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Abstract1 

Daphnia are keystone species of freshwater habitats used as model organisms in ecology and 2 

evolutionary biology. Their small size, wide geographic distribution, and sensitivity to chemicals 3 

make them useful as environmental sentinels in regulatory toxicology and chemical risk 4 

assessment. Biomolecular (-omic) assessments of responses to chemical toxicity, which reveal 5 

detailed molecular signatures, become more powerful when correlated with other phenotypic 6 

outcomes (such as behavioral, physiological, or histopathological) for comparative validation and 7 

regulatory relevance. However, the lack of histopathology or tissue phenotype characterization of 8 

this species presently limits our ability to access cellular mechanisms of toxicity. Here, we 9 

address the central concept that interpreting aberrant tissue phenotypes requires a basic 10 

understanding of species normal microanatomy. We introduce the female and male Daphnia 11 

Histology Reference Atlas (DaHRA) for the baseline knowledge of Daphnia magna 12 

microanatomy. Additionally, we also included developmental stages of female Daphnia in this 13 

current atlas. This interactive web-based resource of adult Daphnia features overlaid vectorized 14 

demarcation of anatomical structures whose labels comply with an anatomical ontology created 15 

for this atlas. We demonstrate the potential utility of DaHRA for toxicological investigations by 16 

presenting aberrant phenotypes of acetaminophen-exposed D. magna. We envision DaHRA to 17 

facilitate the effort of integrating molecular and phenotypic data from the scientific community 18 

as we seek to understand how genes, chemicals, and environment interactions determine 19 

organismal phenotype.  20 

 21 

Keywords: Daphnia magna, sentinel, microanatomy, atlas, phenotypes, sexual dimorphism, 22 

histopathology, toxicology 23 
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 24 

1. Introduction 25 

Environmental pollution is the leading cause of premature morbidity and mortality globally 26 

(Fuller et al., 2022; Landrigan et al., 2018; Naidu et al., 2021). Habitat loss, climate change, and 27 

pollution also impact biodiversity, with more than 60% of ecosystems services being diminished 28 

in the last two decades (Cardinale et al., 2012). New approach methodologies (Stucki et al., 29 

2022) for assessing chemical toxicity are developed to improve regulatory outcomes by replacing 30 

outdated, data-poor methods dependent upon apical endpoints (such as death or reproductive 31 

failure) with data-rich molecular data (e.g. transcriptomic and metabolomic) (Harrill et al., 2021; 32 

Hines et al., 2010; Palmer et al., 2020). These data are robust at measuring biomolecular activity 33 

that are potentially indicative of chemical modes of action.  However, these data lack spatial 34 

resolution,  context within the whole organism, or correlation with associated abnormal tissue 35 

phenotypes that can be highly informative with regard to potential human toxicity (European 36 

Chemicals Agency, 2020). Since understanding abnormal tissue phenotypes requires knowledge 37 

of normal microanatomy (microscopic anatomy or histology), the primary objective of this paper 38 

is to provide a resource for visualizing and interpreting tissue phenotypes for the model species 39 

D. magna – an organism used globally to set regulatory limits on potentially hazardous chemical 40 

substances in the environment (United States Environmental Protection Agency, 1996, 2002; 41 

Organisation for Economic Co-operation and Development, 2004, 2018), and one of five models 42 

being used to uncover evolutionarily conserved toxicity pathways  (“The Precision Toxicology 43 

initiative,” 2023).  44 

 45 
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The water flea Daphnia is a keystone branchiopod crustacean (order Cladocera) in freshwater 46 

lotic ecosystems worldwide and an established model in ecology, evolutionary biology, and 47 

ecotoxicology (Ebert, 2022; Miner et al., 2012; Stollewerk, 2010). They are responsive to 48 

environmental change and adapt via evolutionary mechanisms and plasticity (Cuenca-49 

Cambronero et al., 2021; Stoks et al., 2016; Walsh et al., 2018). Relevant to ecotoxicity testing is 50 

their short generation time that enables the experimental manipulation of large populations and a 51 

parthenogenetic life cycle that allows the rearing of populations of identical clones (Hebert and 52 

Ward, 1972). The latter property has the unique advantage of facilitating the concurrent study of 53 

molecular and phenotypic responses to multiple environmental insults, including chemical 54 

pollutants (Abdullahi et al., 2022; Cuenca Cambronero et al., 2018). Daphnia magna is a model 55 

species for ecotoxicogenomics (Kim et al., 2015; Shaw et al., 2008). Recently, its hologenome 56 

(Chaturvedi et al., 2023), reference genome (Byeon et al., 2022; Lee et al., 2019) and 57 

transcriptome (Campos et al., 2018; Jankowski et al., 2022; Orsini et al., 2016) have been 58 

published, elevating this species to the ranks of other biomedical model species for ecological 59 

genomics. The full potential of this species is best realized when correlations can be established 60 

between molecular, and tissue- and cell- specific phenotypes.  61 

 62 

Histopathology, the microscopic examination of diseased tissues, enables the identification of 63 

targets of toxicity and diseases, bridging phenotypes and biomolecular perturbations induced by 64 

environmental insults (Majno and Joris, 2004; Wester and Canton, 1991). Histopathology-based 65 

toxicological studies in fish (Huang et al., 2021; Manjunatha et al., 2022; Ramírez-Duarte et al., 66 

2008) and bivalves (Fraga et al., 2022; Joshy et al., 2022) have been useful for water quality 67 

monitoring and assessment. The application of histopathology to millimeter-size sentinel species 68 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2024. ; https://doi.org/10.1101/2022.03.09.483544doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483544
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

used in ecotoxicology would enable the analysis of tissue-specific toxicity phenotypes in the 69 

context of the whole animal. However, identification of affected cell and tissue types requires 70 

prior knowledge of normal microanatomy; the use of web-based atlases maximizes accessibility 71 

across research and educational communities (Copper et al., 2018; Graham et al., 2015; van der 72 

