

1 Comparative Genomic Analysis of *Salmonella enterica* serovar Typhimurium from
2 Passerines Reveals Two Lineages Circulating in Europe, New Zealand, and the United States

3

4 **Running Title: Genomic Analysis of *S. Typhimurium* from Passerines**

5

6 Yezhi Fu¹, Nkuchia M. M'ikanatha², Edward G. Dudley^{1,3*}

7

8 ¹Department of Food Science, The Pennsylvania State University, University Park, PA, USA

9 ²Pennsylvania Department of Health, Harrisburg, PA, USA

10 ³*E. coli* Reference Center, The Pennsylvania State University, University Park, PA, USA

11

12

13 *Corresponding author:

14 427 Rodney A. Erickson Food Science Building University Park, PA 16802, USA. Email:

15 egd100@psu.edu

16

17

18

19

20

21

22

23 **ABSTRACT** *Salmonella enterica* serovar Typhimurium from passerines have caused wild bird
24 mortality and human salmonellosis outbreaks in Europe, Oceania, and North America. Here, we
25 performed comparative genomic analysis to explore the emergence, genetic relationship, and
26 evolution of geographically dispersed passerine isolates. We found that passerine isolates from
27 Europe and the United States clustered to form two lineages (EU and US passerine lineages), which
28 were distinct from major *S. Typhimurium* lineages circulating in other diverse hosts (e.g., humans,
29 cattle, pigs, chicken, other avian hosts such as pigeons and ducks). Further, passerine isolates from
30 New Zealand clustered to form a sublineage (NZ passerine lineage) of the US passerine lineage.
31 We inferred that the passerine isolates mutated at a rate of 3.2×10^{-7} substitutions/site/year, and
32 the US, EU, and NZ passerine lineages emerged in *ca.* 1952, 1970, and 1996, respectively. Isolates
33 from the three lineages presented genetic similarity such as lack of antimicrobial resistance genes
34 and accumulation of same virulence pseudogenes. In addition, genetic diversity due to
35 microevolution existed in the three passerine lineages. Specifically, pseudogenization in type 1
36 fimbrial gene *fimC* (deletion of G at position 87) was only detected in the US and NZ passerine
37 isolates, while a single-base deletion in type 3 secretion system effector genes (*i.e.*, *gogB*, *sseJ*,
38 and *sseK2*) solely concurred in the EU passerine isolates. These findings provide insights into
39 evolution, host adaptation, and epidemiology of *S. Typhimurium* in passerines.

40

41 **Keywords:** *Salmonella enterica* serovar Typhimurium, passerine, outbreak, comparative genomic
42 analysis, host adaptation

43

44

45 **IMPORTANCE** Passerine-associated *S. Typhimurium* have been linked to human salmonellosis
46 outbreaks in recent years. Here we investigated the phylogenetic relationship of globally
47 distributed passerine isolates and profiled their genomic similarity and diversity. Our study reveals
48 two passerine-associated *S. Typhimurium* lineages circulating in Europe, Oceania, and North
49 America. Isolates from the two lineages presented phylogenetic and genetic signatures that were
50 distinct from isolates of other hosts. The findings shed light on host adaptation of *S. Typhimurium*
51 in passerines and are important for source attribution of *S. Typhimurium* to avian hosts. Further,
52 we found *S. Typhimurium* definitive phage type (DT) 160 from passerines that caused decade-
53 long human salmonellosis outbreaks in New Zealand and Australia formed a sublineage of the US
54 passerine lineage, suggesting that DT160 may have originated from passerines outside Oceania.
55 Our study demonstrates the importance of whole-genome sequencing and genomic analysis of
56 historical microbial collections to modern day epidemiologic surveillance.

57

58

59

60

61

62

63

64

65

66

67

68 **INTRODUCTION**

69 *Salmonella enterica* serovar Typhimurium is a leading cause of salmonellosis worldwide.
70 Generally, *S. Typhimurium* can colonize and infect a broad range of hosts such as humans,
71 livestock, poultry, and wild animals. Examples of broad-host-range *S. Typhimurium* variants
72 circulating worldwide include *S. Typhimurium* definitive phage type (DT) 104 (1) and monophasic
73 *S. Typhimurium* (*S. 4,[5],12:i:-*) sequence type (ST) 34 (2). However, some variants of *S.*
74 *Typhimurium* are subjected to continuous evolution within specific hosts, thus exhibiting host
75 preference or adaptation. These variants are primarily found in wild birds, which include *S.*
76 *Typhimurium* DT2 and DT99 from feral pigeons (3), DT8 linked to ducks (4), and DT40 and
77 DT56(v) associated with passerine birds (*i.e.*, any birds in the order *Passeriformes* such as
78 sparrows, siskins, finches) (5, 6). Although the above-mentioned *S. Typhimurium* variants have
79 host tropism to particular wild birds, they occasionally infect humans, domestic animals, and other
80 host species.

81 In the past decades, passerine-associated *S. Typhimurium* have been linked to salmonellosis
82 outbreaks in both humans and wild birds. In New Zealand, a decade-long (1998-2012) outbreak of
83 *S. Typhimurium* DT160 affected >3,000 people and killed passerines (7). In 2008, *S. Typhimurium*
84 DT160 was identified in Tasmania, Australia, where it infected \approx 50 people and caused passerine
85 mortality (8). In Europe, outbreaks of passerine-associated human infections have been reported
86 in the United Kingdom (5, 9) and Sweden (10). These outbreaks were caused by *S. Typhimurium*
87 DT40 and DT56(v). In the United States, *S. Typhimurium* isolates associated with the 2009 pine
88 siskin outbreak were implicated in a human salmonellosis outbreak in the same year (11). More
89 recently, a 2021 *S. Typhimurium* outbreak linked to passerines resulted in 29 illnesses and 14
90 hospitalizations in 12 US states (12).

91 The emergence of passerine-associated *S. Typhimurium* and corresponding outbreaks
92 worldwide raises the questions about their origin, evolution, and genetic relationship. In this study,
93 we conducted comparative genomic analysis of passerine-associated *S. Typhimurium* from
94 Europe, New Zealand, and the United States over a 40-year period. The genetic relationship and
95 emergence of passerine-associated *S. Typhimurium* from different locations were inferred by
96 phylogenetic analysis and Bayesian inference, respectively. Further, we investigated the genetic
97 content of passerine-associated *S. Typhimurium* by profiling their virulence factors, plasmids, and
98 antimicrobial resistance (AMR) determinants. We also compared the whole-genome sequences of
99 *S. Typhimurium* from passerines and other diverse hosts (e.g., humans, cattle, pigs, poultry, other
100 birds such as pigeons and ducks) to determine if passerine-associated *S. Typhimurium* had distinct
101 phylogenetic and genetic signatures.

102

103 **RESULTS**

104 **Phylogenetic relationship of geographically dispersed *S. Typhimurium* from passerines.**
105 A maximum-likelihood phylogenetic tree (Figure 1) was built based on 2,253 single nucleotide
106 polymorphisms (SNPs) in the core genomic regions of 84 publicly available passerine isolates
107 (Table 1; New Zealand: $n = 25$, isolated year: 2000–2009; United States: $n = 33$, isolated year:
108 1978–2019; European countries: United Kingdom: $n = 11$, Sweden: $n = 14$, Germany: $n = 1$,
109 isolated year: 2001–2016) against reference genome of *S. Typhimurium* strain LT2 (RefSeq
110 [NC_003197.1](https://www.ncbi.nlm.nih.gov/nuccore/NC_003197.1)). We found that passerine isolates from Europe clustered to form a lineage
111 (henceforth referred to as the EU passerine lineage). Further, we observed that passerine isolates
112 from the United States clustered to form a lineage (henceforth referred to as the US passerine
113 lineage), and *S. Typhimurium* DT160 isolates from New Zealand clustered to form a sublineage

114 (henceforth referred to as the NZ passerine lineage) of the US passerine lineage (Figure 1). The
115 EU, US, and NZ passerine lineages were supported by robust bootstrap values of 100%. The
116 average SNP distance in the core genome between isolates in the US and NZ passerine lineages
117 was 81, while the average SNP distance in the core genome between isolates in the US, NZ, and
118 EU passerine lineages was 265. Multilocus sequence typing (MLST) indicated that isolates from
119 NZ and US passerine lineages belonged to ST19, whereas the European passerine isolates
120 presented variable STs (*i.e.*, ST19, 568, and 7075).

121 **Emergence time of passerine-associated *S. Typhimurium* lineages in Europe, New
122 Zealand, and the United States.** A time-scaled Bayesian phylogenetic tree was built using
123 BEAST2 (v2.6.5) to infer the emergence time of the passerine lineages (Figure 2). The most recent
124 common ancestor (MRCA) of the passerine isolates was estimated to originate in *ca.* 1840 [95%
125 highest probability density (HPD): 1784–1887]. Based on the Bayesian inference, the MRCA
126 evolved to form the US and EU passerine lineages in *ca.* 1952 (95% HPD: 1942–1960) and *ca.*
127 1970 (95% HPD: 1960–1978), respectively (Figure 2). The NZ passerine lineage formed two
128 sublineages, which emerged in *ca.* 1995 (95% HPD: 1992–1997) and *ca.* 1997 (95% HPD: 1994–
129 1999) (Figure 2). We estimated that the median substitution rate for the 84 passerine isolates was
130 3.2×10^{-7} substitutions/site/year (95% HPD: $1.8\text{--}5.0 \times 10^{-7}$ substitutions/site/year). Median
131 substitution rates for the isolates from the EU and US passerine lineages were 3.2×10^{-7}
132 substitutions/site/year (95% HPD: $1.8\text{--}4.6 \times 10^{-7}$ substitutions/site/year) and 3.6×10^{-7}
133 substitutions/site/year (95% HPD: $2.3\text{--}5.5 \times 10^{-7}$ substitutions/site/year), respectively. The isolates
134 from the NZ passerine lineage mutated at the same rate as the US passerine isolates.

