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Abstract

Recent innovations in droplet-based single-cell RNA-sequencing (scRNA-seq) have provided
the technology necessary to investigate biological questions at cellular resolution. With the
ability to assay thousands of cells in a single capture, pooling cells from multiple individuals has
become a common strategy. Droplets can subsequently be assigned to a specific individual by
leveraging their inherent genetic differences, and numerous computational methods have been
developed to address this problem. However, another challenge implicit with droplet-based
scRNA-seq is the occurrence of doublets - droplets containing two or more cells. The inaccurate
assignment of cells to individuals or failure to remove doublets contribute unwanted noise to the
data and result in erroneous scientific conclusions. Therefore, it is essential to assign cells to
individuals and remove doublets accurately. We present a new framework to improve individual
singlet classification and doublet removal through a multi-method intersectional approach.

We developed a framework to evaluate the enhancement in donor assignment and doublet
removal through the consensus intersection of multiple demultiplexing and doublet detecting
methods. The accuracy was assessed using scRNA-seq data of ~1.4 million peripheral blood
mononucleated cells from 1,034 unrelated individuals and ~90,000 fibroblast cells from 81
unrelated individuals. We show that our approach significantly improves droplet assignment by
separating singlets from doublets and classifying the correct individual compared to any single
method. We show that the best combination of techniques varies under different biological and
experimental conditions, and we present a framework to optimise cell assignment for a given
experiment. We offer Demuxafy (https://demultiplexing-doublet-detecting-
docs.readthedocs.io/en/latest/index.html) - a framework built-in Singularity to provide clear,
consistent documentation of each method and additional tools to simplify and improve
demultiplexing and doublet removal. Our results indicate that leveraging multiple demultiplexing
and doublet detecting methods improves accuracy and, consequently, downstream analyses in
multiplexed scRNA-seq experiments.
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Introduction
70 Droplet-based single-cell RNA sequencing (scRNA-seq) technologies have provided the
necessary tools to profile tens of thousands of single-cell transcriptomes simultaneously*. With
these technological advances, combining cells from multiple samples in a single capture is now
common to increase the sample size while simultaneously reducing batch effects, cost, and
time. In addition, following cell capture and sequencing, the droplets can be demultiplexed -
75 each droplet accurately assigned to each individual in the pool*™>.

Many scRNA-seq experiments now capture upwards of 20,000 droplets, resulting in ~16%
(3,200) doublets®. Current demultiplexing methods can also identify doublets - droplets
containing two or more cells - from different individuals (heterogenic doublets). These doublets

80 can significantly alter scientific conclusions if they are not effectively removed. Therefore, it is
essential to remove doublets from droplet-based single-cell captures.

However, demultiplexing methods cannot identify droplets containing multiple cells from the
same individual (homogenic doublets) and, therefore, cannot identify all doublets in a single

85 capture. If left in the dataset, those doublets could appear as transitional cells between two
distinct cell types or a completely new cell type. Accordingly, additional methods have been
developed to identify heterotypic doublets (droplets that contain two cells from different cell
types) by comparing the transcriptional profile of each droplet to doublets simulated from the
dataset’™. It is important to recognise that demultiplexing methods achieve two functions -

90 segregation of cells from different donors and separation of singlets from doublets - while
doublet detecting methods solely classify singlets versus doublets.

Therefore, demultiplexing methods and transcription-based doublet detecting methods provide

complementary information to improve doublet detection, providing a cleaner dataset and more
95 robust scientific results. There are currently five genetic-based demultiplexing®>** and seven

transcription-based doublet detecting methods implemented in various languages’™. Under

different scenarios, each of these methods is subject to varying performance, and in some

instances, biases in their ability to accurately assign cells or detect doublets from certain

conditions. The best combination of methods is currently unclear but, undoubtedly, will depend
100 onthe dataset and research question.

