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ABSTRACT Salmonella enterica serovar Typhimurium from passerines have caused wild bird
mortality and human salmonellosis outbreaks in Europe, Oceania, and North America. Here, we
performed comparative genomic analysis to explore the emergence, genetic relationship, and
evolution of geographically dispersed passerine isolates. We found that passerine isolates from
Europe and the United States clustered to form two lineages (EU and US passerine lineages), which
were distinct from major S. Typhimurium lineages circulating in other diverse hosts (e.g., humans,
cattle, pigs, chicken, other avian hosts such as pigeons and ducks). Further, passerine isolates from
New Zealand clustered to form a sublineage (NZ passerine lineage) of the US passerine lineage.
We inferred that the passerine isolates mutated at a rate of 3.2 x 1077 substitutions/site/year, and
the US, EU, and NZ passerine lineages emerged in ca. 1952, 1970, and 1996, respectively. Isolates
from the three lineages presented genetic similarity such as lack of antimicrobial resistance genes
and accumulation of same virulence pseudogenes. In addition, genetic diversity due to
microevolution existed in the three passerine lineages. Specifically, pseudogenization in type 1
fimbrial gene fimC (deletion of G at position 87) was only detected in the US and NZ passerine
isolates, while a single-base deletion in type 3 secretion system effector genes (i.e., gogB, sseJ,
and sseK?2) solely concurred in the EU passerine isolates. These findings provide insights into

evolution, host adaptation, and epidemiology of S. Typhimurium in passerines.

Keywords: Salmonella enterica serovar Typhimurium, passerine, outbreak, comparative genomic

analysis, host adaptation
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IMPORTANCE Passerine-associated S. Typhimurium have been linked to human salmonellosis
outbreaks in recent years. Here we investigated the phylogenetic relationship of globally
distributed passerine isolates and profiled their genomic similarity and diversity. Our study reveals
two passerine-associated S. Typhimurium lineages circulating in Europe, Oceania, and North
America. Isolates from the two lineages presented phylogenetic and genetic signatures that were
distinct from isolates of other hosts. The findings shed light on host adaptation of S. Typhimurium
in passerines and are important for source attribution of S. Typhimurium to avian hosts. Further,
we found S. Typhimurium definitive phage type (DT) 160 from passerines that caused decade-
long human salmonellosis outbreaks in New Zealand and Australia formed a sublineage of the US
passerine lineage, suggesting that DT160 may have originated from passerines outside Oceania.
Our study demonstrates the importance of whole-genome sequencing and genomic analysis of

historical microbial collections to modern day epidemiologic surveillance.
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INTRODUCTION

Salmonella enterica serovar Typhimurium is a leading cause of salmonellosis worldwide.
Generally, S. Typhimurium can colonize and infect a broad range of hosts such as humans,
livestock, poultry, and wild animals. Examples of broad-host-range S. Typhimurium variants
circulating worldwide include S. Typhimurium definitive phage type (DT) 104 (1) and monophasic
S. Typhimurium (S. 4,[5],12:i:-) sequence type (ST) 34 (2). However, some variants of S.
Typhimurium are subjected to continuous evolution within specific hosts, thus exhibiting host
preference or adaptation. These variants are primarily found in wild birds, which include S.
Typhimurium DT2 and DT99 from feral pigeons (3), DT8 linked to ducks (4), and DT40 and
DT56(v) associated with passerine birds (i.e., any birds in the order Passeriformes such as
sparrows, siskins, finches) (5, 6). Although the above-mentioned S. Typhimurium variants have
host tropism to particular wild birds, they occasionally infect humans, domestic animals, and other
host species.

In the past decades, passerine-associated S. Typhimurium have been linked to salmonellosis
outbreaks in both humans and wild birds. In New Zealand, a decade-long (1998-2012) outbreak of
S. Typhimurium DT160 affected >3,000 people and killed passerines (7). In 2008, S. Typhimurium
DT160 was identified in Tasmania, Australia, where it infected = 50 people and caused passerine
mortality (8). In Europe, outbreaks of passerine-associated human infections have been reported
in the United Kingdom (5, 9) and Sweden (10). These outbreaks were caused by S. Typhimurium
DT40 and DT56(v). In the United States, S. Typhimurium isolates associated with the 2009 pine
siskin outbreak were implicated in a human salmonellosis outbreak in the same year (11). More
recently, a 2021 S. Typhimurium outbreak linked to passerines resulted in 29 illnesses and 14

hospitalizations in 12 US states (12).
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91 The emergence of passerine-associated S. Typhimurium and corresponding outbreaks
92  worldwide raises the questions about their origin, evolution, and genetic relationship. In this study,
93 we conducted comparative genomic analysis of passerine-associated S. Typhimurium from
94  Europe, New Zealand, and the United States over a 40-year period. The genetic relationship and
95 emergence of passerine-associated S. Typhimurium from different locations were inferred by
96 phylogenetic analysis and Bayesian inference, respectively. Further, we investigated the genetic
97  content of passerine-associated S. Typhimurium by profiling their virulence factors, plasmids, and
98 antimicrobial resistance (AMR) determinants. We also compared the whole-genome sequences of
99  S. Typhimurium from passerines and other diverse hosts (e.g., humans, cattle, pigs, poultry, other
100  birds such as pigeons and ducks) to determine if passerine-associated S. Typhimurium had distinct
101  phylogenetic and genetic signatures.
102
103 RESULTS
104 Phylogenetic relationship of geographically dispersed S. Typhimurium from passerines.
105 A maximum-likelihood phylogenetic tree (Figure 1) was built based on 2,253 single nucleotide
106  polymorphisms (SNPs) in the core genomic regions of 84 publicly available passerine isolates
107  (Table 1; New Zealand: n = 25, isolated year: 2000—2009; United States: n = 33, isolated year:
108  1978-2019; European countries: United Kingdom: n = 11, Sweden: n = 14, Germany: n = 1,
109  isolated year: 2001-2016) against reference genome of S. Typhimurium strain LT2 (RefSeq
110 NC 003197.1). We found that passerine isolates from Europe clustered to form a lineage
111 (henceforth referred to as the EU passerine lineage). Further, we observed that passerine isolates
112 from the United States clustered to form a lineage (henceforth referred to as the US passerine

