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Abstract  

The reshaping of the DNA methylome landscape after prenatal alcohol exposure (PAE) has been well-
documented in the adult brain, therefore a long time after the end of the exposure. However, the 
question of the immediate deposition or loss of DNA methylation marks in the prenatal neocortex, just 
after the end of PAE has not yet been directly addressed, genome widely.  
Using a binge-drinking-like model of PAE and capture of the DNA methylome, we have identified 
differentially methylated regions (DMRs) that are established immediately, within two hours after the 
end of PAE. Remarkably, these DMRs are prominently and statistically associated with: (i) enhancers 
that are active in the brain, associated with GO terms of importance for neurogenesis, 
neurodevelopment, and neuronal differentiation; (ii) genes that, in physiological conditions show 
dynamic gain in chromatin accessibility and/or upregulation of their expression in the time-window of 
exposure; (iii) imprinted genes and members of protocadherin genes clusters, two gene families 
playing key roles in neurodevelopment, whose mono-allelically expression is regulated by DNA 
methylation and impaired upon PAE. We observed that DMR-containing mono-allelically expressed 
genes, as well as other genes important for neurodevelopment, are also immediately upregulated 
upon PAE, suggesting that these early DNA methylation perturbations are thus highly susceptible to 
rapidly alter gene expression after PAE. DMRs in imprinted and protocadherin genes have been 
previously identified, both in the adult rodent brain prior-exposed to alcohol prenatally, and in cohorts 
of children diagnosed with fetal alcohol spectrum disorders (FASD). Our study thus strongly suggests 
that the DNA methylation profiles of key regulatory regions of these gene families are very quickly 
disturbed after the PAE and that these immediate altered regions could be persistently affected long 
after the stress. This strongly reinforces their potential as future biomarkers of PAE. In addition, binge-
drinking-like PAE provokes immediate rewiring of the transcriptome with potentially dual 
consequences: 1) beneficial impacts that could support the recovery of cells from alcohol exposure, 
through slowing down of protein synthesis and energy-consuming respiratory pathways; 2) 
detrimental effects, through the inappropriate activation of critical pathways may directly perturb 
neurodevelopment. 
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INTRODUCTION 

 

The prenatal developing brain is particularly vulnerable to detrimental events that generate 

neurodevelopmental defects and potentially have long-term consequences in the adulthood (Bale et 

al., 2010; Schang et al., 2018a). Among a diversity of adverse in utero stresses, prenatal alcohol 

exposure (PAE) is a leading cause of non-genetic mental retardation in the Western world (Popova et 

al., 2012, 2016). Depending on many parameters, such as the timing of exposure, the drinking pattern 

(chronic or acute) and the amount of alcohol consumed, PAE gives rise to a wide range of 

neurodevelopmental defects, referred to as part of the clinical picture of fetal alcohol spectrum 

disorders (FASD), whose prevalence is estimated around 9 for 1000 live births (Burd et al., 2003; Jones 

and Smith, 1973; Kleiber et al., 2013; Lemoine et al., 1968; Mattson et al., 2011; Popova et al., 2012, 

2016). These defects lead to impairment in cognition, behavior, executive function, attention (linked 

or not to hyperactivity), learning, judgment and social adaptation (Gibbard et al., 2003). In addition to 

these primary defects, individuals diagnosed with FASD are at high risk for neuropsychiatric disorders, 

including anxiety disorders, depression, and addiction in their adulthood (Gibbard et al., 2003; 

reviewed in Kodituwakku, 2007 and O’Connor and Paley, 2009, in line with the DOHaD concept 

(Developmental Origins of Health and Disease; Schang et al., 2018b). The most severe form of FASD, 

called fetal alcohol syndrome (FAS), is defined by characteristic facial dysmorphology, growth 

retardation and severe macroscopic structural abnormalities of the central nervous system (CNS; Jones 

and Smith, 1973). Early diagnosis of PAE is necessary to enable efficient intervention (Burd et al., 2003; 

Paley and O'Connor, 2011). Visible and well-characterized phenotypic defects observed for FAS 

newborns facilitated the early diagnosis of these individuals. In contrast, diagnosis of FASD children is 

more challenging, because the history of exposure is often unknown and clinical phenotypes are more 

cryptic, yet crucial since the functioning of the central nervous system damages is compromised 

(Gibbard et al., 2003; Popova et al., 2015). Indeed, PAE affects neurodevelopment at any stage, 

therefore impacting all neurodevelopmental processes, such as proliferation of neural progenitors, 

migration of young post-mitotic neurons and their differentiation, neuronal survival, synaptogenesis, 

neurotransmission and neuronal plasticity (Kleiber et al., 2013; El Fatimy et al., 2014; Guerri et al., 

2009; Hashimoto-Torii et al., 2014; Ishii et al., 2017). 

 

Although defects caused by prenatal alcohol exposure are well identified, the exact molecular 

mechanisms underlying these alterations and their persistence are still unclear. However, PAE is 
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known to long-lasting impact on gene expression levels. These transcriptional disturbances, observed 

in the adult brain, occur in a manner dependent on the developmental stage at which the exposure 

has occurred. Indeed, transcriptional changes affect genes falling into distinct GO (Gene Ontology) 

categories, depending on the time-window of exposure in preclinical models, (equivalent to the first 

to third trimester of pregnancy in women) (Kleiber et al., 2013, 2014). These long-lasting disturbances 

therefore affect processes governed by gene networks that are active during the gestation, at the time 

of exposure. This “memory” of the exposure could occur via Epigenetic mechanisms. 

  

Remarkably, brain development is tightly controlled by epigenetic mechanisms, as underlined by 

the impact of mutations or variants in genes encoding epigenetic actors in the emergence of 

neurodevelopmental and neuropsychiatric disorders, such as Rett syndrome, Rubinstein-Taybi 

syndrome and autism spectrum disorders (Bourgeron, 2015; Gräff et al., 2011; LaSalle et al., 2013). 

The long-lasting and stage-specific transcriptomic alterations, described above and observed in the 

PAE-exposed brain, might be underlined by modifications in the epigenetic landscape, including 

perturbation of DNA methylation profile. Indeed, starting from seminal works on rodent models (e.g. 

Haycock and Ramsay, 2009; Kaminen-Ahola et al., 2010), a number of studies have identified 

disturbances in DNA methylation on candidate genes or loci, or in a genome-wide manner, in the 

mouse adult brain that was exposed to alcohol prenatally (Kleiber et al., 2013; Laufer et al., 2013; 

reviewed in Lussier et al., 2017). Alterations in DNA methylation profile observed in mouse brain in 

response to PAE has been corroborated in peripheral tissues (cheek swabs) in cohorts of FASD children 

(Laufer et al., 2015; Lussier et al., 2018). PAE during the preimplantation period has also been 

associated to DNA methylation perturbations observed more than one week after and associated to 

neurodevelopmental defects (Legault et al., 2021).  

Strikingly, the short-term impacts of PAE on the genome-wide architecture of DNA methylation 

in the developing brain have been understudied and there is a need to investigate whether the 

aberrant DNA methylation events are the direct and immediate results of alcohol exposure. First, this 

is of importance for the field, because DNA methylation disturbances observed after birth or in the 

adulthood could (i) result from immediate PAE-dependent DNA methylation changes that would 

persist throughout life or (ii) be due to PAE-induced brain dysfunction. Indeed, in the last case, since 

neuronal activity can reshape DNA methylation throughout lifetime (Guo et al., 2011), the remodeling 

of the DNA methylome could represent secondary effects of PAE, resulting from the PAE-induced 

alteration of neuronal activity in the infant or adult brain. Second, this is also a question of medical 

relevance. In many cases, the history of exposure to alcohol is unknown and FASD children are often 

diagnosed late, which compromised early intervention (Gibbard et al., 2003). The search for accurate 

and relevant molecular biomarkers, especially for biomarkers of exposure, is thus necessary. Attempts 
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to identify biomarkers of exposure linked to DNA methylation perturbations have been given special 

attention in the field. Ideally, such DNA methylation changes should occur quickly after exposure. This 

has remained to be determined. 

 

We thus asked whether immediate changes in DNA methylation could be detected across the 

genome, in the developing mouse cerebral cortex, using a tailor-made methylome capture approach. 

To capture immediate events of DNA methylation alteration and since binge drinking has become an 

increasing mode of alcohol consumption in young women (Dwyer-Lindgren et al., 2015; Tan et al., 

2015; Popova et al., 2018), we chose a binge-drinking-like mouse model of PAE. We observe hundreds 

of differentially methylated regions (DMRs), as early as two hours after the last alcohol injection. We 

show that DMRs are significatively associated to genes or loci which, in physiological conditions, are 

dynamically regulated at the time of exposure, in terms of chromatin accessibility or expression, and 

which are linked to biological processes of importance for brain development and functions. 

Moreover, DMRs are overrepresented in two families of mono-allelically expressed genes of 

importance for neurodevelopment — imprinted genes and genes of clustered protocadherins — and 

correlate with immediate modifications in their transcript levels. Our results therefore show that some 

genomic regions are the target of differential methylation events, very rapidly after exposure, that are 

associated with concomitant changes in gene expression. Interestingly, according to published results, 

DMRs associated with imprinted genes and protocadherins have been observed at temporal distance 

of PAE, in the mouse and/or human postnatal and adult brain, this suggest that these loci might 

represent immediate targets of PAE with long-lived DNA methylation perturbation and provide 

valuable and meaningful biomarkers of exposure in the future. 
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RESULTS 
 

Working model: a methylome capture in a murine binge drinking model 

To identify DNA methylation changes that would occur immediately after an acute prenatal 

alcohol exposure, we used a murine model of binge drinking at a developmental stage equivalent to 

the second trimester of pregnancy in human: mouse embryonic cortices were exposed to PAE, in utero, 

at embryonic days E15 and E16 (Figure 1A, see Materials and Methods). We chose this binge-drinking 

model to be as close as possible to a human mode of acute consumption. The quantity of injected 

ethanol corresponded to a dose known to induce brain defects that mimic FAS, in rodent pups (Carloni 

et al., 2004; Ikonomidou et al., 2000; Olney et al., 2002). We searched for methylation modifications 

immediately occurring after PAE, using a capture of the DNA methylome (EpiCapture technology; see 

Materials and Methods), which allowed us to study, with a good resolution, a repertoire of 58,611 

selected DNA regions corresponding to about 81.3 Mb. In particular, the capture design was composed 

of more than 75% of mouse promoters and all the enhancers that are active in the brain (Figure 1B, 

Supplementary Figure 1A; see Materials and Methods for details).  

 

Quality control of the methylome capture 

This methylome capture approach used sodium bisulfite (BS) conversion, to distinguish between 

methylated and unmethylated cytosines. First, we verified that the BS conversion had correctly 

occurred for all samples (Clark et al., 2006; Krueger et al., 2012). Abnormal per-base-sequence-content 

plot obtained with FASTQC was observed for each sample, as expected for DNA sequences converted 

with BS (Supplementary Figure 2A,B). Moreover, BS conversion rate of all samples was quantified, 

using spike-in DNA. Conversion rate was high (>97,8%) for all the samples, which means that no 

conversion biases were present in our data analyses (Supplementary Table 1).  

To minimize inter-individual variability in the same group, we mixed half-cortices from 4 embryos 

from 4 different litters (2 left and 2 right half-cortices; Supplementary Figure 1B). In line with our 

sampling choice, we observed that intra-group variability was limited, according to hierarchical 

clustering analysis and Pearson correlation between samples (Supplementary Figure 2C,D). However, 

triplicates from the EtOH-treated group showed more differences between each other than did 

triplicates from control group (PCA analysis and hierarchical clustering analysis, Supplementary Figure 

2C,E), suggesting that, even if samples were globally affected in the same manner by in utero alcohol 

exposure, some subtle differences in term of CpG methylation level could be observed. In addition, 

CpG base Pearson correlation values indicated that inter-group variability was also limited. This 

suggests that PAE does not majorly reshape the DNA methylome.  
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Using the bioinformatics workflow described in Supplementary Figure 2A, to compare control 

and alcohol-treated groups, we only identified three hyper- and one hypomethylated isolated 

(individual) CpGs, all having a high methylation differential percent (> 35%; Figure 2A; MethylKit 

analysis on normalised and filtered datasets, meth. diff < 5%, qval. < 0.05). Two of these differentially 

methylated cytosines (DMC) are located in intergenic regions (on chromosomes 5 and 10). One 

hypermethylated CpG is in the Kalrn gene, encoding the Kalirin RhoGEF kinase that is involved in 

various mechanisms, such as neuronal shape regulation, growth and plasticity. The third 

hypermethylated CpG is associated to Tiam2 gene, encoding a RAC1-specific guanine nucleotide 

exchange factor.  

 

Definition of DNA methylated regions for capture analysis 

Although the methylation of an individual CpG can affect gene expression (Xu et al., 2007), DMRs 

are considered as more relevant in terms of impact on gene expression. In line with this consideration, 

studies of differentially methylated regions (DMRs) have been more frequently performed (Bock, 

2012). We therefore pursued our analyses on the identification of DMRs.  

Bioinformatic analysis of this methylome capture required special attention, especially to define 

potential differentially methylated regions (DMRs) between control and alcohol-treated groups. 

Indeed, to define such genomic regions, existing bioinformatics tools were often design for analyses 

considering the whole genome (or well-characterised arrays), as a reference. This kind of approach is 

not adapted to a customized capture based on a repertoire of selected regions. For this reason, we 

developed our own R function to define DMRs between control and alcohol-treated groups, which 

combined neighbouring CpGs that share similar differential methylation states, either all showing loss 

of methylation (hypo CpGs) or all showing gain of methylation (hyper CpGs). More precisely, we 

defined DMRs on the following basis (see Materials and Methods; Supplementary Figure 3): the 

association of at least 5 CpG having a same methylation state, in a region of maximum 2000 bases, 

with a maximum distance of 100 bases between two successive selected CpG, according to a p-value 

threshold (Supplementary Table 2). For this, a pre-selection of relevant CpGs was done, according to 

their p-value (CpGs with p-value < 0.07). This p-value threshold was determined using comparisons of 

real and random datasets (see below, Supplementary Figure 4, Supplementary Table 2).  

 

Immediate alterations in DNA methylation are detected in brain development upon PAE. 

Using this captured-specific bioinformatic workflow (Supplementary Figure 2A; Supplementary 

Table 3, see Materials and Methods and Supplementary Data notebook 1) we identified 432 regions 

that were differentially methylated in embryonic cortices, immediately after PAE, among the 58,611 

regions included in the capture (Figure 2B, Supplementary Dataset 1). Among these, DMRs showing 
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gain of methylation were predominant, compared to DMRs corresponding to loss of methylation (257 

“hyper-DMRs”; 175 “hypo-DMRs”; Figure 2B). In either hyper- or hypo-DMRs, the median differential 

levels of DNA methylation in the majority of DMRs reached more than 10% (Figure 2B).   

