

1 **Identification of genetic loci in lettuce mediating quantitative resistance to fungal pathogens**

2
3 Harry Pink^{1*}, Adam Talbot^{1*}, Abi Graceson², Juliane Graham², Gill Higgins¹, Andrew Taylor³, Alison C.
4 Jackson³, Maria Truco⁴, Richard Michelmore⁴, Chenyi Yao⁵, Frances Gawthrop⁵, David Pink², Paul
5 Hand², John P. Clarkson³ and Katherine Denby¹

6
7 ¹ Centre for Novel Agricultural Products (CNAP), Biology Department, University of York, Wentworth
8 Way, York, YO10 5DD

9 ² Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10
10 8NB

11 ³ School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF

12 ⁴ Genome Center, University of California Davis, One Shields Ave, Davis, California, USA, 95616

13 ⁵ A. L. Tozer Ltd., Pyports, Downside Road, Cobham, Surrey, KT11 3EH

14
15 * These authors contributed equally to this research

16 Corresponding author: Katherine Denby, Katherine.denby@york.ac.uk, +44 1904 328751

17
18

19 ORCID:

20 Harry Pink: 0000-0001-6026-978X

21 Adam Talbot: 0000-0002-5821-6336

22 Abi Graceson: 0000-0001-6580-2184

23 Maria Truco: 0000-0002-0144-7870

24 Richard Michelmore: 0000-0002-7512-592X

25 John Clarkson: 0000-0001-5931-933X

26 Paul Hand: 0000-0003-3116-2830

27 Katherine Denby: 0000-0002-7857-6814

28

29 **Abstract**

30 *Lactuca sativa* L. (lettuce) is an important leafy vegetable crop grown and consumed globally.
31 Chemicals are routinely used to control major pathogens, including the causal agents of grey mould
32 (*Botrytis cinerea*) and lettuce drop (*Sclerotinia sclerotiorum*). With increasing prevalence of pathogen
33 resistance to fungicides and environmental concerns, there is an urgent need to identify sources of
34 genetic resistance to *B. cinerea* and *S. sclerotiorum* in lettuce. We demonstrated genetic variation for
35 quantitative resistance to *B. cinerea* and *S. sclerotiorum* in a set of 97 diverse lettuce and wild relative
36 accessions, and between the parents of lettuce mapping populations. Transcriptome profiling across
37 multiple lettuce accessions enabled us to identify genes with expression correlated with resistance,
38 predicting the importance of post-transcriptional gene regulation in the lettuce defence response. We
39 identified five genetic loci influencing quantitative resistance in a F_{10} mapping population derived from
40 a *Lactuca serriola* (wild relative) x lettuce cross, which each explained 5–10% of the variation.
41 Differential gene expression analysis between the parent lines, and integration of data on correlation

42 of gene expression and resistance in the diversity set, highlighted potential causal genes underlying
43 the quantitative trait loci.

44

45 **Keywords:** lettuce; disease resistance; quantitative genetics; *Botrytis cinerea*; *Sclerotinia sclerotiorum*;
46 transcriptomics

47

48 **Author Contribution Statement**

49 The study was conceived and designed by KD, JC, CY, FG, PH and DP. Experimental work and initial data
50 analysis were carried out by AT, GH, JB, JG, AT, AJ and AG with further data analysis and data
51 interpretation performed by HP, KD, JC, PH and DP. The mapping population was generated and
52 genotyped by MT and RM. The manuscript was written by AT, HP and KD with input from all authors.
53 All authors have approved the submission of this manuscript.

54

55 **Acknowledgements**

56 We would like to thank the UK Vegetable Genebank housed at the University of Warwick for provision
57 of seed of the lettuce diversity set and Sally James of the University of York Biology Technology Facility
58 for generating the RNA sequencing libraries. We also thanks Josie Brough for technical assistance.
59

60

61 **Key Message**

62 We demonstrate genetic variation for quantitative resistance against important fungal pathogens in
63 lettuce and its wild relatives, map loci conferring resistance and predict key molecular mechanisms
64 using transcriptome profiling.
65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83 **Introduction**

84 *Lactuca sativa* L. (lettuce) is an economically valuable leafy vegetable with production worth more
85 than £200 million in the UK (Defra Horticulture Statistics, 2020) and \$2.4 billion in the USA (USDA-
86 NASS, 2019). Lettuce is susceptible to a wide range of plant pathogens including the fungal necrotrophs
87 *Botrytis cinerea* Pers. and *Sclerotinia sclerotiorum* (Lib.) de Bary, the causal agents of grey mould and
88 lettuce drop, respectively. *B. cinerea* was ranked second for fungal pathogens of scientific and
89 economic importance (Dean et al. 2012) while up to 50% of lettuce yields may be lost due to *S.
90 sclerotiorum* (Young et al. 2004). Chemical control is routinely used but there is an urgent need to
91 identify sources of host genetic resistance given the costs of preventative pesticide sprays, the
92 prevalence of fungicide-resistant isolates of both pathogens in the field (Zhou et al. 2014; Rupp et al.
93 2017; Hou et al. 2018) and the increasing withdrawal of approved fungicides through legislation.

94 Pathogens with a biotrophic lifestyle parasitize and extract nutrients from living plant tissue, whereas
95 necrotrophic pathogens rapidly kill their host, extracting nutrients from the dead tissue. A plant's
96 response to infection varies depending on the pathogen lifestyle (Mengiste 2012). Complete disease
97 resistance against specific isolates of biotrophic pathogens is often seen, conferred by a single
98 dominant host gene. Many of these genes encode nucleotide binding leucine rich-repeat (NLR)
99 proteins, which directly or indirectly detect the presence of pathogen effectors (virulence factors
100 delivered into host cells to aid infection)(Cui et al. 2013). Similarly, resistance to host-specific
101 necrotrophic pathogens, such as *Cochliobolus carbonum*, the causal agent of northern leaf spot in
102 maize, is controlled by single gene traits conferring toxin sensitivity on susceptible host plants
103 (Panaccione et al. 1992). In contrast, resistance to broad-host range necrotrophic pathogens (of which
104 *B. cinerea* and *S. sclerotiorum* are prime examples) is usually a quantitative trait, with a continuum of
105 phenotypes rather than two distinct classes of resistant and susceptible (Corwin and Kliebenstein
106 2017). This quantitative resistance is controlled by multiple genes with small to moderate effects (Roux
107 et al. 2014).

108 Molecular analyses, mostly in the model plant *Arabidopsis*, have identified numerous components of
109 the plant response to infection by *B. cinerea* (AbuQamar et al. 2017) and *S. sclerotiorum* (Wang et al.
110 2019) incorporating pathogen detection, signal transduction and activation of host defences. For many
111 of these individual components, mutants (knock-outs or overexpressors) have been used to assess
112 their impact on disease outcome. However, these single-gene transgenic studies are much more
113 difficult in non-model plants and do not help us understand the genetic variation in natural or managed
114 populations, nor the relative contribution different genes/loci make to overall plant resistance. Genetic
115 loci contributing to quantitative disease resistance (QDR) against *B. cinerea* have been mapped in a
116 number of different plant species including *Arabidopsis* (Denby et al. 2004; Rowe and Kliebenstein
117 2008; Coolen et al. 2019), tomato (Finkers et al. 2007; Szymański et al. 2020), *Brassica rapa* (Zhang et
118 al. 2016) and *Gerbera hybrida* (Fu et al. 2017). Multiple studies investigating QDR against *S.
119 sclerotiorum* in *B. napus*, sunflower and soybean using quantitative trait loci (QTL) mapping and
120 genome-wide association studies (GWAS) (reviewed in (Wang et al. 2019) have identified many loci,
121 each with a minor effect on QDR. However, what is lacking is knowledge of the molecular mechanisms
122 underlying these loci. Recombination frequency within mapping populations and linkage
123 disequilibrium in association panels typically limit resolution of the loci. Co-localisation of genetic loci
124 for different traits (such as those mediating the accumulation of specific metabolites with QTL
125 controlling QDR against *B. cinerea*) can be informative in predicting causal genes or mechanisms. For
126 example, camalexin accumulation QTL co-localised with QTL influencing lesion size after *B. cinerea*
127 infection in *Arabidopsis* (Rowe and Kliebenstein 2008) and QTL in *B. rapa* controlling the accumulation
128 of glucosinolates were co-localised with *B. cinerea* resistance QTL (Zhang et al. 2016). Szymański et al.

129 (Szymański et al. 2020) combined metabolic QTL and expression QTL with QTL mediating tomato fruit
130 resistance to *B. cinerea* to predict specific flavonoids important for host resistance.

131 In lettuce, QTL mapping has been used extensively to characterise dominant resistance phenotypes
132 against the oomycete pathogen *Bremia lactucae*, which causes downy mildew. More than 30 downy
133 mildew resistance genes have been identified (Parra et al. 2016, 2021). However, mapping of genetic
134 determinants of QDR in lettuce against *B. cinerea* or *S. sclerotiorum* is in its infancy. Recently, two QTL
135 were reported for field resistance to lettuce drop in the Reine des Glaces × Eruption mapping
136 population (Mamo et al. 2019). However, lettuce drop can be caused by both *S. sclerotiorum* and
137 *Sclerotinia minor* and in this case the fields were inoculated with *S. minor*, which has a different
138 infection strategy (infection via mycelia in the soil) than *S. sclerotiorum* (infection via germinating
139 ascospores). To our knowledge no lettuce QTL have been reported for QDR against *B. cinerea* or *S.*
140 *sclerotiorum*.

141 Here we demonstrate genetic variation in resistance to *B. cinerea* and *S. sclerotiorum* in a lettuce
142 diversity set (Walley et al. 2017) including *L. sativa* cultivars and wild relatives and exploit a bi-parental
143 mapping population to identify QTL mediating resistance to both pathogens. Transcriptome profiling
144 of a selection of the diversity set lines identified genes with expression correlated with disease
145 resistance and highlighted post-transcriptional gene regulation (in particular, gene silencing) and
146 pathogen recognition as determinants of resistance. Moreover, we integrated the diversity set and
147 mapping population parent line transcriptome data to predict causal genes underlying the QTL.

148 **Methods**

149 *Lettuce lines and plant growth*

150 The Diversity Fixed Foundation Set (DFFS) comprises 96 lettuce accessions selected from the lettuce
151 collection at the UK Vegetable Genebank, Wellesbourne, UK and the international *Lactuca* collection
152 at the Centre for Genetic Resources, Netherlands. The set includes 17 wild species as well as a range
153 of cultivated varieties (Walley et al. 2017). For detached leaf inoculation assays, two lettuce seeds for
154 each line were sown into 9 cm x 9 cm x 10 cm plastic pots filled with well-packed Levington's M2
155 growing media (Harper Adams University) or into 56 mm x 56 mm x 50 mm plug plant cells filled with
156 well-packed Levington's F2S growing media (Universities of Warwick and York). The seeds were
157 covered with a thin layer of vermiculite and watered frequently to ensure the growing media remained
158 damp. Following germination, seedlings were thinned to one per pot. Plants were grown in a
159 glasshouse with supplemental lighting provided for 16 hours and heating set to 18°C. Experiments
160 were carried out at Harper Adams University (52°46'46.02"N, 2°25'37.68"W), University of Warwick
161 (52°12'37.31"N, 1°36'0.42"W) and University of York (53°56'44.16"N, -1°03'28.44"W) between 2015
162 and 2017 (Table 2).

163 *Infection assays*

164 The *S. sclerotiorum* isolate L6 was used in all experiments (Taylor et al. 2018). Sclerotia and apothecia
165 were produced and ascospores captured onto filter paper as described by (Clarkson et al. 2014). Spore
166 suspensions were prepared by agitating a section of filter paper in 5 mL distilled water until the water
167 appeared cloudy. The suspension was filtered through two layers of miracloth and diluted to 5x10⁵
168 spores per mL following counts using a haemocytometer. *B. cinerea* inoculum (pepper isolate)(Denby
169 et al. 2004) was prepared by inoculating sterile tinned apricot halves. The inoculated apricot halves
170 were sealed in Petri dishes and left in the dark at 25°C for 14 days to facilitate sporulation. Spore
171 suspensions of *B. cinerea* were prepared by washing off conidiospores in 3 mL distilled water and
172 filtering through two layers of miracloth. The suspension was again diluted to 5x10⁵ spores per mL.

173 The third leaf from four-week-old lettuce plants was removed and placed on 0.8% (w/v) agar in
174 sealable propagator trays. Leaves that were damaged were discarded. Each leaf was inoculated with a
175 5 µL drop of either *S. sclerotiorum* or *B. cinerea* spore suspension on either side of the mid-vein. The
176 trays of leaves were covered to maintain humidity and placed in a controlled environment cabinet at

177 22°C, 80% humidity and a cycle of 12 h light:12 h dark. Overhead photographs were taken of each tray
178 between 48 h and 72 h post-inoculation (hpi) including a scale bar to enable measurement of lesion
179 area using ImageJ2. Overlapping lesions, lesions that had spread to the leaf edge or lesions that had
180 failed to initiate were not measured. For assessment of the complete diversity set one leaf (two
181 inoculation sites) of each lettuce line was included in a single experiment, and experiments were
182 repeated for ten consecutive weeks. To compensate for differences between experimental replicates
183 and missing lesions, a REML was used to identify sources of variation between square root lesion size.
184 Means were predicted using the least-squares method.

185 For the assessment of lesion size coupled to gene expression, sixteen lines were used in experiments
186 with both pathogens, with a further 10 lines inoculated with a single pathogen (five with *B. cinerea*;
187 five with *S. sclerotiorum*). Detached leaf infection assays were carried out using three replicate leaves
188 of each accession for each pathogen (apart from eight varieties with two replicates for *S. sclerotiorum*
189 infection and four varieties with two replicates for *B. cinerea* infection) giving 114 leaves in total. Lesion
190 size was measured at 42 hpi for *S. sclerotiorum* and 46 hpi for *B. cinerea* (Supplementary Dataset 3)
191 with leaves harvested at 43 hpi (*S. sclerotiorum*) and 48 hpi (*B. cinerea*) for transcriptome profiling.

192 For assessment of lesion size in the mapping population in each replicate 120 lines were grown to four
193 weeks old before leaf 3 was detached and placed on agar prior to droplet inoculation. This was
194 repeated in a randomised design to a total of eight experiments. Mean lesion size per line was
195 estimated using a least squares method.

196 *Polytunnel Assay*

197 Whole-head lettuce disease assays for both *B. cinerea* and *S. sclerotiorum* were performed in duplicate
198 at the University of Warwick and Harper Adams University. Eighteen plants per accession (per
199 pathogen inoculation) were grown to 4 weeks old in the glasshouse (as above) before being
200 transplanted to 24 cm diameter pots in Levington's F2S soil. Plants were placed in a blocked
201 randomisation design within a sealed polytunnel. Spores were collected as above in 500 mL sterile
202 distilled water and diluted to 1×10^5 spores/mL before being sprayed directly onto each plant using a
203 hand-sprayer. Plants were sprayed with inoculum until saturation and inoculum run off, and irrigated
204 via spray irrigation from 1.5 m tall irrigators every 2 hours from 6 am until 2 am the next day, for 10
205 minutes at each interval. Plants were assessed twice weekly, with the following scale: 0 – no
206 symptoms, 1 – visible lesions on lower leaves, 2 – visible lesions on majority of leaves, 3 – severe
207 disease symptoms over entire plant, 4 – total plant collapse. Plants were monitored to 6 weeks post-
208 transplanting for disease symptoms. Area under the disease progression curve (AUDPC) was calculated
209 using the trapezoid rule with the *Agricolae* R package. ANOVA was used to determine significant
210 differences in variation followed by a Tukey HSD test to determine significant differences between
211 varieties.

212 *QTL analysis*

213 The RIL population of 234 F₆ lines generated from crossing the Armenian *L. serriola* 999 and *L. sativa*
214 PI251246, including genotyping of the population and generation of a genetic map using 2677 markers,
215 was previously described (Han et al. 2021). Minimal linkage disequilibrium was observed, and QTL
216 analysis was performed in the R/qtl package (Broman et al. 2003). Recombination fraction was
217 estimated using the est.rf function. The least-squares predicted mean of square-root lesion size (mm²)
218 was used as the phenotyping score for each RIL. 'calc.genoprob' was used (with an error probability of
219 0.001 and a step-limit of 2 cM), which utilises hidden Markov models to estimate true underlying
220 genotype between markers. A single QTL scan was performed, using 'scancode' as a preliminary
221 measure using Haley-Knott regression (Haley and Knott 1992), for which the significance threshold was
222 calculated by a permutation test of 1,000 imputations with an alpha value of 0.05. A search for epistatic
223 interactions between loci was conducted using 'scantwo' with significance calculated based on a
224 permutation test (750 imputations). QTL above the permutation threshold for either algorithm were
225 then fitted to the multi-QTL model selection pipeline using 'makeqtl' and 'fitqtl'. Percentage variance

226 explained statistics were calculated by 'fitqtl'. Once fitted, 'addqtl' was used to search for additional
227 QTL missed by the preliminary scan. Peak QTL positioning was further adjusted using 'refineqtl'. Finally,
228 a forward/backwards selection model was applied with 'stepwiseqtl' to give the final QTL, with model
229 penalties calculated at an alpha level of 0.05 (Manichaikul et al. 2009). Haley-Knott regression (Haley
230 and Knott 1992) was used for the model selection stages. Epistatic interactions between the QTL loci
231 were passed to the 'stepwiseqtl' algorithm, but none passed the significance threshold. To identify
232 confidence regions surrounding each QTL, 'lodint' was used, a size of 1.5 Logarithm of the odds score
233 (LOD) around each QTL peak was selected and expanded to the next marker. Flanking markers of the
234 1.5LOD confidence interval were mapped back to the *Lactuca sativa* cv. Salinas v8 genome (Reyes-
235 Chin-Wo et al. 2017) to identify genes located within the QTL. Another R package, LinkageMapView
236 was used to visualise the genetic map (Ouellette et al. 2017).

237 *Gene Expression profiling*

238 Leaves were infected with *S. sclerotiorum* (Taylor et al. 2017) or *B. cinerea* as per the detached leaf
239 assays outlined above, and samples were harvested using a size 6 cork borer centred on the lesion. All
240 expression profiling experiments used *B. cinerea* pepper isolate (Windram et al. 2012). For *S.*
241 *sclerotiorum* the L6 isolate was used for the diversity set and mapping population parent expression
242 analysis, with the P7 isolate used for response to infection expression (mock vs. inoculated). Infected
243 tissue was snap frozen in liquid nitrogen before RNA extraction using Trizol (Thermo Fisher Scientific)
244 with a lithium chloride purification. Sequencing libraries were prepared using the Illumina TruSeq RNA
245 V2 kit and sequenced using a HiSeq 2500 generating 100 bp paired-end reads or HiSeq 4000 with 75
246 bp paired-end reads. Read quality was checked with FastQC (Wingett and Andrews 2018). Sequencing
247 reads were aligned to a combined lettuce-pathogen transcriptome using Kallisto (Bray et al. 2016).
248 Counts were summarised at the gene level and differential expression analysis was performed using
249 the Limma-Voom pipeline (Law et al. 2014) with a threshold of $\geq 1.2 \log_2$ fold change. Principal
250 component analysis was performed on gene counts using the "prcomp" function in R and Euclidean
251 distance between samples was used for hierarchical clustering.

252 *Lesion Size-Gene Expression Correlation*

253 Diversity set reads aligned to lettuce genes were normalised using the trimmed mean of M-values from
254 edgeR (Robinson et al. 2010). Genes with low expression (under 50 counts) and transcripts with low
255 variance ($< 1.2 \log FC$ between samples) were removed. Spearman correlations were calculated for the
256 relationship between trimmed mean of M expression values and square-root lesion size for each gene
257 (23,111 in *S. sclerotiorum* and 23,164 in *B. cinerea*). Correlation p-values were calculated using *cor.test*
258 in R and corrected using the Benjamini-Hochberg method (Benjamini and Hochberg 1995).

259 *Gene-ontology (GO) Enrichment Analysis*

260 GO enrichment analysis was performed for genes whose expression significantly correlated with
261 increased pathogen resistance or susceptibility using the *org.At.tair.db* and *clusterprofiler* R packages
262 (Wu et al. 2021). Arabidopsis orthologs are taken from (Reyes-Chin-Wo et al. 2017).

263 **Results**

264 *Lettuce accessions vary in lesion development after inoculation with *S. sclerotiorum* or *B. cinerea**

265 A detached leaf assay was previously developed for infection of Arabidopsis by *B. cinerea* and shown
266 to be effective in quantitative assessment of lesion development and correlated with fungal growth
267 within the leaf (Windram et al. 2012). We had also used a similar assay to evaluate susceptibility to *S.*
268 *sclerotiorum* in multiple Brassica lines (Taylor et al. 2017). We adapted these assays to measure lesion
269 development in lettuce after inoculation with the two closely related necrotrophic fungal pathogens
270 (*B. cinerea* and *S. sclerotiorum*) to assess susceptibility to disease. Using these quantitative assays, we
271 measured lesion size in 97 lettuce accessions (96 lines comprising a Diversity Fixed Foundation set
272 (Walley et al. 2017) plus the cultivar Lolla Rossa) after inoculation with *B. cinerea* or *S. sclerotiorum*

273 spores (Supplementary Dataset 1). Crucially, although these assays use detached leaves, they use
274 spores (ascospores of *S. sclerotiorum* and conidiospores of *B. cinerea*) to mimic the type of infection
275 occurring naturally. This contrasts with the commonly used *S. sclerotiorum* inoculation method of
276 mycelial plugs (Joshi et al. 2016; Barbacci et al. 2020; Chittem et al. 2020). With occasional lack of plant
277 growth and/or lack of infection from the droplet, the average number of lesions (and leaves) per
278 lettuce line inoculated with *B. cinerea* was 16 (eight leaves) and for *S. sclerotiorum* 17 (seven leaves).
279 Restricted Maximum Likelihood (REML) least-squares predicted mean lesion size was calculated for
280 each lettuce accession to account for variation between replicate experiments.