Therefore, we set out to identify the best combination of genetic-based demultiplexing and
transcription-based doublet detecting methods to both correctly remove doublets and partition
singlets from different donors. In addition, we have developed a software platform (Demuxafy)

105 that performs these intersectional methods and provides additional commands to simplify the
execution and interpretation of results for each method (Figure 1a).
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Figure 1: Study design and qualitative method classifications. a) Demuxafy is a platform to perform
demultiplexing and doublet detecting with consistent documentation. Demuxafy also provides wrapper
scripts to quickly summarize the results from each method and assign clusters to each individual with
reference genotypes when a reference-free demultiplexing method is used. Finally, Demuxafy provides
a script to easily combine the results from multiple different methods into a single data frame and it
provides a final assignment for each droplet based on the combination of multiple methods. In addition,
Demuxafy provides summaries of the number of droplets classified as singlets or doublets by each
method and a summary of the number of droplets assigned to each individual by each of the
demultiplexing methods. b) Two datasets are included in this analysis - a PBMC dataset and a fibroblast
dataset. The PBMC dataset contains 74 pools that captured approximately 20,000 droplets each with
12-16 donor cells multiplexed per pool. The fibroblast dataset contains 11 pools of roughly 7,000
droplets per pool with sizes ranging from six to eight donors per pool. All pools were processed by all
demultiplexing and doublet detecting methods and the droplet and donor classifications were compared
between the methods and between the PBMCs and fibroblasts. Then the PBMC droplets that were
classified as singlets by all methods were taken as ‘true singlets’ and used to generate new pools in
silico. Those pools were then processed by each of the demultiplexing and doublet detecting methods
and intersectional combinations of demultiplexing and doublet detecting methods were tested for

110 To compare the demultiplexing and doublet detecting methods, we utilised two large,
multiplexed datasets - one that contained ~1.4 million peripheral blood mononuclear cells
(PBMCs) from 1,034 donors and one with ~94,000 fibroblasts from 81 donors™. We used the
true singlets from the PBMC dataset to generate new in silico pools to assess the performance
of each method and the multi-method intersectional combinations (Figure 1b).

115
Here, we compare 12 demultiplexing and doublet detecting methods with different
methodological approaches and capabilities and the intersectional combinations. Five of those
are demultiplexing methods (Demuxlet*, Freemuxlet'*, ScSplit?, Souporcell®, and Vireo®) which
leverage the common genetic variation between individuals to identify cells that came from each

120 individual and to identify heterogenic doublets. The seven remaining methods (DoubletDecon?®,
DoubletDetection’, DoubletFinder®, ScDblFinder®®, Scds', Scrublet*?, and Solo®) identify
doublets based on their similarity to simulated doublets generated by adding the transcriptional
profiles of two randomly selected droplets in the dataset. These methods assume that the
proportion of real doublets in the dataset is low, so combining any two droplets is likely to

125 represent the combination of two singlets.

We identify critical differences in the performance of demultiplexing and doublet detecting
methods to classify droplets correctly. In the case of the demultiplexing techniques, their
performance depends on their ability to identify singlets from doublets and assign a singlet to
130 the correct individual. For doublet detecting methods, the performance is based solely on their
ability to differentiate a singlet from a doublet. We identify limitations in identifying specific
doublet types and cell types by some methods. In addition, we compare the intersectional
combinations of these methods for multiple different experimental designs and demonstrate that
intersectional approaches significantly outperform all individual techniques. Thus, the
135 intersectional methods provide enhanced singlet classification and doublet removal - a critical
but often under-valued step of droplet-based scRNA-seq processing. Our results demonstrate
that intersectional combinations of demultiplexing and doublet detecting software provide
significant advantages in droplet-based scRNA-seq preprocessing that can alter results and
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conclusions drawn from the data. Finally, to provide easy implementation of our intersectional

140  approach, we provide Demuxafy (https://demultiplexing-doublet-detecting-
docs.readthedocs.io/en/latest/index.html) a complete platform to perform demultiplexing and
doublet detecting intersectional methods (Figure 1a).
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145 Results