 

Even if there was a limited number of regions altered in their DNA-methylation levels, at least in 

the repertoire of the captured loci, our results suggest that DNA methylation is rapidly and locally 

redistributed in the cortices exposed to PAE. We performed hypergeometric tests either on all DMRs, 

or by separating hypo-DMRs and hyper-DMRs and observed that genomic regions were not randomly 

altered by PAE in their DNA methylation status. Indeed, brain active enhancers, characterized by the 

H3K27ac histone mark, were significantly over-represented among the DMRs identified in the capture, 

(345 on 432 DMRs i.e., 79.86% of DMRs; hypergeometric test, p-val < 0.05. Figure 2C,D; Figure 3). In 

contrast, promoters and other regions of interest, which represent respectively 134 and 35 DMRs, 

were not significantly affected by the binge drinking stress (Figure 2B,C).  

 

To identify potential binding sites of transcription factors within the DNA sequences of enhancers 

located in DMRs, we explored the presence of DNA sequence motifs using findMotifsGenome 

(HOMER). We could not observe any over-representation of specific motifs. This result suggests that 

there are no sub-categories of enhancers (i.e. characterized by specific transcription factors), that 

would be more severely affected by PAE than others. Since these enhancers belong to an active 

repertoire in the mouse brain, we then performed a Gene Ontology (GO) analysis on all the enhancers 

containing DMRs, in order to unveil specific Biological Processes potentially rapidly altered by PAE. We 

observed that a significant number of genes associated to these enhancers played a role in 

neurogenesis, generation of neurons, cell development, nervous system development, and neuron 

differentiation (Figure 3A; Table 1). When considered separately, enhancers with a decrease in 

methylation levels upon PAE were not significantly associated to a specific Biological Process. In 

contrast, hypermethylated enhancers were predominantly associated with genes that are involved in 

the above-cited Biological Processes (Figure 3B, Table 2).  

 

 

 

Regions showing chromatin remodelling during physiological brain development are significantly 

associated with PAE-induced DNA methylation events   

The striking enrichment of DMRs in enhancer regions, which were specifically active in the 

brain, let us think that these DNA methylation perturbations could occur in regions whose chromatin 

accessibility was undergoing changes at cortical developmental stages around the PAE exposure. We 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2022.03.09.481186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.481186


Duchateau et al.   9 

thus both investigated the changes of global chromatin accessibility and gene expression dynamics 

throughout the physiological mouse forebrain development around E14.5 to E16.5. For this, we used 

a bioinformatics workflow, which allows for pairwise comparison of successive developmental stages, 

to analyse public ENCODE ATAC-seq and RNA-seq datasets (Supplementary Figure 2A, and Materials 

and Methods, Supplementary Data notebook 2 and 3, Supplementary Tables 4 and 5). Our results 

are described in Supplementary Dataset 1. The number of identified regions or genes in each dataset 

is indicated in Supplementary Figure 5A (for quality control of these data, see Supplementary Figure 

5B,C). 

We observed DMR enrichment in regions whose chromatin accessibility was changing around 

the PAE time-window, which concerned regions that gained chromatin accessibility between E14.5 and 

E15.5, in physiological conditions (Figure 4A,B; Supplementary Data notebook 4, Supplementary. 

Dataset 2). This represented 5 regions out of 313 regions of the capture repertoire, among 1,442 total 

regions in the differentially opened regions (DOR) of the original ENCODE dataset (please see the 

legend of Figure 5 for normalization details taking into account the constraints of the capture 

approach). Interestingly, these 5 regions corresponded to active enhancers and were associated with 

with GO terms of importance for neurodevelopment and brain function: for example, cell motility and 

cell migration (Elmo1), synaptic signalling (Plcl2),  regulation of multicellular organization process and 

cytoskeleton protein (Mapre2), and cell development, cell biogenesis, plasma membrane part, 

abnormal mouse morphology (Antxr). In addition, our analysis of the RNA-seq ENCODE dataset (Figure 

4) revealed that DMRs were significantly associated with genes that were upregulated between E14.5 

and E15.5, and between E15.5 and E16.6 under physiological conditions (Figure 4D; for quality control 

of these data, see Supplementary Figure 6A,B). 

 

Immediate DNA-methylation and concomitant gene expression changes affect mono-allelically 

expressed gene upon PAE 

First, when exploring CpG islands (CGis), which are relevant targets of DNA methylation and its 

potential perturbations (Saxonov et al., 2006), we found that only 36 out of the 432 identified DMRs 

were located into CGis. However, a quarter of these DMRs (9 out of 36; Figure 5A,B), significantly, 

corresponded to imprinted genes, which are  tightly regulated by DNA methylation (Perez et al., 2016). 

As a whole, 13 DMRs were associated to 10 distinct imprinted genes in our analysis (9 DMRs in CGis, 4 

DMRs not associated with CGis; Figure 5A,B). Moreover, these DMRs were located into the imprinting 

control regions (ICRs), which govern the expression of the imprinted locus (Table 3). This statistically 

significant over-representation DMR associated to imprinted genes among DMRs was confirmed by a 

hypergeometric test (see details in Materials and Methods). Interestingly, a majority of DMRs 
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associated to imprinted genes were located within the promoter regions (8/13) and/or active 

enhancers in the developing brain (11/13, Figure 5A).  

 

In addition, we found that a significative number of early DMRs were associated to clustered 

protocadherin genes (Pcdhs). Clustered  Pcdhs are also mono-allelically expressed, but in a random 

manner, and are individually regulated by DNA methylation (Phillips et al., 2017). Namely, we 

identified 10 DMRs in 9 distinct Pcdh, from both α- and γ- protocadherins clusters (Figure 5C). For 4 

Pcdhs, DMRs observed immediately upon PAE are also located in a CpGi (Figure 5C). 

 

The tight regulation of the monoallelic expression of imprinted genes and protocadherins  by DNA 

methylation is crucial for neurodevelopment and normal brain functions (Davies et al., 2008). For 

example, clustered Pcdhs play important roles in the modulation of dendrites arborisation and 

synaptogenesis or limitation of autapse formation through cell-cell recognition (Light and Jontes, 2017; 

Phillips et al., 2017; reviewed in El Hajj et al., 2016; Matsunaga et al., 2017; Molumby et al., 2017; 

Yamagata et al., 2018). The early alteration of their methylation levels by PAE could thus potentially 

affect their expression with potential defects typical of FASD. We thus investigated whether the 

establishment of DMRs in these genes were concomitant with changes in their expression levels. Using 

RT-qPCR, we examined the expression of four imprinted genes (Inpp5f_v2, Nap1l5, Peg13, and Zrsr1), 

three genes of protocadherin clusters (Pcdhα3, Pcdhα9, and Pcdhγa2). We also included three genes 

in our analysis, whose mutations in human lead to neurodevelopment disorders and which were also 

associated with DMRs with similar percentages of methylation differences (Supplementary Figure 7A): 

Mid1, associated  to the Opitz BBB/G syndrome reviewed in (Winter et al., 2016) and Shank2 and Auts2 

both linked to autism spectrum disorders (ASD; reviewed in Bourgeron, 2015 and Pang et al., 2021), 

with which FASD share overlapping traits (Lussier et al., 2021; Popova et al., 2016). We showed that 

these genes which were associated with immediate DMRs exhibited concomitant disturbances of their 

expression in the prenatal cortex (Figure 6).  

 

Immediate impacts of PAE on the transcriptome 

To get a broader picture of the immediate transcriptomic changes induced by PAE in the prenatal 

cortex, and putative impact on cortical development, we performed RNA-Seq analysis of control or 

PAE fetal cortices (8 for each condition; Supplementary Figures 2A and Statistical report of project 

Sartools-edgeR-RNAseq-PBSvsEtOH_report_note.html). Multidimensional scaling analysis indicated 

that control (PBS) samples were grouped together, and, thus, more similar between each other, 

compared to the EtOH samples (Figure 7A). In contrast, EtOH-exposed samples were more distant one 

from each other: EtOH3 and EtOH4 samples were similar to the control ones, whereas other EtOH 
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samples were distant from the cluster of control samples (Figure 7A). This likely reflects the variability 

of the response to PAE among individual fetal cortices, knowing that embryos from the same litter do 

not systematically cluster (Figure 7A).  We found that a total of 4808 genes were significantly 

dysregulated in their expression (adjusted p-values < 0.05), among which 2598 were up- and 2210 

downregulated (see Sartools-edgeR-RNAseq-PBSvsEtOH_report_note.html and Supplementary 

Table 6; these differentially expressed genes (DEGs) were hereafter termed UP DEGs and DOWN DEGs. 

Volcano and MA plot visualization of the data indicated that a majority of genes exhibited limited 

expression alterations in terms of fold-change intensity (Figure 7B,C) and that only 11 DOWN DEGs 

and UP DEGS were found to have a log2 FC > or < 1, respectively (highlighted in Supplementary Table 

6). A large majority of DEGs (4732) were not found associated with a DMR. We found 40 DEGs that 

were both associated with a DMR and either localized in a region which, in unstressed cortices, gain 

chromatin accessibility between E14.5 and 515.5 or 15.5 and EE16.5 (see Figure 4) or whose expression 

increased during one of these time-windows. Five imprinted genes were identified in our RNA-seq 

dataset: three that were upregulated and in which a DMR was located in the ICR (Gnas; Herc3, and 

Impact), one that was downregulated and whose ICR contained a DMR (Peg13(TrappC9), and one 

downregulated (Commd1) but which was not associated with a DMR (Supplementary Table 7). GO-

term analysis indicated that DOWN DEGs fell into biological processes and cellular components linked 

to: i) ribonucleoprotein complex and ribosome biogenesis, rRNA, nRNA, and mRNA maturation and 

processing, including splicing, and into categories associated with mitochondrial translation, 

mitochondrial protein complexes, respiration, and oxidative phosphorylation, vesicle exocytosis and 

transport, as well as synaptic vesicles (p-values comprised between 2.98e-62 and 2.00e-16) (Figure 8A; 

Supplementary Table 8). Whereas the numbers of DOWN and UP genes were similar, DOWN DEGs 

were enriched in GO-terms with lowest adjusted p-values than UP DEGs, which suggested that PAE 

immediate impacts on the transcriptome are majorly mediated by downregulating gene expression 

(Figures 8A and 9A). UP DEGs were associated to (i) the Wnt pathway, and SMAD binding, 

regionalization and forebrain development, transmembrane transporters, (ii) repression of 

transcription, polycomb-group proteins, Polycomb Repressive Complex 1 (PRC1), and (iii) hallmarks of 

stress responses, like cytoplasmic ribonucleoprotein granules, P-bodies, stress granules, and centriolar 

satellites (Figures 9A). In addition, among the DOWN DEGs identified in PAE-exposed samples, gene-

set enrichment analysis (GSEA) confirmed that a majority of the genes present in a given GO-term was 

significantly impacted in terms of dysregulation of expression. This was the case for cellular and 

mitochondrial protein synthesis and for respiration: notably, “ligase activity, forming carbon-oxygen 

bonds” (i.e. amino-acid tRNA ligase), “tRNA-binding”, “ribosome biogenesis”, “rRNA processing”, and 

mitochondrial translation, and “NADH Dehydrogenase complex assembly” (Figure 8B,C and 

Supplementary Figure 8A,B; Supplementary Table 9 and 10). Likewise, UP DEGs globally fell into a 
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more restricted number of GSEA categories: genes involved in the negative regulation of BMP signaling 

(for biological processes), in transforming growth factor beta (TGF )-binding (for molecular functions), 

and PRC1 (for cellular components) (Figure 9B,C and Supplementary Table 9 & 10). 

Modest transcriptional changes, as those observed here (Figure 7B), that affect a wide number of 

genes involved in the same pathways are susceptible to impact neurodevelopment by their 

coordinated modulation. To gain deeper insight into the potential coordinated impact of proteins 

encoded by DEGs and their potential involvement in protein–protein interaction networks, we 

conducted network analyses based in protein-protein interactions (STRING, v1.7.0  https://string-

db.org/) and performed visualization by using Cytoscape (v. 3.9.1) (Figure 10 and 11; Supplementary 

Table 12). When DOWN DEGs were considered, we identified 7 clusters of protein-protein interactions. 

Among the fourth containing the highest numbers of genes, Cluster 1 corresponded to 

“ribonucleoprotein complex” and “ribosome biogenesis”, and “RNA metabolism and processing”, in 

particular. Cluster 2 was linked to “spliceosome” and “splicing”, Cluster 3 gathered “respiratory 

electron transport/respirasome”, and “inner mitochondrial membrane protein complex”, “electron 

transport chain”, and Cluster 4 was associated to “mitochondrial translation” (Figure 10). Based on the 

population of UP DEGs, we detected 21 clusters of protein-protein interactions (Figure 11). In 

particular, Cluster 1 contains co-upregulated genes belonging to PRC1. Cluster 2 is centered around 

the transcriptional co-activator p300. Cluster 3 correspond to the TGF  - SMAD - BMP signaling and 

Cluster 4 to the NF-kB pathways.  

Altogether, our GO, GSEA, and STRING analyses pointed to major downregulation of genes of 

importance for cytoplasmic and mitochondrial ribosome functions, mitochondrial translation, and 

respiration. Similarly, both GSEA and STRING analyses indicated that genes that are upregulated in a 

coordinated manner by PAE encode proteins that belong to an interaction network governing the TGF  

- SMAD - BMP signaling pathway. 

 

DISCUSSION 

 

The impact of PAE on the DNA methylome in the brain has been almost exclusively interrogated in the 

postnatal and adult brain, at long temporal distance from the time-window of exposure (Laufer et al., 

2017) and the question whether perturbations of DNA methylation occur quickly after exposure has 

remained elusive. A recent study also investigated the effect of prenatal alcohol exposure during the 

preimplantation stages of the mouse embryo and,  10 days later, identified DMRs that interestingly 

affected genes important for neurodevelopment (Legault et al., 2021). To the best of our knowledge, 

our study represents the first analysis of the effect of PAE on the DNA methylome in the developing 
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neocortex, addressing the question of the immediate deposition of aberrant DNA methylation marks, 

at very short temporal distance from the exposure.  

 

Statistical intra- and inter-group variability 

 

We observed that the intra-group variability was limited (Supplementary Figure 2D). This is likely 

due to our sampling mode which aimed at minimizing inter-individual variability in the same group, by 

mixing half-cortices from four embryos from four different litters in the same NGS sample 

(Supplementary Figure 1B). However, we also observe that the triplicates of the EtOH-treated group 

show more differences between each other than do triplicates from the control group. Interestingly, 

this is also observed in another paradigm prenatal stress due to neuroinflammation between samples 

within the exposed group (Schang et al., 2018a), and more generally the exacerbated cell-to-cell 

variability provoked by PAE (Ishii et al., 2017). Indeed, this might reflect the immediate impact of 

cellular stress caused by ethanol exposure, and the disequilibrium, with some stochastic aspects, it 

imposes to cellular functions and molecular pathways, including the regulation of DNA methylation, 

before the system reaches a new equilibrium.  