281 The lettuce diversity set clearly contains genetic variation for susceptibility to *B. cinerea* and *S.*
282 *sclerotiorum*, as judged by lesion development on detached leaves (Figure 1). Lettuce lines exhibited
283 significant variation in lesion size ($p < 0.001$ for both pathogens), which likely reflects the ability of the
284 pathogens to grow, and hence the effectiveness of the plant defence response to combat infection.
285 Lesion size varied by lettuce type; for example, Iceberg lettuces were significantly more resistant to *B.*
286 *cinerea* and *S. sclerotiorum* than Butterhead and Cutting types (Supplementary Figure 1). Different
287 lettuce types have large architectural differences (Walley et al. 2017) which alters the ability of
288 pathogens to infect the plant in the field; for example, a more open structure reduces moist
289 environments for spore collection and germination. A benefit of the detached leaf assay is that it
290 identifies architecture-independent sources of resistance that could be deployed across multiple
291 lettuce types. Wild relatives of lettuce (*L. virosa*, *L. saligna* and *L. serriola*) were significantly more
292 resistant to both *S. sclerotiorum* and *B. cinerea* than the cultivated *L. sativa* (Tukey HSD $p < 0.05$) (Figure
293 2), suggesting that alleles conferring quantitative resistance against these fungal pathogens may have
294 been lost during the domestication of lettuce.

295 *B. cinerea* and *S. sclerotiorum* are closely related necrotrophic fungal pathogens sharing many genes
296 and virulence strategies (Amselem et al. 2011), although *B. cinerea* contains a higher number and
297 diversity of genes involved in secondary metabolism (e.g. the production of plant toxins). Consistent
298 with their similarity, we found a correlation ($R=0.47$, $p= 1.1E-6$) across the diversity set between lesion
299 size after inoculation with each of the two pathogens (Supplementary Figure 2), raising the prospect
300 of identifying lettuce alleles conferring quantitative resistance against both pathogens.

301 We performed a whole-head lettuce inoculation experiment to determine whether such an assay
302 could be used in a quantitative manner and if the detached leaf assay data were relevant to whole
303 plants. Four-week-old plants of seven lettuce accessions were sprayed with spore suspensions of *S.*
304 *sclerotiorum* or *B. cinerea* and humidity was kept high through regular mist irrigation. A disease score
305 was captured for each plant from 14 to 49 days post inoculation, and the AUDPC was calculated to
306 quantify disease symptoms over time (Supplementary Dataset 2). Plots of disease score progression
307 for each accession are shown in Supplementary Figure 3. The relationship between AUDPC from the
308 whole-head assay and lesion size in the detached leaf assay for the seven selected lettuce accessions
309 is shown in Supplementary Figure 4. There is a positive trend between the two measurements:
310 accessions with a higher whole plant disease score (AUDPC) also had a higher detached leaf assay
311 lesion size in response to *B. cinerea* ($R_s=0.64$) and *S. sclerotiorum* ($R_s=0.61$). However, neither
312 correlation showed statistical significance. Notably, the accession with the smallest lesion size in the
313 detached leaf assay (*L. virosa*, line 96) and the accessions with the largest lesion size (Okayama Salad,
314 Ambassador) showed a clear difference in the whole plant assay suggesting that the detached leaf
315 assay phenotypes do have relevance to whole head disease progression. However, the whole plant
316 assay appears unable to distinguish varieties with intermediate levels of resistance. Hence, we
317 proceeded with the detached leaf assay as it provides quantitative measurements over a wider range
318 of values and is carried out under more controlled conditions.

319 *Diversity set transcriptome profiling identifies gene expression correlated to disease progression*

320 We selected accessions from the lettuce diversity set that exhibited a wide range of lesion size after
321 infection with both pathogens whilst focusing on *L. sativa* varieties to ease transcriptome analysis. The

322 Armenian *L. serriola* line was also included as it is a parent of a key mapping population. Despite a
323 lower number of replicates than in the full diversity set experiment, capturing the lesion size from the
324 exact leaves used for transcriptome analysis enables us to directly link gene expression and lesion size
325 in the same leaf.

326 A disc of tissue around each developing lesion was sampled for RNAseq transcriptome profiling with
327 three biological replicates for each accession/pathogen combination. Information on the number and
328 mapping of raw reads are in Supplementary Dataset 3. Reads were mapped to a combined *S. sclerotiorum*- or *B. cinerea*-lettuce (*L. sativa* var. Salinas) transcriptome (Derbyshire et al. 2017; Kan et
329 al. 2017; Reyes-Chin-Wo et al. 2017). Approximately 25,000 lettuce genes were present in at least one
330 sample (Supplementary Dataset 4). As lesion size reflects pathogen growth *in planta*, the percentage
331 of reads mapping to the fungal transcriptome in each sample significantly correlated with measured
332 lesion size (Supplementary Figure 5). Hierarchical clustering of the normalised expression data
333 demonstrates high similarity between the biological replicates of each accession, with *B. cinerea* and
334 *S. sclerotiorum* inoculated samples of an accession often also clustering together (Supplementary
335 Figure 6). There is no clear grouping of the expression data by lettuce type.

337 Spearman correlations were calculated between lesion size and lettuce gene expression after both *B. cinerea* and *S. sclerotiorum* infection for each gene detected in our transcriptome profiling. After false
338 discovery rate correction, 1,605 and 9,936 lettuce genes exhibited expression levels significantly
339 correlated with *B. cinerea* and *S. sclerotiorum* lesion size, respectively (Supplementary Dataset 5). The
340 difference in the number of genes showing correlation between expression and lesion size for each
341 pathogen infection is likely due to the timing of sampling. Disease symptoms appear much faster
342 following *B. cinerea* inoculation compared to *S. sclerotiorum*; hence, these samples are at a later stage
343 of infection and the profiling has perhaps missed the critical dynamic period of transcriptome
344 reprogramming. These genes with expression correlated to lesion size are likely to include many genes
345 where the difference in expression between accessions is simply due to the dynamics of infection
346 progression, rather than differences in gene expression being a potential driver of varying lesion size.
347 For example, a gene upregulated during pathogen infection would likely have higher expression in a
348 more susceptible accession simply because the infection has progressed faster and more tissue is
349 responding to the pathogen. In contrast, genes downregulated during pathogen infection could have
350 higher expression in a more resistant accession (compared to a susceptible accession) simply because
351 infection has progressed more slowly and less plant tissue has responded. We therefore removed
352 these categories of genes (upregulated genes correlated with susceptibility and downregulated genes
353 correlated with resistance). To determine whether genes were up or downregulated during pathogen
354 infection of lettuce, we used an RNAseq dataset comparing lettuce gene expression in leaves after *B. cinerea*
355 or *S. sclerotiorum* inoculation to mock inoculation. Three biological replicates were harvested
356 from leaves of the lettuce variety Saladin at 24 hpi with *B. cinerea* (and mock) and 42 hpi with *S. sclerotiorum*
357 (and mock). A total of 8,130 (4,165 up/3,965 down) and 5,466 (3,329 up/2,137 down)
358 genes were significantly differentially expressed in response to *B. cinerea* and *S. sclerotiorum*,
359 respectively (Supplementary Dataset 6). Integrating this data with the diversity set RNAseq data and
360 removing upregulated genes correlated with susceptibility and downregulated genes correlated with
361 resistance resulted in 305 and 3,724 lettuce genes correlated with resistance to *B. cinerea* and *S. sclerotiorum*,
362 respectively, as well as 326 and 1,580 correlated with susceptibility across the different
363 accessions (Supplementary Dataset 5c, d). Of these, 174 genes correlated with resistance to both
364 pathogens and 211 with susceptibility to both pathogens. Figure 3a illustrates the expression profiles
365 for the 50 lettuce genes with the highest correlation with resistance against *S. sclerotiorum*, and Figure
366 3b shows the 50 genes with the highest correlation with susceptibility to *S. sclerotiorum*.

367 The filtered lists of genes with expression significantly correlated with resistance or susceptibility
368 contain several genes whose *Arabidopsis* orthologs have a known role in defence against *B. cinerea*
369 and *S. sclerotiorum*, providing an initial validation of the data and indicating the ability of our approach
370 to identify genes acting both positively and negatively on host immunity against these pathogens. For

372 example, expression of two lettuce orthologs (Lsat_1_v5_gn_2_122000 and Lsat_1_v5_gn_9_61461)
373 of coronatine insensitive 1 (COI1), the jasmonic acid receptor that is required for defence against *B.*
374 *cinerea* (Feys et al. 1994; Rowe et al. 2010), are significantly inversely correlated with *S. sclerotiorum*
375 lesion size ($R_s = -0.67$ and -0.61). Two orthologs of TOPLESS (TPL) (Lsat_1_v5_gn_1_31280 and
376 Lsat_1_v5_gn_5_63700) are significantly correlated with *S. sclerotiorum* resistance ($R = -0.59$ and -0.57 ,
377 respectively). Arabidopsis triple mutants of TPL and the highly similar TOPLESS-related proteins (TPRs)
378 1 and 4, *tpl1/tpr1/tpr4*, show increased susceptibility to *B. cinerea* (Harvey et al. 2020). In addition, an
379 ortholog of MAP kinase substrate 1 (MKS1), Lsat_1_v5_gn_1_8801, has expression correlated with *S.*
380 *sclerotiorum* susceptibility ($R=0.65$) and in Arabidopsis, MKS1 is known to directly bind the key defence
381 regulator WRKY33 with overexpression of MKS1 resulting in *B. cinerea* susceptibility (Petersen et al.
382 2010). These examples demonstrate our ability to identify defence genes from this dataset and
383 increase our confidence in identifying novel lettuce defence components.

384 *GO-term analysis reveals enrichment of lettuce RNA binding proteins amongst genes with expression*
385 *correlated with S. sclerotiorum resistance*

386 We examined the biological processes represented by genes correlated with the defence response
387 across the diverse lettuce accessions using GO-term enrichment. Lettuce genes have poor GO
388 annotation; therefore, we performed GO-term enrichment analysis using the Arabidopsis orthologs of
389 the lettuce genes correlated with resistance and susceptibility to *S. sclerotiorum* (2,985 and 1,254
390 genes respectively)(Figure 4, Supplementary Dataset 7). Strikingly, amongst the GO-terms enriched in
391 genes correlated with *S. sclerotiorum* resistance were multiple terms associated with post-
392 transcriptional RNA processing and regulation including gene silencing (GO:0016458), RNA
393 interference (GO:0016246), dsRNA processing (GO:0031050), RNA modification (GO:0009451),
394 exosome RNase complex (GO:0000178), and RNA splicing (GO: GO:0008380). Genes correlated with
395 increased susceptibility to *S. sclerotiorum* were enriched for vesicle transport and cell growth related
396 GO-terms.

397 As shown above, *S. sclerotiorum* resistance correlated genes show a remarkable enrichment for GO-
398 terms involved in RNA production, processing and RNA-mediated regulation. Post-transcriptional gene
399 regulation via small RNAs is known to be a critical component of the host immune response and to
400 contribute to reciprocal host-pathogen manipulation during infection by different types of plant
401 pathogens (Huang et al. 2019). Seventy-two lettuce genes significantly correlated with resistance to *S.*
402 *sclerotiorum* were identified as orthologs of Arabidopsis genes involved in gene silencing
403 (GO:0016458)(Supplementary Dataset 7c). These 72 genes include several core components of the
404 RNAi-mediated gene silencing pathway (Borges and Martienssen 2015) such as Dicer-like (DCL)2, DCL3,
405 DCL4, Argonaute 1 (AGO1) and RNA-dependent RNA polymerase 2 (RDR2). In Arabidopsis, the gene
406 silencing mutants *dcl4-2*, *ago9-1*, *rdr1-1*, *rdr6-11* and *rdr6-15* have been shown to increase
407 susceptibility to *S. sclerotiorum* (Cao et al. 2016) while *dcl1* increased susceptibility to *B. cinerea*
408 (Weiberg et al. 2013). Our data suggest a similar role for gene silencing in the defence response of
409 lettuce against these broad host range pathogens.

410 Pentatricopeptide Repeat (PPRs) proteins are a family of RNA-binding proteins expanded in plants and
411 involved in base editing and processing of organellar RNAs (Barkan and Small 2014), and their
412 transcripts are a major source of secondary small interfering RNAs (siRNAs) in plants (Howell et al.
413 2007). The lettuce genome contains 513 putative PPRs (Reyes-Chin-Wo et al. 2017), 184 of which show
414 correlation of expression with lesion size in our data. Expression of 178 lettuce PPRs is correlated with
415 increased resistance to *S. sclerotiorum* (and six with increased susceptibility)(Supplementary Dataset
416 5) suggesting a potential key role for PPRs in the lettuce immune response. Figure 5 shows the
417 expression profile of the top 20 resistance correlated PPRs.

418 *Multiple pathogen recognition genes have expression correlated with *S. sclerotiorum* lesion size across*
419 *diverse lettuce accessions*

420 Pathogen recognition by the host plant is mediated by both cell-surface (receptor-like kinases, RLKs
421 and receptor-like proteins, RLPs) and intracellular (nucleotide binding site leucine-rich repeat proteins,
422 NLRs) proteins. Our analysis suggests both groups of receptors impact lettuce resistance to *S.*
423 *sclerotiorum*. Twenty-six RLKs and 14 RLPs had expression correlated with *S. sclerotiorum* lesion size;
424 12 RLKs and three RLPs with resistance and 14 RLKs and 11 RLPs with susceptibility (Supplementary
425 Figure 7). Notably RLKs whose *Arabidopsis* orthologs have well-established and interacting roles in
426 necrotrophic pathogen recognition were identified in this analysis. For example, mutants of BAK1
427 (BRI1-associated receptor kinase 1) show increased susceptibility to *B. cinerea* (Kemmerling et al. 2007)
428 and expression of LsBAK1 (Lsat_1_v5_gn_9_117621) correlates with increased *S. sclerotiorum*
429 resistance ($R=-0.38$). BAK1 directly interacts with the flagellin-sensitive receptor FLS2 (following flg22
430 perception) initiating downstream defence responses (Chinchilla et al. 2007) and a lettuce ortholog of
431 FLS2, Lsat_1_v5_gn_7_32940, also had expression correlated with *S. sclerotiorum* resistance ($R=-0.47$).
432 In contrast, BIR1 (BAK1-interacting receptor-like kinase 1), directly interacts with BAK1 (Ma et al. 2017)
433 and negatively regulates defence (Gao et al. 2009). Consistent with this function, the expression of
434 Lsat_1_v5_gn_0_1380, an ortholog of BIR1, was found to correlate with lettuce susceptibility to *S.*
435 *sclerotiorum* ($R=0.69$). Our detection of this group of interacting known immune regulators provides
436 confidence in our approach and suggests other RLKs identified could have genuine impacts on *S.*
437 *sclerotiorum* and/or *B. cinerea* resistance. Similarly, there is a precedent for the involvement of RLPs
438 in plant response to necrotrophic fungal infection with *Arabidopsis* RLP23 required for proper defence
439 against *B. cinerea* (Ono et al. 2020).

440 In total, 236 genes in the lettuce genome encode intracellular NLRs, with 47 encoding coiled-coil NLRs
441 (CNLs) and 187 encoding Toll/Interleukin-1 type NLRs (TNLs) (Christopoulou et al., 2015). Of these NLRs,
442 20 showed significant correlation of expression with lesion size after *S. sclerotiorum* infection with
443 expression of 12 correlating with increased resistance and eight with increased susceptibility (Figure
444 5). As for the majority of the genes with expression correlated with lesion size, all 20 do not change in
445 expression in response to pathogen infection (at least from our single time point dataset), suggesting
446 that it is basal expression levels of these NLR genes that is impacting quantitative disease resistance to
447 *S. sclerotiorum* in lettuce.

448 *Parents of existing lettuce mapping populations show quantitative variation in susceptibility to*
449 *necrotrophic fungal pathogens*

450 We screened the parents of existing lettuce mapping populations to test whether these populations
451 would be suitable for dissecting the mechanistic basis of quantitative variation in resistance to *B.*
452 *cinerea* and *S. sclerotiorum*. Seventeen lettuce accessions, the parents of 11 different mapping
453 populations, were phenotyped using the detached leaf inoculation assay with both *B. cinerea* and *S.*
454 *sclerotiorum*. Of the 11 parental combinations, two exhibited significantly different lesion size after *B.*
455 *cinerea* inoculation, and five exhibited significantly different lesion size after *S. sclerotiorum*
456 inoculation (Figure 6). The parents of two mapping populations exhibited significantly different lesion
457 sizes in response to both pathogens. Notably, in the Greenlake x Diana cross, *S. sclerotiorum* lesions
458 on lettuce variety Greenlake were significantly larger than lesions on variety Diana, while *B. cinerea*
459 lesions were significantly smaller, indicating that Greenlake and Diana exhibit contrasting susceptibility
460 to the two pathogens. The second set of parental lines, *L. sativa* PI251246 (Subbarao, 1998) and an
461 Armenian *L. serriola*, showed consistent responses to *B. cinerea* and *S. sclerotiorum* with lesions caused
462 by both pathogens larger on PI251246 than on leaves of the Armenian *L. serriola* line. This mapping
463 population was investigated further to identify genomic regions mediating this difference in lesion
464 development.

465 *Five genomic regions mediating lettuce resistance to fungal pathogens in a detached leaf assay*

466 A total of 234 F₆ recombinant inbred lines (RILs) resulting from the cross between the Armenian *L.*
467 *serriola* and PI251246 (*L. sativa*) were phenotyped in a replicated incomplete experimental design
468 using both *B. cinerea* and *S. sclerotiorum* detached leaf assays (Supplementary Dataset 8a). QTL
469 mapping identified five loci impacting lesion size following inoculation with *B. cinerea* or *S.*
470 *sclerotiorum* (Figure 7, Supplementary Figure 8). Three QTL impacted the size of *S. sclerotiorum* lesions
471 and two impacted the size of *B. cinerea* lesions. Despite correlation between resistance to these two
472 pathogens across the lettuce diversity set (Supplementary Figure 2) and the parental lines
473 demonstrating significant differences in response to both pathogens (Figure 6), QTL mediating
474 quantitative resistance to the two pathogens did not co-locate. This suggests five QTL exist between
475 these two parent lines independently contributing to disease resistance. No evidence for epistatic
476 interactions between the QTL loci was detected.

477 Each QTL explains between 7 and 11% of the lesion size variation (Table 1). For four of the five QTL,
478 the alleles conferring reduced lesion size were derived from the Armenian *L. serriola* parent, which
479 showed increased resistance to *B. cinerea* and *S. sclerotiorum* compared to the other parental line,
480 PI251246. However, at *qSs9* (*S. sclerotiorum* QTL on Chromosome 9), the resistance allele originates
481 from the susceptible parent, PI251246. This suggests the presence of alleles with both positive and
482 negative effects on disease resistance, which can be separated by recombination. RILs that contain the
483 resistance alleles at both *B. cinerea* QTL or all three *S. sclerotiorum* QTL have significantly reduced
484 lesion size compared to RILs with susceptibility alleles at the same loci (Supplementary Figure 9).

485 To define boundary markers for each QTL, confidence intervals of 1.5 LOD surrounding each QTL peak
486 were calculated using '*lodint*', which were expanded to the next marker. QTL boundary markers were
487 mapped onto the *L. sativa* cv Salinas v8 genome (Reyes-Chin-Wo et al. 2017). Predicted genes
488 positioned between the QTL boundary markers in the Salinas cultivar could then be identified (Table
489 1, Supplementary Dataset 8d). A large variation in QTL size (and gene number) was observed, with
490 *qSs5* the largest at 72.7 Mb and containing 1,353 genes. The smallest QTL (by gene number) is *qSs9*, at
491 22.8 Mb with the region containing 204 genes.

492 *Identification of candidate causal genes in the QTL through transcriptome profiling*

493 We attempted to predict causal genes within the identified QTL regions using transcriptome and
494 genome data. Both parent lines, the Armenian *L. serriola* and PI251246, were included in the lettuce
495 diversity set whose transcriptomes were profiled 48 hpi and 43 hpi with *B. cinerea* and *S. sclerotiorum*,
496 respectively (Supplementary Dataset 3). We carried out a second inoculation of these parental lines
497 and generated an additional four biological replicates of transcriptome profiles (48 hpi after *B. cinerea*
498 and 64 hpi after *S. sclerotiorum* inoculation). Principal component analysis of the 28 samples
499 (three/four replicates x two experiments x two pathogens x two lettuce lines) demonstrates clear
500 differences between the parental lines and similarity of the replicates within and across experiments
501 (Supplementary Figure 10). Prior to any differential expression analysis, numbers of potential QTL
502 candidate genes could be reduced by 46-59%, by removing genes which failed to pass the low-
503 expression filter, i.e they had no detectable expression after either *B. cinerea* or *S. sclerotiorum*
504 infection (Table 1). Differential expression analysis was carried out on each experiment/pathogen
505 combination separately with a minimum ± 1.2 log₂ fold change threshold to filter significantly
506 differentially expressed genes (DEGs). DEGs and their expression values are available in Supplementary
507 Dataset 9. In response to *S. sclerotiorum* inoculation, there were 1,198 DEGs (425 up/773 down) across
508 both sets of data with 96 (24 up/72 down) of these DEGs located within identified resistance QTL. One
509 hundred forty-five DEGs (58 up/87 down) were common to both *B. cinerea* inoculation datasets with
510 10 (5 up/5 down) of these located within QTL. Ninety genes (36 up/54 down) were differentially
511 expressed (in the same direction) between the parent lines in response to both pathogens, of which
512 seven (three up/four down) are in QTL.