113  lineage), and S. Typhimurium DT160 isolates from New Zealand clustered to form a sublineage
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114  (henceforth referred to as the NZ passerine lineage) of the US passerine lineage (Figure 1). The
115  EU, US, and NZ passerine lineages were supported by robust bootstrap values of 100%. The
116  average SNP distance in the core genome between isolates in the US and NZ passerine lineages
117  was 81, while the average SNP distance in the core genome between isolates in the US, NZ, and
118  EU passerine lineages was 265. Multilocus sequence typing (MLST) indicated that isolates from
119 NZ and US passerine lineages belonged to ST19, whereas the European passerine isolates
120  presented variable STs (i.e., ST19, 568, and 7075).

121 Emergence time of passerine-associated S. Typhimurium lineages in Europe, New
122 Zealand, and the United States. A time-scaled Bayesian phylogenetic tree was built using
123 BEAST2 (v2.6.5) to infer the emergence time of the passerine lineages (Figure 2). The most recent
124  common ancestor (MRCA) of the passerine isolates was estimated to originate in ca. 1840 [95%
125  highest probability density (HPD): 1784—1887]. Based on the Bayesian inference, the MRCA
126 evolved to form the US and EU passerine lineages in ca. 1952 (95% HPD: 1942—-1960) and ca.
127 1970 (95% HPD: 1960-1978), respectively (Figure 2). The NZ passerine lineage formed two
128  sublineages, which emerged in ca. 1995 (95% HPD: 1992-1997) and ca. 1997 (95% HPD: 1994—
129  1999) (Figure 2). We estimated that the median substitution rate for the 84 passerine isolates was
130 3.2 x 107 substitutions/site/year (95% HPD: 1.8-5.0 x 107 substitutions/site/year). Median
131  substitution rates for the isolates from the EU and US passerine linecages were 3.2 x 107
132 substitutions/site/year (95% HPD: 1.8-4.6 x 107 substitutions/site/year) and 3.6 x 107
133 substitutions/site/year (95% HPD: 2.3-5.5 x 1077 substitutions/site/year), respectively. The isolates
134  from the NZ passerine lineage mutated at the same rate as the US passerine isolates.

135 Antimicrobial resistance, plasmid, and virulence gene profiles of passerine-associated S.

136  Typhimurium. Antimicrobial resistance (AMR) profiling (Dataset S1) by ResFinder 2.0 detected
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137 no AMR genes in isolates from the EU, US, and NZ passerine lineages, except the unexpressed
138  gene aac(6')-laa (13). Plasmid profiling (Dataset S1) by PlasmidFinder 2.0 suggested that all of
139  the EU passerine isolates (26/26) lacked the S. Typhimurium-specific virulence plasmid pSLT
140  (Figure 1). However, all of the passerine isolates (25/25) from New Zealand and one third (11/33)
141 of the US passerine isolates carried this plasmid (Figure 1). Virulence gene profiling by ABRicate
142  against the Virulence Factor Database (VFDB) database detected an average number of 107, 110,
143 and 116 virulence genes in the EU, US, and NZ passerine isolates, respectively (Dataset S1). The
144  absent virulence genes in the EU and US passerine isolates were primarily plasmid mediated [i.e.,
145  pSLT-mediated virulence genes: pefABCD (plasmid-encoded fimbriae), rck (resistance to
146 complement killing), and spvBCR (Salmonella plasmid virulence)] (Dataset S1; Figure 1). Isolates
147  from the EU, US, and NZ passerine lineages possessed the same chromosomal pseudogenes (i.e.,
148  IpfD and ratB) (Figure 1; Table 2). In addition, isolates from the NZ and US passerine lineages
149  had a single-base deletion mutation in type 1 fimbrial gene fimC, which was intact in the EU
150  passerine isolates (Figure 1; Table 2). In contrast, single-base deletion mutation in type 3 secretion
151  system (T3SS) effector genes (i.e., gogB, sseJ, and sseK2) was detected in all of the European
152  passerine isolates, however, most of the US and NZ passerine isolates had a single-base
153  substitution rather than deletion mutation in the gogB gene, and their sseJ and sseK2 genes were
154  intact (Figure 1; Table 2).

155 Population structure of S. Typhimurium from passerines and other diverse hosts. A
156  maximume-likelihood phylogenetic tree (Figure 3A) was built based on 10,065 SNPs in the core
157  genomic regions of passerine isolates (n = 84) and context isolates (n = 112; Dataset S2) from
158  multiple hosts to represent a broader collection of S. Typhimurium. The context isolates formed

159  nine context lineages in the tree (Figure 3A). Six out of the nine context lineages were associated
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160  with specific hosts, i.e., DT2 (n = 13) and DT99 (n = 6) lineages adapted to pigeons, DTS lineage
161  (n=10) associated with ducks, ST313 lineage (n = 10) causing invasive nontyphoidal Sa/monella
162  diseases in humans, DT204 complex lineage (n = 9) primarily infecting cattle, and U288 complex
163  lineage (n = 20) majorly found in pigs. Additionally, three out of the nine context lineages had
164  broad host range, which included DT104 complex (rn = 14), DT193 complex (n =9), and ST34 (n
165 =21). We found that the EU (n = 26), US (n = 33), and NZ (n = 25) passerine lineages clustered
166  in a large lineage that was distinct from the nine major S. Typhimurium lineages circulating
167  globally in different hosts (Figure 3A). The three passerine lineages had the closest genetic
168  relatedness with DT204 complex lineage (primary host: cattle) in the tree (average SNP distance
169  in the core genome ~ 308). We also generated a neighbor joining (NJ) tree (Figure 3B) of the 84
170  passerine and 112 context isolates based on EnteroBase whole-genome MLST. The lineages
171  present in the NJ tree were congruent with those formed in the maximum-likelihood phylogenetic
172 tree based on SNPs (Figure 3B).

