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The ADP-heptose biosynthesis enzyme GmhB is a conserved Gram-negative bacteremia
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ABSTRACT

Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of
morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site
infection, dissemination to the blood, and bloodstream survival. Since K. pneumoniae is a leading
cause of healthcare-associated pneumonia, the lung is a common primary infection site leading to
secondary bacteremia. K. pneumoniae factors essential for lung fithess have been characterized, but
those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes
associated with dissemination and bloodstream survival, we performed insertion site sequencing
(InSeq) using a pool of >25,000 transposon mutants in a murine model of bacteremic pneumonia.
This analysis revealed the gene gmhB as important for either dissemination from the lung or
bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of
ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an
isogenic knockout strain (AgmhB) and complemented mutant were generated. During pneumonia,
GmhB did not contribute to lung fithess and did not alter normal immune responses. However, GmhB

enhanced bloodstream survival in a manner independent of serum susceptibility, specifically
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conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB
was also required by K. pneumoniae, E. coli and Citrobacter freundii for optimal bloodstream survival.
Together, this study identifies GmhB as a conserved Gram-negative bacteremia fithness factor that

acts through LPS-mediated mechanisms to enhance bloodstream survival.

IMPORTANCE

Klebsiella pneumoniae frequently causes healthcare-associated infections including pneumonia and
bacteremia. This is particularly concerning due to emerging antimicrobial resistance and the
propensity for bacteremia to initiate sepsis, which has high mortality and is the most expensive
hospital-treated condition. Defining mechanisms of bloodstream survival is critical to understanding
the pathology of bacteremia and identifying novel targets for future therapies. In this study, we
identified the K. pneumoniae enzyme GmhB as a bloodstream-specific fithess factor that enables the
bacteria to survive in the spleen but is dispensable in the lung. Furthermore, GmhB is also needed by
the related bacterial pathogens Escherichia coli and Citrobacter freundii to cause bacteremia.
Conserved bacteremia fitness factors such a GmhB could be the basis for future therapeutics that

would alleviate significant disease caused by from multiple diverse pathogens.

INTRODUCTION

Gram-negative bacteremia is a significant cause of global morbidity and mortality largely due to
progression to sepsis, defined as life threatening organ dysfunction resulting from a dysregulated host
response to infection (1). Gram-negative pathogens underlie 43% of clinical bloodstream infections
with a small number of species, including Escherichia coli, Klebsiella pneumoniae, Citrobacter
freundii, and Serratia marcescens, contributing to the majority of cases (2, 3). Of these species, K.

pneumoniae is the second most common species causing Gram-negative bacteremia and the third
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most prevalent cause of all bloodstream infections (2). Although K. pneumoniae can be a commensal
species (4, 5), it is also an opportunistic pathogen. This is especially relevant in healthcare-
associated infections where K. pneumoniae is a leading source of disease (6). The Centers for
Disease Control and Prevention have repeatedly classified carbapenem-resistant Enterobacterales,
including K. pneumoniae, as an urgent public health threat due to antibiotic resistance (7, 8).
Bacteremia from antibiotic-resistant K. pneumoniae can be extremely difficult to treat and is

associated with a high mortality rate.

The pathogenesis of Gram-negative bacteremia involves three main phases: primary site infection,
dissemination, and bloodstream survival (3). First, bacteria must invade primary sites of infection or
colonization and evade local host responses. Second, pathogens disseminate across host barriers to
gain bloodstream access, a process that varies based on the initial site. Navigation across barriers
may include strategies to invade or disrupt site-specific epithelial cells, endothelial cells, and cellular
junctions. Third, bacteria must exercise metabolic flexibility and resist host defenses in the
bloodstream to adapt in a new environment. In circulation, bacteria passage through blood filtering
organs, like the spleen and liver, which may act as additional sites of infection from which
dissemination can occur. Defects at initial sites do not always predict fithess at secondary sites (9,
10), and apparent lack of fithess at secondary sites may be confounded by defects at the initial site.
Therefore, observed overlap between primary site and bloodstream fitness genes highlight the
necessity to probe phases of bacteremia separately to correctly define stages relevant to
pathogenesis (3). By carefully defining the bacterial factors required for each phase of bacteremia, we
may identify therapeutic targets for interventions that prevent progression to bacteremia or treat it

more effectively once it has occurred.
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K. pneumoniae bacteremia is often secondary to pneumonia (6) and fitness factors for primary site
infection in the lung have been extensively investigated. Capsular polysaccharide, siderophores, and
synthesis of branched chain amino acids (11-13) are required for lung fitness. Additionally, the citrate
(Si)-synthase GItA, and the acetyltransferase Atf3, are required (9, 10), highlighting the broad range
of factors contributing to lung initial site fitness. Some fitness factors in the lung are also likely to be
important in the bloodstream. Capsular polysaccharide is required to resist human serum
complement, and siderophores are important for both dissemination from the lung and growth in
human serum (12). However, factors that act specifically at the stages of dissemination and
bloodstream survival are unclear. Genes necessary for serum resistance have been described in vitro
and include cell wall integrity proteins, and multiple metabolic pathways (14, 15), but factors that

resist host responses during bacteremia and allow growth within blood-filtering organs is unknown.

In the bloodstream, cell surface structures can defend bacteria from environmental threats like
formation of the membrane attack complex or antimicrobial peptides. Of these, lipopolysaccharide
(LPS) is a defining cellular envelope structure of Gram-negative species that governs many
environmental interactions and aids in resistance to stress. Major components of the LPS molecule
include O-antigen, outer core, inner core, and lipid A. LPS alterations can increase vulnerability to
environmental threats (16), and inner core mutations can enhance susceptibility to hydrophobic
agents (16-18). Since LPS can also interact with host Toll-like receptor 4 to initiate innate immune
responses, it is likely that K. pneumoniae LPS plays a complex role in host-pathogen interactions

during bacteremia.

To identify factors required for lung dissemination and bloodstream survival, we used transposon
insertion site sequencing (InSeq) in a murine model of bacteremic pneumonia. We identified and

validated the LPS core biosynthesis gene gmhB as involved in dissemination and bloodstream
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survival, the two late phases of bacteremia, but dispensable for initial site fitness in the lung. We also
showed that GmhB is a conserved bloodstream survival factor across multiple Gram-negative

pathogens.