Alcohol exposure has multiple potential effects on DNA methylation in terms of availability of 

precursors of the methyl group (Hutson et al., 2012; Kleiber et al., 2014; Chater-Diehl et al., 2017), 

elevation of DNMT levels (Miozzo et al., 2018), or potential redistribution of DNMTs in the genome, 

which would explain the fact that gain and loss of methylation can be observed depending on the 

genomic region considered.  Our statistical analyses suggested that inter-group variability (control 

versus PAE-treated samples) is limited, and that PAE therefore might not majorly reshape the DNA 

methylome – at least in the repertoire of captured regions (Supplementary Figure 2D). Three 

observations could explain these results: i) it could result from the stochasticity of PAE effects on DNA 

methylation, and consequently, due to the fact that we capture only the most frequent and robust 

alterations in DNA methylation; this would not mean that the other perturbations of DNA methylation 

in one individual couldn’t be meaningful in terms of clinical phenotypic consequences (Cobben et al., 

2019). ii) Another possibility is that, in spite of pleiotropic alcohol impacts, the DNA methylome is 

globally unchanged after such a binge-drinking-like mode of PAE due to rapid protective mechanisms, 

which would be interesting to unravel. iii) Alternatively, this apparent robustness of the DNA 

methylome might only reflect the fact that other perturbations of DNA methylation could occur later  

in life, for example  due to abnormal neuronal plasticity due to PAE, that could reshape the DNA 

methylome profile in the postnatal and adult brain (Guo et al., 2011). Nevertheless, studies that 

explored the DNA methylation patterns at temporal distances in animal models or FASD cohorts, using 

capture-like or genome-wide approaches also identified a limited number of DMRs (a few hundred in 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2022.03.09.481186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.481186


Duchateau et al.   14 

most studies, around 6600 promoter regions in one study; Laufer et al., 2013, 2016; Portales-Casamar 

et al., 2016; Lussier et al., 2018; Cobben et al., 2019). Whether these DMRs originate from early or late 

alterations of DNA methylation patterns, this means that the DNA methylome is altered in a limited 

number of regions, which does not mean that this could be detrimental for the brain.   

 

Detection of individual differentially methylated cytosines, shortly after PAE 

 

We detect few individual cytosines showing statistically differential methylation after PAE. Two 

of them, hypermethylated, reside into genes, KALRN and Tiam2, that are involved in a pathway 

important for neurodevelopment: guanine nucleotide exchange factors. These genes participate to 

neuronal shape and polarity, axon growth and/or neuronal plasticity (Cahill et al., 2009; Honda et al., 

2017). KALRN misexpression has been linked to neuropsychiatric disorders like schizophrenia and 

addiction, and this gene has been found, in genome-wide association studies, to be related to ADHD, 

and schizophrenia, all pathologies being relevant for FASD (reviewed in Remmers et al., 2014). Because 

the methylation of an individual CpG can affect gene expression (Xu et al., 2007), these immediate 

DMCs could have deleterious effects on neuronal function.  

 

Immediate DMRs are mostly found in brain active enhancers upon PAE 

 

We have mainly focused on the identification and exploration of DMRs, which are, in general, 

more robustly associated to impacts on gene expression. We identified 432 DMRs, showing that DNA 

methylation is rapidly redistributed in the genome, shortly after PAE. We found that these immediate 

DMRs are not randomly distributed among the repertoire of capture regions: indeed, in contrast to 

promoters and other genomic regions, which are unaffected, enhancers that are known to be active 

in the adult brain are significantly over-represented, since more than 75 % of DMRs identified in our 

capture approach correspond to these genomic features. Interestingly, DMRs in these enhancers, that 

are particularly important for brain functions, if they would persist overtime in the adult, could disturb 

their activities, associated gene expression and explain part of the brain defects associated to FASD.  

The fact that we could identified statistically robust immediate DMRs is suggestive that, in the 

perturbed, somewhat chaotic, environment, PAE triggers immediate DNA methylation alterations that 

are common to and could explained shared phenotypic traits among individuals diagnosed for FADS. 

Conversely, other immediate changes that would occur more randomly amongst individuals might also 

have phenotypic consequences and be linked to the clinical variability observed in FASD patients 

(Cobben et al., 2019). 
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Immediate DMRs are linked to genes showing dynamic, physiological changes in chromatin 

accessibility and gene expression  

 

We found that DNA methylation changes occur in specific regions that are, under no stress 

conditions, physiologically modified in terms of chromatin accessibility and gene expression, at the 

stage at which PAE was inflicted. First, DMRs are particularly enriched in regions whose chromatin 

gains accessibility between E14.5 and E15.5 in physiological conditions, and the corresponding 

enhancers are associated with genes whose GO terms underline importance for brain development. 

Any perturbation of their methylation landscape by PAE might thus impair the physiological expression 

of these genes. Second, DMRs are also significantly associated with genes exhibiting upregulation of 

their expression, either between E14.5 and E15.5 or between E15.5 and E16.5. Notably, Satb2, one of 

the genes that undergoes upregulation during these two time-windows, in physiological conditions, is 

associated in our analysis with a PAE-induced hypermethylated DMR located in an enhancer (DMR in 

intron 2 on 10). This gene was previously identified by Hashimoto-Torii et al (2011) as the most 

downregulated gene in a similar paradigm of PAE (ethanol injections between E14 and E16). They also 

found that SATB2 expression was dysregulated in human cortices isolated from gestational week 15-

18 fetuses, which were ex vivo exposed to ethanol. In their mouse model, the perturbation of Satb2 

gene expression persists after birth (postnatal day 14, Hashimoto-Torii et al., 2011), suggesting that 

the presence of such DMRs could potentially and persistently alter gene expression at temporal 

distance from the last ethanol injection. Similarly, the DMR-associated Mapre2 gene, which encodes a 

microtubule-associated protein, shows physiological increased chromatin accessibility between E14.5 

and E15.5, and upregulated expression between E15.5 and E16.5.  DNA methylation changes in 

Mapre2 DMR could therefore been followed by alteration in its expression. Interestingly, Tiam2, which 

contains one statistically significant DMC also belongs to the group of genes upregulated between 

E15.5 and 16.5. 

In addition, we verified that three genes, Mid1, Auts2 and Shank2, whose mutations are 

associated with neurodevelopmental disorders including ASD for Auts2 and Shank2, are associated 

with DMRs and show correlative disturbances of expression, immediately after PAE.  

 

Immediate DNA-methylation changes affect mono-allelically genes and correlates with 

misexpression upon PAE  
 

Immediate DMRs are over-represented in imprinted genes in our PAE paradigm. They are mainly 

located within the promoter regions and active enhancers. We find that most of imprinted genes are 

ranked in the top of DMR-containing genes in terms of percentage of differential methylation and that 

these DMRs mostly overlap with the ICR of these genes, which is tightly controlled by DNA methylation 
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and essential for parental monoallelic expression of these genes. The other family of genes 

prominently showing immediate alteration of DNA methylation patterns is the clustered protocadherin 

genes, which are individually regulated by DNA methylation. Interestingly, these two family of genes, 

which are key for neurodevelopment and neuronal function, have been already identified as 

associated to DMRs as in the adult brain in mice or FASD cohorts (Laufer et al., 2013; Lussier et al., 

2017) and in buccal swabs in cohorts of FASD children (Cobben et al., 2019; Laufer et al., 2015) 

therefore at temporal distance from the cessation of alcohol exposure. 

 

Historically, alteration of DNA methylation patterns in imprinted genes has been also identified 

at the H19/Igf2 control region in mouse preimplantation embryos exposed in utero to alcohol at 

temporal distance of exposure, since material (whole embryos and placentas) was collected at E10.5 

(Haycock, 2009). Early alteration in the DNA methylation status of imprinted genes has been suggested 

by Downing et al. (2011), who observed subtle decrease in DNA methylation and gene expression at 

the mouse Igf2 locus at E9, four hours after prenatal alcohol exposure in whole embryos and placentas, 

which were ameliorated by diet supplementation with methyl-group precursors Downing et al., 2011). 

Other studies have also identified differential methylation status in imprinted genes after ex vivo 

ethanol exposure of cultured mouse embryos at the early neurulation stage (after 44 hours of 

exposure, Liu et al., 2009), as well as in human embryonic stem cells exposed to ethanol for 24 or 48 

hours (Khalid et al., 2014). These two ex vivo studies were suggestive that at least some imprinted 

genes could show early modifications in their DNA methylation profiles and thus, in line with our 

unbiased in vivo findings, using a methylome capture in the neocortex and two hours after PAE, only. 

 

Among the genes whose expression is physiologically upregulated between E14.5 and E15.5 and 

that are associated with DMRs in our PAE paradigm, we identify Grb10, whose specific expression from 

the paternally inherited allele is involved in adult behaviour (Dent and Isles, 2014; Perez et al., 2016). 

Interestingly, Grb10 has already been identified as differentially methylated in adult mice, after PAE 

by Laufer et al. (Laufer et al., 2013) and by Liu et al. (2009), as well as deregulated expression in 

response to very brief alcohol exposure in astrocytes (Pignataro et al., 2009). Interestingly, some DMRs 

are located in promoter region of several protocadherin genes, including Pcdhgb4 and Pcdhga12. 

These observations suggest that expression of these particular genes could be affected both 

immediately and later after the PAE.  

 

PAE therefore quickly disturbs DNA methylation in these mono-allelically expressed genes, which 

are key for neurodevelopment. Moreover, we show that, at least for some of them, the presence of 

immediate DMRs in the ICR correlates with concomitant perturbation of their expression, which could 
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potentially have rapid detrimental consequences on neurodevelopment. Note that the expression of 

the genes is disturbed in a relatively modest manner. However, even a 20% difference in gene 

expression upon PAE correlates with neurodevelopmental defects (El Fatimy et al., 2014).  

 

Moreover, as quoted above, at long temporal distances from PAE, DMRs were detected in several 

mono-allelically expressed genes of these two families, in the adult brain in mice (Laufer et al., 2013; 

Lussier et al., 2017; Legault et al., 2021) and in buccal swabs in cohorts of FASD children (Cobben et 

al., 2019; Laufer et al., 2015). Our data thus suggest that these immediate alterations in DNA 

methylation may persist throughout life. In addition, the fact that we demonstrate that they occur so 

early upon PAE reinforces their potential as biomarkers of exposure. Notably, DMR persistence might 

not consist in a perfect conservation of the percentage of methylation for each CpG. Indeed, DNA 

methylation overtime might be modified by many factors, including brain activity itself (Guo et al., 

2011). Rather, such persistence might be more qualitative than quantitative in the sense that a given 

DMR may globally exhibit differential methylation, both at short and long temporal distance from the 

end of exposure, but with different percentage of individual cytosine methylation at an early, 

compared to a late time-window.   

 

To the best of our knowledge, our data demonstrate for the first time in an unbiased manner, 

that DNA methylation alterations in the developing cortex are detected immediately after the 

cessation of PAE across the genome. Although the number of DMRs that are formed right after PAE is 

limited, these alterations do not occur randomly, but target enhancer regions that are active at the 

time of alcohol exposure. Moreover, regions that undergo changes in chromatin accessibility and gene 

expression seem to be particularly vulnerable to perturbation of DNA methylation patterns and are 

associated with genes of importance for neurodevelopment.  In addition, we show that genes of two 

gene families, whose monoallelic expression is tightly controlled by DNA methylation and crucial for 

brain development and function, carry immediate DMRs associated to synchronous dysregulation of 

their expression. These gene families have been previously identified as carrying or associated to DMRs 

in the adult brain, in human children or mouse models after PAE. Although they were suspected to be 

long-lasting epigenetic marks of PAE, there was no direct evidence that that they were established 

early in response to PAE. Our observations demonstrate that abnormalities in DNA methylation 

profiles are established immediately upon PAE and strongly suggest that they can persist at very long 

temporal distance from the end of exposure, and this could be considered as “scars” of exposure to 

prenatal stress. This makes of these two gene families strong candidates as biomarkers of exposure, 

which are so urgently needed to better and earlier diagnose FASD children and accelerate and 

ameliorate follow-up and intervention.  
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Our characterization of immediate effects of a binge-drinking-like PAE first points to higher 

variability in EtOH-exposed cortical samples, compared to control ones (Figure 7). This observation 

corroborates previous studies that showed that PAE led to exacerbated cell-to-cell variability in both 

participant-derived cells, associated with schizophrenia, or in a PAE-mouse model. Notably, these 

publications are based on a protocol resembling to ours (Hashimoto-Torii et al., 2011; Ishii et al., 2017). 

The fact that cortices from embryos of the same litter behave differently is also in line with these 

reports. Nevertheless, we identify genes associated with statistically significant changes in the levels 

of mRNAs. A large majority of DEGs were not found associated with a DMR. This could be biased by 

the limits of the DMR capture design: in order to detect subtle methylation differences, only regions 

extended [-1 kb; +1kb] around a promoter or enhancer were selected for the capture, which excluded 

a large number of regulatory regions. Nevertheless, our RNA-seq data analysis highlights the 

dysregulation of the expression of imprinted genes in agreement with the presence of a DMR in their 

ICR, and with our RT-qPCR results. Combined to the fact that a tight epigenetic control of the 

expression of some these genes (Zrsr1, Peg13, Nap1l5 et Inpp5f) is necessary for brain development 

and function, the finding of their dysregulation encourages future investigations to evaluate their 

potential as biomarkers of PAE. Indeed, their deregulation is observed very shortly upon PAE, which 

suggests that it could be directly linked to alcohol exposure and not due to long-term indirect process.  

The immediate changes in gene expression elicited by this binge-drinking-like PAE are modest in terms 

of level of fold change. This could be due to the fact that we chose to observed transcriptomic changes 

only 2 hours upon PAE, in our attempt to identify immediate effects of PAE. However, this timepoint 

could correspond to the start of transcriptional programs, which could occur slowly, at least for UP 

DEG. Strikingly, based on GO-term, GSEA, and STRING analyses, we describe a wide downregulation of 

families of genes involved in ribosome biogenesis, RNA metabolism and processing, and cytoplasmic 

and mitochondrial translation. We also observe decreased expression in genes involved in splicing. 

Correlatively, we find the UP DEGs are involved in the formation of diverse cellular granules. For 

instance, nuclear speckles into which splicing factors accumulate and host genomic regions of shared 

regulation self-organize in a three-dimensional (3D) manner, to optimize the efficiency and co-

transcriptional occurrence of splicing (reviewed in Bhat et al., 2024). We also identified gene networks 

of importance for cytoplasmic stress granules and p-bodies. They are membrane-less cellular 

compartments, composed of ribonucleoproteins, which assemble in response to stress and, 

respectively, contain translation initiation factors and factors related to mRNA degradation and decay. 

They also represent storage spaces for mRNAs, which altogether support their roles as new players of 

translational control (reviewed by Riggs et al., 2020). In addition, our analyses pointed to centriolar 

satellites that participates in the formation of centrosomes and primary cilia structures that are 

essential for neurodevelopment (reviewed in Odabasi et al., 2020 and Devi, 2021) possibly through 
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supporting translation in these particles of key proteins for these structures (Pachinger et al., 2024). 

Collectively, our data suggest that shortly after PAE, brain cortical cells adopt a “frozen” state by 

abruptly slowing down splicing, translation, and respiration, and by increasing the expression of genes 

that support the formation of diverse cellular bodies, involved in the hosting or sequestration of RNAs 

and important molecular players that preserve these functions. Importantly, both the slow-down of 

translation, which has long been shown to be a primary consequence of the cellular response to heat 

shock (HSR; Lindquist 1981; Desroches Altamirano et al., 2024) and the stalling of ribosomes (ribosome 

collision) induced by stress, which triggers ribosome quality control (RQC), maintain proteostasis 

(homeostasis of the proteome; reviewed in Kim and Zaher, 2022). Our findings suggests that PAE 

quickly triggers a program that by reducing translation, ribosome biogenesis, and respiration and by 

allowing storing RNAs and RNA-binding proteins in specialized cytoplasmic or nuclear domains, 

contributes to proteostasis, and thereby protects the brain cortical cells. In the same line of freezing 

process that could lead to proteome damage under stress, and activating those that could contribute 

to maintain the cell homeostasis, GO-terms analyses also suggest that genes important for vesicle 

exocytosis and transport, as well as synaptic vesicles, are downregulated, whereas genes encoding 

transmembrane transporters are upregulated, evoking a need to secure the maintenance of a correct 

intracellular environment in the cells of the developing cortex exposed to alcohol. 