135 **Antimicrobial resistance, plasmid, and virulence gene profiles of passerine-associated *S.*
136 *Typhimurium*.** Antimicrobial resistance (AMR) profiling (Dataset S1) by ResFinder 2.0 detected

137 no AMR genes in isolates from the EU, US, and NZ passerine lineages, except the unexpressed
138 gene *aac(6')-Iaa* (13). Plasmid profiling (Dataset S1) by PlasmidFinder 2.0 suggested that all of
139 the EU passerine isolates (26/26) lacked the *S. Typhimurium*-specific virulence plasmid pSLT
140 (Figure 1). However, all of the passerine isolates (25/25) from New Zealand and one third (11/33)
141 of the US passerine isolates carried this plasmid (Figure 1). Virulence gene profiling by ABRicate
142 against the Virulence Factor Database (VFDB) database detected an average number of 107, 110,
143 and 116 virulence genes in the EU, US, and NZ passerine isolates, respectively (Dataset S1). The
144 absent virulence genes in the EU and US passerine isolates were primarily plasmid mediated [*i.e.*,
145 pSLT-mediated virulence genes: *pefABCD* (plasmid-encoded fimbriae), *rck* (resistance to
146 complement killing), and *spvBCR* (*Salmonella* plasmid virulence)] (Dataset S1; Figure 1). Isolates
147 from the EU, US, and NZ passerine lineages possessed the same chromosomal pseudogenes (*i.e.*,
148 *lpfD* and *ratB*) (Figure 1; Table 2). In addition, isolates from the NZ and US passerine lineages
149 had a single-base deletion mutation in type 1 fimbrial gene *fimC*, which was intact in the EU
150 passerine isolates (Figure 1; Table 2). In contrast, single-base deletion mutation in type 3 secretion
151 system (T3SS) effector genes (*i.e.*, *gogB*, *sseJ*, and *sseK2*) was detected in all of the European
152 passerine isolates, however, most of the US and NZ passerine isolates had a single-base
153 substitution rather than deletion mutation in the *gogB* gene, and their *sseJ* and *sseK2* genes were
154 intact (Figure 1; Table 2).

155 **Population structure of *S. Typhimurium* from passerines and other diverse hosts.** A
156 maximum-likelihood phylogenetic tree (Figure 3A) was built based on 10,065 SNPs in the core
157 genomic regions of passerine isolates ($n = 84$) and context isolates ($n = 112$; Dataset S2) from
158 multiple hosts to represent a broader collection of *S. Typhimurium*. The context isolates formed
159 nine context lineages in the tree (Figure 3A). Six out of the nine context lineages were associated

160 with specific hosts, *i.e.*, DT2 ($n = 13$) and DT99 ($n = 6$) lineages adapted to pigeons, DT8 lineage
161 ($n = 10$) associated with ducks, ST313 lineage ($n = 10$) causing invasive nontyphoidal *Salmonella*
162 diseases in humans, DT204 complex lineage ($n = 9$) primarily infecting cattle, and U288 complex
163 lineage ($n = 20$) majorly found in pigs. Additionally, three out of the nine context lineages had
164 broad host range, which included DT104 complex ($n = 14$), DT193 complex ($n = 9$), and ST34 (n
165 = 21). We found that the EU ($n = 26$), US ($n = 33$), and NZ ($n = 25$) passerine lineages clustered
166 in a large lineage that was distinct from the nine major *S. Typhimurium* lineages circulating
167 globally in different hosts (Figure 3A). The three passerine lineages had the closest genetic
168 relatedness with DT204 complex lineage (primary host: cattle) in the tree (average SNP distance
169 in the core genome ≈ 308). We also generated a neighbor joining (NJ) tree (Figure 3B) of the 84
170 passerine and 112 context isolates based on Enterobase whole-genome MLST. The lineages
171 present in the NJ tree were congruent with those formed in the maximum-likelihood phylogenetic
172 tree based on SNPs (Figure 3B).

173 **Genetic comparison of *S. Typhimurium* from different lineages.** The average number of
174 virulence genes, plasmid replicons, and AMR genes per isolate from a specific *S. Typhimurium*
175 lineage is shown in Figure 4. Isolates from most of the individual *S. Typhimurium* lineages had an
176 average number of 115–116 virulence genes. However, the average number of virulence genes per
177 isolate from the EU, US passerine lineages and ST34 lineage was less than 110 (Figure 4).
178 Similarly, isolates from these three lineages carried fewer plasmid replicons (average number <1)
179 compared to isolates from other lineages (average number >1). In fact, we identified the absent
180 virulence genes were mostly located on pSLT (*i.e.*, *pefABCD*, *rck*, and *spvBCR*) (Table 3).
181 Moreover, all of the isolates from the EU, NZ, US passerine lineages and DT99 lineage (host:
182 pigeon) lacked identifiable AMR genes (average number = 1; the only AMR gene was *aac(6')*-

183 *Iaa*) (Figure 4). However, isolates from lineages with broad host range (average number >4),
184 adapted to humans (ST313: average number \approx 7), or associated with specific livestock (DT204
185 complex: average number \approx 2; U288 complex: average number \approx 8) had more AMR genes (Figure
186 4).

187 We also identified the virulence gene signatures that can discriminate passerine isolates from
188 isolates of other hosts. Compared to isolates from other lineages, pseudogenization of *fimC* (full
189 length: 708 bp; deletion of G at position 87) was unique to isolates from the US and NZ passerine
190 lineages, while pseudogenization of *gogB* (full length: 1,498 bp; deletion of T at position 1,125),
191 *sseJ* (full length: 1,234 bp; deletion of C at position 976), and *sseK2* (full length: 1,047 bp; deletion
192 of A at position 522) only concurred in isolates from the EU passerine lineages (Table 3).

193

194 DISCUSSION

195 Passerine-associated *S. Typhimurium* have a global distribution and are linked to human
196 salmonellosis outbreaks in recent decades. In this study, we explored the emergence, genetic
197 relationship, and evolution of passerine-associated *S. Typhimurium* from Europe, New Zealand,
198 and the United States, and compared the passerine isolates with isolates from diverse hosts. Our
199 study revealed that the EU and US passerine isolates formed two distinct lineages, while the NZ
200 passerine isolates clustered as a sublineage of the US passerine lineage. Further, the emergence of
201 the EU, NZ, and US passerine lineages were relatively recent events. Although the EU and US
202 passerine lineages identified in this study were distinct from each other with different virulence
203 genetic signatures, they clustered in a lineage that was distantly related to the major *S.*
204 *Typhimurium* lineages formed by isolates from multiple hosts (*i.e.*, humans, cattle, pigs, poultry,
205 pigeons, ducks). One of the caveats of the study is a general paucity of whole-genome sequences

206 of passerine isolates from Asia, Africa, South America in public database (e.g., NCBI). Integration
207 of passerine isolates from these locations will improve the robustness of the genomic analysis.

208 Previous epidemiologic survey indicated that passerine salmonellosis was caused by specific
209 *S. Typhimurium* variants. For examples, *S. Typhimurium* DT40 and DT56(v) were the dominant
210 *S. Typhimurium* isolated from passerines suffering from salmonellosis in European countries such
211 as the United Kingdom and Sweden (5, 9, 10). Additionally, *S. Typhimurium* DT160 were
212 demonstrated to be responsible for the human and passerine salmonellosis outbreaks in New
213 Zealand and Australia (7, 8). In the United States, *S. Typhimurium* PFGE (pulsed-field gel
214 electrophoresis) type A3 from pine siskins was identified as the cause of salmonellosis outbreaks
215 both in humans and passerines (11). Although these epidemiologic studies were able to link
216 specific passerine-associated *S. Typhimurium* variants to human and passerine salmonellosis
217 outbreaks through phage typing or PFGE typing, the genetic relationship of these pathovariants
218 from different locations remains unknown. The availability of whole-genome sequences through
219 public database facilitates a high-resolution investigation on the genetic relatedness of globally
220 sourced passerine isolates.

221 The 84 passerine isolates from the United Kingdom, Sweden, Germany, New Zealand, and the
222 United States clustered in a lineage distinct from the *S. Typhimurium* lineages that have broad host
223 range (e.g., humans, livestock, poultry), such as DT104 complex (1), monophasic *S. Typhimurium*
224 ST34 (2), and DT193 complex (14). The passerine lineage also differed from those narrow-host-
225 range lineages such as U288 complex lineage primarily circulating in pigs (15), DT204 complex
226 lineage majorly infecting cattle (16), DT2 (17) and DT99 (3) lineages adapted to pigeons, DT8
227 lineage adapted to ducks (4), and ST313 lineage (18, 19) causing invasive human salmonellosis in
228 sub-Saharan Africa. The distinct phylogenetic lineage formed by geographically dispersed

229 passerine isolates agrees with a previous study, in which [Mather et al. \(2016\)](#) demonstrated that
230 the UK passerine isolates formed a lineage distinct from representative isolates of diverse hosts
231 (e.g., humans, cattle, horses, chicken, pigeons) and geographical regions (20). The phylogenetic
232 signature presented by the passerine isolates from different countries supported the hypothesis that
233 certain *S. Typhimurium* variants have undergone evolution towards a passerine-adapted lifestyle.

234 Host adaptation is often accompanied by loss-of-function mutation or genome degradation (18,
235 21–23). For example, loss of virulence for secondary hosts have been observed in *S. Typhimurium*
236 adapted to pigeons (17). In this study, pseudogenization of *lpfD* and *ratB* due to deletion mutation
237 was found in host-adapted *S. Typhimurium* isolates from the DT2, DT8, DT99, DT204 complex,
238 ST313, and the passerine lineages, except isolates from U288 complex lineage possibly adapted
239 to pigs ([Table 3](#)). Therefore, the two virulence genes may segregate host-adapted *S. Typhimurium*
240 lineages from lineages with broad host range (i.e., ST34, DT104 complex, DT193 complex). In
241 addition, the passerine isolates accumulated virulence pseudogenes other than *lpfD* and *ratB*. The
242 US and NZ passerine isolates had a single-base deletion in type 1 fimbrial gene *fimC*, while the
243 EU passerine isolates had a concurrent single-base deletion in T3SS effector genes *gogB*, *sseJ*, and
244 *sseK2*. It should be noted these virulence genes were intact in almost all of the isolates from other
245 lineages ([Table 3](#)). Therefore, they may be genetic signatures that can discriminate passerine
246 isolates from other-sourced isolates. Further, the *fimC* gene is required for the biosynthesis of type
247 1 fimbriae, which is involved in adhesion to host cells (24). It has been reported that allelic
248 variation in type 1 fimbriae affected *Salmonella* host specificity (22). In addition, a recent study
249 reported that loss-of-function mutations in T3SS effector genes attenuated pathogenicity of *S.*
250 *Typhimurium* to humans or mammals but maintained virulence to avian hosts (25). Taken together,

251 pseudogenization of fimbrial or T3SS effector genes due to frameshift mutation may lead to loss
252 of virulence and contribute to host adaptation of *S. Typhimurium* to the passerine hosts.