Study Design
To study demultiplexing and doublet detecting methods, we developed an experimental design
that applies the different techniques to empirical pools and pools generated in silico from the
150 combination of true singlets - droplets identified as singlets by every method (Figure 1a). For
the first phase of this study, we used two empirical multiplexed datasets — the peripheral blood
mononuclear cell (PBMC) dataset containing ~1.4 million cells from 1,034 donors and a
fibroblast dataset of ~94,000 cells from 81 individuals (Table S1). We chose these two datasets
to assess the methods in heterogeneous (PBMC) and homogeneous (fibroblast) cell types.
155
Demultiplexing and Doublet Detecting Methods Perform Similarly for
Heterogeneous and Homogeneous Cell Types
We applied the demultiplexing methods (Demuxlet, Freemuxlet, ScSplit, Souporcell and Vireo)
and doublet detecting methods (DoubletDecon, DoubletDetection, DoubletFinder, ScDblFinder,
160 Scds, Scrublet and Solo) to the two datasets and assessed the results from each method. We
first compared the droplet assignments of the different techniques. In the cases where two
demultiplexing methods were compared to one another, both the droplet type (singlet or
doublet) and the assignment of the droplet to an individual had to match to be considered in
agreement. In all other comparisons (i.e., demultiplexing versus doublet detecting and doublet
165 detecting versus doublet), only the droplet type (singlet or doublet) was considered for
agreement. We found that the two method types were more similar to other methods of the
same type (i.e., demultiplexing versus demultiplexing and doublet detecting versus doublet
detecting) than they were to methods from a different type (demultiplexing methods versus
doublet detecting methods (Figure 2a-b). We found that the similarity of the demultiplexing and
170 doublet detecting methods to one another was consistent in the PBMC and fibroblast datasets
(Pearson correlation R = 0.78, P-value = 8.1*107%8: Figure 2a-b, Figure Sla). In addition,
demultiplexing methods were more similar than doublet detecting methods for both the PBMC
and fibroblast datasets (Wilcoxon rank-sum test: P < 0.01; Figure 2a-b and S1).
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Figure 2: Demultiplexing and Doublet Detecting Method Performance
Comparison. a-b) Heatmap of agreement of droplet classifications between different
methods for the PBMCs (a) and fibroblasts (b). c-d) Upset plot of the PBMC (c) and
fibroblast (d) droplets classified as singlets by different methods. The majority of
droplets are classified as singlets by all methods, but there are small numbers of
droplets classified as doublets by specific methods. e-f) The number of droplets
classified as singlets (box plots) and doublets (bar plots) by all methods in the PBMC
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The number of droplets classified as singlets by multiple methods and the QC metrics for each

grouping of methods was consistent for both the PBMC and fibroblast datasets (Figures 2c-d,

S2). These data indicate that the methods behave similarly, relative to one another, for
185 heterogeneous and homogeneous datasets.

Next, we sought to identify the droplets concordantly classified by all demultiplexing and doublet
detecting methods in the PBMC and fibroblast datasets. On average, 1,146 singlets were
identified for each individual by all the methods in the PBMC dataset. Likewise, 504 droplets
190 were identified as singlets for each individual by all the methods in the fibroblast pools.
However, the concordance of doublets identified by all methods was very low for both datasets
(Figure 2e-f). Notably, while the concordance between the two approaches could be high
(Figure 2a-b), the consistency of classifying a droplet as a doublet by all methods was relatively
low (Figure 2e-f). This suggests that doublet identification is not consistent between all the
195 methods. Therefore, further investigation is required to identify the reasons for these
inconsistencies between methods. It also suggests that combining multiple methods for doublet
classification may be necessary for more complete doublet removal. Further, some methods
could not identify all the individuals in each pool (Figure 2g-h). The non-concordance between
different methods demonstrates the need to effectively test each method on a dataset where the
200 droplet types are known.

Computational Resources Vary for Demultiplexing and Doublet Detecting

Methods

We recorded each method’s computational resources for the PBMC pools, with ~20,000 cells
205 captured per pool (Table S1). ScSplit took the most time and steps to run the demultiplexing

methods, but Demuxlet and Freemuxlet used the most memory. Solo took the longest time, and

most memory to run for the Doublet Detecting methods but is the only method built to be run

directly from the command line, making it easy to implement (Figure S3).

210 Generate Pools with Known Singlets and Doublets
However, there is no gold standard to identify which droplets are singlets or doublets. Therefore,
in the second phase of our experimental design (Figure l1la), we used the PBMC droplets
classified as singlets by all methods to generate new pools in silico. We chose to use the PBMC
dataset since our first analyses indicated that method performance is similar for homogeneous
215  (fibroblast) and heterogeneous (PBMC) cell types (Figure 2 and S1) and because we had many
more individuals available to generate new pools from the PBMC dataset (Table S1).