513 For the lettuce genes located within the QTL regions, we integrated the parental line transcriptome
514 data above with information on whether expression of the gene in the lettuce diversity set was

515 correlated with lesion size in response to pathogen infection to predict candidate causal genes
516 underlying the identified resistance QTL (Figure 8). This analysis highlighted a number of genes with
517 expression patterns consistent with a potential role in mediating fungal pathogen resistance within
518 this mapping population; for example, Lsat_1_v5_gn_5_91640 (LsPDR12) is an ortholog of the
519 Arabidopsis gene Pleiotropic Drug Resistance 12 (AtPDR12), known to mediate camalexin secretion in
520 response to *B. cinerea* infection (He et al. 2019). LsPDR12 is significantly correlated with *S. sclerotiorum*
521 resistance in the diversity set ($R_s = -0.37$), is upregulated in Armenian *L. serriola* compared to PI251246
522 in both experiments and is located within the QTL *qSs5* (for which the resistance allele comes from the
523 Armenian *L. serriola* parent). Another potential candidate, Lsat_1_v5_gn_9_1180, encodes an ortholog
524 of CML38, is located within the *qBc9* QTL and is upregulated in PI251246 compared to the Armenian
525 *L. serriola*, i.e. higher expression in the susceptible parent. However, consistent with this, Arabidopsis
526 CML38 promotes degradation of suppressor of gene silencing 3 (SGS3) (Field et al. 2021), the lettuce
527 ortholog of which is correlated with resistance against *S. sclerotiorum* (Supplementary Dataset 5).
528

529 Discussion

530 We demonstrated that genetic variation for resistance to the fungal pathogens *S. sclerotiorum* and *B. cinerea*
531 exists within a lettuce diversity set comprised of both *L. sativa* varieties and wildtype relatives
532 (Figure 1). Quantitative resistance within this diversity set was assessed using a detached leaf assay.
533 Although this does not necessarily correlate with field resistance, it has the advantage of reliable and
534 consistent inoculation, and of measuring immunity in a manner that is not dependent on the overall
535 plant architecture. In this way, we hope to identify traits that could be exploited in a range of lettuce
536 morphotypes. Crucially, we used inocula of spore suspensions for both pathogens, which mimics the
537 natural infection route, whereas most publications investigating variation in resistance against *S. sclerotiorum*
538 use mycelial plugs (e.g. (Chittem et al. 2020) due to the difficulties, and time, taken to
539 produce ascospores.

540 We identified parents of existing lettuce mapping populations that differed in susceptibility to the two
541 fungal pathogens (Figure 6) and five QTL that impacted quantitative resistance differences between *L. sativa*
542 PI251246 and an Armenian *L. serriola* (Figure 7). For four of these QTL the resistance allele
543 originated in the Armenian *L. serriola* line. Although PI251246 was the more susceptible parent in this
544 work, this accession was previously shown to have lower *S. sclerotiorum* disease incidence, but similar
545 disease severity to a standard lettuce Butterhead variety, Rachel, in an inoculated glasshouse trial
546 (Whipps et al. 2002). This suggests that PI251246 is able to escape *S. sclerotiorum* (due to architecture
547 and/or rapid bolting) but lacks tissue resistance once infection becomes established. This is consistent
548 with our results from detached leaf assays and a field trial where observed resistance of PI251246 to
549 *Sclerotinia minor* was attributed to rapid bolting characteristics (Hayes et al. 2010). These architectural
550 and rapid bolting attributes would not be beneficial in cultivated lettuce. In contrast, the Armenian *L. serriola*
551 had significantly higher resistance than PI251246 to both *S. sclerotiorum* and *B. cinerea* in the
552 detached leaf assay, suggesting this accession may have beneficial traits which could be exploited in
553 lettuce varieties with varying architectures. *L. serriola* is a wild lettuce believed to be the progenitor of
554 domesticated *L. sativa* (Uwimana et al. 2012). Wild relatives of crop plants are often sources of disease
555 resistance and in previous work with this mapping population, four QTL conferring resistance to
556 *Verticillium dahliae* have been identified (Sandoya et al. 2021) with all four beneficial alleles from the
557 Armenian *L. serriola* parent.

558 Although QTL have been identified for field resistance to *S. minor* (Mamo et al. 2019), to our knowledge
559 these are the first lettuce QTL reported for resistance against *S. sclerotiorum* and *B. cinerea*. Multiple
560 *S. sclerotinia* resistance QTL mapping studies exist in sunflower and *Brassica napus* (for example,
561 (Behla et al. 2017), as well as a small number of GWAS in soybean and *B. napus*, all excellently reviewed
562 in (Wang et al. 2019). As in our study, where the QTL explained between 5% and 10% of the variation,
563 published QTL have minor effects on disease resistance (less than 10%). A similar polygenic basis for

564 resistance has been seen against *B. cinerea* with QTL studies in Arabidopsis, *Solanum* species and
565 *Brassica rapa* and GWAS in Arabidopsis (Corwin and Kliebenstein 2017).

566 Although the *S. sclerotinia* isolate used here was initially obtained from field grown lettuce, our
567 analysis was restricted to single isolates of both pathogens. Previous studies using *B. cinerea* have
568 indicated that there is a high level of isolate-specificity to quantitative resistance loci (Zhang et al.
569 2016) and data on disease outcome using 98 *B. cinerea* isolates and 90 genotypes of eight plant hosts
570 (including lettuce) demonstrated a much greater impact on lesion size from the *B. cinerea* isolate (40-
571 71%) than the host genotype (3-8%)(Caseys et al. 2021). Similarly, in *B. napus* both pathotype-specific
572 and pathotype-independent resistance against *S. sclerotiorum* has been identified (Neik et al. 2017).
573 Hence, determining whether the QTL identified here can mediate resistance to a broad range of
574 pathogen isolates will be critical to their value in crop improvement.

575 Despite multiple QTL/GWAS analyses, relatively little is known about the molecular mechanisms
576 driving resistance, and the small effect of each QTL increases the complexity of the fine-mapping
577 process. Hence, we used transcriptome data to predict potential causal genes. We go beyond just
578 simply comparing differential expression in two contrasting parental lines (e.g. (Qasim et al. 2020) or
579 integrating expression and genetic location of DEGs (Zhao et al. 2015), to identifying genes whose
580 expression is correlated with resistance or susceptibility (as judged by lesion size) across 21 different
581 lettuce accessions (Figure 3). Although this correlation analysis (unlike expression QTL analysis) does
582 not pinpoint the genetic region responsible for variation in expression, it does enable us to identify
583 genes that impact infection outcome (positively or negatively) but are not necessarily differentially
584 expressed during infection. Furthermore, the use of multiple accessions (rather than the commonly
585 seen comparison of one resistant and one susceptible line) gives us better ability to identify expression
586 differences genuinely contributing to disease resistance. This analysis identified genes whose increase
587 in expression is correlated with smaller lesion size (resistance) and larger lesion size (susceptibility).

588 One key group of genes that we identified as highly correlated with disease resistance were those
589 involved in RNA-mediated post transcriptional regulation, in particular gene silencing. In well-studied
590 plants, such as Arabidopsis and tomato, gene silencing (via microRNAs, miRNAs, or small interfering
591 RNAs, siRNAs) is known to play a crucial role in the host immune response - both in regulating
592 expression of plant genes, as well as silencing of genes in the pathogen (Qiao et al. 2021). Our data
593 suggest a similar role for gene silencing in lettuce, and the prominence of orthologs of genes known
594 to increase susceptibility in Arabidopsis to both *S. sclerotiorum* and *B. cinerea* provides confidence in
595 this approach to highlight key mechanisms of quantitative resistance. One such potential mechanism
596 is PPR-driven silencing of pathogen virulence genes. Increased expression of many lettuce *PPR* genes
597 was correlated with decreased lesion size after pathogen inoculation (Figure 5). Intriguingly *PPR*
598 transcripts are a major source of secondary siRNAs in plants, whose generation is triggered by both
599 direct miRNA binding to specific *PPR* transcripts and via miRNA-mediated generation of trans-acting
600 siRNAs (tasiRNAs)(Howell et al. 2007). Furthermore, siRNAs derived from *PPR* transcripts accumulate
601 after *Phytophthora capsici* infection, can potentially target known pathogen virulence genes, and an
602 effector from the pathogen can suppress accumulation of these siRNAs to promote infection (Hou et
603 al. 2019). Arabidopsis RNA-dependent RNA polymerase 6 (RDR6) is required for generation of siRNAs
604 from endogenous transcripts, and *rdr6* mutants show enhanced susceptibility to *B. cinerea* (Cai et al.
605 2018). Furthermore, mutation of the Pentatricopeptide repeat protein for germination on NaCl (PGN)
606 in Arabidopsis led to increased susceptibility to *B. cinerea* (Laluk et al. 2011). Clearly, further research
607 is needed to determine the importance and mechanism of *PPR* siRNA production in lettuce, especially
608 given that in a comparative study across nine plant species, several new and potentially species-
609 specific miRNAs were shown to drive production of these siRNAs (Xia et al. 2013).

610 Small RNAs are also thought to play a key role in regulating expression of NLR genes, helping regulate
611 their expression (and hence inadvertent triggering of the defence response) in the absence of
612 infection. NLRs are mostly known as an integral part of effector-triggered immunity (ETI), whereby
613 pathogen effectors are directly or indirectly (as guards or decoys of effector targets) recognised by

614 NLRs (Cui et al. 2013). As such, they have typically been associated with qualitative (all or nothing)
615 disease resistance. Due to the lack of complete resistance phenotypes against broad host range
616 necrotrophic fungal pathogens and very limited number of NLR genes shown to impact resistance, it
617 was thought that NLR proteins and ETI are not important in defence against these pathogens (Mengiste
618 2012). However, in our data expression of multiple lettuce NLRs was shown to be correlated with
619 resistance suggesting that, in addition to their well-known role in lettuce resistance against biotrophic
620 pathogens (Simko et al. 2013; Parra et al. 2016, 2021), NLR genes in lettuce may play a role in
621 quantitative resistance against *B. cinerea* and *S. sclerotiorum*. NLRs show huge diversity both within a
622 single genome and in populations, and a multitude of incomplete NLRs (lacking one or more of the
623 canonical domains but thought to still be able to function as adapters or helpers for other NLRs) are
624 also found in all plants (Baggs et al. 2017). Several lettuce incomplete NLRs had expression correlated
625 with *S. sclerotiorum* lesion size (Supplementary Figure 7) and there is a precedent for incomplete NLRs
626 impacting resistance to broad host range necrotrophic pathogens, with mutations in the *Arabidopsis*
627 gene *RLM3* (containing TIR and nucleotide binding domains) causing increased susceptibility to these
628 pathogens, including *B. cinerea* (Staal et al. 2008). We also noted in our analysis that there were several
629 NLRs whose increased expression was correlated to increased susceptibility to *S. sclerotiorum* (Figure
630 5) suggesting that NLRs may have both a positive and negative effect on resistance to this pathogen.
631 Indeed, a Toll interleukin-1 receptor (TIR) type NLR in *Arabidopsis*, *LAZ5*, has been shown to increase
632 susceptibility to *S. sclerotiorum* infection, with *laz5-1* mutants showing increased resistance (Barbacci
633 et al. 2020).

634 Although the lettuce diversity set we used here is small compared to a collection that has been recently
635 genome sequenced (Wei et al. 2021), our analysis demonstrated useful genetic variation for
636 quantitative disease resistance, indicated crosses that could be useful in mapping this trait and
637 identified multiple potential mechanisms for experimental testing. It is likely that different lettuce lines
638 harbour different quantitative resistance mechanisms, and our gene expression correlation analysis
639 has identified strong candidates for experimental testing that are not obviously segregating in the
640 Armenian *L. serriola* x PI251246 population. However, combining transcriptome data from the parents
641 and diversity set with QTL analysis has also identified a small number of potential causal genes for the
642 resistance QTL in this population, with the strongest candidate being the lettuce ortholog of
643 *Arabidopsis* Pleiotropic Drug Resistance 12 (AtPDR12) within the QTL *qSs5* (Figure 8). Obviously, the
644 molecular mechanism underlying the resistance QTL may not necessarily be regulatory variation of a
645 gene within the QTL itself (and hence identifiable in our analysis approach) but could be driven by
646 sequence variation driving changes in post-transcriptional gene regulation or protein function.

647 In summary, we have identified multiple potential architecture-independent resistance mechanisms
648 that may be successful for enhancing disease resistance in lettuce. Future work will aim to validate
649 candidate genes, for example via fine-mapping of QTL and/or the generation of lettuce lines with gain
650 or loss of function mutations/transgenes. The resistance traits could be incorporated into cultivated
651 varieties (via marker-assisted selection) with genome editing of validated candidate genes offering an
652 exciting route to exploit the genetic variation from these lettuce accessions without losing the
653 beneficial traits stacked up in elite breeding lines.

654

655 **Funding:**

656 This work was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) grant
657 to KD, JC and PH (BB/M017877/1 and BB/M017877/2). HP is funded by a BBSRC CASE studentship with
658 A. L. Tozer.

659

660 **Conflicts of interest/Competing interests:**

661 A. L. Tozer and the Agriculture and Horticulture Development Board (AHDB) provided additional
662 funding for the BBSRC-supported work (BB/M017877). HP's studentship is partially supported by A. L.
663 Tozer.

664

665 **Data Availability:**

666 All data is available either within the supporting information of this manuscript or in the NCBI Short
667 Read archive under Bioproject PRJNA804213 (diversity set and mapping population parent RNAseq
668 data) and Bioproject PRJNA808232 (single time point infected versus mock inoculated).

669

670 **References**

671 AbuQamar S, Moustafa K, Tran LS (2017) Mechanisms and strategies of plant defense against Botrytis
672 cinerea. *Crit Rev Biotechnol* 37:1–16. <https://doi.org/10.1080/07388551.2016.1271767>

673 Amselem J, Cuomo CA, Kan JAL van, et al (2011) Genomic Analysis of the Necrotrophic Fungal
674 Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. *Plos Genet* 7:.
675 <https://doi.org/10.1371/journal.pgen.1002230>

676 Baggs E, Dagdas G, Krasileva K (2017) NLR diversity, helpers and integrated domains: making sense of
677 the NLR IDentity. *Curr Opin Plant Biol* 38:59–67. <https://doi.org/10.1016/j.pbi.2017.04.012>

678 Barbacci A, Navaud O, Mbengue M, et al (2020) Rapid identification of an *Arabidopsis* NLR gene as a
679 candidate conferring susceptibility to *Sclerotinia sclerotiorum* using time-resolved automated
680 phenotyping. *Plant J* 103:903–917. <https://doi.org/10.1111/tpj.14747>

681 Barkan A, Small I (2014) Pentatricopeptide Repeat Proteins in Plants. *Plant Biology* 65:415–442.
682 <https://doi.org/10.1146/annurev-arplant-050213-040159>

683 Behla R, Hirani AH, Zelmer CD, et al (2017) Identification of common QTL for resistance to *Sclerotinia*
684 *sclerotiorum* in three doubled haploid populations of *Brassica napus* (L.). *Euphytica* 213:260.
685 <https://doi.org/10.1007/s10681-017-2047-5>

686 Benjamini, Hochberg (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach
687 to Multiple Testing. *Journal of the Royal Statistical Society Series B (Methodological)* 57:289–300.
688 <https://doi.org/http://www.jstor.org/stable/2346101>

689 Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. *Nat Rev Mol Cell Bio*
690 16:727–741. <https://doi.org/10.1038/nrm4085>

691 Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification.
692 *Nat Biotechnol* 34:525–527. <https://doi.org/10.1038/nbt.3519>

693 Broman KW, Wu H, Sen Š, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses.
694 *Bioinformatics* 19:889–890. <https://doi.org/10.1093/bioinformatics/btg112>

695 Cai Q, Qiao L, Wang M, et al (2018) Plants send small RNAs in extracellular vesicles to fungal
696 pathogen to silence virulence genes. *Science* 360:1126–1129.
697 <https://doi.org/10.1126/science.aar4142>

698 Cao J-Y, Xu Y-P, Li W, et al (2016) Genome-Wide Identification of Dicer-Like, Argonaute, and RNA-
699 Dependent RNA Polymerase Gene Families in Brassica Species and Functional Analyses of Their
700 Arabidopsis Homologs in Resistance to Sclerotinia sclerotiorum. *Front Plant Sci* 7:1614.
701 <https://doi.org/10.3389/fpls.2016.01614>

702 Caseys C, Shi G, Soltis N, et al (2021) Quantitative interactions: the disease outcome of *Botrytis*
703 *cinerea* across the plant kingdom. *G3 Genes Genomes Genetics* 11:175.
704 <https://doi.org/10.1093/g3journal/jkab175>

705 Chinchilla D, Zipfel C, Robatzek S, et al (2007) A flagellin-induced complex of the receptor FLS2 and
706 BAK1 initiates plant defence. *Nature* 448:497–500. <https://doi.org/10.1038/nature05999>

707 Chittem K, Yajima WR, Goswami RS, Mendoza LE del R (2020) Transcriptome analysis of the plant
708 pathogen *Sclerotinia sclerotiorum* interaction with resistant and susceptible canola (*Brassica*
709 *napus*) lines. *Plos One* 15:e0229844. <https://doi.org/10.1371/journal.pone.0229844>

710 Clarkson JP, Fawcett L, Anthony SG, Young C (2014) A Model for *Sclerotinia sclerotiorum* Infection
711 and Disease Development in Lettuce, Based on the Effects of Temperature, Relative Humidity and
712 Ascospore Density. *Plos One* 9:e94049. <https://doi.org/10.1371/journal.pone.0094049>

713 Coolen S, Pelt JAV, Wees SCMV, Pieterse CMJ (2019) Mining the natural genetic variation in
714 *Arabidopsis thaliana* for adaptation to sequential abiotic and biotic stresses. *Planta* 249:1087–
715 1105. <https://doi.org/10.1007/s00425-018-3065-9>

716 Corwin JA, Kliebenstein DJ (2017) Quantitative Resistance: More Than Just Perception of a Pathogen.
717 *Plant Cell* 29:655–665. <https://doi.org/10.1105/tpc.16.00915>

718 Cui H, Tsuda K, Parker JE (2013) Effector-Triggered Immunity: From Pathogen Perception to Robust
719 Defense. *Annu Rev Plant Biol* 66:1–25. <https://doi.org/10.1146/annurev-arplant-050213-040012>

720 Dean R, Kan JAL van, Pretorius ZA, et al (2012) The Top 10 fungal pathogens in molecular plant
721 pathology. *Mol Plant Pathol* 13:414–430. <https://doi.org/10.1111/j.1364-3703.2011.00783.x>

722 Denby KJ, Kumar P, Kliebenstein DJ (2004) Identification of *Botrytis cinerea* susceptibility loci in
723 *Arabidopsis thaliana*. *Plant J* 38:473–486. <https://doi.org/10.1111/j.0960-7412.2004.02059.x>

724 Derbyshire M, Denton-Giles M, Hegedus D, et al (2017) The Complete Genome Sequence of the
725 Phytopathogenic Fungus *Sclerotinia sclerotiorum* Reveals Insights into the Genome Architecture
726 of Broad Host Range Pathogens. *Genome Biol Evol* 9:593–618.
727 <https://doi.org/10.1093/gbe/evx030>

728 Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis Mutants Selected for Resistance to
729 the Phytotoxin Coronatine Are Male Sterile, Insensitive to Methyl Jasmonate, and Resistant to a
730 Bacterial Pathogen. *Plant Cell* 6:751–759. <https://doi.org/10.1105/tpc.6.5.751>

731 Field S, Conner WC, Roberts DM (2021) Arabidopsis CALMODULIN-LIKE 38 Regulates Hypoxia-
732 Induced Autophagy of SUPPRESSOR OF GENE SILENCING 3 Bodies. *Front Plant Sci* 12:722940.
733 <https://doi.org/10.3389/fpls.2021.722940>

734 Finkers R, Berg P van den, Berloo R van, et al (2007) Three QTLs for *Botrytis cinerea* resistance in
735 tomato. *Theor Appl Genet* 114:585–593. <https://doi.org/10.1007/s00122-006-0458-0>

736 Fu Y, Silhout A van, Shahin A, et al (2017) Genetic mapping and QTL analysis of Botrytis resistance in
737 *Gerbera hybrida*. *Mol Breeding* 37:13. <https://doi.org/10.1007/s11032-016-0617-1>

738 Gao M, Wang X, Wang D, et al (2009) Regulation of Cell Death and Innate Immunity by Two
739 Receptor-like Kinases in *Arabidopsis*. *Cell Host Microbe* 6:34–44.
740 <https://doi.org/10.1016/j.chom.2009.05.019>

741 Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line
742 crosses using flanking markers. *Heredity* 69:315–24. <https://doi.org/10.1038/hdy.1992.131>

743 Han R, Lavelle D, Truco MJ, Michelmore R (2021) Quantitative Trait Loci and Candidate Genes
744 Associated with Photoperiod Sensitivity in Lettuce (*Lactuca* spp.). *Theor Appl Genetics* 134:3473–
745 3487. <https://doi.org/10.1007/s00122-021-03908-w>

746 Harvey S, Kumari P, Lapin D, et al (2020) Downy Mildew effector HaRxL21 interacts with the
747 transcriptional repressor TOPLESS to promote pathogen susceptibility. *Plos Pathog* 16:e1008835.
748 <https://doi.org/10.1371/journal.ppat.1008835>