Ven et al., 2003). 73 

 74 

Here we present the first curated web-based female and male Daphnia Histology Reference Atlas 75 

(DaHRA; RRID:SCR_024913), further broadening the discovery capacity of this sentinel 76 

species. We have optimized methods for D. magna histology and created a collection of digitized 77 

histological images for adult female and male D. magna in three anatomical planes to illustrate 78 

sexual dimorphism associated with environmentally induced phenotypic plasticity. We also 79 

present a subset of developmental stages showcasing some representative developmental events. 80 

As proof-of-concept,  we also present histological alterations in D. magna caused by exposure to 81 

toxic levels of a common pharmaceutical painkiller, acetaminophen, to demonstrate how our 82 

platform can facilitate whole-organism visualization and comparison for an experiment. This 83 

resource is made open-access and interactive, allowing smooth magnification with a dynamic 84 

scale bar. Anatomical structures are highlighted and labeled in compliance with an anatomical 85 

ontology we generated for the atlas, providing researchers and chemical risk managers with an 86 

unprecedented tool to navigate the microanatomy of D. magna. This atlas has the potential to 87 

support both  tissue-specific and whole-organism phenotyping, informing (eco)toxicology, 88 

genetic and phenomic studies. 89 

 90 

2. Material and methods 91 
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2.1 Daphnia magna culturing   92 

A commercial clone of D. magna was purchased from Carolina Biological (NC, USA) and raised 93 

in "Aachener Daphnien-Medium" or ADaM  at room temperature (20°C ± 1°C) under a 16-hours 94 

light/8-hours (hrs) dark photoperiod. D. magna cultures were fed three times weekly with 3.0 x 95 

107 cells/ml of green microalgae (Raphidocelis subcapitata) and once a week with 0.1 mg/mL of 96 

dissolved bakers’ yeast. The animal density was maintained at about 20 neonates, 10 juveniles 97 

and 6 to 8 reproducing adults per liter to prevent overcrowding. Under these conditions, animals 98 

reached maturity at 6 to 8 days post-birth and reproduced parthenogenetically every 3 days after 99 

sexual maturation with an average of 15 neonates per brood from the second brood onwards. 100 

Production of males was induced by overcrowding (>10 reproducing adults per liter) and shorter 101 

photoperiod (8 hrs) (Zhang and Baer, 2000).  102 

 103 

2.2 Chemical Exposure  104 

In order to have pronounced abnormal tissue phenotypes as a proof-of-concept to demonstrate 105 

the utilization of this atlas, we used a wide range of Lethal Concentration (LC) 50 values 106 

documented in the literature for acetaminophen (de Oliveira et al., 2016; Du et al., 2016).  107 

Reproducing female D. magna (approximately 10 days old and carrying the second 108 

parthenogenetic brood 2 hrs post-ovulation) were exposed to 5 concentrations of acetaminophen 109 

(5, 15, 25, 35, 50 ug/mL). Gravid D. magna were used for this exposure to evaluate the toxic 110 

effects of acetaminophen on both adults and developing embryos. The exposures lasted for 72 111 

hrs and were conducted with two adult females in 200 ml medium. The medium was replenished, 112 

and the animals fed daily. After 72 hrs exposure, each surviving animal was prepared for 113 

histological observations as described in the following.  114 
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 115 

2.3 Histological Processing  116 

2.3.1 Fixation and decalcification 117 

Exposed and control clones of D. magna were fixed with 20X Bouin’s solution (Newcomer 118 

Supply, WI) and incubated for 48 hrs at room temperature (about 21°C) on a low-speed orbital 119 

shaker (Corning LSE) set to 55 revolutions per minute (RPM). The fixation is done to preserve 120 

tissues from decay due to autolysis or putrefaction. After the fixation step, samples were washed 121 

twice with 1X phosphate-buffered saline (PBS) for 10 min. This washing step was followed by 122 

decalcification in 20X sample volume of pre-chilled 6% formic acid (Sigma-Aldrich, MO) for 24 123 

hrs on the orbital shaker set to 55 RPM. Samples were then rinsed in 70% ethanol for one minute 124 

and immersed in fresh 70% ethanol for 30 min before agarose embedding. We tested fixation 125 

using 4% Paraformaldehyde (PFA) in 0.1M phosphate buffer (pH 7.4) (Bioenno LifeSciences, 126 

CA) and 10% Buffered Formalin Phosphate (NBF; Fisher Scientific, ON) with different fixation 127 

times and temperatures (See Table S1, Supplementary Material). The D. magna samples fixed 128 

using PFA and NBF (n=23) showed “ballooning”, a severe fixation artifact causing the carapace 129 

to ‘puff-up’ (See Figure S1, Supplementary Material). It was concluded after comparison of 130 

histological sections generated using these fixatives that Bouin’s solution is the best fixative for 131 

D. magna and was used to fix all samples used in this atlas (See Figure S2, Supplementary 132 

Material).  133 

 134 

2.3.2 Agarose embedding  135 
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Visualization of histological sections in each of the three standard anatomical planes (coronal, 136 

sagittal, and transverse) is critical for understanding organismal anatomy. Therefore, the ability 137 

to generate consistent sections in each of these planes is essential. Agarose embedding using a 138 

mold or an array facilitates consistent positioning and orientation of millimeter-size samples for 139 

sectioning (Copper et al., 2018; Santana et al., 2023). A mold was designed (See Figure S3, 140 

Supplementary Material) and 3D-printed for casting an agarose block with triangular wells that 141 

could hold up to 18 adult D. magna for concurrent tissue processing and sectioning (See Figure 142 

