

1 **The ADP-heptose biosynthesis enzyme GmhB is a conserved Gram-negative bacteremia**
2 **fitness factor**

3

4 Caitlyn L. Holmes^{a,b}, Sara N. Smith^b, Stephen J. Gurczynski^b, Geoffrey B. Severin^b, Lavinia V.
5 Unverdorben^{a,b}, Jay Vornhagen^{a,b}, Harry L. T. Mobley^b, Michael A. Bachman^{a,b}

6 ^aDepartment of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA

7 ^bDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor,
8 Michigan, USA

9

10 **ABSTRACT**

11 *Klebsiella pneumoniae* is a leading cause of Gram-negative bacteremia, which is a major source of
12 morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site
13 infection, dissemination to the blood, and bloodstream survival. Since *K. pneumoniae* is a leading
14 cause of healthcare-associated pneumonia, the lung is a common primary infection site leading to
15 secondary bacteremia. *K. pneumoniae* factors essential for lung fitness have been characterized, but
16 those required for subsequent bloodstream infection are unclear. To identify *K. pneumoniae* genes
17 associated with dissemination and bloodstream survival, we performed insertion site sequencing
18 (InSeq) using a pool of >25,000 transposon mutants in a murine model of bacteremic pneumonia.
19 This analysis revealed the gene *gmhB* as important for either dissemination from the lung or
20 bloodstream survival. In *Escherichia coli*, GmhB is a partially redundant enzyme in the synthesis of
21 ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in *K. pneumoniae*, an
22 isogenic knockout strain ($\Delta gmhB$) and complemented mutant were generated. During pneumonia,
23 GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB
24 enhanced bloodstream survival in a manner independent of serum susceptibility, specifically

25 conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB
26 was also required by *K. pneumoniae*, *E. coli* and *Citrobacter freundii* for optimal bloodstream survival.
27 Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that
28 acts through LPS-mediated mechanisms to enhance bloodstream survival.

29

30 **IMPORTANCE**

31 *Klebsiella pneumoniae* frequently causes healthcare-associated infections including pneumonia and
32 bacteremia. This is particularly concerning due to emerging antimicrobial resistance and the
33 propensity for bacteremia to initiate sepsis, which has high mortality and is the most expensive
34 hospital-treated condition. Defining mechanisms of bloodstream survival is critical to understanding
35 the pathology of bacteremia and identifying novel targets for future therapies. In this study, we
36 identified the *K. pneumoniae* enzyme GmhB as a bloodstream-specific fitness factor that enables the
37 bacteria to survive in the spleen but is dispensable in the lung. Furthermore, GmhB is also needed by
38 the related bacterial pathogens *Escherichia coli* and *Citrobacter freundii* to cause bacteremia.
39 Conserved bacteremia fitness factors such a GmhB could be the basis for future therapeutics that
40 would alleviate significant disease caused by from multiple diverse pathogens.

41

42 **INTRODUCTION**

43 Gram-negative bacteremia is a significant cause of global morbidity and mortality largely due to
44 progression to sepsis, defined as life threatening organ dysfunction resulting from a dysregulated host
45 response to infection (1). Gram-negative pathogens underlie 43% of clinical bloodstream infections
46 with a small number of species, including *Escherichia coli*, *Klebsiella pneumoniae*, *Citrobacter*
47 *freundii*, and *Serratia marcescens*, contributing to the majority of cases (2, 3). Of these species, *K.*
48 *pneumoniae* is the second most common species causing Gram-negative bacteremia and the third

49 most prevalent cause of all bloodstream infections (2). Although *K. pneumoniae* can be a commensal
50 species (4, 5), it is also an opportunistic pathogen. This is especially relevant in healthcare-
51 associated infections where *K. pneumoniae* is a leading source of disease (6). The Centers for
52 Disease Control and Prevention have repeatedly classified carbapenem-resistant *Enterobacteriales*,
53 including *K. pneumoniae*, as an urgent public health threat due to antibiotic resistance (7, 8).
54 Bacteremia from antibiotic-resistant *K. pneumoniae* can be extremely difficult to treat and is
55 associated with a high mortality rate.

56

57 The pathogenesis of Gram-negative bacteremia involves three main phases: primary site infection,
58 dissemination, and bloodstream survival (3). First, bacteria must invade primary sites of infection or
59 colonization and evade local host responses. Second, pathogens disseminate across host barriers to
60 gain bloodstream access, a process that varies based on the initial site. Navigation across barriers
61 may include strategies to invade or disrupt site-specific epithelial cells, endothelial cells, and cellular
62 junctions. Third, bacteria must exercise metabolic flexibility and resist host defenses in the
63 bloodstream to adapt in a new environment. In circulation, bacteria passage through blood filtering
64 organs, like the spleen and liver, which may act as additional sites of infection from which
65 dissemination can occur. Defects at initial sites do not always predict fitness at secondary sites (9,
66 10), and apparent lack of fitness at secondary sites may be confounded by defects at the initial site.
67 Therefore, observed overlap between primary site and bloodstream fitness genes highlight the
68 necessity to probe phases of bacteremia separately to correctly define stages relevant to
69 pathogenesis (3). By carefully defining the bacterial factors required for each phase of bacteremia, we
70 may identify therapeutic targets for interventions that prevent progression to bacteremia or treat it
71 more effectively once it has occurred.

72

73 *K. pneumoniae* bacteremia is often secondary to pneumonia (6) and fitness factors for primary site
74 infection in the lung have been extensively investigated. Capsular polysaccharide, siderophores, and
75 synthesis of branched chain amino acids (11-13) are required for lung fitness. Additionally, the citrate
76 (Si)-synthase GltA, and the acetyltransferase Atf3, are required (9, 10), highlighting the broad range
77 of factors contributing to lung initial site fitness. Some fitness factors in the lung are also likely to be
78 important in the bloodstream. Capsular polysaccharide is required to resist human serum
79 complement, and siderophores are important for both dissemination from the lung and growth in
80 human serum (12). However, factors that act specifically at the stages of dissemination and
81 bloodstream survival are unclear. Genes necessary for serum resistance have been described *in vitro*
82 and include cell wall integrity proteins, and multiple metabolic pathways (14, 15), but factors that
83 resist host responses during bacteremia and allow growth within blood-filtering organs is unknown.

84

85 In the bloodstream, cell surface structures can defend bacteria from environmental threats like
86 formation of the membrane attack complex or antimicrobial peptides. Of these, lipopolysaccharide
87 (LPS) is a defining cellular envelope structure of Gram-negative species that governs many
88 environmental interactions and aids in resistance to stress. Major components of the LPS molecule
89 include O-antigen, outer core, inner core, and lipid A. LPS alterations can increase vulnerability to
90 environmental threats (16), and inner core mutations can enhance susceptibility to hydrophobic
91 agents (16-18). Since LPS can also interact with host Toll-like receptor 4 to initiate innate immune
92 responses, it is likely that *K. pneumoniae* LPS plays a complex role in host-pathogen interactions
93 during bacteremia.

94

95 To identify factors required for lung dissemination and bloodstream survival, we used transposon
96 insertion site sequencing (InSeq) in a murine model of bacteremic pneumonia. We identified and
97 validated the LPS core biosynthesis gene *gmhB* as involved in dissemination and bloodstream

98 survival, the two late phases of bacteremia, but dispensable for initial site fitness in the lung. We also
99 showed that GmhB is a conserved bloodstream survival factor across multiple Gram-negative
100 pathogens.

101

102 **RESULTS**

103 **Transposon insertion site sequencing identifies *K. pneumoniae* GmhB as a bacteremia fitness**
104 **factor.** To identify *K. pneumoniae* factors influencing dissemination and bloodstream survival, InSeq
105 was used to detect genes associated with fitness defects in the spleen but dispensable for lung
106 fitness. The *K. pneumoniae* strain KPPR1 causes bacteremic pneumonia in a well-established murine
107 model (13, 19). In a previous study to identify interactions between *Klebsiella* and the innate immune
108 protein Lipocalin 2 during pneumonia (10), we used a KPPR1 transposon library representing
109 ~25,000 unique insertions with ~99% genome coverage to infect *Lcn2^{+/+}* and *Lcn2^{-/-}* mice (11, 20).
110 Here, we evaluated the dissemination of mutants to the spleen at 24 hours from the same
111 experiment. We noted that the *Lcn2^{-/-}* mice had greater dissemination to the spleen than *Lcn2^{+/+}* mice
112 (Supplementary Figure 1), suggesting a wider bottleneck in dissemination from the lung that could
113 enable higher recovery of transposon mutants in the spleen. Therefore, only *Lcn2^{-/-}* spleens were
114 analyzed further (21).

115

116 To identify potential lung dissemination and bloodstream survival factors, we devised a stepwise
117 approach to use the InSeq data from the spleens of *Lcn2^{-/-}* mice and eliminated genes with fitness
118 defects in the lung or interactions with Lipocalin 2: Genes containing transposon insertions were
119 compared between the inoculum, *Lcn2^{+/+}* lung, *Lcn2^{-/-}* lung, and *Lcn2^{-/-}* spleen output pools. Of the
120 3,707 mutated genes shared across the input and each output pool, 1,489 contained four or more
121 unique transposon insertions (i.e., median number of unique insertions per gene) and were used for
122 subsequent selection steps. To eliminate genes influencing lung fitness, transposon mutants with

123 similar abundance ($q>0.05$) between the inoculum and *Lcn2^{+/+}* mouse lungs were retained. To
124 eliminate genes that interact with Lipocalin 2 in the lungs, only transposon mutants with similar
125 recovery ($q>0.05$) between the *Lcn2^{+/+}* and *Lcn2^{-/-}* lung output pools were retained. To identify factors
126 involved in either the phase of lung egress or bloodstream survival, transposon mutants were
127 selected with a significant difference in abundance between the *Lcn2^{-/-}* lung and *Lcn2^{-/-}* spleen output
128 pools ($q<0.05$). This InSeq selection process resulted in 18 genes with transposon insertions
129 (Supplemental Table 1) as candidates for encoding dissemination and bloodstream survival factors.

130

131 Six genes with a high ratio in read difference between the lung and spleen were chosen for
132 validation. Isogenic knockouts of the open reading frames of *VK055_4727*, *VK055_2040*,
133 *VK055_4483*, *ulaA*, *gmhB*, and *prlC* were generated by Lambda Red mutagenesis (22). None of the
134 encoded factors were required for *K. pneumoniae* *in vitro* replication or fitness, as knockouts had
135 growth rates similar to those of wild-type KPPR1 in rich LB and minimal (M9+Glucose) media
136 (Supplementary Figure 2A, C). Additionally, each knockout was able to compete *in vitro* against wild-
137 type KPPR1 with no apparent defects in both media conditions (Supplementary Figure 2B, D). To
138 validate the defect of each mutant in causing bacteremia, 1:1 coinfections of KPPR1 against each
139 isogenic knockout in a bacteremic pneumonia model were performed with *Lcn2^{-/-}* mice. Competitive
140 indices were calculated 24 hours post inoculation based on bacterial burden of each strain
141 (Supplemental Figures 3-4). The $\Delta gmhB$ mutant had a slight fitness defect in the lung with a
142 significantly greater defect in the spleen (Supplementary Figure 3E). This significant difference in
143 fitness between sites indicates that GmhB is important for lung dissemination, bloodstream survival,
144 or both steps of bacteremia. In contrast, *VK055_4727*, *VK055_2040*, *VK055_4483*, and *UlaA* were
145 dispensable for bacteremia at all phases (Supplementary Figure 3A-D). *PrlC* contributes to initial site
146 fitness (Supplementary Figure 3F), which may explain the similar fitness defect observed in the
147 spleen.

148

149 **Multiple models of murine bacteremia support that GmhB enhances bloodstream fitness.**

150 Since *Lcn2* can prevent *K. pneumoniae* pulmonary vasculature invasion (23), we confirmed that
151 *GmhB* was required for dissemination and bloodstream survival in wild-type mice. Consistent with the
152 InSeq data, the *gmhB* mutant had no fitness defect in the lungs of *Lcn2*^{+/+} mice after coinfections with
153 KPPR1 and Δ *gmhB* (Figure 1A, Supplementary Figure 5A). In contrast, the *gmhB* mutant had a 24-
154 fold mean fitness defect in the spleen and 104-fold defect in blood. Similar to co-infections, in
155 independent infections the *gmhB* mutant had no defect in the lung but significant defects in the spleen
156 and blood of infected mice (Figure 1B). To confirm that this fitness defect was attributable to
157 disruption of *gmhB*, the mutant was complemented *in trans*. The empty plasmid vector had no effect
158 on the results of competitive infections (Figure 1C). Plasmid carriage had slight effects on lung
159 fitness, with Δ *gmhB* carrying the empty vector having slightly higher fitness, and Δ *gmhB* with the
160 complementing plasmid having slightly lower fitness, in the lung (Figures 1C-D; Supplementary
161 Figure 5B-C). In contrast, Δ *gmhB* with the empty vector was significantly defective for survival in the
162 spleen and blood with plasmid derived *gmhB* complementation ameliorating this defect in the spleen
163 and partially in the blood (Figure 1D). Combined, these results indicate that GmhB is necessary for
164 lung dissemination, bloodstream survival, or both stages of bacteremia.