We generated 70 pools - ten each of pools that included two, four, eight, 16, 32, 64 or 128
individuals (Table S2). We assume a maximum 20% doublet rate as it is unlikely researchers
220  would use a technology that has a higher doublet rate (Figure 3a).
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Figure 3: In silico Pool Doublet Annotation and Method Performance. a) The percent of singlets
and doublets in the in-silico pools - separated by the number of multiplexed individuals per pool. b)
The percentage and number of doublets that are heterogenic (detectable by demultiplexing methods),
heterotypic (detectable by doublet detecting methods), both (detectable by either method category)
and neither (not detectable with current methods) for each multiplexed pool size. c¢) Percent of
droplets that each of the demultiplexing and doublet detecting methods classified correctly for singlets
and doublet subtypes for different multiplexed pool sizes. d) Mathew’s Correlation Coefficient (MCC)
for each of the methods for each of the multiplexed pool sizes. e) Balanced accuracy for each of the
methods for each of the multiplexed pool sizes

225  We next classified the PBMC cell types for each droplet used to generate the in-silico pools with
Azimuth to quickly identify the heterotypic doublets in the in-silico data'® (Figure S4). As these
pools have been generated in silico using empirical singlets that have been well annotated, we
next identified the proportion of doublets in each pool that were heterogenic, heterotypic, both
and neither. This approach demonstrates that a significant percentage of doublets are only

230 detectable by doublet detecting methods (homogenic and heterotypic) for pools with 16 or fewer
donors multiplexed (Figure 3b).

While the total number of doublets that would be missed if only using demultiplexing methods
appears small for fewer multiplexed individuals (Figure 3b), it is important to recognise that this
235 is partly a function of the ~1,146 singlet cells per individual used to generate these pools.
Hence, the in-silico pools with fewer individuals also have fewer cells. Therefore, to obtain
numbers of doublets that are directly comparable to one another, we calculated the number of
each doublet type that would be expected to be captured with 20,000 cells when two, four,
eight, 16 or 32 individuals were multiplexed (Figure S5). These results demonstrate that many
240 doublets would be falsely classified as singlets since they are homogenic when just using
demultiplexing methods for a pool of 20,000 cells captured with a 16% doublet rate (Figure S5).
However, as more individuals are multiplexed, the number of droplets that would not be
detectable by demultiplexing methods (homogenic) decreases. This suggests that typical
workflows that use only one demultiplexing method to remove doublets from pools that capture
245 20,000 droplets with 16 or fewer multiplexed individuals fail to adequately remove between 173
(16 multiplexed individuals) and 1,325 (2 multiplexed individuals) doublets that are homogenic
and heterotypic which could be detected by doublet detecting methods (Figure S5). Therefore,
a technique that uses both demultiplexing and doublet detecting methods in parallel will
complement more complete doublet removal methods. Consequently, we next set up to identify
250 the demultiplexing and doublet detecting methods that perform the best on their own and in
concert with other methods.

Doublet and Singlet Droplet Classification Effectiveness Varies for
Demultiplexing and Doublet Detecting Methods

255  Demultiplexing Methods Fail to Classify Homogenic Doublets
We next investigated what percentage of the droplets were correctly classified by each
demultiplexing and doublet detecting method. Demultiplexing methods correctly classify a large
portion of the singlets and heterogenic doublets (Figure 3c). This pattern is highly consistent

11
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across different cell types, with the notable exceptions being decreased correct classifications
260 for erythrocytes and platelets when greater than 16 individuals are multiplexed (Figure S6).

However, Demuxlet consistently demonstrates the highest correct heterogenic doublet
classification. Further, the percentage of the heterogenic doublets classified correctly by
Souporcell decreases when large numbers of donors are multiplexed. ScSplit is not as effective
265 as the other demultiplexing methods at classifying heterogenic doublets, partly due to the
unique doublet classification method, which assumes that the doublets will generate a single
cluster separate from the donors (Table 1). In addition, we note that all the demultiplexing
methods except ScSplit are significantly better at detecting heterogenic doublets that are also
heterotypic compared to those that are homotypic (Figure S7). This may be because reads
270 from two different cells in a single droplet that overlap a given genetic variant are more likely
when the two cells are the same cell type. However, importantly, the demultiplexing methods
identify almost none of the homogenic doublets for any multiplexed pool size - demonstrating
the need to include doublet detecting methods to supplement the demultiplexing method doublet
detection.
275
Doublet Detecting Method Classification Performances Vary Greatly
In addition to assessing each of the methods with default settings, we also evaluated
ScDblFinder and Solo with ‘known doublets’ provided. These two methods can take already
known doublets and use them when detecting doublets. For these cases, we used the droplets
280 that were classified as doublets by all the demultiplexing methods as ‘known doublets’.