173 Genetic comparison of S. Typhimurium from different lineages. The average number of
174  virulence genes, plasmid replicons, and AMR genes per isolate from a specific S. Typhimurium
175 lineage is shown in Figure 4. Isolates from most of the individual S. Typhimurium lineages had an
176  average number of 115-116 virulence genes. However, the average number of virulence genes per
177  isolate from the EU, US passerine lineages and ST34 lineage was less than 110 (Figure 4).
178  Similarly, isolates from these three lineages carried fewer plasmid replicons (average number <1)
179  compared to isolates from other lineages (average number >1). In fact, we identified the absent
180  virulence genes were mostly located on pSLT (i.e., pefABCD, rck, and spvBCR) (Table 3).
181  Moreover, all of the isolates from the EU, NZ, US passerine lineages and DT99 lineage (host:

182  pigeon) lacked identifiable AMR genes (average number = 1; the only AMR gene was aac(6')-
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183  laa) (Figure 4). However, isolates from lineages with broad host range (average number >4),
184  adapted to humans (ST313: average number = 7), or associated with specific livestock (DT204
185  complex: average number = 2; U288 complex: average number = §) had more AMR genes (Figure
186 4).

187 We also identified the virulence gene signatures that can discriminate passerine isolates from
188  isolates of other hosts. Compared to isolates from other lineages, pseudogenization of fimC (full
189  length: 708 bp; deletion of G at position 87) was unique to isolates from the US and NZ passerine
190  lineages, while pseudogenization of gogB (full length: 1,498 bp; deletion of T at position 1,125),
191  sseJ (full length: 1,234 bp; deletion of C at position 976), and sseK?2 (full length: 1,047 bp; deletion
192  of A at position 522) only concurred in isolates from the EU passerine lineages (Table 3).

193

194  DISCUSSION

195 Passerine-associated S. Typhimurium have a global distribution and are linked to human
196  salmonellosis outbreaks in recent decades. In this study, we explored the emergence, genetic
197  relationship, and evolution of passerine-associated S. Typhimurium from Europe, New Zealand,
198  and the United States, and compared the passerine isolates with isolates from diverse hosts. Our
199  study revealed that the EU and US passerine isolates formed two distinct lineages, while the NZ
200 passerine isolates clustered as a sublineage of the US passerine lineage. Further, the emergence of
201 the EU, NZ, and US passerine lineages were relatively recent events. Although the EU and US
202  passerine lineages identified in this study were distinct from each other with different virulence
203  genetic signatures, they clustered in a lineage that was distantly related to the major S.
204  Typhimurium lineages formed by isolates from multiple hosts (i.e., humans, cattle, pigs, poultry,

205  pigeons, ducks). One of the caveats of the study is a general paucity of whole-genome sequences
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206  of passerine isolates from Asia, Africa, South America in public database (e.g., NCBI). Integration
207  of passerine isolates from these locations will improve the robustness of the genomic analysis.
208 Previous epidemiologic survey indicated that passerine salmonellosis was caused by specific
209  S. Typhimurium variants. For examples, S. Typhimurium DT40 and DT56(v) were the dominant
210  S. Typhimurium isolated from passerines suffering from salmonellosis in European countries such
211 as the United Kingdom and Sweden (5, 9, 10). Additionally, S. Typhimurium DT160 were
212 demonstrated to be responsible for the human and passerine salmonellosis outbreaks in New
213 Zealand and Australia (7, 8). In the United States, S. Typhimurium PFGE (pulsed-field gel
214  electrophoresis) type A3 from pine siskins was identified as the cause of salmonellosis outbreaks
215  both in humans and passerines (11). Although these epidemiologic studies were able to link
216  specific passerine-associated S. Typhimurium variants to human and passerine salmonellosis
217  outbreaks through phage typing or PFGE typing, the genetic relationship of these pathovariants
218  from different locations remains unknown. The availability of whole-genome sequences through
219  public database facilitates a high-resolution investigation on the genetic relatedness of globally
220  sourced passerine isolates.

221 The 84 passerine isolates from the United Kingdom, Sweden, Germany, New Zealand, and the
222 United States clustered in a lineage distinct from the S. Typhimurium lineages that have broad host
223 range (e.g., humans, livestock, poultry), such as DT104 complex (1), monophasic S. Typhimurium
224 ST34 (2), and DT193 complex (14). The passerine lineage also differed from those narrow-host-
225 range lineages such as U288 complex lineage primarily circulating in pigs (15), DT204 complex
226  lineage majorly infecting cattle (16), DT2 (17) and DT99 (3) lineages adapted to pigeons, DTS
227  lineage adapted to ducks (4), and ST313 lineage (18, 19) causing invasive human salmonellosis in

228  sub-Saharan Africa. The distinct phylogenetic lineage formed by geographically dispersed

10
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229  passerine isolates agrees with a previous study, in which Mather et al. (2016) demonstrated that
230 the UK passerine isolates formed a lineage distinct from representative isolates of diverse hosts
231 (e.g., humans, cattle, horses, chicken, pigeons) and geographical regions (20). The phylogenetic
232 signature presented by the passerine isolates from different countries supported the hypothesis that
233 certain S. Typhimurium variants have undergone evolution towards a passerine-adapted lifestyle.
234 Host adaptation is often accompanied by loss-of-function mutation or genome degradation (18,
235  21-23). For example, loss of virulence for secondary hosts have been observed in S. Typhimurium
236  adapted to pigeons (17). In this study, pseudogenization of /pfD and ratB due to deletion mutation
237  was found in host-adapted S. Typhimurium isolates from the DT2, DT8, DT99, DT204 complex,
238  ST313, and the passerine lineages, except isolates from U288 complex lineage possibly adapted
239 to pigs (Table 3). Therefore, the two virulence genes may segregate host-adapted S. Typhimurium
240 lineages from lineages with broad host range (i.e., ST34, DT104 complex, DT193 complex). In
241  addition, the passerine isolates accumulated virulence pseudogenes other than /pfD and ratB. The
242 US and NZ passerine isolates had a single-base deletion in type 1 fimbrial gene fimC, while the
243 EU passerine isolates had a concurrent single-base deletion in T3SS effector genes gogB, sseJ, and
244 sseK?2. It should be noted these virulence genes were intact in almost all of the isolates from other
245  lineages (Table 3). Therefore, they may be genetic signatures that can discriminate passerine
246  isolates from other-sourced isolates. Further, the fimC gene is required for the biosynthesis of type
247 1 fimbriae, which is involved in adhesion to host cells (24). It has been reported that allelic
248  variation in type 1 fimbriae affected Sa/monella host specificity (22). In addition, a recent study
249  reported that loss-of-function mutations in T3SS effector genes attenuated pathogenicity of S.