RESULTS

Transposon insertion site sequencing identifies K. pneumoniae GmhB as a bacteremia fitness
factor. To identify K. pneumoniae factors influencing dissemination and bloodstream survival, InSeq
was used to detect genes associated with fitness defects in the spleen but dispensable for lung
fitness. The K. pneumoniae strain KPPR1 causes bacteremic pneumonia in a well-established murine
model (13, 19). In a previous study to identify interactions between Klebsiella and the innate immune
protein Lipocalin 2 during pneumonia (10), we used a KPPRL1 transposon library representing
~25,000 unique insertions with ~99% genome coverage to infect Lcn2** and Lcn2” mice (11, 20).
Here, we evaluated the dissemination of mutants to the spleen at 24 hours from the same

+/+

experiment. We noted that the Lcn2”™ mice had greater dissemination to the spleen than Lcn2** mice
(Supplementary Figure 1), suggesting a wider bottleneck in dissemination from the lung that could
enable higher recovery of transposon mutants in the spleen. Therefore, only Lcn2” spleens were

analyzed further (21).

To identify potential lung dissemination and bloodstream survival factors, we devised a stepwise
approach to use the InSeq data from the spleens of Lcn2” mice and eliminated genes with fitness
defects in the lung or interactions with Lipocalin 2: Genes containing transposon insertions were

+/+

compared between the inoculum, Lcn2** lung, Lcn2” lung, and Lcn2” spleen output pools. Of the
3,707 mutated genes shared across the input and each output pool, 1,489 contained four or more
unique transposon insertions (i.e., median number of unique insertions per gene) and were used for

subsequent selection steps. To eliminate genes influencing lung fitness, transposon mutants with
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similar abundance (g>0.05) between the inoculum and Lcn2** mouse lungs were retained. To
eliminate genes that interact with Lipocalin 2 in the lungs, only transposon mutants with similar

+/+

recovery (q>0.05) between the Lcn2** and Lcn2™ lung output pools were retained. To identify factors
involved in either the phase of lung egress or bloodstream survival, transposon mutants were
selected with a significant difference in abundance between the Lcn2” lung and Lcn2” spleen output
pools (g<0.05). This InSeq selection process resulted in 18 genes with transposon insertions

(Supplemental Table 1) as candidates for encoding dissemination and bloodstream survival factors.

Six genes with a high ratio in read difference between the lung and spleen were chosen for
validation. Isogenic knockouts of the open reading frames of VK055 4727, VK055 2040,
VK055 4483, ulaA, gmhB, and prlC were generated by Lambda Red mutagenesis (22). None of the
encoded factors were required for K. pneumoniae in vitro replication or fitness, as knockouts had
growth rates similar to those of wild-type KPPR1 in rich LB and minimal (M9+Glucose) media
(Supplementary Figure 2A, C). Additionally, each knockout was able to compete in vitro against wild-
type KPPR1 with no apparent defects in both media conditions (Supplementary Figure 2B, D). To
validate the defect of each mutant in causing bacteremia, 1:1 coinfections of KPPR1 against each
isogenic knockout in a bacteremic pneumonia model were performed with Lcn2” mice. Competitive
indices were calculated 24 hours post inoculation based on bacterial burden of each strain
(Supplemental Figures 3-4). The AgmhB mutant had a slight fithess defect in the lung with a
significantly greater defect in the spleen (Supplementary Figure 3E). This significant difference in
fitness between sites indicates that GmhB is important for lung dissemination, bloodstream survival,
or both steps of bacteremia. In contrast, VK055 4727, VK055 2040, VK055 4483, and UlaA were
dispensable for bacteremia at all phases (Supplementary Figure 3A-D). PrIC contributes to initial site
fitness (Supplementary Figure 3F), which may explain the similar fitness defect observed in the

spleen.
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Multiple models of murine bacteremia support that GmhB enhances bloodstream fitness.
Since Lcn2 can prevent K. pneumoniae pulmonary vasculature invasion (23), we confirmed that
GmhB was required for dissemination and bloodstream survival in wild-type mice. Consistent with the

+/+

InSeq data, the gmhB mutant had no fitness defect in the lungs of Lcn2™" mice after coinfections with
KPPR1 and AgmhB (Figure 1A, Supplementary Figure 5A). In contrast, the gmhB mutant had a 24-
fold mean fitness defect in the spleen and 104-fold defect in blood. Similar to co-infections, in
independent infections the gmhB mutant had no defect in the lung but significant defects in the spleen
and blood of infected mice (Figure 1B). To confirm that this fithess defect was attributable to
disruption of gmhB, the mutant was complemented in trans. The empty plasmid vector had no effect
on the results of competitive infections (Figure 1C). Plasmid carriage had slight effects on lung
fitness, with AgmhB carrying the empty vector having slightly higher fithess, and AgmhB with the
complementing plasmid having slightly lower fitness, in the lung (Figures 1C-D; Supplementary
Figure 5B-C). In contrast, AgmhB with the empty vector was significantly defective for survival in the
spleen and blood with plasmid derived gmhB complementation ameliorating this defect in the spleen

and partially in the blood (Figure 1D). Combined, these results indicate that GmhB is necessary for

lung dissemination, bloodstream survival, or both stages of bacteremia.

To determine if GmhB enhances dissemination from the lung specifically, a bacteremia model
involving an independent initial site was used. A KPPR1 and AgmhB coinfection was performed by
intraperitoneal injection and competitive indices were calculated after 24 hours (Figure 1E,
Supplementary Figure 5D). Unlike the lung model, the gmhB mutant was defective in initial site
fitness within the peritoneal cavity and a similar fithess defect was observed in the spleen, liver, and
blood. Therefore, GmhB influences initial phase fithess in a site-specific manner. This initial site

defect in the intraperitoneal model may mask defects in bloodstream survival. To measure fitness in


https://doi.org/10.1101/2022.03.08.483568
http://creativecommons.org/licenses/by-nc-nd/4.0/

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483568; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the third phase of bacteremia, a tail vein injection model was used that bypasses the initial site and
dissemination steps. Based on coinfections using a tail vein injection with competitive indices
calculated after 24 hours (Figure 1F, Supplementary Figure 5E), the gmhB mutant had a significant
fitness defect in both the spleen and liver. Considering the data across three distinct models of
bacteremia, GmhB is consistently necessary for bloodstream survival. It is dispensable for initial site
infection in the lung but important in the peritoneal cavity, suggesting site-specific fithess. The
contribution of GmhB to bloodstream survival may explain the strong defect in dissemination

observed in pneumonia model, but we cannot rule out a specific contribution for egress from the lung.