S3, Supplementary Material). To create an agarose block, laboratory labeling tape (VWR) was 143 

wrapped tightly around the mold. Then, 2.5 mL of 1 % agarose (Sigma-Aldrich, MO) at 55 °C 144 

was pipetted onto the mold and allowed to solidify at room temperature. The agarose block was 145 

removed gently from the mold. Each fixed D. magna sample was pipetted with a small volume 146 

of ethanol and transferred into the well of the agarose block using a single-use plastic transfer 147 

pipette. Samples designated for the sagittal plane sectioning were laid on their sides with a 148 

swimming antenna in the wells and all rostra facing the same direction (see Figure S4 for 149 

Daphnia anatomy and File S1 for Daphnia anatomy glossary, Supplementary Material). Samples 150 

designated for coronal and transverse orientation were laid on their back in the wells. Once all 151 

samples were positioned in individual wells, excess ethanol was carefully dried off using lint-152 

free Kimwipes without touching the samples. Each sample was first topped off with one drop of 153 

molten 1 % agarose (about 50 °C) without disturbing the sample, followed by a thin layer of 1% 154 

agarose to completely cover the sample. After the agarose layer solidified (about 5 min at room 155 

temperature), the block was trimmed as needed, placed into a tissue cassette, and stored in 70 % 156 

ethanol for tissue processing.  157 

 158 

2.3.3 Tissue processing, sectioning, and staining 159 
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All samples were dehydrated in graded ethanol and infiltrated with Formula R paraffin (Leica 160 

Biosystems #3801450) in RMC Model 1530 automated closed reagent type tissue processor (See 161 

Table S2, Supplementary Material). Following this step, they were serially sectioned at 5 μm on 162 

a Leica RM2255 automated rotary microtome. Sections were then stained with Harris’ 163 

hematoxylin and eosin in an auto-stainer (Sakura Tissue Tek DRS 2000, IMEB, CA) following a 164 

protocol adapted from Copper et al. (2018) where the duration of hematoxylin staining was 165 

extended from 3 to 7 min to achieve better contrast for Daphnia samples (See Table S3, 166 

Supplementary Material). Cover glasses No. 1 (Platinum Line) were used for cover-slipping.  167 

 168 

2.4 Histology slide digitization 169 

All slides were screened using an Olympus BX41 microscope and 10X and 20X objective lenses. 170 

Those selected for the atlas were scanned at 40X using an Aperio AT2 slide scanner (Leica 171 

Biosystems, IL) and images were saved in TIFF format. 40X scanning was performed using 20X 172 

objective lens (0.075 n.a. Plan Apo) with 2X optical magnification changer, yielding a digital 173 

resolution of 0.25-micron per pixel. The images of D. magna samples included in the atlas were 174 

cropped using Aperio ImageScope (version 12.4.3.5008). Three channels (Red, Green, Blue) of 175 

these digital slides were stacked using Fiji (Schindelin et al., 2012) or ImageJ (Schneider et al., 176 

2012). Then, image processing was performed in Adobe Photoshop (version 22.1.1) where 177 

images were rotated and set to have the same canvas size; the image background was removed 178 

using “Remove Background”; the “Exposure” was adjusted to fall between 0.1 to 0.25 and the 179 

same value was used for each set of images; and “Levels” were adjusted using preset “Midtone 180 

Darker”. Each set of digital slides was then pyramidally tiled for the web-based viewer. 181 

 182 
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2.5 Digital labeling of anatomical structures 183 

The anatomical ontology, consisting of a list of anatomical terms organized by groups (organ 184 

systems) and subgroups (tissues and cell types), was created for the atlas (See Table S4, 185 

Supplementary Material). We cross-referenced the extensive work of Fryer (Fryer, 1991) with 186 

other published literature (Agar, 1950; Auld et al., 2010; Bednarska, 2006; Benzie, 2005; Binder, 187 

1931; Christensen et al., 2018; Consi et al., 1987; Ebert, 2005; Edwards, 1980; Goldmann et al., 188 

1999; Halcrow, 1976; Hiruta and Tochinai, 2014; Kikuchi, 1983; Kress et al., 2016; McCoole et 189 

al., 2011; Metschnikoff, 1884; Quaglia et al., 1976; Rossi, 1980; Schultz and Kennedy, 1976; 190 

Smirnov, 2013; Stein et al., 1966; Steinsland, 1982; Weiss et al., 2012; Wuerz et al., 2017; 191 

Zaffagnini and Zeni, 1987, 1986; Zeni and Franchini, 1990) and decided on the commonly used 192 

Daphnia anatomical terms. Annotation and labels for each anatomical structure presented on the 193 

atlas were created using Adobe Illustrator (version 25.1). One image at a time, each anatomical 194 

structure was annotated by outlining the structure using the “Curvature” and assigned a color 195 

corresponding with the anatomical ontology. Annotation and labels of each structure were saved 196 

under “Layers”. After completion of the labeling of all anatomical structures on a given image, 197 

the annotations were exported in single scalable vector graphic (SVG) file format to be used as 198 

input for the web-based viewer.  199 

 200 

2.6 Building the web-based digital slide visualization platform 201 

To improve accessibility and usability, we developed an open-access, web-based digital slide 202 

viewing platform based on the open-access project OpenSeadragon 203 

(https://openseadragon.github.io/). This interface removes the need to download full-204 
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resolution images. The viewer combines SVG files and digital scans into a seamless experience 205 

to provide user-friendly access to high-resolution data. The atlas’ code was written in client-side 206 

JavaScript, HTML, and CSS. Pyramidally tiled images were parsed and visualized with 207 