250  Typhimurium to humans or mammals but maintained virulence to avian hosts (25). Taken together,

11
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251  pseudogenization of fimbrial or T3SS effector genes due to frameshift mutation may lead to loss
252 of virulence and contribute to host adaptation of S. Typhimurium to the passerine hosts.

253 The plasmid pSLT is an S. Typhimurium-specific virulence plasmid that harbors virulence
254  genes such as pefABCD, rck, and spvBCR (26). These virulence genes are important for S.
255  Typhimurium survival and replication in human and mouse macrophages (25, 27, 28). All of the
256  EU passerine isolates (26/26) and two thirds (22/33) of the US passerine isolates lacked pSLT,
257  while most of the isolates from other lineages except monophasic S. Typhimurium ST34 harbored
258  this virulence plasmid (Table 3), indicating that the pSLT-mediated virulence was dispensable for
259  S. Typhimurium pathogenesis in passerine hosts. The loss of pSLT in passerine isolates is likely
260  an ongoing process as pSLT is only absent in a partial number of the US and NZ passerine isolates.
261  In addition to lack of pSLT, the EU, US, and NZ passerine isolates also lacked AMR genes with
262  the exception of aac(6')-laa. The absence of AMR genes occurred in DT99 isolates from feral
263  pigeons as well. In contrast, AMR genes were identified in isolates from other diverse hosts,
264  especially those with broad host range (Figure 4). The lack of AMR genes in globally distributed
265  passerine isolates is consistent with our previous study, which revealed the low occurrence of
266 AMR in S. Typhimurium from wild birds in the United States (29). A plausible explanation for the
267  observation is that environments utilized by passerine birds are less exposed to antibiotics
268  compared to those utilized by domestic animals and humans. Therefore, isolates from passerines
269  are rarely subjected to antibiotic selection pressure and thus less likely to develop AMR.

270 The passerine isolates from European countries and the United States formed two lineages
271 closely related to each other (Figure 3; average SNP distance in the core genome = 265), suggesting
272 common ancestry for the two lineages (30). Further, Bayesian inference suggested that the MRCA

273 of the two lineages originated from ca. 1840 (Figure 2). As the EU and US passerine lineages were

12
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274  more closely related (average SNP distance in the core genome = 308) to DT204 complex lineage
275  (primary host: cattle) compared to other lineages in the tree (Figure 3), it is possible that passerine
276  birds acquired the MRCA from domestic animals, potentially cattle. However, more evidence is
277  required to determine the original host of the MRCA and the directionality of transmission. In
278  addition, the emergence of the US, EU, and NZ passerine lineages were estimated after 1950 over
279  short timescales, indicating that host adaptation of S. Typhimurium to passerines may be a
280  relatively recent ongoing process driven by anthropogenic influences. The passerine isolates (i.e.,
281  §. Typhimurium DT160) from New Zealand clustered as a sublineage of the US passerine lineage.
282  Further, the NZ passerine lineage was estimated to emerge in ca. 1995-1997 in this study. In a
283  previous study, Bloomfield et al. (2017) reported that the salmonellosis outbreak caused by S.
284  Typhimurium DT160 resulted from a single introduction into New Zealand between 1996 and
285 1998 (7). However, the origin and source of the outbreak have not been identified. Our study
286  reveals the closely genetic relatedness (average SNP distance in the core genome ~ 81) between
287  isolates from the NZ and US passerine lineages, suggesting that DT160 isolates in New Zealand
288 may have originated from passerines outside Oceania. However, whole-genome sequences of
289  passerine isolates from other locations (i.e., Asia, South America, and Africa) are necessary to
290  conduct further genomic analysis to test this hypothesis.

291 In conclusion, our study demonstrates the importance of whole-genome sequencing and
292  genomic analysis of historical microbial collections. The findings provide insights into host
293  adaptation of S. Typhimurium in passerines and are helpful for modern day epidemiologic
294  surveillance. Host-specific genetic signatures identified in this study can aid source attribution of
295  S. Typhimurium to avian hosts in outbreak investigation. As passerines are highly mobile and can

296  spread zoonotic pathogens over a large spatial scale, it is important to raise our awareness of
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297  passerines as reservoirs of specific S. Typhimurium variants. Although these pathovariants only
298  account for a small number of human salmonellosis cases worldwide, control strategies, for
299  example washing hands after contact with wild birds, would be taken to reduce potential
300 transmission between passerines and humans.

