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ABSTRACT 

Background: Neuronal and circuit level abnormalities of excitation and inhibition are shown to be 

associated with tau and amyloid-beta (Aβ) in preclinical models of Alzheimer’s disease (AD). These 

relationships remain poorly understood in patients with AD.  

Methods: Using empirical spectra from magnetoencephalography (MEG) and computational 

modeling (neural mass model; NMM) we examined excitatory and inhibitory parameters of neuronal 

subpopulations and investigated their specific associations to regional tau and Aβ, measured by 

positron emission tomography (PET), in patients with AD.  

Results: Patients with AD showed abnormal excitatory and inhibitory time-constants and neural 

gains compared to age-matched controls. Increased excitatory time-constants distinctly correlated 

with higher tau depositions while increased inhibitory time-constants distinctly correlated with higher 

Aβ depositions.  

Conclusions: Our results provide critical insights about potential mechanistic links between 

abnormal neural oscillations and cellular correlates of impaired excitatory and inhibitory synaptic 

functions associated with tau and Aβ in patients with AD. 
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(KGR); 2019-A-013-SUP (KGR); a grant from the Alzheimer’s Association: (PCTRB-13-288476) 

(KAV), and made possible by Part the CloudTM, (ETAC-09-133596); a grant from Tau Consortium 

(GDR & WJJ), and a gift from the S. D. Bechtel Jr. Foundation. 
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1. INTRODUCTION 

Aggregation and accumulation of amyloid beta (Aβ) and tau proteins is a defining feature of 

Alzheimer’s disease (AD) pathophysiology(Braak and Braak, 1991). Although the mechanisms by 

which AD proteinopathy exerts its effects remain an area of active research, disruption of the fine 

balance between excitatory and inhibitory neuronal activity has emerged as a potential driver for 

network dysfunction contributing to cognitive deficits in AD (Palop et al., 2006;Harris et al., 2020). 

Preclinical AD models have demonstrated direct effects of tau and Aβ leading to impaired function in 

excitatory pyramidal neurons as well as inhibitory interneurons (Palop et al., 2007;Hoover et al., 

2010;Sun et al., 2012;Verret et al., 2012;Palop and Mucke, 2016;Zhou et al., 2017;Busche et al., 

2019;Zott et al., 2019;Harris et al., 2020;Chang et al., 2021). In patients with AD, abnormalities in brain 

oscillations(Ranasinghe et al., 2014;Nakamura et al., 2018;Maestu et al., 2019;Babiloni et al., 

2020;Ranasinghe et al., 2020), which are essentially determined by relative contributions of excitatory 

and inhibitory synaptic currents(Buzsaki et al., 2012), are a display of perturbed balance of excitation 

and inhibition in local circuits. However, despite the fact that clinical studies have demonstrated 

associations between abnormal oscillatory signatures and AD proteinopathy(Nakamura et al., 

2018;Smailovic et al., 2018;Pusil et al., 2019;Ranasinghe et al., 2020;Ranasinghe et al., 2021), the 

electrophysiological basis of aberrant excitatory and inhibitory activity of neuronal cell populations 

and how these relate to Aβ and tau in patients with AD remain largely unknown.  

The goal of this study was to identify impaired neuronal parameters in excitatory and inhibitory 

neuronal subpopulations and determine their specific associations to regional Aβ and tau pathology 

in AD patients. We combined spectral signatures derived from magnetic field potentials via non-

invasive imaging in AD patients with mathematical modeling (neural mass model; NMM)(David and 

Friston, 2003;Raj et al., 2020;Verma et al., 2022), to estimate excitatory and inhibitory neuronal 

parameters. Specifically, we hypothesized that abnormal regional spectral signatures in AD patients 

related to altered activity of excitatory and inhibitory neuronal subpopulations will be distinctly 

associated with tau and Aβ depositions. We combined NMM, and multimodal imaging data from: 

magnetoencephalography (MEG), Aβ-, and tau-positron emission tomography (PET), in a well 
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characterized cohort of AD patients. First, we leveraged the millisecond temporal resolution and 

superior spatial resolution of MEG signal to derive the oscillatory signatures of local neuronal 

synchrony. Next, we used a linearized NMM, which was recently described as a component of a 

spectral graph model, and which successfully reproduced the empirical macroscopic properties of 

oscillatory signatures(Raj et al., 2020;Verma et al., 2022), to derive excitatory and inhibitory 

parameters of local neuronal ensembles. We then examined the specific associations of altered 

excitatory and inhibitory neuronal subpopulation parameters and Aβ- and tau-tracer uptake patterns 

and how these contribute to produce the characteristic spectral changes in AD patients. 

2. METHODS  

2.1. Participants 

Twenty patients with AD (diagnostic criteria for probable AD or MCI due to AD)(Albert et al., 

2011;McKhann et al., 2011;Jack et al., 2018) and 35 age-matched controls were included in this study 

(Table 1). Each participant underwent a complete clinical history, physical examination, 

neuropsychological evaluation, brain magnetic resonance imaging (MRI), and a 10-minute session 

of resting MEG. All AD patients underwent PET with Tau-specific radiotracer, 18F-flortaucipir and Aβ-

specific radiotracer, 11C-PIB. Twelve AD patients in this study cohort overlapped with our previous 

multimodal imaging investigation of long-range synchrony assay(Ranasinghe et al., 2020).  All 

participants were recruited from research cohorts at the University of California San Francisco 

(UCSF) ADRC. Informed consent was obtained from all participants and the study was approved by 

the Institutional Review Board (IRB) at UCSF. 

2.2. Clinical assessments and MEG, PET and MRI acquisition and analyses  

AD patients were assessed via MMSE and a standard battery of neuropsychological tests. All 

participants were assessed via a structured caregiver-interview to determine the Clinical Dementia 

Rating (CDR) (Appendix methods). 
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MEG scans were acquired on a whole-head biomagnetometer system (275 axial gradiometers; 

MISL, Coquitlam, British Columbia, Canada) for 5-10 minutes, following the same protocols 

described previously(Ranasinghe et al., 2020). Tomographic reconstructions of source space data 

was done using a continuous 60s data epoch, an individualized head model based on structural 

MRI, and a frequency optimized adaptive spatial filtering technique implemented in the 

Neurodynamic Utility Toolbox for MEG (NUTMEG; http://nutmeg. berkeley.edu). We derived the 

regional power spectra for frequency bands: 2-7Hz delta-theta, 8-12Hz alpha, 13-35Hz beta, and 1-

35Hz broad-band, from FFT and then converted to dB scale (Appendix methods). 

Flortaucipir and PiB-PET acquisitions were done based on the same protocols detailed 

previously(Scholl et al., 2016). Standardized uptake value ratios (SUVR) were created using 

Freesurfer-defined cerebellar gray matter for PIB-PET. For 18F-flortaucipir, Freesurfer segmentation 

was combined with the SUIT template to include inferior cerebellum voxels avoiding contamination 

from off target binding in the dorsal cerebellum (Appendix methods).  