253 The plasmid pSLT is an *S. Typhimurium*-specific virulence plasmid that harbors virulence
254 genes such as *pefABCD*, *rck*, and *spvBCR* (26). These virulence genes are important for *S.*
255 *Typhimurium* survival and replication in human and mouse macrophages (25, 27, 28). All of the
256 EU passerine isolates (26/26) and two thirds (22/33) of the US passerine isolates lacked pSLT,
257 while most of the isolates from other lineages except monophasic *S. Typhimurium* ST34 harbored
258 this virulence plasmid (Table 3), indicating that the pSLT-mediated virulence was dispensable for
259 *S. Typhimurium* pathogenesis in passerine hosts. The loss of pSLT in passerine isolates is likely
260 an ongoing process as pSLT is only absent in a partial number of the US and NZ passerine isolates.
261 In addition to lack of pSLT, the EU, US, and NZ passerine isolates also lacked AMR genes with
262 the exception of *aac(6')-Iaa*. The absence of AMR genes occurred in DT99 isolates from feral
263 pigeons as well. In contrast, AMR genes were identified in isolates from other diverse hosts,
264 especially those with broad host range (Figure 4). The lack of AMR genes in globally distributed
265 passerine isolates is consistent with our previous study, which revealed the low occurrence of
266 AMR in *S. Typhimurium* from wild birds in the United States (29). A plausible explanation for the
267 observation is that environments utilized by passerine birds are less exposed to antibiotics
268 compared to those utilized by domestic animals and humans. Therefore, isolates from passernines
269 are rarely subjected to antibiotic selection pressure and thus less likely to develop AMR.

270 The passerine isolates from European countries and the United States formed two lineages
271 closely related to each other (Figure 3; average SNP distance in the core genome \approx 265), suggesting
272 common ancestry for the two lineages (30). Further, Bayesian inference suggested that the MRCA
273 of the two lineages originated from *ca.* 1840 (Figure 2). As the EU and US passerine lineages were

274 more closely related (average SNP distance in the core genome \approx 308) to DT204 complex lineage
275 (primary host: cattle) compared to other lineages in the tree (Figure 3), it is possible that passerine
276 birds acquired the MRCA from domestic animals, potentially cattle. However, more evidence is
277 required to determine the original host of the MRCA and the directionality of transmission. In
278 addition, the emergence of the US, EU, and NZ passerine lineages were estimated after 1950 over
279 short timescales, indicating that host adaptation of *S. Typhimurium* to passerines may be a
280 relatively recent ongoing process driven by anthropogenic influences. The passerine isolates (*i.e.*,
281 *S. Typhimurium* DT160) from New Zealand clustered as a sublineage of the US passerine lineage.
282 Further, the NZ passerine lineage was estimated to emerge in *ca.* 1995–1997 in this study. In a
283 previous study, Bloomfield et al. (2017) reported that the salmonellosis outbreak caused by *S.*
284 *Typhimurium* DT160 resulted from a single introduction into New Zealand between 1996 and
285 1998 (7). However, the origin and source of the outbreak have not been identified. Our study
286 reveals the closely genetic relatedness (average SNP distance in the core genome \approx 81) between
287 isolates from the NZ and US passerine lineages, suggesting that DT160 isolates in New Zealand
288 may have originated from passerines outside Oceania. However, whole-genome sequences of
289 passerine isolates from other locations (*i.e.*, Asia, South America, and Africa) are necessary to
290 conduct further genomic analysis to test this hypothesis.

291 In conclusion, our study demonstrates the importance of whole-genome sequencing and
292 genomic analysis of historical microbial collections. The findings provide insights into host
293 adaptation of *S. Typhimurium* in passerines and are helpful for modern day epidemiologic
294 surveillance. Host-specific genetic signatures identified in this study can aid source attribution of
295 *S. Typhimurium* to avian hosts in outbreak investigation. As passerines are highly mobile and can
296 spread zoonotic pathogens over a large spatial scale, it is important to raise our awareness of

297 passerines as reservoirs of specific *S. Typhimurium* variants. Although these pathovariants only
298 account for a small number of human salmonellosis cases worldwide, control strategies, for
299 example washing hands after contact with wild birds, would be taken to reduce potential
300 transmission between passerines and humans.

301

302 **MATERIALS AND METHODS**

303 **Dataset selection and quality assessment for raw reads.** Passerine-associated *S.*
304 *Typhimurium* isolates (Table 1; New Zealand: $n = 25$, isolated year: 2000–2009; United States: n
305 = 33, isolated year: 1978–2019; European countries: $n = 26$, isolated year: 2001–2016) were
306 derived from wild birds with confirmed salmonellosis over broad temporal and spatial scales, and
307 some of these isolates also had closely genetic relatedness with human clinical isolates (7, 10, 20,
308 31). Therefore, the isolates were chosen to represent *S. Typhimurium* pathovariants emerging
309 worldwide that caused salmonellosis both in humans and passerines. Context *S. Typhimurium*
310 isolates (Dataset S2; $n = 112$) were selected to represent the phylogenetic diversity of this serovar
311 across different hosts and geographic locations, and to compare the genomic differences between
312 isolates from passerines and other multiple hosts. The Illumina paired-end reads of the selected
313 isolates were available at the NCBI database (accession number provided in Table 1 and Dataset
314 S2). The quality of the sequence data was assessed using the MicroRunQC workflow in
315 GalaxyTrakr v2 (32). Raw reads meeting the quality control requirements (*i.e.*, average coverage
316 >30, average quality score >30, number of contigs <400, total assembly length between 4.4–5.1
317 Mb) were used for genomic analysis in this study.

318 **Phylogenetic analysis.** The phylogenetic relationship of the 84 passerine isolates was inferred
319 from their core genomes. Snippy (Galaxy v4.5.0) (<https://github.com/tseemann/snippy>) was used

320 to generate a whole-genome alignment and find SNPs between the reference genome LT2 (RefSeq
321 [NC_003197.1](https://www.ncbi.nlm.nih.gov/nuccore/NC_003197.1)) and the genomes of passerine isolates. Snippy-core (Galaxy v4.5.0)
322 (<https://github.com/tseemann/snippy>) was used to convert the Snippy outputs (*i.e.*, whole-genome
323 alignment) into a core-genome alignment. The resultant core-genome alignment (2,253 SNPs in
324 the core genomic regions) was used to construct a maximum-likelihood phylogenetic tree by
325 MEGA X (v10.1.8) (33) using the Tamura-Nei model and 500 bootstrap replicates. The SNP
326 phylogenetic tree was visualized and annotated using the Interactive Tree of Life (iTOL v6;
327 <https://itol.embl.de>). SNP distance between sequences was calculated using.snp-dists (Galaxy
328 v0.6.3) (<https://github.com/tseemann/snp-dists>). Sequence type (ST) of the *S. Typhimurium*
329 isolates was identified using 7-gene (*aroC*, *dnaN*, *hemD*, *hisD*, *purE*, *sucA*, and *thrA*) MLST at
330 Enterobase (34). STs were then annotated in the SNP phylogenetic tree. We also generated a
331 maximum-likelihood phylogenetic tree of the 84 passerine isolates (Table 1) and 112 context
332 isolates (Dataset S2) from diverse hosts to represent the genetic diversity within serovar
333 Typhimurium. The tree was created based on 10,065 SNPs in the core genomic regions of the 196
334 passerine and context isolates with reference to *S. Typhimurium* LT2 using the Enterobase SNP
335 project (34). In addition, a NJ tree of the 196 passerine and context isolates based on the *Salmonella*
336 whole-genome MLST (21,065 loci) scheme at Enterobase (34) was built to complement the core-
337 genome SNP-based phylogenetic analysis.

338 **Bayesian inference.** A time-scaled Bayesian phylogenetic tree was constructed to determine
339 the divergence times of the *S. Typhimurium* lineages from passerines. The temporal signal of the
340 sequence data was examined using TempEst (35) before phylogenetic molecular clock analysis
341 (Figure S1). The core-genome alignment (2,253 SNPs in the core genomic regions) of passerine
342 isolates ($n = 84$; Table 1) generated previously was used as the input for the time-scaled tree

343 construction. The parameters for constructing the Bayesian phylogenetic tree were set in BEAUti
344 (v2.6.5) (36) as follows: Prior assumption-coalescent Bayesian skyline; Clock model-relaxed
345 clock log normal with the default clock rate value of 1.0; and Markov chain Monte Carlo (MCMC)
346 at chain length-100 million, storing every 1,000 generations. Two independent runs with the same
347 parameters were performed in BEAST2 (v2.6.5) (36) to ensure convergence. The resultant log
348 files were viewed in Tracer (v1.7.2) to check if the effective sample sizes of all parameters were
349 more than 200 and the MCMC chains were converged. A maximum clade credibility tree was
350 created using TreeAnnotator (v2.6.4) (36) with a burn-in percentage of 10% and node option of
351 median height. Finally, the tree was visualized using FigTree v1.4.4
352 (<https://github.com/rambaut/figtree/releases>). To determine the substitution rate for the genome of
353 passerine isolates, we multiplied the substitution rate estimated by BEAST2 (v2.6.5) by the
354 number of analyzed core-genome SNPs (2,253 bp), and then divided the product by the average
355 genome size of the analyzed passerine isolates (4,951,383 bp).

356 **Antimicrobial resistance, virulence, and plasmid profiling.** Raw reads of each isolate were
357 *de novo* assembled using Shovill (Galaxy v1.0.4) (37). ABRicate (Galaxy v1.0.1) (38) was used
358 to identify the AMR genes, virulence factors, and plasmid replicons by aligning each draft genome
359 assembly against the ResFinder database (39), VFDB (40), and PlasmidFinder database (41),
360 respectively. For all searches using ABRicate, minimum nucleotide identity and coverage
361 thresholds of 80% and 80% were used, respectively. Virulence genes that were not 100% identical
362 or covered with the reference virulence gene from VFDB may have deletions, insertions, or
363 substitutions of interest. We then manually checked the mutation type by aligning the virulence
364 gene of interest against the reference virulence gene from VFDB using BLAST
365 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

366 **Data availability.** Sequence data of the *S. Typhimurium* strains are publicly available in the
367 NCBI Sequence Read Archive (<https://www.ncbi.nlm.nih.gov/sra>). Accession numbers are
368 available in [Table 1](#) and [Dataset S2](#).