749 Hayes RJ, Wu BM, Pryor BM, et al (2010) Assessment of Resistance in Lettuce (*Lactuca sativa* L.) to
750 Mycelial and Ascospore Infection by *Sclerotinia minor* Jagger and *S. sclerotiorum* (Lib.) de Bary.
751 *HortScience* 45:333–341

752 He Y, Xu J, Wang X, et al (2019) The *Arabidopsis* Pleiotropic Drug Resistance Transporters PEN3 and
753 PDR12 Mediate Camalexin Secretion for Resistance to *Botrytis cinerea*. *Plant Cell* 31:2206–2222.
754 <https://doi.org/10.1105/tpc.19.00239>

755 Hou Y, Zhai Y, Feng L, et al (2019) A *Phytophthora* Effector Suppresses Trans-Kingdom RNAi to
756 Promote Disease Susceptibility. *Cell Host Microbe* 25:153–165.e5.
757 <https://doi.org/10.1016/j.chom.2018.11.007>

758 Hou Y-P, Mao X-W, Qu X-P, et al (2018) Molecular and biological characterization of *Sclerotinia*
759 *sclerotiorum* resistant to the anilinopyrimidine fungicide cyprodinil. *Pestic Biochem Phys* 146:80–
760 89. <https://doi.org/10.1016/j.pestbp.2018.03.001>

761 Howell MD, Fahlgren N, Chapman EJ, et al (2007) Genome-Wide Analysis of the RNA-DEPENDENT
762 RNA POLYMERASE6/DICER-LIKE4 Pathway in *Arabidopsis* Reveals Dependency on miRNA- and
763 tasiRNA-Directed Targeting. *Plant Cell* 19:926–942. <https://doi.org/10.1105/tpc.107.050062>

764 Huang C-Y, Wang H, Hu P, et al (2019) Small RNAs – Big Players in Plant-Microbe Interactions. *Cell*
765 *Host Microbe* 26:173–182. <https://doi.org/10.1016/j.chom.2019.07.021>

766 Joshi RK, Megha S, Rahman MH, et al (2016) A global study of transcriptome dynamics in canola
767 (*Brassica napus* L.) responsive to *Sclerotinia sclerotiorum* infection using RNA-Seq. *Gene* 590:57–
768 67. <https://doi.org/10.1016/j.gene.2016.06.003>

769 Kan JALV, Stassen JHM, Mosbach A, et al (2017) A gapless genome sequence of the fungus *Botrytis*
770 *cinerea*. *Mol Plant Pathol* 18:75–89. <https://doi.org/10.1111/mpp.12384>

771 Kemmerling B, Schwedt A, Rodriguez P, et al (2007) The BRI1-Associated Kinase 1, BAK1, Has a
772 Brassinolide-Independent Role in Plant Cell-Death Control. *Curr Biol* 17:1116–1122.
773 <https://doi.org/10.1016/j.cub.2007.05.046>

774 Laluk K, AbuQamar S, Mengiste T (2011) The *Arabidopsis* Mitochondria-Localized Pentatricopeptide
775 Repeat Protein PGN Functions in Defense against Necrotrophic Fungi and Abiotic Stress
776 Tolerance. *Plant Physiol* 156:2053–2068. <https://doi.org/10.1104/pp.111.177501>

777 Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools
778 for RNA-seq read counts. *Genome Biol* 15:R29. <https://doi.org/10.1186/gb-2014-15-2-r29>

779 Ma C, Liu Y, Bai B, et al (2017) Structural basis for BIR1-mediated negative regulation of plant
780 immunity. *Cell Res* 27:1521–1524. <https://doi.org/10.1038/cr.2017.123>

781 Mamo BE, Hayes RJ, Truco MJ, et al (2019) The genetics of resistance to lettuce drop (*Sclerotinia*
782 spp.) in lettuce in a recombinant inbred line population from *Reine des Glaces* × *Eruption*. *Theor*
783 *Appl Genet* 132:2439–2460. <https://doi.org/10.1007/s00122-019-03365-6>

784 Manichaikul A, Moon JY, Sen S, et al (2009) A Model Selection Approach for the Identification of
785 Quantitative Trait Loci in Experimental Crosses, Allowing Epistasis. *Genetics* 181:1077–1086.
786 <https://doi.org/10.1534/genetics.108.094565>

787 Mengiste T (2012) Plant Immunity to Necrotrophs. *Phytopathology* 50:267–294.
788 <https://doi.org/10.1146/annurev-phyto-081211-172955>

789 Neik TX, Barbetti MJ, Batley J (2017) Current Status and Challenges in Identifying Disease Resistance
790 Genes in *Brassica napus*. *Front Plant Sci* 8:1788. <https://doi.org/10.3389/fpls.2017.01788>

791 Ono E, Mise K, Takano Y (2020) RLP23 is required for *Arabidopsis* immunity against the grey mould
792 pathogen *Botrytis cinerea*. *Sci Rep-uk* 10:13798. <https://doi.org/10.1038/s41598-020-70485-1>

793 Ouellette LA, Reid RW, Blanchard SG, Brouwer CR (2017) LinkageMapView—rendering high-
794 resolution linkage and QTL maps. *Bioinformatics* 34:306–307.
795 <https://doi.org/10.1093/bioinformatics/btx576>

796 Panaccione DG, Scott-Craig JS, Pocard JA, Walton JD (1992) A cyclic peptide synthetase gene required
797 for pathogenicity of the fungus *Cochliobolus carbonum* on maize. *Proc National Acad Sci*
798 89:6590–6594. <https://doi.org/10.1073/pnas.89.14.6590>

799 Parra L, Maisonneuve B, Lebeda A, et al (2016) Rationalization of genes for resistance to *Bremia*
800 *lactucae* in lettuce. *Euphytica* 210:309–326. <https://doi.org/10.1007/s10681-016-1687-1>

801 Parra L, Nortman K, Sah A, et al (2021) Identification and mapping of new genes for resistance to
802 downy mildew in lettuce. *Tag Theor Appl Genetics Theor Und Angewandte Genetik* 134:519–528.
803 <https://doi.org/10.1007/s00122-020-03711-z>

804 Petersen K, Qiu J-L, Lütje J, et al (2010) *Arabidopsis* MKS1 Is Involved in Basal Immunity and Requires
805 an Intact N-terminal Domain for Proper Function. *Plos One* 5:e14364.
806 <https://doi.org/10.1371/journal.pone.0014364>

807 Qasim MU, Zhao Q, Shahid M, et al (2020) Identification of QTLs Containing Resistance Genes for
808 *Sclerotinia* Stem Rot in *Brassica napus* Using Comparative Transcriptomic Studies. *Front Plant Sci*
809 11:776. <https://doi.org/10.3389/fpls.2020.00776>

810 Qiao Y, Xia R, Zhai J, et al (2021) Small RNAs in Plant Immunity and Virulence of Filamentous
811 Pathogens. *Annu Rev Phytopathol* 59:1–24. <https://doi.org/10.1146/annurev-phyto-121520-023514>

813 Reyes-Chin-Wo S, Wang Z, Yang X, et al (2017) Genome assembly with in vitro proximity ligation data
814 and whole-genome triplication in lettuce. *Nat Commun* 8:14953.
815 <https://doi.org/10.1038/ncomms14953>

816 Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential
817 expression analysis of digital gene expression data. *Bioinformatics* 26:139–140.
818 <https://doi.org/10.1093/bioinformatics/btp616>

819 Roux F, Voisin D, Badet T, et al (2014) Resistance to phytopathogens e tutti quanti: placing plant
820 quantitative disease resistance on the map. *Mol Plant Pathol* 15:427–432.
821 <https://doi.org/10.1111/mpp.12138>

822 Rowe HC, Kliebenstein DJ (2008) Complex Genetics Control Natural Variation in *Arabidopsis thaliana*
823 Resistance to *Botrytis cinerea*. *Genetics* 180:2237–2250.
824 <https://doi.org/10.1534/genetics.108.091439>

825 Rowe HC, Walley JW, Corwin J, et al (2010) Deficiencies in Jasmonate-Mediated Plant Defense Reveal
826 Quantitative Variation in *Botrytis cinerea* Pathogenesis. *Plos Pathog* 6:e1000861.
827 <https://doi.org/10.1371/journal.ppat.1000861>

828 Rupp S, Weber RWS, Rieger D, et al (2017) Spread of *Botrytis cinerea* Strains with Multiple Fungicide
829 Resistance in German Horticulture. *Front Microbiol* 7:2075.
830 <https://doi.org/10.3389/fmicb.2016.02075>

831 Sandoya GV, Truco MJ, Bertier LD, et al (2021) Genetics of Partial Resistance Against *Verticillium*
832 *dahliae* Race 2 in Wild and Cultivated Lettuce. *Phytopathology PHYTO-09-20-039*.
833 <https://doi.org/10.1094/phyto-09-20-0396-r>

834 Simko I, Atallah AJ, Ochoa OE, et al (2013) Identification of QTLs conferring resistance to downy
835 mildew in legacy cultivars of lettuce. *Sci Rep* 3:2875. <https://doi.org/10.1038/srep02875>

836 Staal J, Kaliff M, Dewaele E, et al (2008) RLM3, a TIR domain encoding gene involved in broad-range
837 immunity of *Arabidopsis* to necrotrophic fungal pathogens. *Plant J* 55:188–200.
838 <https://doi.org/10.1111/j.1365-313x.2008.03503.x>

839 Szymański J, Bocobza S, Panda S, et al (2020) Analysis of wild tomato introgression lines elucidates
840 the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen
841 response. *Nat Genet* 52:1111–1121. <https://doi.org/10.1038/s41588-020-0690-6>

842 Taylor A, Coventry E, Handy C, et al (2018) Inoculum potential of *Sclerotinia sclerotiorum* sclerotia
843 depends on isolate and host plant. *Plant Pathol* 67:1286–1295.
844 <https://doi.org/10.1111/ppa.12843>

845 Taylor A, Rana K, Handy C, Clarkson JP (2017) Resistance to *Sclerotinia sclerotiorum* in wild *Brassica*
846 species and the importance of *Sclerotinia subarctica* as a *Brassica* pathogen. *Plant Pathol* 67:433–
847 444. <https://doi.org/10.1111/ppa.12745>

848 Uwimana B, D'Andrea L, Felber F, et al (2012) A Bayesian analysis of gene flow from crops to their
849 wild relatives: cultivated (*Lactuca sativa* L.) and prickly lettuce (*L. serriola* L.) and the recent
850 expansion of *L. serriola* in Europe. *Mol Ecol* 21:2640–2654. <https://doi.org/10.1111/j.1365-294x.2012.05489.x>

852 Walley PG, Hough G, Moore JD, et al (2017) Towards new sources of resistance to the currant-lettuce
853 aphid (*Nasonovia ribisnigri*). *Mol Breeding* 37:4. <https://doi.org/10.1007/s11032-016-0606-4>

854 Wang Z, Ma L-Y, Cao J, et al (2019) Recent Advances in Mechanisms of Plant Defense to Sclerotinia
855 sclerotiorum. *Front Plant Sci* 10:1314. <https://doi.org/10.3389/fpls.2019.01314>

856 Wei T, Treuren R van, Liu X, et al (2021) Whole-genome resequencing of 445 *Lactuca* accessions
857 reveals the domestication history of cultivated lettuce. *Nat Genet* 53:752–760.
858 <https://doi.org/10.1038/s41588-021-00831-0>

859 Weiberg A, Wang M, Lin F-M, et al (2013) Fungal Small RNAs Suppress Plant Immunity by Hijacking
860 Host RNA Interference Pathways. *Science* 342:118–123. <https://doi.org/10.1126/science.1239705>

861 Whipps JM, Budge SP, McClement S, Pink DAC (2002) A Glasshouse Cropping Method for Screening
862 Lettuce Lines for Resistance to *Sclerotinia sclerotiorum*. *Eur J Plant Pathol* 108:373–378.
863 <https://doi.org/10.1023/a:1015637018474>

864 Windram O, Madhou P, McHattie S, et al (2012) Arabidopsis Defense against *Botrytis cinerea*:
865 Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis.
866 *Plant Cell Online* 24:3530–3557. <https://doi.org/10.1105/tpc.112.102046>

867 Wingett SW, Andrews S (2018) FastQ Screen: A tool for multi-genome mapping and quality control.
868 *F1000research* 7:1338. <https://doi.org/10.12688/f1000research.15931.2>

869 Wu T, Hu E, Xu S, et al (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics
870 data. *Innovation* 2:100141. <https://doi.org/10.1016/j.xinn.2021.100141>

871 Xia R, Meyers BC, Liu Z, et al (2013) MicroRNA Superfamilies Descended from miR390 and Their Roles
872 in Secondary Small Interfering RNA Biogenesis in Eudicots. *Plant Cell* 25:1555–1572.
873 <https://doi.org/10.1105/tpc.113.110957>

874 Young, Clarkson, Smith, et al (2004) Environmental conditions influencing *Sclerotinia sclerotiorum*
875 infection and disease development in lettuce - Young - 2004 - Plant Pathology - Wiley Online
876 Library. *Plant Pathology* 387–397

877 Zhang W, Kwon S-T, Chen F, Kliebenstein DJ (2016) Isolate Dependency of *Brassica rapa* Resistance
878 QTLs to *Botrytis cinerea*. *Front Plant Sci* 7:161. <https://doi.org/10.3389/fpls.2016.00161>

879 Zhao J, Buchwaldt L, Rimmer SR, et al (2015) Patterns of differential gene expression in *Brassica*
880 *napus* cultivars infected with *Sclerotinia sclerotiorum*. *Mol Plant Pathol* 10:635–649.
881 <https://doi.org/10.1111/j.1364-3703.2009.00558.x>

882 Zhou F, Zhu FX, Zhang XL, Zhang AS (2014) First Report of Dimethylachlon Resistance in Field Isolates of
883 *Sclerotinia sclerotiorum* on Oilseed Rape in Shaanxi Province of Northwestern China. *Plant Dis*
884 98:568–568. <https://doi.org/10.1094/pdis-07-13-0730-pdn>

885

886 **Tables**

887 **Table 1:** Summary statistics for resistance quantitative trait loci (QTL) identified in the Armenian *L.*
888 *serriola* x PI251246 mapping population. The position along the chromosome, peak LOD score,
889 variance in lesion size explained, genetic and physical size, and the number of genes present (and
890 expressed in our data sets) is indicated for each QTL.

QTL	Pathogen	Chr	Pos (cM)	pLOD	Variance Exp	Genetic size (cM)	Physical size (Mb)	#Genes	#Genes expressed
qBc7	<i>B. cinerea</i>	7	148.0	4.1	7.29%	36.5	34.9	639	313
qBc9	<i>B. cinerea</i>	9	6.4	6.1	10.75%	15.0	26.7	776	415
qSs5	<i>S.sclerotiorum</i>	5	101.0	3.4	7.02%	72.7	118.4	1353	565
qSs8	<i>S.sclerotiorum</i>	8	184.5	4.7	8.14%	25.1	40.1	292	142
qSs9	<i>S.sclerotiorum</i>	9	125.6	4.1	8.54%	22.8	18.8	204	83

891

892

893 **Table 2** Location of detached leaf inoculation experiments

Inoculum	Year	Populations	Location
<i>Botrytis cinerea</i>	2015	Full diversity set and mapping population parents	Harper Adams
	2016	Armenian <i>L. serriola</i> x <i>L. sativa</i> PI251246 mapping population	York
	2018	Selected accessions from diversity set matched to transcriptome profiling	York
<i>Sclerotinia sclerotiorum</i>	2015	Full diversity set and mapping population parents	Warwick
	2016	Armenian <i>L. serriola</i> x <i>L. sativa</i> PI251246 mapping population	Harper Adams
	2018	Selected accessions from diversity set matched to transcriptome profiling	York

894

895

896 **Figure Legends**

897 **Figure 1:** Variation in lesion size after inoculation with *Botrytis cinerea* or *Sclerotinia sclerotiorum* in a
898 set of lettuce accessions. Least-squares REML predicted mean square root of lesion size 64 hours after
899 *Botrytis cinerea* (top) or *Sclerotinia sclerotiorum* (bottom) inoculation of detached lettuce leaves is
900 shown in ascending order of mean lesion size across the two pathogens. Error bars are REML standard
901 error. Lesions measured per accession per pathogen ranges from two (#86 *L. serriola* – *S. sclerotiorum*)
902 and 213 (Tozer Saladin – *B. cinerea*) with a median n=16.

903 **Figure 2:** Variation in lesion size after inoculation with *Botrytis cinerea* or *Sclerotinia sclerotiorum* in
904 different lettuce species. Square root lesion size 64 hours after *Sclerotinia sclerotiorum* (left) or *Botrytis*
905 *cinerea* (right) inoculation of detached lettuce leaves is shown. Grey circles represent individual
906 measured lesions, with areas within the lines showing the distribution of data points. Black circles are
907 the REML predicted mean lesion size per species (correcting for random variation between
908 experimental replicates) with error bars showing REML predicted standard error. Letters represent

909 Tukey post-hoc significance groupings ($p < 0.05$) performed on the REML model. n is the number of
910 lesions measured from each species.

911 **Figure 3:** Heatmap of the top 50 lettuce genes identified with expression that correlates with *S.*
912 *sclerotiorum* (A) resistance and (B) susceptibility across the diversity set accessions. The samples in the
913 heatmap are ordered, with most susceptible (largest *S. sclerotiorum* lesion size) on the left and most
914 resistant (smallest *S. sclerotiorum* lesion size) on the right.

915 **Figure 4:** Gene Ontology (GO)-term enrichment networks of Arabidopsis orthologs of *S. sclerotiorum*
916 (A) resistance and (B) susceptibility correlated genes. Each node is a statistically enriched GO-term
917 (against background of all Arabidopsis genes with an identified lettuce ortholog). Node colour
918 represents the relative level of statistical significance of the GO-term. Edges represent GO-terms with
919 overlapping genes.

920 **Figure 5:** Expression of the top 20 pentatricopeptide repeat (PPR) genes whose expression is correlated
921 with resistance against *S. sclerotiorum* (i.e. reduced lesion size) and all 20 nucleotide binding leucine-
922 rich repeat (NLR) genes with expression correlated with *S. sclerotiorum* lesion size (12 correlated with
923 resistance and eight with susceptibility). The NLRs are classified as Coiled-coil (CC)-NLRs (CNLs) or Toll-
924 interleukin-1 receptor (TIR)-NLRs (TNLs). The individual lettuce samples are ordered left to right on the
925 basis of lesion size after inoculation with *S. sclerotiorum*, with the most susceptible (largest lesion size)
926 on the left and most resistant (smallest lesion size) on the right. \log_2 expression is indicated by the
927 red/blue scale.

928 **Figure 6:** Parent lines of lettuce mapping populations differ in lesion size after inoculation with *B.*
929 *cinerea* or *S. sclerotiorum*. REML predicted square root mean lesion size of *B. cinerea* (top) or *S.*
930 *sclerotiorum* (bottom) on detached lettuce leaves of mapping population parents available from UC
931 Davis. Lines are shown grouped as parents of mapping populations. Multiple cases of the same line
932 represent one set of data that is repeated to allow comparison within a different parental pair. Error
933 bars are REML predicted standard error, where n is between 15 and 29. Tukey HSD p-values are shown
934 where there is significant difference, otherwise 'ns' indicates not significant.

935 **Figure 7:** Quantitative trait loci associated with reduced lesion size of *B. cinerea* or *S. sclerotiorum*. LOD
936 scores from 'stepwiseqtl' multi-QTL selection models using the Haley-Knott algorithm, genotyping-by-
937 sequencing markers and predicted mean lesion size from the detached leaf assay data for each
938 pathogen are shown. Data relating to *B. cinerea* inoculation are shown in red, whereas those from *S.*
939 *sclerotiorum* inoculation are shown in blue. Five significant QTL (*qSs5*, *qSs8*, *qSs9*, *qBc7* & *qBc9*) were
940 maintained in the final model after backwards elimination of insignificant loci. Boxes represent the
941 1.5LOD confidence intervals around the peak LOD of each QTL. The nine lettuce chromosomes are
942 shown along the x-axis.

943 **Figure 8:** Integration of gene expression data with QTL to predict potential causal genes. The
944 expression of genes differentially expressed between the mapping population parents (Armenian *L.*
945 *serriola*, PI251246,) after *S. sclerotiorum* infection in two datasets (as part of the diversity set and a
946 specific repeat of the two lines) and located within a QTL are shown. For all QTL, except for *qSs9*, the
947 resistance allele originates in the Armenian *L. serriola* line. The two columns on the left indicate genes
948 whose expression is correlated with pathogen resistance or susceptibility in the lettuce diversity set
949 (ns = no significant correlation).

