introduced several

gross temporal manipulations to the calls. We first started by changing the tempo of the calls,

i.e., stretching/compressing the calls without introducing alterations to the long-term spectra of

calls (Fig. 6A, D). This resulted in calls that were ~0.45, 0.5, ~0.56, ~0.63, ~0.77, ~1.43, 2.5 and

5 times the original lengths of the calls. As earlier, we presented stimuli in randomized order and

verified that d’ did not vary systematically between the first and second half of trials, suggesting

that the GPs were not learning new associations for the manipulated exemplars. GP behavioral
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performance remained surprisingly robust to these perturbations, showing high hit rates and low

FA rates  (Fig.  6B,  E)  leading  to  similar  d’ across  probed  conditions  (Fig.  6C,  F;  repeated

measures ANOVA; p = 0.105 for chuts vs. purrs and p = 0.325 for wheeks vs. whines). 

Figure 6:  Call  categorization is  resistant  to  changes  in  tempo.  (A) and  (D)  Schematic
showing changes to call tempo without affecting spectral content. (B)  and (E) Average (n = 4
GPs for chuts vs. purrs; n = 3 GPs for wheeks vs. whines) hit rate (green) and false alarm rates
(red) as a function of tempo change, expressed as times change in call duration (1 corresponds
to the natural call). (C) and (F) Black points correspond to average GP d’, error bars correspond
to 1 s.e.m. Orange points correspond to average model  d’ (n = 5 model instantiations), error
bars correspond to 1 s.e.m. Dashed blue line denotes d’ = 1.

Similarly, model performance was also remarkably resistant to tempo manipulations. Note that

while the model qualitatively captured GP behavioral trends, we obtained low R2 values likely

because  of  random  fluctuations  in  behavior  (e.g.,  motivation)  across  conditions  that  are

unrelated to stimulus parameters. The relatively low mean absolute error (MAE) for the tempo

manipulations (comparable with MAEs of the SNR manipulation which showed high R2 values)

confirmed the correspondence between model and behavior.

The tempo manipulations  lengthened or shortened both syllables and inter-syllable intervals

(ISIs). Because a recent study in mice  (Perrodin et al., 2020) suggested that regularity of ISI

values might be crucial for detection of male courtship songs by female mice, we next asked

whether GPs used individual syllables or temporal patterns of calls for call categorization. First,

as a low-level  control,  we replaced the ISIs of  calls with silence instead of  the low level  of

13

25

295

300

305

310

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.09.483596doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483596
http://creativecommons.org/licenses/by/4.0/


background noise present in recordings to ensure that GPs were not depending on any residual

ISI information (silent ISI). Second, since many call categories show a distribution of ISI lengths

(Fig. 7A, E), we replaced the ISI lengths in a call with ISI values randomly sampled from the ISI

distribution of the same call  category (random ISI). The hit  and FA rates for both silent and

random ISI stimuli were comparable to the regular calls for both categorization tasks (Fig. 7C,

G), and thus, no significant difference in d’ values was observed across these conditions (Fig.

7D, H; repeated measures ANOVA; p = 0.536 for chuts vs. purrs and p = 0.365 for wheeks vs.

whines).

Finally,  because the Go/No-go stimuli  categories  vary in  their  ISI  distributions  (Fig.  7A,  E),

particularly chuts vs. purrs, we generated chimeric calls with syllables of one category and ISI

values of the other category (for example chut syllables with purr ISIs). Since we combined

properties  of  two call  categories,  we presented chimeric  stimuli  in  a  catch-trial  design (see

Materials and Methods) and compared the Go response rates using syllable identity as the label

for a category. While the response rates were marginally lower for the chimeric chuts (chut

syllables with purr ISI values) compared to regular chuts (paired t test; p = 0.039), responses

were unaltered for regular and chimeric purrs (paired t test; p = 0.415), chimeric wheeks (paired

t test; p = 0.218), and chimeric whines (paired t test; p = 0.099) (Fig. 7B, F). Consistent with

these  behavioral  trends,  model  performance  was  also  largely  unaffected  by  these  ISI

manipulations. 
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Figure 7: Call categorization is resistant to manipulations to the inter-syllable interval. (A)
and (E) Distribution of ISI lengths for the call types used in the categorization tasks. (B) and (F)
Comparison of the Go rates for natural and chimeric calls. We compared Go rates rather than d’
because chimeric calls were presented in a catch trial design (see main text and Materials and
Methods). Chim. refers to chimeric calls with one call’s syllables and the other call’s ISIs. For
example, chimeric chuts have chut syllables and purr ISIs. Label on x-axis refers to syllable
identity. (C) and (G) Comparison of hit (green) and FA (red) rates for regular calls, calls where
we replaced ISI values with values drawn from the same calls’ ISI distributions, and calls where
we replaced the inter-syllable interval with silence (rather than background noise).  (D) and (H)
Comparison of GP (black; n = 3 GPs) and model (orange; n = 5 instantiations) d’ values across
these manipulations. Error bars correspond to 1 s.e.m.

As a more drastic manipulation, we tested the effects of temporally reversing the calls (Fig. 8A,

D).  Given  that  both  chuts  and  purrs  are  calls  with  temporally  symmetric  spectrotemporal

features, compared to natural calls, we observed no changes in the hit and FA rates (Fig. 8B) or

d’ values for reversed calls (Fig. 8C; paired t-test; p = 0.582). Wheeks and whines, however,

show strongly asymmetric spectrotemporal features. Interestingly, reversal did not significantly

affect the categorization performance for this task as well (Fig. 8E, F; paired t test; p = 0.151).

Similar to GP behavior, the model also maintained robust performance (d’ > 1) for call reversal

conditions with only a slight decrease in  d’. Overall, these results suggest that GP behavioral

performance is astonishingly tolerant of temporal manipulations such as tempo changes, ISI

manipulations,  and call  reversal,  and this tolerance can be largely  captured by the feature-

based model. 