301

302 MATERIALS AND METHODS

303 Dataset selection and quality assessment for raw reads. Passerine-associated .
304  Typhimurium isolates (Table 1; New Zealand: n = 25, isolated year: 2000-2009; United States: n
305 = 33, isolated year: 1978-2019; European countries: n = 26, isolated year: 2001-2016) were
306  derived from wild birds with confirmed salmonellosis over broad temporal and spatial scales, and
307 some of these isolates also had closely genetic relatedness with human clinical isolates (7, 10, 20,
308  31). Therefore, the isolates were chosen to represent S. Typhimurium pathovariants emerging
309 worldwide that caused salmonellosis both in humans and passerines. Context S. Typhimurium
310 isolates (Dataset S2; n = 112) were selected to represent the phylogenetic diversity of this serovar
311  across different hosts and geographic locations, and to compare the genomic differences between
312 isolates from passerines and other multiple hosts. The Illumina paired-end reads of the selected
313  isolates were available at the NCBI database (accession number provided in Table 1 and Dataset
314  S2). The quality of the sequence data was assessed using the MicroRunQC workflow in
315  GalaxyTrakr v2 (32). Raw reads meeting the quality control requirements (i.e., average coverage
316  >30, average quality score >30, number of contigs <400, total assembly length between 4.4-5.1
317  Mb) were used for genomic analysis in this study.

318 Phylogenetic analysis. The phylogenetic relationship of the 84 passerine isolates was inferred

319  from their core genomes. Snippy (Galaxy v4.5.0) (https:/github.com/tseemann/snippy) was used
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320  to generate a whole-genome alignment and find SNPs between the reference genome LT2 (RefSeq
321 NC 003197.1) and the genomes of passerine isolates. Snippy-core (Galaxy v4.5.0)

322 (https:/github.com/tseemann/snippy) was used to convert the Snippy outputs (i.e., whole-genome

323  alignment) into a core-genome alignment. The resultant core-genome alignment (2,253 SNPs in
324  the core genomic regions) was used to construct a maximum-likelihood phylogenetic tree by
325 MEGA X (v10.1.8) (33) using the Tamura-Nei model and 500 bootstrap replicates. The SNP
326 phylogenetic tree was visualized and annotated using the Interactive Tree of Life (iTOL v6;

327  https:/itol.embl.de). SNP distance between sequences was calculated using snp-dists (Galaxy

328  v0.6.3) (https://github.com/tseemann/snp-dists). Sequence type (ST) of the S. Typhimurium

329  isolates was identified using 7-gene (aroC, dnaN, hemD, hisD, purE, sucA, and thrA) MLST at
330 EnteroBase (34). STs were then annotated in the SNP phylogenetic tree. We also generated a
331  maximum-likelihood phylogenetic tree of the 84 passerine isolates (Table 1) and 112 context
332  isolates (Dataset S2) from diverse hosts to represent the genetic diversity within serovar
333  Typhimurium. The tree was created based on 10,065 SNPs in the core genomic regions of the 196
334  passerine and context isolates with reference to S. Typhimurium LT2 using the EnteroBase SNP
335  project (34). In addition, a NJ tree of the 196 passerine and context isolates based on the Salmonella
336  whole-genome MLST (21,065 loci) scheme at EnteroBase (34) was built to complement the core-

337 genome SNP-based phylogenetic analysis.

338 Bayesian inference. A time-scaled Bayesian phylogenetic tree was constructed to determine
339  the divergence times of the S. Typhimurium lineages from passerines. The temporal signal of the
340 sequence data was examined using TempEst (35) before phylogenetic molecular clock analysis
341  (Figure S1). The core-genome alignment (2,253 SNPs in the core genomic regions) of passerine

342  isolates (n = 84; Table 1) generated previously was used as the input for the time-scaled tree
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343  construction. The parameters for constructing the Bayesian phylogenetic tree were set in BEAUti
344  (v2.6.5) (36) as follows: Prior assumption-coalescent Bayesian skyline; Clock model-relaxed
345  clock log normal with the default clock rate value of 1.0; and Markov chain Monte Carlo (MCMC)
346  atchain length-100 million, storing every 1,000 generations. Two independent runs with the same
347  parameters were performed in BEAST2 (v2.6.5) (36) to ensure convergence. The resultant log
348 files were viewed in Tracer (v1.7.2) to check if the effective sample sizes of all parameters were
349  more than 200 and the MCMC chains were converged. A maximum clade credibility tree was
350 created using TreeAnnotator (v2.6.4) (36) with a burn-in percentage of 10% and node option of
351 median  height. Finally, the tree was visualized using FigTree v1.4.4

352 (https:/github.com/rambaut/figtree/releases). To determine the substitution rate for the genome of

353  passerine isolates, we multiplied the substitution rate estimated by BEAST2 (v2.6.5) by the
354  number of analyzed core-genome SNPs (2,253 bp), and then divided the product by the average

355  genome size of the analyzed passerine isolates (4,951,383 bp).

356 Antimicrobial resistance, virulence, and plasmid profiling. Raw reads of each isolate were
357 de novo assembled using Shovill (Galaxy v1.0.4) (37). ABRicate (Galaxy v1.0.1) (38) was used
358 toidentify the AMR genes, virulence factors, and plasmid replicons by aligning each draft genome
359 assembly against the ResFinder database (39), VFDB (40), and PlasmidFinder database (41),
360 respectively. For all searches using ABRicate, minimum nucleotide identity and coverage
361  thresholds of 80% and 80% were used, respectively. Virulence genes that were not 100% identical
362 or covered with the reference virulence gene from VFDB may have deletions, insertions, or
363  substitutions of interest. We then manually checked the mutation type by aligning the virulence
364 gene of interest against the reference virulence gene from VFDB using BLAST

365  (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
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366 Data availability. Sequence data of the S. Typhimurium strains are publicly available in the

367 NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra). Accession numbers are
368 available in Table 1 and Dataset S2.
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562  Table 1. Metadata information of the 84 Salmonella enterica serovar Typhimurium isolates from

563  passerines.