OpenSeadragon. When the user opens an image, the viewer opens the corresponding SVG file 208 

containing all the anatomical labels and their corresponding annotations. The viewer parses all 209 

labels from the SVG file, plots the corresponding regions, and updates the ontology to note 210 

which regions are available on a particular image. 211 

 212 

3. Results and discussion 213 

3.1 Daphnia Histology Reference Atlas (DaHRA) presenting D. magna 214 

microanatomy 215 

3.1.1 Interactive viewer 216 

We developed the web-based atlas, DaHRA (http://daphnia.io/anatomy/), to be a user-friendly 217 

interface to access a collection of digitized histological sections of wildtype female and male D. 218 

magna in each of three standard anatomical planes (Figure 1A). DaHRA’s interface allows users 219 

to visualize digital scans of whole-organism sections up to 40X objective magnification (0.25-220 

micron per pixel resolution), providing sufficient resolution to recognize virtually all cell types 221 

with broader organismal context. Compared to histology atlases of other model organisms (for 222 

example, zebrafish (Copper et al., 2018) and mouse embryos (Armit et al., 2017)), DaHRA 223 

offers interactive visualization of normal microanatomy using overlaid vectorized demarcation of 224 

anatomical structures whose labels comply with an anatomical ontology created for this atlas. 225 

The anatomical ontology consisting anatomical structures can be found on the left side of the 226 
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viewer, with the anatomical terms arranged alphabetically within groups (Figure 1B). 227 

Annotations of the anatomical structures are presented as color overlays and indicated by check 228 

marks next to the anatomical terms. Unchecking the box hides the color overlays. Anatomical 229 

terms with underlined labels indicate nested substructures (for example, “microvilli” under 230 

“epithelial cell”, both under “midgut”). Hovering over an anatomical term in the ontology 231 

dynamically highlights the corresponding structure or structure groups in the viewer, temporarily 232 

hiding other checked structures.  233 

 234 

In order to make the atlas as a central resource for Daphnia community, we also created 235 

“Reference” tab which lists published literature related to Daphnia’s specific organs or cell-types 236 

that were used to annotated this atlas, and “Resources” tab which contains a file annotating 237 

Daphnia gross normal anatomy, Daphnia-specific anatomical definitions, anatomy ontology 238 

curated for the atlas, and histology protocols optimized for Daphnia samples, including a casting 239 

mold stereolithography file . To facilitate collaboration, updates, and validation, a “Feedback” 240 

tab is provided for users to leave comments and suggestions. A video demonstrating the features 241 

of the atlas is also available on the atlas histology landing page.  242 
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 243 

Figure 1. Interactive web-based viewer for DaHRA. (A) The landing page hosts annotated244 

images of female and male commercial clone of D. magna with an instruction video describing245 

the features of the atlas. Unannotated images of embryos at different stages, juvenile, and adults246 

are also categorized under “Life stages”. (B) Interactive viewer displaying the expandable list of247 

anatomical structures on the left; the checked boxes indicate the structures labeled in the image.248 

The anatomical terms on the image are shown as acronyms to minimize obscuring of structures;249 

hovering the mouse cursor over an acronym or its corresponding region will show the full term.250 

Unchecking a box will hide the color overlay and annotation corresponding to the box.  251 
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3.1.2 D. magna male and female microanatomy 252 

DaHRA presents the first microanatomical representation of female and male D. magna from the 253 

same clone. A hundred samples were sectioned for protocol optimization, and one sample per 254 

orientation of each sex was selected and annotated for the atlas. Scanned images of 10 D. magna 255 

are presented in the histology atlas. Organs and cell types included in the anatomical ontology 256 

are briefly described here with representative images from the three anatomical planes of the 257 

female (Figures 2A-C) and male D. magna (Figures 2D-F). The terminology used for the 258 

DaHRA anatomical ontology (a list of terms organized by groups and subgroups) was cross-259 

referenced with published literature (Agar, 1950; Auld et al., 2010; Bednarska, 2006; Benzie, 260 

2005; Binder, 1931; Christensen et al., 2018; Consi et al., 1987; Ebert, 2005; Edwards, 1980; 261 

Fryer, 1991; Goldmann et al., 1999; Halcrow, 1976; Hiruta and Tochinai, 2014; Kikuchi, 1983; 262 

Kress et al., 2016; McCoole et al., 2011; Metschnikoff, 1884; Quaglia et al., 1976; Rossi, 1980; 263 

Schultz and Kennedy, 1976; Smirnov, 2013; Stein et al., 1966; Steinsland, 1982; Weiss et al., 264 

2012; Wuerz et al., 2017; Zaffagnini and Zeni, 1987, 1986; Zeni and Franchini, 1990) for 265 

uniformity. We identified 50 anatomical structures and categorized them into 8 groups 266 

(circulatory, digestive, excretory, locomotive and respiration, muscular, nervous, sensory and 267 

vision, postabdomen, and reproductive), and can be expanded if/ when more structures are 268 

identified.  269 
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15
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Figure 2. Representative microanatomical structures of female (A-C) and male (D-F’) D. 271 

magna in three orthogonal planes. The coronal plane (panels A and D) displays most of the 272 

structures in pairs. Inset of panel A shows the oviduct (Ovt; dotted circle) and inset of panel D 273 

shows gonopores (Gn) in the male. The histology section for Panel D’ is slightly ventral to that 274 

of panel D and displays prominent and elongated antennules (A1) with flagella (F) at the tips. 275 

The mid-sagittal plane of the female (panel B) includes connections between the compound eye 276 

(E) and the optic lobe (OL) and cerebral ganglia (CG) by optic nerves (ON). The labrum (L), 277 

maxillules (Mxl), and mandibles (Md) are anterior to the esophagus (Eso) that opens into the 278 

midgut (MG) and is followed by the hindgut (HG). This section also cuts through the five 279 

thoracic limbs (T1-5) and filter plates (FP3, FP4). The sagittal plane of the male (panel E) shows 280 

the elongated seta (Se) on the first thoracic limb, pubescence (P) at the wider ventral opening of 281 

the carapace, thickening of carapace at the ventral opening (arrows), one of the testes (Te), and a 282 

small portion of sperm duct (SD). Inset of panel E showing the spermatozoa in the testis. The 283 

transverse plane of the female (panel C) shows the asymmetrical paired mandibles (Md) with the 284 

transverse mandibular tendons (TMT), transverse mandibular muscles (TMM1), transverse 285 

muscles of mandibles (TMM2), and the posterior rotator muscles of mandibles (PRM). Inset of 286 

panel C displays several hemocytes (H) outlined by dotted circles. The transverse plane of male 287 