Figure 8: Call categorization is resistant to time-reversal. (A) and (D) Schematics showing
spectrogram and waveform of natural (left) and reversed (right) purr  (A) and wheek (D) calls.
(B) and (E) Average (n=3 GPs) hit rate (green) and FA rate (red) for natural and reversed calls.
(C) and (F) Average performance of GPs (black; n = 3 GPs) and model (orange; n = 5 model
instantiations) for natural and reversed calls.
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Spectral manipulations cause similar degradation in model performance 
and guinea pig behavior

Because  temporal  manipulations  did  not  significantly  affect  GP  behavioral  or  model

classification  performance,  we  reasoned  that  categorization  was  primarily  being  driven  by

within-syllable  spectral  cues.  To  ascertain  the  impact  of  spectral  manipulations  on  call

categorization, we varied the fundamental frequency (F0) of the calls from one octave lower (-

50%) to one octave higher (+100%) than the regular calls without altering call lengths (Fig. 9A,

D). As earlier, we verified that d’ did not vary systematically between the first and second half of

trials,  suggesting  that  the  GPs  were  not  learning  new  associations  for  the  manipulated

exemplars. For chuts vs. purrs categorization, both increases and decreases to the F0 of the

calls significantly affected behavioral performance. Particularly, we saw a rise in FA rates (Fig.

9B) as the F0 deviated farther from the natural values, leading to a significant drop of d’ values

at several conditions (Fig. 9C; repeated measures ANOVA; overall p = 0.006 for effect of F0

change). For the F0-shifted wheeks vs. whines as well, we observed higher FA rates (Fig. 9E)

leading to decreasing  d’ values upon deviating farther from the natural  values, although the

effect was not as pronounced (Fig. 9F; repeated measures ANOVA; overall p = 0.114). Model

performance mirrored these behavioral trends as evidenced by high R2 (0.723 and 0.468 for

chuts vs. purrs and wheeks vs. whines respectively) and low MAE values.
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Figure 9: Call categorization is sensitive to fundamental frequency (F0) shifts. (A) and (D)
Schematics showing spectrograms of natural calls (middle) and versions where the F0 has been
decreased (left) or increased (right). (B) and (E) Average (n = 4 GPs for chuts vs. purrs; n = 3
GPs for wheeks vs. whines) hit rate (green) and FA rate (red) for F0-shifted calls Note that 0%
change in F0 is the natural call, -50% change corresponds to shifting F0 one octave lower, and
100% change corresponds to shifting F0 one octave higher than the natural call.  (C) and  (F)
Average performance of GPs (black) and model (orange; n = 5 model instantiations) for natural
and F0-shifted calls. Asterisk indicates significant difference from performance for the natural
(unaltered) call (p < 0.05, FDR-corrected paired t-test).

Finally, because wheeks and whines differ in their spectral content at high frequencies (Fig. 1D),

we asked whether GPs exclusively used the higher harmonics of wheeks to accomplish the

categorization task. To answer this question, we low-pass filtered both wheeks and whines at 3

kHz (Fig. 10A), removing the higher harmonics of the wheeks while leaving the fundamental

relatively unaffected. Although GP performance showed a decreasing trend for the filtered calls

(Fig.  10B,  C),  it  was not  significantly  different  from regular  calls  (paired t  test;  p  = 0.169),

indicating that the higher harmonics might be an important but not the sole cue used by GPs for

the task. Similar to behavior, the model performed slightly poorly but above a d’ of 1 in the low-

pass filtered condition. 

Figure  10:  Call  categorization  is  mildly  affected  by  low-pass  filtering.  (A) Schematic
spectrograms of natural calls (top) and low-pass filtered (bottom) wheek and whine calls.  (B)
Average (n = 3 GPs) hit rate (green) and FA rate (red) for natural and low-pass filtered (cutoff =
3  KHz)  calls.  (C) Average  performance  of  GPs  (black)  and  model  (orange;  n  =  5  model
instantiations) for natural and low-pass filtered calls. 
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Feature-based model explains a high degree of variance in guinea pig 
behavior

The feature-based model was developed purely based on theoretical principles, made minimal

assumptions, was trained only on natural GP calls, and had no access to GP behavioral data.

For training the model, we used exemplars that clearly provided net evidence for the presence

of one category or the other (Fig. 3C; green and red tick marks in Fig. 11A, D). We tested the

model (and GPs), however, with manipulated stimuli that spanned a large range of net evidence

values (histograms in Fig. 11A, D), with many stimuli close to the decision boundary (blue ticks

correspond to an SNR value of -18 dB). Despite the difficulty imposed by this wide range of

manipulations, the model explained a high degree of variance in GP behavior as evidenced by

high R2 and low MAE across individual paradigms (call manipulations) as well as overall (Fig. 11

B-F; R2= 0.60 for chuts vs. purrs and 0.37 for wheeks vs. whines across all tasks).

Figure 11: Feature-based model explains a high degree of variance in GP behavior (A)
Stacked distributions of the evidence for the presence of Go (green) and No-go (red) stimuli
(across all manipulations for the chuts vs. purrs task), showing that the output is generally > 0
for chuts (green; Go stimulus) and < 0 for purrs (red; No-go stimulus). The evidence for easy
tasks, such as generalizing to new natural chuts (green ticks) or purrs (red ticks), is typically well
away from 0 (decision boundary). In contrast, the evidence for difficult tasks, such as the -18 dB
SNR condition (blue ticks), falls near 0. Dashed black line corresponds to the winner-take-all
output as a probability of reporting a Go response. (B - C) Compared to the model trained with
the specific  task performed by the GP (chuts vs.  purrs;  one vs.  one),  the model  trained to
classify each call type from all other call types (one vs. many) was more predictive of behavior
as indicated by higher R2 (B) and lower MAE (C). (D - F) Same as A - C but for the wheeks vs.
whines task. MAE, mean absolute error.
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Comparing models with different training procedures yields insight into 
guinea pig behavioral strategy 

The high explanatory  power  of  the feature-based model  could  be leveraged to gain further

insight into what information the GPs were using or learning to accomplish these categorization

tasks. On the one hand, because GPs are exposed to these call categories from birth, the GPs

may simply be employing the features that they have already acquired for call categorization

over their lifetimes to solve our specific categorization tasks. The model presented so far is

aligned with this possibility - we trained features to categorize one call type from all other call

types (one vs. many categorization) and used a large number of call  exemplars for training.