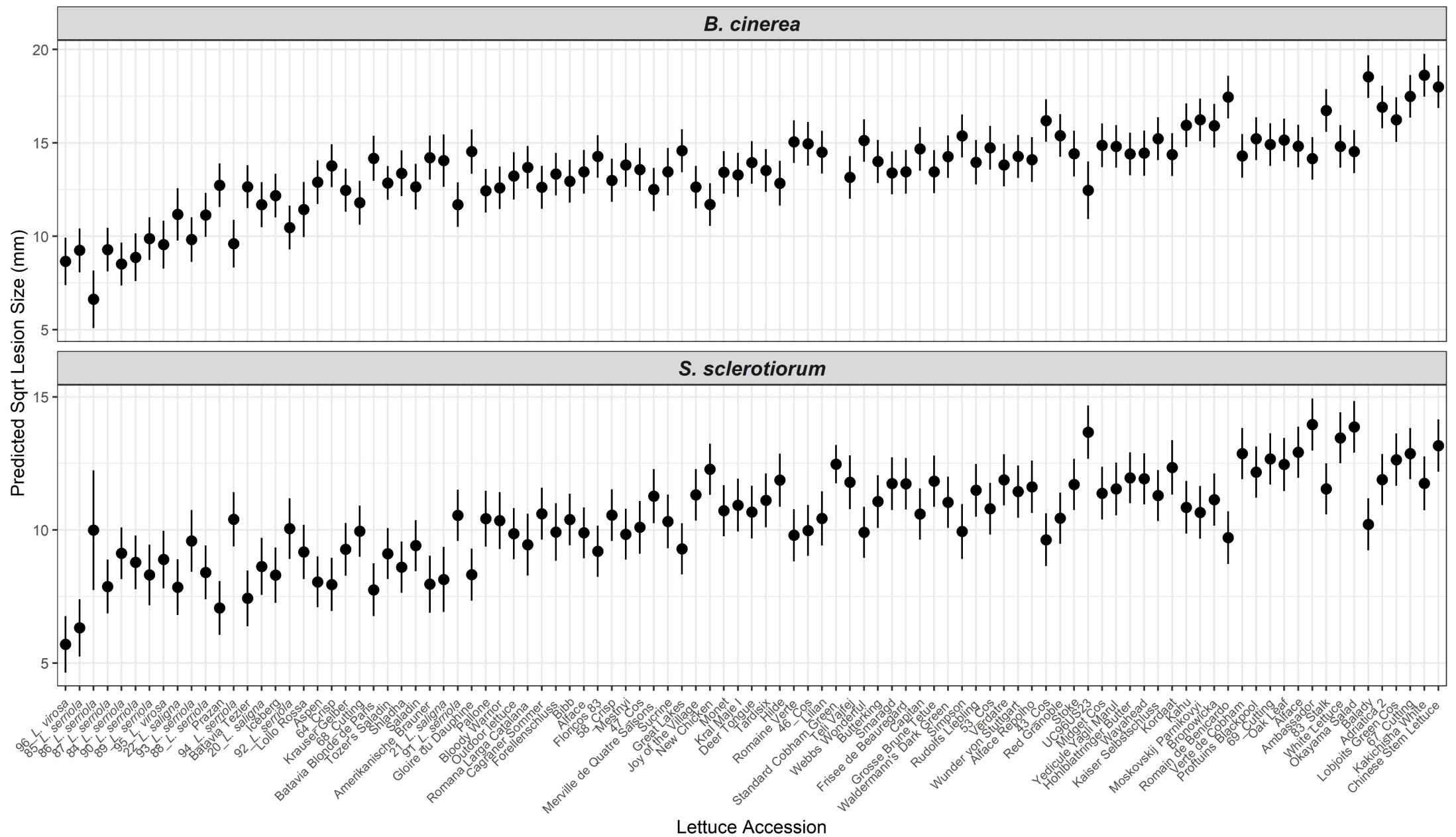
950 **Supplementary Figure 1:** Variation in lesion size after inoculation with *B. cinerea* or *S. sclerotiorum*
951 between lettuce types. Square root lesion size in response to *S. sclerotiorum* (top) or *B. cinerea*
952 (bottom) on detached lettuce leaves of the Lettuce Diversity Fixed Foundation Set. Grey points show
953 individual measured lesions, violins show the distribution. Black points show REML predicted
954 (accounting for random variation between experimental replicates). Error bars indicate REML
955 predicted standard error. Letters shown represent Tukey HSD significance groupings ($p < 0.05$). n = the
956 number of lesions measured from each type in response to each pathogen.

957 **Supplementary Figure 2:** Correlation between lesion size 64 hours post inoculation with *S.*
958 *sclerotiorum* and *B. cinerea*. Least-squares predicted mean square root lesion size of *B. cinerea* (x-axis)
959 vs. *S. sclerotiorum* (y-axis) on detached lettuce leaves, where n ranges from two to 20 for each
960 accession/pathogen combination. Linear regression line is shown in black, with 95% confidence
961 intervals shaded in grey.

962 **Supplementary Figure 3:** Whole Plant Disease incidence scoring on seven lettuce accessions. All
963 accessions are *L. sativa* unless otherwise indicated. (A) Mean disease symptom scoring out of 4 for
964 each lettuce accession from 14 to 49 days post treatment in response to *B. cinerea* and *S. sclerotiorum*.
965 Error bars are standard error, n=18. (B) Area under the disease progression curve (AUDPC) calculated
966 to summarise disease progression over time for each individual plant, n=18. Letters represent Tukey
967 HSD statistical significance groupings (p<0.05).

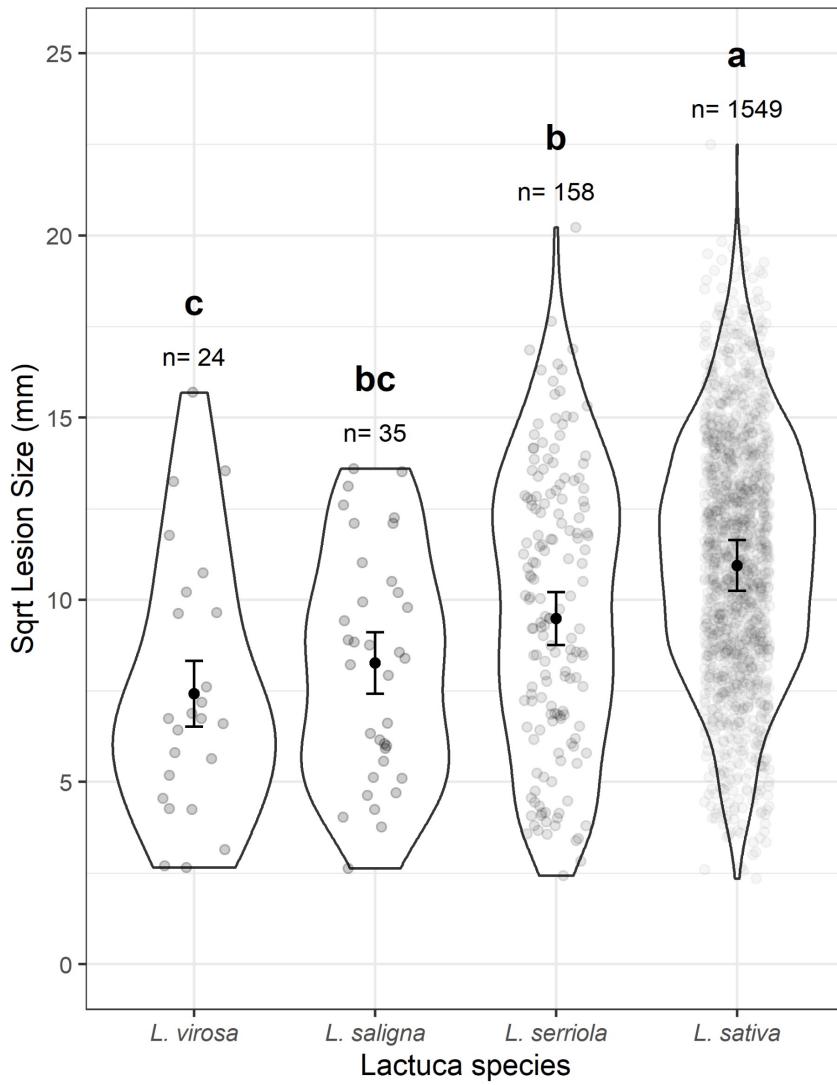
968 **Supplementary Figure 4:** Correlation of REML predicted detached leaf assay square root lesion size
969 (mm) with AUDPC in whole plant inoculations of *B. cinerea* (left) and *S. sclerotiorum* (right) for seven
970 lettuce accessions. Pearson's correlation coefficient (R) values and p-values are shown. All accessions
971 are *L. sativa* unless otherwise indicated.

972 **Supplementary Figure 5:** Pearson's correlation of RNAseq reads in each sample that map to fungal
973 transcripts versus lesion size in (A) *S. sclerotiorum* and (B) *B. cinerea* inoculated samples.


974 **Supplementary Figure 6:** Dendrogram showing Euclidian distance between lettuce diversity set
975 RNAseq samples. With a few exceptions, biological replicates of the same accession cluster together.

976 **Supplementary Figure 7:** Expression of the top 50 lettuce genes whose expression is correlated with
977 *S. sclerotiorum* lesion size, and which were classified as non-NLR pathogen recognition receptors
978 (Christopoulou et al. 2015 classification indicated in the column gene.class). This classification was
979 based on the presence of any combination of the following domains: leucine-rich repeats (LRR),
980 nucleotide-binding (NB), NB Coiled-coil type (Nc), transmembrane (TM), kinase, non-arginine-
981 aspartate kinase (non-RD kinase) and TOLL/interleukin-1 receptor (TIR). Additional gene nomenclature
982 includes Ncl: NC plus L domains; PkinL: kinase plus L; RLK: receptor-like kinase; RLP receptor-like
983 protein. The individual lettuce samples are ordered left to right on the basis of lesion size after
984 inoculation with *S. sclerotiorum*, with the most susceptible (largest lesion size) on the left and most
985 resistant (smallest lesion size) on the right. Log₂ expression is indicated by the red/blue scale.

986 **Supplementary Figure 8:** Location of resistance QTL on the Armenian *L. serriola* x PI251246 marker
987 density map. Horizontal bars show the 1.5 LOD confidence interval of the QTL loci and the vertical bar
988 shows the location of the peak QTL marker.


989 **Supplementary Figure 9:** Variation in lesion size between RILs containing alleles originating from
990 PI251246 (Pl) or Armenian *L. serriola* (Arm) at identified QTL markers. Violin plots show the distribution
991 of least-squares predicted mean lesion size for RILs after inoculation with the pathogen relevant to the
992 identified QTL (*B. cinerea* blue, *S. sclerotiorum* red). Black horizontal bars represent the mean. Letters
993 show statistical significance groupings (Tukey HSD p<0.05) and the number of samples tested is
994 indicated for each genotype.

995 **Supplementary Figure 10:** Principal Component Analysis (PCA) of PI251246 (blue) and Armenian *L.*
996 *serriola* (pink) RNAseq data after pathogen infection with (A) *B. cinerea* and (B) *S. sclerotiorum*. The
997 PCA plot shows two independent experiments: Diversity Set RNAseq (circles) and the mapping
998 population parent repeat (triangles). In *S. sclerotiorum* infected samples, there is a clear separation
999 across PC1 between the parental lines that is consistent across experiments. In *B. cinerea* infected
1000 samples, the largest separation across PC1 appears to reflect different experiments, but each parent
1001 line clearly separates within the experiment across PC2.

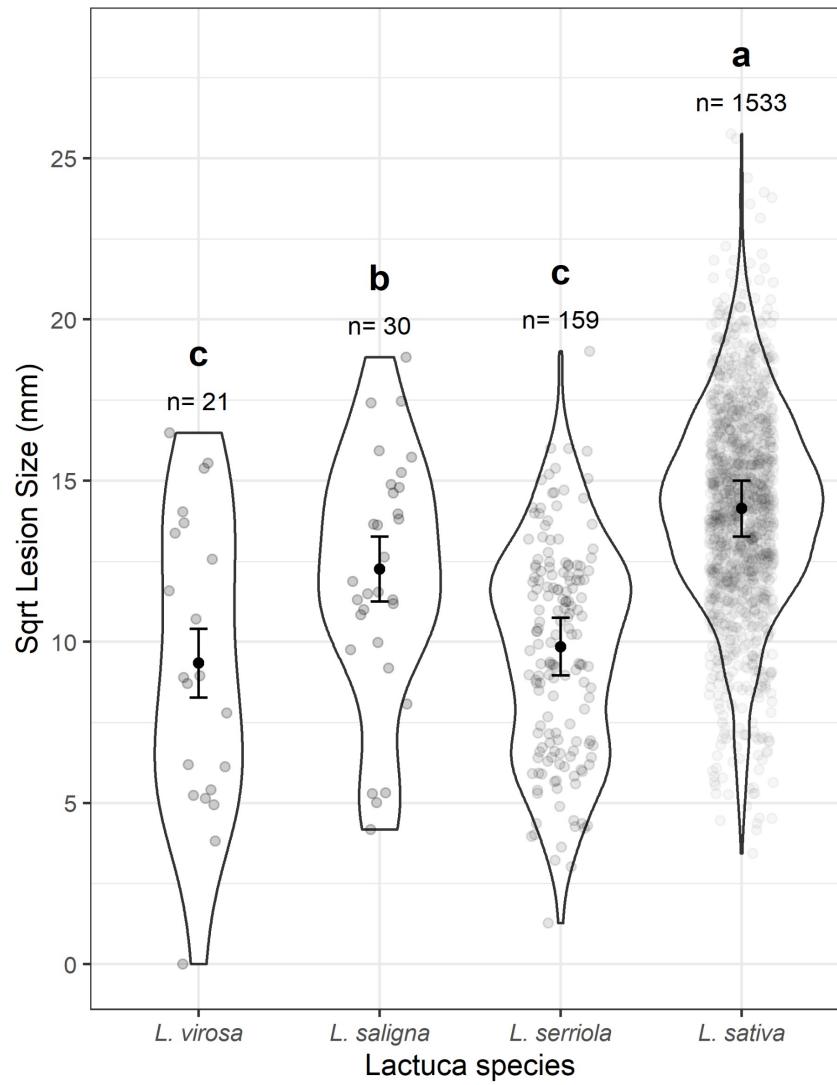
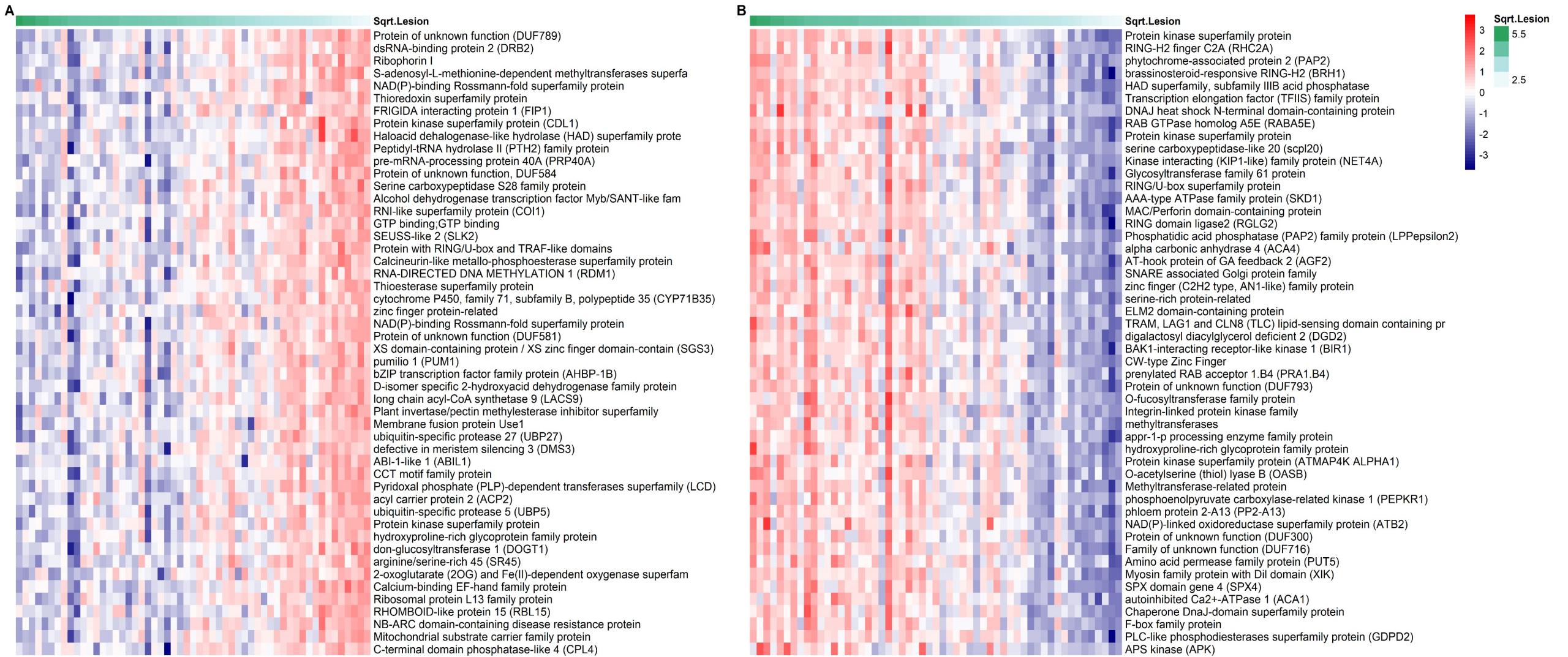
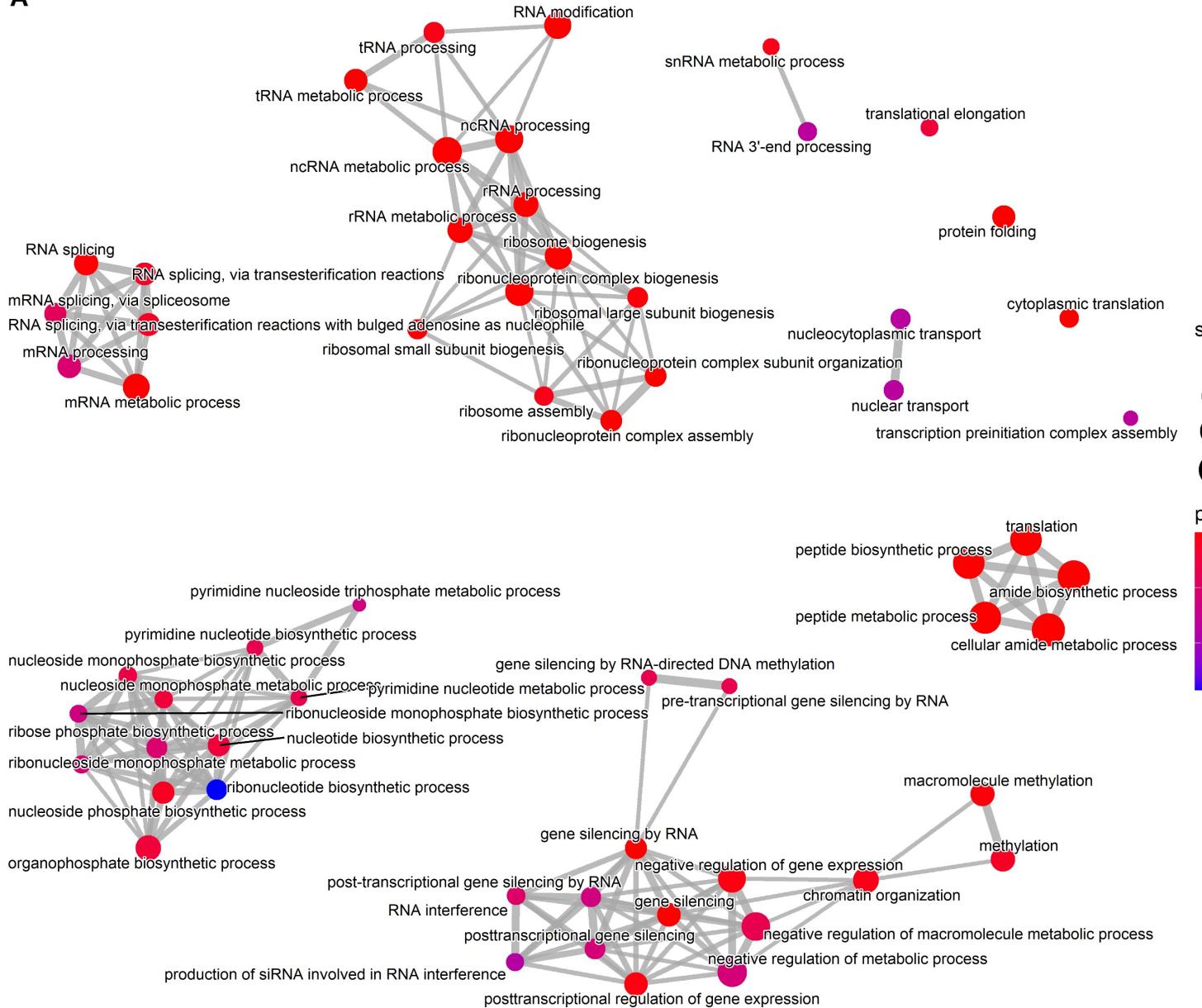
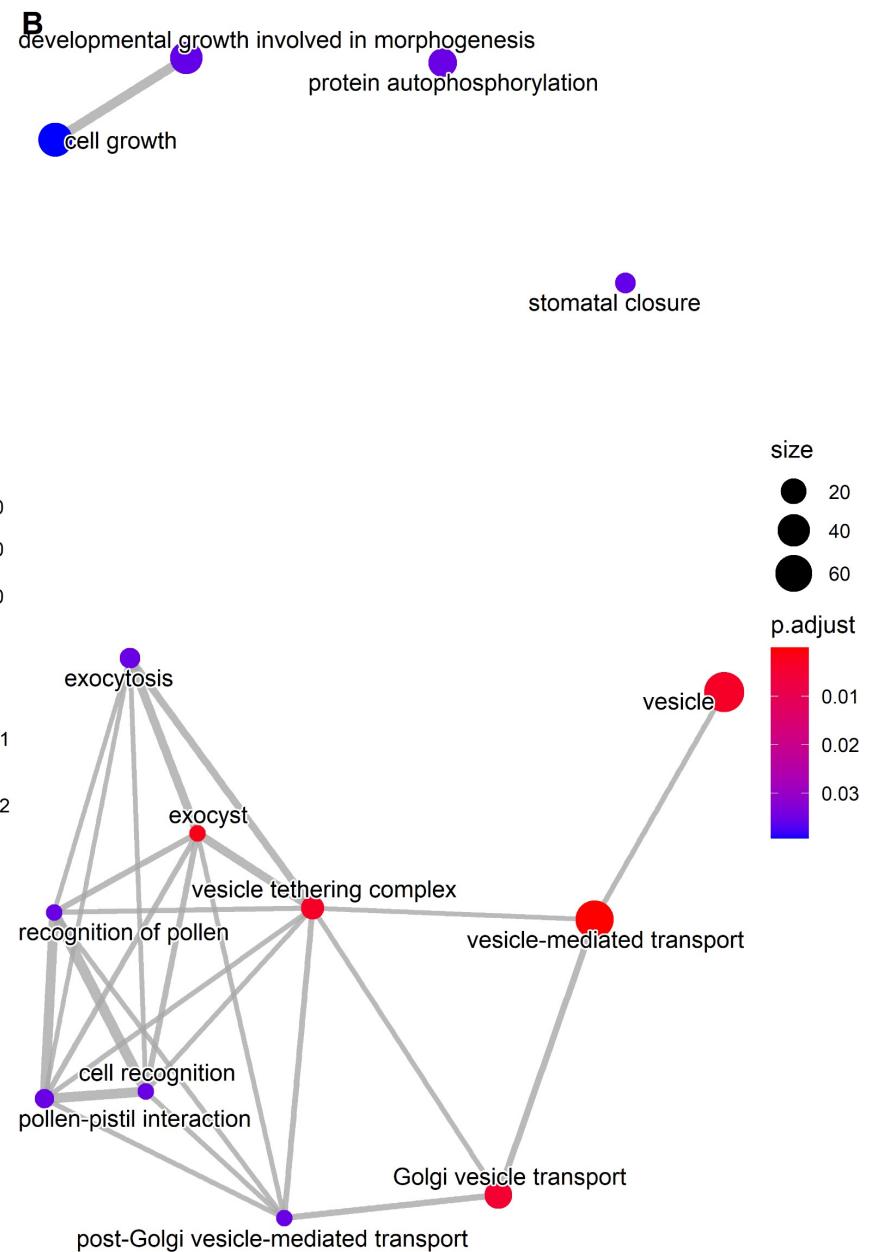


Figure 1: Variation in lesion size after inoculation with *Botrytis cinerea* or *Sclerotinia sclerotiorum* in a set of lettuce accessions. Least-squares REML predicted mean square root of lesion size 64 hours after *Botrytis cinerea* (top) or *Sclerotinia sclerotiorum* (bottom) inoculation of detached lettuce leaves is shown in ascending order of mean lesion size across the two pathogens. Error bars are REML standard error. Lesions measured per accession per pathogen ranges from two (#86 *L. serriola* – *S. sclerotiorum*) and 213 (Tozer Saladin – *B. cinerea*) with a median n=16.