 In addition, our data indicate that PAE rapidly triggers the upregulation of the Wnt pathway that 

governs cell fate, cell migration, cell polarity, and neural patterning (Rim et al., 2022) and the TGFb - 

SMAD - BMP signaling pathway, which is necessary for the differentiation of neural stem cells and 

neural progenitor cells, neurite outgrowth, and dendritic development, and axon growth, retrograde 

transport along the axon (likely through cytoskeleton dynamics), and synapse formation (Kashima and 

Hata, 2017). 

In conclusion, PAE provokes immediate rewiring of the transcriptome. This potentially has dual 

consequences: 1) this could lead to beneficial impacts on the recovery of cells from alcohol exposure, 

through slowing down protein synthesis and energy-consuming respiratory pathways; 2) it could be 

detrimental through the inappropriate activation of critical gene expression programs that are 

susceptible to rapidly and directly perturb neurodevelopment. 
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MATERIALS AND METHODS 

 

 

Mice mating and alcohol exposure 

C57Bl/6N murine females of 2- to 4-months-old were time-mated and assessed for mating based 

on the presence of a vaginal plug. The noon of vaginal plug day was considered as embryonic day 0.5 

(E0.5). For binge drinking stress, pregnant females received intra-peritoneal injections of ethanol 

(3g/kg, diluted in a final volume of 500 µL of PBS), at embryonic days E15, E15.5 and E16 (Figure 1A). 

Control group received similarly PBS alone. Embryonic cortices were collected 2 hours after the last 

injection.  

 

Tissue collection and genotyping 

Embryonic cortices were harvested on ice, in cold L-15 medium (Leibovitz Gibco #11415-049). 

Only male cortices were used for methylome analysis, whereas both male and female cortices were 

used for gene expression analysis. For methylome analysis, three replicates were generated per 

group.1M, 2M and 3M are ethanol-treated samples, while 4M, 5M and 6M design the PBS-treated 

ones (control). In order to reduce inter-litter variability, each replicate was composed of 2 right hemi-

cortices and 2 left-hemi cortices, from embryos originated from 4 distinct litters, see Supplementary 

Figure 1B. 

Since sexual dimorphism was reported for behaviors of individuals exposed in utero to alcohol 

(Hellemans et al., 2010), we determined the sex of each embryo. Genomic DNA was extracted from 

animal tails incubation (95°C for 1h) in the extraction buffer (25 mM NaOH, 0.2 mM EDTA) then 

neutralized in Tris-HCl 40mM, pH5 (vol/vol). Sex of the embryos were identified by PCR genotyping 

using Ube1R (5’-CACCTGCACGTTGCCCTT-3’) and Ube1F (5’-TGGATGGTGTGGCCAATG-3’) primers that 

target Ube1X and Ube1Y genes (Sugimoto and Abe, 2007). These primers allow to amplify a 252bp 

amplicon from Ube1X and 334bp one from Ube1Y.  

 

 

ATAC-seq and RNA-seq ENCODE data  

Data mining from ATAC-seq and RNA-seq datasets was performed, using available public ENCODE 

data. These ATAC-seq and RNA-seq experiments were done using embryonic and newborn forebrains 

of C57BL/6N mice (experiments from Bing Ren laboratory, UCSD for the ATAC-seq and experiments of 

B. Wold, from Caltech laboratory for the RNA-seq).  

ENCODE accession number of the data analysed 
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  E13.5 E14.5 E15.5 E16.5 P0 

ATAC-Seq) 
ENCODE 
accession 
number 

Sample 
#1 

ENCFF401VUV (R1) 
ENCFF898NRO (R2 

ENCFF048MTG (R1) 
ENCFF890LGM (R2) 

ENCFF248PXW (R1) 
ENCFF825UHO (R2) 

ENCFF058IAE (R1) 
ENCFF765HUX(R2) 

ENCFF197GTC (R1) 
ENCFF209GGJ (R2) 

Sample 
#2 

ENCFF721LGJ (R1)  
ENCFF777UK (R2) 

ENCFF633MTW(R1) 
ENCFF666DRJ (R2) 

ENCFF906VXU (R1)  
ENCFF500SXI (R2) 

ENCFF776GDQ (R1) 
ENCFF588XZG (R2) 

ENCFF296GZG (R1) 
ENCFF664RZO (R2) 

RNA-seq 
ENCODE 
accession 
number 

Sample 
#1 

ENCFF235DNM(R1) 
ENCFF959PSX (R2) 

ENCFF270GKY (R1) 
ENCFF460TCF (R2) 

ENCFF179JEC (R1), 
ENCFF891HIX (R2) 

ENCFF931IVO (R1) 
ENCFF114DRT (R2) 

ENCFF037JQC (R1)  
ENCFF358MFI (R2) 

Sample 
#2 

 ENCFF126IRS (R1) 
ENCFF748SRJ (R2) 

  ENCFF447EXU (R1)  
ENCFF458NWF (R2) 

 

Methylome capture and high-throughput sequencing 

To analyze the methylation of genomic regions that we selected (see below details about the 

design of regions, Figure 1B and Supplementary Figure 1A), a methylome capture was performed, 

using SeqCapEpi Developer Medium Enrichment kit (NimbleGen, Roche), following User’s Guide and 

manufacturer’s instructions. Briefly, gDNA samples were fragmented using Covaris technologies and 

non-directional libraries were prepared using KAPA Biosystems DNA Library Preparation Kits with 

NimbleGen SeqCap Adapter Kits. Then, bisulfite conversion of these DNA samples libraries was 

performed using the Zymo EZ DNA Methylation-Lightning kit, before a DNA amplification using KAPA 

HiFi HotStart Uracil and ReadyMix. Capture of these bisulfite-converted sample libraries was done by 

hybridization, using SeqCap Developer M Enrichment, SeqCap Epi Accessory, and SeqCap HE-Oligo Kits. 

In order to reduce variability between samples, the six libraries (one per sample) were multiplexed and 

captured all together on beads. This multiplexing during the ‘capture step’ has already been 

successfully tested with similar capture approaches (Allum et al., 2015; van der Werf et al., 2015). DNA 

was then amplified again using the KAPA HiFi HotStart ReadyMix.  

Captured and amplified bisulfite-converted gDNA fragments were sequenced using an Illumina 

sequencing instrument (Paired-end, 150bp, NextSeq 500 High Throughput). All these steps were 

performed by Institut du Cerveau et de la Moelle épinière (ICM) sequencing platform. 

 

Methylome capture composition  

The capture is composed of 58,611 chosen genomic regions (Supplementary dataset 3), based on 

ENCODE available data or based on previous lab results (Figure 1B and Supplementary Figure 1A). 

Majority of captured regions corresponds to active enhancers in adult (8 weeks-old) mouse cortex 

(characterized by the H3K27ac histone mark, regions of +/- 500 bases from the middle of the peaks, 

ENCODE data). Capture also includes mouse promoter regions (+/- 500 bases from the transcription 

start site, ENCODE data). Due to repetitive sequences that prevent the design of specific probes of 

some regions, and also because of annotation database information differences, only 75% of known 

promoter regions could be included in the capture. “Other regions” category is composed of genomic 

regions of interest based on previous lab results. It corresponds to regions potentially involved in stress 
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response: (i) HSF2 binding sites found in unstressed mice cortices of E16.5 embryos (ChIP-seq data, 

VM lab) ; and to dynamic regions upon stress : (ii) differentially opened or closed regions (DOCR) 

identified in isolated oligodendrocyte precursors (O4+ cells) from cortices of 5 days-old mice, after an 

inflammatory stress from postnatal day P1 to P5, mimicking a neuroinflammation in the third trimester 

of pregnancy in human, (Schang et al., 2018, GSE197563); (iii) enhancers, characterized by the 

H3K4me1 histone mark (+/- 100 bases from the middle of the peaks) of adult (8 weeks-old) mouse 

cortices among genes (and at +/-20 kb from genes ends) that were differentially expressed in response 

to another prenatal stress (neuroinflammation; Krishnan et al., 2017, GSE197563). Detail number on 

these sub-category “other regions” are indicated Supplementary Figure 1A.  List of mm9 coordinates 

of all the genomic regions contained in the capture are available in Supplementary Dataset 3.  

 

 

Bioinformatic analysis of methylome capture  

Bioinformatic workflow used to analyze methylome capture is described in details in 

Supplementary data Notebook 1 and key figures of the analysis are shown in Supplementary Table 2. 

Key steps of the analysis and associated tools are shown in Supplementary Figure 2A. 

 

Trimming, mapping, methylation count table, and visualization. Briefly, reads quality was verified 

using FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). To decrease methylation 

call errors from poor quality data, a trimming was carried out with Trimmomatic (Bolger et al., 2014) 

and Cutadapt (Martin, 2011). Trimmed reads were then paired-end mapped on the whole Mus 

musculus reference genome mm9, using bismark (Krueger and Andrews, 2011) which is adapted for 

bisulfite converted reads. Libraries were considered as non-directional for the mapping. Deduplication 

of reads was performed using deduplicate_bismark function (from bismark suite)  

Only cytosines on CpG context were studied. For each sample, number of methylated and 

unmethylated cytosines that covered a given cytosine site was obtained using 

bismark_methylation_extractor (BME) function (from bismark suite), with no_overlap option to 

prevent double counting of paired-end results.  Then, to select only information that corresponds to 

capture regions, bedtools intersect (Quinlan and Hall, 2010) was used to intersect capture regions with 

mapping files, or with CpG count tables. To avoid removal of potential interesting sequences, at the 

border of capture regions, each region was extended up and downstream with 150 bases, before the 

intersections, and were named enlarged capture). Mapping files restricted to the enlarged capture 

regions were sorted and indexed using samtools suite (Li et al., 2009) before their visualization on IGV 

(Robinson et al., 2011).   
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Detection of differentially methylated isolated CpG (DMCs). Data from BME were formatted on R 

(The R Core Team, 2018) in order to use MethylKit R package (Akalin et al., 2012), for detection of 

significant differentially methylated isolated CpG between control and alcohol-treated samples. For 

this statistical analysis, formatted data were filtered: cytosine positions displaying abnormal high read 

coverage (> 99.9th percentile) or low read coverage (number of reads < 10) were excluded from the 

analysis, to avoid bias (Krueger et al., 2012). Read coverage was also normalized before statistical 

analysis, using median to calculate scaling factor. Only methylation state of CpG sites that were 

covered in all samples was investigated for the analysis (corresponding to 1,259,111 positions). DMCs 

were considered as significant when difference of methylation state between the two groups was 

higher than 5%, for a qvalue < 0.05. 

 

Detection of differentially methylated regions (DMRs). We generated an R function (called 

get_close_loci()) to define DMRs (Supplementary Figure 3,A-D). This function combines neighbouring 

CpGs that share similar differential methylation state, (all hypo- or all hypermethylated CpGs, 

Supplementary Figure 3A,C). Because MethylKit provides relevant statistical information about 

individual CpG, we used MethylKit statistical output as an input of get_close_loci() function (i.e. 

position of the CpG site, percent of methylation difference between groups for a given site, p-value 

and q-value). Data from BME were thus formatted on R (The R Core Team, 2018) before using 

MethylKit (Akalin et al., 2012). Formatted data were filtered and normalized, with the same 

parameters than those used for DMC detection. Only methylation state of CpG sites that were covered 

in all samples was investigated for the analysis (corresponding to 1,259,111 positions). To define DMRs 

with get_close_loci(), only CpG sites having a reliable methylation state must be used, since one non 

relevant CpG is sufficient to affect DMR detection (Supplementary Figure 3C). Thus, a pre-selection of 

relevant CpGs was done, according to their p-value (CpGs with pvalue < 0.07), whose threshold was 

determined using comparisons of real and random datasets (see below, Supplementary Figure S4, 

Supplementary Table 2). To define DMRs, parameters were defined as follow: association of at least 

5 CpG having a same methylation state, in a region of maximum 2000 bases, with a maximum distance 

of 100 bases between two successive selected CpG, according to p-value threshold (pval < 0.07, 

Supplementary Table 2). 

 

Randomization to define appropriate parameters for DMR detection. Random datasets (n=2) were 

generated and compared to real dataset, to define parameters of get_close_loci() function that were 

appropriated for DMRs detection in the real data. To obtain these random data, methylation states 

from real samples, were randomly switched, CpG position by CpG position, between samples and 

replicates using our own R script (Supplementary Figure S4, see details in Supplementary data 
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notebook 1). Each methylation state is thus reassigned to a given sample, but methylation states 

between distinct CpG positions are not shuffled. This randomization assigns biologically plausible 

methylation values, actually observed at a given cytosine position (this is not the case if randomization 

was global, i.e redistribution of CpG methylation state, regardless of the CpG position, because there 

would be a risk of assigning, for example, high DNA methylation rates to a cytosine position that is 

always detected as non-methylated, regardless the conditions, PBS or EtOH-treatment). 

Randomization was done on filtered but unnormalized real dataset. Read coverage normalization was 

performed after the randomization, using median to calculate scaling factor. To define appropriate 

parameters for DMR detection, different parameters were modulated and the number of DMRs found 

in the two datasets (real versus random) was compared (Supplementary Table 2). Similar results were 

obtained by using the two random datasets (Supplementary Table 2). 

 

Annotation. To be able to compare DMRs with other bioinformatic analysis (ATAC-seq and RNA-

seq results), data obtained with mm9 coordinates were then converted with mm10 coordinates using 

LiftOver software (https://genome.ucsc.edu/cgi-bin/hgLiftOver), available on UCSC, with default 

parameters. Annotation file, based on mm10 coordinates was obtained using BiomaRt R package 

(Durinck et al., 2009; Huang et al., 2009). DMRs were annotated in R according to this file information 

(see details in Supplementary data notebook 1). A file combining all information (DMRs coordinates, 

annotation and statistical information) were generated (Supplementary Dataset 1). To estimate if 

DMRs are particularly located in a given capture categories (enhancers, promoters…), hypergeometric 

tests were done on R (using phyper() function), taking into account the number of each capture 

category that is represented in the methylome capture. Threshold chosen: pvalue < 0.05. 

Motif enrichment. Transcription factors binding site enrichment within the DMRs located in active 

enhancer regions (H3K27ac mark), were explored using findMotifsGenome (HOMER suite, see details 

in Supplementary data notebook 1 ; Heinz et al., 2010).  

 

Over-representation of Imprinted genes among DMRs. To estimate whether DMRs are particularly 

located in imprinted genes (IG), hypergeometric tests were done on R (using phyper() function). 