Generally, the doublet detecting methods showed more variation in the percentage of droplets
that they classified correctly (F-test P < 0.04) except for pools that included two or four
multiplexed individuals (F-test P > 0.12). Most of the methods classified a similarly high

285  percentage of singlets correctly, with the exceptions of DoubletDecon and DoubletFinder for all
pool sizes as well as Scds for pools containing less than eight individuals (Figure 3c). However,
unlike the demultiplexing methods, there are explicit cell-type-specific biases for many of the
doublet detecting methods (Figure S8). These differences are most notable for cell types with
fewer cells (i.e., ASDC and cDC2) and proliferating cells (i.e., CD4 Proliferating, CD8

290 Proliferating and NK Proliferating). DoubletDetection and Scrublet preserve the highest
percentage of singlets for all proliferating cell types, which may be crucial for specific
experimental questions (Figure S8).

As expected, all doublet detecting methods identified heterotypic doublets more effectively than
295  homotypic doublets (Figure 3c). However, Scds classified the most doublets correctly across alll
doublet types for 16 individuals or fewer pools. Solo was as good or more effective at identifying
doublets than Scds for pools containing more than 16 individuals. ScDblFinder is also among
the methods that correctly identifies the highest percentage of doublets, although it performs
better for heterotypic doublets than homotypic doublets. It is also important to note that it was
300 not feasible to run ScDblFinder or DoubletDecon for the largest pools containing 128
multiplexed individuals and an average of 123,169 droplets (range: 119,942 - 127,173 droplets).
ScDblFinder and Solo performed similarly when executed with and without known doublets
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(79% of Solo and 78% of ScDblFinder P > 0.05). Further, for the few conditions where the
performance of ScDblFinder and Solo were significantly different with and without using known

305 doublets, the method run without known doublets identified a substantially higher percentage
correct than the method run with known doublets (100% of ScDblFinder and 96% of Solo). This
suggests that providing known doublets to Solo and ScDblFinder does not offer an added
benefit.

310 False Singlets and Doublets Demonstrate Different Metrics than Correctly Classified
Droplets
We next asked whether specific cell metrics might contribute to false singlet and doublet
classifications for different methods. Therefore, we compared the number of genes, number of
UMIs, mitochondrial percentage and ribosomal percentage of the false singlets and doublets to
315 equal numbers of correctly classified cells for each demultiplexing and doublet detecting
method.

The number of UMIs (Figure S9 and Table S3) and genes (Figure S10 and Table S4)
demonstrated very similar distributions for all comparisons and all methods (Spearman p =

320 0.99, P < 2.2*10°%). The number of UMIs and genes were consistently higher in false singlets

and lower in false doublets for most demultiplexing methods except smaller pool sizes and most
Vireo pools (Figures S9a and S10a; Tables S3 and S4). The number of UMIs and genes was
consistently higher in droplets falsely classified as singlets by the doublet detecting methods
than the correctly identified droplets (Figure S9b and S10b; Tables S3 and S4). However, there

325 was less consistency in the number of UMIs and genes detected in false singlets than correctly
classified droplets between the different doublet detecting methods (Figures S9b and S10b;
Tables S3 and S4).

The ribosomal percentage of the droplets falsely classified as singlets or doublets is similar to

330 the correctly classified droplets for most methods - although they are statistically different for
larger pool sizes (Figure S1la and Table S5). However, the false doublets classified by some
doublet detecting methods (DoubletDetection, DoubletFinder, ScDblFinder, ScDblFinder) with
known doublets and Scds) demonstrated lower ribosomal percentages (Figure S11b and Table
S5).