Isolate name Collection year |Continent Country Accession number |Source Source detail Sequence type
054/01 2001 Europe United Kingdom [ERS217365 Passeriformes [House sparrow 568
062/01 2001 Europe United Kingdom [ERS217362 Passeriformes | European greenfinch 19
065/01 2001 Europe United Kingdom |ERS217360 Passeriformes |House sparrow 19
100/01 2001 Europe United Kingdom |ERS217364 Passeriformes | European greenfinch 19
108/01 2001 Europe United Kingdom [ERS217358 Passeriformes |European greenfinch 568
132/06 2006 Europe United Kingdom |ERS217361 Passeriformes | European greenfinch 568
1356/06 2006 Europe United Kingdom |ERS217366 Passeriformes |House sparrow 19
1377/06 2006 Europe United Kingdom |ERS217363 Passeriformes |House sparrow 568
1402/06 2006 Europe United Kingdom |ERS217356 Passeriformes | European greenfinch 19
1422/05 2005 Europe United Kingdom [ERS217359 Passeriformes | European greenfinch 568
20-SA01024-0 (2020 Europe German SRS9340518 Passeriformes | Eurasian blue tit 19
S00228-16 2016 Europe United Kingdom |ERS2028946 Passeriformes |Finch 19
STm_SE 01 2016 Europe Sweden ERR2617828 Passeriformes | Common redpoll 19
STm_SE 02 2016 Europe Sweden ERR2617829 Passeriformes |Common redpoll 19
STm_SE 03 2016 Europe Sweden ERR2617830 Passeriformes | Common redpoll 19
STm_SE 04 2016 Europe Sweden ERR2617831 Passeriformes | Common redpoll 19
STm_SE 05 2016 Europe Sweden ERR2617832 Passeriformes | Eurasian bullfinch 19
STm_SE 06 2016 Europe Sweden ERR2617833 Passeriformes | Eurasian bullfinch 19
STm_SE 08 2016 Europe Sweden ERR2617835 Passeriformes | Eurasian bullfinch 7075
STm_SE 09 2016 Europe Sweden ERR2617836 Passeriformes | Eurasian siskin 19
STm_SE_10 2016 Europe Sweden ERR2617837 Passeriformes | Eurasian siskin 19
STm_SE 11 2016 Europe Sweden ERR2617838 Passeriformes | Eurasian bullfinch 19
STm SE 12 2016 Europe Sweden ERR2617839 Passeriformes | Eurasian bullfinch 19
STm_SE 13 2016 Europe Sweden ERR2617840 Passeriformes | Eurasian bullfinch 19
STm_SE 14 2016 Europe Sweden ERR2617841 Passeriformes | Eurasian bullfinch 19
STm_SE 15 2016 Europe Sweden ERR2617842 Passeriformes | Eurasian bullfinch 19
PSU-2812 1998 North America | United States SRS7318189 Passeriformes |Evening grosbeak 19
PSU-2813 1998 North America | United States SRS7318190 Passeriformes |Redpoll 19
PSU-2814 1998 North America | United States SRS7318191 Passeriformes | American goldfinch, 19
PSU-2816 1998 North America _|United States SRS7318193 Passeriformes | White-throated sparrow 19
PSU-2817 1998 North America | United States SRS7417389 Passeriformes |Redpoll 19
PSU-2819 2000 North America | United States SRS7318196 Passeriformes |Gold finch 19
PSU-2835 2009 North America _|United States SRS7611982 Passeriformes |Purple finch 19
PSU-2838 2009 North America__|United States SRS7611983 Passeriformes | Pine siskin 19
PSU-2841 2009 North America | United States SRS7417441 Passeriformes |House sparrow 19
PSU-2847 2011 North America | United States SRS7417395 Passeriformes |House sparrow 19
PSU-2966 1978 North America | United States SRS7417415 Passeriformes |House sparrow 19
PSU-3168 1978 North America _|United States SRS7449455 Passeriformes |House sparrow 19
PSU-3169 1979 North America _|United States SRS7718306 Passeriformes |House sparrow 19
PSU-3174 1991 North America |United States SRS7449460 Passeriformes | Goldfinch 19
PSU-3234 1992 North America | United States SRS7612006 Passeriformes |Cardinal 19
PSU-3235 1992 North America | United States SRS7718330 Passeriformes |House sparrow 19
PSU-3236 1992 North America | United States SRS7612008 Passeriformes |House sparrow 19
PSU-3253 1991 North America _|United States SRS7611956 Passeriformes | Brown-headed cowbird 19
PSU-3337 2018 North America | United States SRS7840968 Passeriformes |Redpoll 19
PSU-3338 2019 North America | United States SRS7840979 Passeriformes | Pine siskin 19
PSU-3340 2016 North America _|United States SRS7840996 Passeriformes |House sparrow 19
PSU-3346 2016 North America__|United States SRS7840969 Passeriformes |Red-winged blackbird 19
PSU-3353 2015 North America | United States SRS7840976 Passeriformes |Red crossbill 19
PSU-3358 2016 North America | United States SRS7840981 Passeriformes | Pine siskin 19
PSU-3359 2015 North America | United States SRS7840982 Passeriformes |Red crossbill 19
PSU-3363 2016 North America _|United States SRS7840986 Passeriformes |Redpoll 19
PSU-3367 2018 North America _|United States SRS7840991 Passeriformes | Pine siskin 19
PSU-3374 2018 North America | United States SRS7841677 Passeriformes |Redpoll 19
PSU-3377 2016 North America | United States SRS7841693 Passeriformes |Pine siskin 19
PSU-3378 2015 North America _|United States SRS7841694 Passeriformes |Red crossbill 19
PSU-3379 2015 North America | United States SRS7841695 Passeriformes |Red crossbill 19
PSU-3405 2013 North America | United States SRS7841689 Passeriformes _|Pine siskin 19
PSU-4760 2012 North America | United States SRS9461411 Passeriformes | American goldfinch 19
DT160 01 2000 Oceania New Zealand ERS 1456804 Passeriformes | Passerine bird, not specified 19
DTI160 02 2007 Oceania New Zealand ERS 1456799 Passeriformes | Passerine bird, not specified 19
DT160 03 2000 Oceania New Zealand ERS1456794 Passeriformes | Passerine bird, not specified 19
DT160 04 2006 Oceania New Zealand ERS 1456793 Passeriformes | Passerine bird, not specified 19
DT160 05 2008 Oceania New Zealand ERS1456792 Passeriformes | Passerine bird, not specified 19
DT160 06 2003 Oceania New Zealand ERS1456791 Passeriformes | Passerine bird, not specified 19
DTI160 07 2004 Oceania New Zealand ERS 1456790 Passeriformes | Passerine bird, not specified 19
DTI160 08 2003 Oceania New Zealand ERS 1456787 Passeriformes | Passerine bird, not specified 19
DT160_09 2007 Oceania New Zealand ERS1456781 Passeriformes | Passerine bird, not specified 19
DT160 10 2003 Oceania New Zealand ERS1456778 Passeriformes | Passerine bird, not specified 19
DTI60 11 2005 Oceania New Zealand ERS 1456773 Passeriformes | Passerine bird, not specified 19
DTI160 12 2001 Oceania New Zealand ERS 1456770 Passeriformes | Passerine bird, not specified 19
DT160 13 2007 Oceania New Zealand ERS 1456766 Passeriformes _|Passerine bird, not specified 19
DT160 14 2009 Oceania New Zealand ERS 1456765 Passeriformes | Passerine bird, not specified 19
DT160 15 2008 Oceania New Zealand ERS 1456760 Passeriformes | Passerine bird, not specified 19
DTI160 16 2002 Oceania New Zealand ERS 1456758 Passeriformes | Passerine bird, not specified 19
DTI160 17 2009 Oceania New Zealand ERS1456757 Passeriformes | Passerine bird, not specified 19
DT160_18 2004 Oceania New Zealand ERS 1456756 Passeriformes | Passerine bird, not specified 19
DT160 19 2002 Oceania New Zealand ERS1456755 Passeriformes | Passerine bird, not specified 19
DT160 20 2002 Oceania New Zealand ERS 1456754 Passeriformes | Passerine bird, not specified 19
DTI160 21 2001 Oceania New Zealand ERS 1456749 Passeriformes | Passerine bird, not specified 19
DTI160 22 2001 Oceania New Zealand ERS 1456748 Passeriformes | Passerine bird, not specified 19
DT160 23 2005 Oceania New Zealand ERS1456744 Passeriformes | Passerine bird, not specified 19
DT160 24 2005 Oceania New Zealand ERS1456734 Passeriformes | Passerine bird, not specified 19
DTI160 25 2006 Oceania New Zealand ERS 1456733 Passeriformes |Passerine bird, not specified 19
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565  Table 2. Mutation of specific chromosome-encoded virulence genes in Salmonella enterica
T h . . 1 f . a
566  serovar T'yphimurium isolates from passerines®.
Chromosome-encoded virulence gene
IpfD ratB fimC gogB sseJ sseK2
(length = 1,087 bp) (length = 7,315 bp) (length = 708 bp) (length = 1,498 bp) (length = 1,234 bp) (length = 1,047 bp)
. fitution: T — Intact gene (30/33); Intact gene (30/33);
ES passerine Deletion of GTTTGAGAAT Deletion of T Deletion of G tSubs.?.nm(Zn;é FfS 0 /3(;)_ Substitution: A — C Gene absence (1/33);
ne_ag; at position 406-415 (33/33)  at position 5,814 (33/33)  at position 87 (33/33) aé)OSI 1(]))11. (3/33) ’ at position 1,110 (2/33); Deletion of A
(n=33) ene absence (3/3 Gene absence (1/33) at position 522 (2/33)
NZ passerine Substitution: T — C
. Deletion of GTTTGAGAAT Deletion of T Deletion of G at position 238 (23/23); N
lineage at position 406-415 (25/25)  at position 5,814 (25/25)  at position 87 (25/25) Deletion of A Intact gene (23/23) Intact gene (25/25)
(=15 at position 1,006 (1/23)
EU passerine . Deletion of T . . . .
. Deletion of GTTTGAGAAT . . Deletion of T Deletion of C Deletion of A
'(‘:ff;) at position 406-415 (26/26) IC’}";:‘;‘I“) :eﬁcl: ((22/‘;/62)6)‘ Intact gene (26/26) 1 ition 1,125 (26/26)  at position 976 (26/26) at position 522 (26/26)
567 “Mutation of specific chromosome-encoded virulence genes is identified by aligning draft genomes from passerine
568 isolates against reference genes from S. Typhimurium LT2. Mutation position is determined on the plus strand of the
569 reference genes.
570
571
572
573
574
575
576
577
578
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579  Table 3. Differences in chromosome- and plasmid-mediated virulence genes between Salmonella