2.3. Mathematical modeling and parameter estimation 

We used a linearized neural mass model (NMM)(Raj et al., 2020;Verma et al., 2022) to estimate 

excitatory and inhibitory neuronal subpopulation parameters. In this regional-model, for every region 

𝑘, (𝑘 varies from 1 to 𝑁 and 𝑁 is the total number of regions) based on the Desikan-Killiany 

parcellation the regional population signal is modeled as the sum of excitatory signals 𝑥$(𝑡) and 

inhibitory signals 𝑥((𝑡). Both excitatory and inhibitory signal dynamics consist of a decay of the 

individual signals with a fixed neural gain, incoming signals from populations that alternate between 

the excitatory and inhibitory signals, and input Gaussian white noise. The equations for the 

excitatory and inhibitory signals for every region are the following: 

 
d𝑥$(𝑡)
d𝑡 = −

𝑓$(𝑡)
τ$

⋆ /𝑔$$𝑥$(𝑡) − 𝑔$(𝑓((𝑡) ⋆ 𝑥((𝑡)1 + 𝑝(𝑡)  

 
d𝑥((𝑡)
d𝑡 = −

𝑓((𝑡)
τ(

⋆ /𝑔((𝑥((𝑡) + 𝑔$(𝑓$(𝑡) ⋆ 𝑥$(𝑡)1 + 𝑝(𝑡)  
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where ⋆ stands for convolution; parameters 𝑔$$,	𝑔((, and 𝑔$(	are neural gains for the excitatory, 

inhibitory, and alternating populations, respectively; 𝜏$ and 𝜏( 	are time-constants of excitatory and 

inhibitory populations, respectively; 𝑝(𝑡) is the input Gaussian white noise; 𝑓$(𝑡) and 𝑓((𝑡) are 

Gamma-shaped ensemble average neural impulse response functions (Appendix methods for step-

by-step details). The parameters, 𝑔$$, 𝑔((, 𝜏$, and 𝜏(   were estimated for each region-of-interest (ROI) 

and parameter 𝑔$(	was fixed at 1. Each region’s spectra were modeled using the above equations, 

and the power spectral density was generated for frequencies 1-35 Hz. The goodness of fit of the 

model was estimated by calculating the Pearson’s correlation coefficient between the simulated 

model power spectra and the empirical source localized MEG spectra for frequencies 1-35 Hz. This 

goodness of fit value was used to estimate the model parameters. Parameter optimization was done 

using the basin hopping global optimization algorithm in Python (Wales and Doye, 1997). The model 

parameter values and bounds were specified as: 17 ms, 5ms, and 30 ms, respectively, for initial, 

upper-boundary and lower-boundary, for 𝜏$, and 𝜏(; 0.5, 0.1 and 10, respectively, for initial, upper-

boundary and lower-boundary, for 𝑔$$ and 𝑔((. The hyperparameters of the algorithm which included 

the number of iterations, temperature, and step-size were set at 2000, 0.1, and 4, respectively. If any 

of the parameters was hitting the specified bounds, parameter optimization was repeated with a 

step-size of 6 for that specific ROI, and finally the set of parameters which led to a higher Pearson’s 

correlation coefficient was chosen. The cost function for this optimization was negative of Pearson’s 

correlation coefficient between the source localized MEG spectra in dB scale and the model power 

spectral density in dB scale as well. This procedure was performed for every ROI of every subject.  

2.4. Statistical analyses 

Statistical tests were performed using SAS® software (SAS9.4; SAS Institute, Cary, NC). To 

compare the demographics and clinical characteristics between controls and patients with AD we 

used unpaired t-tests for age, Pearson χ	2 test for sex and handedness, Fisher’s exact test for 

race, Wilcoxon-Mann-Whitney test for education, MMSE, CDR and CDR-SOB.  

We used a one-way ANOVA to compare the broad-band power spectra between controls and 

patients, and a two-way-ANOVA model to compare across the three frequency bands, delta-
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theta, alpha and beta. Each model included a repeated measures design to incorporate the 68 

cortical ROIs per subject. Post-hoc comparisons were derived from comparing least-squares 

means with the adjustment of multiple comparisons using Tukey-Kramer test. The regional 

patterns of spectral power distributions incorporated unpaired t-tests at regional level and 

thresholded with 10% false discovery rate.  

To compare the neuronal parameters between the controls and patients we used a linear mixed 

effects model (PROC MIXED) with repeated measures design to incorporate the multiple ROIs 

per subject. We reported the estimated least-squares means and the statistical differences of 

least-squares means based on unpaired t-tests. 

We ran mixed effect models to examine the associations between tau- and Aβ-trace uptake and 

excitatory and inhibitory neuronal parameters derived from NMM. The predictor variables of 

models included the flortaucipir (tau) SUVR and 11C-PIB (Aβ) SUVR, at each ROI in patients with 

AD. We ran separate mixed effect models including the dependent variable of z-score measures 

depicting the change of each neuronal parameter in patients, based on age-matched control 

cohort, including the neuronal time-constants, 𝜏$  and 𝜏(, and neural gains, 𝑔$$ and 𝑔((. Each 

model included a repeated measures design to incorporate the 68 ROIs per subject and 

modeled the heterogeneity in residual variances at ROI. Mixed models to examine the 

associations between average scaling difference between the MEG spectra and the model 

output did not show any significant relationships. 

We ran separate mixed effect models where the dependent variable included the z-score 

measures depicting the change of spectral power in patients, based on age-matched control 

cohort, within (1) broad-band spectrum (1-35 Hz); (2) delta-theta spectrum (2-7 Hz); (3) alpha 

spectrum (8-12 Hz) (4) beta spectrum (13-35 Hz). Each model included a repeated measures 

design and modeled the heterogeneity in residual variances at ROI.  

We utilized the PROC MIXED procedure in SAS to perform mediation analysis (Bauer et al., 

2006) to test the hypothesis that distinct effects of tau and Aβ on the frequency-specific spectral 

power changes would be mediated via their unique modulatory effects on 𝜏$  and 𝜏(, respectively. 
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Specifically, we examined: (1) the direct and 𝜏( mediated effects of Aβ on delta-theta power; (2) 

the direct and 𝜏$ mediated effects of tau on alpha power; and (3) the direct and 𝜏$ mediated 

effects of tau on beta power. 

3. RESULTS 

On average, the patients were mild to moderately impaired with a mean Mini Mental state Exam 

score of 22.8±4.5 (MMSE range: 22–26), mean Clinical Dementia Rating of 0.72±0.47 (CDR range: 

0.5–0.8), and mean CDR-Sum of Boxes of 3.8±2.5, with characteristic cognitive deficits (Table 1; 

Appendix table 1). 

Table 1. Participant demographics and clinical characteristics. 

Characteristic Controls 
(N=35) 

Patients with AD  
(N=20) P * 

Age – yr 69.3.6 ± 8.4 66.3 ± 9.8 0.237 
Female sex – no. (%) 20 (57.1) 11 (55.0) 0.876 
White – no. (%)† 30 (90.9) 20 (100.0) 0.282 
Education – yr 18 (16 – 18)  18 (16 – 18) 0.855 
Right handedness – no. (%)  30 (85.7) 17 (85.0) 0.340 
MMSE‡ 30 (29 – 30) 23 (22 – 26) <.0001 
CDR§ 0 (0 – 0) 0.5 (0.5 – 0.8) <.0001 
CDR-SOB§ 0 (0 – 0) 3.5 (2.3 – 4.3) <.0001 
Age at disease onset . 59.4 ± 9.39 . 
Disease duration . 6.9 ± 2.4 . 

Values for age, age at disease onset and disease duration are means ±SD. Values for education, Mini Mental 
State Exam (MMSE), Clinical Dementia Rating (CDR) and CDR-Sum of Boxes (CDR-SOB), are medians with 
interquartile ranges within parentheses. *Statistical tests: P values are reported from unpaired t-test for age, 
Pearson χ 2 test for sex and handedness, Fisher’s exact test for race, Wilcoxon-Mann-Whitney test for education, 
MMSE, CDR and CDR-SOB. †Race or ethnic group was self-reported. Two control participants opted out from 
reporting the race. ‡Scores on the MMSE range from 0 to 30, with higher scores denoting better cognitive function. 
§Scores on the CDR range from 0 to 3 and scores on the CDR-SOB range from 0 to 18, with higher scores denoting 
more disability. AD = Alzheimer’s disease. 
 