Alternatively, GPs could be de-novo learning stimulus features that distinguished between the

particular Go and No-go exemplars we presented during training. To test this possibility, we re-

trained the model only using the 8 exemplars each of targets and distractors that we used to

train GPs for one vs. one categorization. When tested on manipulated calls, the one vs. one

model typically performed poorly compared to the original one vs. many model. Compared to

the one vs. many model, the one vs. one model was less consistent with behavior as indicated

by lower R2 (Fig. 11B, E) and higher MAE values (Fig. 11C, F). These results thus suggest that

rather than re-learning new task-specific features, GPs might be using call features that they

had acquired previously over their lifespan to solve our call categorization task. These results

also  suggest  that  training  a  feature-based  categorization  system  (in-silico or  in-vivo)  on

exemplars that capture within-category variability is critical to obtain a system that can flexibly

adapt and maintain robust performance to unheard stimuli that exhibit large natural or artificial

variations.

The effect of training our model on the one vs. many categorization task using a large number of

call exemplars for training was that the model learned features that truly captured the within-

and outside-class  variability  of  calls.  This  resulted in  a model  that  accurately  predicted GP

performance across a range of stimulus manipulations. To understand how the model was able

to achieve robustness to stimulus variations,  and to gain insight  into how GPs may flexibly

weight features differently across the various stimulus manipulations, we examined the relative

detection rates of various model MIFs across different stimulus paradigms in which we observed

strong behavioral effects (Figure 12, Figure 12 – supplement 1).
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Figure 12: Different subsets of MIFs are flexibly recruited to solve categorization tasks
for different manipulations. (A) We estimated the relative detection rate (i.e., the difference
between the detection rate of a given MIF for all target and all distractor calls) of all MIFs (discs)
for each behavioral paradigm (e.g., SNR). Colors denote different instantiations of the MIFs.
Disc diameter is monotonically  proportional  to the relative detection rate, using a power-law
relationship  (fourth  power)  to  highlight  the  most  robust  features.  While  MIFs  of  all  center
frequencies (CFs) and bandwidths were uniformly recruited for generalizing calls of chut call
type, MIFs with lower CFs were preferentially selected for SNR conditions, likely because high-
frequency chut  features were masked by white noise.  In contrast,  MIFs with high CF were
preferred by the model to solve the F0-shift task. (B) Similar results were obtained for purrs. (C)
MIFs of all durations and bandwidths were uniformly recruited for generalizing calls of chut call
type. In contrast, shorter duration MIFs were preferred for segment-length conditions whereas
longer-duration  MIFs  were  preferentially  recruited  for  F0-shift  conditions.  (D) Results  were
similar for purrs (for wheeks and whines, see Figure 12 – figure supplement 1).  
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In Figure 12, we examine the relative detection rates of MIFs (discs, ~20 MIFs per instantiation)

from different model instantiations (colors, 5 instantiations) for the Go and No-go stimuli. That is,

we computed the difference between the rate of detection of each MIF in response to Go stimuli

and No-go stimuli, and plotted this difference (disc areas) as a function of MIF tuning properties

(CF, bandwidth, and duration). For the generalization stimuli, i.e., new natural calls on which the

model had not been trained, almost all MIFs showed relatively large net detection rates which

resulted in plots (Figure 12A-D, left panels) with discs of about equal area. Note however, that

the learned MIFs are spread out across a range of CFs, bandwidths, and durations. Given these

data alone, one might argue that learning ~20 MIFs per call category is highly redundant, and

that high performance could be achieved using only a subset of these MIFs. But examining

which features maintain high relative detection rates in other stimulus paradigms underscores

the utility of learning this wide feature set. When we added white noise to the stimulus, low-CF

features showed higher relative detection rates (Fig. 12A, B; right top) and thus contributed

more towards categorization. This could likely be attributed to GP calls having high power at

low-frequencies,  resulting in more favorable local  SNRs at  lower  frequencies.  But  when we

altered stimulus F0, high-CF features contributed more towards categorization (Fig. 12A, B;

right  bottom).  Similarly,  low-duration,  high-bandwidth  features  contributed  more  when

categorizing  time-restricted calls,  whereas  high-duration,  low-bandwidth  features  contributed

more when categorizing F0-shifted calls (Fig. 12C, D). That the model quantitatively matched

GP behavior suggests that a similar strategy might be employed by GPs as well. Note that our

contention is not that the precise MIFs obtained in our model are also the precise MIFs used by

the GPs – indeed, we were able to train several distinct MIF sets that were equally proficient at

categorizing calls.  Rather,  we are proposing a framework in  which GPs learn intermediate-

complexity features that account for within-category variability and best contrast a call category

from all other categories, and similar to the model, recruit different subsets of these features to

solve different categorization tasks. 