GmhB does not modulate lung inflammation elicited by K. pneumoniae during pneumonia.
GmhB is a D,D-heptose 1,7-bisphosphate phosphatase involved in biosynthesis of ADP-heptose (24-
26), which is a structural component of the LPS core. ADP-heptose is synthesized through a five-part
enzymatic cascade modifying the precursor sedoheptulose 7-phosphate. GmhB is the third enzyme in
this reaction, serving to dephosphorylate D-glycero-p-D-manno-heptose 1,7-bisphosphate (HBP) to
produce D-glycero-B-D-manno-heptose 1-monophosphate (HMP1) (25). Perhaps because LPS is a
conserved virulence factor in Gram-negative bacteria, ADP-heptose is also a soluble pro-
inflammatory mediator (27). Soluble ADP-heptose can be recognized by the host cytosolic receptor
alpha kinase 1 (ALPK1) (27), resulting in the formation of TIFAsomes, upregulation of NF-kb
signaling, and inflammatory influx (28-31). We have previously observed that lung inflammation
contributes to dissemination of K. pneumoniae from the lung to the bloodstream (12, 23). If lung
dissemination is GmhB-dependent, then perhaps K. pneumoniae relies on soluble ADP-heptose to

induce an immune response during pneumonia that enables egress from the lungs.
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To measure the contribution of GmhB to lung inflammation, KPPR1 and AgmhB were used in the
murine pneumonia model and lung homogenates were surveyed for immune cell recruitment and
cytokine activation associated with ADP-heptose signaling (31). As expected, neutrophils and
monocytes were the most prominent cell types recruited to the lung during K. pneumoniae infection
(Figure 2A, Supplementary Figure 6) (32-34). Monocytic-myeloid derived suppressor cells (M-
MDSCs), which alter the lung immune environment during K. pneumoniae infection (35, 36), were
present after infection, but not in a GmhB-dependent manner. Alveolar macrophages, eosinophils and
dendritic cells were detected by flow cytometry but the abundance of these cell types was not altered
by K. pneumoniae infection. Importantly, GmhB did not influence the overall CD45" cell abundance in
the lung during pneumonia, nor did GmhB alter the profile of any prominent immune cell subset after
infection (Figure 2A). We also measured the abundance of TNFa, GM-CSF, RANTES, MCP-3, MIP-
1a, and MIP-1B, which are associated with signaling via the ADP-heptose/ALPK1/NF-kB axis (31), in
lung homogenates. Abundance of each analyte was increased after K. pneumoniae infection, yet
GmhB did not influence signaling by this axis (Figure 2B). Therefore, inflammation during K.
pneumoniae lung infection is not GmhB-dependent, as measured by immune cell recruitment and

signaling through ADP-heptose/ALPK1/NF-kB associated cytokines. The influence of GmhB on

dissemination and bloodstream survival is likely independent of lung inflammatory responses.

GmhB enhances bloodstream survival by mediating spleen fitness. Given that GmhB enhanced
K. pneumoniae bloodstream survival during direct bacteremia (Figure 1F) and did not alter
inflammation in the lungs (Figure 2), we investigated the direct role that it may play on bacterial
fitness. Disruption of GmhB during ADP-heptose biosynthesis can influence LPS structure in E. coli
(25, 26), and LPS core alterations may enhance serum susceptibility (24, 37). To determine if GmhB
conveys resistance to serum killing, KPPR1 and AgmhB were exposed to active human and murine
serum. An ArfaH acapsular mutant was used as a control that is highly susceptible to human serum

killing (11). In contrast to RfaH, GmhB was dispensable for resistance to human serum-mediated
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killing (Figure 3A). Unlike human serum, murine serum was unable to elicit killing in any strain and
may lack the ability to form an active membrane attack complex against K. pneumoniae (Figure 3B),
a phenomenon observed in other Gram-negative species (38). Additionally, GmhB was not required
for growth in active human serum (Figure 3C). To rule out subtle differences in fitness in human
serum, competitive survival assays were performed in human serum. This also showed no defect of
the gmhB mutant (Figure 3D, Supplementary Figure 7). Thus, the bloodstream survival advantage
conveyed by GmhB is likely independent of the ability to resist complement-mediated killing or to

replicate in serum.

During bacteremia, Klebsiella pass through blood filtering organs, like the liver and spleen, and GmhB
conveyed a fithess advantage in these organs in vivo (Figure 1F). Since the fitness defects of AgmhB
during bacteremia are not explained by fitness in serum, we performed ex vivo competition assays in
uninfected murine spleen and liver homogenates. GmhB was necessary for complete fithess in
spleen homogenate (Figure 4A, Supplementary Figure 7). Further, the magnitude of GmhB fithess
loss in ex vivo spleen homogenate was similar to that observed in vivo using tail vein injections
(Figure 1F). RfaH was dispensable for spleen homogenate fitness (Figure 4A) suggesting that
capsule is not required for splenic survival. Furthermore, GmhB was dispensable for
hypermucoviscosity (39) (Supplementary Figure 8). Despite finding a fithess defect and fewer AgmhB
CFU in the liver during infection (Figures 1E,F and Supplementary Figure 5D, E), GmhB was
dispensable for liver fitness ex vivo (Figure 4B). Similar to its neutral fitness in the lung, the gmhB
mutant had no defect in lung homogenate ex vivo (Figure 4C). These data indicate that GmhB
contributes to bacteremia fitness during the phase of bloodstream survival through spleen-specific

interactions.
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GmhB is required for normal K. pneumoniae LPS composition. GmhB contributes to LPS
structure through synthesis of ADP-heptose, a major component of the inner core region. In E. coli,
GmhB is required for normal LPS composition; GmhB-deficient strains produce a mixed phenotype of
full length and stunted LPS molecules (26). This partial defect is attributed to an uncharacterized
enzyme that is partially redundant for GmhB function. In other species, disruption of ADP-heptose
integration into LPS results in stunted molecules with minimal O-antigen (17, 18). To determine the
impact of gmhB deletion on K. pneumoniae surface structure, LPS from KPPR1, AgmhB, and
AgmhB+pACYCymng Was isolated and analyzed using electrophoresis. Wild-type KPPR1 LPS
produces prominent O-antigen laddering patterns similar to the pattern of the E. coli LPS standard
(Figure 5). The K. pneumoniae strain AgalU (39, 40) lacks prominent O-antigen and can be used to
identify regions corresponding to core polysaccharides. In three prominent core banding regions,
differences were observed between wild-type KPPR1 and AgmhB. Specifically, there was decreased
band intensity in heavier bands (Regions A and B) and the appearance of banding in Region C.
These changes were reversed upon gmhB complementation. This result indicates that GmhB is

required for normal K. pneumoniae LPS structure. Similar to E. coli, GmhB is not absolutely required

for LPS synthesis as O-antigen laddering is still detected even in the absence of this enzyme.