3.1. Regional spectral changes in AD: increased delta-theta and reduced alpha and beta 

Patients with AD showed a clear leftward shift in their power spectra when compared to age-

matched controls. Specifically, AD patients showed a reduced spectral power within alpha (CI,  
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Figure. 1 Spectral power changes and altered excitatory and inhibitory neuronal subpopulations parameters 
in patients with AD.  
Patients with AD showed higher delta-theta (2-7 Hz) spectral power and lacked a clear alpha peak (8-12 Hz) as opposed 
to controls (A). A two-way-ANOVA comparing patients and controls showed significantly higher spectral power within 
delta-theta frequency band and showed significantly lower spectral power within alpha and beta (13-35 Hz) bands, in 
patients with AD (B). The markers depict the least-square means, and the error-bars depict the 95% confidence 
intervals. Regional patterns of spectral power changes in patients with AD showed increased delta-theta power is 
predominant in the frontal regions and reduced alpha and beta spectral power is predominant in the temporoparietal 
and occipital cortices (C). Images show the t-values from statistical comparison of regional data based on DK atlas 
parcellations and thresholded at FDR 10%. Schematic representation of the linear neural mass model (NMM) and an 
example model prediction (D). Linear NMM represents the local assemblies of excitatory and inhibitory neurons into 
lumped linear systems, at each region-of-interest (ROI). External inputs and outputs are gated through both excitatory 
and inhibitory neurons. The recurrent architecture of the two pools within a local area is captured by the neuronal time-
constants, 𝜏$  and 𝜏(, and neural gain terms, 𝑔$$ and 𝑔((, indicating the loops created by recurrents within excitatory, 
inhibitory and cross-populations. At each ROI, the model delivers these parameters as it predicts the broad-band 
spectrum (1-35 Hz) optimized to the empirical spectrum derived from MEG. Patients with AD showed significantly 
increased neuronal time-constants, 𝜏$  and 𝜏( compared to age-matched controls (E). Patients with AD also showed 
increased excitatory neural gain (𝑔$$) and reduced inhibitory neural gain (𝑔(() than controls (c). The markers and error-
bars depict the least-square means and 95% confidence intervals. Abbreviations: AD, Alzheimer’s disease; MEG, 
magnetoencephalography.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.09.483594doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483594
http://creativecommons.org/licenses/by/4.0/


 10 

58.04-59.85dB, 60.33-61.69dB, AD and controls, respectively) and beta (CI, 53.16-54.11B, 56.03-

56.75dB, AD and controls, respectively) but increased power within delta-theta bands (60.14-

61.79dB, 57.60-58.85dB, AD and controls, respectively) (Figure.1A-B). A direct region-wise 

comparison showed a frontal predominant spatial distribution for the spectral power increase within 

delta-theta and a posterior predominant distribution for the spectral power reduction in alpha and 

beta (Figure.1C). These results demonstrate the frequency specific and region dependent 

characteristics of oscillatory abnormalities in AD patients. 

3.2. Estimated neural mass model parameters demonstrate altered excitatory and inhibitory 

subpopulation activity 

We used a linear NMM, capable of reproducing spectral properties of neural activity, to predict the 

empirical spectra at regional level (i.e., 68 cortical regions) in patients with AD and controls. NMM 

predicted four parameters for neuronal populations: the excitatory time-constant (𝜏$), inhibitory time-

constant (𝜏(), excitatory neural gain (𝑔$$), and inhibitory neural gain (𝑔((). Specifically, in each 

subject, and for each cortical region, the NMM parameters were estimated for the best fit (highest 

Pearson correlation coefficient) between observed MEG power spectrum and the NMM spectrum 

(Figure.1D; Appendix figure.1).  Statistical mixed models with repeated measures demonstrated that 

AD patients have significantly increased time-constant parameters of excitatory and inhibitory 

neurons (𝜏$ and 𝜏() than controls (Figure.1E; 𝜏$: CI, 15.27-16.19, 11.49- 2.18; P<0.0001; 𝜏(: CI, 

16.03-16.96, 15.02-15.73; P=0.0002, AD and controls, respectively; Appendix figure.2A-B). 

Furthermore, AD patients showed increased 𝑔$$   and reduced 𝑔((   compared to controls indicating 

abnormal neural gains in both excitatory and inhibitory subpopulations (Figure.1E; 𝑔$$: CI,1.88-2.21, 

1.59-1.87; P=0.0005; 𝑔((: CI, 3.04-3.42, 3.52-3.81; P=0.0003, AD and controls, respectively; 

Appendix figure.2C-D).  

3.3. Tau and Aβ distinctly modulate excitatory and inhibitory time-constants, respectively. 

Next, we examined the functional associations of model parameters with flortaucipir (tau) and 11C-

PiB (Aβ) uptake patterns (Appendix figure.2E-F). linear mixed effects models showed that increased 

𝜏$ was correlated with higher tau-tracer uptake, while increased 𝜏( was correlated with higher Aβ-
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tracer uptake (Figure.2A&D; 𝜏$:tau, t=4.11, P<0.0001; 𝜏(: Aβ, t=3.38, P=0.0008). In contrast, there 

were no correlations between 𝜏$ and Aβ-tracer uptake and between 𝜏( and tau-tracer uptake 

(Fig.2B&C; 𝜏$: Aβ, t=-1.59, P=0.1131; 𝜏(: tau, t=0.54, P=0.5863). In contrast to time-constant 

associations, altered neural gains did not show statistically significant associations to either 

flortaucipir or 11C-PiB uptakes (Appendix figure.3). Distinctive association of tau with excitatory time-

constants and Aβ with inhibitory time-constants may support the hypothesis of distinct roles of tau 

and Aβ mediated pathomechanisms on excitatory and inhibitory synaptic functions. 

3.4. Spectral changes associated with tau and Aβ are partially mediated by altered excitatory 

and inhibitory time-constants. 

Next, we tested the hypothesis that effects of tau and Aβ on the frequency-specific spectral power 

changes would be mediated by their unique modulatory effects on 𝜏$ and 𝜏(, respectively. To this 

 
Figure. 2 Associations between tau- and Aβ-tracer uptake and excitatory and inhibitory neuronal time-
constants in patients with AD.  
Increased time-constants showed distinct associations with tau and Aβ in AD patients. Increased excitatory time-
constant (𝜏$) was positively correlated with tau, but not with Aβ (A, B). Increased inhibitory time-constant (𝜏() was 
positively correlated with Aβ, but not with tau (C, D). Subplots A-D indicate the model estimates from linear mixed 
effects models predicting the changes (z-scores) in each neuronal parameter from flortaucipir (tau) SUVR and 11C-
PIB (Aβ) SUVR, in patients with AD. The fits depicting tau predictions were computed at the average SUVR of Aβ 
(1.99), and the fits depicting Aβ were computed at average SUVR of tau (1.64). The scatter plots indicate the 
predicted values from each model incorporating a repeated measures design. Abbreviations: AD, Alzheimer’s 
disease; Aβ, amyloid-beta. 
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end, we first demonstrated the specific relationships between frequency-specific spectral changes 

and regional tracer uptake (flortaucipir and 11C-PiB). Consistent with previous reports(Canuet et al., 

2015;Nakamura et al., 2018;Pusil et al., 2019;Ranasinghe et al., 2020), linear mixed model analyses 

showed that associations of tau and Aβ on the power spectrum were frequency specific. For 

example, delta-theta was only associated with Aβ (positive correlation) and showed no associations 

to tau (Figure.3A-B). In contrast, alpha and beta power spectra showed significant associations to 

both tau and Aβ, where higher tau reduced spectral power and higher Aβ  

 