Threshold chosen:  pvalue < 0.05. The exact number of capture regions that corresponds to imprinted 

genes are unknown, but we estimated that about 150 capture regions could be attributed to imprinted 

gene regions (there are almost 150 mouse IG, according to http://www.geneimprint.com/site/genes-

by-species.Mus+musculus website, and we potentially have, at least one promoter for each of this 

gene in the capture). Using this approximation, results of phyper test (phyper(11,150,58611-150,432)) 

is equal to 1.51e-09, which is significant. Even with an over-estimation of capture regions that 

correspond to imprinted gene regions, results of phyper test is significant (e.g. if we considered that 
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300 capture regions corresponds to imprinted genes regions (i.e. two regions per IG), 

phyher(11,300,58611-300,432) = 2.89e-06).  

 

Estimation of sodium bisulfite conversion efficiency. To ensure that sodium bisulfite treatment 

correctly converted unmethylated cytosines, we evaluated the conversion efficiency by looking at 

conversion rate of a spike-in DNA (i.e. unmethylated known sequences of non-mammalian DNA), 

which was added in each sample preparation. This spike-in DNA, corresponding to sequences of 

lambda phage, was mapped on an appropriate reference genome, using bismark. The efficiency of 

sodium bisulfite conversion is obtained using deduplicated spike-in DNA mapped reads, by calculating 

the ratio of converted reads (containing thymines) to the total number of reads covering these 

cytosines (Supplementary Table S1). 

 

Data mining of ENCODE data: Chromatin accessibility profile of the developing brain: ATAC-seq data 

time-course analysis 

Bioinformatic workflow used to analyze ATAC-seq data is described in details in Supplementary 

data notebook 2. Key steps of the analysis and associated tools are showed in Supplementary Figure 

S2A and key features of the analysis are shown in Supplementary Table S4. Quality of sequenced reads 

was verified for each sample using FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Reads having bad sequencing quality 

were trimmed using Trimmomatic (Bolger et al., 2014). Trimmed reads were then paired-end mapped 

on Mus musculus reference genome mm9, using bowtie2 (Langmead and Salzberg, 2012). Then, reads 

were deduplicated using samtools rmdup (Li et al., 2009). Reads that mapped to mitochondrial 

chromosome were removed using tools on Galaxy platform (Afgan et al., 2016, default parameters), 

by splitting the mapped reads per chromosome using bam-splitter tool (Barnett et al., 2011). Then all 

the files were merged except the reads mapped on mitochondrial chromosome, using merge-bam tool. 

MACS2 (Zhang et al., 2008) was then used to identify peaks corresponding to opened genomic regions, 

in each sample. For that, mapped reads from duplicates were merged, before this Peak calling. Then, 

table containing all opened regions, detected in at least one sample, was generated, using bedtools 

multiinter and bedtools merge (Quinlan and Hall, 2010). To obtain reads count at these regions, in each 

sample, htseq-count (Anders et al., 2015) was runned. This tool prevents double counting of paired-

end results since files containing mapped reads were sorted by read name. To identify regions where 

chromatin accessibility significantly changes during development, pairwise comparisons of successive 

developmental stages were performed using edgeR (Robinson et al., 2010), an R software (The R Core 

Team, 2018) and Bioconductor package (Gentleman et al., 2004). We adapted a script template called 

template_script_edgeR.r from Sartools R package (Varet et al., 2016), which implements 
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some edgeR functions (see details in Supplementary Data notebook 2). To compare ATAC-seq results 

with other bioinformatic analyses (methylome capture and RNA-seq results), data obtained with mm9 

coordinates were then converted with mm10 coordinates using LiftOver software 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver), with default parameters. Annotation file, based on 

mm10 coordinates was obtained using BiomaRt R package (Durinck et al., 2009; Huang et al., 2009). 

Differentially open and closed regions (DOCR) observed during brain development were annotated in 

R according to this file information (see details in Supplementary Data notebook 2). For each pairwise 

comparison, a file combining all information (DOCR coordinates, annotation and statistical 

information) were generated (Supplementary Dataset 1). To visualize data on IGV (Robinson et al., 

2011), files containing mapped reads were sorted and indexed using samtools suite (Li et al., 2009).  

 

Data mining of ENCODE data: Transcriptome profile of the developing brain: RNA-seq data time-

course analysis   

Bioinformatic workflow used to analyze RNA-seq data is described in detail in Supplementary 

data notebook 3. Key steps of the analysis and associated tools are showed in Supplementary Figure 

2A and key features of the analysis are shown in Supplementary Table 5. For all samples, sequenced 

read quality was verified for each sample using FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Adapter sequences and reads having 

bad quality were trimmed using TrimGalore (https://github.com/FelixKrueger/TrimGalore). Trimmed 

reads were then singled-end mapped using STAR on Mus musculus reference genome mm10, which 

was associated to its corresponding Gencode annotation during indexation, to improve accuracy of the 

mapping (Dobin and Gingeras, 2015; Dobin et al., 2013). For each sample, htseq-count (Anders et al., 

2015) was used to obtain reads count of all genes contained in Gencode annotation file. To identify 

differentially expressed genes (DEG) during physiological brain development, pairwise comparisons of 

successive developmental stages were performed using edgeR (Robinson et al., 2010). We used exactly 

the same script than those executed for ATAC-seq analysis (i.e. modified script from Sartools R package 

(Varet et al., 2016, see details in Supplementary data notebook 3). Annotation file, based on mm10 

coordinates was obtained using BiomaRt R package (Durinck et al., 2009; Huang et al., 2009) and was 

used to annotate DEG observed during brain development with Unix commands (see details in 

Supplementary data notebook 3). For each pairwise comparison, a file combining all information (DEG 

coordinates, annotation, and statistical information) were generated (Supplementary Dataset 1). To 

visualize data on IGV (Robinson et al., 2011), files containing mapped reads were sorted and indexed 

using samtools suite (Li et al., 2009). 

 

Data mining of ENCODE data: Gene ontology analyses 
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In order to perform Gene ontology analysis, gene lists (based on gene symbol names) were defined for 

each distinct datasets (i.e. genes associated to DMRs that are located in (or close to) captured active 

enhancers (H3K27ac) and genes associated to DOCR and DEG). For DOCR and DEG, only genes that are 

modulated between E14.5 and E15.5 and between E15.5 and E16.5 were studied. Gene ontology 

analyses were performed with WEB-based GEne SeT AnaLysis Toolkit (GESTALT, 

http://www.webgestalt.org/, using default parameters, except for the minimum number of genes for 

a category (set to one in our analysis). The reference gene list used for each analysis was either the 

genome for DOCR and DEG or all the genes of the studied capture category (i.e. in case of the “DMRs 

enhancer” list: all the genes associated to H3K27ac histone mark that are represented in the capture 

design (Supplementary Dataset 3). 

 

RNA extraction and purification 

Each E16.5 embryonic cortex in 500µL Trizol (Sigma) was lysed at 4°C using Precellys/Cryolys (Bertin) 

with 1.4mm ceramic beads (Mobio) during 10 seconds (5500 rpm). mRNAs were isolated using 

chloroform and isopropanol, followed by ethanol precipitation. Samples were resuspended into 50µL 

of ultrapure RNase-free Water (Invitrogen). Integrity of RNA was verified on an electrophoresis gel 

(detection of 18S and 28S ribosomal RNA). Extracts were DNAseI treated (Roche - ref 04 716 728 001) 

in presence of RNAse inhibitors (Promega - Ref N251A), before RNA purification using phenol 

chloroforme isoamyl-alcohol and chloroforme, followed by ethanol precipitation. Samples were 

resuspended into 20µL of ultrapure RNase-free Water. RNA was quantified with Denovix machine (DS-

11 Denovix series). 

Reverse transcription was done using Biolabs kit (Lunascript RT SuperMix E010G), on less than 5µg 

of RNA, as recommended by the manufacter. cDNA concentration was normalized to 3ng/µL by 

diluting it into ultrapure water. To verify the purity of RNA extraction (absence of genomic DNA), a 

negative control without reverse transcriptase was also performed. Quality and Integrity of cDNA were 

verified by calculating 3’/5’ ratio of Hprt1 gene, following MIQE recommendations (Bustin et al., 2009). 

Only cDNA preparations with a ratio lower than 5 were used for RT-qPCR (Bustin et al., 2009). 

 

RNA-seq analysis: Differential transcriptome profile of E16.5 mouse brain cortices 

The quality control of the raw data was performed with FastQC (v.0.11.8). The trimming has been done 

with Trim_Galore (v.0.5.0 with cutadapt 1.18 and python 3.7.1). The mapping has been done with STAR 

v2.6.1d. The visualisation of the mapping was performed with Samtools v1.9 and IGV. The counting of 

each expressed genes for each sample was performed with htseq-count v0.11.2 and the table count 

was obtained with R. The differentially expressed genes between EtOH samples and control (PBS 

samples) were found using edgeR via Sartools v1.7.3 on R v4.0.3. 
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the genes are normalized using TMM (Trimmed Mean of M component normalization) (Robinson and 

Oshlack, 2010). For more details see Supplementary data notebook 5 

 
Gene ontology  

Gene ontology (GO) analysis of differentially expressed genes was performed using Org.Mm.eg.db 

v3.18.0 data base using GO term over-representation test from ClusterProfiler v4.10.1., the 

annotation of genes with GO terms was done using biomaRt v2.58.2. 

  

Gene set enrichment analysis 

Gene set enrichment analysis (GSEA) was performed with GSEA v4.3.3 (Subramanian,A et al. , 2005) in 

preranked mode with 1 000 permutations. Genes were pre-ranked by fold change derived from the 

differential expression analysis. Gene sets of size above 15 and 500 from SigDB.v2024.1.Mm.chip 

(Liberzon,A et al, 2015) were used.  

 
Heat map representation 

Heat maps were created using Morpheus (https://software.broadinstitute.org/morpheus).  The gene 

expression was visualized using a relative color scheme (from minimum to maximum values in each 

row). The color scales are indicated on each heat map. Rows were organized based on their 

enrichment score in the biological process of interest following GSEA analysis.  

 

Analysis of protein-protein interaction 

The DEGs, identified in the RNA-seq analysis , were imported into Cytoscape software (v3.9.1) to 

construct a protein-protein interaction network from STRING database (https://string-db.org/) using 

stringApp (Doncheva et al., 2019). We generated a physical network with a confidence cutoff of 0.7 

and no maximal additional interactors. In addition, we performed MCL (Markov Cluster Algorithm) 

clustering analysis using ClusterMarker2 (Morris et al., 2011) plugin in Cytoscape to identify 

interconnected regions within the protein-protein interaction network to unravel potential 

functional modules and interactions between genes. Next, we performed a STRING-enrichment 

analysis to determine the functional relevance of nodes by identifying the gene ontology (GO-terms 

associated with them.   

 
Quantitative Real-Time RT-PCR 

For real-time RT-qPCR, LunaGreen SYBR mix (Biolabs) was used, as recommended by the manufacturer. 

Primers were purchased from Sigma-Aldrich. Probes sequences are listed in Supplementary Table 6. 

384-wells PCR plates were filled using Tecan pipetting robot. RT-qPCR experiments were done using 
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LightCycler LC480 (Roche). All reactions were made in quadruplicate for samples originated from at 

least three distinct litters. 

Relative quantities of the target gene mRNAs were normalized to Hprt1 and Tpt1. Qbase+ software 

was used to define the values of calibrated and normalized relative gene expression (CNRQ).  

Non parametric Mann-Whitney tests were performed using R software, to determine the pvalues 

when comparing mRNA levels between PBS and EtOH-treated samples. To take into account multiple 

tests, p-values were corrected with Benjamini-Hochberg correction (padj.), using p.adjust() R function. 

For this analysis, a gene is considered as differentially expressed between PBS and EtOH-treated 

samples, when the adjusted p-value is below 0.05 (padj. < 0.05).  

Sequences of primers used for RT-qPCR experiments.  

Target gene Forward primer sequence Reverse primer sequence 

Auts2 TCTGTCGGCTGAAATCCGAG CCTGGCTTACCGAGCTTCAA 

Mid1 CCATCTGGACTGTACGGAGC TTGGGGAAGATGTCACGACG 

Pcdhα3 AGAAGACAAACTGGTTGGAGACAT CACTGGATACTGTTGGCCACT 

Pcdhγa2 CGTGCTTTCCTGCAGACCTA TTGCTGAGGGGTTTCTTCTCTT 

Peg13 CCGGCCAGCAATCCTTATCT TGAGGCACCCAAGTGGAATC 

Zrsr1 GAAAGCACTGCAACTTCCTTCA TTTTACCAGAGGAGCCAGTCC 

Nap1l5 ATTCTGGCTAGCCCGTTTCT GGATTTCAACGTGTGACGCA 

Inpp5f TACACACACGGACTGGCTTC GCGTCTGTCCCATTGGTTCT 

Pcdhα9 CAGCGAGTATGCTCAGGAGAG CTGGGCAAGGTGTAAGACTGG 

Shank2 AGTCTATGCAGACGGGCAAG GCGTGTCTTGGTAAAGTGCG 

   

standardizer gene 

(reference gene) 

Forward primer sequence Reverse primer sequence 

Hprt1 ACAAAGCCTAAGATGAGCGCAAG  CTAGGCAGATGGCCACAGGAC  

Tpt1 GTTGCTCTCCTGGACTACCGTG GCAGCCAATTATGGTGACAGGT 
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Legends of Figures 

 

Figure 1.  Binge drinking model and DNA methylome capture design. 

(A) Binge drinking model. C57BL/6N pregnant mice received 1 intraperitoneal injection (IP)/day  of 

ethanol (3g/kg) at embryonic days E15, E15.5 and E16. Control animals were similarly treated with IP 

of PBS. Fetal cortices were collected 2 hours after the last IP (at E16). For DNA methylome analysis, 

only male samples were studied. Three samples per group were generated (4M, 5M and 6M for the 

control group; 1M, 2M and 3M for the EtOH-treated one). To reduce variability between samples, each 

replicate was composed of 4 hemi-cortices, from 4 embryos of distinct litters (Supplementary Figure 

1B).  

(B) Design of the DNA methylome capture. The capture is composed of 58,611 chosen genomic 

regions, based on ENCODE available data (H3K27ac histone mark, a hallmark of enhancer regions and 

promoter regions) and on our previous results (for other regions). For more details about capture 

composition, see Supplementary Figure 1A and Materials and methods.  

 

 

Figure 2. Immediate modifications of DNA methylation are observed in fetal cortices upon PAE 

(A) Differentially methylated CpG (DMC) identified upon PAE. Only cytosines in CpG context that are 

covered in all samples were investigated. DMC were identified using MethylKit (see details in Materials 

and Methods). Meth.diff: differential methylation rate (%) observed between control and EtOH-

treated groups. A negative percentage indicates a loss of methylation, compared to control. q-val. < 

0.05; a minimum of 5% of Meth.diff is required for a CpG to be considered a DMC.  

(B) Number of differentially methylated regions (DMRs) immediately observed upon PAE. Number 

of DMRs filtered by methylation differential rate (indicated as percent) observed between EtOH-

treated and control groups are also indicated. Regions with gain (Hyper-DMRs) or loss (Hypo-DMRs) of 

methylation; (Hyper+Hypo), regions with either gain or loss of methylation. All: all DMRs.  

(C) Number of DMRs in each category of capture regions. A DMR is considered to be associated to a 

category of capture regions, if it overlaps to or if it is closed to a capture region (distance less than 500 

bp). Asterisks indicate categories that are significantly over-represented among DMRs, in a statistical 

manner, according to hypergeometric tests (see (D)). 