(panel F) displays the paired copulatory hooks (CH) on the first thoracic limbs (T1) and the 288 

thickening of the carapace (arrows) at the ventral opening. This also shows the abundance of fat 289 

cells (FC) which are quite different from those in the female. The histology section for Panel F’, 290 

is slightly anterior to that of panel F and shows the pigmented ocellus (O) is connected to the 291 

cerebral ganglia (CG). A1M, antennule muscle; A2M, antennal muscle; Ae, aethetasc; An, anus; 292 

Ce, hepatic cecum; Cp, carapace; DLM, dorsal longitudinal muscle; ES, end sac of the maxillary 293 
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gland; FG, food groove; Ht, heart; LGC, labral gland cell; NC, nerve chord; PA, postabdomen; 294 

PCAM, posterior carapace adductor muscle; PM, peritrophic membrane; Ra, ramus of swimming 295 

antenna; Tu, tubule of the maxillary gland; VLM, ventral longitudinal muscle.  Atlas links to 296 

each panel can be found in File S2, Supplementary Material.  297 

 298 

We first summarize the sexually dimorphic traits of D. magna and follow with brief descriptions 299 

of the normal anatomy and microanatomy. Adult males have a smaller body size and much 300 

longer antennules than females, that bear a single long flagellum on the tip (Benzie, 2005)(Figure 301 

2D’). Male antennules contain muscle tissue (Figure 2D) that is absent in females. The first 302 

thoracic limbs of the males are equipped with elongated setae (Figure 2E) and chitinized 303 

copulatory hooks (Figure 2F) that are used for clasping females during copulation. The male 304 

postabdomen has gonopores (Figure 2D inset) that are involved in transferring mature 305 

spermatozoa from the testes to the female in the region of the oviduct during copulation. Besides 306 

having a wider frontal opening, pubescence and thickened angular margins are also observed at 307 

the ventral margin of the carapace in males (indicated by arrows in Figures 2E and 2F). Fat cells 308 

in males are observed to be different from those of females. Male fat cells contain much larger 309 

lipid droplets, reduced and less granular cytoplasm, and smaller nucleoli than female fat cells 310 

(Figure 3). 311 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2024. ; https://doi.org/10.1101/2022.03.09.483544doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483544
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

 312 

Figure 3. Comparison of male and female fat cells. (A) Fat cells in males contain larger lipid313 

droplets (ld), reduced and less granular cytoplasm with smaller nucleoli (nu) situated at the cell314 

periphery compared with those of females. (B) Fat cells in females have more granular315 

cytoplasm with smaller lipid droplets (ld) and bigger nucleoli (nu) that often appeared316 

subdivided. 317 

 318 

Circulatory system.  Daphnia have an open circulatory system and a myogenic heart (Stein et al.,319 

1966; Steinsland, 1982). Since Daphnia are semi-transparent the beating of their hearts is easily320 

visualized in live animals.  Hemolymph (blood-like fluid) containing hemocytes (Auld et al.,321 

2010; Metschnikoff, 1884) (Figure 2C inset) is pumped through the body cavity. In line with the322 

literature, we also observe that the Daphnia heart has a pair of ostia anterior to the brood323 

chamber, between the midgut and the dorsum (Figures 2B, C, and F). Hemoglobin is synthesized324 

in fat cells and epithelial cells on epipodites of the thoracic limbs (Goldmann et al., 1999).  325 
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 326 

Digestive system. Daphnia are filter feeders. Food particles are filtered through filter plates 327 

consisting of setae on thoracic limbs 3 and 4, passed through maxillules and mandibles into the 328 

esophagus, which is the first part of the digestive system (Figures 2A and B). The digestive 329 

system also consists of paired hepatic ceca, midgut, and hindgut (Figures 2A-C, 2E-F) that are 330 

lined with epithelial cells and microvilli, with the columnar epithelial cells in the midgut, and the 331 

cuboidal cells in hepatic ceca and hindgut (Quaglia et al., 1976; Schultz and Kennedy, 1976). 332 

The labrum houses labral glands that have been suggested to be involved in food ingestion and 333 

endocrine function (Zaffagnini and Zeni, 1987; Zeni and Franchini, 1990) (Figures 2B-D). 334 

 335 

Excretory system. The maxillary gland, also known as the shell gland, is the organ of excretion, 336 

housed between the inner and outer walls of the carapace (Smirnov, 2013). It consists of an end 337 

sac, a series of tubules, and an opening in the anterior brood chamber (Figures 2A, C, D, and F).  338 

 339 

Locomotive and osmoregulation system. The swimming antennae are Daphnia’s primary organ 340 

of locomotion (Fryer, 1991). Each of the paired swimming antennae has a protopodite, two rami 341 

bearing setae (Agar, 1950) (Figures 2C, D, and F), and antennal muscles. Daphnia have five 342 

thoracic limbs (Benzie, 2005) (Figures 2B, D, and E) internal to the carapace. Movements of 343 

thoracic limbs produce a constant current that brings food particles into the digestive tract and 344 

facilitates osmotic regulation mediated by the epipodite on each thoracic limb (Kikuchi, 1983). 345 

First thoracic limbs in males are different from those of female Daphnia; only the male has 346 

chitinized copulatory hooks (Figure 2F) and longer setae (Figure 2E).  347 

 348 
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Muscular system. The muscular system occupies a significant portion of the body (Binder, 1931; 349 