GmhB is a conserved bloodstream fitness factor across multiple clinically relevant Gram-
negative bacteremia pathogens. GmhB is highly conserved across Enterobacterales, which
compose the majority of Gram-negative bacteremia pathogens. To address the requirement of GmhB
in bloodstream fitness across multiple species, tail vein injections were performed using a coinfection
of wild type E. coli CFT073 or C. freundii UMH14 and corresponding gmhB mutants
CFT073:tn::gmhB (42) and UMH14AgmhB, respectively. GmhB was required for bloodstream survival
in both E. coli and C. freundii as measured in the spleen and liver (Figure 6, Supplementary Figure 9).

Additionally, GmhB is a predicted essential gene for S. marcescens survival (43). These results
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reveal that GmhB is a conserved bloodstream fitness factor across multiple clinically relevant Gram-

negative bacteremia pathogens.

DISCUSSION

During bacteremia, K. pneumoniae virulence and fitness factors may act during (1) initial site
invasion, (2) dissemination, and (3) bloodstream survival (3). Based on data from multiple infection
models, we identified GmhB as important in the third phase of bacteremia: bloodstream survival. In a
model of bacteremic pneumonia, GmhB was dispensable for lung fithess but critical for fitness in the
spleen. In ex vivo growth assays, GmhB was specifically important for spleen fitness. Furthermore,
GmhB was also required by E. coli and C. freundii for bloodstream survival. Overall, this study

indicates that GmhB is a conserved Gram-negative bloodstream survival factor.

Distinguishing the three pathogenesis phases of Gram-negative bacteremia can be difficult using in
vivo infection models. While bacteremic pneumonia modeling indicated a role for GmhB in the latter
two phases of bacteremia (Figure 1A), dissemination and bloodstream survival are difficult to
separate experimentally since these processes occur simultaneously. To probe late phases
individually, a dissemination independent model of direct bacteremia was utilized and confirmed a
role for GmhB during bloodstream survival (Figure 1F). However, we cannot rule out a specific role in
dissemination. Indeed, the greater AgmhB fithess defect observed in spleen and blood during
bacteremic pneumonia compared to direct bacteremia suggests a role for GmhB in both
dissemination and survival (Figure 1A, F). Lung dissemination mechanisms for Pseudomonas
aeruginosa have been described and rely on exotoxins and the type 3 secretion system for killing
host cells to gain bloodstream access (44-46). K. pneumoniae does not encode these factors (47).

Instead, lung dissemination in Klebsiella requires a different host-pathogen interaction, where K.
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pneumoniae siderophores activate epithelial HIF-1a that is in turn required for dissemination (12). The

precise mechanism of, and additional factors required for, dissemination from the lung is unclear.

GmhB is involved in the biosynthesis of ADP-heptose, a metabolite detected in host cytosol that
initiates inflammation through the ALPK1/TIFA/NF-kB axis (28-31, 48, 49). GmhB dephosphorylates
HBP to yield HMP1, which is converted into ADP-heptose. In the present study, GmhB was
dispensable for normal inflammation during pneumonia as determined by immune cell recruitment
and cytokines signatures associated with ALPK1/TIFA/NF-kB signaling. Therefore, lung inflammation
elicited by K. pneumoniae may not require ADP-heptose or may be activated by other K. pneumoniae
PAMPs. The minor differences in the LPS electrophoresis pattern in the absence of GmhB indicates
that, as in E. coli (25, 31), K. pneumoniae possesses an unknown mechanism with partially redundant
GmhB function (Figure 5). In the absence of GmhB, this mechanism may produce sufficient ADP-
heptose to induce inflammation via the ALPKL1/TIFA/NF-kB axis, leading to normal inflammation

observed in Figure 2.

K. pneumoniae LPS O-antigen is required for serum resistance (14), but its role in lung fithess may
vary. The strain KPPR1 requires LPS O-antigen for initial site lung fitness, while it is dispensable for
the strain 5215R (13, 50). In Salmonella Typhimurium, complete abrogation of ADP-heptose
integration into LPS results in a molecule lacking core and O-antigen (17, 18) and displays a rough
phenotype. Here, GmhB was required for normal LPS biosynthesis but was not absolutely required
for production of full length LPS containing O-antigen. Additionally, KPPR1 retained high levels of
hypermucoviscosity in the absence of GmhB. Therefore, GmhB appears to maximize ADP-heptose
biosynthesis and contribute to wild-type levels of LPS inner core production. Future work should
discern how individual components of the LPS molecule contribute to bloodstream fitness and

pathogenicity.
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GmhB may be crucial under conditions where rapid LPS production is necessary. During murine
bacteremia, K. pneumoniae exhibits exponential replication in the spleen at 24 hours (51). Rapid
replication requires substantial LPS export and, in the absence of GmhB, lower abundance of normal
LPS may be produced. This may leave Gram-negative species more susceptible to killing by host
defenses, such as phagocytosis by immune cells. Our data supports differential requirements of
capsule and LPS in site-specific fitness. The requirement of GmhB for fitness in the spleen in vivo
and ex vivo, but dispensability for human serum resistance and lung and liver fitness in vivo and ex
vivo, indicates that site specific immune cells like splenic macrophages may be required for K.
pneumoniae clearance during bacteremia. In contrast, RfaH, necessary for capsule production and
hypermucoviscocity, is dispensable for ex vivo spleen, liver and lung fitness but required for human
serum resistance and in vivo lung fitness (11). This suggests that there are distinct interactions
between Klebsiella and host defenses at each site of infection that require different Klebsiella

virulence factors.

This study is limited by the validation rate of the InSeq selection process. Each InSeq model requires
consideration of experimental bottlenecks to assess the maximum transposon library complexity
which can be utilized (52, 53). Since Lcn2 restricts K. pneumoniae to the pulmonary space (23), Lcn2
" mice were used to relax the bottleneck between the lung and spleen, accommodating use of a
complex K. pneumoniae transposon library that increased the number of disrupted genes. However,
only one of the six hits chosen for validation significantly impacted bacteremia pathogenesis,
suggesting that stochastic loss from a bottleneck still generated a high rate of false positive hits. The
gene prlC, which in validation studies was an initial site fithess factor, encodes an oligopeptidase that

may be important during lung infection. In future studies, this bottleneck could be mitigated by splitting

the transposon library into smaller pools and increasing the number of replicates for each pool.
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Based on InSeq studies and validation with isogenic mutants, GmhB is a conserved fitness factor
across multiple species that cause bacteremia. Here, we confirmed a role for GmhB in bloodstream
fitness for K. pneumoniae, E. coli, and C. freundii. InSeq analysis of C. freundii bacteremia fitness
factors also indicated a role for GmhB in bloodstream fitness (56). Whereas GmhB is conditionally
essential in these species, in S. marcescens, GmhB appears to be essential for growth (43). This
consistent requirement for bloodstream survival makes GmhB and core LPS synthesis pathways

attractive candidates for novel therapeutics to treat bacteremia.