165

166 To determine if GmhB enhances dissemination from the lung specifically, a bacteremia model
167 involving an independent initial site was used. A KPPR1 and Δ *gmhB* coinfection was performed by
168 intraperitoneal injection and competitive indices were calculated after 24 hours (Figure 1E,
169 Supplementary Figure 5D). Unlike the lung model, the *gmhB* mutant was defective in initial site
170 fitness within the peritoneal cavity and a similar fitness defect was observed in the spleen, liver, and
171 blood. Therefore, GmhB influences initial phase fitness in a site-specific manner. This initial site
172 defect in the intraperitoneal model may mask defects in bloodstream survival. To measure fitness in

173 the third phase of bacteremia, a tail vein injection model was used that bypasses the initial site and
174 dissemination steps. Based on coinfections using a tail vein injection with competitive indices
175 calculated after 24 hours (Figure 1F, Supplementary Figure 5E), the *gmhB* mutant had a significant
176 fitness defect in both the spleen and liver. Considering the data across three distinct models of
177 bacteremia, GmhB is consistently necessary for bloodstream survival. It is dispensable for initial site
178 infection in the lung but important in the peritoneal cavity, suggesting site-specific fitness. The
179 contribution of GmhB to bloodstream survival may explain the strong defect in dissemination
180 observed in pneumonia model, but we cannot rule out a specific contribution for egress from the lung.

181

182 **GmhB does not modulate lung inflammation elicited by *K. pneumoniae* during pneumonia.**
183 GmhB is a D,D-heptose 1,7-bisphosphate phosphatase involved in biosynthesis of ADP-heptose (24-
184 26), which is a structural component of the LPS core. ADP-heptose is synthesized through a five-part
185 enzymatic cascade modifying the precursor sedoheptulose 7-phosphate. GmhB is the third enzyme in
186 this reaction, serving to dephosphorylate D-glycero- β -D-manno-heptose 1,7-bisphosphate (HBP) to
187 produce D-glycero- β -D-manno-heptose 1-monophosphate (HMP1) (25). Perhaps because LPS is a
188 conserved virulence factor in Gram-negative bacteria, ADP-heptose is also a soluble pro-
189 inflammatory mediator (27). Soluble ADP-heptose can be recognized by the host cytosolic receptor
190 alpha kinase 1 (ALPK1) (27), resulting in the formation of TIFAsomes, upregulation of NF- κ B
191 signaling, and inflammatory influx (28-31). We have previously observed that lung inflammation
192 contributes to dissemination of *K. pneumoniae* from the lung to the bloodstream (12, 23). If lung
193 dissemination is GmhB-dependent, then perhaps *K. pneumoniae* relies on soluble ADP-heptose to
194 induce an immune response during pneumonia that enables egress from the lungs.

195

196 To measure the contribution of GmhB to lung inflammation, KPPR1 and Δ gmhB were used in the
197 murine pneumonia model and lung homogenates were surveyed for immune cell recruitment and
198 cytokine activation associated with ADP-heptose signaling (31). As expected, neutrophils and
199 monocytes were the most prominent cell types recruited to the lung during *K. pneumoniae* infection
200 (Figure 2A, Supplementary Figure 6) (32-34). Monocytic-myeloid derived suppressor cells (M-
201 MDSCs), which alter the lung immune environment during *K. pneumoniae* infection (35, 36), were
202 present after infection, but not in a GmhB-dependent manner. Alveolar macrophages, eosinophils and
203 dendritic cells were detected by flow cytometry but the abundance of these cell types was not altered
204 by *K. pneumoniae* infection. Importantly, GmhB did not influence the overall CD45⁺ cell abundance in
205 the lung during pneumonia, nor did GmhB alter the profile of any prominent immune cell subset after
206 infection (Figure 2A). We also measured the abundance of TNF α , GM-CSF, RANTES, MCP-3, MIP-
207 1 α , and MIP-1 β , which are associated with signaling via the ADP-heptose/ALPK1/NF- κ B axis (31), in
208 lung homogenates. Abundance of each analyte was increased after *K. pneumoniae* infection, yet
209 GmhB did not influence signaling by this axis (Figure 2B). Therefore, inflammation during *K.*
210 *pneumoniae* lung infection is not GmhB-dependent, as measured by immune cell recruitment and
211 signaling through ADP-heptose/ALPK1/NF- κ B associated cytokines. The influence of GmhB on
212 dissemination and bloodstream survival is likely independent of lung inflammatory responses.

213

214 **GmhB enhances bloodstream survival by mediating spleen fitness.** Given that GmhB enhanced
215 *K. pneumoniae* bloodstream survival during direct bacteremia (Figure 1F) and did not alter
216 inflammation in the lungs (Figure 2), we investigated the direct role that it may play on bacterial
217 fitness. Disruption of GmhB during ADP-heptose biosynthesis can influence LPS structure in *E. coli*
218 (25, 26), and LPS core alterations may enhance serum susceptibility (24, 37). To determine if GmhB
219 conveys resistance to serum killing, KPPR1 and Δ gmhB were exposed to active human and murine
220 serum. An Δ rfaH acapsular mutant was used as a control that is highly susceptible to human serum
221 killing (11). In contrast to RfaH, GmhB was dispensable for resistance to human serum-mediated

222 killing (Figure 3A). Unlike human serum, murine serum was unable to elicit killing in any strain and
223 may lack the ability to form an active membrane attack complex against *K. pneumoniae* (Figure 3B),
224 a phenomenon observed in other Gram-negative species (38). Additionally, GmhB was not required
225 for growth in active human serum (Figure 3C). To rule out subtle differences in fitness in human
226 serum, competitive survival assays were performed in human serum. This also showed no defect of
227 the *gmhB* mutant (Figure 3D, Supplementary Figure 7). Thus, the bloodstream survival advantage
228 conveyed by GmhB is likely independent of the ability to resist complement-mediated killing or to
229 replicate in serum.

230

231 During bacteremia, *Klebsiella* pass through blood filtering organs, like the liver and spleen, and GmhB
232 conveyed a fitness advantage in these organs *in vivo* (Figure 1F). Since the fitness defects of $\Delta gmhB$
233 during bacteremia are not explained by fitness in serum, we performed *ex vivo* competition assays in
234 uninfected murine spleen and liver homogenates. GmhB was necessary for complete fitness in
235 spleen homogenate (Figure 4A, Supplementary Figure 7). Further, the magnitude of GmhB fitness
236 loss in *ex vivo* spleen homogenate was similar to that observed *in vivo* using tail vein injections
237 (Figure 1F). RfaH was dispensable for spleen homogenate fitness (Figure 4A) suggesting that
238 capsule is not required for splenic survival. Furthermore, GmhB was dispensable for
239 hypermucoviscosity (39) (Supplementary Figure 8). Despite finding a fitness defect and fewer $\Delta gmhB$
240 CFU in the liver during infection (Figures 1E,F and Supplementary Figure 5D, E), GmhB was
241 dispensable for liver fitness *ex vivo* (Figure 4B). Similar to its neutral fitness in the lung, the *gmhB*
242 mutant had no defect in lung homogenate *ex vivo* (Figure 4C). These data indicate that GmhB
243 contributes to bacteremia fitness during the phase of bloodstream survival through spleen-specific
244 interactions.

245

246 **GmhB is required for normal *K. pneumoniae* LPS composition.** GmhB contributes to LPS
247 structure through synthesis of ADP-heptose, a major component of the inner core region. In *E. coli*,
248 GmhB is required for normal LPS composition; GmhB-deficient strains produce a mixed phenotype of
249 full length and stunted LPS molecules (26). This partial defect is attributed to an uncharacterized
250 enzyme that is partially redundant for GmhB function. In other species, disruption of ADP-heptose
251 integration into LPS results in stunted molecules with minimal O-antigen (17, 18). To determine the
252 impact of *gmhB* deletion on *K. pneumoniae* surface structure, LPS from KPPR1, $\Delta gmhB$, and
253 $\Delta gmhB + pACYC_{gmhB}$ was isolated and analyzed using electrophoresis. Wild-type KPPR1 LPS
254 produces prominent O-antigen laddering patterns similar to the pattern of the *E. coli* LPS standard
255 (Figure 5). The *K. pneumoniae* strain $\Delta galU$ (39, 40) lacks prominent O-antigen and can be used to
256 identify regions corresponding to core polysaccharides. In three prominent core banding regions,
257 differences were observed between wild-type KPPR1 and $\Delta gmhB$. Specifically, there was decreased
258 band intensity in heavier bands (Regions A and B) and the appearance of banding in Region C.
259 These changes were reversed upon *gmhB* complementation. This result indicates that GmhB is
260 required for normal *K. pneumoniae* LPS structure. Similar to *E. coli*, GmhB is not absolutely required
261 for LPS synthesis as O-antigen laddering is still detected even in the absence of this enzyme.

262

263 **GmhB is a conserved bloodstream fitness factor across multiple clinically relevant Gram-**
264 **negative bacteremia pathogens.** GmhB is highly conserved across *Enterobacterales*, which
265 compose the majority of Gram-negative bacteremia pathogens. To address the requirement of GmhB
266 in bloodstream fitness across multiple species, tail vein injections were performed using a coinfection
267 of wild type *E. coli* CFT073 or *C. freundii* UMH14 and corresponding *gmhB* mutants
268 CFT073:*tn::gmhB* (42) and UMH14 $\Delta gmhB$, respectively. GmhB was required for bloodstream survival
269 in both *E. coli* and *C. freundii* as measured in the spleen and liver (Figure 6, Supplementary Figure 9).
270 Additionally, GmhB is a predicted essential gene for *S. marcescens* survival (43). These results

271 reveal that GmhB is a conserved bloodstream fitness factor across multiple clinically relevant Gram-
272 negative bacteremia pathogens.

273

274 **DISCUSSION**

275 During bacteremia, *K. pneumoniae* virulence and fitness factors may act during (1) initial site
276 invasion, (2) dissemination, and (3) bloodstream survival (3). Based on data from multiple infection
277 models, we identified GmhB as important in the third phase of bacteremia: bloodstream survival. In a
278 model of bacteremic pneumonia, GmhB was dispensable for lung fitness but critical for fitness in the
279 spleen. In *ex vivo* growth assays, GmhB was specifically important for spleen fitness. Furthermore,
280 GmhB was also required by *E. coli* and *C. freundii* for bloodstream survival. Overall, this study
281 indicates that GmhB is a conserved Gram-negative bloodstream survival factor.

282

283 Distinguishing the three pathogenesis phases of Gram-negative bacteremia can be difficult using *in*
284 *vivo* infection models. While bacteremic pneumonia modeling indicated a role for GmhB in the latter
285 two phases of bacteremia (Figure 1A), dissemination and bloodstream survival are difficult to
286 separate experimentally since these processes occur simultaneously. To probe late phases
287 individually, a dissemination independent model of direct bacteremia was utilized and confirmed a
288 role for GmhB during bloodstream survival (Figure 1F). However, we cannot rule out a specific role in
289 dissemination. Indeed, the greater $\Delta gmhB$ fitness defect observed in spleen and blood during
290 bacteremic pneumonia compared to direct bacteremia suggests a role for GmhB in both
291 dissemination and survival (Figure 1A, F). Lung dissemination mechanisms for *Pseudomonas*
292 *aeruginosa* have been described and rely on exotoxins and the type 3 secretion system for killing
293 host cells to gain bloodstream access (44-46). *K. pneumoniae* does not encode these factors (47).
294 Instead, lung dissemination in *Klebsiella* requires a different host-pathogen interaction, where *K.*

295 *pneumoniae* siderophores activate epithelial HIF-1 α that is in turn required for dissemination (12). The
296 precise mechanism of, and additional factors required for, dissemination from the lung is unclear.

297

298 GmhB is involved in the biosynthesis of ADP-heptose, a metabolite detected in host cytosol that
299 initiates inflammation through the ALPK1/TIFA/NF- κ B axis (28-31, 48, 49). GmhB dephosphorylates
300 HBP to yield HMP1, which is converted into ADP-heptose. In the present study, GmhB was
301 dispensable for normal inflammation during pneumonia as determined by immune cell recruitment
302 and cytokines signatures associated with ALPK1/TIFA/NF- κ B signaling. Therefore, lung inflammation
303 elicited by *K. pneumoniae* may not require ADP-heptose or may be activated by other *K. pneumoniae*
304 PAMPs. The minor differences in the LPS electrophoresis pattern in the absence of GmhB indicates
305 that, as in *E. coli* (25, 31), *K. pneumoniae* possesses an unknown mechanism with partially redundant
306 GmhB function (Figure 5). In the absence of GmhB, this mechanism may produce sufficient ADP-
307 heptose to induce inflammation via the ALPK1/TIFA/NF- κ B axis, leading to normal inflammation
308 observed in Figure 2.

309

310 *K. pneumoniae* LPS O-antigen is required for serum resistance (14), but its role in lung fitness may
311 vary. The strain KPPR1 requires LPS O-antigen for initial site lung fitness, while it is dispensable for
312 the strain 5215R (13, 50). In *Salmonella* Typhimurium, complete abrogation of ADP-heptose
313 integration into LPS results in a molecule lacking core and O-antigen (17, 18) and displays a rough
314 phenotype. Here, GmhB was required for normal LPS biosynthesis but was not absolutely required
315 for production of full length LPS containing O-antigen. Additionally, KPPR1 retained high levels of
316 hypermucoviscosity in the absence of GmhB. Therefore, GmhB appears to maximize ADP-heptose
317 biosynthesis and contribute to wild-type levels of LPS inner core production. Future work should
318 discern how individual components of the LPS molecule contribute to bloodstream fitness and
319 pathogenicity.