S. sclerotiorum



B. cinerea

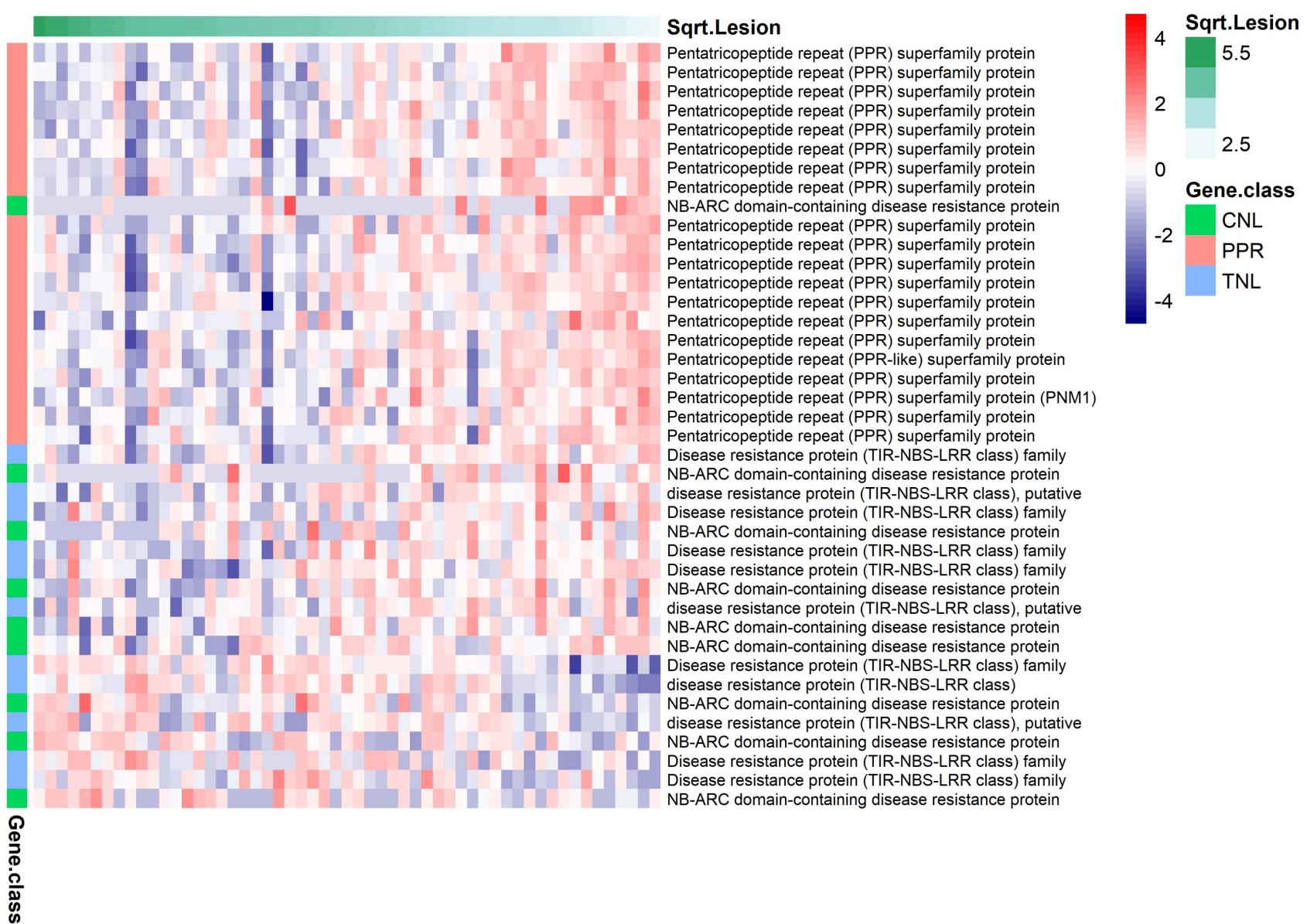

Figure 2: Variation in lesion size after inoculation with *Botrytis cinerea* or *Sclerotinia sclerotiorum* in different lettuce species. Square root lesion size 64 hours after *Sclerotinia sclerotiorum* (left) or *Botrytis cinerea* (right) inoculation of detached lettuce leaves is shown. Grey circles represent individual measured lesions, with areas within the lines showing the distribution of data points. Black circles are the REML predicted mean lesion size per species (correcting for random variation between experimental replicates) with error bars showing REML predicted standard error. Letters represent Tukey post-hoc significance groupings ($p < 0.05$) performed on the REML model. n is the number of lesions measured from each species.

Figure 3: Heatmap of the top 50 lettuce genes identified with expression that correlates with *S. sclerotiorum* (A) resistance and (B) susceptibility across the diversity set accessions. The samples in the heatmap are ordered, with most susceptible (largest *S. sclerotiorum* lesion size) on the left and most resistant (smallest *S. sclerotiorum* lesion size) on the right.

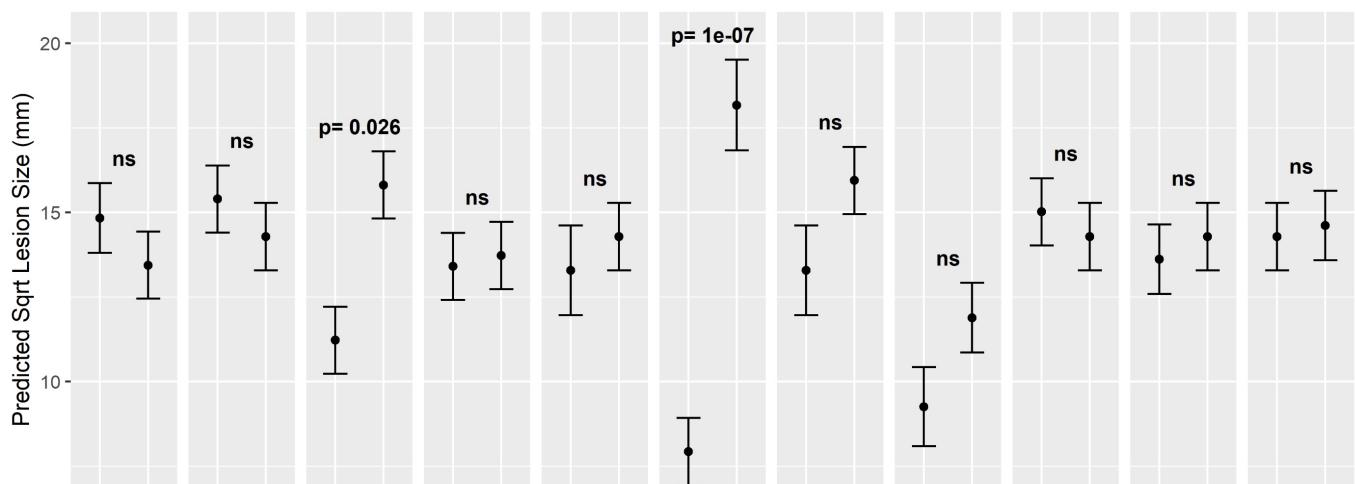

A**B**

Figure 4: Gene Ontology (GO)-term enrichment networks of *Arabidopsis* orthologs of *S. sclerotiorum* (A) resistance and (B) susceptibility correlated genes. Each node is a statistically enriched GO-term (against background of all *Arabidopsis* genes with an identified lettuce ortholog). Node colour represents the relative level of statistical significance of the GO-term. Edges represent GO-terms with overlapping genes.

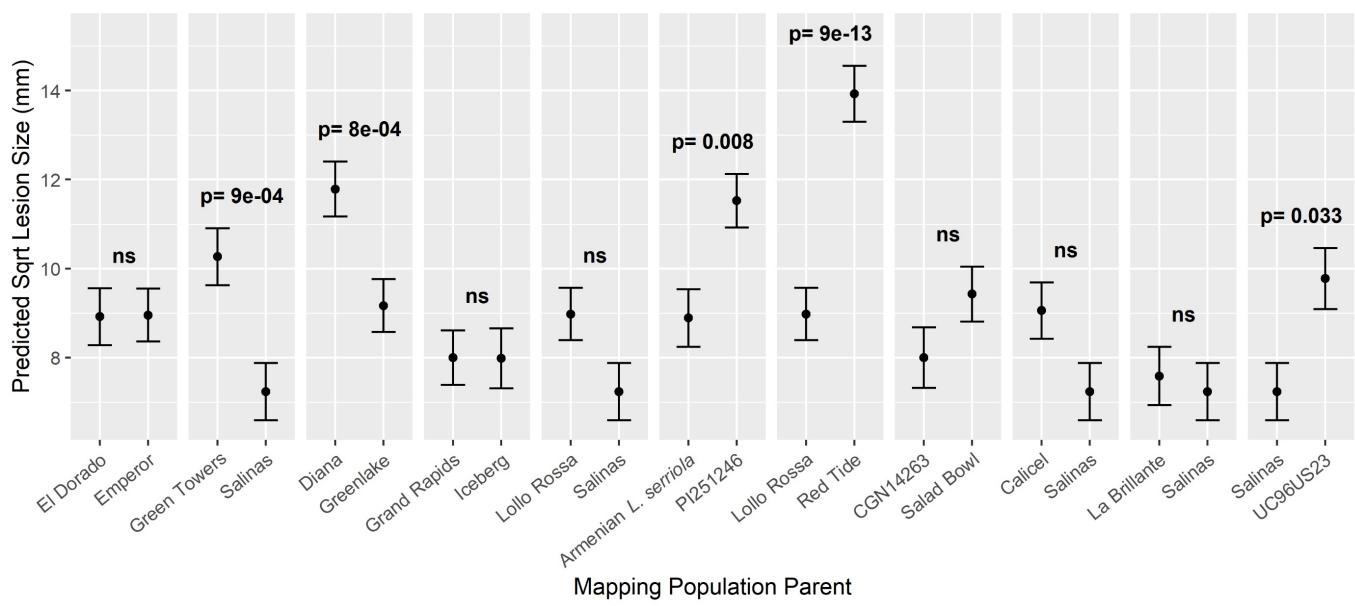
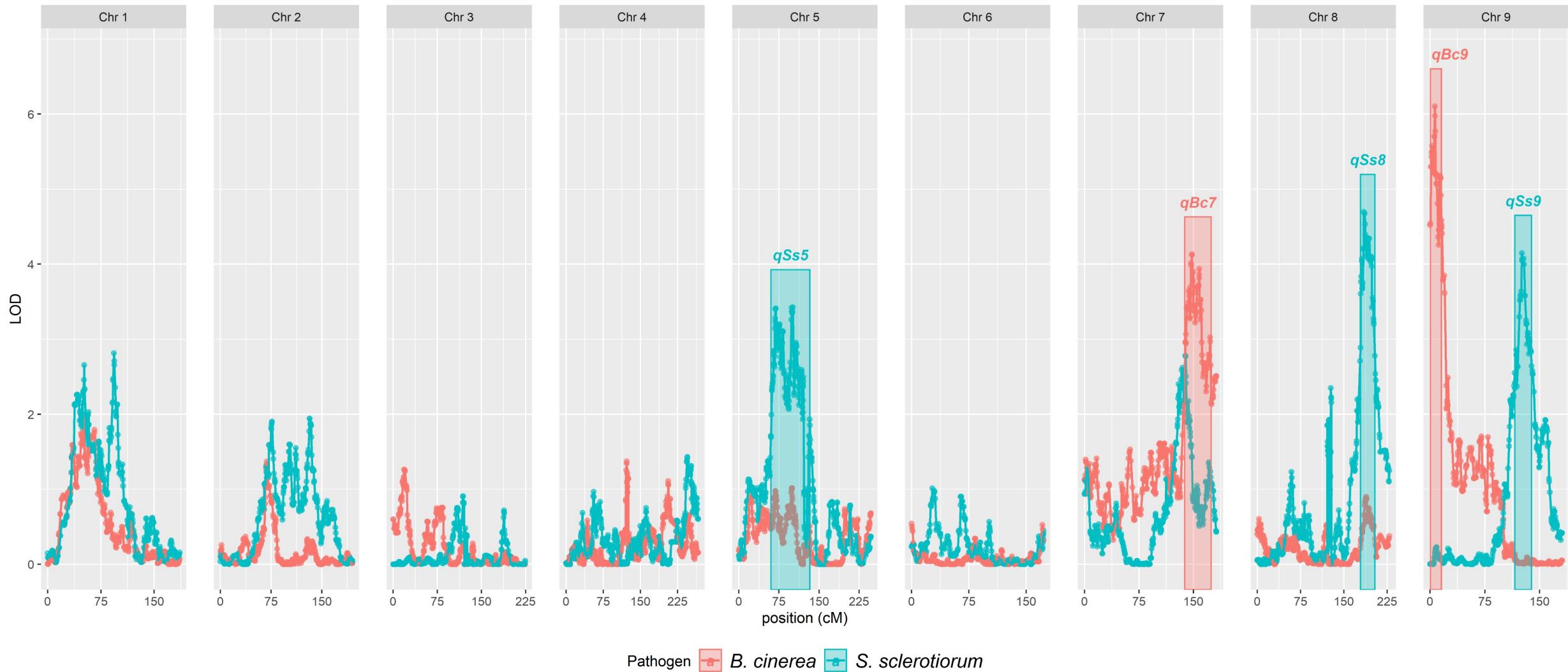


Figure 5: Expression of the top 20 pentatricopeptide repeat (PPR) genes whose expression is correlated with resistance against *S. sclerotiorum* (i.e. reduced lesion size) and all 20 nucleotide binding leucine-rich repeat (NLR) genes with expression correlated with *S. sclerotiorum* lesion size (12 correlated with resistance and eight with susceptibility). The NLRs are classified as Coiled-coil (CC)-NLRs (CNLs) or Toll-interleukin-1 receptor (TIR)-NLRs (TNLs). The individual lettuce samples are ordered left to right on the basis of lesion size after inoculation with *S. sclerotiorum*, with the most susceptible (largest lesion size) on the left and most resistant (smallest lesion size) on the right. Log₂ expression is indicated by the red/blue scale.


B. cinerea


S. sclerotiorum

Figure 6: Parent lines of lettuce mapping populations differ in lesion size after inoculation with *B. cinerea* or *S. sclerotiorum*. REML predicted square root mean lesion size of *B. cinerea* (top) or *S. sclerotiorum* (bottom) on detached lettuce leaves of mapping population parents available from UC Davis. Lines are shown grouped as parents of mapping populations. Multiple cases of the same line represent one set of data that is repeated to allow comparison within a different parental pair. Error bars are REML predicted standard error, where n is between 15 and 29. Tukey HSD p-values are shown where there is significant difference, otherwise 'ns' indicates not significant.

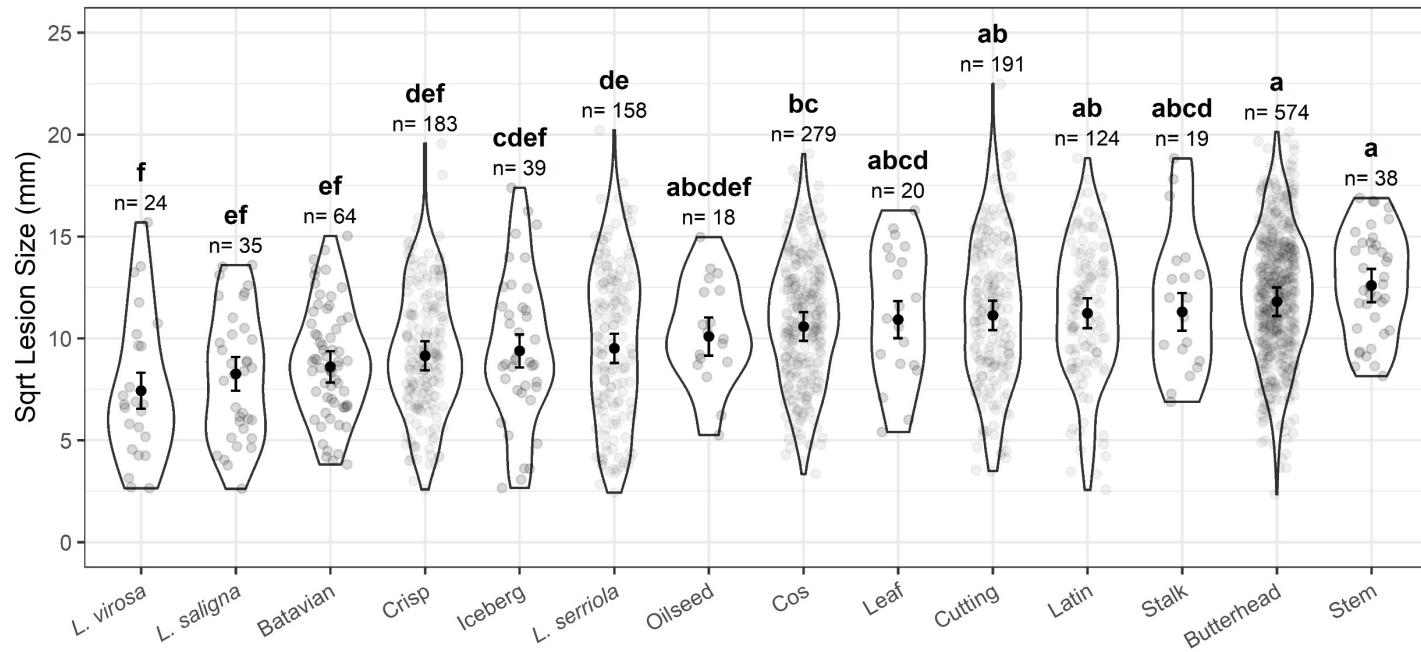


Figure 7: Quantitative trait loci associated with reduced lesion size of *B. cinerea* or *S. sclerotiorum*. LOD scores from 'stepwiseql' multi-QTL selection models using the Haley-Knott algorithm, genotyping-by-sequencing markers and predicted mean lesion size from the detached leaf assay data for each pathogen are shown. Data relating to *B. cinerea* inoculation are shown in red, whereas those from *S. sclerotiorum* inoculation are shown in blue. Five significant QTL (*qSs5*, *qSs8*, *qSs9*, *qBc7* & *qBc9*) were maintained in the final model after backwards elimination of insignificant loci. Boxes represent the 1.5LOD confidence intervals around the peak LOD of each QTL. The nine lettuce chromosomes are shown along the x-axis.