580 enterica serovar Typhimurium isolates from diverse lineages®.

Chromosome-encoded virulence gene pSLT-mediated virulence gene PpSLT replicon
N N Ny
S. Typhimurium lineage N)® | IpfD ratB  fimC gogB sseJ sseK2 | pefABCD spvB spvC spvR  rck | IncFIB(S)  IncFII(S)

EU passerine lineage (26) 26/26 24/26 26/26 26/26 26/26 26/26

US passerine lineage (33) 33/33 33/33 33/33 30/33 30/33 30/33 11/33 11/33  11/33 11/33 11/33 11/33
NZ passerine lineage (25) 25/25 25/25 25/25 @ 25/25 25/25 25/25

DT204 complex (9) o9 99 [ 98 99 99 99

ST313 (10) 10/10 10/10 = 10/10 10/10 10/10 10/10

DT99 (6) 6/6 6/6 6/6 6/6 6/6 6/6

DT8 (10) 10/10 10/10 10/10 9/10 = 10/10 10/10 9/10 9/10  9/10 9/10 9/10 9/10

DT2 (13) 1313 1313 1313 1313 1313 1113 | 1213 1213 1213 1213 1213 | 1213 1213
DT104 complex (14) 14/14 1414 1414 1414 1414 1414 | 1314 [IAANTAENEE] 1314 13/14
DT193 complex (9) 99 99 99 99 99 99 | SO 79 U9 U9 69 69
U288 complex (20) 2020 1620 2020 19/20 2020 2020 | 1520 1820 18/20 1120

5. 4[5].12:i:- ST34 (21) 2121 2121 2121 2021 1921 20721

581 “Green: intact gene; Yellow: deletion mutation; Orange: substitution mutation; Blue: presence; Red: absence; Grey:

582  partial absence.
583 N: the total number of isolates belonging to a specific lineage.