320

321 GmhB may be crucial under conditions where rapid LPS production is necessary. During murine
322 bacteremia, *K. pneumoniae* exhibits exponential replication in the spleen at 24 hours (51). Rapid
323 replication requires substantial LPS export and, in the absence of GmhB, lower abundance of normal
324 LPS may be produced. This may leave Gram-negative species more susceptible to killing by host
325 defenses, such as phagocytosis by immune cells. Our data supports differential requirements of
326 capsule and LPS in site-specific fitness. The requirement of GmhB for fitness in the spleen *in vivo*
327 and *ex vivo*, but dispensability for human serum resistance and lung and liver fitness *in vivo* and *ex*
328 *vivo*, indicates that site specific immune cells like splenic macrophages may be required for *K.*
329 *pneumoniae* clearance during bacteremia. In contrast, RfaH, necessary for capsule production and
330 hypermucoviscosity, is dispensable for *ex vivo* spleen, liver and lung fitness but required for human
331 serum resistance and *in vivo* lung fitness (11). This suggests that there are distinct interactions
332 between *Klebsiella* and host defenses at each site of infection that require different *Klebsiella*
333 virulence factors.

334

335 This study is limited by the validation rate of the InSeq selection process. Each InSeq model requires
336 consideration of experimental bottlenecks to assess the maximum transposon library complexity
337 which can be utilized (52, 53). Since Lcn2 restricts *K. pneumoniae* to the pulmonary space (23), *Lcn2*
338 ^{-/-} mice were used to relax the bottleneck between the lung and spleen, accommodating use of a
339 complex *K. pneumoniae* transposon library that increased the number of disrupted genes. However,
340 only one of the six hits chosen for validation significantly impacted bacteremia pathogenesis,
341 suggesting that stochastic loss from a bottleneck still generated a high rate of false positive hits. The
342 gene *prlC*, which in validation studies was an initial site fitness factor, encodes an oligopeptidase that
343 may be important during lung infection. In future studies, this bottleneck could be mitigated by splitting
344 the transposon library into smaller pools and increasing the number of replicates for each pool.

345

346 Based on InSeq studies and validation with isogenic mutants, GmhB is a conserved fitness factor
347 across multiple species that cause bacteremia. Here, we confirmed a role for GmhB in bloodstream
348 fitness for *K. pneumoniae*, *E. coli*, and *C. freundii*. InSeq analysis of *C. freundii* bacteremia fitness
349 factors also indicated a role for GmhB in bloodstream fitness (56). Whereas GmhB is conditionally
350 essential in these species, in *S. marcescens*, GmhB appears to be essential for growth (43). This
351 consistent requirement for bloodstream survival makes GmhB and core LPS synthesis pathways
352 attractive candidates for novel therapeutics to treat bacteremia.

353

354 **MATERIALS AND METHODS**

355 **Transposon insertion site sequencing analysis (InSeq).** Construction of the *K. pneumoniae*
356 transposon library using the pSAM_Cam plasmid and InSeq analysis was described previously (11).
357 Briefly, after infection with the *K. pneumoniae* transposon library, CFU from total organ homogenate
358 were recovered. DNA from recovered transposon mutants was extracted and fragments were
359 prepared for Illumina sequencing using previously detailed methods (57). All transposon sequencing
360 files are available from the NCBI SRA database (<https://www.ncbi.nlm.nih.gov/sra>, PRJNA270801).

361

362 **Bacterial strains and media.** Reagents were sourced from Sigma-Aldrich (St. Louis, MO) unless
363 otherwise noted. *K. pneumoniae* strains were cultured overnight in Luria-Bertani (LB, Fisher
364 Bioreagents, Ottawa, ON) broth at 37°C shaking or grown on LB agar (Fisher Bioreagents) plates at
365 30°C. *E. coli* CFT073 (58) and *C. freundii* UMH14 (56) strains were cultured overnight in LB broth
366 shaking or grown on LB agar plates at 37°C. Media for isogenic knockout strains and transposon
367 mutants was supplemented with 40µg/mL kanamycin and pACYC was selected with 50µg/mL
368 chloramphenicol.

369

370 Isogenic knockouts were constructed using Lambda Red mutagenesis and electrocompetent KPPR1
371 as previously described (11, 22). In short, electrocompetent *K. pneumoniae* carrying the pKD46
372 plasmid was prepared by an overnight culture at 30°C and diluted the following day 1:50 in LB broth
373 containing 50µg/mL spectinomycin, 50mM L-arabinose, 0.5mM EDTA (Promega, Madison, WI), and
374 10µM salicyclic acid until reaching exponential phase, defined by an OD₆₀₀ of 0.5-0.6. Bacterial cells
375 were cooled on ice for 30 minutes, followed by centrifugation at 8,000xg for 15 minutes at 4°C. Pellets
376 were washed serially with 50mL of 1mM HEPES pH 7.4 (Gibco, Grand Island, NY), 50mL diH₂O, and
377 20mL 10% glycerol before making a final resuspension at 2-3x10¹⁰ in 10% glycerol. To generate
378 gene-specific target site fragments for Lambda Red mutagenesis, a kanamycin resistance cassette
379 was amplified from the pKD4 plasmid with primers also containing 65 base pair regions of homology
380 to the chromosome flanking the *gmhB* open reading frame. The fragment was electroporated into
381 competent KPPR1 containing pKD46 plasmid and transformants were selected on LB agar containing
382 kanamycin after overnight incubation at 37°C. All KPPR1 isogenic knockouts were confirmed by
383 colony PCR using gene internal and flanking primers. The *C. freundii* UMH14:Δ*gmhB* strain was
384 constructed using Lambda Red mutagenesis as follows: Electrocompetent *C. freundii* UMH14
385 maintaining the pSIM18 recombination plasmid were prepared by harvesting exponentially growing
386 cells cultured in YENB media supplemented with 200 µg/mL hygromycin grown at 30°C with aeration.
387 To induce expression of pSIM18, the temperature was shifted to 42°C for 20 minutes and then the
388 culture pelleted at 5,000xg for 10 minutes at 4°C. Cells were washed twice in cold 10% glycerol and
389 resuspended in 100µL cold 10% glycerol before storage at -80°C. A gene-specific kanamycin
390 resistance cassette was amplified from the pKD4 plasmid using primers containing 40 base pair
391 regions of homology to the chromosome flanking the UMH14 *gmhB* open reading frame. This
392 fragment was electroporated into UMH14 pSIM18 electrocompetent cells which were then recovered
393 in LB media for 1 hour at 37°C and plated on LB agar containing kanamycin and incubated at 37°C
394 overnight. UMH14:Δ*gmhB* was confirmed by Sanger sequencing and curing of the pSIM18

395 recombineering plasmid was confirmed by a restoration of hygromycin sensitivity. The primers used
396 in this study are detailed in Supplementary Table 2.

397

398 The KPPR1 *gmhB* complementation plasmid, pACYC_{gmhB}, was generated by two fragment Gibson
399 assembly using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, Ipswich, MA). The
400 plasmid pACYC184 (pACYC_{ev}; empty vector) was linearized by BamHI and HindIII (New England
401 Biolabs). The *gmhB* locus, including a 500 bp region upstream of the open reading frame was
402 amplified by PCR from KPPR1 (GCF_000755605.1, nucleotides 2,380,173 – 2,379,086) with primers
403 containing homology to linearized pACYC_{ev}, described above. The plasmid and *gmhB* containing
404 PCR product were mixed in a 1:2 ratio and Gibson assembly was performed following the
405 manufacturer's protocol. The resulting Gibson product was electroporated and maintained in *E. coli*
406 TOP10 cells (New England Biolabs) and the final construct (pACYC_{gmhB}) was confirmed using Sanger
407 sequencing. pACYC_{gmhB} and pACYC_{ev} were mobilized into KPPR1 and Δ gmhB by electroporation
408 and plasmids were maintained in the presence 50 μ g/mL chloramphenicol.

409

410 **Murine bacteremia models.** This study was performed using six- to ten-week old C57BL/6 mice
411 (Jackson Laboratory, Bar Harbor, ME) with careful adherence to humane animal handling
412 recommendations (59) and the study was approved by the University of Michigan Institutional Animal
413 Care and Use Committee (protocol: PRO00009406). As a model of bacteremic pneumonia, mice
414 were anesthetized with isoflurane and 1×10^6 CFU *K. pneumoniae* in a 50 μ L volume was administered
415 retropharyngeally. For intraperitoneal bacteremia, mice were injected with 1×10^3 CFU *K. pneumoniae*
416 in a 100 μ L volume administered to the peritoneal cavity. For direct bacteremia, mice were injected
417 with 1×10^5 CFU *K. pneumoniae* in a 100 μ L volume administered via tail vein injection (60). For all
418 models, overnight LB cultures of *K. pneumoniae* were centrifuged, resuspended, and adjusted to the
419 proper concentration in PBS. Twenty-four hours post infection, mice were euthanized by carbon

420 dioxide asphyxiation prior to collection of blood, lung, spleen, liver, or peritoneal fluid. Whole blood
421 was collected by cardiac puncture and dispensed into heparin coated tubes (BD, Franklin Lakes, NJ).
422 Peritoneal fluid was collected by dispensing 3mL PBS into the peritoneal cavity followed by
423 recollection. After collection, all organs were homogenized in PBS. To determine bacterial density, all
424 sites were serially diluted and CFU measured by quantitative plating on LB agar with appropriate
425 antibiotics. To calculate competitive indices, mice were infected with a 1:1 ratio of *K. pneumoniae*
426 wild-type KPPR1 or isogenic mutant strains. Total CFU were determined by LB agar quantitative
427 plating and mutant strain CFU were quantified by plating on LB agar with appropriate antibiotics. The
428 competitive index was defined as CFU from: (mutant output/wild-type output)/(mutant input/wild-type
429 input).

430

431 To model *E. coli* bacteremia, mice were inoculated with a 1:1 mixture of CFT073:tn::*gmhB* for a total
432 of 1×10^7 CFU in a 100 μ L volume administered via tail vein injection. To model *C. freundii* bacteremia,
433 UMH14 and UMH14: Δ *gmhB* stationary phase cultures were back diluted (1:100) into fresh LB media
434 and grown to late exponential phase at 37° C with aeration. These cultures were centrifuged at
435 5,000xg for 10 minutes at 4°C, and the pellets were suspended in cold PBS to 5×10^8 CFU/mL for
436 UMH14 and 1×10^9 CFU/mL for UMH14: Δ *gmhB* and then combined 1:1. 100 μ L of the combined
437 suspension, which constituted a total inoculum of 7.5×10^7 CFU at a 1:2 CFU ratio of wild-type to
438 mutant, was administered by tail vein injection. For *E. coli* and *C. freundii*, enumeration of total CFU
439 per organ was performed with serial dilution plating as above (using 50 μ g/mL kanamycin for *C.*
440 *freundii*), and the calculation of competitive indices were determined as described above.

441

442 **Flow cytometry.** Lung homogenate was collected 24-hours post infection with either KPPR1 or
443 Δ *gmhB* in the bacteremic pneumonia model. Lungs were prepared for flow cytometry using single cell
444 suspensions as previously described (61). In short, lungs were resected, minced, and digested in a

445 buffer containing complete DMEM (10% FBS), 15mg/mL collagenase A (Roche, Basel, Switzerland)
446 and 2000 units of DNase for 30 minutes at 37°C. Following digestion, samples were disrupted by
447 repeated aspiration through a 10mL syringe. Leukocytes were isolated by centrifuging disrupted
448 tissue through a 20% Percoll Solution (2,000xg for 20 minutes). 1.5×10^6 leukocytes were stained
449 with diluted antibody for 30 minutes on ice before analysis on a BD Fortessa Cytometer. Staining
450 antibodies included: BV650-CD11b (clone M1/70), BV421-I-Ab (MHCII clone AF6-120.1), APC-Cy7-
451 SiglecF (clone E50-2440), purchased form BD Horizon; PE-eFluor610-CD11c (clone N418),
452 purchased from eBioscience; BV605-CD62L (clone MEL-14), BV510-Cx3CR1 (clone SA011F11),
453 AlexaFluor700-CD45 (clone I3/2.3), PE-CD64 (clone X54-5/7.1), PerCP-Cy5.5-CD24 (clone M1/69),
454 PE-Cy7-Ly6C (clone HK1.4), BV570-Ly6G (clone 1A8), APC-CD115 (clone AFS98), purchased from
455 Biolegend. Visualization of cell populations was assembled using FlowJo (Version 10.7.2).

456

457 **Cytokine ELISAs.** Mice were infected with either KPPR1 or Δ gmhB using the bacteremic pneumonia
458 model and lungs were homogenized with tissue protein extraction reagent (T-PER, Fisher).
459 Homogenate was centrifuged at 500xg for 5 minutes and the supernatant was analyzed for cytokine
460 abundance by the University of Michigan Rogel Cancer Center Immunology Core Facility using
461 enzyme-linked immunosorbent assay (ELISA).