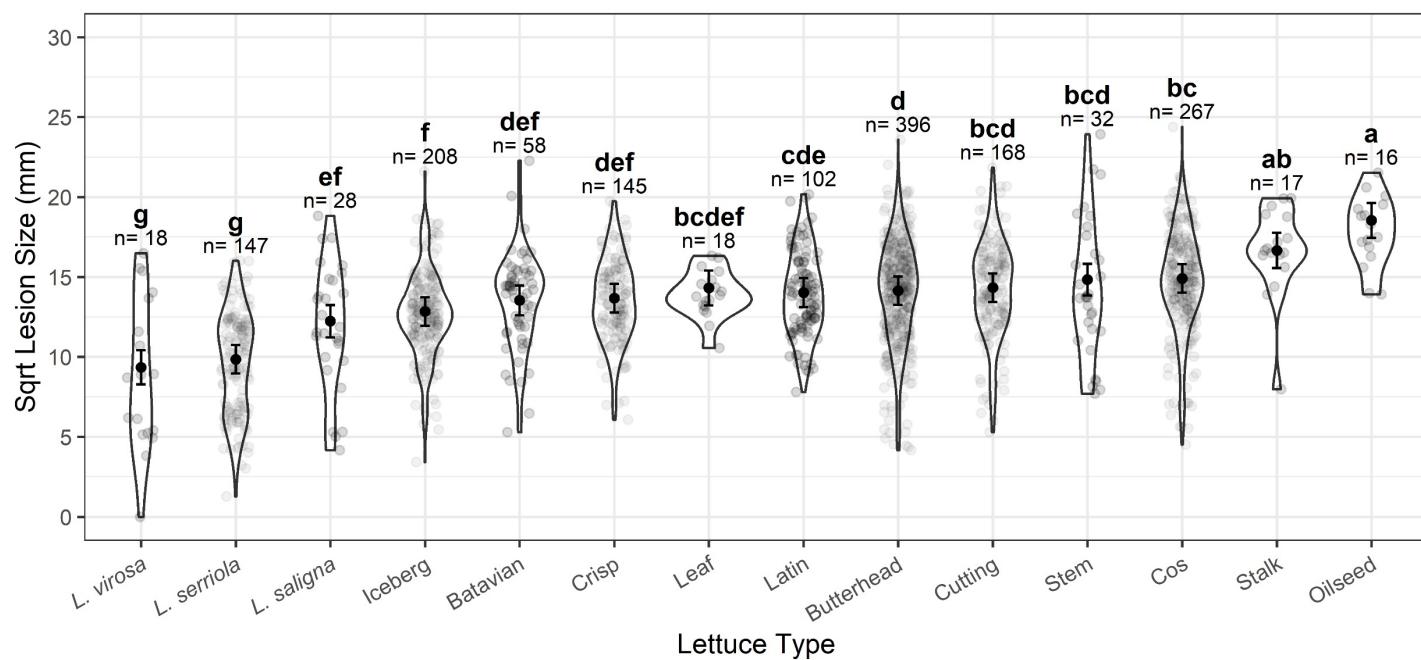
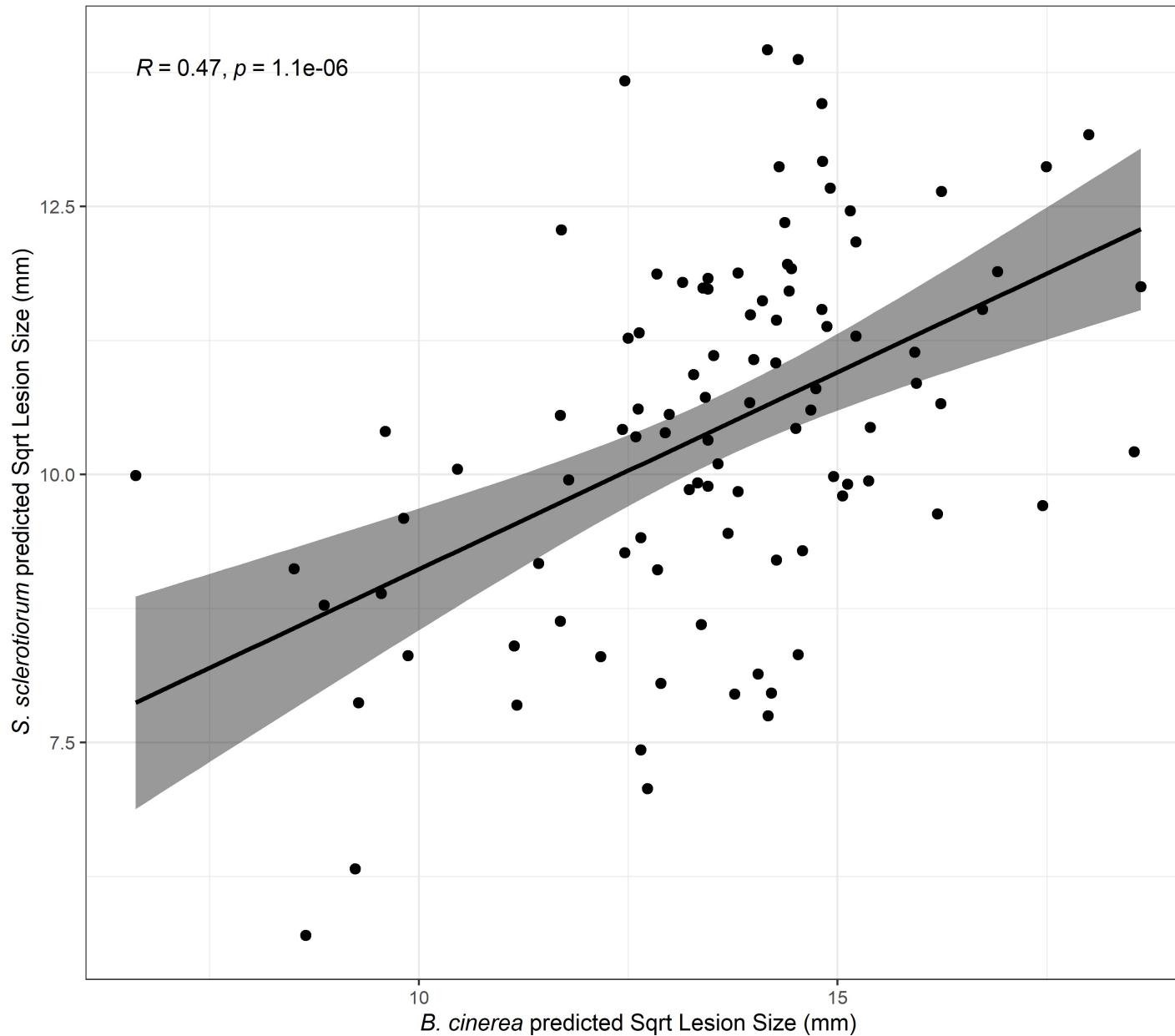
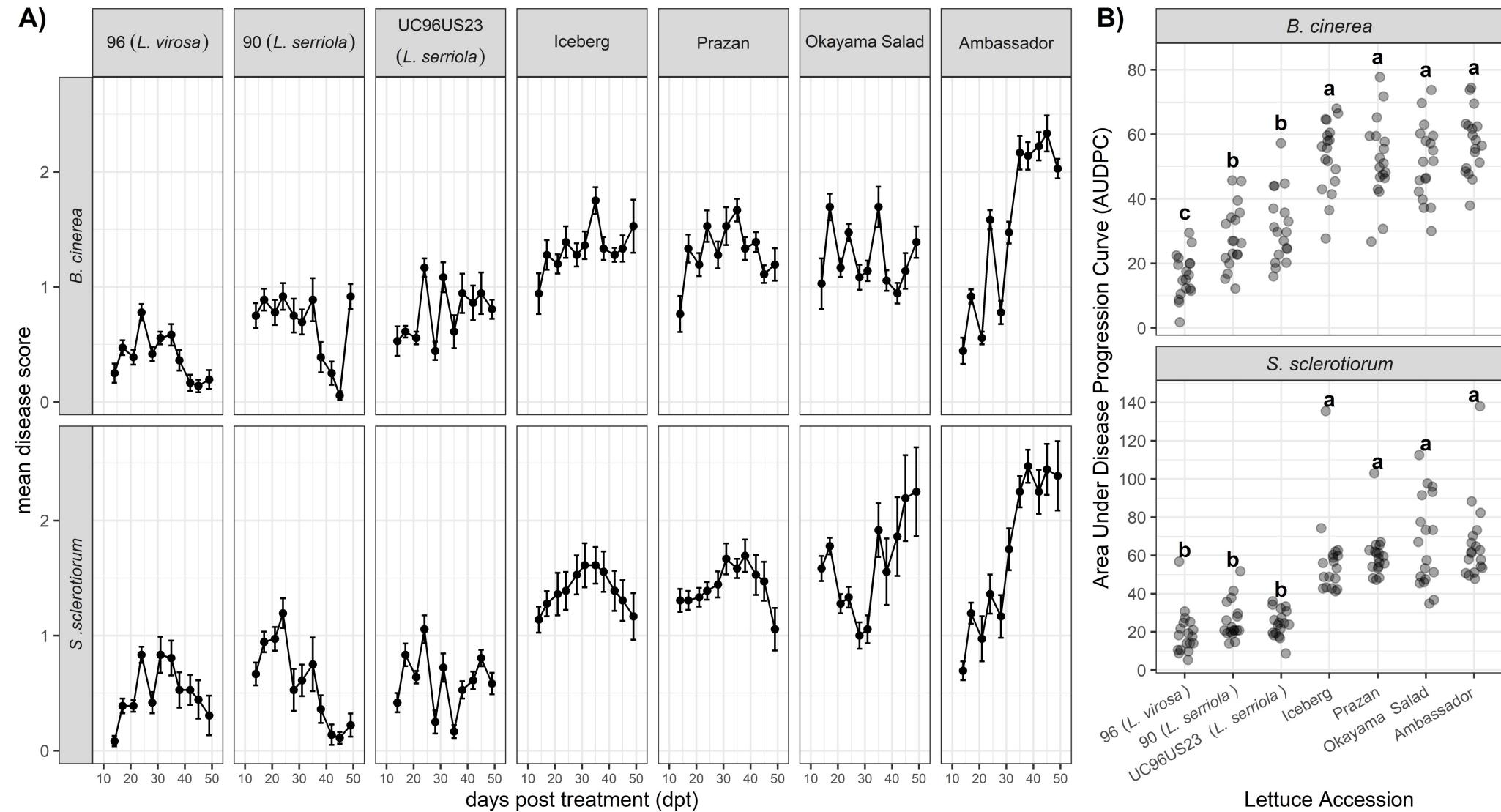
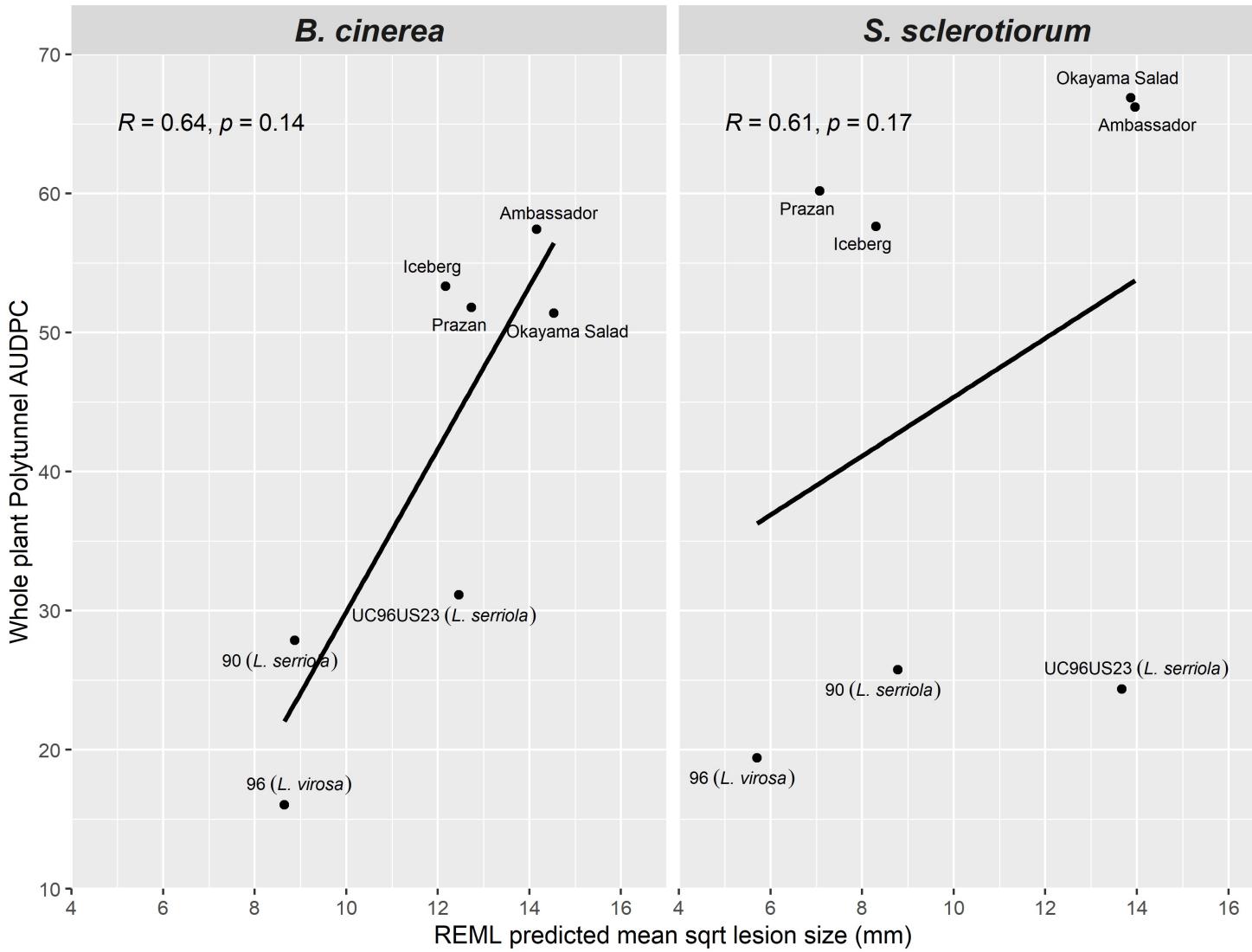
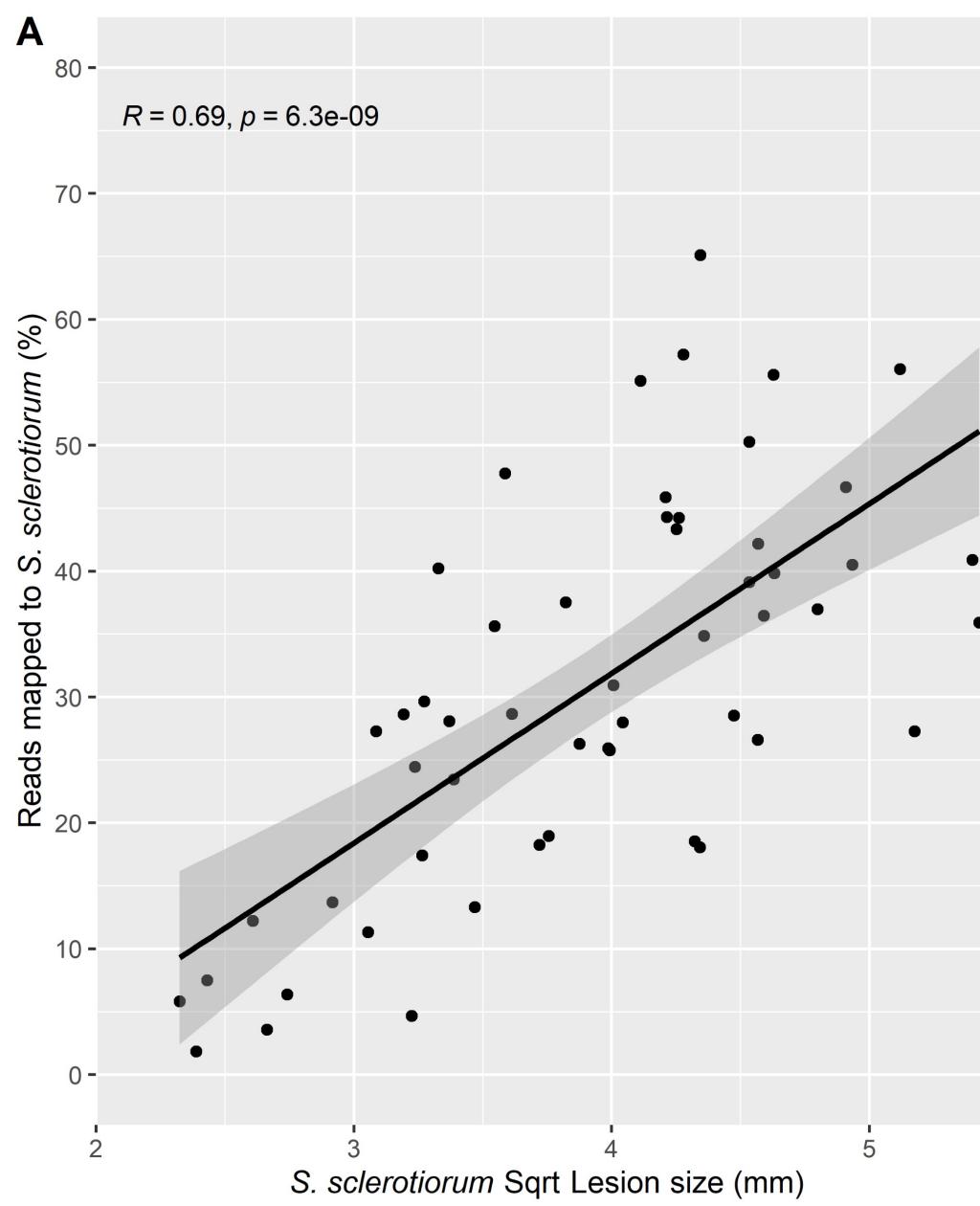


Figure 8: Integration of gene expression data with QTL to predict potential causal genes. The expression of genes differentially expressed between the mapping population parents (Armenian *L. serriola*, PI251246,) after *S. sclerotiorum* infection in two datasets (as part of the diversity set and a specific repeat of the two lines) and located within a QTL are shown. For all QTL, except for qSs9, the resistance allele originates in the Armenian *L. serriola* line. The two columns on the left indicate genes whose expression is correlated with pathogen resistance or susceptibility in the lettuce diversity set (ns = no significant correlation).