369

370 **ACKNOWLEDGMENTS**

371 This work is supported by the Food and Drug Administration (US Department of Health and
372 Human Services) (Grant No. 1U19FD007114-01), US Department of Agriculture (Grant No.
373 PEN4522), and Penn State College of Agricultural Sciences. It is also supported in part by the
374 Food and Drug Administration (Grant No. 1U01FD006253-01 to Pennsylvania Department of
375 Health for collaboration in the National Antimicrobial Resistance Monitoring System).

376

377 **AUTHOR CONTRIBUTION**

378 Y.F. designed the study, sequenced the US passerine isolates, collected the globally sourced
379 data from EnteroBase and NCBI, performed the comparative genomic analysis of the data,
380 interpreted the data, and wrote the draft manuscript; N.M.M. and E.G.D. contributed to
381 interpretation of the data and manuscript revision.

382

383 **CONFLICTS OF INTEREST**

384 The authors declare no competing interests.

385

386 **REFERENCES**

387 1. Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC, Harris SR, Brown DJ, Coia
388 JE, Mulvey MR, Gilmour MW, Petrovska L, Pinna E, Kuroda M, Akiba M, Izumiya H,

389 Connor TR, Suchard MA, Lemey P, Mellor DJ, Haydon DT, Thomson NR. 2013.

390 Distinguishable epidemics of multidrug-resistant *Salmonella* Typhimurium DT104 in

391 different hosts. *Science* 341:1514–1517. <https://doi.org/10.1126/science.1240578>

392 2. Petrovska L, Mather AE, AbuOun M, Branchu P, Harris SR, Connor T, Hopkins KL,

393 Underwood A, Lettini AA, Page AJ, Bagnall M, Wain J, Parkhill J, Dougan G, Davies R,

394 Kingsley RA. 2016. Microevolution of monophasic *Salmonella* Typhimurium during

395 epidemic, United Kingdom, 2005–2010. *Emerg Infect Dis* 22:617–624.

396 <https://doi.org/10.3201/eid2204.150531>

397 3. Pasmans F, Van Immerseel F, Heyndrickx M, Martel A, Godard C, Wildemauwe C,

398 Ducatelle R, Haesebrouck F. 2003. Host adaptation of pigeon isolates of *Salmonella*

399 *enterica* subsp. *enterica* serovar Typhimurium variant Copenhagen phage type 99 is

400 associated with enhanced macrophage cytotoxicity. *Infect Immun* 71:6068–6074.

401 <https://doi.org/10.1128/IAI.71.10.6068-6074.2003>

402 4. Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschäpe H, Adams LG, Bäumler AJ.

403 2002. *Salmonella enterica* serotype Typhimurium and its host-adapted variants. *Infect*

404 *Immun* 70:2249–2255. <https://doi.org/10.1128/IAI.70.5.2249-2255.2002>

405 5. Hughes LA, Shopland S, Wigley P, Bradon H, Leatherbarrow AH, Williams NJ, Bennett

406 M, de Pinna E, Lawson B, Cunningham AA, Chantrey J. 2008. Characterization of

407 *Salmonella enterica* serotype Typhimurium isolates from wild birds in northern England

408 from 2005–2006. *BMC Vet Res* 4:1–10. <https://doi.org/10.1186/1746-6148-4-4>

409 6. Lawson B, Hughes LA, Peters T, de Pinna E, John SK, Macgregor SK, Cunningham AA.

410 2011. Pulsed-field gel electrophoresis supports the presence of host-adapted *Salmonella*

411 *enterica* subsp. *enterica* serovar Typhimurium strains in the British garden bird population.

412 *Appl Environ Microbiol* 77:8139–8144. <https://doi.org/10.1128/AEM.00131-11>

413 7. Bloomfield SJ, Benschop J, Biggs PJ, Marshall JC, Hayman DT, Carter PE, Midwinter

414 AC, Mather AE, French NP. 2017. Genomic analysis of *Salmonella enterica* serovar

415 Typhimurium DT160 associated with a 14-year outbreak, New Zealand, 1998–2012.

416 *Emerg Infect Dis* 23:906–13. <https://doi.org/10.3201/eid2306.161934>

417 8. Ford L, Ingle D, Glass K, Veitch M, Williamson DA, Harlock M, Gregory J, Stafford R,

418 French N, Bloomfield S, Grange Z, Conway ML, Kirk MD. 2019. Whole-genome

419 sequencing of *Salmonella* Mississippi and Typhimurium Definitive Type 160, Australia

420 and New Zealand. *Emerg Infect Dis* 25:1690–97. <https://doi.org/10.3201/eid2509.181811>

421 9. Lawson B, De Pinna E, Horton RA, Macgregor SK, John SK, Chantrey J, Duff JP,

422 Kirkwood JK, Simpson VR, Robinson RobertA, Wain J, Cunningham AA. 2014.

423 Epidemiological evidence that garden birds are a source of human salmonellosis in

424 England and Wales. *PLoS One* 9:e88968. <https://doi.org/10.1371/journal.pone.0088968>

425 10. Söderlund R, Jernberg C, Trönnberg L, Pääjärvi A, Ågren E, Lahti E. 2019. Linked

426 seasonal outbreaks of *Salmonella* Typhimurium among passerine birds, domestic cats and

427 humans, Sweden, 2009 to 2016. *Euro Surveill* 24:900074. <https://doi.org/10.2807/1560-7917.ES.2019.24.34.1900074>

428 11. Hernandez SM, Keel K, Sanchez S, Trees E, Gerner-Smidt P, Adams JK, Cheng Y, Ray

429 A, Martin G, Presotto A, Ruder MG, Brown J, Blehert DS, Cottrell W, Maurer JJ. 2012.

430 Epidemiology of a *Salmonella enterica* subsp. *enterica* serovar Typhimurium strain

431 associated with a songbird outbreak. *Appl Environ Microbiol* 78:7290–7298.

432 <https://doi.org/10.1128/AEM.01408-12>

434 12. CDC, Centers for Disease Control and Prevention. 2021. *Salmonella* outbreak linked to
435 wild songbirds [cited 2021 December 10]. <https://www.cdc.gov/salmonella/typhimurium-04-21/index.html>

436

437 13. Salipante SJ, Hall BG. 2003. Determining the limits of the evolutionary potential of an
438 antibiotic resistance gene. *Mol Biol Evol* 20:653–59.
439 <https://doi.org/10.1093/molbev/msg074>

440 14. Bawn M, Alikhan NF, Thilliez G, Kirkwood M, Wheeler NE, Petrovska L, Dallman TJ,
441 Adriaenssens EM, Hall N, Kingsley RA. 2020. Evolution of *Salmonella enterica* serotype
442 Typhimurium driven by anthropogenic selection and niche adaptation. *PLoS Genet*
443 16:e1008850. <https://doi.org/10.1371/journal.pgen.1008850>

444 15. Kirkwood M, Vohra P, Bawn M, Thilliez G, Pye H, Tanner J, Chintoan-Uta C, Branchu P,
445 Petrovska L, Dallman T, Hall N, Stevens MP, Kingsley RA. 2021. Ecological niche
446 adaptation of *Salmonella* Typhimurium U288 is associated with altered pathogenicity and
447 reduced zoonotic potential. *Commun Biol* 4:1–15. <https://doi.org/10.1038/s42003-021-02013-4>

448

449 16. Threlfall J, Ward LR, Rowe B. 1978. Epidemic spread of a chloramphenicol-resistant strain
450 of *Salmonella* typhimurium phage type 204 in bovine animals in Britain. *Vet Rec* 103:438–
451 440. <https://doi.org/10.1136/vr.103.20.438>

452 17. Kingsley RA, Kay S, Connor T, Barquist L, Sait L, Holt KE, Sivaraman K, Wileman T,
453 Goulding D, Clare S, Christine Hale, Seshasayee A, Harris S, Thomson NR, Gardner P,
454 Rabsch W, Wigley P, Humphrey T, Parkhill J, Dougan G. 2013. Genome and transcriptome
455 adaptation accompanying emergence of the definitive type 2 host-restricted *Salmonella*

456 *enterica* serovar Typhimurium Pathovar. *mBio* 4:e00565-13.

457 <https://doi.org/10.1128/mBio.00565-13>

458 18. Van Puyvelde S, Pickard D, Vandelannoote K, Heinz E, Barbé B, de Block T, Clare S,
459 Coomber EL, Harcourt K, Sridhar S, Lees EA, Wheeler NE, Klemm EJ, Kuijpers L,
460 Kalonji LM, Phoba MF, Falay D, Ngbonda D, Lunguya O, Jacobs J, Dougan G,
461 Deborggraeve S. 2019. An African *Salmonella* Typhimurium ST313 sublineage with
462 extensive drug-resistance and signatures of host adaptation. *Nat Commun* 10:1–12.
463 <https://doi.org/10.1038/s41467-019-11844-z>

464 19. Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ, Wenner N,
465 Rodwell EV, Kumwenda B, Zhu X, Bennett RJ, Stenhouse GE, De Silva PM, Webster HJ,
466 Bengoechea JA, Dumigan A, Tran-Dien A, Prakash R, Banda HC, Alufandika L, Mautanga
467 MP, Bowers-Barnard A, Beliavskaia AY, Predeus AV, Rowe WPM, Darby AC, Hall N,
468 Weill FX, Gordon MA, Feasey NA, Baker KS, Hinton JCD. 2021. Stepwise evolution of
469 *Salmonella* Typhimurium ST313 causing bloodstream infection in Africa. *Nat Microbiol*
470 6:327–338. <https://doi.org/10.1038/s41564-020-00836-1>