335
Like the ribosomal percentage, the mitochondrial percentage is also relatively similar for false
singlets compared to correctly classified droplets for both demultiplexing (Figure S12a and
Table S6) and doublet detecting methods (Figure S12b). Still, it is statistically different for
larger pool sizes of some techniques (Figure S12b and Table S6). However, the mitochondrial

340 percentage for false doublets is statistically higher than the correctly classified droplets for most
demultiplexing and doublet detecting methods. Still, it is especially noticeable for Souporcell,
Vireo, DoubletDecon and DoubletFinder (Figure S12b).

Overall, these results demonstrate a strong relationship between the number of genes and
345 UMIs and limited influence of ribosomal or mitochondrial percentage in a droplet and false
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classification, suggesting that the number of genes and UMIs can significantly bias singlet and
doublet classification by demultiplexing and doublet detecting methods.

Performances Vary Between Demultiplexing and Doublet Detecting Method and Across

350 the Number of Multiplexed Individuals
We assessed the method performance with two metrics: the balanced accuracy and the
Mathews correlation coefficient (MCC). We chose the balanced accuracy since, with
unbalanced group sizes, it is a better measure of performance than accuracy itself. Further, the
MCC has been demonstrated as a more reliable statistical measure of performance since it

355  considers all possible categories - true singlets (true positives), false singlets (false positives),
true doublets (true negatives) and false doublets (false negatives). Therefore, a high score on
the MCC scale indicates high performance in each metric. However, we provide a wide range of
performance metrics for each method (Table S7). For demultiplexing methods, both the droplet
type (singlet or doublet) and the individual assignment were required to be considered a ‘true

360 singlet'. In contrast, only the droplet type (singlet or doublet) was needed for doublet detection
methods.

The MCC and balanced accuracy metrics are strikingly similar (Spearman’s p = 0.93; P <

2.2¥10*°). The demultiplexing methods (except ScSplit) perform better on average than the
365 doublet detecting methods for both the MCC (Student's t-test P < 4.4*10™*- and balanced
accuracy) and balanced accuracy (Student’s t-test P < 4*10°). Further, the performance of
Souporcell decreases for pools with more than 32 individuals multiplexed for both metrics
(Student’s t-test for MCC: P < 7*10° and balanced accuracy: P < 3.2*10°). Scds, Solo,
ScDblFinder and DoubletDetection are among the top-performing doublet detecting methods.
370  Still, a large variation in the MCC and balanced accuracy is observed in smaller pool sizes
(Spearman’s P = 2.8*10° for MCC and P = 4*10™ for balanced accuracy; Figure 3d-e).

Overall, between one and 59% of droplets were incorrectly classified by the demultiplexing or
doublet detecting methods depending on the technique and the multiplexed pool size (Figure

375 S13). Demuxlet, Freemuxlet, Souporcell and Vireo demonstrated the lowest percentage of
incorrect droplets with about one per cent wrong in the smaller pools (2 multiplexed individuals)
and about three per cent inaccurate for pools with at least 16 multiplexed individuals (although
Souporcell identified a slightly higher per cent of droplets incorrectly in the largest pools).
Seeing as some transitional states and cell types are present in low percentages in total cell

380 populations (i.e., ASDCs at 0.02%), incorrect classification of droplets could alter scientific
interpretations of the data, and it is, therefore, ideal for decreasing the number of erroneous
assignments as much as possible.

Our results demonstrate significant differences in overall performance between different

385 demultiplexing and doublet detecting methods. We further noticed some differences in the use
of the methods. Therefore, we have accumulated these results and each method’'s unique
characteristics and benefits in a heatmap for visual interpretation (Figure 4).
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Figure 4. Assessment of each of the demultiplexing and doublet detecting methods.
Assessments of a variety of metrics for each of the demultiplexing (top) and doublet detecting (bottom)
methods.

Framework for Improving Singlet Classifications via Method Combinations

After identifying the demultiplexing and doublet detecting methods that performed well
395 individually, we next sought to test whether using intersectional combinations of multiple

methods would enhance droplet classifications and provide a software platform - Demuxafy -

capable of supporting the execution of these intersectional combinations.