Figure. 3 Frequency-specific spectral power modulations of tau and Aβ are partially mediated via increased excitatory 
(𝝉𝒆) and inhibitory (𝝉𝒊) time-constants.  
Associations between tau- and Aβ-tracer uptake and spectral power changes in patients with AD are depicted in subplots A, B, 
D, E, G, H. Tau was not associated with the delta-theta (2-7 Hz) spectral changes (A), while it was positively modulated by Aβ 
(B). Both alpha (8-12 Hz), and beta (13-35 Hz) spectra showed significant negative associations with tau (D, G) and significant 
positive associations with Aβ (E, H). Subplots indicate the model estimates from linear mixed effects analyses predicting the 
spectral power changes from flortaucipir (tau) SUVR and 11C-PIB (Aβ) SUVR, for patients with AD. The fits depicting tau 
predictions were computed at the average SUVR of Aβ (1.99), while the fits depicting Aβ were computed at average SUVR of 
tau (1.64). The scatter plots indicate the predicted values from each model incorporating a repeated measures design to account 
for 68 regions per subject. Subplots C, F and I depicts mediation models to examine the direct effects of tau and Aβ, and the 
effects mediated through excitatory (𝜏$) and inhibitory (𝜏() time-constants on different frequency bands. Delta-theta power 
increases were significantly affected by Aβ and was partially mediated through the effect of Aβ on inhibitory (𝜏() time-constant 
(C). Alpha power reductions were affected by tau and a small, but a significant fraction of this effect was mediated through the 
effect of tau on excitatory (𝜏$) time-constant (F). Beta power reductions were significantly affected by tau, although there was 
no statistically significant effect mediated through the effect of tau on excitatory (𝜏$) time-constant (I). Aβ effects on alpha and 
beta spectral changes were only direct effects with not statistically significant effects mediated through altered inhibitory (𝜏() 
time-constants. Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid-beta; SUVR, standardized uptake value ratio. 
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increased spectral power (Figure.3D-E and G-H). Including regional cortical atrophy as a covariate 

into models did not influence these relationships indicating that spectral changes are robust to 

neuronal loss (Appendix figure.4). In summary, delta-theta power was uniquely associated with Aβ 

while reduced alpha and beta spectral power was the result of a dual modulation by tau and Aβ with 

a net negative modulatory effect from tau.  

Next, we used a mediation analysis to examine whether the distinct effects of tau and Aβ on 

frequency-specific spectral changes are mediated via 𝜏$  and 𝜏(, respectively.  The mediation 

analyses specifically examined: (1) the direct and 𝜏( mediated effects of Aβ on delta-theta power; (2) 

the direct and 𝜏$ mediated effects of tau on alpha and beta power; and (3) the direct and 𝜏( mediated 

effects of Aβ on alpha and beta power. We found that Aβ modulation of delta-theta power was 

significantly mediated through 𝜏( in addition to direct modulation (Figure.3C). We also found that tau 

modulation of alpha power was significantly mediated through 𝜏$ in addition to the direct modulation 

(Figure.3F), whereas Aβ modulation of alpha power was only through a direct effect. Tau as well as 

Aβ modulation of beta power occurred only though direct effects (Figure.3I). Collectively, 𝜏$  and 𝜏( 

partially mediated the effects of AD proteinopathy towards the signature spectral change observed in 

AD. 

4. DISCUSSION 

This is the first study, in patients with AD, showing quantitative links between altered neuronal 

subpopulation dynamics of excitatory and inhibitory function with abnormal accumulations of tau and 

Aβ. We combined electrophysiology, molecular imaging, and NMM model, to examine the excitatory 

and inhibitory parameters of regional neural subpopulations in patients with AD and how these relate 

to tau and Aβ depositions. AD patients showed abnormal excitatory and inhibitory neuronal 

parameters compared to controls and with distinct associations to tau and Aβ where higher tau 

correlated with increased excitatory time-constants and higher Aβ correlated with increased 

inhibitory time-constants. Furthermore, the frequency specific associations of spectral changes to 

tau and Aβ were partially mediated by increased excitatory and inhibitory time-constants, 
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respectively. Collectively, our findings demonstrate distinct functional consequences of tau and Aβ at 

the level of circuits where cellular and molecular changes of AD pathophysiology possibly converge, 

and provide a rationale to identify potential mechanisms of excitation-inhibition imbalance, 

hyperexcitability, and abnormal neural synchronization in AD patients that could help guide future 

clinical studies. 

4.1. Abnormal excitatory and inhibitory time-constants represent differential functional 

consequences of AD pathophysiology at circuit-level  

Unlike invasive basic science approaches that can be designed to examine causal relationships, 

clinical investigations for the most part are limited to examine associative relationships. Nonetheless, 

the associative links from clinical investigations provide essential building blocks to link the findings 

from preclinical models to clinical manifestations in patients. NMM is currently by far the most 

sophisticated tool to investigate circuit function at the level of excitatory and inhibitory neuronal 

subpopulations in the human brain using non-invasive imaging modalities. The finding that excitatory 

and inhibitory time-constant abnormalities are uniquely correlated with higher tau and Aβ, 

respectively, draws a few key insights in the context of our evolving understanding of AD 

pathobiology.  

The distinctive association of higher tau accumulations to increased excitatory time-constants which 

indicate aberrant excitatory function within local ensembles of neuronal subpopulations, is consistent 

with multiple lines of evidence suggesting how tau affects excitatory function of neural circuits. For 

example, neuropathological studies in human patients with AD detailing the morphology and location 

of cells that accumulate tau and degenerate, indicate an increased vulnerability of excitatory neurons 

to tau related pathomechanisms (Hyman et al., 1984;Braak and Braak, 1991). In basic science 

studies, mice expressing mutant human tau demonstrate impaired synaptic transmission of 

glutamate leading to reduced firing of pyramidal neurons (Hoover et al., 2010;Fu et al., 2017;Fu et al., 

2019) while tau reduction in transgenic mice produce an overall decrease in baseline excitatory 

neuronal activity and modulated the inhibitory neuronal activity leading to reduced network 
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excitation. The collective insight from these observations indicates a relative vulnerability of 

excitatory function in neural networks to tau and a resulting network hypoactivity(Harris et al., 2020). 

Two key findings from the current study are consistent with this discernment, and include: (1) 

excitatory neuronal parameters uniquely associated with increased tau depositions; (2) reduced 

oscillatory activity of alpha band associated with higher tau being partially mediated by abnormal 

excitatory time-constants. Although these findings do not exclude the possibility of tau directly 

altering firing patterns of inhibitory neurons(Chang et al., 2021), they support the hypothesis that the 

effects of tau pathophysiology within local networks manifest as excitatory function deficits. 

In contrast to intracellular aggregates of tau, accumulation of Aβ is extracellular (Braak and Braak, 

1991;Nagy et al., 1995). AD basic science models have demonstrated a range of Aβ associated 

pathomechanisms that ranges from toxic effects of different Aβ forms affecting both excitatory and 

inhibitory synaptic functions (Meyer-Luehmann et al., 2008;Busche et al., 2012;Busche et al., 2015;Zott 

et al., 2019). A potential means by which Aβ leads to network dysfunction in animal models of AD is 

abnormal hyperactivity in cortical and hippocampal neurons(Palop and Mucke, 2016). Compelling 

evidence from AD transgenic mice indicate impaired inhibitory synaptic function as a contributory 

cause for Aβ related neuronal hyperactivity(Busche et al., 2008;Busche et al., 2012;Verret et al., 2012). 