584  “n/N: the number of isolates carrying an intact or specific mutant virulence gene/the total number of the isolates

585 belonging to a specific lineage.

586  “n/N: the number of isolates carrying a pSLT-mediated virulence gene/the total number of the isolates belonging to a

587  specific lineage.

588  “n/N: the number of isolates carrying a pSLT-associated replicon/the total number of the isolates belonging to a

589 specific lineage.

590
591
592

593
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595  Figure 1. Maximum-likelihood phylogenetic tree of the 84 Salmonella enterica serovar
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594

596  Typhimurium isolates from passerines (New Zealand: » = 25, United States: n = 33, United
597 Kingdom: n = 11, Sweden: n = 14, Germany: n = 1). The tree is created based on 2,253 core-
598  genome single nucleotide polymorphisms (SNPs) with reference to S. Typhimurium LT2. Three
599 lineages are defined in the tree, i.e., EU (European countries) passerine lineage (brown), US (the
600 United States) passerine lineage (blue), and NZ (New Zealand) passerine lineage (green).
601  Bootstrap values are displayed as percentage on the tree branches. The labels at the tree tips
602  represent the “isolate name bird host collection year”. “NS” is used to replace “bird host” if the
603  bird host is not specified in the NCBI database. The color strip “country” represents the isolation
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location. The color strip “ST” represents the S. Typhimurium multilocus sequence type. The

virulence gene signatures identified in this study are categorized into plasmid-mediated and

chromosome-encoded, and represented in different color strips.
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S. Typhimurium LT2
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Figure 2. Time-scaled Bayesian phylogenetic tree of the 84 Salmonella enterica serovar
Typhimurium isolates from passerines. The EU, US, and NZ passerine lineages are colored in
brown, blue, and green in the tree, respectively. Median years or range of years at the tree nodes
(yellow circles) represent the 95% highest posterior probability density (HPD) for the times of
most recent common ancestor for representative divergent events. The red circle at the tree tip
represents the reference strain LT2 (collection year: ca.1948). The posterior probability values of

representative divergent events (yellow circles at tree nodes) are >95%.
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640  Figure 3. (A) Maximum-likelihood phylogenetic tree of the 196 Salmonella enterica serovar
641  Typhimurium isolates from various hosts representing the genetic diversity within the serovar. The
642  tree is created based on 10,065 core-genome single nucleotide polymorphisms (SNPs) with
643  reference to S. Typhimurium LT2 and rooted at midpoint. Color ranges in the tree represent the
644  major S. Typhimurium lineages identified in the literature and in this study. Labels at the tree tips
645  represent the representative isolates from individual lineages. The legend field at the right of the
646  tree represents the S. Typhimurium lineage (primary host). Broad host range in parentheses
647  indicates that isolates from the corresponding lineage are commonly identified among humans,
648  cattle, pigs, poultry, and other hosts or environmental niches. The specific host in parentheses
649 indicates that isolates from the corresponding lineage are primarily from that specific host. (B)
650  Neighbor joining tree of the 196 S. Typhimurium isolates from various hosts. The tree is created
651  based on allelic differences in the 21,065 loci of the whole-genome multilocus sequence typing
652  (WgMLST) Salmonella scheme with GrapeTree at EnteroBase. The major S. Typhimurium
653  lineages are highlighted in colors in the tree. The legend field at the right of the tree represents the
654  S. Typhimurium lineage (primary host) [number of isolates in the lineage]. The scale bar indicates
655 200 wgMLST alleles. Allele differences between isolates are indicated by numbers on the
656  connecting lines.
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664  Figure 4. (A) Number of virulence genes per isolate detected in a specific Salmonella enterica
665  serovar Typhimurium lineage. (B) Number of plasmid replicons per isolate detected in a specific
666 . Typhimurium lineage. (C) Number of antimicrobial resistance(AMR) genes per isolate detected
667  in a specific S. Typhimurium lineage.

668

669

670

671

672

673

34


https://doi.org/10.1101/2022.03.08.483506
http://creativecommons.org/licenses/by-nc-nd/4.0/

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483506; this version posted March 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
0.3
Slope (rate) 5.7947E-7 3 51;4
X-intercept (TMRCA) ~ 1751.488 . 32, '?x.vi:
Correlation Coefficient ~ 0.598 4 = Lol
931 R squared 0.3576 s
NZ ?u_&'ttg_a
passerine lineage o ,ng
025 L:'z]
T
i
Pl
2l
B %3?;5
H
5 i
3 AR
-,6015 us %i}ixn
g passerine lineage = il
B
01 B A
e
o
el
s e
005 %o
3
M
1 £ Tk
passerine lineage o @k‘;“‘g
1750 1800 1850 1900 1950 2000 2050 o —< ‘g}}j

time

Figure S1. Temporal signal of the 84 S. Typhimurium genome sequences from passerine birds
used for Bayesian inference. (A) Root-to-tip regression plot showing regression of genetic distance
against sampling time. (B) Phylogeny of 84 S. Typhimurium genome sequences from passerine
birds. The EU, US, and NZ passerine lineages are indicated on the phylogenetic tree branches.

Reference genome from S. Typhimurium LT2 is highlighted in blue in (A) and shaded in grey in

(B).
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690  Supplementary Dataset Legend

691  Dataset S1. In silico virulence, antimicrobial resistance (AMR), and plasmid profiles of the public
692  available Salmonella enterica serovar Typhimurium isolates from passerine birds (n = 84) and
693  other diverse hosts (n = 112).

694

695  Dataset S2. Metadata information of the 112 context Salmonella enterica serovar Typhimurium

696 isolates from diverse hosts.
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