Fryer, 1991). The largest muscles are the ventral and dorsal longitudinal muscles that extend 350 

along the gut, three paired antennal muscles, transverse mandibular muscles, transverse muscles 351 

of mandibles, posterior rotator of the mandibles, carapace adductor muscles, followed by groups 352 

of muscles that allow the motion of thoracic limbs and postabdomen (Figure 2). Other small 353 

muscles include those around the compound eye, labrum, and esophagus (Consi et al., 1987). All 354 

muscles are striated and surrounded by sarcoplasm, that contains many nuclei and is mostly 355 

vacuolated. Sarcoplasm is particularly abundant and more vacuolated in the antennal muscles. 356 

Male antennules also have internal muscle fibers (Figure 2D) that appear to be absent in females. 357 

 358 

Nervous, sensory, and vision systems. Daphnia have a pigmented compound eye consisting of 22 359 

ommatidia (Figure 2B) and a light-sensing, pigmented nauplius eye or ocellus with four lens-like 360 

bodies (Weiss et al., 2012) (Figure 2F’). Each ommatidium contains eight retinular cells sending 361 

a parallel bundle of axons, collectively as the optic nerve into the optic lobe, which is then 362 

connected to the cerebral ganglia (Figure 2B). From the cerebral ganglia, two chains of nerve 363 

cords run along the thorax, underneath the gut, and to other anatomical structures (Kress et al., 364 

2016; McCoole et al., 2011) (Figures 2A, E, and F). Both sexes have a pair of antennules bearing 365 

a group of 9 olfactory setae or aesthetascs (Klann and Stollewerk, 2017; Rieder, 1987) but the 366 

male antennules are more prominent and elongated, uniquely fitted with a flagellum at each tip 367 

(Figure 2D’). 368 

 369 

Reproductive system. The ovaries in females are paired tubular structures ending in oviducts 370 

(Figure 2A). Daphnia are generally cyclical parthenogens, which means that sexual (meiotic) 371 
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and clonal (ameiotic) reproduction alternate (Decaestecker et al., 2009). Under favorable 372 

environmental conditions, females produce parthenogenetic eggs that are genetically identical to 373 

themselves. During clonal reproduction, oogenesis occurs in clusters of four oocytes each. Only 374 

one definitive oocyte in each set accumulates yolk granules and lipid droplets during maturation 375 

while the others become nurse cells (Rossi, 1980) (Figure 4A). After maturation, parthenogenetic 376 

eggs are released into the brood chamber through the oviducts. Fully developed, free-swimming 377 

juveniles are extruded after 3 to 4 days. Sexual reproduction is cued by environmental changes 378 

such as shorter light photoperiod, lower temperature, and over-crowding, which triggers the 379 

parthenogenetic production of genetically identical males for mating with receptive females, the 380 

endpoint being two embryos that enter a state of diapause. Unlike parthenogenetic embryos, the 381 

development of these resting embryos arrests at the 3000-cell count and enters dormancy (Chen 382 

et al., 2018). The resting embryos are encased in a chitinous shell called an ephippium that 383 

protects them from harsh environmental conditions (Figure 4C), including freezing and 384 

desiccation. Dormancy in Daphnia can be exceptionally long, lasting decades and even centuries 385 

(Cáceres, 1998; Mergeay et al., 2004). The resting embryos hatch when cued by favorable 386 

environmental conditions. 387 
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 388 

Figure 4. Comparison of parthenogenetic and sexual eggs. (A) The parthenogenetic eggs389 

contain a large amount of lipid droplets (ld) and yolk granules (yg). (B) The sexual eggs contain390 

a large proportion of fine yolk granules without lipid droplets. (C) Resting embryos encased in391 

the ephippium. The top embryo shows artifact. Cp, carapace; FC, fat cell; nc, nurse cell; nu, the392 

nucleus of oocyte; VLM, ventral longitudinal muscle. A solid blue circle indicates an individual393 

egg.  394 

 395 
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Daphnia testes consist of two tubular structures connected by sperm ducts to gonopores or 396 

ejaculatory openings (Figures 2D and E). Spermatogenesis begins at the testes’ walls, and mature 397 

spermatozoa are displaced inward toward the central region of the testes (Wuerz et al., 2017).  398 

 399 

Fat cells are polyploid (Beaton and Hebert, 1989) and consist of a massive portion of lipid and 400 

glycogen (Zaffagnini and Zeni, 1986). They are typically found along the trunk, around ovaries 401 

or testes, and on the epipodites of the thoracic limbs (Figure 2). In females, these cells have a 402 

cytoplasm rich in RNA, one or several lipid droplets of various size, and one large nucleus 403 

within which a nucleolus of irregular shape resides (Zaffagnini and Zeni, 1986). The nucleolus 404 

often appears subdivided into two or more parts. They are most likely sites of vitellogenin 405 

synthesis (Zaffagnini and Zeni, 1986). Compared to female fat cells, male fat cells contain a 406 

much larger lipid droplet, reduced and less granular cytoplasm, and a smaller nucleus that is 407 

usually situated at the cell periphery (Figure 3). 408 

 409 

3.1.3 D. magna developmental stages 410 

Daphnia embryos develop in the brood chamber before being extruded. Embryos can also 411 

develop outside of the brood chamber, in the culture medium or distilled water. Daphnia 412 

embryogenesis is usually staged based on the time of development after oviposition (Green, 413 

1956; Gulbrandsen and Johnsen, 1990; Threlkeld, 1979; Toyota et al., 2016), and 414 

morphological landmarks (Mittmann et al., 2014). Due to the difficulties in orienting and 415 

sectioning the minute individual Daphnia embryos, DaHRA presents a selection of images of 416 

embryos found in gravid adults. The stages of the embryos were determined under the 417 

dissecting microscope according to the developmental events used by Toyota et al (2016) before 418 
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the adult female were processed for histology sectioning. Developmental events corresponding 419 

with developmental stages are Stage 1: egg membrane is intact; Stage 2: egg chorion breaks 420 

down and eye spots are not yet visible; Stage 3: embryo bears two small pink or red eyes; Stage 421 