Our findings draw remarkable parallels to these basic science observations by showing unique 

associations between inhibitory time-constant abnormalities and higher Aβ tracer uptake. It is 

important to reiterate that the current findings indicate an overall inhibitory functional deficit at the 

level of local networks which in turn may be contributed by abnormal inhibitory as well as excitatory 

deficits at cellular level. Basic science experiments indeed have identified reduced inhibitory 

interneuron activity as well as aberrant glutamate transmission as potential underlying causes of 

network hyperactivity in AD transgenic mice (Busche et al., 2008;Verret et al., 2012;Zott et al., 2019).  

Collectively, findings from this clinical imaging investigation, together with comparable basic science 

evidence, help bridge a crucial gap between circuit level abnormalities and cellular level 

abnormalities in AD. A key finding from preclinical AD models is that cellular level changes 

associated with tau and Aβ produces a combined functional consequence of altered excitatory-
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inhibitory imbalance in neural networks(Palop and Mucke, 2016;Harris et al., 2020;Chang et al., 

2021;Maestu et al., 2021). Future studies delineating the mechanistic relationships between 

increased excitatory and inhibitory time-constants and network hyperexcitability are crucial to 

understand how tau and Aβ impair excitatory-inhibitory balance in patients with AD.  

Although we found significant impairments in both excitatory and inhibitory gain parameters in AD 

patients, these did not show significant associations with tau and Aβ. This result maybe explained in 

part by the relative smaller effect sizes of gain parameters (compared to time-constants). Another 

possible explanation for this finding may be related to the type of molecular form associated with 

pathophysiological effects. In both tau and Aβ, not only that the soluble, molecular forms are 

important mediators of neurotoxicity but also their effects predominate during the preclinical stages 

of the disease(Busche, 2019;Zott et al., 2019). However, PET tracer uptake represents mostly the 

deposited non-soluble forms of protein accumulations. As such it is possible that abnormal neural 

gains may represent an early effect of soluble neurotoxins, while abnormal time-constants may 

represent dynamic effects of network changes indicative of progressive pathophysiological events.  

Frequency-specific spectral changes may indicate distinct processes leading to network 

dysfunction in AD 

Although a unifying principle governing the physiology of rhythmic oscillations remains obscure, a 

commonly accepted principle is that oscillations regulate the top-down processing of local neuronal 

firing and facilitate long-range interactions (Uhlhaas et al., 2009). Low frequency delta-theta and mid 

frequency alpha and beta oscillations employ diverse physiological mechanisms determined by 

different ionic currents (Wang, 2010) and have distinct functional roles (Engel et al., 2001). The 

prominent view in the current literature is that delta-theta oscillations are positive top-down 

modulators of local neural activity whereas the power of alpha and beta exert an inhibitory 

modulation of irrelevant neuronal activity thus reducing the neural noise (Klimesch, 1999). We 

speculate that higher delta-theta power associated with increased Aβ therefore may predispose a 

dysregulated increase of local firing, which is consistent with the proposed hyperexcitability 

phenomenon described in both preclinical and clinical AD studies(Palop and Mucke, 2010;Vossel et 
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al., 2016). Our results are also consistent with the phenomena of opposing modulations from tau and 

Aβ resulting in a net effect of reduced activity(Harris et al., 2020). For example, alpha and beta 

oscillations were positively modulated by Aβ and negatively modulated by tau, albeit a stronger net 

negative effect with reduced alpha and beta power. Because alpha oscillations are considered as 

inhibitory gain controllers of local circuits(Klimesch et al., 2007;Lorincz et al., 2009), it is speculative 

that a net reduction of alpha may yet again be favorable for a hyperexcitable network status. The 

positive correlation between the characteristic increase of delta-theta and higher levels of Aβ, and 

the negative correlation between increased phosphorylated tau, and alpha and beta oscillatory 

power, in patients with AD, are also consistent with previous experiments that combined MEG/EEG 

with Aβ-PET as well with cerebrospinal fluid protein assays (Canuet et al., 2015;Nakamura et al., 

2018;Smailovic et al., 2018;Pusil et al., 2019). Collectively, the multimodal neuroimaging in AD 

patients in the current study demonstrate how positive oscillatory modulators (delta-theta) are 

associated with Aβ, while negative oscillatory modulators (alpha) are associated with tau, and offer 

new perspectives for network stabilizing therapies. Future studies are warranted to further delineate 

the contributions from excitatory and inhibitory subpopulation functions towards network 

hyperexcitability and their interplay with oscillatory spectral changes. 

4.2. Limitations 

Our findings should be considered in the context of the following limitations. First, it is important to 

point out that any computational model may not perfectly capture the complex dynamics of 

structure–function coupling of the human brain. Nonetheless, our model had the advantage of using 

only a few parameters which were interpretable in terms of the underlying biophysics. While the 

current study was limited to examine the pathophysiological consequences on network properties in 

AD patients, it is equally important to understand the same phenomena in normal aging. Finally, the 

current sample size limited the ability to establish a natural history of the excitatory and inhibitory 

neuronal parameters, which will be the focus of future investigations. 
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1. Appendix Figures 

1.1. Appendix figure.1 

 

Observed and predicted power spectra in patients with AD and age-matched controls. Observed 

and model predicted spectra for each participant in the age-matched controls (A-B) and patients with AD 

(C-D). Each individual line depicts the average spectrum for a given subject across 68 cortical ROIs. The 

dark line depicts the group averages. The observed spectra are derived from the source space 

reconstructed MEG time-series data. The model spectra were generated from the linear neural mass 

model with optimized neuronal parameters for time constants (excitatory,𝜏e  and inhibitory,𝜏i) and neural 

gains (excitatory, gee and inhibitory, gii) to predict the broad-band spectrum (1-35 Hz) optimized to the 

empirical spectrum derived from MEG. Abbreviations: AD, Alzheimer’s disease; MEG, 

magnetoencephalography; ROI, regions-of-interest.  
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1.2. Appendix figure.2 

 

Regional patterns of neuronal subpopulation parameters and protein tracer uptakes in patients 

with AD. Subplots A-D depict the regional differences (z-scores) for excitatory time-constant (A), 

inhibitory time-constant (B), excitatory gain (C) and inhibitory gain (D) parameters in AD patients with 

when compared to age-matched controls. Subplots E and F depict the average regional patterns of 

flortaucipir SUVR (E) and 11C-PIB SUVR (F) for patients with AD showing high flortaucipir retention in 

temporal lobe, posterior and lateral parietal regions, and high 11C-PIB retention in bilateral frontal and 

posterior parietal cortices. Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid-beta.  
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1.3. Appendix figure.3 

 
 

Associations between tau- and Aβ-tracer uptake and neuronal gain parameters in patients 

with AD. Altered gain parameters did not show significant associations with tau and Aβ in AD 

patients. Subplots A-D indicate the model estimates from linear mixed effects models predicting the 

changes (z-scores) in each neuronal parameter from flortaucipir (tau) SUVR and 11C-PIB  (Aβ) 

SUVR, in patients with AD. The fits depicting tau predictions were computed at the average SUVR of 

Aβ (1.99), and the fits depicting Aβ were computed at average SUVR of tau (1.64). The scatter plots 

indicate the predicted values from each model incorporating a repeated measures design. 

Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid-beta; gee, excitatory gain; gii, inhibitory gain; MEG; 

SUVR, standardized uptake value ratio.  
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1.4. Appendix figure.4 

 

Associations between spectral power changes and tau- and Aβ-tracer uptake after correcting for 

regional atrophy. Tau showed a significant negative association (A), while Aβ showed a significant 

positive association (B), with the broad band power spectrum (2-35 Hz). These effects were distinct within 
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each frequency-specific spectrum. Tau was not associated with the delta-theta (2-7 Hz) spectral changes 

(C), while it was positively modulated by Aβ (D). Both alpha (8-12 Hz), and beta (13-35 Hz) spectra 

showed significant negative associations with tau and significant positive associations with Aβ (E-H). 