462

463 **Serum killing and growth assays.** To measure serum susceptibility, 1×10^5 CFU of stationary phase
464 *K. pneumoniae* was added to 100% active human (Invitrogen, Waltham, MA) or C57B/L6 murine
465 serum (Invitrogen). Plates were incubated at 37°C for three hours, and killing was measured by serial
466 dilutions and quantitative culture at t=0 and t=3. To assess growth, overnight LB broth *K. pneumoniae*
467 cultures were adjusted to 1×10^7 CFU/mL in M9 salts plus 20% human serum in a 96-well dish. Samples
468 were incubated at 37°C and OD₆₀₀ readings were measured every 15 minutes using an Eon
469 microplate reader and Gen5 software (Version 2.0, BioTek, Winooski, VT).

470

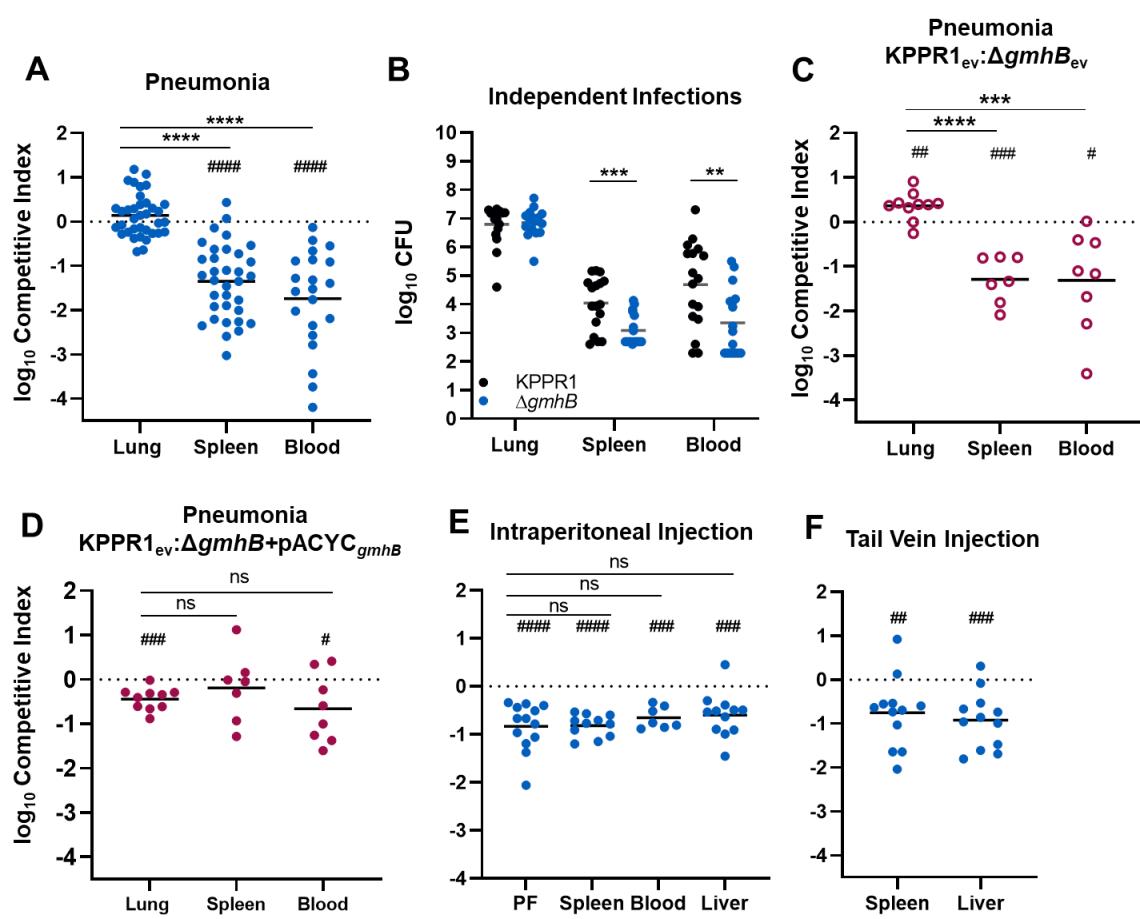
471 **Ex vivo survival assay.** Spleen, liver, and lung from uninfected mice were homogenized in 2mL
472 PBS. Overnight LB broth *K. pneumoniae* cultures were adjusted to 1×10^6 CFU/mL in PBS and mixed
473 1:1 for competitive growth. From the bacterial suspension, 10 μ L was added to 90 μ L of organ
474 homogenate for a final concentration of 1×10^5 CFU/mL and incubated for 3 hours at 37°C. Survival
475 was measured by serial dilutions and quantitative culture at t=0 and t=3.

476

477 **LPS isolation and electrophoresis.** LPS from 1×10^9 CFU of each strain of interest was isolated
478 using the Sigma Lipopolysaccharide Isolation Kit according to the manufacturer's instructions.
479 Electrophoresis was performed using a 4-20% mini-PROTEAN TGX Precast gel (Bio-Rad, Hercules,
480 CA). LPS was visualized by staining with the Pro-Q Emerald 300 Lipopolysaccharide Gel Stain Kit
481 (Molecular Probes, Eugene, OR).

482

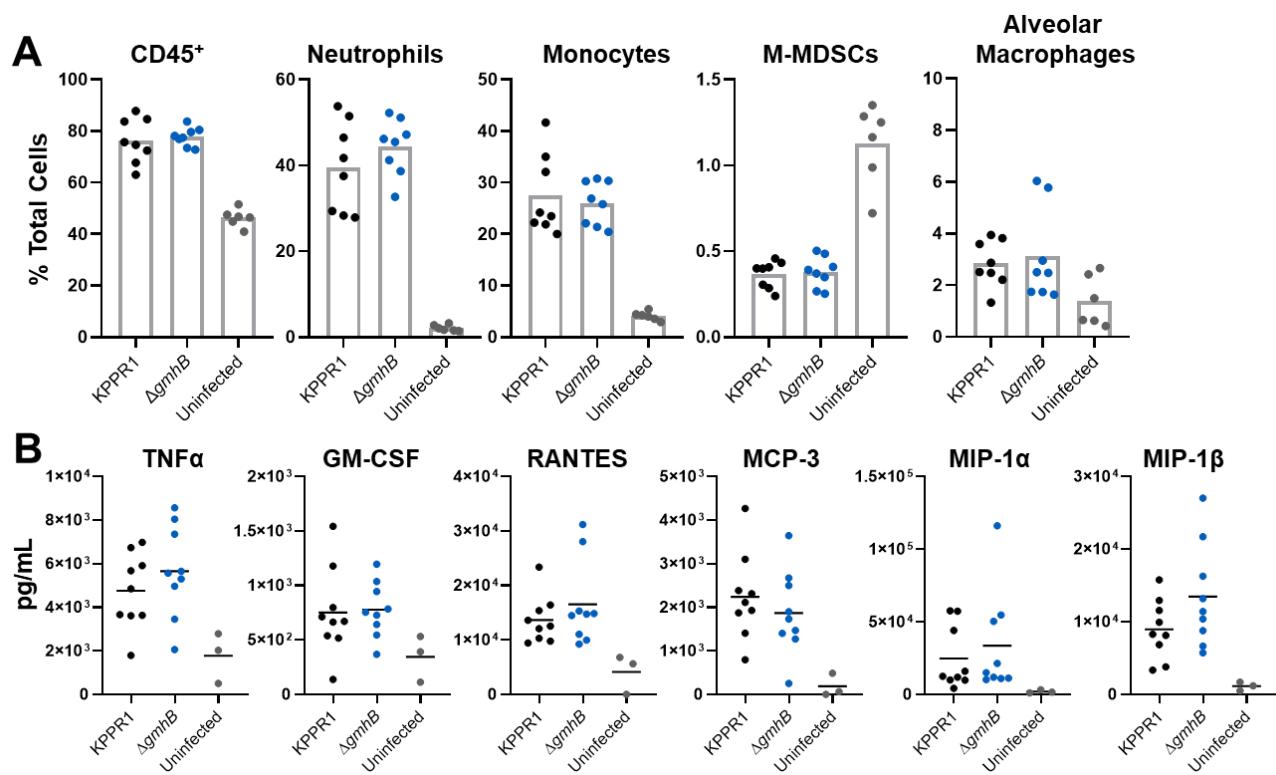
483 **Statistical analysis.** Each *in vivo* experiment was performed in at least two independent infections,
484 and each *in vitro* experiment was an independent biological replicate. For each study, statistical
485 significance was defined as a p-value <0.05 (GraphPad Software, LaJolla, CA) as determined by:
486 one-sample test to assess differences from a hypothetical competitive index of zero, unpaired t test to
487 assess differences between two groups, or ANOVA followed by Tukey's multiple comparisons post-
488 hoc test to assess differences among multiple groups.


489

490 **ACKNOWLEDGEMENTS**

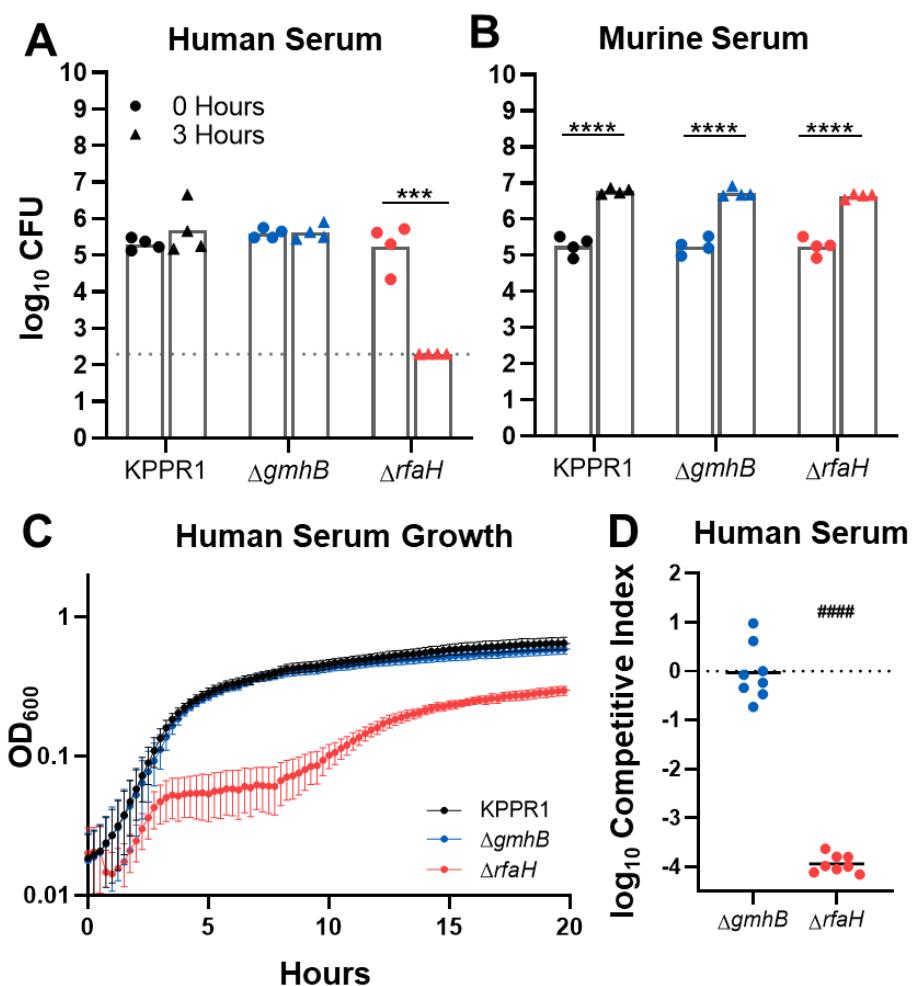
491 CLH is supported by the Lung Immunopathology Training Grant (T32HL007517); SJG is supported by
492 R35HL144481; LVU is supported by the Molecular Mechanisms in Microbial Pathogenesis Training

493 Program (32AI007528-21A1); GSB, HLT, and MAB are supported by AI134731 from the National
494 Institutes of Health.
495 The authors thank Mark T. Anderson for technical support in LPS isolation and electrophoresis. All
496 authors disclose no conflicts of interest.
497