Discussion

In this study, we trained GPs to report call categories using an appetitive Go/No-go task. We

then tested GP call  categorization when we challenged them with spectrally  and temporally

manipulated calls. We found that GPs maintained their call categorization across a wide range

of  gross temporal  manipulations  such as changes to tempo and altered ISI  distributions.  In

contrast, GP behavior was strongly affected by altering the F0 of calls. In parallel, we extended

a previously developed feature-based model of auditory categorization by adding a winner-take-
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all feature-integration stage that enabled us to obtain a categorical decision from the model on a

trial-by-trial basis. We trained the model using natural GP calls. When we challenged the model

with  the  identical  stimuli  used  in  the  GP experiments,  we  obtained  model  responses  that

quantitatively  matched  GP  behavior  to  a  remarkable  degree.  We  had  previously  reported

electrophysiological support for the feature-based model by demonstrating that a large fraction

of  neurons in  the superficial  layers of  auditory cortex exhibited feature-selective responses,

resembling the feature-detection stage of the model (Montes-Lourido et al., 2021a). The results

described in the present manuscript lend further support to the model at a behavioral  level.

Taken together, these studies strongly suggest how a spectral content-based representation of

sounds  at  lower  levels  of  auditory  processing  can  be  transformed  into  a  goal-directed

representation at higher processing stages by extracting and integrating task-relevant features.

The feature-based model was highly predictive of GP behavior although it was conceptualized

from purely theoretical  considerations,  trained only using natural GP calls,  and implemented

without access to any behavioral data. Insights from behavioral observations could be used to

further  refine  the model.  For  example,  our  data  indicated  that  GPs altered their  behavioral

strategy over the course of multiple sessions within a given day. This could possibly reflect an

early impulsivity in their decision-making brought on by food deprivation (evidenced by a high

false alarm rate) that gradually switches to a punishment-avoidance strategy with increasing

satiation (although d’ remains consistent across sessions). In contrast, the model is based on

minimal assumptions and applies a static decision criterion (with a small amount of error) across

all trials. It is possible that some of the remaining unexplained variance in the behavior could be

captured by including these nuances in the model. Nevertheless, the fact that the model could

explain much of  the behavioral  trends we observed suggests that  the fundamental strategy

employed by the model - that of detecting features of intermediate complexity to generalize over

within-category variability - also lies at the core of GP behavior. Furthermore, we could leverage

the model to gain insight  into possible behavioral  strategies used by GPs in performing the

tasks. For example, we could compare models trained to categorize calls in one vs. many or

one vs. one conditions to ask which scenario was more consistent with GP behavior: 1) whether

the GPs used prior features that they acquired over their lifetimes to categorize a given call type

from  all  other  calls,  or  2)  whether  GPs  were  de-novo learning  new  features  to  solve  the

particular categorization task on which they were trained. The model trained on call features that

distinguish a particular call  from all  other calls was more closely aligned with GP behavioral

data, supporting the first possibility, that GPs use features that they had already learned to solve
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our particular task. Examining how different subsets of features could be employed to solve

different categorization tasks revealed possible strategies that GPs might use to flexibly recruit

different feature representations to solve our tasks. While we have used GPs as an animal

model for call  categorization in this study, we have previously shown that the feature-based

model shows high performance across species (GPs, marmosets and macaques), and have

feature-selective responses in marmosets and GPs (Liu et al., 2019). Thus, it is likely that our

model reflects general principles that are applicable across species, and offers a powerful new

approach to deconstruct complex auditory behaviors.

On  the  behavioral  side,  our  study  of  GP  call  categorization  behavior  using  multiple

spectrotemporally rich call types and parametric manipulations of spectral and temporal features

offers  comprehensive  insight  into  cues  that  are  critical  for  call  categorization  and  builds

significantly on previous studies. First, we showed that GPs can categorize calls in challenging

SNRs,  and  that  thresholds  vary  depending  on  the  call  types  to  be  categorized.  We

demonstrated  that  information  for  GP  call  categorization  was  available  in  short-duration

segments of calls, and consistent with some previous studies in other species  (Holfoth et al.,

2014; Knudsen and Gentner, 2010; Marslen-Wilson and Zwitserlood, 1989; Pitcher et al., 2012),

GPs could extract call category information soon after call onset. GP call perception was robust

to large temporal manipulations, such as reversal and larger changes to tempo than have been

previously tested (Neilans et al., 2014). These results are also consistent with the resilience of

human word identification to large tempo shifts  (Janse et al., 2003). Our finding that GP call

categorization performance is robust to ISI manipulations is also not necessarily inconsistent

with results from mice  (Perrodin et al., 2020); in that study, while female mice were found to

strongly prefer natural calls compared to calls with ISI manipulations, it is possible that mice still

identified the call category correctly. For gross spectral manipulations, we found that GP call

categorization  was  robust  to  a  larger  range  of  F0  shifts  than  have  been  previously  tested

(Neilans et al., 2014). Critically, for all but one of these manipulations, the feature-based model

captured GP behavioral trends with surprising accuracy both qualitatively and quantitatively.

An analysis of model deviation from behavior could suggest a roadmap for future improvements

to our model  that  could yield  further  insight  into auditory categorization.  The one paradigm

where we observed a systematic under-performance of the model compared to GP behavior

was when we presented call segments of varying lengths from call onset. While the GPs were

able to accomplish categorization by extracting information from as little as 75 ms segments, the

model required considerably more information (~150 ms). This is likely because the model was
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based on the detection of informative features that were on average of ~110 ms duration, which

were identified from an initial random set of features that could be up to 200 ms in duration. We

set this initial limit based on an upper limit estimated from electrophysiological data recorded

from primary auditory cortex (A1; Montes-Lourido et al., 2021). We consciously did not impose

further restrictions on feature duration or bandwidth to ensure that the model did not make any

assumptions based on observed behavior. It is possible that further restricting feature length to

~100  ms  could  lead  to  better  matches  between  model  and  behavior  for  this  and  other

paradigms. We also observed over-performance of the model compared to behavior in some

paradigms. Some of this over-performance might be explained by the fact that the model does

not  exhibit  motivation  changes  etc.  as  outlined  above.  A  second  source  of  this  over-

performance might arise from the fact that our model integrates evidence from the FD stage

perfectly, i.e., we take the total evidence for the presence of a call category to be the weighted

sum of the log-likelihoods of all detected features (counting detected features only once) over

the entire stimulus, and do not explicitly model a leaky integration of feature evidence over time,

as is the case in evidence-accumulation-to-threshold models (Cheadle et al., 2014; Keung et al.,

2020). Future improvements to the model  could include a realistic feature-integration stage,

where evidence for a call category is generated when a feature is detected and degrades with a

biologically realistic time constant. In this case, a decision threshold could be reached before

the entire stimulus is heard,  but  model  parameters would  need to be derived from or fit  to

observed behavioral data (Glaze et al., 2015). 