471 20. Mather AE, Lawson B, de Pinna E, Wigley P, Parkhill J, Thomson NR, Page AJ, Holmes
472 MA, Paterson GK. 2016. Genomic analysis of *Salmonella enterica* serovar Typhimurium
473 from wild passerines in England and Wales. *Appl Environ Microbiol* 82:6728–6735.
474 <https://doi.org/10.1128/AEM.01660-16>

475 21. Langridge GC, Fookes M, Connor TR, Feltwell T, Feasey N, Parsons BN, Seth-Smith
476 HMB, Barquist L, Stedman A, Humphrey T, Wigley P, Peters SE, Maskell DJ, Corander
477 J, Chabalgoity JA, Barrow P, Parkhill J, Dougan G, Thomson NR. 2015. Patterns of

478 genome evolution that have accompanied host adaptation in *Salmonella*. *Proc Natl Acad
479 Sci USA* 112:863–868. <https://doi.org/10.1073/pnas.1416707112>

480 22. Yue M, Han X, De Masi L, Zhu C, Ma X, Zhang J, Wu R, Schmieder R, Kaushik RS,
481 Fraser GP, Zhao S, McDermott PF, Weill FX, Mainil JG, Arze C, Fricke WF, Edwards
482 RA, Brisson D, Zhang NR, Rankin SC, Schifferli DM. 2015. Allelic variation contributes
483 to bacterial host specificity. *Nat Commun* 6:1–11. <https://doi.org/10.1038/ncomms9754>

484 23. Klemm EJ, Gkrania-Klotsas E, Hadfield J, Forbester JL, Harris SR, Hale C, Heath JN,
485 Wileman T, Clare S, Kane L, Goulding D, Otto TD, Kay S, Doffinger R, Cooke FJ,
486 Carmichael A, Lever AML, Parkhill J, MacLennan CA, Kumararatne D, Dougan G,
487 Kingsley RA. 2016. Emergence of host-adapted *Salmonella* Enteritidis through rapid
488 evolution in an immunocompromised host. *Nat Microbiol* 1:1–6.
489 <https://doi.org/10.1038/nmicrobiol.2015.23>

490 24. Werneburg GT, Thanassi DG. 2018. Pili assembled by the chaperone/usher pathway in
491 *Escherichia coli* and *Salmonella*. *EcoSal Plus* 8(1).
492 <https://doi.org/10.1128/ecosalplus.ESP-0007-2017>

493 25. Cohen E, Azriel S, Auster O, Gal A, Zitronblat C, Mikhlin S, Scharte F, Hensel M, Rahav
494 G, Gal-Mor O. 2021. Pathoadaptation of the passerine-associated *Salmonella enterica*
495 serovar Typhimurium lineage to the avian host. *PLoS Pathog* 17:e1009451.
496 <https://doi.org/10.1371/journal.ppat.1009451>

497 26. Hiley L, Graham RM, Jennison AV. 2019. Genetic characterisation of variants of the
498 virulence plasmid, pSLT, in *Salmonella enterica* serovar Typhimurium provides evidence
499 of a variety of evolutionary directions consistent with vertical rather than horizontal
500 transmission. *PloS One* 14:e0215207. <https://doi.org/10.1371/journal.pone.0215207>

501 27. Fàbrega A, Vila J. 2013. *Salmonella enterica* serovar Typhimurium skills to succeed in the
502 host: virulence and regulation. *Clin Microbiol Rev* 26:308–341.
503 <https://doi.org/10.1128/CMR.00066-12>

504 28. Dos Santos AM, Ferrari RG, Conte-Junior CA. 2019. Virulence factors in *Salmonella*
505 Typhimurium: the sagacity of a bacterium. *Curr Microbiol* 76:762–773.
506 <https://doi.org/10.1007/s00284-018-1510-4>

507 29. Fu Y, M'ikanatha NM, Whitehouse CA, Tate H, Ottesen A, Lorch JM, Blehert DS,
508 Berlowski-Zier B, Dudley EG. 2021. Low occurrence of multi-antimicrobial and heavy
509 metal resistance in *Salmonella enterica* from wild birds in the United States. *Environ*
510 *Microbiol*. <https://doi.org/10.1111/1462-2920.15865>

511 30. Fu Y, Smith JC, Shariat NW, M'ikanatha NM, Dudley EG. 2022. Evidence for common
512 ancestry and microevolution of passerine-adapted *Salmonella enterica* serovar
513 Typhimurium in the UK and USA. *Microb Genom* 8:000775.
514 <https://doi.org/10.1099/mgen.0.000775>

515 31. Fu Y, M'ikanatha NM, Lorch JM, Blehert DS, Berlowski-Zier B, Whitehouse CA, Li S,
516 Deng X, Smith JC, Shariat NW, Nawrocki EM, Dudley EG. 2022. *Salmonella enterica*
517 serovar Typhimurium from wild birds in the United States represent distinct lineages
518 defined by bird type. *Appl Environ Microbiol* 88:e01979-21.
519 <https://doi.org/10.1128/AEM.01979-21>

520 32. Timme RE, Wolfgang WJ, Balkey M, Venkata SLG, Randolph R, Allard M, Strain E.
521 2020. Optimizing open data to support one health: best practices to ensure interoperability
522 of genomic data from bacterial pathogens. *One Health Outlook* 2:1–11.
523 <https://doi.org/10.1186/s42522-020-00026-3>

524 33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary
525 genetics analysis across computing platforms. *Molecular Biol Evol* 35:1547–1549.
526 <https://doi.org/10.1093/molbev/msy096>

527 34. Zhou Z, Alikhan NF, Mohamed K, Fan Y, the Agama Study Group, Achtman M. 2020.
528 The Enterobase user's guide, with case studies on *Salmonella* transmissions, *Yersinia*
529 *pestis* phylogeny, and *Escherichia* core genomic diversity. *Genome Res* 30:138–152.
530 <https://doi.org/10.1101/gr.251678.119>

531 35. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. 2016. Exploring the temporal structure
532 of heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol* 2:1–7.
533 <https://doi.org/10.1093/ve/vew007>

534 36. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A,
535 Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie
536 HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH,
537 Xie D, Zhang C, Stadler T, Drummond AJ. 2019. BEAST 2.5: An advanced software
538 platform for Bayesian evolutionary analysis. *PLoS Comput Biol* 15:e1006650.
539 <https://doi.org/10.1371/journal.pcbi.1006650>

540 37. Seemann T. 2016. ABRicate: mass screening of contigs for antibiotic resistance genes.
541 <https://github.com/tseemann/abricate>

542 38. Seemann T. 2017. Shovill: Faster SPAdes assembly of Illumina reads.
543 <https://github.com/tseemann/shovill>

544 39. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe
545 RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G,
546 Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H,

547 Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K,

548 Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. 2020.

549 ResFinder 4.0 for predictions of phenotypes from genotypes. *J Antimicrob Chemother*

550 75:3491–3500. <https://doi.org/10.1093/jac/dkaa345>

551 40. Liu B, Zheng DD, Jin Q, Chen LH, Yang J. 2019. VFDB 2019: a comparative

552 pathogenomic platform with an interactive web interface. *Nucleic Acids Res* 47:D687-

553 D692. <https://doi.org/10.1093/nar/gky1080>

554 41. Carattoli A, Zankari E, García-Fernández A, Larsen MV, Lund O, Villa L, Aarestrup FM,

555 Hasman H. 2014. *In silico* detection and typing of plasmids using PlasmidFinder and

556 plasmid multilocus sequence typing. *Antimicrob Agents Chemother* 58:3895–3903.

557 <https://doi.org/10.1128/AAC.02412-14>

558

559

560

561

562 **Table 1.** Metadata information of the 84 *Salmonella enterica* serovar Typhimurium isolates from
 563 passerines.