Each subplot indicates the estimates from linear mixed effects models predicting the spectral power 

changes from flortaucipir (tau) SUVR and 11C-PIB  (Aβ) SUVR, after including the additional covariate of 

cortical atrophy in each ROI, in patients with AD. The fits depicting tau predictions were computed at the 

average SUVR of Aβ (1.99), while the fits depicting Aβ were computed at average SUVR of tau (1.64), 

each at the average w-score of cortical volume (-0.62). The scatter plots indicate the predicted values 

from each model incorporating a repeated measures design to account for 68 regions per subject. Z-

scores for spectral power values were calculated based on the normal control cohort. Abbreviations: AD, 

Alzheimer’s disease; Aβ, amyloid-beta; SUVR, standardized uptake value  
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2. Appendix Tables 

2.1.   Appendix table.1: Neuropsychological test performance in patients with AD 

Variable Test Score 
(Mean ± SD) 

Episodic memory function  
Visual free recall (Benson 10 minutes) 4.9 ± 3.2  
Short delay verbal memory (CVLT 30 seconds) 3.9 ± 2.4  
Verbal free recall (CVLT 10 minutes) 2.3 ± 2.9  
Executive function & working memory   
Design Fluency  6.4 ± 2.9 
Information processing speed (Stroop color naming)  48.2 ± 17.6 
Cognitive control (Stroop Inhibition)  21.3 ± 12.9 
Verbal working memory (Digit span forward) 5.3 ± 1.33  
Attention (Digit span backward) 3.8 ± 1.2  
Set shifting (Modified trails – speed) 0.2 ± 0.2  
Verbal learning (CVLT total score) 17.9 ± 6.6  
Language function   
Reading irregular words 5.6 ± 0.7 
Syntax comprehension 3.9 ± 1.2   
Verbal Agility 4.6 ± 1.2  
Boston Naming Test  12.3 ± 3.1 
Lexical Fluency (D words/1 minute)  10.8 ± 5.0 
Category Fluency (Animals/1 minute) 11.4 ± 5.0  
Repetition  3.3 ± 1.4 
Visuospatial function   
Face discrimination (CATS – face matching) 10.8 ± 1.7  
Visuoconstruction (Benson copy) 12.8 ± 4.2  
Location discrimination (VOSP number location) 7.5 ± 2.5  
Calculations 3.4 ± 1.4  
Emotion naming (CATS – affect matching) 12.7 ± 1.0  

CVLT=California Verbal Learning Test containing 9 items; CATS=Comprehensive Affect Testing 

System; VOSP=Visual Object and Space Perception. 
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3. Appendix Methods 

3.1.   Resting state MEG data acquisition 

Each subject underwent MEG recording on a whole-head biomagnetometer system consisting of 

275 axial gradiometers (MISL, Coquitlam, British Columbia, Canada), for 5-10 minutes. Three 

fiducial coils including nasion, left and right pre-auricular points were placed to localize the position 

of head relative to sensor array, and later co-registered to each individual’s respective MRI to 

generate an individualized head shape. Data collection was optimized to minimize within-session 

head movements and to keep it below 0.5 cm. 5-10 minutes of continuous recording was collected 

from each subject while lying supine and awake with eyes closed (sampling rate: 600Hz). We 

selected a 60-second (1 minute) continuous segment with minimal artifacts (minimal excessive 

scatter at signal amplitude <10 pT), for each subject, for analysis. The study protocol required the 

participant to be interactive with the investigator and be awake at the beginning of the data 

collection. Spectral analysis of each MEGI recording and the simultaneously collected scalp EEG 

recordings were examined to confirm that the 60-second data epoch represented awake, eyes 

closed resting state for each participant. Artifact detection was confirmed by visual inspection of 

sensor data and channels with excessive noise within individual subjects were removed prior to 

analysis. 

3.2. Source space reconstruction of MEG data and spectral power estimation 

Tomographic reconstructions of the MEG data were generated using a head model based on each 

participant’s structural MRI. Spatiotemporal estimates of neural sources were generated using a 

time–frequency optimized adaptive spatial filtering technique implemented in the Neurodynamic 

Utility Toolbox for MEG (NUTMEG; http://nutmeg. berkeley.edu). Tomographic volume of source 

locations (voxels) was computed through an adaptive spatial filter (10 mm lead field) that weights 

each location relative to the signal of the MEG sensors (Dalal et al., 2008;Dalal et al., 2011). The 

source space reconstruction approach provided amplitude estimations at each voxel derived through 

the linear combination of spatial weighting matrix with the sensor data matrix (Dalal et al., 2008). A 
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high-resolution anatomical MRI was obtained for each subject (see below) and was spatially 

normalized to the Montreal Neurological Institute (MNI) template brain using the SPM software 

(http://www.fil.ion.ucl.ac.uk/spm), with the resulting parameters being applied to each individual 

subject's source space reconstruction within the NUTMEG pipeline (Dalal et al., 2011). 

To prepare for source localization, all MEG sensor locations were co-registered to each subject's 

anatomical MRI scans. The lead field (forward model) for each subject was calculated in NUTMEG 

using a multiple local-spheres head model (three- orientation lead field) and an 8 mm voxel grid 

which generated more than 5000 dipole sources, all sources were normalized to have a norm of 1. 

The MEG recordings were projected into source space using a beamformer spatial filter. Source 

estimates tend to have a bias towards superficial currents and the estimates are more error-prone 

when we approach subcortical regions, therefore, only the sources belonging to the 68 cortical 

regions were selected for further analyses. Specifically, all dipole sources were labeled based on the 

Desikan–Killiany parcellations, then sources within a 10 mm radial distance to the centroid of each 

brain region were extracted for each region. In this study we examined the broad-band (1-35 Hz) 

and also the regional power spectra of three frequency bands: 2-7 Hz delta-theta band—a window 

that captures the full range of low frequency oscillatory activity described in human neurophysiology 

(Jacobs, 2014;Goyal et al., 2020), 8-12 Hz alpha band and 13-35 Hz beta band. Power spectra were 

derived by applying FFT on the time-course data and then converted to dB scale. 

3.3. Mathematical modeling and parameter estimation 

We used a neural mass model (NMM) (David and Friston, 2003;Moran et al., 2013;Hartoyo et al., 2020) 

based on an analytical and linearized version published previously (Raj et al., 2020;Verma et al., 

2022) for estimation of regional model parameters. In this model, for every region 𝑘, where 𝑘 varies 

from 1 to 𝑁 and 𝑁 is the total number of regions based on the Desikan-Killiany parcellation the 

regional population signal is modeled as the sum of excitatory signals 𝑥$(𝑡) and inhibitory signals 

𝑥((𝑡) (Figure.1D). 
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Both excitatory and inhibitory signal dynamics consist of a decay of the individual signals with a fixed 

neural gain, incoming signals from populations that alternate between the excitatory and inhibitory 

signals, and input Gaussian white noise. The equations for the excitatory and inhibitory signals for 

every region are the following: 

 
d𝑥$(𝑡)
d𝑡 = −

𝑓$(𝑡)
τ$

⋆ /𝑔$$𝑥$(𝑡) − 𝑔$(𝑓((𝑡) ⋆ 𝑥((𝑡)1 + 𝑝(𝑡) 1 

 
d𝑥((𝑡)
d𝑡 = −

𝑓((𝑡)
τ(

⋆ /𝑔((𝑥((𝑡) + 𝑔$(𝑓$(𝑡) ⋆ 𝑥$(𝑡)1 + 𝑝(𝑡) 1 

where ⋆ stands for convolution, parameters 𝑔$$,	𝑔((, and 𝑔$(	are neural gains for the excitatory, 

inhibitory, and alternating populations, respectively, 𝜏$ and 𝜏( 	are characteristic time constants of the 

excitatory and inhibitory populations, respectively, 𝑝(𝑡) is the input Gaussian white noise, and 𝑓$(𝑡) 

and 𝑓((𝑡) are Gamma-shaped ensemble average neural impulse response functions written as 

following: 