How do the proposed model stages map onto the auditory system? In an earlier  study, we

provided evidence that feature detection likely occurs in the superficial layers of A1, in that a

large  fraction  of  neurons  in  this  stage  exhibit  highly  selective  call  responses  and  complex

spectrotemporal receptive fields (Montes-Lourido et al., 2021a). How and at what stage these

features are combined to encode a call category remains an open question. Neurons in A1 can

acquire categorical or task-relevant responses to simple categories, for example, low vs. high

tone frequencies, or low vs. high temporal modulation rates, with training (Bao et al., 2004; Fritz

et  al.,  2005).  In  contrast,  categorical  responses  to  more  complex  sounds  or  non-compact

categories only seem to arise at the level of secondary or higher cortical areas or the prefrontal

cortex  (Russ  et  al.,  2008;  Yin  et  al.,  2020),  which  may  then  modulate  A1  via  descending

connections. These results, taken together with studies that demonstrate enhanced decodability

of call  identity from the activity of  neurons in higher  cortical  areas  (Fukushima et  al.,  2014;

Grimsley et al., 2012, 2011), suggest that secondary ventral-stream cortical areas, such as the
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ventral-rostral belt in GPs, are promising candidates as the site of evidence integration from call

features. The winner-take-all stage may be implemented via lateral inhibition at the same level

using similar mechanisms as has been suggested in primary visual cortex (Chettih and Harvey,

2019) or may require a further upstream layer. Future experiments are necessary to explore

these questions further.

The feature-based model we developed offers a trade-off between performance and biological

interpretability.  Modern  deep  neural  network  (DNN)  based  models  can  attain  human-level

performance (for example, in vision: Rajalingham et al., 2015, in audition: Kell et al., 2018) but

what  features  are  encoded  at  the  intermediate  network  layers  remain  somewhat  hard  to

interpret. These models also typically require vast quantities of training data. In contrast, our

model  is  based  on  an  earlier  model  for  visual  categorization  (Ullman  et  al.,  2002) that  is

specifically  trained to detect characteristic features that contrast the members of a category

from  non-members.  Thus,  we  can  develop  biological  interpretations  for  what  features  are

preferably  encoded  and  more  importantly,  why  certain  features  are  more  advantageous  to

encode. Because the features used in the model are the most informative parts of the calls

themselves, they can be identified without a parametric search. This approach is especially well-

suited for natural sounds such as calls that are high-dimensional and difficult to parameterize.

We are restricted, however, in that we do not know all possible categorization problems that are

relevant  to  the  animal.  By  choosing  well-defined  categorization  tasks  that  are  ethologically

critical for an animal’s natural behavior (such as call categorization in the present study), we can

maximize the insight that we can derive from these experiments as it  pertains to a range of

natural behaviors. In the visual domain, the concept of feature-based object recognition has

yielded insight into how human visual recognition differs from modern machine vision algorithms

(Ullman et al.,  2016). Our results lay the foundation for pursuing an analogous approach for

understanding auditory recognition in animals and humans.

Materials and Methods

All experimental procedures conformed to the NIH Guide for the use and care of laboratory

animals  and  were  approved  by  the  Institutional  Animal  Care  and  Use  Committee  of  the

University of Pittsburgh (protocol number 21069431). 
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Animals

We acquired data from 4 male and 4 female adult, wild-type, pigmented guinea pigs (GPs) (Elm

Hill Labs, Chelmsford, MA), weighing ~500-1000 g over the course of the experiments. After a

minimum of 2 weeks of acclimatization to handling, animals were placed on a restricted diet for

the period of behavioral experiments. During this period, GPs performed auditory tasks for food

pellet rewards (TestDiet, St. Louis, MO). The weight and body condition of animals was closely

monitored and the weight was not allowed to drop below 90% of baseline weight. To maintain

this weight, depending on daily behavioral performance, we supplemented GPs with restricted

amounts of pellets (~10-30g), fresh produce (~10-30g), and hay (~10-30g) in their home cages.

All animals had free access to water. After behavioral testing for ~2 - 3 weeks, animals were

provided ad-libitum food for 2 - 3 days to obtain an updated estimate of their baseline weights.

Behavioral setup

All behavioral tasks were performed inside a custom behavioral booth (Fig. 1; ~90 cm x 60 cm x

60 cm) lined with ~1.5 cm thick sound attenuating foam (Pinta Acoustic, Minneapolis, MN) (Fig.

1A). The booth was divided into two halves (~45 cm x 60 cm x 60 cm each) using transparent

acrylic (McMaster-Carr, Los Angeles, CA). One half contained the behavioral setup. The other

half was sometimes used as an observation chamber in which we placed a naive GP to observe

an expert GP perform tasks; such social learning has been shown to speed up behavioral task

acquisition  (Paraouty et al.,  2020). The entire booth was uniformly lit  with LED lighting.  The

behavioral chamber contained a ‘home base’ area and a reward region (Fig. 1B). A water bottle

was placed in the home base to motivate animals to stay at/return to the home base after each

trial. A pellet dispenser (ENV-203-45, Med Associates, Fairfax, VT) was used to deliver food

pellets (TestDiet) onto a food receptacle placed in a corner of the reward area. Air puffs were

delivered from a pipette tip placed near the food receptacle directed at the animal’s snout. The

pipette tip was connected using silicone tubing via a pinch valve (EW98302-02, Cole-Palmer

Instrument Co., Vernon Hills, IL) to a regulated air cylinder, with the air pressure regulated to be

about 25 psi.