(D) DMRs immediately detected upon PAE are predominantly located in brain active enhancers. 

Results of hypergeometric tests realized to determine whether specific categories of capture regions 

nare over-represented among DMRs. Significant values are highlighted in red. For this analysis, both 

DMRs that overlap or are located closed to capture region categories) were considered (i.e. distance 

less than 500bp between the regions. The number (Nb) of DMRs considered in each analysis is 
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indicated. They differ very slightly from the numbers indicated in (C), because some DMRs overlap 

several capture regions, and are, thus, counted more than one time. 

 

 

Figure 3. Gene ontology (GO) analyses performed on genes associated to DMRs that are observed 

into (or close to) active enhancers 

Volcano plots showing statistically relevant GO biological processes for genes that are associated to 

(A) all DMRs (corresponding to either gain or loss of methylation) (B) to DMRs with gain of methylation, 

only, and observed into or close to active enhancers. The distance between DMRs and active enhancers 

regions is less than 500 bp. The size and share of color of each dot is proportional to the number of 

overlap with one given region category (Liao et al., 2019). The genes associated to the ten most 

relevant GO Biological Processes of these analyses are described in Table 1 (for GO performed on all 

DMRs observed in active enhancers, related to Figure 2D) and Table 2 (for GO performed only on 

regions that gain methylation upon PAE in active enhancers). These data were obtained using Web-

based GEne SeT AnaLysis Toolkit (WebGestalt ; Liao et al., 2019).  

 

 

Figure 4. Immediate DMRs significantly fall into genomic regions that are remodeled in terms of 

chromatin accessibility or gene expression, during physiological brain development. 

(A) Number of capture regions that are associated to differentially opened or closed regions (DOCRs) 

or differentially expressed genes (DEGs) observed in the developing brain, under physiological 

conditions. DOCRs and DEGs are obtained in a pairwise-comparison manner of two successive 

developmental stages. Only DOCRs and promoters of DEGs strictly overlapping capture regions are 

taken into account (numbers indicated in black). Among these, DMRs strictly overlapping DOCRs/DEGs 

are considered for the analyses and their number of these regions is indicated in red. Asterisks 

indicated statistically significant results, i.e. when DMRs are found significantly over-represented 

(hypergeometric tests, see (B)). Total numbers of DOCRs and DEGs found during physiological brain 

development are indicated in Supplementary Figure 5A (i.e. independently of their presence in 

capture regions). Number of DOCR / DEG in Supplementary Figure 5A could be lower than the number 

indicated here, because a given DOCR or DEG could be represented by several capture regions. DOCR 

and DEG were identified using edgeR (using no logFC threshold but Benjamini-Hochberg p-value 

adjustment was performed and level of controlled false-positive rate was set to 0.05). 

(B) Hypergeometric test data showing the identification of over-represented DMRs among 

differentially opened or closed regions (DOCRs). 
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Values highlighted in red are significant. Tests compare opened regions between two successive 

developmental stages:  E14.15 versus E15.5 and E15.5 versus E16. The younger developmental stage 

is taken as a reference; i.e : “E14.15_open” define regions that are more open at E15.5 compared to 

E14.5). Hypergeometric tests were performed using the number of methylome capture regions 

associated to DOCRs (values highlighted in grey). When comparisons between datasets regions are 

done, only regions with an overlap are taken into account. 

(C) DMRs significantly associated to genomic regions that are more opened between E14.5 and 

E15.5, under physiological conditions. Meth.diff: differential methylation (%) observed between 

control (PBS-treated) and EtOH-treated groups. A negative percentage indicates a loss of methylation. 

Median p-val.: median of p-values observed for each relevant isolated CpG located in the DMRs (p-

value < 0.07, see Materials and Methods).  

(D) Hypergeometric test data showing the identification of over-represented DMRs associated to 

differentially expressed genes (DEGs) observed during brain development, under physiological 

conditions.  As in (B). 

 

Figure 5. Mono-allelically expressed genes presenting DMR immediately after PAE. 

(A) Imprinted genes associated to immediate DMRs upon PAE. Overlap between “PAE-affected” 

imprinted genes and capture regions corresponds to either strict overlap or to close vicinity (distance 

< 500bp). Negative values correspond to DMRs located close to capture regions with no overlap. 

Median pval.: median of p-values for each relevant CpG (with pval < 0.07) that composes the DMRs. 

(B) Illustration of a DMR observed in Peg10 imprinted gene. Visualization of deduplicated read 

coverage of EtOH- and PBS-treated samples. Genomic region containing a DMR with gain of 

methylation, located into the Peg10 gene is shown (thin blue bar at the bottom).  Methylated cytosines 

in CpG context are in red, unmethylated ones in blue. Capture region is also indicated (thick blue bar). 

This screenshot was obtained using IGV. Scale is the same for all samples.   

(C) Protocadherin genes that are associated to immediate DMRs upon PAE. As in (A).  

 

Figure 6. PAE-induced alterations of gene expression are concomitant with immediate perturbations 

of DNA methylation. 

Quantitative RT-PCR of 10 genes associated to immediate DMRs. Boxplots showing relative mRNA 

levels from E16.5 embryonic cortices upon PBS- or EtOH-treatment. Each dot represents calibrated 

and normalized relative gene expression (CNRQ) value of each sample. mRNA levels are normalized to 

the expression of Tpt1 and Hprt1 genes.  
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Results are generated using n=12 PBS samples and n=11 EtOH samples, from 3 distinct litters in each 

condition. Both males and females are considered together, since no sexual dimorphism is detected in 

terms of the expression of the studied genes (Supplementary Figure 7B,C).  

Significance differences between PBS- and EtOH- treated samples were determined using non-

parametric Mann-Whitney test. To take into account multiple tests, p-values were corrected into 

adjusted p-values (padj.), using Benjamini-Hochberg correction. Asterisks (*) denote significant 

differences between PBS- and EtOH-treated samples (when padj. < 0.05). ns, statistically non-

significant results. 

 

Figure 7: Immediate impacts of PAE on the transcriptome 

(A) Multidimensional scaling plot (MDS) of the samples based on RNA-seq analysis. In blue control 

sample (PBS1 to 8). In red Ethanol treated samples (EtOH 1 to 8). The 1er dimension separates PBS 

from EtOH sample except samples EtOH 3 and 4 that are clustered with the control ones. While Control 

samples are quite similar, Ethanol treated samples are more variable 

(B) Volcano plots showing all detected mRNAs  

Left panel: Each dot represents a single gene with its differential gene expression level plotted on the 

x axis and statistical significance (pvaladj) on the y axis. Red dots represent significantly differentially 

expressed features (pvaladj < 0.05). 11 upregulated genes upon ethanol (right side of the plot) have a 

logFC>1. 11 downregulated genes upon ethanol (left side of the plot) have a logFC>1 

Right panel: MA-plot representing the log ratio of differential expression as a function of the mean 

intensity for each feature. Red dots represent significantly differentially expressed features (pvaladj < 

0.05). FC, fold change. Triangles correspond to features having a too low/high log2(FC) to be displayed 

on the plot. 

 

Figure 8: Gene ontology (GO) analysis of down regulated genes upon Ethanol treatment: 

(A) GO terms enriched in Biological process (BP) and cellular component (CC) categories in genes significantly 

downregulated in PAE samples.  

(B) GO enrichment plot of six selected GO-terms gene sets (GSEA, gene set enrichment analysis). The top portion 

of plots show the enrichment scores for each gene, and the bottom portion shows the ranked genes. Y-axis: 

ranking metric, X-axis: individual ranks for all genes. The normalized enrichment score (NES), the false discovery 

rates (FDR) and the nominal p-value (NOM p) are indicated for each gene set. Each bar at the bottom of plot 

represents a member gene of the respective gene set. 

(C) Heatmaps representing the level of expression in each sample of the top30 downregulated genes of selected 

GO gene sets. The number of DEGs involved and the number of genes in the selected gene set are indicated. 

 

Figure 9: Gene ontology (GO) analysis of down regulated genes upon Ethanol treatment: 
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(A) GO terms enriched in Biological process (BP) category in significantly upregulated genes in in PAE 

samples.  

(B) GO enrichment plot of three selected GO-terms gene sets (GSEA, gene set enrichment analysis). 

The top portion of plots show the enrichment scores for each gene, and the bottom portion shows the 

ranked genes. Y-axis: ranking metric, X-axis: individual ranks for all genes. The normalized enrichment 

score (NES), the false discovery rates (FDR) and the nominal p-value (NOM p) are indicated for each 

gene set. Each bar at the bottom of plot represents a member gene of the respective gene set. 

(C) Heatmaps representing the level of expression in each sample of the top30 upregulated genes of 

selected GO gene sets. The number of DEGs involved and the number of genes in the selected gene 

set are indicated. 

 

 

Figure 10: Functional protein interaction analysis using STRING software for proteins encoded by the 

downregulated genes identified upon Ethanol treatment. The four most significant clusters are 

shown. 

(A) Cluster 1: Ribonucleoprotein complex/ribosome biogenesis and RNA metabolism and processing 

involving 84 proteins presenting 1014 potential interactions between them. 

(B) Cluster 2: Spliceosome/slicing complex involving 58 proteins presenting 527 potential interactions 

between them. 

(C) Cluster 3: Respiratory electron transport/inner mitochondrial membrane protein complex involving 

44 proteins presenting 543 potential interactions between them. 

(D) Cluster 4: Mitochondrial translation/ribosome involving 41 proteins presenting 528 potential 

interactions between them. 

 

Figure 11:  Functional protein interaction analysis using STRING software for proteins encoded by 

the upregulated genes identified upon Ethanol treatment. The four most significant clusters are 

shown. 

(A) Cluster 1: Polycomb group (PcG) multiprotein PRC1 complex involving 22 proteins presenting 119 

potential interactions between them. 

(B) Cluster 2: TGFβ-BMP signaling complex involving 21 proteins presenting 33 potential interactions 

between them. 

(C) Cluster 3: Transcription regulation (activation) complex involving 21 proteins presenting 41 

potential interactions between them. 

(D) Cluster 4: NFκB-SMAD-BMP signaling complex involving 19 proteins presenting 31 potential 

interactions between them.  
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Legends of Supplementary Figures 

 

Supplementary Figure 1. (related to Figure 1) 

(A) Number of regions in each methylome capture category.  

“Other regions” correspond to HSF2 genome-wide occupancy, a stress-responsive transcription factor 

involved in FASD phenotypes (El Fatimy et al., 2014; ChIP-seq data), and to differentially accessible 

regions and H3K4me1-marked enhancer regions associated to gene differentially expressed in 

response to another prenatal stress, neuroinflammation (Schang et al., 2018a; Krishnan et al., 2017, 

GSE197563; see Materials and Methods). Note that categories are not exclusive (i.e. some regions are 

counted several times, e.g. 8,144 regions that are both included in H3K27ac enhancers and promoters 

categories, are also among the 34,279 regions that are included in H3K27ac enhancers). Black dots 

indicated dataset(s) that are used for the counting.     

(B) Sampling protocol. To minimize intra-group and inter-individual variability, each NGS sample was 

composed of four hemi-cortices of four different male embryos from four different litters. 

 

Supplementary Figure 2. Bioinformatic workflows, quality controls and correlation between 

methylome samples (related to Figure 2) 

(A) Bioinformatics workflows for methylome capture, ATAC-seq and RNA-seq analyses. Methylome 

capture were performed in control (PBS-treated) and EtOH-treated groups (described in Figure 1A). 

ATAC-seq and RNA-seq data mining analyses were performed using publicly available ENCODE 

datasets, obtained from mice fetal forebrains at distinct developmental stages and newborn samples 

in physiological conditions. Key steps and tools used for each bioinformatic analysis are described here. 

For more details, please see Materials and Methods and detailed command lines in Supplementary 

notebooks 1 to 4. QC, quality control; PE, paired-end analysis; SE, single-end analysis; Genc. annot., 

Gencode annotation; BME: bismark_methylation_extractor; DMC: differentially methylated isolated 

CpG; DOCR: differentially opened or closed regions upon physiological brain development stages; DEG, 

differentially expressed genes upon physiological brain development stages. 

 (B) Per-base-sequence-content plots obtained with FASTQC. Illustrated for 1M sample. An imbalance 

is observed between bases proportions at each read position as expected after DNA conversion with 

sodium bisulfite (BS). The conversion of unmethylated cytosines into thymines leads to an over-

representation of thymines and an underrepresentation of cytosines at a given position for R1 reads 

(for R2 reads, which are complementary to R1 ones, an over-representation of adenine and an 

underrepresentation of guanine are logically observed). These plots were obtained after the trimming 

of the data. Analyses represented on figures (B,C,D) were done using MethylKit (default parameters). 
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CpGs were filtered (CpGs covered by less than 10 reads or having coverage > 99.9th percentile were 

excluded) and coverage was normalized (median method). Only information from CpG positions that 

are in all samples are kept (1,259,111 CpGs). 

(C) CpG methylation Hierarchical Cluster Analysis. Dendrogram obtained using of ward method with 

correlation as distance measure. 

(D) Correlation matrix. Matrix obtained using Pearson correlation.  

(E) CpG methylation Principal Components Analysis (PCA) of Ethanol-treated (1M, 2M, 3M) and 

control (4M, 5M, 6M) samples.  

 

 

Supplementary Figure 3. Strategy to detect DMRs (related to Figure 2) 

(A) Principle and parameters of get_close_loci() function that we specifically generated for the 

detection of DMRs into datasets from tailor-made capture.  Filled circles represent hypermethylated 

cytosines observed between two datasets (e.g. control group versus test group), whereas empty circles 

represent hypomethylated cytosines. 

(B) Main steps of the approach performed to detect relevant DMRs in the real dataset from tailor-

made methylome capture.  

(C) Selection of relevant CpGs is essential for the detection of DMRs. DMR detection could be 

compromised if CpGs with no reliable methylation state are kept by the method. In this example, the 

conservation of the two unreliably defined hypermethylated CpGs during DMRs detection process, 

prevents the detection of hypomethylated DMR, although this DMR exists. Therefore, the p-value 

threshold for the methylation status of each CpG must be defined to identify statistically relevant 

methylation information. Filled circles represent hypermethylated cytosines observed between two 

datasets (e.g. control group versus test group), whereas empty circles represent hypomethylated 

cytosines. *** significant p-value pval < 0.07); small empty circle, non-significant p-value (pval ≥ 0.07). 