MATERIALS AND METHODS

Transposon insertion site sequencing analysis (InSeq). Construction of the K. pneumoniae
transposon library using the pSAM_Cam plasmid and InSeq analysis was described previously (11).
Briefly, after infection with the K. pneumoniae transposon library, CFU from total organ homogenate
were recovered. DNA from recovered transposon mutants was extracted and fragments were
prepared for Illumina sequencing using previously detailed methods (57). All transposon sequencing

files are available from the NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra, PRINA270801).

Bacterial strains and media. Reagents were sourced from Sigma-Aldrich (St. Louis, MO) unless
otherwise noted. K. pneumoniae strains were cultured overnight in Luria-Bertani (LB, Fisher
Bioreagents, Ottawa, ON) broth at 37°C shaking or grown on LB agar (Fisher Bioreagents) plates at
30°C. E. coli CFT073 (58) and C. freundii UMH14 (56) strains were cultured overnight in LB broth
shaking or grown on LB agar plates at 37°C. Media for isogenic knockout strains and transposon
mutants was supplemented with 40pg/mL kanamycin and pACYC was selected with 50ug/mL

chloramphenicol.
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Isogenic knockouts were constructed using Lambda Red mutagenesis and electrocompetent KPPR1
as previously described (11, 22). In short, electrocompetent K. pneumoniae carrying the pKD46
plasmid was prepared by an overnight culture at 30°C and diluted the following day 1:50 in LB broth
containing 50ug/mL spectinomycin, 50mM L-arabinose, 0.5mM EDTA (Promega, Madison, WI), and
10uM salicyclic acid until reaching exponential phase, defined by an ODgg of 0.5-0.6. Bacterial cells
were cooled on ice for 30 minutes, followed by centrifugation at 8,000xg for 15 minutes at 4°C. Pellets
were washed serially with 50mL of ImM HEPES pH 7.4 (Gibco, Grand Island, NY), 50mL diH,O, and
20mL 10% glycerol before making a final resuspension at 2-3x10% in 10% glycerol. To generate
gene-specific target site fragments for Lambda Red mutagenesis, a kanamycin resistance cassette
was amplified from the pKD4 plasmid with primers also containing 65 base pair regions of homology
to the chromosome flanking the gmhB open reading frame. The fragment was electroporated into
competent KPPR1 containing pKD46 plasmid and transformants were selected on LB agar containing
kanamycin after overnight incubation at 37°C. All KPPR1 isogenic knockouts were confirmed by
colony PCR using gene internal and flanking primers. The C. freundii UMH14:AgmhB strain was
constructed using Lambda Red mutagenesis as follows: Electrocompetent C. freundii UMH14
maintaining the pSIM18 recombination plasmid were prepared by harvesting exponentially growing
cells cultured in YENB media supplemented with 200 pug/mL hygromycin grown at 30°C with aeration.
To induce expression of pSIM18, the temperature was shifted to 42°C for 20 minutes and then the
culture pelleted at 5,000xg for 10 minutes at 4°C. Cells were washed twice in cold 10% glycerol and
resuspended in 100uL cold 10% glycerol before storage at -80°C. A gene-specific kanamycin
resistance cassette was amplified from the pKD4 plasmid using primers containing 40 base pair
regions of homology to the chromosome flanking the UMH14 gmhB open reading frame. This
fragment was electroporated into UMH14 pSIM18 electrocompetent cells which were then recovered
in LB media for 1 hour at 37°C and plated on LB agar containing kanamycin and incubated at 37°C

overnight. UMH14:AgmhB was confirmed by Sanger sequencing and curing of the pSIM18
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recombineering plasmid was confirmed by a restoration of hygromycin sensitivity. The primers used

in this study are detailed in Supplementary Table 2.

The KPPR1 gmhB complementation plasmid, pACYCgymne, Was generated by two fragment Gibson
assembly using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, Ipswich, MA). The
plasmid pACYC184 (pACYCey; empty vector) was linearized by BamHI and Hindlll (New England
Biolabs). The gmhB locus, including a 500 bp region upstream of the open reading frame was
amplified by PCR from KPPR1 (GCF_000755605.1, nucleotides 2,380,173 — 2,379,086) with primers
containing homology to linearized pACYC,,, described above. The plasmid and gmhB containing
PCR product were mixed in a 1:2 ratio and Gibson assembly was performed following the
manufacture’s protocol. The resulting Gibson product was electroporated and maintained in E. coli
TOP10 cells (New England Biolabs) and the final construct (PACYCgymng) Was confirmed using Sanger
sequencing. pACYCgymng and pACYCe, were mobilized into KPPR1 and AgmhB by electroporation

and plasmids were maintained in the presence 50ug/mL chloramphenicol.

Murine bacteremia models. This study was performed using six- to ten-week old C57BL/6 mice
(Jackson Laboratory, Bar Harbor, ME) with careful adherence to humane animal handling
recommendations (59) and the study was approved by the University of Michigan Institutional Animal
Care and Use Committee (protocol: PRO00009406). As a model of bacteremic pneumonia, mice
were anesthetized with isoflurane and 1x10° CFU K. pneumoniae in a 50pL volume was administered
retropharyngeally. For intraperitoneal bacteremia, mice were injected with 1x10° CFU K. pneumoniae
in a 100puL volume administered to the peritoneal cavity. For direct bacteremia, mice were injected
with 1x10° CFU K. pneumoniae in a 100pL volume administered via tail vein injection (60). For all
models, overnight LB cultures of K. pneumoniae were centrifuged, resuspended, and adjusted to the

proper concentration in PBS. Twenty-four hours post infection, mice were euthanized by carbon
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dioxide asphyxiation prior to collection of blood, lung, spleen, liver, or peritoneal fluid. Whole blood
was collected by cardiac puncture and dispensed into heparin coated tubes (BD, Franklin Lakes, NJ).
Peritoneal fluid was collected by dispensing 3mL PBS into the peritoneal cavity followed by
recollection. After collection, all organs were homogenized in PBS. To determine bacterial density, all
sites were serially diluted and CFU measured by quantitative plating on LB agar with appropriate
antibiotics. To calculate competitive indices, mice were infected with a 1:1 ratio of K. pneumoniae
wild-type KPPR1 or isogenic mutant strains. Total CFU were determined by LB agar quantitative
plating and mutant strain CFU were quantified by plating on LB agar with appropriate antibiotics. The
competitive index was defined as CFU from: (mutant output/wild-type output)/(mutant input/wild-type

input).