The animal’s position within the behavioral chamber was tracked using MATLAB (Mathworks,

Inc., Natick, MA) at a video sampling rate of ~25 fps using a web camera (Lifecam HD-3000,

Logitech, Newark, CA) placed on the ceiling of the chamber. Sound was played from a speaker

(Z50, Logitech) located ~40 cm above the animal at ~ 70 dB SPL with a sampling frequency of
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48  KHz.  Pellet-delivery,  illumination,  and  air  puff  hardware  were  controlled  using  a  digital

input/output device (USB-6501, National Instruments, Austin, TX).

Basic task design

All behavioral paradigms were structured as Go/ No-go tasks. GPs were required to wait in the

home base (Fig. 1B) for 3 - 5 s to initiate a trial. A Go or No-go stimulus was presented upon

trial  initiation.  For Go stimuli,  moving to the reward area (Fig.  1B) was scored as a hit  and

resulted in a food pellet  reward;  failure to do so was scored as a miss.  For No-go stimuli,

moving to the reward area was scored as a false alarm (FA) and was followed by a mild air puff

and brief time-out with the lights turned off (Fig. 1A), whereas staying in the home base was

scored as a correct rejection.

Training GPs via social learning and appetitive reinforcement

Naïve animals were initially placed in the observer chamber while an expert GP performed the

task  in  the  active  chamber.  Such  social  learning  helped  accelerate  forming  an  association

between sound presentation and food reward (Paraouty et al., 2020). Following an observation

period of 2 - 3 days, naive GPs were placed in the active chamber alone and underwent a

period  of  Pavlovian  conditioning,  where  Go  stimuli  were  played,  and  food  pellets  were

immediately dropped until  the animals built  an association between the sound and the food

reward. Once GPs began to reliably respond to Go stimuli, No-go stimuli along with the air puff

and light-out were introduced at a gradually increasing frequency (until about equal frequency of

both Go and No-go stimuli). We trained 2 cohorts of 4 adult GPs (2 males and 2 females) for

two call categorization tasks (as discussed later), with the overlap of one GP between the tasks.

Stimuli and behavioral paradigms

Learning:

In this study, we trained GPs to categorize two similar low frequency, temporally symmetric,

affiliative call categories (‘chuts’ - Go and ‘purrs’ - No-go, Fig. 1C); or two temporally asymmetric

call categories with non-overlapping frequency content (‘wheeks’ - Go and ‘whines’ - No-go, Fig.

1D). All calls were recorded in our laboratory as described earlier (Montes-Lourido et al., 2021b)

and were from animals unfamiliar to the GPs in the present study. Calls were trimmed to ~1s

length, normalized by their rms amplitudes, and presented at ~70dB SPL (Fig. 1C, D). Different
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sets of randomly selected calls, each set containing 8 different exemplars, were used for the

learning  and  generalization  phases.  Other  paradigm-specific  stimuli  were  generated  by

manipulating the call sets used during the learning phase as explained below. We first manually

trained animals to associate one corner of the behavioral  chamber with food pellet  rewards.

Following manual training, we began a conditioning phase where we only presented Go stimuli

when the animal was in the home base area followed by automated pellet delivery, gradually

increasing the interval between stimulus and reward. Once animals began moving towards the

reward location in anticipation of the reward, we gradually introduced an increasing proportion of

No-go stimuli, and began tracking the performance of the animal. During the learning phase,

animals  typically  performed the Go/No-go task for  6  sessions each day with ~40 trials  per

session. Each session typically lasted ~ 15 minutes.

Generalization to new exemplars: 

Once animals achieved d’ > 1.5 on the training stimulus set, we replaced all training stimuli with

8 new exemplars of each call  category that the animals had not heard before. To minimize

exposure to the new exemplars, we tested generalization for about 3 days per animal, with 1-2

sessions with training exemplars and 1-2 sessions of new exemplars. 

Call-in-noise:

To generate call-in-noise stimuli at different SNRs, we added white noise of equal length to the

calls (gated noise) such that the signal-to-noise ratio, computed using rms amplitudes, varied

between -18 dB and +12 dB SNR (i.e., -18, -12, -6, -3, 0, +3, +6, and +12 dB SNR). This range

of SNRs was chosen to maximize sampling over the steeply growing part of psychometric curve

fits. We presented these stimuli in a block design, measuring GP behavior in sessions of ~40

trials with each session having a unique SNR value. We typically collected data for 3 sessions

for each of the 9 SNR levels including the clean call. SNR data were collected across several

days per animal,  with different SNRs tested each day to account for possible fluctuations in

motivation levels.

Restricted segments:

To investigate how much information is essential for GPs to successfully categorize calls, we

created call segments of different lengths (50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600

700 and 800 ms) from the call onsets. We chose 800 ms as the maximum segment length since

our briefest call was ~800 ms long. We tested GPs on these 13 segment lengths, presenting 5
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repetitions of 8 exemplars per category.  A randomized list  of  all  1040 trials was created (2

categories x 8 exemplars x 13 time-chunk lengths x 5 repetitions) and presented sequentially in

sessions of ~40 trials, completing ~240 trials per day (~5 days to complete the entire list of

stimuli).

Tempo manipulation:

To temporally  compress or stretch the calls  without  introducing any alterations to long-term

spectra, we changed the tempo of the calls using Audacity software by -120%, -100%, -80%, -

60%, -30%, +30%, +60% and +80% which resulted in calls that were ~0.45, 0.5, ~0.56, ~0.63,

~0.77, ~1.43, 2.5 and 5 times the original lengths of the calls respectively. As earlier, 720 total

trials were presented (2 categories x 8 exemplars x 9 tempo conditions x 5 repetitions).