498 **FIGURES**

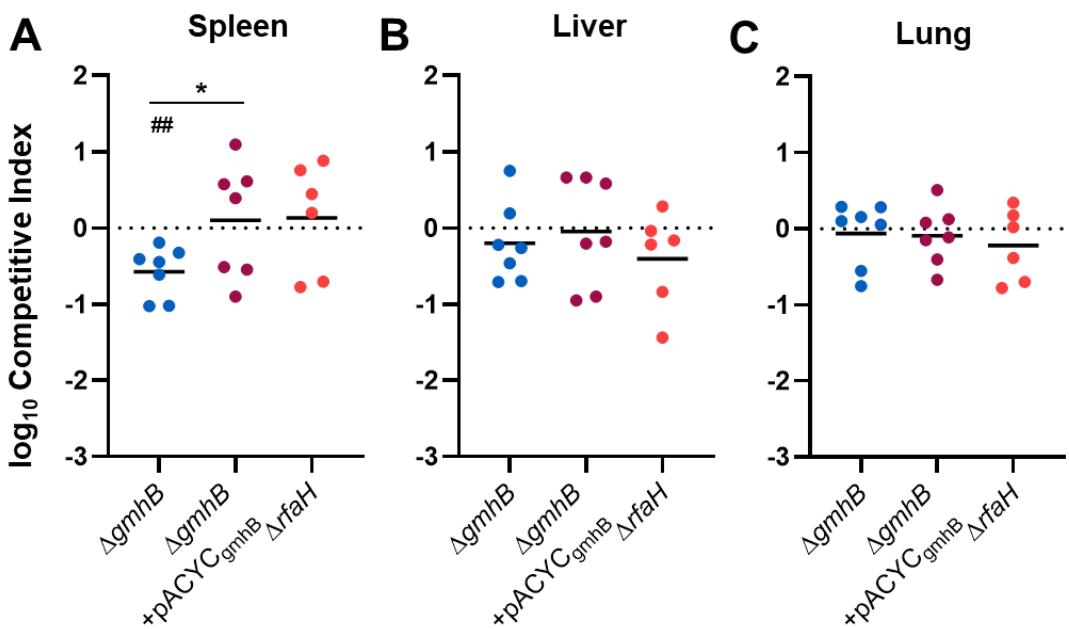
499
500 **Figure 1. GmhB enhances lung dissemination and bloodstream survival.** In a model of bacteremic
501 pneumonia, mice were retropharyngeally inoculated with 1×10^6 CFU *K. pneumoniae* (A-D). To initiate
502 dissemination from a lung-independent site, 1×10^3 CFU was administered to the intraperitoneal cavity
503 (E). For modeling direct bacteremia requiring no dissemination, 1×10^5 CFU was administered via tail
504 vein injection (F). The 1:1 inoculum consisted of KPPR1:ΔgmhB (A, E, F), KPPR1:ΔgmhB carrying
505 empty pACYC vector (ev; C), or KPPR1_{ev}:ΔgmhB with gmhB complementation provided on pACYC

506 under the control of the native *gmhB* promoter ($\Delta gmhB + pACYC_{gmhB}$; D). Independent infections used
507 either KPPR1 or $\Delta gmhB$ alone at a 1×10^6 CFU dose (B). Mean \log_{10} competitive index or CFU burden
508 at 24 hours post infection is displayed. **p<0.01, ***p<0.001, ****p<0.0001 by unpaired t test;
509 #p<0.01, ##p<0.001, ###p<0.0001 by one sample t test with a hypothetical value of zero. For each
510 group, n \geq 7 mice in at least two independent infections, PF=peritoneal fluid.


511

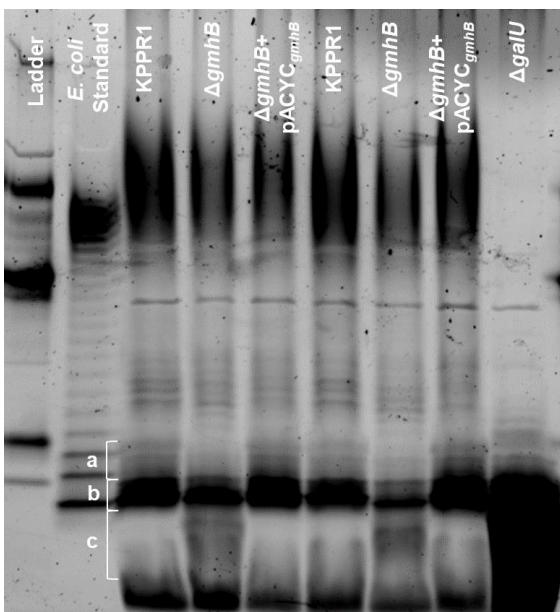
512

513 **Figure 2. GmhB does not alter normal immune responses during *K. pneumoniae* lung infection.** In a
514 model of bacteremic pneumonia, mice were retropharyngeally inoculated with 1×10^6 CFU of either
515 KPPR1 or $\Delta gmhB$. After 24 hours, lungs were prepared for flow cytometry using 1.5×10^6 cells/lung.
516 Comparisons between immune cell populations for KPPR1 or $\Delta gmhB$ infected or uninfected mice are
517 displayed for relevant subsets (A). Cytokines associated with ADP-heptose/ALPK1 signaling were
518 detected from lung homogenates using ELISA (B). For each infected group, n=8-9 mice, and for each
519 uninfected group, n=3-6. Each panel represents infections from at least two independent
520 experiments; no comparisons were significant by unpaired t test between KPPR1 and $\Delta gmhB$.


521

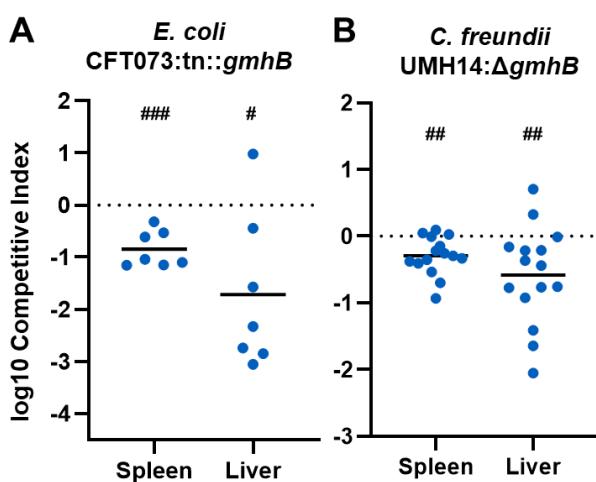
522

523 **Figure 3. Bloodstream fitness conveyed by GmhB is serum independent.** Serum susceptibility was
524 compared after 3 hours for 1×10^5 CFU KPPR1, $\Delta gmhB$, and $\Delta rfaH$ in active human (A) or murine (B)
525 serum. *K. pneumoniae* strains were grown in M9+20% active human serum and the OD_{600} was
526 measured every 15 minutes for 20 hours (C). Competition assays were performed *in vitro* using active
527 human serum (D) using a 1:1 mixture of 1×10^5 KPPR1 and either $\Delta gmhB$ or $\Delta rfaH$. Mean \log_{10}
528 competitive index compared to wild-type KPPR1 at 3 hours post infection is displayed. *** $p < 0.001$,
529 **** $p < 0.0001$ by unpaired t test with $n=4$ (A-B) and limit of detection is represented by the dotted line.
530 For D, $p < 0.0001$ by one sample t test with a hypothetical value of zero and $n=8$.


531

532

533 **Figure 4.** Bloodstream fitness conveyed by GmhB involves interactions in the spleen. Competition
534 assays were performed *ex vivo* in murine spleen (A), liver (B) or lung (C) homogenate using a 1:1
535 mixture of 1×10^5 KPPR1 and either $\Delta gmhB$, $\Delta gmhB+pACYC_{gmhB}$, or $\Delta rfaH$. Mean \log_{10} competitive
536 index compared to wild-type KPPR1 at 3 hours post inoculation is displayed. * $p<0.05$, by unpaired t
537 test comparing KPPR1 and $\Delta gmhB$; ** <0.01 , by one sample t test with a hypothetical value of zero
538 and $n=6-7$.


539

540

541 **Figure 5.** GmhB is required for normal LPS composition. LPS from 1×10^9 CFU of KPPR1, $\Delta gmhB$,
542 $\Delta gmhB + pACYC_{gmhB}$, or $\Delta galU$ was isolated and 10 μ L of yield was analyzed by polyacrylamide
543 electrophoresis. LPS core regions in interest are labeled in a, b, and c. The gel displayed is
544 representative of three independent trials, duplicate lanes represent independent LPS preparations.
545 The CandyCane glycoprotein molecular weight standard is displayed in the left lane.

546

547

548 **Figure 6.** GmhB is required for bloodstream fitness across multiple Gram-negative species. In a
549 model of bacteremia, 1×10^7 CFU of *E. coli* CFT073 (A) or 7.5×10^7 CFU *C. freundii* UMH14 (B) was
550 administered via tail vein injection. The 1:1 inoculum consisted of CFT073:tn::*gmhB* (A) or 1:2
551 inoculum of UMH14:Δ*gmhB* (B). Mean log₁₀ competitive index or CFU burden at 24 hours post
552 infection is displayed. #p<0.05, ##p<0.01, ###p<0.001 by one sample t test with a hypothetical value of
553 zero. For each group, n≥7 mice in at least two independent infections.

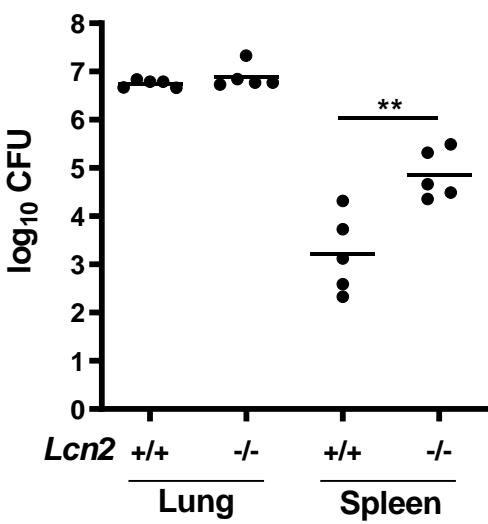
554

555

SUPPLEMENTARY TABLES

556

Supplemental Table 1. Factors identified by transposon insertion site sequencing (InSeq) for involvement in late phases of *K. pneumoniae* bacteremia.

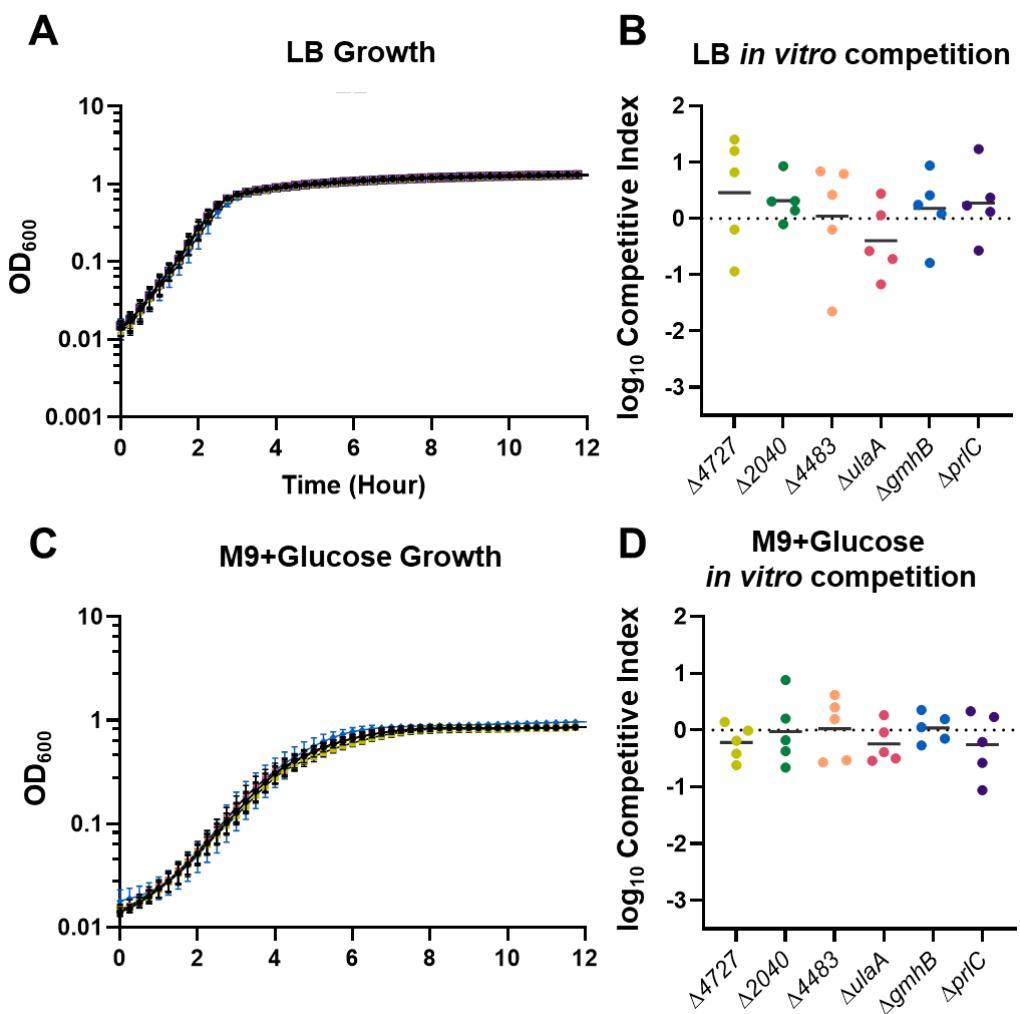

557

Locus ID (VK055_#)	Gene Name	Input: <i>Lcn2</i> ^{+/+} Lung		<i>Lcn2</i> ^{+/+} : <i>Lcn2</i> ^{-/-} Lung		<i>Lcn2</i> ^{-/-} Lung:Spleen		GenBank Definition
		\log_{10} ratio	q- value	\log_{10} ratio	q- value	\log_{10} ratio	q-value	
3924		0.978	1.000	0.876	0.221	25.500	1.84E-73	putative glycosylase
3792		1.138	0.160	0.872	0.137	25.467	1.45E-91	bacterial transferase hexapeptide family protein
4727		1.175	0.103	0.882	0.257	20.333	5.02E-70	ethanolamine ammonia-lyase, putative regulatory subunit
2040		1.054	1.000	1.083	0.883	20.000	7.62E-28	branched-chain amino acid transport system/permease component family protein
4483		1.011	1.000	1.022	1.000	16.909	3.66E-41	putative adhesin
2877	ulaA	0.979	1.000	1.043	0.858	16.556	1.52E-97	PTS ascorbate-specific subunit
2352	yaeD, gmhB	0.629	0.191	0.714	0.275	16.333	3.09E-11	D,D-heptose 1,7-bisphosphate phosphatase
3607	prlC	1.096	0.680	1.019	1.000	14.000	1.52E-32	oligopeptidase A
1436		0.752	0.053	1.051	1.000	13.800	4.01E-29	bifunctional enzyme and transcriptional regulator PutA transcriptional repressor, Proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase
1606		0.918	0.941	0.825	0.371	12.875	1.77E-21	alpha-L-glutamate ligase, RimK family protein
4287	ptsP	0.976	1.000	1.092	0.268	12.419	4.21E-107	phosphoenolpyruvate-protein phosphotransferase