 

 

Supplementary Figure 4. Creation of a random dataset to define relevant parameters for the 

detection of DMRs. (related to Figure 2) 

Two random data sets were generated based on our real dataset (composed of 3 PBS-treated control 

samples, and 3 EtOH-treated ones). In order to randomly redistribute the values without assigning 

unobserved values to a given CpG position, randomization was performed separately for each cytosine 

site (position by position, random shuffling of the percent of methylated cytosines observed in real 

samples). In the upper panel, filled circles represent methylated cytosines, whereas empty circles 

represent unmethylated cytosines. 
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Supplementary Figure 5. Number of differentially opened or closed regions (DOCRs) or differentially 

expressed genes (DEGs) identified in the developing brain under physiological conditions. (related to 

Figure 4) 

(A) Available ENCODE ATAC-seq and RNA-seq data are used to identify differentially opened or closed 

regions (DOCRs) and differentially expressed genes (DEGs) during brain development, under 

physiological conditions. DOCRs and DEGs are obtained in a pairwise comparison manner between two 

successive developmental stages (embryonic days E13.5, E14.5, E15.5, E16.5 and postnatal day P0). No 

DOCR is detected between E13.5 and E14.5 development stages. Indeed, it is not recommended to use 

edgeR to detect DOCRs between these samples (these data do not follow the statistical model of EdgeR 

tool), since p-value distribution is not suitable for this comparison (high number of regions with high 

p-values, see in Supplementary Figure 5C, E13.14 DOCR adjusted p-values distribution). Between 

E15.5 and E16.5 developmental stages, few DOCRs and DEGs are identified in the developing brain 

under physiological conditions, compared to E14.5 and E15.5 developmental stages comparisons. It 

can be explained by the quite equivalent inter- and intra- variabilities observed for E15.5 and E16.5 

samples, whereas inter-group variability is greater between E14.5 and E15.5 samples (Supplementary 

Figure 5B and Supplementary Figure 6A). Many DOCRs and DEGs are identified between E16.5 and P0 

stages, compared to other pairwise comparisons. This result is not surprising: since a longer span of 

time (a few days) separates these two stages (versus only one day for the other stage comparisons), it 

is plausible that more biological events have occurred that can imply chromatin accessibility. This is 

consistent with scatterplots and Simple Error Ratio Estimate (SERE) values observed between these 

samples (Supplementary Figure 5B and Supplementary Figure 6A). Few regions are both identified as 

DOCRs and DEGs between each stage, compared to the number of observed DOCRs and DEGs taken 

separately. DOCRs and DEGs are identified using edgeR, without logFC threshold but Benjamini 

Hochberg p-value adjustment was performed and level of controlled false positive rate was set to 

0.05).  

(B) Pairwise scatterplots and matrix of pairwise Simple Error Ratio Estimate (SERE) values for ATAC-

seq samples. Comparisons were performed between two successive developmental stages. SERE 

statistic was used as a similarity index (the more dissimilar the samples are, the higher the SERE value 

is). Replicates for a given stage, are globally similar, except at E13.5. Indeed, replicates at E13.5 are 

more dissimilar between each other than to E14.5 samples. This observation could explain why we do 

not obtain the expected p-values distribution profile for sample comparison (see C) and why 

identification of DOCRs between these two developmental stages is compromised (see (A)). High inter- 

and intragroup variabilities are observed for E15.5 and E16.5 samples. This could explain the lower 
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number of DOCRs identified for these sample comparisons, compared to other developmental stages 

comparisons (Figure 4A).  Scatterplots and SERE values were obtained using SARTools R package.  

(C) Raw p-values distribution obtained for ATAC-seq samples pairwise comparisons allowing DOCR 

identification. For all comparisons except E13.5 versus E14.5 stages comparison, p-values distribution 

profiles are as expected (i.e. a globally uniform distribution with a peak around 0), meaning that DOCRs 

could be detected with edgeR statistic tool. For E13.5 versus E14.5 stages comparison, distribution 

does not follow the expected profile (see (A)), therefore preventing the use of edgeR statistical model 

for DOCR identification. This result can be due to the high dissimilarity observed between E13.5 

replicates (see (B)). These p-value histograms were obtained using ggplot2 R package, with data from 

SARTools R package.  

 

Supplementary Figure 6. (related to Figure 4) 

(A) Pairwise scatterplots and matrix of pairwise Simple Error Ratio Estimate (SERE) values for RNA-

seq samples. Comparisons were performed between two successive developmental stages. SERE 

statistic is used as a similarity index (the more dissimilar the samples are, the higher the SERE value is). 

For each pairwise comparison, variability between replicates is lower than those of samples from 

distinct stages. Nevertheless, variability between replicates is higher than those observed for ATAC-

seq data comparisons (Supplementary Figure 5). Inter- and intragroup variabilities are nearly 

equivalent for E15.5 and E16.5 samples. These similarities can explain the lower number of DEGs 

identified for these sample comparisons, compared to other developmental stages comparisons 

(Supplementary Figure 5A). Scatterplots and SERE values were obtained using SARTools R package.  

(B) Raw p-values distribution obtained for ATAC-seq samples pairwise comparisons allowing DEG 

identification. For all comparisons, p-values distribution profiles are as expected (i.e. a globally 

uniform distribution with a peak around 0), meaning that DEGs can be detected with edgeR statistic 

tool These p-value histograms were obtained using ggplot2 R package, with data from SARTools R 

package.  

 

Supplementary Figure 7.  Mono-allelically expressed genes and important neurodevelopmental 

genes show concomitant perturbations of methylation patterns and alterations of associated gene 

expression upon PAE. 

(A) Methylation status of monoallelic expression genes (imprinted genes and clustered Pcdh genes) 

and some relevant genes for neurodevelopment 

(B) Comparison of mRNA expression does not reveal sexual dimorphism in the expression of these 

genes in fetal mouse cortices. (related to Figure 6) 
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Quantitative RT-PCR of genes of interest, in (A) PBS- or (B) EtOH-treated samples. Boxplots showing 

Relative mRNA levels from E16.5 fetal male or female cortices, upon PBS- (A) or EtOH-treatment (B). 

Each dot represents calibrated and normalized relative gene expression (CNRQ) value of each sample. 

mRNA levels are normalized to the expression of Tpt1 and Hprt1 genes.  

Results are generated using n = 6 females per condition (PBS or EtOH) and n = 5 or 6 males (6 for PBS, 

5 for EtOH conditions) samples, from 3 distinct litters in each condition. Significant differences 

between PBS- and EtOH- treated samples were determined using non-parametric Mann-Whitney test. 

To take into account multiple tests, p-values were corrected into adjusted p-values (padj.), using 

Benjamini-Hochberg correction (padj. < 0.05 is considered as statistically significant result). For each 

gene, no statistically significant difference was observed between male and female samples (padj. 

always higher than 0.05). 

 

Supplement Figure 8. Heatmap representing the level of expression in each sample of significant 

down regulated genes of selected GO_Biological Process gene sets. The number of DEGs involved 

and the number of genes in the selected gene set are indicated. 
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chr cytosine position pvalue qvalue Meth.diff Genomic loci
chr5 114101310 5.59e-08 0.033 -47.7193 Intergenic region

chr10 117378233 1.64e-07 0.048 37.37742 Intergenic region
chr16 34407296 1.29e-07 0.048 35.69702 Kalrn
chr17 3397110 1.45e-08 0.017 57.43663 Tiam2

Nb of 
regions in 
capture 
category

Number of DMRs Hypergeometric test p-values

Nb 
DMRsAll

Nb 
DMRsHy

per

Nb 
DMRsHy

po
All Hyper Hypo

Promoters 23 769 135 55 80 1 1 0.09
Enhancers 
(H3K27ac) 34 279 349 225 124 3.38e-23 1.59e-24 4.68e-4

Other regions 12 108 36 15 21 1 1 1
Global capture 56 811 - - - - - -
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Table 7: Hypergeometric tests results, testing the over-representation of DMRs among differentially opened or closed regions (DOCR) observed during 
brain development, under physiological conditions. 
 

  

Nb of DOCR that 
overlap to capture regions 

Nb of capture regions associated to DOCR that overlap with DMRs  
+ hypergeometric tests results 

 
Total  

nb of DOCR 
(mm9)  

nb of regions 
identified in 

DOCR dataset  
(mm9) 

nb of regions identified 
in capture dataset 

(mm9) 

Total nb of 
association 

Nb of regions 
that are both 

DMRs 
and DOCR 

Total number of 
regions in the 

capture 

Nb of capture regions 
that do not correspond 

to DOCR 

Hypergeometric test 
results  

E14.15_open 1442 303 313 315 5 

58 611 

58 298 0.029 

E15.16_open 280 69 75 75 1 58 536 0.106 

E14.15_closed 1614 430 449 452 2 58 162 0.644 

E15.16_closed 420 78 79 83 0 58 532 0.443 
 
Values highlighted in red are significant. These tests were done for comparing opened regions between different development stages:  E14.15 versus E15.5 and E15.5 
versus E16.5 . Hypergeometric tests were done using the number of methylome capture regions that are associated to DOCR (bold values highlight in grey), since DMRs 
could not be detected even if it exists, in DOCR that are not represented in methylome capture. When comparisons between datasets regions are done, only regions with 
an overlap are taken into account. 
“Up regions” are regions that are significantly more opened for older developmental stage, compared to the younger developmental stage that is considered in the 
comparison. On the contrary, “Down regions” are regions that are significantly more closed during brain development. 
 
 

 
 

Genomic loci DMR
chr:start-end

(mm10 coordinates)

Meth.
Diff
(%)

Median
pval.

Enhancers
(H3K27ac)

overlap

Promoters
Overlap

(bp)
Elmo1 chr13:20600469-20600956 +14.61 0.00310 488 .
Mapre2 chr18:23885054-23885296 +16.23 0.02509 243 .
Antxr1 chr6:87187138-87187332 -14.47 0.03766 195 .
Plcl2 chr17:50641357-50641748 +13.78 0.02776 392 .
Intergenic region chr1:21726763-21727067 +7.54 0.03234 305 .

Nb of DEG that
overlap to capture regions

Nb of capture regions associated to DEG that overlap with DMRs 
+ hypergeometric tests results

Total 
nb of DEG 

(mm10)

Total 
nb of DEG 

(mm9) 

nb of regions 
identified in DEG 

dataset 
(mm9)

nb of regions identified 
in capture dataset 

(mm9)

Total nb of 
association

Nb of regions that 
are both DMRs

and DEG

Total number of 
regions in the 

capture

Nb of capture regions 
that do not correspond 

to DEG

Hypergeometric test 
results 

E14.15_up 3426 3414 2662 10 458 10 708 96

58 611

48 153 0.008

E15.16_up 196 196 188 1 465 1 465 16 57 146 0.046

E14.15_down 2512 2500 2216 4 678 4 731 21 53 933 0.993

E15.16_down 327 324 304 826 831 6 57 785 0.408
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Overlap
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chr11:22972132-22972265 +16.58 0.056 134 134 22971974-22972993 - ↘ E14.5 vs E15.5

Gab1 chr8:80830430-80830841 +12.99 0.022 412 . . - ↘ E14.5 vs E15.5
Nespas 
(Gnas)

chr2:174297476-174297552 +21.75 0.008 . -389 174297262-174297532 - ↘ E15.5 vs E16.5

Grb10 chr11:12025913-12026141 +17.86 0.063 229 . 12025554-12026332 - ↗ E14.5 vs E15.5
Mcts2 
(H13)

chr2:152686280-152686714
chr2:152686874-152686894

+16.43
+13.09

0.014
0.024

435
21

218
21

.
152686809-152687230

-
-

-
-

Impact chr18:12972066-12972404 +24.41 0.028 . 339 . - -
Inpp5f_v2 chr7:128687978-128688477

chr7:128690636-128691043
+14.53
+9.96

0.068
0.042

500
408

.

.
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.
-

Nap1l5 
(Herc3)

chr6:58906656-58906739
chr6:58906833-58907186

-14.41
+15.69

0.068
0.066

84
354

.
-289

58906723-58907147
58906723-58907147

-

Peg10 chr6:4747935-4748017 +11.42 0.037 -263 83 4747291-4748412 - ↘ E14.5 vs E15.5
Peg13 
(Trappc9)

chr15:72810096-72810197 +14.98 0.009 102 -476 72809537-72810123 - ↗ E14.5 vs E15.5
↘ E14.5 vs E15.5

Pcdh
genes

DMR
chr:start-end

(mm10 coordinates)

Meth.
Diff
(%)

Median
pval.

Enhancer
(H3K27ac)
overlap

Promoter
overlap

(bp)

CGi
start-end

DOCR DEG

Pcdhα3 chr18:36946321-36946496 +15.59 0.0198 . 176 . - -
Pcdhα9 chr18:36998102-36998372 -11.72 0.0373 . 271 . - -
Pcdhα10/
Pcdhα11

chr18:37005158-37005610
chr18:37005677-37005756

-13.12
+13.20

0.0337
0.0626

. 453
80

37005415-37005622
.

-
-

-
-

Pcdhγa2 chr18:37669155-37669362 -13.06 0.0057 . 208 . - -
Pcdhγa5 chr18:37694545-37694935 +10.14 0.0486 . 391 37694513-37694761 - -
Pcdhγa11 chr18:37755743-37756176 -10.25 0.0426 . 434 37755688-37756215 - -
Pcdhγa12 chr18:37765890-37766023 -10.79 0.0259 134 134 . - ↗ E14.5 vs E15.5
Pcdhγb4 chr18:37720141-37720375 -9.71 0.0266 . 235 . - ↗ E14.5 vs E15.5
Pcdhγb7 chr18:37751794-37751861 +7.29 0.0682 . 68 37751792-37752055 - -
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Differential rate (%)

Imprinted Genes

Zrsr1 (Commd1) +16.58 
Peg13 (Trappc9) +14.98

Inpp5f_v2 +14.53 (DMR1)
+9.96 (DMR2)

Nap1l5 (Herc3) -14.41 (DMR1)
+15,69 (DMR2)

Protocadherin genes
Pcdhα3 +15.59
Pcdhα9 -11.72
Pcdhγa2 -13.06

Other Genes with DMRs
Mid1 -16.56
Shank2 +19.27
Auts2 -22.48
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Table 1.  GO results for genes associated to all DMRs (Hypo and Hypermethylation) that are localized in active enhancers (H3K27ac) 
GO 

category Description Size Overlap Expected Enrichment 
Ratio FDR User ID 

GO:0022008 neurogenesis 1165 57 25.21 2.260944 0.000017 

Satb2, Klf7, Pbx1, Sdccag8, Prox1, Ank3, Syt1, Dbnl, Bcl11a, Kif3c, Eml1, Atxn1, Itga1, Farp1, Asap1, Trappc9, App, Itsn1, 
Arid1b, Anks1, Runx2, Efna5, Man2a1, Ptprm, Tcf4, Ablim1, Dab2ip, Zeb2, Dclk1, Dclk2, Nfib, Ncdn, Spen, Cit, Cux2, 
Cux1, Dlx5, Creb3l2, Ctnna2, Mgll, Itpr1, Cd9, Sox5, Mboat7, Zfp536, Shank1, Inpp5f, Fgfr2, Shank2, Efnb2, Lig4, 
Arhgef10, Unc5d, Gnao1, Snx1, Ephb1, Map4 

GO:0048699 generation of 
neurons 1088 54 23.54 2.293537 0.000017 

Satb2, Klf7, Pbx1, Sdccag8, Prox1, Ank3, Syt1, Dbnl, Bcl11a, Kif3c, Eml1, Atxn1, Itga1, Farp1, Asap1, Trappc9, App, Itsn1, 
Arid1b, Anks1, Runx2, Efna5, Man2a1, Ptprm, Tcf4, Ablim1, Dab2ip, Zeb2, Dclk1, Dclk2, Nfib, Ncdn, Spen, Cit, Cux2, 
Cux1, Dlx5, Creb3l2, Ctnna2, Mgll, Itpr1, Sox5, Zfp536, Shank1, Inpp5f, Fgfr2, Shank2, Efnb2, Lig4, Unc5d, Gnao1, Snx1, 
Ephb1, Map4 