ISI manipulations:

To  determine  if  GPs  used  individual  syllables  or  temporal  patterns  of  syllables  for  call

categorization, we introduced several inter-syllable interval (ISI) manipulations, while keeping

the individual syllables intact. After manually identifying the beginnings and endings of each

syllable within the calls, the syllables and the ISI values were extracted using MATLAB. Since

our recorded calls have some level of background noise, we first created a set of control stimuli

where the audio in the ISI was replaced with silence. As a second control, we changed the ISI

values by randomly drawing ISI values from the ISI distribution of the same call category. Five

such new calls were generated from each original call. We acquired behavioral responses using

a randomized  presentation  strategy as above,  split  into:  1)  640 trials  with  regular  ISI  (with

background recording noise) and silent ISI (2 categories x 8 exemplars x 2 conditions x 20

repetitions),  and  2)  400  trials  with  random  within-category  ISI  values  (2  categories  x  8

exemplars x 5 random ISI combinations x 5 repetitions). We then generated chimeric calls with

syllables belonging to one category and ISI values belonging to the other category (e.g., chut

syllables with purr ISI values). Five such chimeric calls were created per original call. Because

these calls contain information from both categories, we adopted a catch trial design for this

experiment.  Natural  calls  (Syllable  and  ISI  from  the  same  category,  both  Go  and  No-go

categories) were presented on 67% of trials, and chimeric calls on 33% of trials (‘catch trials’).

We rewarded 50% of the catch trials at random and did not provide any negative reinforcement

(air puff or time-out). Thus, 1200 randomized trials were presented, with 800 trials with regular

calls and 400 catch trials with chimeric calls.
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Call reversal:

As a final gross temporal manipulation, we temporally reversed the calls. We presented a total

of 160 trials in randomized order (2 categories x 8 exemplars x 2 conditions x 5 repetitions) for

this experiment.

Fundamental frequency manipulation:

We created calls with fundamental frequency (F0) varying from one octave lower and to one

octave higher by changing the pitch of the calls by -50%, -40%, -30%, -20%, 20%, 40% 50%

and 100% using Audacity software. These pitch changes re-interpolated the calls such that call

length and tempo were preserved. A total  of  720 trials (2 categories x 8 exemplars x 9 F0

conditions x 5 repetitions) were presented in randomized order for this experiment.

Low pass filtering:

For the wheeks vs. whines task, we low pass filtered both wheeks and whines at 3kHz using a

256-point  FIR filter  in  MATLAB.  We presented  160  trials  (2  categories  x  8  exemplars  x  2

conditions x 5 repetitions) in randomized order for this experiment.

Analysis of behavioral data

All analysis was performed in MATLAB. Specific functions and toolboxes used are mentioned

where applicable below.

To quantify the behavioral performance of the animals, we used sensitivity index or  d’  (Green

and Swets, 1966), defined as:

d '=Z (H )−Z (FA )                               … (1)

where, H and FA represent the hit rate and FA rate, respectively. To avoid values that approach

infinity, we imposed a floor (0.01) and ceiling (0.99) on hit rates and FA rates.

For the learning and generalization data, the  d’ value was estimated per session using the H

and FA rates from that session. These session wise hit rates, FA rates and d’ estimates were

averaged for each animal and the mean and standard error of mean (s.e.m.) across all animals

are reported in the results section.
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For all the call manipulation experiments (including call-in-noise), a single hit rate, FA rate and

d’ were estimated per condition per animal by pooling data over all trials corresponding to each

condition. The mean and SEM of these indices across all animals are reported in the results

section.

Additionally for the call-in-noise data, we used the ‘fitnlm’ MATLAB function (Statistics toolbox)

to fit psychometric functions of the form (Wichmann and Hill, 2001):

                                       ψ ( x ;⍺ , β , ƛ )=(1−ƛ )∗F ( x ;⍺ , β )                 … (2)

where F is the Weibull function, defined as F ( x ;⍺ , β )=1− exp , α is the shift parameter, β is the

slope parameter, and λ is the lapse rate.

Statistical analyses

We used paired t  tests  to  compare  d’ values  across animals  in  experiments with  only  two

conditions i.e., reversal and low-pass filtering. For the remaining experiments with more than

two conditions, repeated measures ANOVA was performed using the ‘fitrm’ MATLAB function in

the following form:

rm= fitrm (data ,' Cond .1−Cond . N 1' , ' WithinDesign ' ,within subject factor ) … (3)

where rm is the repeated measures model. The Greenhouse-Geiser corrected p-values were

used to test for overall significance of the manipulations. If there was an overall significant effect

of the manipulation, we used paired t tests with FDR correction for multiple comparisons to

compare  the  d’ values  between  natural  calls  and  other  manipulated  calls.  Lastly,  for  the

swapped ISI stimuli in the ISI manipulation experiments, since we did not have well defined

categories for the chimeric calls, we chose to compare the Go-rates for the stimuli with syllables

of one kind using a paired t test.

Feature-based categorization model

To gain insight into what potential spectrotemporal features GPs may be using to accomplish

call categorization in the behavioral tasks, we extended a previously published feature-based

model that achieves high classification performance for categorizing several call types across

several species,  including GPs  (Liu et  al.,  2019).  The model  consists of  three layers:  (1)  a

spectrotemporal representational layer, (2) a feature detection (FD) layer, and (3) a competitive
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winner-take-all (WTA) decision layer. The first two layers are closely based on Liu et al. 2019;

we briefly describe these stages below. The WTA layer combines information from the FD layer

to form a Go/No-go decision. 

The spectrotemporal  representational  layer  consisted of  the output  of  a biologically  realistic

model of the auditory periphery (Zilany et al., 2014). Cochleagrams of training and testing calls

were constructed from the inner-hair-cell  voltage output  of  this  model  (Zilany  et  al.,  2014).