 𝑓$(𝑡) =
𝑡
τ$>
𝑒
@A
BC  2 

 𝑓((𝑡) =
𝑡
τ(>
𝑒
@A
BD  3 

Since these are linear equations, the closed form solution of 𝑥$(𝑡) and 𝑥((𝑡) can be obtained in the 

Fourier domain as 𝑋$(ω) and 𝑋((ω)  respectively, where ω is the frequency, by taking a Fourier 

transform of Equations 1 and 2 as the following: 

 𝑗ω𝑋$(ω) = −
𝐹$(ω)
τ$

/𝑔$$𝑋$(ω) − 𝑔$(𝐹((ω)𝑋((ω)1 + 𝑃(ω) 4 

 𝑗ω𝑋((ω) = −
𝐹((ω)
τ(

/𝑔((𝑋((ω) + 𝑔$(𝐹$(ω)𝑋$(ω)1 + 𝑃(ω) 5 

where 𝑗 is the imaginary unit, 𝑃(𝜔) is the Fourier transform of 𝑝(𝑡), and 𝐹$(𝜔) and 𝐹((𝜔) are written 

as the following: 
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 𝐹$(ω) =

1
τ$>

L𝑗ω + 1
τ$
M
>  6 

 𝐹((ω) =

1
τ(>

L𝑗ω+ 1
τ(
M
>  7 

Solving the above Equations 5 and 6 yields the following: 

 𝑋$(ω) =

N1 +

𝑔$(
τ$
𝐹$(ω)𝐹((ω)

𝑗ω + 𝑔((τ(
𝐹((ω)

O𝑃(ω)

𝑗ω + 𝑔$$τ$
𝐹$(ω) +

/𝑔$(𝐹$(ω)𝐹((ω)1
>

τ$τ( P𝑗ω +
𝑔((
τ(
𝐹((ω)Q

 8 

 

 𝑋((ω) =

N1 −

𝑔$(
τ(
𝐹$(ω)𝐹((ω)

𝑗ω + 𝑔$$τ$
𝐹$(ω)

O𝑃(ω)

𝑗ω + 𝑔((τ(
𝐹((ω) +

/𝑔$(𝐹$(ω)𝐹((ω)1
>

τ$τ( P𝑗ω +
𝑔$$
τ$

𝐹$(ω)Q

 9 

Thus, 𝑋$(ω) and 𝑋((ω) can be written as 𝐻$(ω)𝑃(ω) and 𝐻((ω)𝑃(ω), respectively, where 𝐻$(ω) and 

𝐻((ω) are the transfer functions and 𝑃(ω) is the driving function. The simulated spectra 𝑋(ω) =

𝑋$(ω) + 𝑋((ω) = /𝐻$(ω) + 𝐻((ω)1𝑃(ω), and the power spectral density is estimated as 𝔼(|𝑋(ω)|>), 

where 𝔼 is the expectation. Since the driving function 𝑃(ω) is Gaussian noise which has a flat power 

spectrum, 𝔼(|𝑋(ω)|>) ∝ |𝐻$(ω) + 𝐻((ω)|>. Finally, it is converted to dB scale by calculating 

10log10(|𝐻$(ω) + 𝐻((ω)|>). 

The parameters, 𝑔$$, 𝑔((, 𝜏$, and 𝜏(   were estimated for each region-of-interest (ROI) and parameter 

𝑔$(	was fixed at 1. Each region’s spectra were modeled using the above equations, and the power 

spectral density was generated for frequencies 1-35 Hz. The goodness of fit of the model was 

estimated by calculating the Pearson’s correlation coefficient between the simulated model power 
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spectra and the empirical source localized MEG spectra for frequencies 1-35 Hz. This goodness of 

fit value was used to estimate the model parameters. Parameter optimization was done using the 

basin hopping global optimization algorithm in Python (Wales and Doye, 1997). The model parameter 

values and bounds were specified as: 17 ms, 5ms, and 30 ms, respectively, for initial, upper-

boundary and lower-boundary, for 𝜏$, and 𝜏(; 0.5, 0.1 and 10, respectively, for initial, upper-boundary 

and lower-boundary, for 𝑔$$ and 𝑔((. The hyperparameters of the algorithm which included the 

number of iterations, temperature, and step-size were set at 2000, 0.1, and 4, respectively. If any of 

the parameters was hitting the specified bounds, parameter optimization was repeated with a step-

size of 6 for that specific ROI, and finally the set of parameters which led to a higher Pearson’s 

correlation coefficient was chosen. The cost function for this optimization was negative of Pearson’s 

correlation coefficient between the source localized MEG spectra in dB scale and the model power 

spectral density in dB scale as well. This procedure was performed for every ROI of every subject.  

In order to examine the effects of model parameters on excitatory and inhibitory activity, 

𝑋$(ω)/𝑋((ω) was calculated while varying each of the parameters 𝑔$$, 𝑔((, 𝜏$, and 𝜏( one-by-one, 

keeping others fixed at their estimated mean values calculated for the control cohort. This 

exploration demonstrated the complex dependency of  𝑋$(ω)/𝑋((ω)  on parameters which varied in 

a frequency-dependent manner.  The complex predictions from 𝑔$$ and  𝑔(( illustrated their control 

effect on the decay terms in Equations 1 and 2. For instance, when 𝑔$$ is increased, 𝑥$(𝑡) decays 

sooner whereas when 𝑔(( is increased, 𝑥((𝑡) decays sooner, leading to a reduction in 𝑥$(𝑡) inhibition 

and subsequently an increase in 𝑋$(ω)/𝑋((ω). 

3.4. PET Data acquisition and image processing 

Detailed descriptions of flortaucipir and PiB PET acquisition are available in previous publications 

(Ossenkoppele et al., 2016;Scholl et al., 2016). All PET scans were acquired at Lawrence Berkeley 

National Laboratory (LBNL) on Siemens Biograph 6 Truepoint PET/CT scanner (Siemens Medical 

Systems) in 3D acquisition mode. Flortaucipir was synthesized at the LBNL Biomedical Isotope 

Facility (BIF) using a GE TracerLab FXN-Pro synthesis module with a modified protocol based on an 
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Avid Radiopharmaceuticals protocol supplied to the facility. Participants were injected with 10 mCi of 

tracer and scanned in listmode 80-100 minutes post-injection (4x5 min frames). 11C-PIB was also 

synthesized at the LBNL BIF according to a previously published protocol (Mathis et al., 2003). 

Beginning at the start of an injection of 15mCi of PIB into an antecubital vein, 90 min of dynamic 

emission data were acquired and subsequently binned into 35 frames (4x15s, 8x30s, 9x60s, 2x180s, 

10x300s and 2x600s). Flortaucipir and 11C-PIB PET images were reconstructed using an ordered 

subset expectation maximization algorithm with weighted attenuation and smoothed with a 4 mm 

Gaussian kernel with scatter correction. Image resolution, calculated using a Hoffman brain 

phantom, was 6.5 × 6.5 × 7.25 mm3. 90 minutes of dynamic post-injection data for PIB and 80–100 

minutes post-injection data for flortaucipir were used for the following PET processing.  