To model E. coli bacteremia, mice were inoculated with a 1:1 mixture of CFT073:tn::gmhB for a total
of 1x10” CFU in a 100pL volume administered via tail vein injection. To model C. freundii bacteremia,
UMH14 and UMH14:AgmhB stationary phase cultures were back diluted (1:100) into fresh LB media
and grown to late exponential phase at 37° C with aeration. These cultures were centrifuged at
5,000xg for 10 minutes at 4°C, and the pellets were suspended in cold PBS to 5x10® CFU/mL for
UMH14 and 1x10° CFU/mL for UMH14:AgmhB and then combined 1:1. 100uL of the combined
suspension, which constituted a total inoculum of 7.5x10" CFU at a 1:2 CFU ratio of wild-type to
mutant, was administered by tail vein injection. For E. coli and C. freundii, enumeration of total CFU
per organ was performed with serial dilution plating as above (using 50ug/mL kanamycin for C.

freundii), and the calculation of competitive indices were determined as described above.

Flow cytometry. Lung homogenate was collected 24-hours post infection with either KPPR1 or
AgmhB in the bacteremic pneumonia model. Lungs were prepared for flow cytometry using single cell

suspensions as previously described (61). In short, lungs were resected, minced, and digested in a
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buffer containing complete DMEM (10% FBS), 15mg/mL collagenase A (Roche, Basel, Switzerland)
and 2000 units of DNase for 30 minutes at 37°C. Following digestion, samples were disrupted by
repeated aspiration through a 10mL syringe. Leukocytes were isolated by centrifuging disrupted
tissue through a 20% Percoll Solution (2,000xg for 20 minutes). 1.5 x 10° leukocytes were stained
with diluted antibody for 30 minutes on ice before analysis on a BD Fortessa Cytometer. Staining
antibodies included: BV650-CD11b (clone M1/70), BV421-1-Ab (MHCII clone AF6-120.1), APC-Cy7-
SiglecF (clone E50-2440), purchased form BD Horizon; PE-eFluor610-CD11c (clone N418),
purchased from eBioscience; BV605-CD62L (clone MEL-14), BV510-Cx3CR1 (clone SA011F11),
AlexaFluor700-CD45 (clone 13/2.3), PE-CD64 (clone X54-5/7.1), PerCP-Cy5.5-CD24 (clone M1/69),
PE-Cy7-Ly6C (clone HK1.4), BV570-Ly6G (clone 1A8), APC-CD115 (clone AFS98), purchased from

Biolegend. Visualization of cell populations was assembled using FlowJo (Version 10.7.2).

Cytokine ELISAs. Mice were infected with either KPPR1 or AgmhB using the bacteremic pneumonia
model and lungs were homogenized with tissue protein extraction reagent (T-PER, Fisher).
Homogenate was centrifuged at 500xg for 5 minutes and the supernatant was analyzed for cytokine
abundance by the University of Michigan Rogel Cancer Center Immunology Core Facility using

enzyme-linked immunosorbent assay (ELISA).

Serum killing and growth assays. To measure serum susceptibility, 1x10° CFU of stationary phase
K. pneumoniae was added to 100% active human (Invitrogen, Waltham, MA) or C57B/L6 murine
serum (Invitrogen). Plates were incubated at 37°C for three hours, and killing was measured by serial
dilutions and quantitative culture at t=0 and t=3. To assess growth, overnight LB broth K. pneumoniae
cultures were adjusted to 1x10’ CF/mL in M9 salts plus 20% human serum in a 96-well dish. Samples
were incubated at 37°C and ODgoo readings were measured every 15 minutes using an Eon

microplate reader and Gen5 software (Version 2.0, BioTek, Winooski, VT).
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Ex vivo survival assay. Spleen, liver, and lung from uninfected mice were homogenized in 2mL
PBS. Overnight LB broth K. pneumoniae cultures were adjusted to 1x10° CFU/mL in PBS and mixed
1:1 for competitive growth. From the bacterial suspension, 10uL was added to 90uL of organ
homogenate for a final concentration of 1x10°> CFU/mL and incubated for 3 hours at 37°C. Survival

was measured by serial dilutions and quantitative culture at t=0 and t=3.

LPS isolation and electrophoresis. LPS from 1x10° CFU of each strain of interest was isolated
using the Sigma Lipopolysaccharide Isolation Kit according to the manufacturer’s instructions.
Electrophoresis was performed using a 4-20% mini-PROTEAN TGX Precast gel (Bio-Rad, Hercules,
CA). LPS was visualized by staining with the Pro-Q Emerald 300 Lipopolysaccharide Gel Stain Kit

(Molecular Probes, Eugene, OR).

Statistical analysis. Each in vivo experiment was performed in at least two independent infections,
and each in vitro experiment was an independent biological replicate. For each study, statistical
significance was defined as a p-value <0.05 (GraphPad Software, LaJolla, CA) as determined by:
one-sample test to assess differences from a hypothetical competitive index of zero, unpaired t test to
assess differences between two groups, or ANOVA followed by Tukey’s multiple comparisons post-

hoc test to assess differences among multiple groups.
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Figure 1. GmhB enhances lung dissemination and bloodstream survival. In a model of bacteremic

pneumonia, mice were retropharyngeally inoculated with 1x10° CFU K. pnuemoniae (A-D). To initiate
dissemination from a lung-independent site, 1x10° CFU was administered to the intraperitoneal cavity
(E). For modeling direct bacteremia requiring no dissemination, 1x10° CFU was administered via tail
vein injection (F). The 1:1 inoculum consisted of KPPR1:AgmhB (A, E, F), KPPR1:AgmhB carrying

empty pACYC vector (ev; C), or KPPR1e,:AgmhB with gmhB complementation provided on pACYC


https://doi.org/10.1101/2022.03.08.483568
http://creativecommons.org/licenses/by-nc-nd/4.0/

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483568; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

under the control of the native gmhB promoter (AgmhB+pACYCymng; D). Independent infections used
either KPPR1 or AgmhB alone at a 1x10° CFU dose (B). Mean logio competitive index or CFU burden
at 24 hours post infection is displayed. **p<0.01, ***p<0.001, ****p<0.0001 by unpaired t test;
#1<0.01, "*p<0.001, "*p<0.0001 by one sample t test with a hypothetical value of zero. For each

group, n=7 mice in at least two independent infections, PF=peritoneal fluid.
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Figure 2. GmhB does not alter normal immune responses during K. pneumoniae lung infection. In a

model of bacteremic pneumonia, mice were retropharyngeally inoculated with 1x10°® CFU of either
KPPR1 or AgmhB. After 24 hours, lungs were prepared for flow cytometry using 1.5x10° cells/lung.
Comparisons between immune cell populations for KPPR1 or AgmhB infected or uninfected mice are
displayed for relevant subsets (A). Cytokines associated with ADP-heptose/ALPK1 signaling were
detected from lung homogenates using ELISA (B). For each infected group, n=8-9 mice, and for each
uninfected group, n=3-6. Each panel represents infections from at least two independent

experiments; no comparisons were significant by unpaired t test between KPPR1 and AgmhB.
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Figure 3. Bloodstream fithess conveyed by GmhB is serum independent. Serum susceptibility was

compared after 3 hours for 1x10°> CFU KPPR1, AgmhB, and ArfaH in active human (A) or murine (B)
serum. K. pneumoniae strains were grown in M9+20% active human serum and the ODgy was
measured every 15 minutes for 20 hours (C). Competition assays were performed in vitro using active
human serum (D) using a 1:1 mixture of 1x10° KPPR1 and either AgmhB or ArfaH. Mean logio
competitive index compared to wild-type KPPR1 at 3 hours post infection is displayed. ***p<0.001,
****%n<0.0001 by unpaired t test with n=4 (A-B) and limit of detection is represented by the dotted line.