Isolate name	Collection year	Continent	Country	Accession number	Source	Source detail	Sequence type
054/01	2001	Europe	United Kingdom	ERS217365	Passeriformes	House sparrow	568
062/01	2001	Europe	United Kingdom	ERS217362	Passeriformes	European greenfinch	19
065/01	2001	Europe	United Kingdom	ERS217360	Passeriformes	House sparrow	19
100/01	2001	Europe	United Kingdom	ERS217364	Passeriformes	European greenfinch	19
108/01	2001	Europe	United Kingdom	ERS217358	Passeriformes	European greenfinch	568
132/06	2006	Europe	United Kingdom	ERS217361	Passeriformes	European greenfinch	568
1356/06	2006	Europe	United Kingdom	ERS217366	Passeriformes	House sparrow	19
1377/06	2006	Europe	United Kingdom	ERS217363	Passeriformes	House sparrow	568
1402/06	2006	Europe	United Kingdom	ERS217356	Passeriformes	European greenfinch	19
1422/05	2005	Europe	United Kingdom	ERS217359	Passeriformes	European greenfinch	568
20-SA01024-0	2020	Europe	Germany	SRS9304518	Passeriformes	Eurasian blue tit	19
S00228-16	2016	Europe	United Kingdom	ERS2028946	Passeriformes	Finch	19
STm SE 01	2016	Europe	Sweden	ERR2617828	Passeriformes	Common redpoll	19
STm SE 02	2016	Europe	Sweden	ERR2617829	Passeriformes	Common redpoll	19
STm SE 03	2016	Europe	Sweden	ERR2617830	Passeriformes	Common redpoll	19
STm SE 04	2016	Europe	Sweden	ERR2617831	Passeriformes	Common redpoll	19
STm SE 05	2016	Europe	Sweden	ERR2617832	Passeriformes	Eurasian bullfinch	19
STm SE 06	2016	Europe	Sweden	ERR2617833	Passeriformes	Eurasian bullfinch	19
STm SE 08	2016	Europe	Sweden	ERR2617835	Passeriformes	Eurasian bullfinch	7075
STm SE 09	2016	Europe	Sweden	ERR2617836	Passeriformes	Eurasian siskin	19
STm SE 10	2016	Europe	Sweden	ERR2617837	Passeriformes	Eurasian siskin	19
STm SE 11	2016	Europe	Sweden	ERR2617838	Passeriformes	Eurasian bullfinch	19
STm SE 12	2016	Europe	Sweden	ERR2617839	Passeriformes	Eurasian bullfinch	19
STm SE 13	2016	Europe	Sweden	ERR2617840	Passeriformes	Eurasian bullfinch	19
STm SE 14	2016	Europe	Sweden	ERR2617841	Passeriformes	Eurasian bullfinch	19
STm SE 15	2016	Europe	Sweden	ERR2617842	Passeriformes	Eurasian bullfinch	19
PSU-2812	1998	North America	United States	SRS7318189	Passeriformes	Evening grosbeak	19
PSU-2813	1998	North America	United States	SRS7318190	Passeriformes	Redpoll	19
PSU-2814	1998	North America	United States	SRS7318191	Passeriformes	American goldfinch	19
PSU-2816	1998	North America	United States	SRS7318193	Passeriformes	White-throated sparrow	19
PSU-2817	1998	North America	United States	SRS7417389	Passeriformes	Redpoll	19
PSU-2819	2000	North America	United States	SRS7318196	Passeriformes	Gold finch	19
PSU-2835	2009	North America	United States	SRS7611982	Passeriformes	Purple finch	19
PSU-2838	2009	North America	United States	SRS7611983	Passeriformes	Pine siskin	19
PSU-2841	2009	North America	United States	SRS7417441	Passeriformes	House sparrow	19
PSU-2847	2011	North America	United States	SRS7417395	Passeriformes	House sparrow	19
PSU-2966	1978	North America	United States	SRS7417415	Passeriformes	House sparrow	19
PSU-3168	1978	North America	United States	SRS7449455	Passeriformes	House sparrow	19
PSU-3169	1979	North America	United States	SRS7718306	Passeriformes	House sparrow	19
PSU-3174	1991	North America	United States	SRS7449460	Passeriformes	Goldfinch	19
PSU-3234	1992	North America	United States	SRS7612006	Passeriformes	Cardinal	19
PSU-3235	1992	North America	United States	SRS7718330	Passeriformes	House sparrow	19
PSU-3236	1992	North America	United States	SRS7612008	Passeriformes	House sparrow	19
PSU-3253	1991	North America	United States	SRS7611956	Passeriformes	Brown-headed cowbird	19
PSU-3337	2018	North America	United States	SRS7840968	Passeriformes	Redpoll	19
PSU-3338	2019	North America	United States	SRS7840979	Passeriformes	Pine siskin	19
PSU-3340	2016	North America	United States	SRS7840996	Passeriformes	House sparrow	19
PSU-3346	2016	North America	United States	SRS7840969	Passeriformes	Red-winged blackbird	19
PSU-3353	2015	North America	United States	SRS7840976	Passeriformes	Red crossbill	19
PSU-3358	2016	North America	United States	SRS7840981	Passeriformes	Pine siskin	19
PSU-3359	2015	North America	United States	SRS7840982	Passeriformes	Red crossbill	19
PSU-3363	2016	North America	United States	SRS7840986	Passeriformes	Redpoll	19
PSU-3367	2018	North America	United States	SRS7840991	Passeriformes	Pine siskin	19
PSU-3374	2018	North America	United States	SRS7841677	Passeriformes	Redpoll	19
PSU-3377	2016	North America	United States	SRS7841693	Passeriformes	Pine siskin	19
PSU-3378	2015	North America	United States	SRS7841694	Passeriformes	Red crossbill	19
PSU-3379	2015	North America	United States	SRS7841695	Passeriformes	Red crossbill	19
PSU-3405	2013	North America	United States	SRS7841689	Passeriformes	Pine siskin	19
PSU-4760	2012	North America	United States	SRS9461411	Passeriformes	American goldfinch	19
DT160_01	2000	Oceania	New Zealand	ERS1456804	Passeriformes	Passerine bird, not specified	19
DT160_02	2007	Oceania	New Zealand	ERS1456799	Passeriformes	Passerine bird, not specified	19
DT160_03	2000	Oceania	New Zealand	ERS1456794	Passeriformes	Passerine bird, not specified	19
DT160_04	2006	Oceania	New Zealand	ERS1456793	Passeriformes	Passerine bird, not specified	19
DT160_05	2008	Oceania	New Zealand	ERS1456792	Passeriformes	Passerine bird, not specified	19
DT160_06	2003	Oceania	New Zealand	ERS1456791	Passeriformes	Passerine bird, not specified	19
DT160_07	2004	Oceania	New Zealand	ERS1456790	Passeriformes	Passerine bird, not specified	19
DT160_08	2003	Oceania	New Zealand	ERS1456787	Passeriformes	Passerine bird, not specified	19
DT160_09	2007	Oceania	New Zealand	ERS1456781	Passeriformes	Passerine bird, not specified	19
DT160_10	2003	Oceania	New Zealand	ERS1456778	Passeriformes	Passerine bird, not specified	19
DT160_11	2005	Oceania	New Zealand	ERS1456773	Passeriformes	Passerine bird, not specified	19
DT160_12	2001	Oceania	New Zealand	ERS1456770	Passeriformes	Passerine bird, not specified	19
DT160_13	2007	Oceania	New Zealand	ERS1456766	Passeriformes	Passerine bird, not specified	19
DT160_14	2009	Oceania	New Zealand	ERS1456765	Passeriformes	Passerine bird, not specified	19
DT160_15	2008	Oceania	New Zealand	ERS1456760	Passeriformes	Passerine bird, not specified	19
DT160_16	2002	Oceania	New Zealand	ERS1456758	Passeriformes	Passerine bird, not specified	19
DT160_17	2009	Oceania	New Zealand	ERS1456757	Passeriformes	Passerine bird, not specified	19
DT160_18	2004	Oceania	New Zealand	ERS1456756	Passeriformes	Passerine bird, not specified	19
DT160_19	2002	Oceania	New Zealand	ERS1456755	Passeriformes	Passerine bird, not specified	19
DT160_20	2002	Oceania	New Zealand	ERS1456754	Passeriformes	Passerine bird, not specified	19
DT160_21	2001	Oceania	New Zealand	ERS1456749	Passeriformes	Passerine bird, not specified	19
DT160_22	2001	Oceania	New Zealand	ERS1456748	Passeriformes	Passerine bird, not specified	19
DT160_23	2005	Oceania	New Zealand	ERS1456744	Passeriformes	Passerine bird, not specified	19
DT160_24	2005	Oceania	New Zealand	ERS1456734	Passeriformes	Passerine bird, not specified	19
DT160_25	2006	Oceania	New Zealand	ERS1456733	Passeriformes	Passerine bird, not specified	19

565 **Table 2.** Mutation of specific chromosome-encoded virulence genes in *Salmonella enterica*
566 serovar Typhimurium isolates from passerines^a.

Chromosome-encoded virulence gene						
	<i>lpfD</i> (length = 1,087 bp)	<i>ratB</i> (length = 7,315 bp)	<i>fimC</i> (length = 708 bp)	<i>gogB</i> (length = 1,498 bp)	<i>sseJ</i> (length = 1,234 bp)	<i>sseK2</i> (length = 1,047 bp)
US passerine lineage (n = 33)	Deletion of GTTGAGAAT at position 406-415 (33/33)	Deletion of T at position 5,814 (33/33)	Deletion of G at position 87 (33/33)	Substitution: T → C at position 238 (30/33); Gene absence (3/33)	Intact gene (30/33); Substitution: A → C at position 1,110 (2/33); Gene absence (1/33)	Intact gene (30/33); Gene absence (1/33); Deletion of A at position 522 (2/33)
NZ passerine lineage (n = 25)	Deletion of GTTGAGAAT at position 406-415 (25/25)	Deletion of T at position 5,814 (25/25)	Deletion of G at position 87 (25/25)	Substitution: T → C at position 238 (23/23); Deletion of A at position 1,006 (1/23)	Intact gene (23/23)	Intact gene (25/25)
EU passerine lineage (n = 26)	Deletion of GTTGAGAAT at position 406-415 (26/26)	Deletion of T at position 5,814 (24/26); Gene absence (2/26)	Intact gene (26/26)	Deletion of T at position 1,125 (26/26)	Deletion of C at position 976 (26/26)	Deletion of A at position 522 (26/26)

567 ^aMutation of specific chromosome-encoded virulence genes is identified by aligning draft genomes from passerine
568 isolates against reference genes from *S. Typhimurium* LT2. Mutation position is determined on the plus strand of the
569 reference genes.

570

571

572

573

574

575

576

577

578

579 **Table 3.** Differences in chromosome- and plasmid-mediated virulence genes between *Salmonella*
 580 *enterica* serovar Typhimurium isolates from diverse lineages^a.