GO:0048468 cell development 1435 64 31.05 2.060957 0.000018 

Paqr8, Satb2, Klf7, Pbx1, Prox1, Map7, Jmjd1c, Ank3, Chst11, Syt1, Dbnl, Bcl11a, Kif3c, Atxn1, Hrh2, Itga1, Farp1, Asap1, 
Cldn5, App, Itsn1, Arid1b, Pacrg, Anks1, Runx2, Efna5, Man2a1, Ptprm, Tcf4, Ablim1, Dab2ip, Zeb2, Dclk1, Dclk2, Nfib, 
Ncdn, Spen, Cit, Cux2, Rilpl1, Cux1, Dlx5, Creb3l2, Ctnna2, Antxr1, Mgll, Itpr1, Cd9, Sox5, Sipa1l3, Zfp536, Shank1, Inpp5f, 
Fgfr2, Shank2, Efnb2, Lig4, Arhgef10, Unc5d, Gnao1, Snx1, Myo1e, Ephb1, Map4 

GO:0007399 nervous system 
development 1583 67 34.26 1.955847 0.000043 

Satb2, Klf7, Pbx1, Sdccag8, Trp53bp2, Prox1, Ank3, Bcr, Apaf1, Syt1, Dbnl, Bcl11a, Abr, Rbfox3, Kif3c, Eml1, Atxn1, Itga1, 
Farp1, Mal2, Asap1, Trappc9, Cldn5, App, Itsn1, Arid1b, Anks1, Runx2, Efna5, Man2a1, Ptprm, Tcf4, Ablim1, Dab2ip, 
Zeb2, Slc1a2, Dclk1, Dclk2, Nfib, Nfia, Ncdn, Spen, Mthfr, Cit, Cux2, Cux1, Dlx5, Creb3l2, Ctnna2, Mgll, Itpr1, Cd9, Sox5, 
Mboat7, Zfp536, Shank1, Inpp5f, Fgfr2, Shank2, Efnb2, Lig4, Arhgef10, Unc5d, Gnao1, Snx1, Ephb1, Map4 

GO:0030182 neuron 
differentiation 990 48 21.42 2.240510 0.000121 

Satb2, Klf7, Pbx1, Prox1, Ank3, Syt1, Dbnl, Bcl11a, Kif3c, Itga1, Farp1, Asap1, Trappc9, App, Itsn1, Arid1b, Anks1, Runx2, 
Efna5, Ptprm, Tcf4, Ablim1, Dab2ip, Zeb2, Dclk1, Dclk2, Nfib, Ncdn, Cit, Cux2, Cux1, Dlx5, Creb3l2, Ctnna2, Mgll, Itpr1, 
Sox5, Zfp536, Shank1, Inpp5f, Fgfr2,  
Shank2, Efnb2, Unc5d, Gnao1, Snx1, Ephb1, Map4 

GO:0009653 
anatomical 
structure 

morphogenesis 
1604 66 34.71 1.901431 0.000121 

Satb2, Klf7, Cdc73, Pbx1, Sdccag8, Prox1, Map7, Stox1, Jmjd1c, Ank3, Bcr, Chst11, Apaf1, Syt1, Dbnl, Bcl11a, Serpinf2, 
Abr, Cdc42ep4, Gaa, Pik3cg, Slc24a4, Ryr2, Hrh2, Itga1, Farp1, App, Runx2, Efna5, Man2a1, Ptprm, Tcf4, Ablim1, 
Dab2ip, Zeb2, Fap, Ocstamp, Dclk1, Nfib, Mthfr, Ajap1, Cit, Cux2, Rilpl1, Cux1, Gna12, Dlx5, Ctnna2, Antxr1, Mgll, Itpr1, 
Cd9, Mboat7, Sipa1l3, Tshz3, Shank1, Fgfr2, Shank2, Efnb2, Unc5d, Gab1, Gnao1, Sik3, Snx1, Myo1e, Ephb1 

GO:0048513 animal organ 
development 1906 71 41.25 1.721378 0.001418 

Satb2, Klf7, Cdc73, Pbx1, Trp53bp2, Prox1, Map7, Stox1, Jmjd1c, Bcr, Chst11, Apaf1, Syt1, Gas2l1, Bcl11a, Abr, Gaa, 
Max, Slc24a4, Eml1, Ryr2, Atxn1, Hrh2, Nln, Trappc9, Scn8a, App, Runx2, Plcl2, Efna5, Man2a1, Ptprm, Tmem178, 
Dab2ip, Zeb2, Mettl8, Slc1a2, Meis2, Ocstamp, Tpd52, Dclk1, Dclk2, Ptpn3, Nfib, Nfia, Ajap1, Cux1, Peg10, Dlx5, Creb3l2, 
Ctnna2, Itpr1, Cd9, Sox5, Mboat7, Sipa1l3, Zbtb32, Tshz3, Shank1, Tmem143, Fgfr2, Shank2, Efnb2, Lig4, Tcim, Gab1, 
Gnao1, Cbfa2t3, Sik3, Myo1e, Ephb1 

GO:0051239 
regulation of 
multicellular 

organismal process 
1836 69 39.731207 1.736670 0.001418 

Klf7, Cdc73, Pbx1, Prox1, Stox1, Bcr, Syt1, Gas2l1, Grb10, Bcl11a, Sptbn1, Serpinf2, Abr, Gaa, Kif3c, Ryr2, Atxn1, Hrh2, 
Nln, Farp1, Fam49b, Asap1, Cldn5, Cblb, App, Itsn1, Runx2, Plcl2, Efna5, Man2a1, Ptprm, Tmem178, Prkce, Mapre2, 
Tcf4, Add3, Dab2ip, Zeb2, Meis2, Ocstamp, Nfib, Spen, Ajap1, Cmklr1, Cit, Cux2, Cux1, Dlx5, Creb3l2, Mgll, Iqsec1, Itpr1, 
Cd9, Sox5, Zbtb32, Tshz3, Zfp536, Shank1, Sult2b1, Inpp5f, Fgfr2, Shank2, Efnb2, Lig4, Tcim, Unc5d, Gab1, Gnao1, Ephb1 

GO:0031175 neuron projection 
development 768 38 16.619590 2.286458 0.001602 

Klf7, Ank3, Syt1, Dbnl, Bcl11a, Kif3c, Itga1, Farp1, Asap1, App, Itsn1, Arid1b, Efna5, Ptprm,  
Ablim1, Dab2ip, Zeb2, Dclk1, Nfib, Ncdn, Cit, Cux2, Cux1, Dlx5, Creb3l2, Ctnna2, Mgll, Itpr1,  
Shank1, Inpp5f, Fgfr2, Shank2, Efnb2, Unc5d, Gnao1, Snx1, Ephb1, Map4 

GO:0000902 cell morphogenesis 746 37 16.143508 2.291943 0.001827 
Klf7, Prox1, Map7, Jmjd1c, Ank3, Syt1, Dbnl, Bcl11a, Cdc42ep4, Hrh2, Itga1, Farp1, App, Efna5, Ptprm, Ablim1, Dab2ip, 
Zeb2, Dclk1, Nfib, Cit, Cux2, Rilpl1, Cux1, Gna12, Dlx5, Ctnna2, Antxr1, Mgll, Sipa1l3, Shank1, Fgfr2, Shank2, Efnb2, 
Unc5d, Snx1, Ephb1 
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Table 2. GO results for genes associated to Hypermethylated regions, observed upon EPA, that are localized in active enhancers (H3K27ac) 
 

GO category Description Size Over-
lap 

Expec-
ted 

Enrichment 
Ratio FDR User ID 

GO:0048699 generation of 
neurons 1088 40 15.55 2.57 0.000126 

Satb2, Pbx1, Sdccag8, Prox1, Ank3, Bcl11a, Kif3c, Eml1, Atxn1, Itga1, Farp1, Trappc9, App, Itsn1, Arid1b, 
Runx2, Efna5, Man2a1, Ptprm, Tcf4, Ablim1, Zeb2, Dclk1, Dclk2, Nfib, Ncdn, Spen, Cit, Cux2, Ctnna2, Mgll, 
Sox5, Zfp536, Inpp5f, Fgfr2, Shank2, Efnb2, Unc5d, Ephb1, Map4 

GO:0022008 neurogenesis 1165 41 16.65 2.46 0.000137 
Satb2, Pbx1, Sdccag8, Prox1, Ank3, Bcl11a, Kif3c, Eml1, Atxn1, Itga1, Farp1, Trappc9, App, Itsn1, Arid1b, 
Runx2, Efna5, Man2a1, Ptprm, Tcf4, Ablim1, Zeb2, Dclk1, Dclk2, Nfib, Ncdn, Spen, Cit, Cux2, Ctnna2, Mgll, 
Sox5, Zfp536, Inpp5f, Fgfr2, Shank2, Efnb2, Arhgef10, Unc5d, Ephb1, Map4 

GO:0030182 neuron 
differentiation 990 35 14.15 2.47 0.001253 

Satb2, Pbx1, Prox1, Ank3, Bcl11a, Kif3c, Itga1, Farp1, Trappc9, App, Itsn1, Arid1b, Runx2, Efna5, Ptprm, 
Tcf4, Ablim1, Zeb2, Dclk1, Dclk2, Nfib, Ncdn, Cit, Cux2, Ctnna2, Mgll, Sox5, Zfp536, Inpp5f, Fgfr2, Shank2, 
Efnb2, Unc5d, Ephb1, Map4 

GO:0007399 nervous system 
development 1583 45 22.62 1.99 0.006082 

Satb2, Pbx1, Sdccag8, Prox1, Ank3, Bcr, Apaf1, Bcl11a, Kif3c, Eml1, Atxn1, Itga1, Farp1, Trappc9, App, Itsn1, 
Arid1b, Runx2, Efna5, Man2a1, Ptprm, Tcf4, Ablim1, Zeb2, Dclk1, Dclk2, Nfib, Nfia, Ncdn, Spen, Mthfr, Cit, 
Cux2, Ctnna2, Mgll, Sox5, Zfp536, Inpp5f, Fgfr2, Shank2, Efnb2, Arhgef10, Unc5d, Ephb1, Map4 

GO:0048468 cell development 1435 42 20.50 2.05 0.006082 
Satb2, Pbx1, Prox1, Jmjd1c, Ank3, Bcl11a, Kif3c, Atxn1, Hrh2, Itga1, Farp1, App, Itsn1, Arid1b, Pacrg, Runx2, 
Efna5, Man2a1, Ptprm, Tcf4, Ablim1, Zeb2, Dclk1, Dclk2, Nfib, Ncdn, Spen, Cit, Cux2, Ctnna2, Mgll, Sox5, 
Sipa1l3, Zfp536, Inpp5f, Fgfr2, Shank2, Efnb2, Arhgef10, Unc5d, Ephb1, Map4 

GO:0000904 
cell morphogenesis 

involved in 
differentiation 

549 23 7.84 2.93 0.006492 Prox1, Jmjd1c, Ank3, Bcl11a, Hrh2, Farp1, App, Efna5, Ptprm, Ablim1, Zeb2, Dclk1, Nfib, Cit, Cux2, Ctnna2, 
Mgll, Sipa1l3, Fgfr2, Shank2, Efnb2, Unc5d, Ephb1 

GO:0021953 
central nervous 
system neuron 
differentiation 

132 10 1.89 5.30 0.029620 Satb2, Prox1, Zeb2, Dclk1, Dclk2, Nfib, Sox5, Fgfr2, Unc5d, Ephb1 

GO:0051239 
regulation of 
multicellular 

organismal process 
1836 47 26.23 1.79 0.029620 

Cdc73, Pbx1, Prox1, Bcr, Grb10, Bcl11a, Sptbn1, Serpinf2, Kif3c, Ryr2, Atxn1, Hrh2, Nln, Farp1, Fam49b, 
Cblb, App, Itsn1, Runx2, Plcl2, Efna5, Man2a1, Ptprm, Tmem178, Prkce, Mapre2, Tcf4, Zeb2, Meis2, Nfib, 
Spen, Cmklr1, Cit, Cux2, Mgll, Iqsec1, Sox5, Zbtb32, Tshz3, Zfp536, Inpp5f, Fgfr2, Shank2, Efnb2, Unc5d, 
Gab1, Ephb1 

GO:0048667 
cell morphogenesis 
involved in neuron 

differentiation 
448 19 6.40 2.97 0.029620 Ank3, Bcl11a, Farp1, App, Efna5, Ptprm, Ablim1, Zeb2, Dclk1, Nfib, Cit, Cux2, Ctnna2, Mgll, Fgfr2, Shank2, 

Efnb2, Unc5d, Ephb1 

GO:0048812 neuron projection 
morphogenesis 494 20 7.06 2.83 0.030939 Ank3, Bcl11a, Itga1, Farp1, App, Efna5, Ptprm, Ablim1, Zeb2, Dclk1, Nfib, Cit, Cux2, Ctnna2, Mgll, Fgfr2, 

Shank2, Efnb2, Unc5d, Ephb1 
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Table 3. Imprinting control region (ICR) containing DMR in response to PAE 

Gene name Chr Nb 
ICR 

chr:start-end 

DMR 

chr:start-end 

DMR-ICR 

distance 

(bp) 

size of DMR-

ICR overlap 

(bp) 

% of the ICR 

size 

corresponding 

to the DMR 

 % of the DMR 

size included 

in the ICR 

Grb10 chr11 11925531 - 11926027 
11925916 - 11926144 0 111 22 49 

11925916 - 11926144 0 228 29 100 

Zrsr1 

(Commd1) 
chr11 22871842 - 22872319 22872132 - 22872265 0 133 28 100 

Peg13 

(Trappc9) 
chr15 72636765 - 72642079 

72640526 - 72640627 0 101 2 100 

72640891 - 72641120 0 229 4 100 

Impact  chr18 13130706 - 13132250 13130575 - 13130913 0 207 13 61 

Mcts2  

(H13) 
chr2 

152512491 - 

152513011 
152512610 - 152512630 0 20 4 100 

Nespas 

(Gnas) 
chr2 

174121208 - 

174126482 
174122977 - 174123053 0 76 1 100 

Peg10 chr6 4697209 - 4697507 4697935 - 4698017 429 0 0 0 

Nap1l5 

(Herc3) 
chr6 58856690 - 58857056 

58856650 - 58856733 0 43 12 52 

58856827 - 58857180 0 229 63 65 

Inpp5f_v2 chr7 
135831788 - 

135832156 
135831492 - 135831991 0 203 55 41 

 
 

The distance between ICR and DNM (bp) was calculated using the ClosestBed tool from the Bedtools suite (“0 

“indicates that these regions overlap). The size of the overlap between ICR and DMR was obtained using Interval 

IntersectBed. The percentage of the ICR corresponding to the DMR was calculated with the following formula: 

(size of the overlap ICR-DMR / size of the DMR) x 100. Some genes have two names (Zrsr1, Peg13, Mcts2, Nespas, 

Nap1l5 et Inpp5f_v2), because they integrated into other genes (respectively, Commd1, Trappc9, H13, Gnas, Herc3 et 

Inpp5f; McCole et al. 2011). ICR, imprinted control region ; chr, chromosome ; pb, base pair. 
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