For D, p<0.0001 by one sample t test with a hypothetical value of zero and n=8.
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Figure 4. Bloodstream fitness conveyed by GmhB involves interactions in the spleen. Competition

assays were performed ex vivo in murine spleen (A), liver (B), or lung (C) homogenate using a 1:1
mixture of 1x10°> KPPR1 and either AgmhB, AgmhB+pACYCgymng, or ArfaH. Mean log;o competitive
index compared to wild-type KPPR1 at 3 hours post inoculation is displayed. *p<0.05, by unpaired t
test comparing KPPR1 and AgmhB; #<0.01, by one sample t test with a hypothetical value of zero

and n=6-7.
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Figure 5. GmhB is required for normal LPS composition. LPS from 1x10° CFU of KPPR1, AgmhB,

AgmhB+pACYCymnhe, Or AgalU was isolated and 10uL of yield was analyzed by polyacrylamide
electrophoresis. LPS core regions in interest are labeled in a, b, and c. The gel displayed is
representative of three independent trials, duplicate lanes represent independent LPS preparations.

The CandyCane glycoprotein molecular weight standard is displayed in the left lane.
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Figure 6. GmhB is required for bloodstream fithess across multiple Gram-negative species. In a

model of bacteremia, 1x10” CFU of E. coli CFT073 (A) or 7.5x10" CFU C. freundii UMH14 (B) was
administered via tail vein injection. The 1:1 inoculum consisted of CFT073:tn::gmhB (A) or 1:2
inoculum of UMH14:AgmhB (B). Mean logio competitive index or CFU burden at 24 hours post
infection is displayed. *p<0.05, #p<0.01, *#p<0.001 by one sample t test with a hypothetical value of

zero. For each group, n27 mice in at least two independent infections.
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555 SUPPLEMENTARY TABLES

556 Supplemental Table 1. Factors identified by transposon insertion site sequencing (InSeq) for

557 involvement in late phases of K. pneumoniae bacteremia.

Input:Lcn2™ | Len2:Len2” Len2”
Locus ID Gene Lung Lung Lung:Spleen
GenBank Definition
(VKO55_#) | Name
logio | 9- | 10910 | Q- l0g10
g-value
ratio | value | ratio | value ratio
3924 0.978 | 1.000 | 0.876 | 0.221 | 25.500 | 1.84E-73 putative glycosylase
bacterial transferase hexapeptide
3792 1.138 | 0.160 | 0.872 | 0.137 | 25.467 | 1.45E-91
family protein
ethanolamine ammonia-lyase,
4727 1.175 | 0.103 | 0.882 | 0.257 | 20.333 | 5.02E-70
putative regulatory subunit
branched-chain amino acid transport
2040 1.054 | 1.000 | 1.083 | 0.883 | 20.000 | 7.62E-28 system/permease component family
protein
4483 1.011 | 1.000 | 1.022 | 1.000 | 16.909 | 3.66E-41 putative adhesin
2877 ulaA | 0.979 | 1.000 | 1.043 | 0.858 | 16.556 | 1.52E-97 PTS ascorbate-specific subunit
yaeD, D,D-heptose 1,7-bisphosphate
2352 0.629 | 0.191 | 0.714 | 0.275 | 16.333 | 3.09E-11
gmhB phosphatase
3607 priC | 1.096 | 0.680 | 1.019 | 1.000 | 14.000 | 1.52E-32 oligopeptidase A
bifunctional enzyme and
transcriptional regulator PutA
1436 0.752 | 0.053 | 1.051 | 1.000 | 13.800 | 4.01E-29 transcriptional repressor, Proline
dehydrogenase/pyrroline-5-
carboxylate dehydrogenase
alpha-L-glutamate ligase, RimK family
1606 0.918 | 0.941 | 0.825 | 0.371 | 12.875 1.77E-21
protein
phosphoenolpyruvate-protein
4287 ptsP | 0.976 | 1.000 | 1.092 | 0.268 | 12.419 | 4.21E-107
phosphotransferase
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785 gcvA | 0.727 | 0.191 | 0.767 | 0.222 | 12.286 | 8.48E-18 gcVA transcriptional dual regulator
3-octaprenyl-4-hydroxybenzoate
4167 ubiX | 1.084 | 0.611 | 0.937 | 0.784 | 12.048 | 1.49E-50 decarboxylase together with UbiG;
flavy prenyltransferase
amino acid permease family protein;
2933 1.171 | 0.074 | 0.997 | 1.000 | 11.926 | 6.05E-64
efflux transporter
4-hydroxyphenylacetate 3-
2659 hpaB | 1.175 | 0.205 | 0.910 | 0.626 | 11.824 | 4.37E-40 monooxygenase, oxygenase
component
deoxyguanosinetriphosphate
2390 dgt 1.025 | 1.000 | 1.063 | 0.745 | 11.538 | 5.90E-59
triphosphohydrolase
nicotinamide mononucleotide
1770 pnuC | 0.933 | 0.806 | 0.907 | 0.573 | 10.750 | 2.02E-41
transporter PnuC family protein
1674 exuT |0.884 | 0.698 | 0.905 | 0.819 | 10.500 | 1.82E-20 exuT hexuronate MFS transporter

558

559 SUPPLEMENTARY FIGURES

*%*

|0g10 CFU
q

O | ] | | | | | ]
Lcn2 +/+ -/- +/+ -/-
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560

561 Supplementary Figure 1: Lipocalin 2 restricts K. pneumoniae lung dissemination. To model

562 pneumonia, 1x10° CFU of a library of K. pneumoniae transposon mutants was administered
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+/+

retropharyngeally to Lcn2™* or Lcn2” mice as previously reported (11). Mean log:o CFU is displayed

for each organ at 24 hours post infection. **p<0.001 by unpaired t test. For each group, n=5 mice.
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Supplementary Figure 2. GmhB and other factors of interest are not required for K. pneumoniae

replication in vitro. KPPR1 or isogenic knockouts were inoculated to a starting concentration of 1x10’