4: embryo bears two brown or black eyes, and Stage 5: embryo bears a single median black eye. 422 

To-date, DaHRA showcases histology images of developmental stages 1, 3, 4, and 5.   423 

 424 

At around 20°C, embryos develop within 3 days in the brood chamber after the oviposition.  In 425 

our histology images, Stage 1 embryo contains yolk granules, lipid droplets, and peripheral 426 

cytoplasm (Figure 5A). During Stage 3, eye spots start to develop, and embryo will bear 2 pink 427 

eyes towards the end of Stage 3. Labrum, gut, thoracic limbs, and swimming antennae 428 

becoming distinguishable at this stage (Figure 5B). Eye pigment increases at Stage 4, and the 429 

embryo will bear two brown or black pigment cells (Figure 5C). Ocellus, cerebral ganglia and 430 

optic lobe are now distinguishable. Structures of the digestive system, such as mandibles, 431 

hepatic ceca, esophagus, midgut and hindgut can also be identified. Segments of thoracic limbs 432 

such as epipodites and exopodites are distinctly visible. Stage 5 embryo bears a single median 433 

eye, and all major anatomical structures are distinguishable as the body continues to elongate 434 

(Figure 5D). Currently, we have not been able to provide images for developmental Stage 2 435 

which is a very short stage (about 4 hours).  436 
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437 

Figure 5. Representative developmental stages of parthenogenetic female D. magna in438 

sagittal plane. (A) Stage 1 embryo in spherical form containing yolks (y), lipid droplets (ld),439 

and peripheral cytoplasm (pc). Intact chorion or egg membrane is not visible here due to440 

sectioning artifact. (B) Stage 3 embryo bears two pink eyes (e) with differentiation of thoracic441 

limbs (TL), labrum (L), gut (G) and swimming antennae (A2). (C) Stage 4 embryo bears two442 

brown or black eyes (e) with ocellus (O), optic lobe (OL) and cerebral ganglia (CG) being443 

distinguishable. The labrum (L) is elongated, and segments of digestive tract are distinct. (D)444 

Stage 5 embryo bears a single black median eye (E), and the body continues to elongate. A2,445 
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swimming antennae; Ce, hepatic cecum; Cp, carapace; Eso, esophagus; HG, hindgut; Md, 446 

mandible, MG, midgut; NC, nerve chord. 447 

 448 

3.1.4 D. magna clones 449 

According to the diversity panel curated by Ebert research group, there are more than 200 clones 450 

of D. magna being cultured in the laboratories around the world 451 

(https://evolution.unibas.ch/ebert/research/referencepanel/). Clonal variation refers to the 452 

different genotypes of the same species, and they may differ strongly in their toxicological 453 

responses (Barata et al., 2002; Barber et al., 1990; Kim et al., 2023). While DaHRA showcases 454 

annotated histology from a commercial clone, we have also included  histology images from a 455 

clone provided by the University of Birmingham, UK (UOB_LRV0_1) to demonstrate how this 456 

atlas can be expanded for the addition of new image datasets (http://daphnia.io/anatomy/clone/). 457 

This clone was revived from a biological archive of Lake Ring, a shallow lake in Denmark 458 

(Cuenca Cambronero et al., 2018). The clone had been sequenced to generate the first 459 

chromosomal-level genome assembly which 33,950 genes and 31,336 proteins had been 460 

annotated (Chaturvedi et al., 2023).  461 

 462 

3.1.5 An example of D. magna histopathology  463 

To demonstrate how our atlas facilitates visualization of abnormal tissue architecture in the 464 

context of the whole organism, we included acetaminophen-exposed D. magna that show strong 465 

histopathological tissue phenotypes. “Comparison” tool shows web-based comparisons at any 466 

magnification between the exposed and to the control animals in an experiment (See Figure S5, 467 

Supplementary Material; http://daphnia.io/anatomy/treatments/).  468 
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 469 

Besides its therapeutic effects, acetaminophen is known to induce toxicological outcomes if 470 

overdose is taken over a period of time (Perananthan et al., 2024; Yoon et al., 2016). It is also a 471 

contaminant found in surface waters and wastewater throughout the world (Phong Vo et al., 472 

2019).  In our study, gravid D. magna were exposed to 5, 15, 25, 35, 50 µg/mL of 473 

acetaminophen for 72 hrs to allow the evaluation on both adults and developing embryos. D. 474 

magna exposed to 5 µg/mL acetaminophen showed no distinct changes compared to unexposed 475 

controls. Exposure to 25 µg/mL and 35 µg/mL acetaminophen caused similar phenotypes, but 476 

exposure to 50 µg/mL acetaminophen caused death by the end of the exposure. This exposure is 477 

not intended for reporting toxicological effects of acetaminophen; therefore, no replicate and 478 

error had been generated.  D. magna exposed to 15 and 25 µg/mL acetaminophen were used to 479 

illustrate histopathological phenotypes in a whole-organism context.  480 

 481 

Histology of the exposed D. magna revealed morphological alterations in various organs and 482 

tissue types. Excessive vacuolation was observed in the labral glands of D. magna exposed to 483 

both 15 and 25 µg/mL acetaminophen (Figures 6B and C). Besides the absence of a peritrophic 484 

membrane and partially digested food particles, the midgut and hindgut of the exposed D. magna 485 

showed degeneration in the epithelium lining (Figures 6E and F), with the degree being 486 

particularly conspicuous in the 25 µg/mL-exposed D. magna (Figure 6F). Extrusion and 487 

sloughing of epithelial cells were also observed (Figures 6E and F). Cytoplasmic swelling was 488 

noted in the midgut and hindgut epithelial cells and fat cells (Figures 6H and I).  489 
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490 