Each patient’s MRI was segmented using Freesurfer 5.3 (http://surfer.nmr.mgh.harvard.edu) (Fischl 

et al., 2002). PET data were realigned and co-registered onto their corresponding T1 image using the 

Statistical Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm/). Standardized uptake 

value ratio (SUVR) images were created using Freesurfer-defined cerebellar gray matter for PIB-

PET. For FTP, Freesurfer segmentation was combined with the SUIT template (Diedrichsen, 2006) to 

only include inferior cerebellum voxels therefore avoiding contamination from off target binding in the 

dorsal cerebellum (Baker et al., 2017).  

3.5. Magnetic Resonance image acquisition and analysis 

Structural brain images were acquired from all participants using a unified MRI protocol on a 3 Tesla 

Siemens MRI scanner at the Neuroscience Imaging Center (NIC) at UCSF. Structural MRIs were 

used to generate invidualized head models for source space reconstruction of MEG sensor data. 

The structural MRI scans were also used in the clinical evaluations of patients with AD to identify the 

pattern of grey matter volume loss to support the diagnosis of AD. 
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FIGURE LEGENDS 

 

Figure. 1 Spectral power changes and altered excitatory and inhibitory neuronal 

subpopulations parameters in patients with AD.  

Patients with AD showed higher delta-theta (2-7 Hz) spectral power and lacked a clear alpha 

peak (8-12 Hz) as opposed to controls (A). A two-way-ANOVA comparing patients and 

controls showed significantly higher spectral power within delta-theta frequency band and 

showed significantly lower spectral power within alpha and beta (13-35 Hz) bands, in 

patients with AD (B). The markers depict the least-square means, and the error-bars depict 

the 95% confidence intervals. Regional patterns of spectral power changes in patients with 

AD showed increased delta-theta power is predominant in the frontal regions and reduced 

alpha and beta spectral power is predominant in the temporoparietal and occipital cortices 

(C). Images show the t-values from statistical comparison of regional data based on DK atlas 

parcellations and thresholded at FDR 10%. Schematic representation of the linear neural 

mass model (NMM) and an example model prediction (D). Linear NMM represents the local 

assemblies of excitatory and inhibitory neurons into lumped linear systems, at each region-

of-interest (ROI). External inputs and outputs are gated through both excitatory and inhibitory 

neurons. The recurrent architecture of the two pools within a local area is captured by the 

neuronal time-constants, 𝜏$  and 𝜏(, and neural gain terms, 𝑔$$ and 𝑔((, indicating the loops 

created by recurrents within excitatory, inhibitory and cross-populations. At each ROI, the 

model delivers these parameters as it predicts the broad-band spectrum (1-35 Hz) optimized 

to the empirical spectrum derived from MEG. Patients with AD showed significantly 

increased neuronal time-constants, 𝜏$  and 𝜏( compared to age-matched controls (E). 

Patients with AD also showed increased excitatory neural gain (𝑔$$) and reduced inhibitory 

neural gain (𝑔(() than controls (c). The markers and error-bars depict the least-square means 

and 95% confidence intervals. Abbreviations: AD, Alzheimer’s disease; MEG, 

magnetoencephalography. 
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Figure. 2 Associations between tau- and Aβ-tracer uptake and excitatory and 

inhibitory neuronal time-constants in patients with AD.  

Increased time-constants showed distinct associations with tau and Aβ in AD patients. 

Increased excitatory time-constant (𝜏$) was positively correlated with tau, but not with Aβ (A, 

B). Increased inhibitory time-constant (𝜏() was positively correlated with Aβ, but not with tau 

(C, D). Subplots A-D indicate the model estimates from linear mixed effects models 

predicting the changes (z-scores) in each neuronal parameter from flortaucipir (tau) SUVR 

and 11C-PIB (Aβ) SUVR, in patients with AD. The fits depicting tau predictions were 

computed at the average SUVR of Aβ (1.99), and the fits depicting Aβ were computed at 

average SUVR of tau (1.64). The scatter plots indicate the predicted values from each model 

incorporating a repeated measures design. Abbreviations: AD, Alzheimer’s disease; Aβ, 

amyloid-beta. 

 

 

Figure. 3 Frequency-specific spectral power modulations of tau and Aβ are partially 

mediated via increased excitatory (𝝉𝒆) and inhibitory (𝝉𝒊) time-constants.  

Associations between tau- and Aβ-tracer uptake and spectral power changes in patients with 

AD are depicted in subplots A, B, D, E, G, H. Tau was not associated with the delta-theta (2-

7 Hz) spectral changes (A), while it was positively modulated by Aβ (B). Both alpha (8-12 

Hz), and beta (13-35 Hz) spectra showed significant negative associations with tau (D, G) 

and significant positive associations with Aβ (E, H). Subplots indicate the model estimates 

from linear mixed effects analyses predicting the spectral power changes from flortaucipir 

(tau) SUVR and 11C-PIB (Aβ) SUVR, for patients with AD. The fits depicting tau predictions 

were computed at the average SUVR of Aβ (1.99), while the fits depicting Aβ were computed 

at average SUVR of tau (1.64). The scatter plots indicate the predicted values from each 

model incorporating a repeated measures design to account for 68 regions per subject. 
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Subplots C, F and I depicts mediation models to examine the direct effects of tau and Aβ, 

and the effects mediated through excitatory (𝜏$) and inhibitory (𝜏() time-constants on different 

frequency bands. Delta-theta power increases were significantly affected by Aβ and was 

partially mediated through the effect of Aβ on inhibitory (𝜏() time-constant (C). Alpha power 

reductions were affected by tau and a small, but a significant fraction of this effect was 

mediated through the effect of tau on excitatory (𝜏$) time-constant (F). Beta power reductions 

were significantly affected by tau, although there was no statistically significant effect 

mediated through the effect of tau on excitatory (𝜏$) time-constant (I). Aβ effects on alpha 

and beta spectral changes were only direct effects with not statistically significant effects 

mediated through altered inhibitory (𝜏() time-constants. Abbreviations: AD, Alzheimer’s 

disease; Aβ, amyloid-beta; SUVR, standardized uptake value ratio.  
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Table 1. Participant demographics and clinical characteristics. 

Characteristic 
Controls 

(N=35) 

Patients with AD  

(N=20) 
P * 

Age – yr 69.3.6 ± 8.4 66.3 ± 9.8 0.237 

Female sex – no. (%) 20 (57.1) 11 (55.0) 0.876 

White – no. (%)† 30 (90.9) 20 (100.0) 0.282 

Education – yr 18 (16 – 18)  18 (16 – 18) 0.855 

Right handedness – no. (%)  30 (85.7) 17 (85.0) 0.340 

MMSE‡ 30 (29 – 30) 23 (22 – 26) <.0001 

CDR§ 0 (0 – 0) 0.5 (0.5 – 0.8) <.0001 

CDR-SOB§ 0 (0 – 0) 3.5 (2.3 – 4.3) <.0001 

Age at disease onset . 59.4 ± 9.39 . 

Disease duration . 6.9 ± 2.4 . 

Values for age, age at disease onset and disease duration are means ±SD.  

Values for education, Mini Mental State Exam (MMSE), Clinical Dementia Rating (CDR) and CDR-

Sum of Boxes (CDR-SOB), are medians with interquartile ranges within parentheses.  

*Statistical tests: P values are reported from unpaired t-test for age, Pearson χ 2 test for sex and 

handedness, Fisher’s exact test for race, Wilcoxon-Mann-Whitney test for education, MMSE, CDR 

and CDR-SOB.  

†Race or ethnic group was self-reported. Two control participants opted out from reporting the 

race. 

‡Scores on the MMSE range from 0 to 30, with higher scores denoting better cognitive function. 

§Scores on the CDR range from 0 to 3 and scores on the CDR-SOB range from 0 to 18, with higher 

scores denoting more disability. 

AD = Alzheimer’s disease. 
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