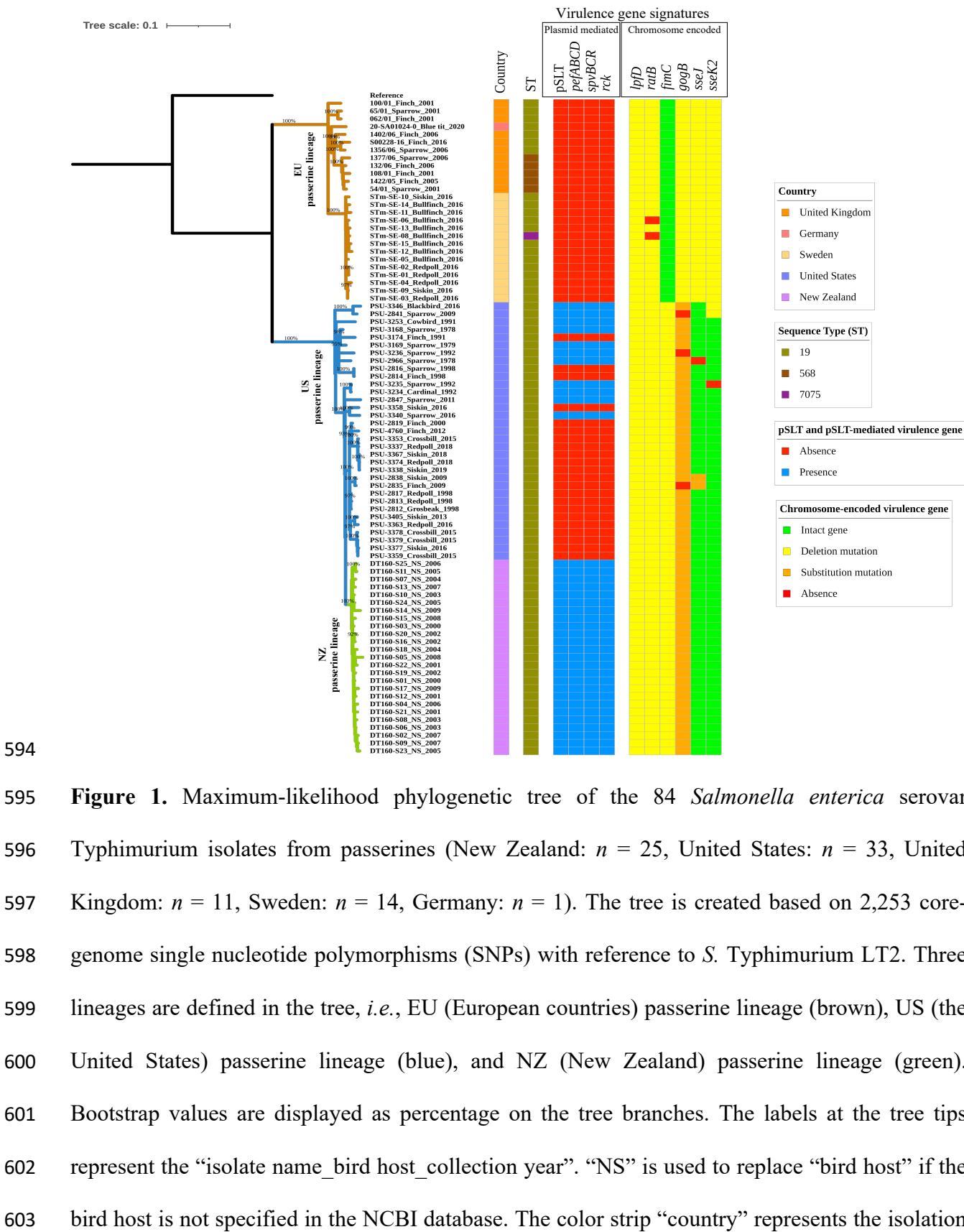
<i>S. Typhimurium</i> lineage (N) ^b	Chromosome-encoded virulence gene (n/N) ^c					pSLT-mediated virulence gene (n/N) ^d					pSLT replicon (n/N) ^e		
	<i>lpfD</i>	<i>ratB</i>	<i>fimC</i>	<i>gogB</i>	<i>sseJ</i>	<i>sseK2</i>	<i>pefABCD</i>	<i>spvB</i>	<i>spvC</i>	<i>spvR</i>	<i>rck</i>	IncFIB(S)	IncFII(S)
EU passerine lineage (26)	26/26	24/26	26/26	26/26	26/26	26/26	0/26	0/26	0/26	0/26	0/26	0/26	0/26
US passerine lineage (33)	33/33	33/33	33/33	30/33	30/33	30/33	11/33	11/33	11/33	11/33	11/33	11/33	11/33
NZ passerine lineage (25)	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25
DT204 complex (9)	9/9	9/9	9/9	9/9	9/9	9/9	8/9	8/9	8/9	9/9	9/9	8/9	9/9
ST313 (10)	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
DT99 (6)	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6
DT8 (10)	10/10	10/10	10/10	9/10	10/10	10/10	9/10	9/10	9/10	9/10	9/10	9/10	9/10
DT2 (13)	13/13	13/13	13/13	13/13	13/13	11/13	12/13	12/13	12/13	12/13	12/13	12/13	12/13
DT104 complex (14)	14/14	14/14	14/14	14/14	14/14	14/14	13/14	14/14	14/14	14/14	13/14	13/14	13/14
DT193 complex (9)	9/9	9/9	9/9	9/9	9/9	9/9	5/9	7/9	7/9	7/9	6/9	0/9	6/9
U288 complex (20)	20/20	16/20	20/20	19/20	20/20	20/20	15/20	18/20	18/20	11/20	20/20	15/20	20/20
<i>S. 4,[5],12:i:-</i> ST34 (21)	21/21	21/21	21/21	20/21	19/21	20/21	0/21	0/21	0/21	0/21	0/21	0/21	0/21

581 ^aGreen: intact gene; Yellow: deletion mutation; Orange: substitution mutation; Blue: presence; Red: absence; Grey:
 582 partial absence.

583 ^bN: the total number of isolates belonging to a specific lineage.

584 ^cn/N: the number of isolates carrying an intact or specific mutant virulence gene/the total number of the isolates
 585 belonging to a specific lineage.

586 ^dn/N: the number of isolates carrying a pSLT-mediated virulence gene/the total number of the isolates belonging to a
 587 specific lineage.


588 ^en/N: the number of isolates carrying a pSLT-associated replicon/the total number of the isolates belonging to a
 589 specific lineage.

590

591

592

593

604 location. The color strip “ST” represents the *S. Typhimurium* multilocus sequence type. The
605 virulence gene signatures identified in this study are categorized into plasmid-mediated and
606 chromosome-encoded, and represented in different color strips.