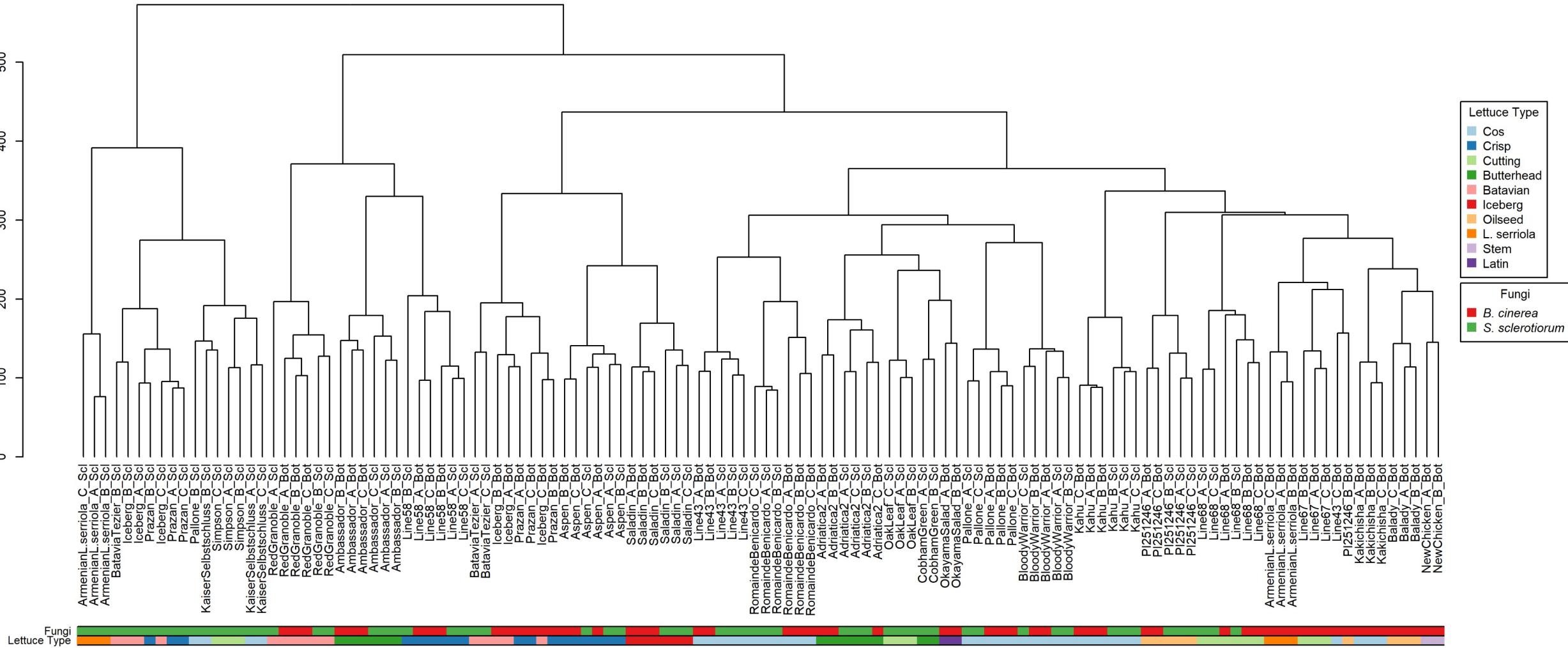

S. sclerotiorum

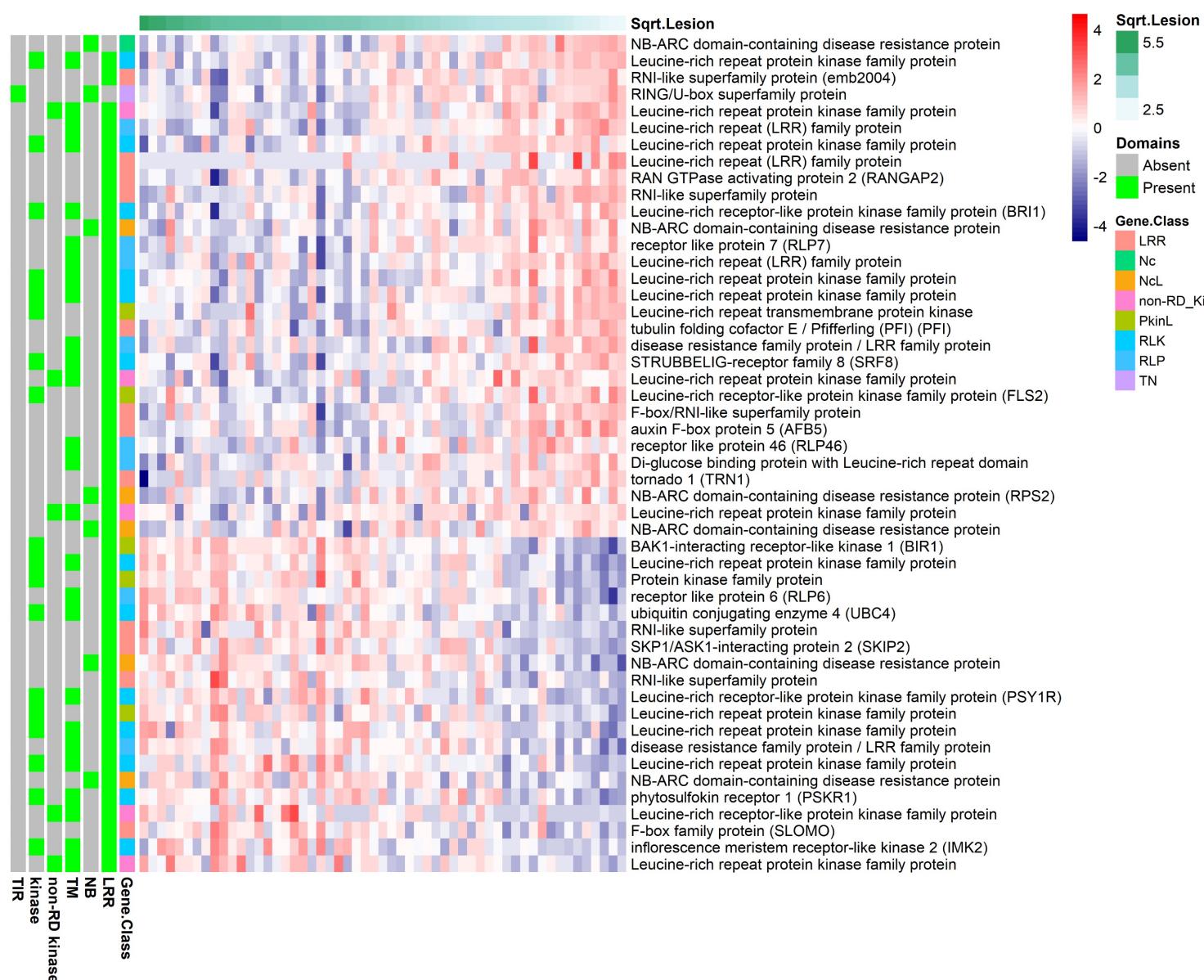

B. cinerea

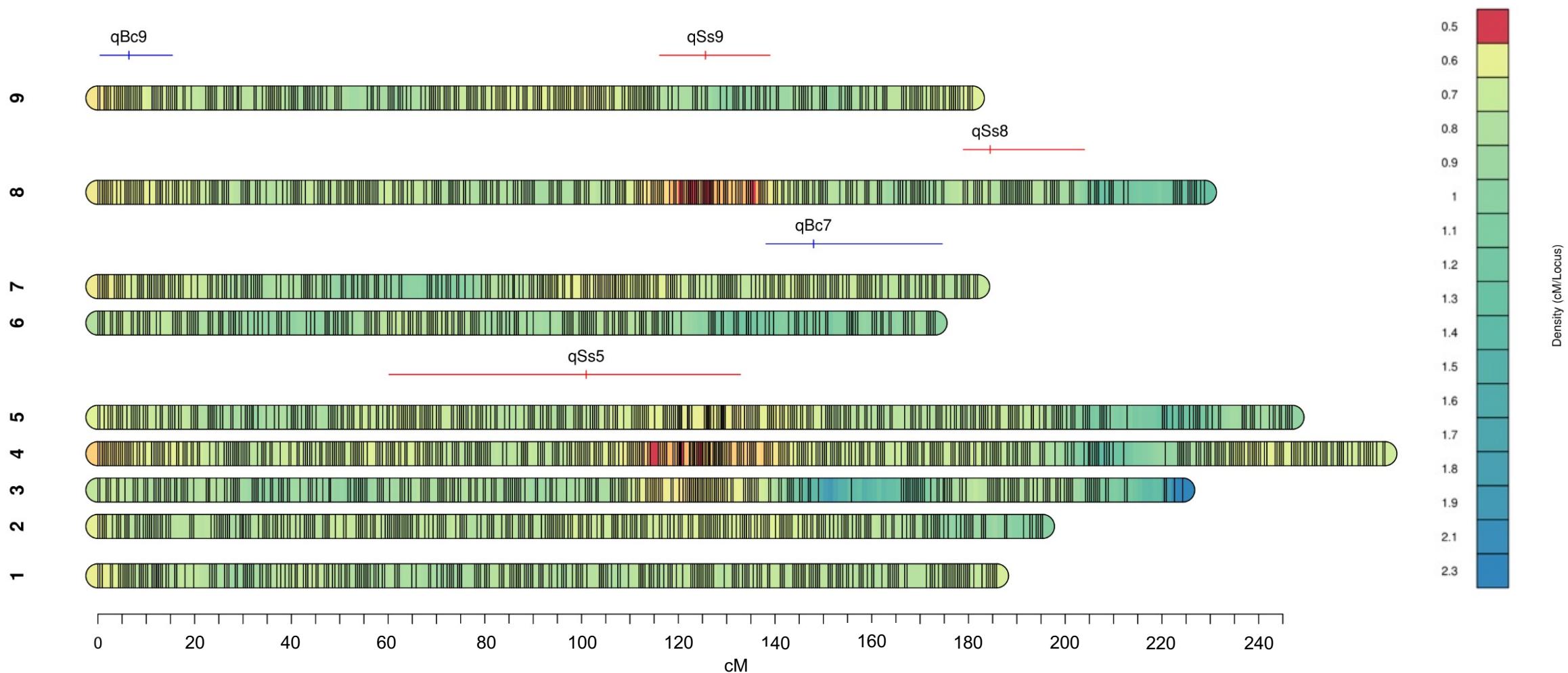

Supplementary Figure 1: Variation in lesion size after inoculation with *B. cinerea* or *S. sclerotiorum* between lettuce types. Square root lesion size in response to *S. sclerotiorum* (top) or *B. cinerea* (bottom) on detached lettuce leaves of the Lettuce Diversity Fixed Foundation Set. Grey points show individual measured lesions, violins show the distribution. Black points show REML predicted (accounting for random variation between experimental replicates). Error bars indicate REML predicted standard error. Letters shown represent Tukey HSD significance groupings (p < 0.05). n = the number of lesions measured from each type in response to each pathogen.


Supplementary Figure 2: Correlation between lesion size 64 hours post inoculation with *S. sclerotiorum* and *B. cinerea*. Least-squares predicted mean square root lesion size of *B. cinerea* (x-axis) vs. *S. sclerotiorum* (y-axis) on detached lettuce leaves, where n ranges from two to 20 for each accession/pathogen combination. Linear regression line is shown in black, with 95% confidence intervals shaded in grey.

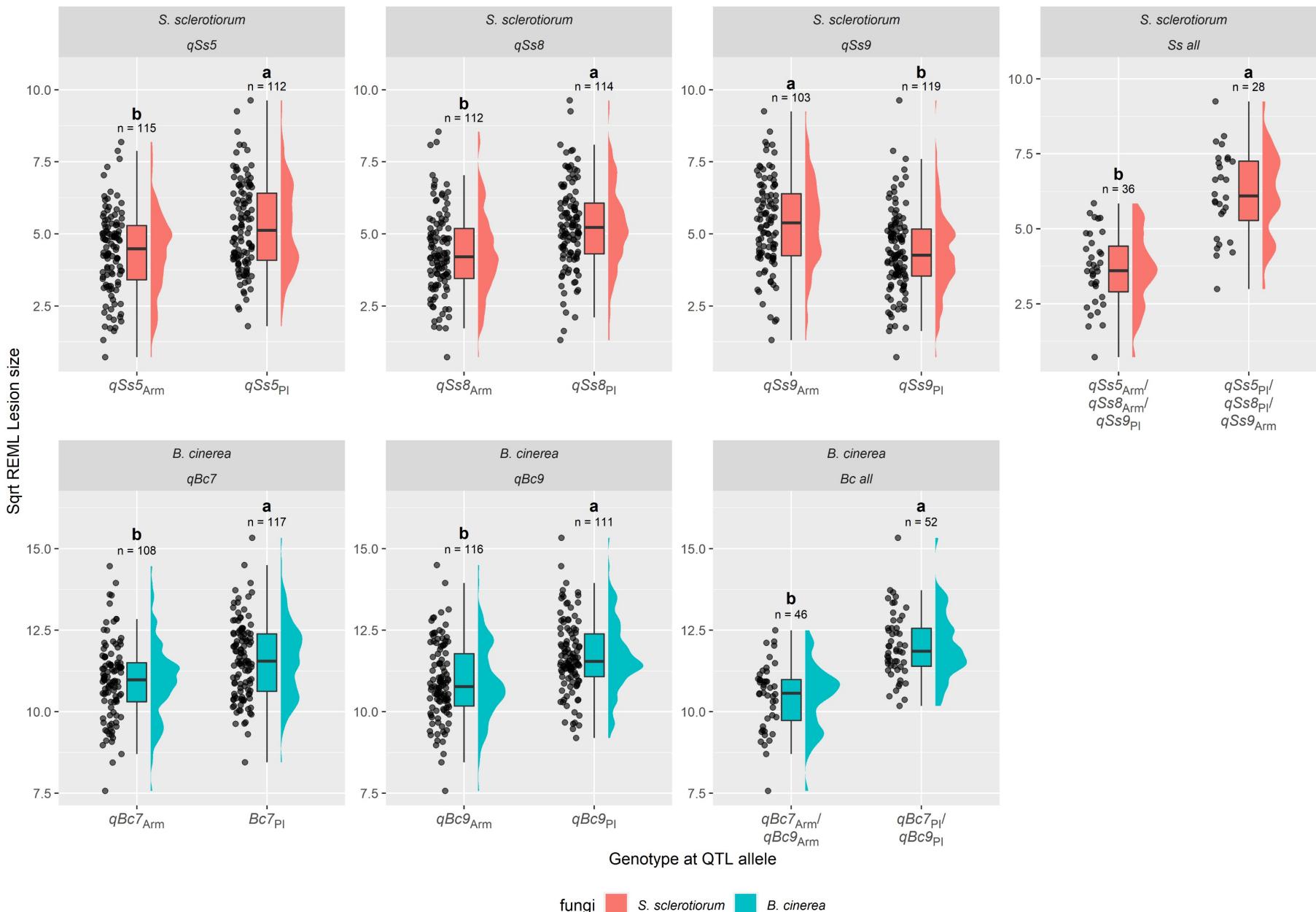
Supplementary Figure 3: Whole Plant Disease incidence scoring on seven lettuce accessions. All accessions are *L. sativa* unless otherwise indicated. (A) Mean disease symptom scoring out of 4 for each lettuce accession from 14 to 49 days post treatment in response to *B. cinerea* and *S. sclerotiorum*. Error bars are standard error, n=18. (B) Area under the disease progression curve (AUDPC) calculated to summarise disease progression over time for each individual plant, n=18. Letters represent Tukey HSD statistical significance groupings ($p<0.05$).

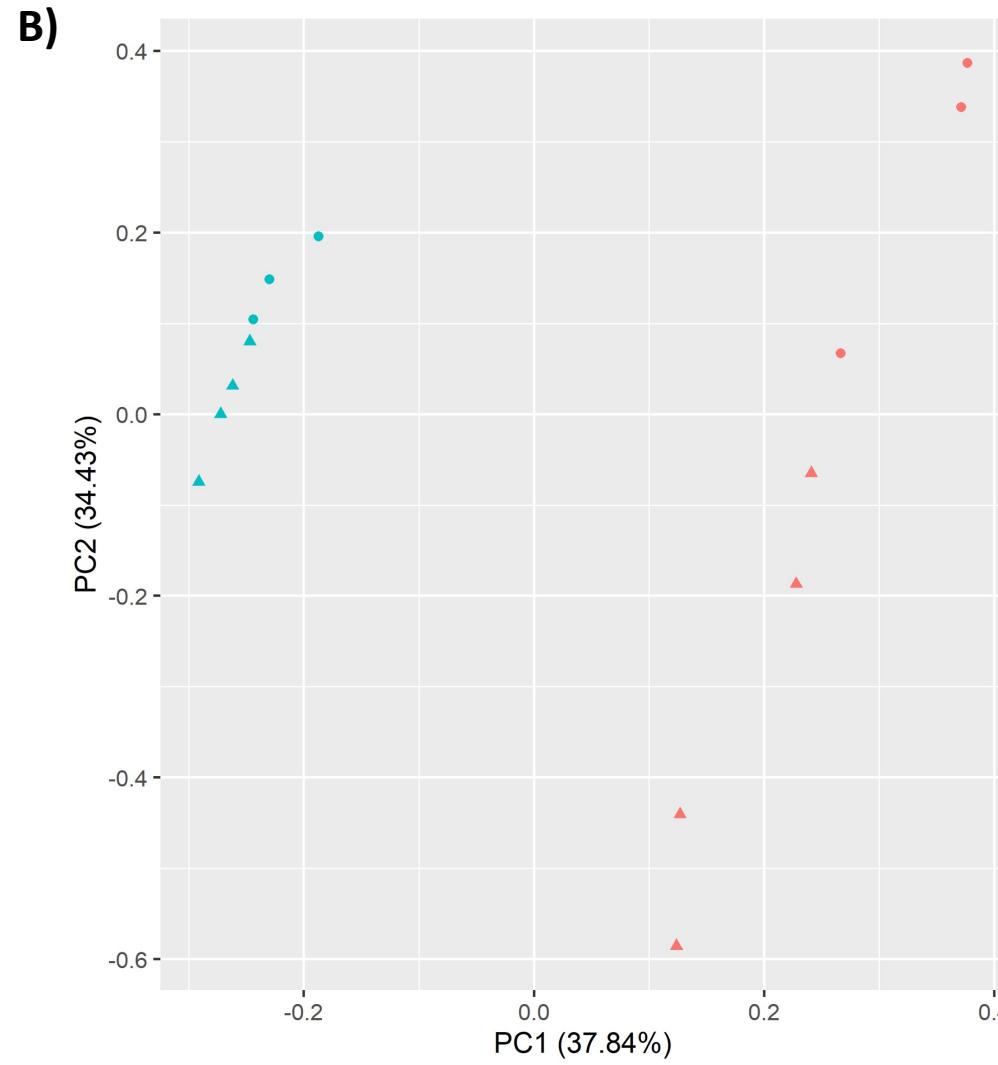
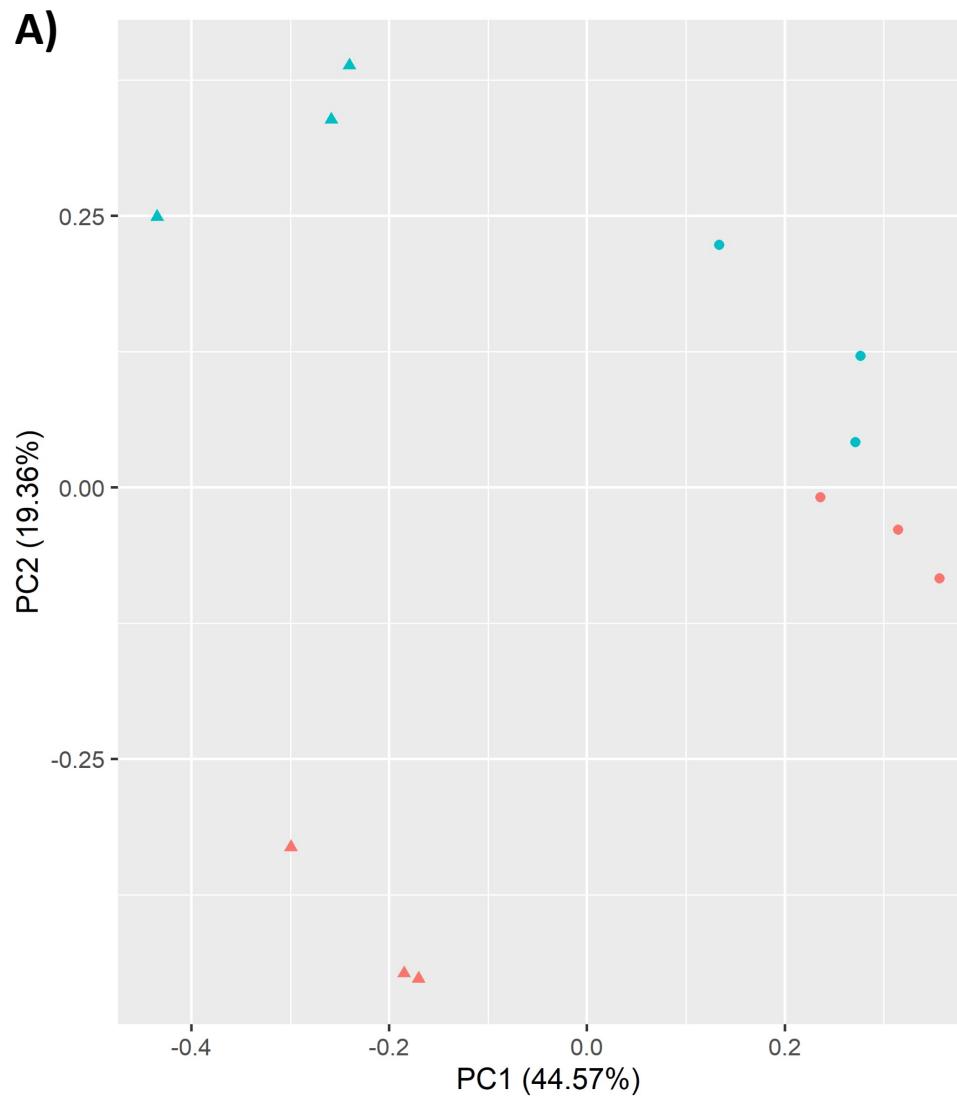



Supplementary Figure 4: Correlation of REML predicted detached leaf assay square root lesion size (mm) with AUDPC in whole plant inoculations of *B. cinerea* (left) and *S. sclerotiorum* (right) for seven lettuce accessions. Pearson's correlation coefficient (R) values and p-values are shown. All accessions are *L. sativa* unless otherwise indicated.


Supplementary Figure 5: Pearson's correlation of RNAseq reads in each sample that map to fungal transcripts versus lesion size in (A) *S. sclerotiorum* and (B) *B. cinerea* inoculated samples.

Supplementary Figure 6: Dendrogram showing Euclidian distance between lettuce diversity set RNAseq samples. With a few exceptions, biological replicates of the same accession cluster together.





Supplementary Figure 7: Expression of the top 50 lettuce genes whose expression is correlated with *S. sclerotiorum* lesion size, and which were classified as non-NLR pathogen recognition receptors (Christopoulou et al 2015 classification indicated in the column gene.class). This classification was based on the presence of any combination of the following domains; leucine-rich repeats (LRR), nucleotide-binding (NB), NB Coiled-coil type (Nc), transmembrane (TM), kinase, non-arginine-aspartate kinase (non-RD kinase) and TOLL/interleukin-1 receptor (TIR). Additional gene nomenclature includes NcL: NC plus L domains; PkinL: kinase plus L; RLK: receptor-like kinase; RLP receptor-like protein. The individual lettuce samples are ordered left to right on the basis of lesion size after inoculation with *S. sclerotiorum*, with the most susceptible (largest lesion size) on the left and most resistant (smallest lesion size) on the right. Log₂ expression is indicated by the red/blue scale.

Supplementary Figure 8: Location of resistance QTL on the Armenian *L. serriola* x PI251246 marker density map. Horizontal bars show the 1.5 LOD confidence interval of the QTL loci and the vertical bar shows the location of the peak QTL marker.

Supplementary Figure 9: Variation in lesion size between RILs containing alleles originating from PI251246 (PI) or Armenian *L. serriola* (Arm) at identified QTL markers. Violin plots show the distribution of least-squares predicted mean lesion size for RILs after inoculation with the pathogen relevant to the identified QTL (*B. cinerea* blue, *S. sclerotiorum* red). Black horizontal bars represent the mean. Letters show statistical significance groupings (Tukey HSD $p < 0.05$) and the number of samples tested is indicated for each genotype.

Supplementary Figure 10: Principal Component Analysis (PCA) of PI251246 (blue) and Armenian *L. serriola* (pink) RNAseq data after pathogen infection with (A) *B. cinerea* and (B) *S. sclerotiorum*. The PCA plot shows two independent experiments: Diversity Set RNAseq (circles) and the mapping population parent repeat (triangles). In *S. sclerotiorum* infected samples, there is a clear separation across PC1 between the parental lines that is consistent across experiments. In *B. cinerea* infected samples, the largest separation across PC1 appears to reflect different experiments, but each parent line clearly separates within the experiment across PC2.