785	gcvA	0.727	0.191	0.767	0.222	12.286	8.48E-18	gcvA transcriptional dual regulator
4167	ubiX	1.084	0.611	0.937	0.784	12.048	1.49E-50	3-octaprenyl-4-hydroxybenzoate decarboxylase together with UbiG; flavy prenyltransferase
2933		1.171	0.074	0.997	1.000	11.926	6.05E-64	amino acid permease family protein; efflux transporter
2659	hpaB	1.175	0.205	0.910	0.626	11.824	4.37E-40	4-hydroxyphenylacetate 3-monooxygenase, oxygenase component
2390	dgt	1.025	1.000	1.063	0.745	11.538	5.90E-59	deoxyguanosinetriphosphate triphosphohydrolase
1770	pnuC	0.933	0.806	0.907	0.573	10.750	2.02E-41	nicotinamide mononucleotide transporter PnuC family protein
1674	exuT	0.884	0.698	0.905	0.819	10.500	1.82E-20	exuT hexuronate MFS transporter

558

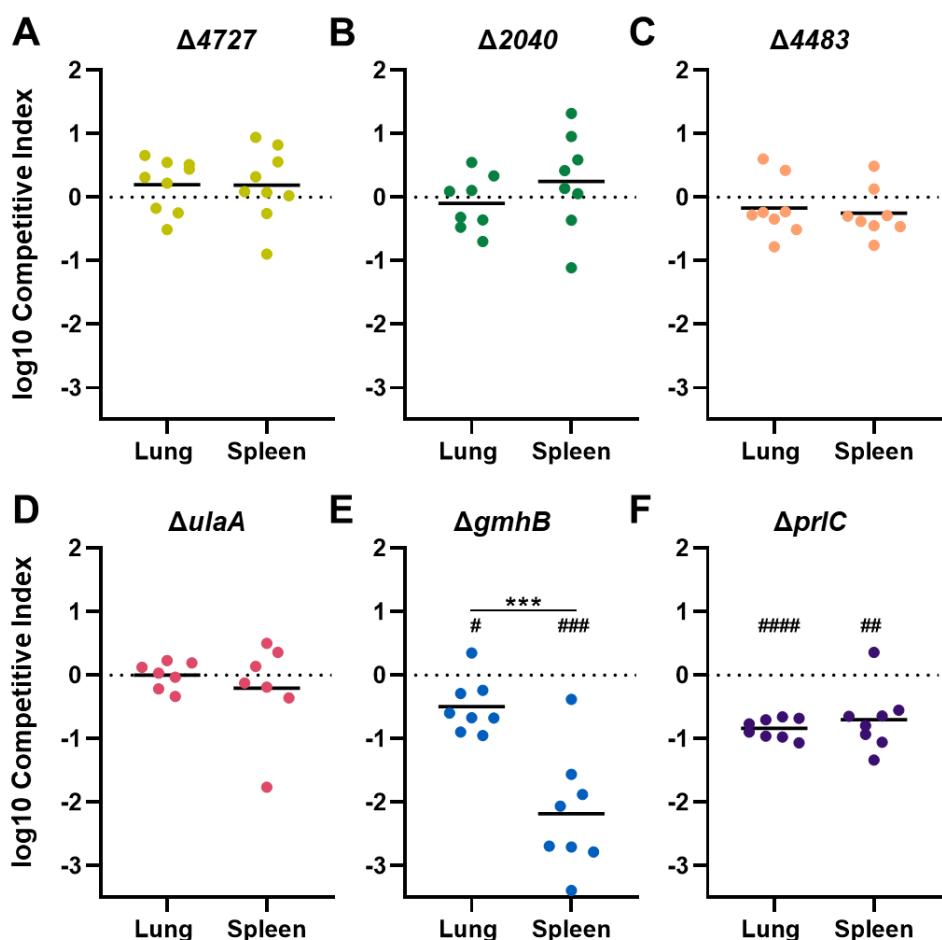
559 **SUPPLEMENTARY FIGURES**



560

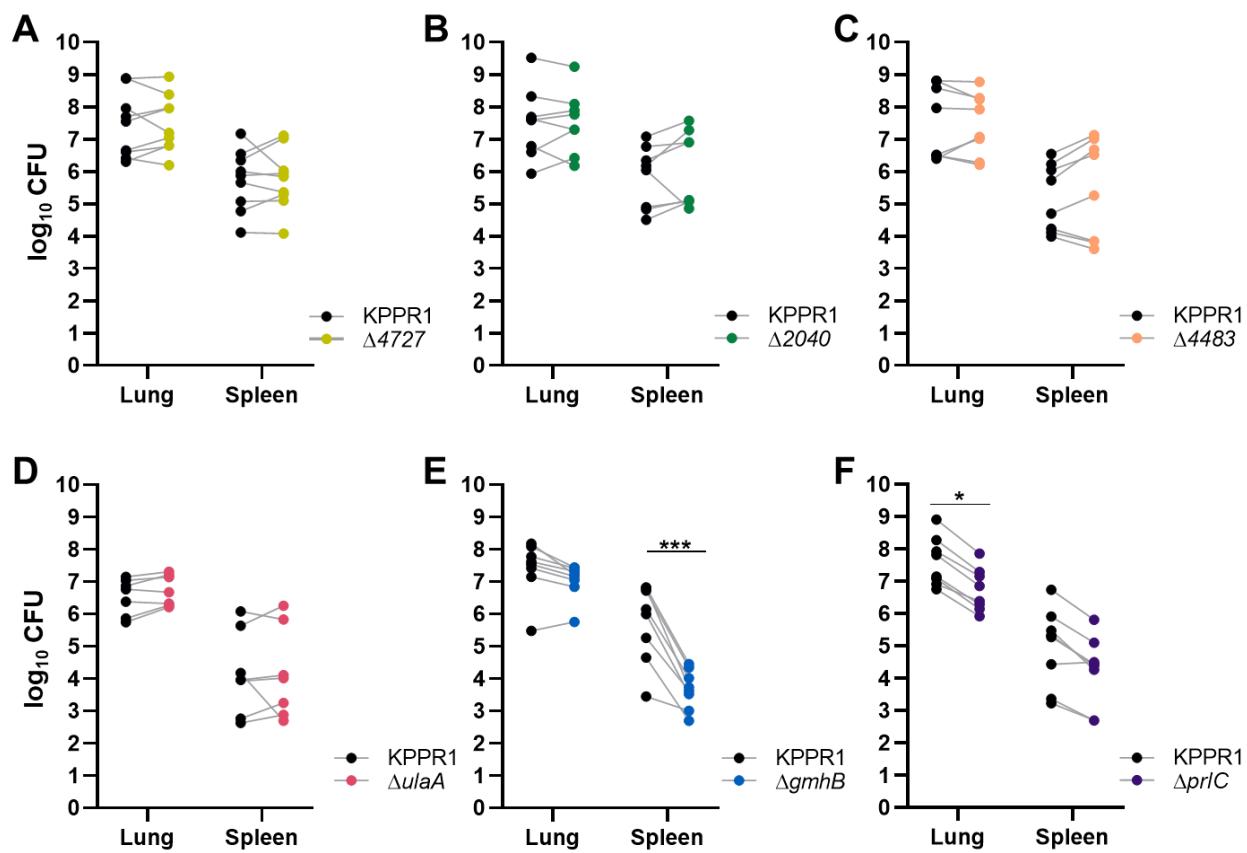
561 **Supplementary Figure 1: Lipocalin 2 restricts *K. pneumoniae* lung dissemination.** To model
 562 pneumonia, 1×10^6 CFU of a library of *K. pneumoniae* transposon mutants was administered

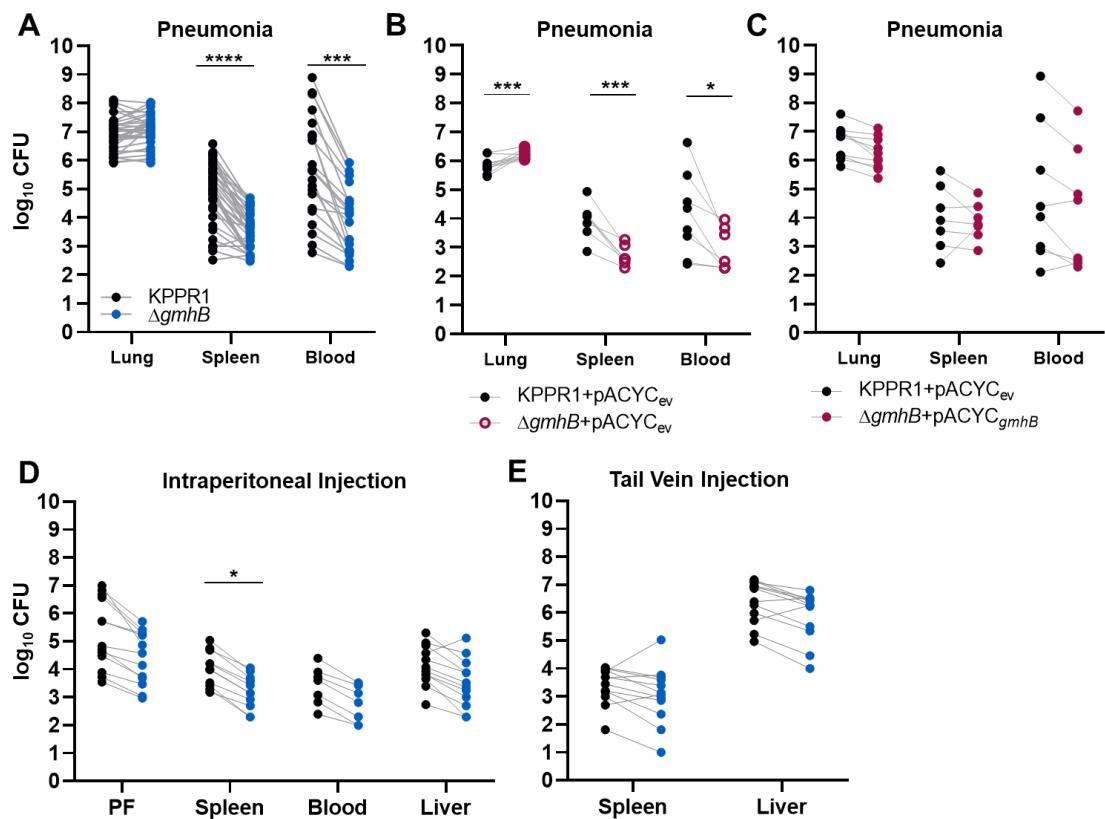
563 retropharyngeally to *Lcn2*^{+/+} or *Lcn2*^{-/-} mice as previously reported (11). Mean \log_{10} CFU is displayed
564 for each organ at 24 hours post infection. **p<0.001 by unpaired t test. For each group, n=5 mice.


565

566

567 **Supplementary Figure 2.** GmhB and other factors of interest are not required for *K. pneumoniae*
568 replication *in vitro*. KPPR1 or isogenic knockouts were inoculated to a starting concentration of 1×10^7
569 CFU/mL and monitored by optical density (OD₆₀₀) in LB (A) and M9 with 0.9% glucose (M9+Glucose;
570 C). KPPR1 and each mutant were combined 1:1 at a concentration of 1×10^6 CFU/mL and incubated
571 in LB (B) or M9+Glucose (D) and mean \log_{10} competitive index compared to wild-type at 24 hours
572 post inoculation is displayed (n=5). One-way ANOVA indicated no significant difference between
573 strains for area under the curve after growth and one-sample t tests with a hypothetical value of zero
574 showed no defect in competitive indices; for A and C, lines colors correspond to strains in B and D.