Figure 6. Histopathologic features of the digestive system and fat cells in D. magna exposed491 

to 15  and 25 µg/mL of acetaminophen for 72 hrs. Compared to the control (A), vacuolization492 

of labral glands were present in exposed D. magna (B, C). Extrusion, and sloughing of493 

degenerated epithelial cells (dotted circles) was observed in exposed animals (E, F), with the494 

degree of degeneration being particularly conspicuous in the epithelium lining of 25 µg/mL-495 

exposed D. magna (F). Cytoplasmic swelling was observed in the fat cells and the hindgut496 

epithelial lining of exposed D. magna (H, I). Sloughed epithelial cells (dotted circles) were497 

prominent in the hindgut of the exposed D. magna (H, I).  498 

 499 
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A dead, and deformed embryos were found in the brood chamber of 25 µg/mL acetaminophen-500 

exposed D. magna after 72 hrs of exposure. The deformed embryos remained in the chorion,501 

showed development of the compound eye and gut precursors, but no visible elongation of body502 

length, or development of the swimming antennae and thoracic limbs were evident after 72 hrs of503 

exposure (Figure 7). 504 

 505 

506 

Figure 7. Embryotoxicity in the D. magna exposed to 25 µg/mL acetaminophen. (A) Normal507 

embryos in the brood chamber of control compared to (B) deformed embryos remained in the508 

chorion, showing some development of the compound eye and gut precursors but no visible509 

development of the swimming antennae and thoracic limbs. (C) A dead embryo was also510 

observed in the brood chamber of an exposed D. magna. 511 

 512 

Toxicological effects are often quantified through apical endpoints (e.g. immobilization) in acute513 

exposures (Organisation for Economic Co-operation and Development, 2004; United States514 

Environmental Protection Agency, 2002) and fitness-linked life history traits in chronic515 
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exposures (Organisation for Economic Co-operation and Development, 2018; United States 516 

Environmental Protection Agency, 1996). Few studies employ ultrastructural analysis of a target 517 

organ, usually the midgut, for the pathological assessment of chemical toxicity (Bacchetta et al., 518 

2017; Bodar et al., 1990; Heinlaan et al., 2011; Yang et al., 2010). Acetaminophen exposure 519 

performed for this work was not intended for reporting the toxicological responses. However, the 520 

observation of embryotoxicity and histopathological change in multiple tissue types (fat cells and 521 

labral glands), including the whole digestive tract (ceca, midgut, and hindgut) in the exposed D. 522 

magna suggested the important role of non-targeted toxicity assessment for the complete 523 

detection of phenotypes across organ systems and during embryonic development. A 524 

combination of complete histopathological phenotyping in whole Daphnia with toxicological 525 

omics data (e.g., transcriptomics and metabolomics) and tissue-specific biomarkers (e.g., single 526 

cell and spatial transcriptomics) will enable a comprehensive evaluation of toxicological effects 527 

and reveal tissue-specific toxicity (Tian et al., 2024). Establishing these links is essential for 528 

biomolecular data to be regulatory relevant because hazards are classified by phenotypic 529 

outcomes (behavioral, physiological, and/or histopathological). Such integration will play an 530 

important role in discovering and applying adverse outcome pathways for next-generation risk 531 

assessment (United States Environmental Protection Agency, 2014) where links between 532 

biomarkers of adversity, causative agents, and organ-specific effects remain to be well-533 

established. Using the principle of evolutionary and functional conservation of genes and 534 

pathways in organisms across the tree of life, hypotheses on targets of toxicity can be 535 

extrapolated across non-target species, including humans (“The Precision Toxicology initiative,” 536 

2023).  537 

  538 
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 539 

3.2 Future directions 540 

We have created an annotated, interactive atlas for web-based access to D. magna  541 

microanatomy using a single commercially available clone of D. magna to present reasonable 542 

examples of what “normal” microanatomy looks like. Clonal and intraspecific variation are 543 

important components in Daphnia biology (Ho et al., 2019; Miyakawa et al., 2015; Tolardo et 544 

al., 2016) where differential responses to toxicants and other stressors have been reported for 545 

physiological and reproduction parameters (Barata et al., 2002; Barber et al., 1990; Kim et al., 546 

2023), but remain to be explored with regard to histopathological change and tissue-specific 547 

phenotypes.  548 

 549 

A key aspect of this work is our commitment to open science, enabling broader participation of 550 

Daphnia community to utilize and further develop this atlas. A clone UOB_LRV0_1 has been 551 

included in the current phase of  DaHRA, and through collaboration and additional resources, we 552 

anticipate this atlas to include additional datasets possibly covering clonal and/or intraspecific 553 

genetic variation, examples of how intraspecific variation influences tissue-specific phenotypes, 554 

and most importantly, observation of other histopathological change. It is our hope for this atlas 555 

to be an informational tool to the Daphnia community, but it is not intended and should not be 556 

utilized as “control” for chemical-exposure and toxicity-testing experiments. 557 

 558 

Web-based atlases have served as a platform for the systematic integration of spatial and 559 

molecular data (Asp et al., 2019; Snyder et al., 2019; Thul and Lindskog, 2018; Yao et al., 2023). 560 

As integrative tissue-based or spatial atlases for human and mammalian models are constantly 561 
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being improved , DaHRA is envisioned as a potential  integrative platform for anchoring 562 

Daphnia multi-omics data with tissue phenotypes. This will increase its potential value as a tool 563 

for exploring the spatial and chemical complexities of biological systems. 564 

In summary, our first, open-source visualization platform for D. magna microanatomy provides a 565 

baseline knowledge of Daphnia’s cells, extracellular tissue, and their arrangements in health as a 566 

foundation for the detection of aberrant tissue phenotypes. Its user-friendly interface and global 567 

web-based access will facilitate broader contributions to (eco)toxicology, biology and beyond.  568 

 569 
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Figure S5.  Overview of DaHRA displaying annotated histopathological data 584 
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