607

608

609

610

611

612

613

614

615

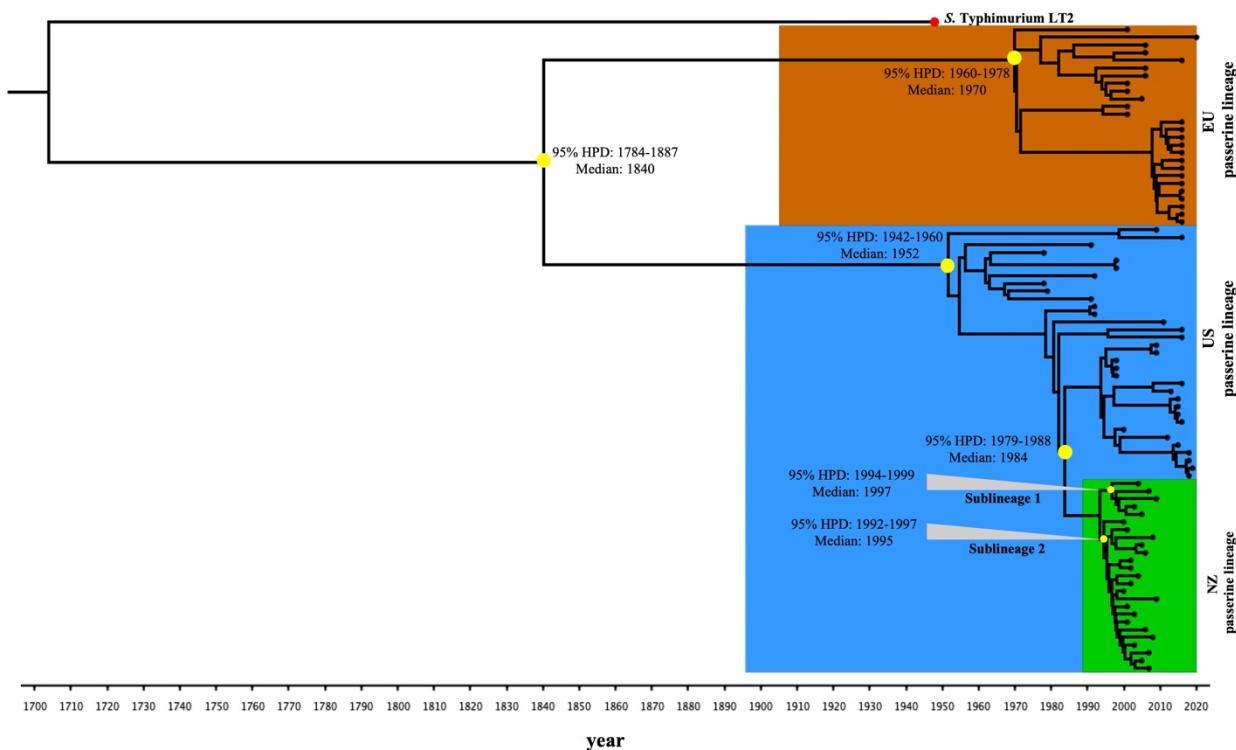
616

617

618

619

620


621

622

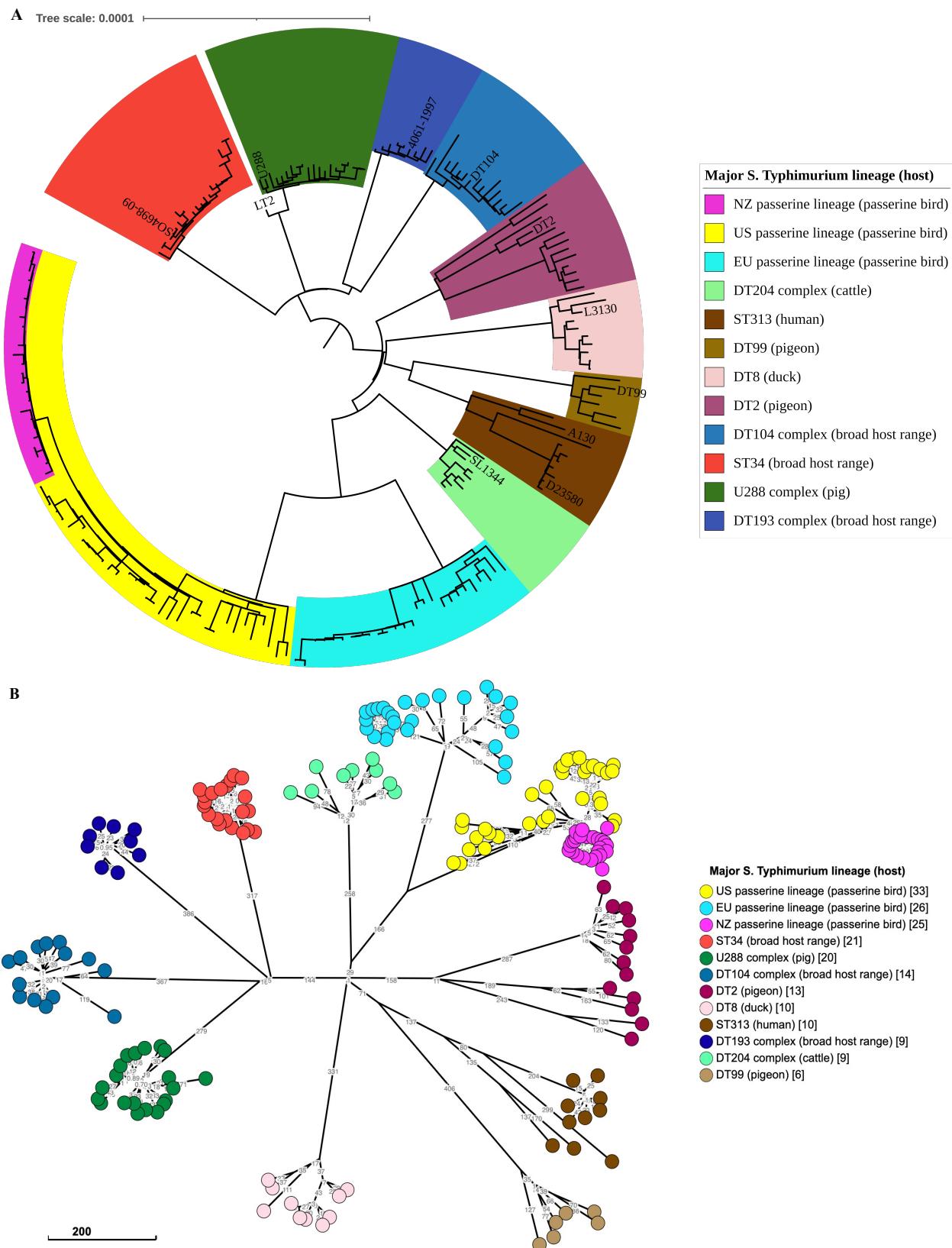
623

624

625

626 **Figure 2.** Time-scaled Bayesian phylogenetic tree of the 84 *Salmonella enterica* serovar
627 Typhimurium isolates from passersines. The EU, US, and NZ passerine lineages are colored in
628 brown, blue, and green in the tree, respectively. Median years or range of years at the tree nodes
629 (yellow circles) represent the 95% highest posterior probability density (HPD) for the times of
630 most recent common ancestor for representative divergent events. The red circle at the tree tip
631 represents the reference strain LT2 (collection year: *ca.* 1948). The posterior probability values of
632 representative divergent events (yellow circles at tree nodes) are >95%.

633


634

635

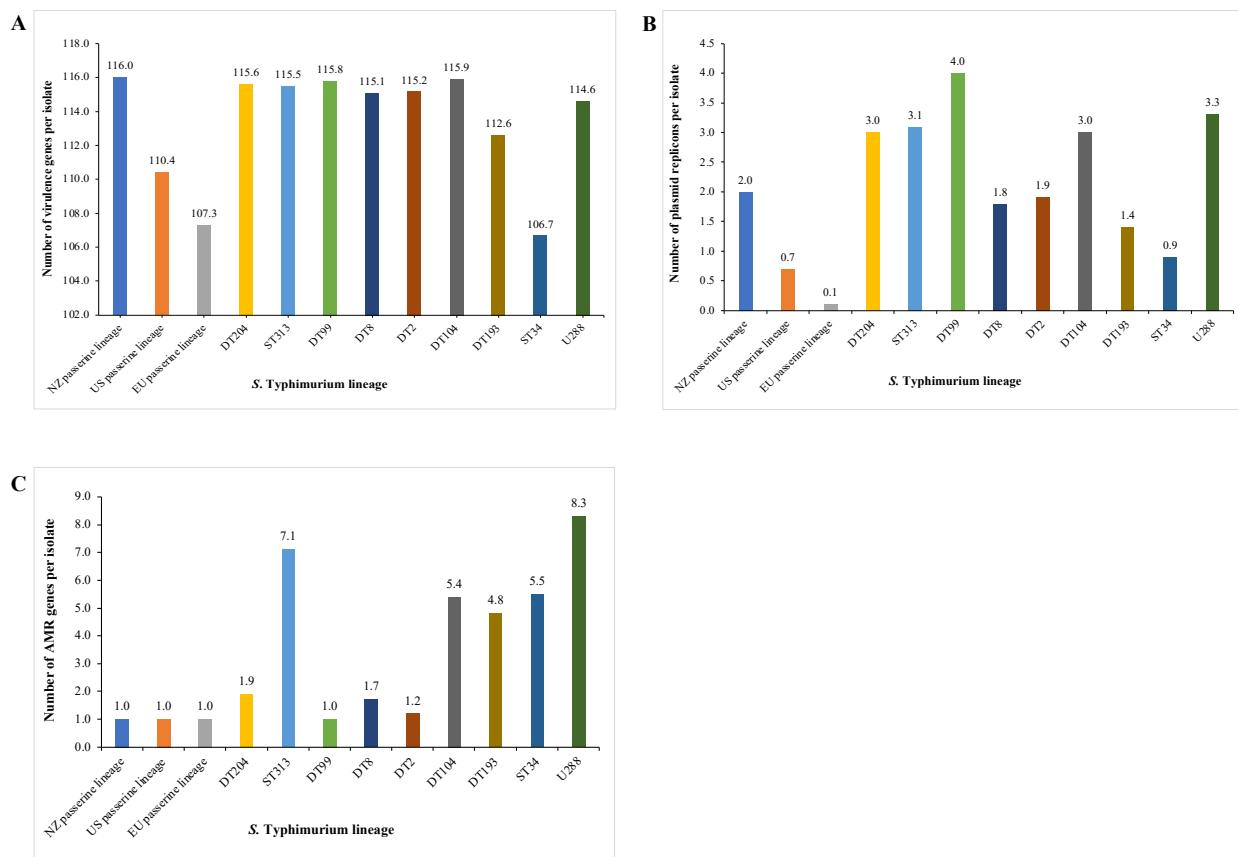
636

637

638

640 **Figure 3. (A)** Maximum-likelihood phylogenetic tree of the 196 *Salmonella enterica* serovar
641 Typhimurium isolates from various hosts representing the genetic diversity within the serovar. The
642 tree is created based on 10,065 core-genome single nucleotide polymorphisms (SNPs) with
643 reference to *S. Typhimurium* LT2 and rooted at midpoint. Color ranges in the tree represent the
644 major *S. Typhimurium* lineages identified in the literature and in this study. Labels at the tree tips
645 represent the representative isolates from individual lineages. The legend field at the right of the
646 tree represents the *S. Typhimurium* lineage (primary host). Broad host range in parentheses
647 indicates that isolates from the corresponding lineage are commonly identified among humans,
648 cattle, pigs, poultry, and other hosts or environmental niches. The specific host in parentheses
649 indicates that isolates from the corresponding lineage are primarily from that specific host. **(B)**
650 Neighbor joining tree of the 196 *S. Typhimurium* isolates from various hosts. The tree is created
651 based on allelic differences in the 21,065 loci of the whole-genome multilocus sequence typing
652 (wgMLST) *Salmonella* scheme with GrapeTree at Enterobase. The major *S. Typhimurium*
653 lineages are highlighted in colors in the tree. The legend field at the right of the tree represents the
654 *S. Typhimurium* lineage (primary host) [number of isolates in the lineage]. The scale bar indicates
655 200 wgMLST alleles. Allele differences between isolates are indicated by numbers on the
656 connecting lines.

657


658

659

660

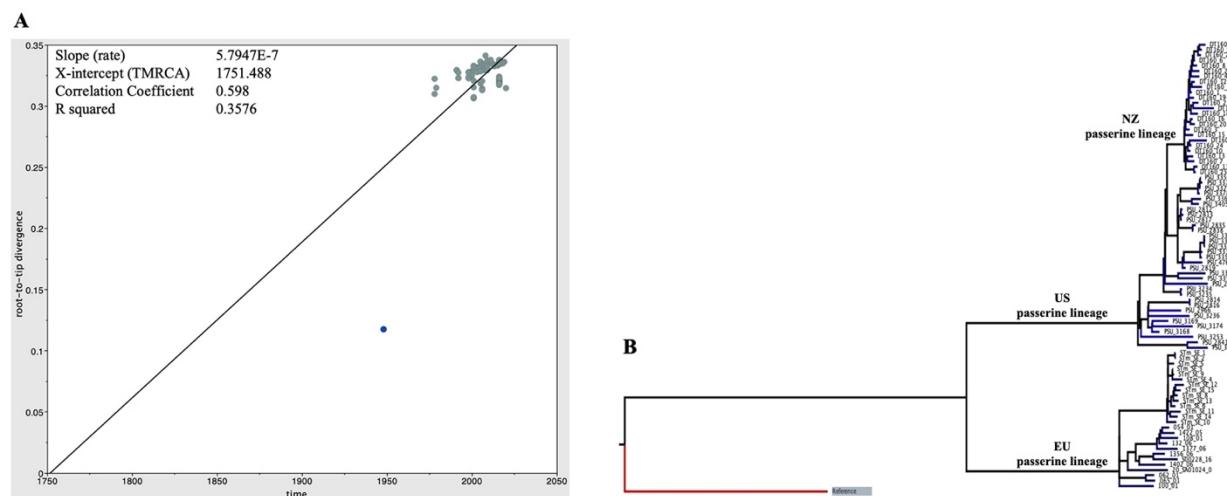
661

662

663

664 **Figure 4. (A)** Number of virulence genes per isolate detected in a specific *Salmonella enterica*
665 serovar Typhimurium lineage. **(B)** Number of plasmid replicons per isolate detected in a specific
666 *S. Typhimurium* lineage. **(C)** Number of antimicrobial resistance(AMR) genes per isolate detected
667 in a specific *S. Typhimurium* lineage.

668


669

670

671

672

673

674

675 **Figure S1.** Temporal signal of the 84 *S. Typhimurium* genome sequences from passerine birds
676 used for Bayesian inference. **(A)** Root-to-tip regression plot showing regression of genetic distance
677 against sampling time. **(B)** Phylogeny of 84 *S. Typhimurium* genome sequences from passerine
678 birds. The EU, US, and NZ passerine lineages are indicated on the phylogenetic tree branches.
679 Reference genome from *S. Typhimurium* LT2 is highlighted in blue in **(A)** and shaded in grey in
680 **(B)**.

681

682

683

684

685

686

687

688

689

690 **Supplementary Dataset Legend**

691 **Dataset S1.** *In silico* virulence, antimicrobial resistance (AMR), and plasmid profiles of the public
692 available *Salmonella enterica* serovar Typhimurium isolates from passerine birds ($n = 84$) and
693 other diverse hosts ($n = 112$).

694

695 **Dataset S2.** Metadata information of the 112 context *Salmonella enterica* serovar Typhimurium
696 isolates from diverse hosts.