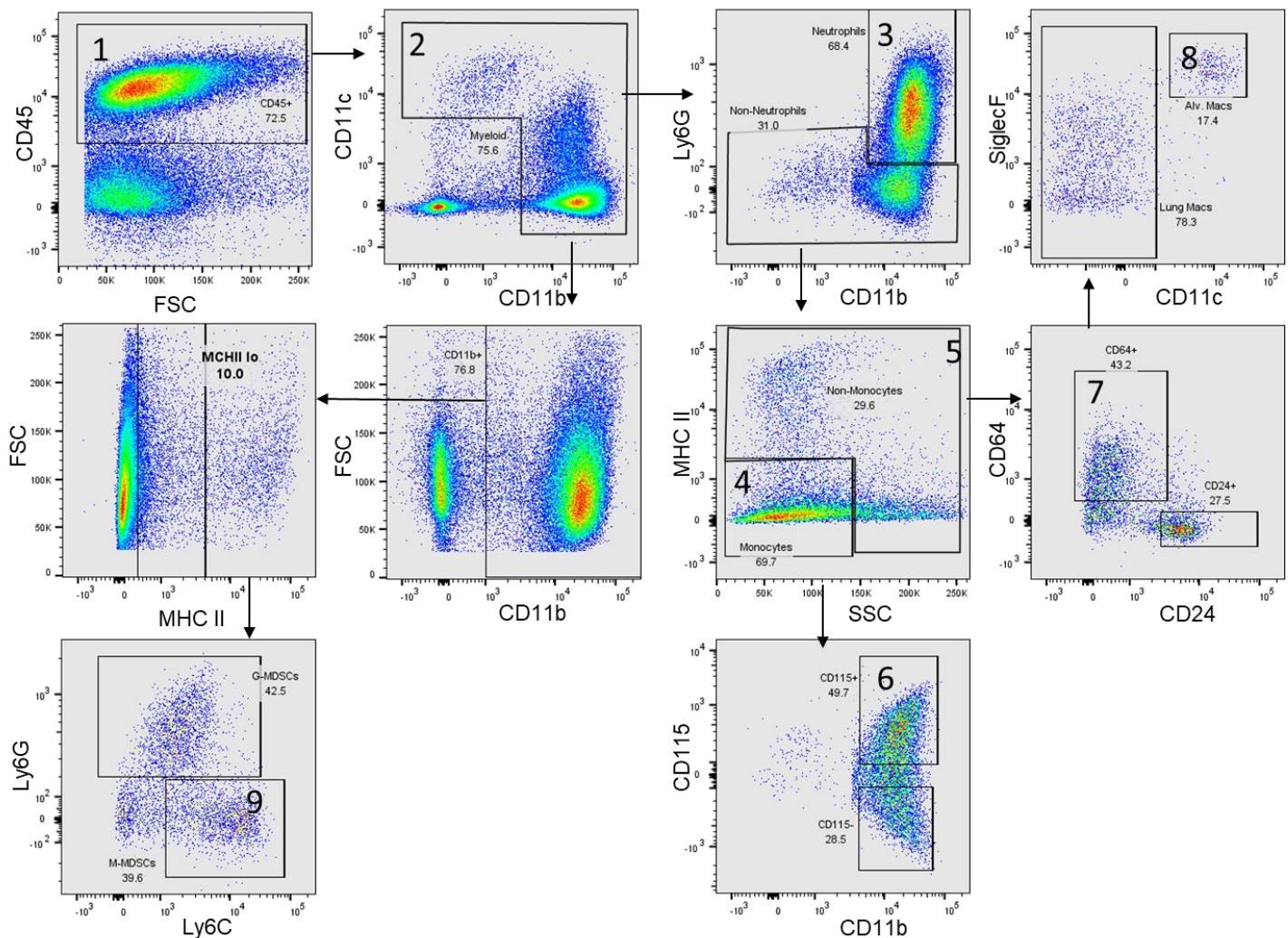

575



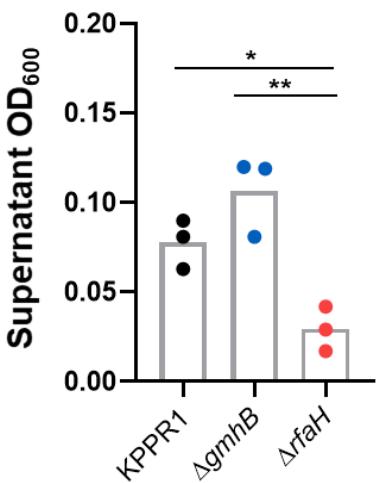
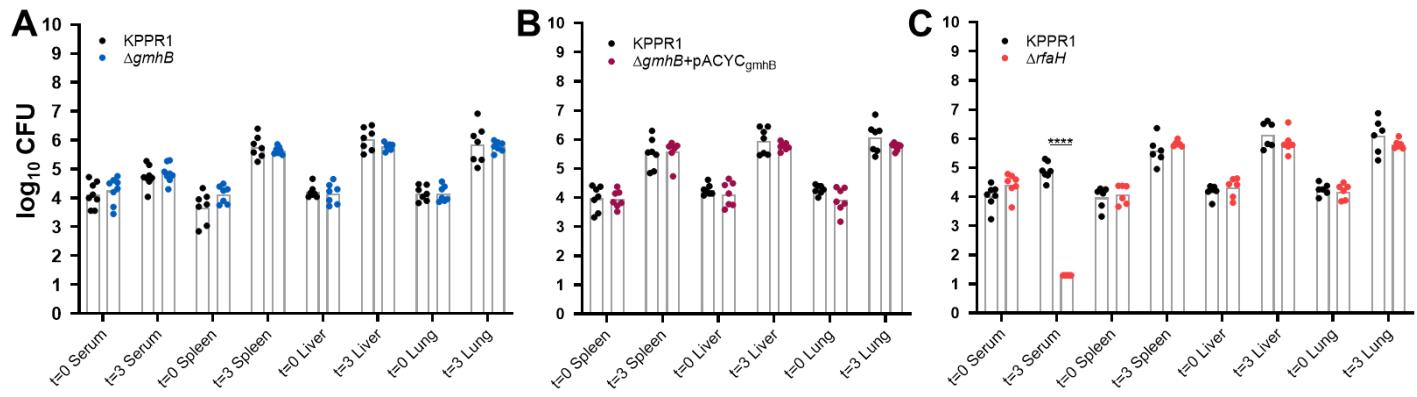
576

577 **Supplementary Figure 3.** InSeq analysis reveals *K. pneumoniae* GmhB as enhancing late
578 bacteremia fitness. Isogenic knockouts were constructed to validate the InSeq selection approach
579 identifying dissemination and bloodstream survival factors (A-F). Each knockout was mixed 1:1 with
580 KPPR1 for a final inoculum of 1×10^6 CFU and administered in the pharynx of *Lcn2*^{-/-} mice. Mean \log_{10}
581 competitive index compared to wild-type at 24 hours post infection is displayed. ***p<0.001 by
582 unpaired t test; #p<0.05, ##p<0.01, ###p<0.001, #####p<0.0001 by one sample t test with a hypothetical
583 value of zero. All statistical tests were performed on log-transformed data. For each group, n≥7 mice
584 across at least two independent infections.

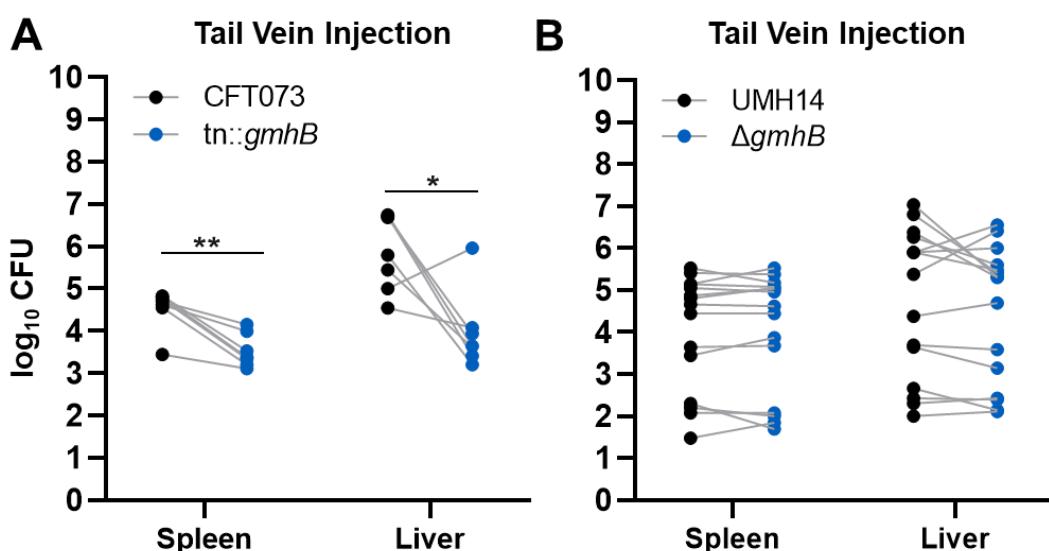
585



593



594 **Supplementary Figure 5.** Bacterial burden summary for models of murine bacteremia. In a model of
595 bacteremic pneumonia, mice were retropharyngeally inoculated with 1×10^6 CFU *K. pneumoniae* (A-
596 C). To initiate dissemination from a lung-independent site, 1×10^3 CFU was administered to the
597 intraperitoneal cavity (D). For modeling direct bacteremia requiring no dissemination, 1×10^5 CFU was
598 administered via tail vein injection (E). The 1:1 inoculum consisted of KPPR1:ΔgmhB (A, D, E),
599 KPPR1:ΔgmhB carrying empty pACYC vector (ev; B), or KPPR1_{ev}:ΔgmhB with *gmhB*
600 complementation provided on pACYC under control of the native *gmhB* promoter
601 (ΔgmhB+pACYC_{gmhB}; C). Log₁₀ CFU burden for each site at 24 hours post infection is displayed,
602 corresponding to competitive indices in Figure 1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by
603 unpaired t test. For each group, n≥7 mice in at least two independent infections.

604



606 **Supplemental Figure 6. Gating Scheme for flow cytometry experiments.** Single cell suspensions
607 were generated from collagenase digested lungs as described. Following this, cell viability was
608 assessed via trypan blue exclusion and was >90% for all samples. Cells were subsequently gated as
609 follows: CD45⁺ (Gate 1), myeloid lineage cells: CD11b/c⁺ (Gate 2), neutrophils: Ly6G⁺ (Gate 3),
610 putative monocytes: MHCII^{lo}, SSC^{lo} (Gate 4) or macrophage and DCs: MHCII^{+/−} SSC^{hi} (Gate 5),
611 CD115⁺ Monocytes (Gate 6), macrophages: CD64⁺, CD24[−] (Gate 7), alveolar macrophages: SiglecF⁺,
612 CD11c⁺ (Gate 8). M-MDSCs: CD11b⁺, MHC^{lo}, Ly6G[−], Ly6C⁺ (Gate 9).

613

627

628

629 **Supplementary Figure 9.** Bacterial burden summary for direct bacteremia with *E. coli* and *C.*
630 *freundii*. In a model of direct bacteremia, 1x10⁷ CFU of *E. coli* CFT073 mixed 1:1 with
631 CFT073:tn::gmhB (A) or *C. freundii* UMH14 mixed 1:2 with UMH14:ΔgmhB (B) was administered via
632 tail vein injection. Log₁₀ CFU burden for each site at 24 hours post infection is displayed,
633 corresponding to competitive indices in Figure 6. *p<0.05, **p<0.01 by unpaired t test. For each
634 group, n≥7 mice in at least two independent infections.

635

636 REFERENCES

1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). *JAMA* 315:801-10.
2. Diekema DJ, Hsueh PR, Mendes RE, Pfaffer MA, Rolston KV, Sader HS, Jones RN. 2019. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. *Antimicrob Agents Chemother* 63:e00355-19.

643

644 3. Holmes CL, Anderson MT, Mobley HLT, Bachman MA. 2021. Pathogenesis of Gram-Negative
645 Bacteremia. *Clin Microbiol Rev* 34.

646 4. Martin RM, Cao J, Brisse S, Passet V, Wu W, Zhao L, Malani PN, Rao K, Bachman MA. 2016.
647 Molecular Epidemiology of Colonizing and Infecting Isolates of *Klebsiella pneumoniae*.
648 *mSphere* 1:e00261-16.

649 5. Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, Pratt NF, Garlick JS,
650 Watson KM, Pilcher DV, McGloughlin SA, Spelman DW, Jenney AWJ, Holt KE. 2017.
651 Gastrointestinal Carriage Is a Major Reservoir of *Klebsiella pneumoniae* Infection in Intensive
652 Care Patients. *Clin Infect Dis* 65:208-215.

653 6. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney
654 M, McAllister-Hollob L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK, Team EIPH-
655 AlaAUPS. 2014. Multistate point-prevalence survey of health care-associated infections. *N
656 Engl J Med* 370:1198-208.

657 7. CDC. 2013. Antibiotic Resistance Threats in the United State, 2013. U.S. Department of
658 Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA.

659 8. CDC. 2019. Antibiotic Resistance Threats in the United States, 2019. U.S. Department of
660 Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA.

661 9. Ahn D, Bhushan G, McConville TH, Annavajhala MK, Soni RK, Wong Fok Lung T, Hofstaedter
662 CE, Shah SS, Chong AM, Castano VG, Ernst RK, Uhlemann AC, Prince A. 2021. An acquired
663 acyltransferase promotes *Klebsiella pneumoniae* ST258 respiratory infection. *Cell Rep*
664 35:109196.

665 10. Vornhagen J, Sun Y, Breen P, Forsyth V, Zhao L, Mobley HLT, Bachman MA. 2019. The
666 *Klebsiella pneumoniae* citrate synthase gene, *gltA*, influences site specific fitness during
667 infection. *PLoS Pathog* 15:e1008010.

668 11. Bachman MA, Breen P, Deornellas V, Mu Q, Zhao L, Wu W, Cavalcoli JD, Mobley HL. 2015.
669 Genome-Wide Identification of *Klebsiella pneumoniae* Fitness Genes during Lung Infection.
670 mBio 6:e00775.