CFU/mL and monitored by optical density (ODggo) in LB (A) and M9 with 0.9% glucose (M9+Glucose;
C). KPPR1 and each mutant were combined 1:1 at a concentration of 1x10° CFU/mL and incubated
in LB (B) or M9+Glucose (D) and mean logi;; competitive index compared to wild-type at 24 hours
post inoculation is displayed (n=5). One-way ANOVA indicated no significant difference between
strains for area under the curve after growth and one-sample t tests with a hypothetical value of zero

showed no defect in competitive indices; for A and C, lines colors correspond to strains in B and D.
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577 Supplementary Figure 3. InSeq analysis reveals K. pneumoniae GmhB as enhancing late

578  bacteremia fitness. Isogenic knockouts were constructed to validate the InSeq selection approach

579 identifying dissemination and bloodstream survival factors (A-F). Each knockout was mixed 1:1 with
580 KPPRL for a final inoculum of 1x10° CFU and administered in the pharynx of Lcn2” mice. Mean logio
581 competitive index compared to wild-type at 24 hours post infection is displayed. **p<0.001 by
582  unpaired t test; “p<0.05, #p<0.01, "*p<0.001, #*p<0.0001 by one sample t test with a hypothetical
583  value of zero. All statistical tests were performed on log-transformed data. For each group, n=7 mice

584  across at least two independent infections.

585


https://doi.org/10.1101/2022.03.08.483568
http://creativecommons.org/licenses/by-nc-nd/4.0/

586

587

588

589

590

591

592

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483568; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A 10 B 109 C1o—
9- o 9 ® 9 o
8- 8- o8 8- o
7 . 7 * $ 7
=2 s s s 3 | L
b 6- H 6 o s 6
o 5+ 3 5+ gt 5+ o
‘_g’ 4 . 4 4 s
34 34 34
29 e KPPR1 27 e KPPR1 27 e KPPR1
1 agr27 17 o A2040 14 A4483
0 T T o T T 0 T T
Lung Spleen Lung Spleen Lung Spleen
D 10 E 10— F 104
9+ 94 9- e
8- 8 ! kk 8- o e
S T 7- ! . 74 8.8,
L 6- ¢ ° o3 6 . 6 ! . e
O ] B . i | Ny
~ 5 5 5
e e L2 |
o 4 s o 4- i 4-
2 s e 3- ¢ 3- .
[ H .
2 24 24
e KPPR1 o KPPR1 o KPPR1
1 o AulaA 17 o AgmhB 1 ® ApriC
0 T T 0 T T 0 T T
Lung Spleen Lung Spleen Lung Spleen

Supplementary Figure 4. Bacterial burden summary for in vivo validation of transposon insertion site

sequencing (InSeq). CFU per organ from mice 24 hours after inoculation with 1:1 mixture of isogenic

knockouts and KPPR1 (1x10° CFU total) administered in the pharynx of Lcn2” mice is shown (A-F),
corresponding to the competitive indices in Figure S3. *p<0.05, ***p<0.001 by unpaired t test. For

each group, n=7 mice in at least two independent infections.
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Supplementary Fiqure 5. Bacterial burden summary for models of murine bacteremia. In a model of

bacteremic pneumonia, mice were retropharyngeally inoculated with 1x10° CFU K. pnuemoniae (A-
C). To initiate dissemination from a lung-independent site, 1x10° CFU was administered to the
intraperitoneal cavity (D). For modeling direct bacteremia requiring no dissemination, 1x10°> CFU was
administered via tail vein injection (E). The 1:1 inoculum consisted of KPPR1:AgmhB (A, D, E),
KPPR1:AgmhB carrying empty pACYC vector (ev; B), or KPPR1le:AgmhB with gmhB
complementation provided on pACYC under control of the native gmhB promoter
(AgMhB+pACYCgmne; C). Logio CFU burden for each site at 24 hours post infection is displayed,
corresponding to competitive indices in Figure 1. *p<0.05, **p<0.01, *p<0.001, ***p<0.0001 by

unpaired t test. For each group, n=7 mice in at least two independent infections.
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Supplemental Figure 6. Gating Scheme for flow cytometry experiments. Single cell suspensions

were generated from collagenase digested lungs as described. Following this, cell viability was
assessed via trypan blue exclusion and was >90% for all samples. Cells were subsequently gated as
follows: CD45" (Gate 1), myeloid lineage cells: CD11b/c* (Gate 2), neutrophils: Ly6G* (Gate 3),
putative monocytes: MHCII, SSC"° (Gate 4) or macrophage and DCs: MHCII*" SSC" (Gate 5),
CD115" Monocytes (Gate 6), macrophages: CD64", CD24" (Gate 7), alveolar macrophages: SiglecF~,

CD11c" (Gate 8). M-MDSCs: CD11b*, MCH", Ly6G", Ly6C* (Gate 9).
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614

615 Supplementary Figure 7. Bacterial counts from ex vivo Killing assays. Ex vivo competition assays

616  were performed in human serum and uninfected murine spleen, liver, or lung homogenate using 1:1
617  mixture of KPPR1 and either AgmhB (A), AgmhB+pACY Cgymne (B), or ArfaH (C). Log,o recovered CFU
618 following O hours (t=0) and three hours (t=3) of incubation in specified condition is displayed,
619  corresponding to competitive indices in Figures 3 and 4. ****p<0.0001 by unpaired t test, for each

620  group, n27.
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623 Supplementary Figure 8. GmhB does not alter hypermucoviscosity. To assess hypermucoviscosity,

624  overnight cultures were pelleted at 5,000xg for 15 minutes and adjusted to an ODgge=1 in 1mL PBS.
625 Normalized PBS suspensions were subsequently centrifuged at 1,000xg for 5 minutes and the ODgoo

626  of the upper 900pL of supernatant was measured from three biological replicates.
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Supplementary Figure 9. Bacterial burden summary for direct bacteremia with E. coli and C.

freundii. In a model of direct bacteremia, 1x10° CFU of E. coli CFT073 mixed 1:1 with
CFT073:tn::gmhB (A) or C. freundii UMH14 mixed 1:2 with UMH14:AgmhB (B) was administered via
tail vein injection. Logic CFU burden for each site at 24 hours post infection is displayed,
corresponding to competitive indices in Figure 6. *p<0.05, **p<0.01 by unpaired t test. For each

group, n27 mice in at least two independent infections.
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