Cochleagrams  were  constructed  using  67  characteristic  frequencies  logarithmically  spaced

between 200 Hz and 20 kHz and were sampled at 1 kHz. Model parameters were set to follow

healthy inner and outer hair cell properties and cat frequency tuning. 

For the FD layer, we trained four separate sets of feature detectors to classify the four call

types, where each set classified a single call type (e.g., chut) from all other call types (i.e., a

mixture of purr, wheek, whine, and other calls). During training, for each call type, we identified

a set  of  maximally  informative features (MIFs;  see  Liu et  al.,  2019,  based on an algorithm

developed by Ullman et al., 2002) that yielded optimal performance in classifying the target call

type from other call  types (Fig. 2).  To do so, we generated an initial  set of 1500 candidate

features  by  randomly  sampling  rectangular  spectrotemporal  blocks  from  the  target  call

cochleagrams.  We restricted  the duration  of  features  to  a  maximum of  200 ms,  based  on

typically observed temporal extents of spectrotemporal receptive fields in superficial layers of

the GP primary auditory cortex  (Montes-Lourido et al.,  2021a). Next, we evaluated how well

each feature classified the target call  type from other call  types. To do so, we obtained the

maximum normalized cross correlation value (rmax) of each feature with target calls and other

calls. Each feature was assigned a threshold that indicated if the feature was detected in the

stimulus (rmax>¿threshold) or not (rmax<¿ threshold). We used mutual information to determine

the utility of each feature in accomplishing the classification task. By testing a range of threshold

values,  we obtained  the  optimal  threshold  for  each  feature  at  which  its  categorization  was

maximal. The log-likelihood ratio of this binary classification was taken to be the weight of each

feature. From this initial random set of 1500 features, we used a greedy search algorithm to

obtain  the set  of  maximally  informative  and least  redundant  features  that  achieved  optimal

performance to classify  the training  data set.  The maximum number  of  these features was

constrained to 20. Training performance of the MIF set was assessed by first estimating the

receiver operating characteristic curve and then quantifying the area under the curve (AUC),

using the procedure described in Liu et al., 2019. To ensure robustness of these solutions, we
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generated 5 instantiations of the MIFs for classifying each call type by iteratively determining an

MIF set and removing these features from the initial set of features when training the next MIF

set. We verified that training performance did not drop for any of these 5 instantiations.

Next, to compare model performance with guinea pig behavioral performance, we evaluated

model performance in classifying the same stimuli used in the behavioral experiments using the

sensitivity  metric,  d’.  To simulate the Go/No-go task,  we employed a winner-take-all  (WTA)

framework,  as  described  below.  In  a single  trial,  the  stimulus  could  either  be a  target  (Go

stimulus) or a distractor (No-go stimulus). For this stimulus, we estimated the target FD-layer

response as the sum of detected (target) MIF weights normalized by the sum of all (target) MIF

weights.  This  normalization  scales  the  model  response  to  a  range  between  0  (no  MIFs

detected) and 1 (all MIFs detected). Similarly, we estimated the distractor model response as

the sum of  detected (distractor)  MIF weights  normalized by  the sum of  all  (distractor)  MIF

weights.  If  the  target  FD-stage  response  was  greater  (less)  than  the  distractor  FD-stage

response,  then  the  WTA  model  would  predict  that  the  stimulus  in  that  trial  was  a  target

(distractor). To allow for non-zero guess rate and lapse rate, as typically observed in behavioral

data, we set the minimum and maximum Go probability of the WTA output to 0.1 and 0.9 (Fig.

2C). These Go probabilities [Ptrial −n (GO )] were realized on a trial-by-trial basis where a random

number (X ) drawn from a uniform distribution between 0 and 1 was compared with the WTA

model Go probability to decide the final response [Go if X<Ptrial − n (GO )]. d’ was estimated from

hit rate and false alarm rate using Eq 1. Identical test stimuli and number of trials were used for

both behavior  and model.  We treated each of the 5 instantiations of the MIFs as a unique

‘subject’ for analysis.
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Figure 1 – figure supplement 1

Figure 1 – figure supplement 1: Learning rates of GPs performing a call categorization task. (A)
and (D) Probability of Hits (green) and False Alarms (red) as a function training day (averaged over ~6
sessions  per  day)  for  the  chuts  vs.  purrs  (A) and  wheeks  vs.  whines (D) tasks.  Dark  lines  are
averages of all subjects, faint lines correspond to individual subjects. (B) and (E) Sensitivity index (d’)
as a function of training day. Black line is average over 4 subjects, gray lines are individual subjects.
Subjects were considered trained when their performance showed d’ > 1.5 (dashed blue line). (C) and
(F) Hits and False Alarms of animals as a function of intra-day session number, averaged over four
days after animals acquired the task.
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Figure 12 – figure supplement 1

Figure  12  –  figure  supplement  1:  Different  subsets  of  MIFs  are  flexibly  recruited  to  solve
categorization tasks for different manipulations (wheeks vs. whines). (A and B) We estimated
the relative detection rate (i.e., the difference between the detection rate of a given MIF for all target
and all distractor calls) of all MIFs (discs) for each behavioral paradigm (e.g., SNR). Colors denote
different instantiations of the MIFs. Disc diameter is monotonically proportional to the relative detection
rate, using a power-law relationship (fourth power) to highlight the most robust features. While MIFs of
all center frequencies (CFs) and bandwidths were uniformly recruited for generalizing calls of each call
type,  MIFs  with  lower  CFs  were  preferentially  selected  for  SNR conditions,  likely  because  high-
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frequency features were masked by white noise. In contrast, MIFs with high CF were preferred by the
model to solve the F0-shift task. These differences were especially apparent for whine calls. (C and D)
MIFs of all durations and bandwidths were uniformly recruited for generalizing calls of each call type.
In  contrast,  shorter  duration  MIFs  were  preferred  for  segment-length  conditions  whereas  longer-
duration MIFs were preferentially recruited for F0-shift conditions.
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