671 12. Holden VL, Breen P, Houle S, Dozois CM, Bachman MA. 2016. *Klebsiella pneumoniae*
672 Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1 α Stabilization during
673 Pneumonia. mBio 7:e01397-16.

674 13. Lawlor MS, Hsu J, Rick PD, Miller VL. 2005. Identification of *Klebsiella pneumoniae* virulence
675 determinants using an intranasal infection model. Mol Microbiol 58:1054-73.

676 14. Short FL, Di Sario G, Reichmann NT, Kleanthous C, Parkhill J, Taylor PW. 2020. Genomic
677 profiling reveals distinct routes to complement resistance in *Klebsiella pneumoniae*. Infect
678 Immun 88:e00043-20.

679 15. Weber BS, De Jong AM, Guo ABY, Dharavath S, French S, Fiebig-Comyn AA, Coombes BK,
680 Magolan J, Brown ED. 2020. Genetic and Chemical Screening in Human Blood Serum
681 Reveals Unique Antibacterial Targets and Compounds against *Klebsiella pneumoniae*. Cell
682 Rep 32:107927.

683 16. Roantree RJ, Kuo TT, MacPhee DG. 1977. The effect of defined lipopolysaccharide core
684 defects upon antibiotic resistances of *Salmonella typhimurium*. J Gen Microbiol 103:223-34.

685 17. Sirisena DM, Brozek KA, MacLachlan PR, Sanderson KE, Raetz CR. 1992. The *rfaC* gene of
686 *Salmonella typhimurium*. Cloning, sequencing, and enzymatic function in heptose transfer to
687 lipopolysaccharide. J Biol Chem 267:18874-84.

688 18. Sirisena DM, MacLachlan PR, Liu SL, Hessel A, Sanderson KE. 1994. Molecular analysis of
689 the *rfaD* gene, for heptose synthesis, and the *rfaF* gene, for heptose transfer, in
690 lipopolysaccharide synthesis in *Salmonella typhimurium*. J Bacteriol 176:2379-85.

691 19. Bachman MA, Oyler JE, Burns SH, Caza M, Lépine F, Dozois CM, Weiser JN. 2011. *Klebsiella*
692 *pneumoniae* yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2.
693 Infect Immun 79:3309-16.

694 20. Broberg CA, Wu W, Cavalcoli JD, Miller VL, Bachman MA. 2014. Complete Genome
695 Sequence of *Klebsiella pneumoniae* Strain ATCC 43816 KPPR1, a Rifampin-Resistant Mutant
696 Commonly Used in Animal, Genetic, and Molecular Biology Studies. *Genome Announc* 2.

697 21. Zhao L, Anderson MT, Wu W, T Mobley HL, Bachman MA. 2017. TnseqDiff: identification of
698 conditionally essential genes in transposon sequencing studies. *BMC Bioinformatics* 18:326.

699 22. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in *Escherichia*
700 *coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* 97:6640-5.

701 23. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN. 2012. Interaction of lipocalin 2,
702 transferrin, and siderophores determines the replicative niche of *Klebsiella pneumoniae* during
703 pneumonia. *mBio* 3.

704 24. García-Weber D, Arriumerlou C. 2021. ADP-heptose: a bacterial PAMP detected by the host
705 sensor ALPK1. *Cell Mol Life Sci* 78:17-29.

706 25. Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, Valvano MA,
707 Messner P. 2002. Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in
708 *Escherichia coli*. *J Bacteriol* 184:363-9.

709 26. Taylor PL, Sugiman-Marangos S, Zhang K, Valvano MA, Wright GD, Junop MS. 2010.
710 Structural and kinetic characterization of the LPS biosynthetic enzyme D-alpha,beta-D-
711 heptose-1,7-bisphosphate phosphatase (GmhB) from *Escherichia coli*. *Biochemistry* 49:1033-
712 41.

713 27. Malott RJ, Keller BO, Gaudet RG, McCaw SE, Lai CC, Dobson-Belaire WN, Hobbs JL, St
714 Michael F, Cox AD, Moraes TF, Gray-Owen SD. 2013. *Neisseria gonorrhoeae*-derived heptose
715 elicits an innate immune response and drives HIV-1 expression. *Proc Natl Acad Sci U S A*
716 110:10234-9.

717 28. Milivojevic M, Dangeard AS, Kasper CA, Tschon T, Emmenlauer M, Pique C, Schnupf P,
718 Guignot J, Arriumerlou C. 2017. ALPK1 controls TIFA/TRAF6-dependent innate immunity
719 against heptose-1,7-bisphosphate of gram-negative bacteria. *PLoS Pathog* 13:e1006224.

720 29. García-Weber D, Dangeard AS, Cornil J, Thai L, Rytter H, Zamyatina A, Mulard LA,
721 Arrieumerlou C. 2018. ADP-heptose is a newly identified pathogen-associated molecular
722 pattern of *Shigella flexerni*. EMBO Rep 19.

723 30. Pfannkuch L, Hurwitz R, Traulsen J, Sigulla J, Poeschke M, Matzner L, Kosma P, Schmid M,
724 Meyer TF. 2019. ADP heptose, a novel pathogen-associated molecular pattern identified in
725 *Helicobacter pylori*. FASEB J 33:9087-9099.

726 31. Zhou P, She Y, Dong N, Li P, He H, Borio A, Wu Q, Lu S, Ding X, Cao Y, Xu Y, Gao W, Dong
727 M, Ding J, Wang DC, Zamyatina A, Shao F. 2018. Alpha-kinase 1 is a cytosolic innate immune
728 receptor for bacterial ADP-heptose. Nature 561:122-126.

729 32. Gonzalez-Ferrer S, Peñaloza HF, Budnick JA, Bain WG, Nordstrom HR, Lee JS, Van Tyne D.
730 2021. Finding Order in the Chaos: Outstanding Questions in *Klebsiella pneumoniae*
731 Pathogenesis. Infect Immun 89.

732 33. Xiong H, Carter RA, Leiner IM, Tang YW, Chen L, Kreiswirth BN, Pamer EG. 2015. Distinct
733 Contributions of Neutrophils and CCR2+ Monocytes to Pulmonary Clearance of Different
734 *Klebsiella pneumoniae* Strains. Infect Immun 83:3418-27.

735 34. Chen L, Zhang Z, Barletta KE, Burdick MD, Mehrad B. 2013. Heterogeneity of lung
736 mononuclear phagocytes during pneumonia: contribution of chemokine receptors. Am J
737 Physiol Lung Cell Mol Physiol 305:L702-11.

738 35. Peñaloza HF, Noguera LP, Ahn D, Vallejos OP, Castellanos RM, Vazquez Y, Salazar-
739 Echegarai FJ, González L, Suazo I, Pardo-Roa C, Salazar GA, Prince A, Bueno SM. 2019.
740 Interleukin-10 Produced by Myeloid-Derived Suppressor Cells Provides Protection to
741 Carbapenem-Resistant *Klebsiella pneumoniae* Sequence Type 258 by Enhancing Its
742 Clearance in the Airways. Infect Immun 87.

743 36. Ahn D, Peñaloza H, Wang Z, Wickersham M, Parker D, Patel P, Koller A, Chen EI, Bueno SM,
744 Uhlemann AC, Prince A. 2016. Acquired resistance to innate immune clearance promotes
745 *Klebsiella pneumoniae* ST258 pulmonary infection. JCI Insight 1:e89704.

746 37. Xu D, Zhang W, Zhang B, Liao C, Shao Y. 2016. Characterization of a biofilm-forming *Shigella*
747 *flexneri* phenotype due to deficiency in Hep biosynthesis. *PeerJ* 4:e2178.

748 38. Siggins MK, Cunningham AF, Marshall JL, Chamberlain JL, Henderson IR, MacLennan CA.
749 2011. Absent bactericidal activity of mouse serum against invasive African nontyphoidal
750 *Salmonella* results from impaired complement function but not a lack of antibody. *J Immunol*
751 186:2365-71.

752 39. Mike LA, Stark AJ, Forsyth VS, Vornhagen J, Smith SN, Bachman MA, Mobley HLT. 2021. A
753 systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes
754 that impact *Klebsiella pneumoniae* fitness. *PLoS Pathog* 17:e1009376.

755 40. Chang HY, Lee JH, Deng WL, Fu TF, Peng HL. 1996. Virulence and outer membrane
756 properties of a *galU* mutant of *Klebsiella pneumoniae* CG43. *Microb Pathog* 20:255-61.

757 41. Chiu SF, Teng KW, Wang PC, Chung HY, Wang CJ, Cheng HC, Kao MC. 2021. *Helicobacter*
758 *pylori* GmhB enzyme involved in ADP-heptose biosynthesis pathway is essential for
759 lipopolysaccharide biosynthesis and bacterial virulence. *Virulence* 12:1610-1628.

760 42. Shea AE, Marzoa J, Himpel SD, Smith SN, Zhao L, Tran L, Mobley HLT. 2020. *Escherichia*
761 *coli* CFT073 Fitness Factors during Urinary Tract Infection: Identification Using an Ordered
762 Transposon Library. *Appl Environ Microbiol* 86.

763 43. Anderson MT, Mitchell LA, Zhao L, Mobley HLT. 2017. Capsule Production and Glucose
764 Metabolism Dictate Fitness during *Serratia marcescens* Bacteremia. *mBio* 8:e00740-17.

765 44. Garrity-Ryan L, Kazmierczak B, Kowal R, Comolli J, Hauser A, Engel JN. 2000. The arginine
766 finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of
767 internalization of *Pseudomonas aeruginosa* by epithelial cells and macrophages. *Infect Immun*
768 68:7100-13.

769 45. Shaver CM, Hauser AR. 2004. Relative contributions of *Pseudomonas aeruginosa* ExoU,
770 ExoS, and ExoT to virulence in the lung. *Infect Immun* 72:6969-77.

771 46. Rangel SM, Diaz MH, Knoten CA, Zhang A, Hauser AR. 2015. The Role of ExoS in
772 Dissemination of *Pseudomonas aeruginosa* during Pneumonia. PLoS Pathog 11:e1004945.

773 47. Paczosa MK, Mecsas J. 2016. *Klebsiella pneumoniae*: Going on the Offense with a Strong
774 Defense. Microbiol Mol Biol Rev 80:629-61.

775 48. Gaudet RG, Sintsova A, Buckwalter CM, Leung N, Cochrane A, Li J, Cox AD, Moffat J, Gray-
776 Owen SD. 2015. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent
777 innate immunity. Science 348:1251-5.

778 49. Gall A, Gaudet RG, Gray-Owen SD, Salama NR. 2017. TIFA Signaling in Gastric Epithelial
779 Cells Initiates the *cag* Type 4 Secretion System-Dependent Innate Immune Response to
780 *Helicobacter pylori* Infection. mBio 8.

781 50. Cortés G, Borrell N, de Astorza B, Gómez C, Sauleda J, Albertí S. 2002. Molecular analysis of
782 the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the
783 virulence of *Klebsiella pneumoniae* in a murine model of pneumonia. Infect Immun 70:2583-90.

784 51. Anderson MT, Brown AN, Pirani A, Smith SN, Photenhauer AL, Sun Y, Snitkin ES, Bachman
785 MA, Mobley HLT. 2021. Replication Dynamics for Six Gram-Negative Bacterial Species during
786 Bloodstream Infection. mBio 12:e0111421.

787 52. Abel S, Abel zur Wiesch P, Davis BM, Waldor MK. 2015. Analysis of Bottlenecks in
788 Experimental Models of Infection. PLoS Pathog 11:e1004823.

789 53. Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijken T. 2020. A decade of
790 advances in transposon-insertion sequencing. Nat Rev Genet 21:526-540.

791 54. Coleman SR, Pletzer D, Hancock REW. 2021. Contribution of Swarming Motility to
792 Dissemination in a *Pseudomonas aeruginosa* Murine Skin Abscess Infection Model. J Infect
793 Dis 224:726-733.

794 55. Harwani D, Zangoui P, Mahadevan S. 2012. The β -glucoside (bgl) operon of *Escherichia coli* is
795 involved in the regulation of oppA, encoding an oligopeptide transporter. J Bacteriol 194:90-9.

796 56. Anderson MT, Mitchell LA, Zhao L, Mobley HLT. 2018. *Citrobacter freundii* fitness during
797 bloodstream infection. *Sci Rep* 8:11792.

798 57. Goodman AL, Wu M, Gordon JI. 2011. Identifying microbial fitness determinants by insertion
799 sequencing using genome-wide transposon mutant libraries. *Nat Protoc* 6:1969-80.

800 58. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, Jones BD,
801 Warren JW. 1990. Pyelonephritogenic *Escherichia coli* and killing of cultured human renal
802 proximal tubular epithelial cells: role of hemolysin in some strains. *Infect Immun* 58:1281-9.

803 59. (ed). 2011. Guide for the care and use of laboratory animals. National Academies Press,
804 Washington, D.C. Accessed

805 60. Smith SN, Hagan EC, Lane MC, Mobley HL. 2010. Dissemination and systemic colonization of
806 uropathogenic *Escherichia coli* in a murine model of bacteremia. *mBio* 1:e00262-10.

807 61. Gurczynski SJ, Pereira NL, Hrycaj SM, Wilke C, Zemans RL, Moore BB. 2021. Stem cell
808 transplantation uncovers TDO-AHR regulation of lung dendritic cells in herpesvirus-induced
809 pathology. *JCI Insight* 6.

810