We recognise that different experimental designs will be required for other projects. As such, we
400 considered this when testing combinations of methods. We regarded as multiple experiment
designs and provided recommendations on two different levels of filtering doublets: 1) a
balanced approach that attempts to remove true doublets while not removing too many true
singlets (assessed with the MCC) and 2) an approach that removes as many doublets as
possible even if some droplets that are true singlets are classified as doublets (assessed with
405 the positive predictive value [PPV]). We considered all possible combinations of methods that
achieved greater than 0.5 MCC or greater than 0.8 balanced accuracies for any pool size
(Figure 3d-e). Those methods included four demultiplexing methods (Demuxlet, Freemuxlet,
Vireo and Souporcell) and four doublet detecting methods (DoubletDetection, ScDblFinder,
Scds and Solo). We also considered two different intersectional methods: 1) more than half had
410 to classify a droplet as a singlet to be called a singlet, and 2) at least half of the methods had to
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classify a droplet as a singlet to be called a singlet. Significantly, these two intersectional
methods only differ when an even number of methods are being considered. For combinations
that include demultiplexing methods, the individual called by the majority of the methods is the
individual used for that droplet. When ties occur, the individual is considered ‘unassigned’.
415
Combining Multiple Doublet Detecting Methods Improve Doublet Removal for Non-
Multiplexed Experimental Designs
For the non-multiplexed experimental design, we considered all possible method combinations
of DoubletDetection, ScDblFinder, Scds and Solo (Table S9). We identified important
420  differences depending on the number of droplets captured and have provided recommendations
accordingly. We identified that ScDblFinder and Scds is the ideal combination for balanced
droplet calling when less than 3,000 droplets are captured. ScDblFinder, Scds, Solo and
DoubletDetection is the best combination when 3,000-10,000 droplets are captured. Scds, Solo,
and DoubletDetection is the best combination when more than 10,000 droplets are captured. It's
425 important to note that even a slight increase in the MCC significantly impacts the number of true
singlets and true doublets classified with the degree of benefit highly dependent on the original
method performance (Figure S14). The combined method increases the MCC compared to
individual doublet detecting methods on average by 0.23 and up to 0.73 - a significant
improvement in the MCC (t-test FDR < 0.05 for 95% of comparisons). For all combinations, the
430 intersectional droplet method requires more than half of the methods to consider the droplet a
singlet to classify it as a singlet (Figure 5).

For experimental questions where it is crucial to remove as many doublets as possible, the
combination of ScDblFinder and Scds is the best for pools with less than 5,000 droplets
435 captured, Solo and Scds are ideal when 5,000-10,000 droplets are captured, and the
combination of Solo and DoubletDetection is ideal when more than 10,000 droplets are
captured. Notably, the combined method demonstrates a higher PPV than any individual
method - a PPV increase of up to 0.16 and an average increase of 0.04 - which is significant for
most method comparisons (96.7% of comparisons t-test FDR < 0.05). Of note, even a relatively
440 small change in the PPV of 0.02 for a pool that captures 8,661 droplets results in the
reannotation of 868 droplets (10% of total droplets). Compared to the individual methods, these
intersectional methods decrease the number of true singlets but increase the number of true
doublets annotated (Figure S15). Again, in all cases, the best intersectional approach is to call
a singlet where more than half of the methods classify the droplet as a singlet (Figure 5).
445
Combining Multiple Demultiplexing and Doublet Detecting Methods Improve Doublet
Removal for Multiplexed Experimental Designs
For experiments where 16 or fewer individuals are multiplexed with reference SNP genotypes
available, we considered all possible combinations between Demuxlet, Freemuxlet, Souporcell,
450 Vireo, DoubletDetection, scDblFinder, Scds and Solo (Table S10). To provide a balance
between doublet removal and maintaining true singlets, the best combinations are Demuxlet,
Souporcell, Vireo and Scds or Freemuxlet, Souporcell, Vireo and Scds (Figure 5). These
intersectional methods increase the MCC compared to the individual methods (t-test FDR <
0.05 for 96.4% of comparisons), generally resulting in increased true singlets and doublets
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455  compared to the individual methods (Figure S16). The improvement in MCC depends on every
single method's performance but, on average, increases by 0.33 (0.14 for demultiplexing
methods and 0.43 for doublet detecting methods) and up to 0.89. For experiments where the
reference SNP genotypes are unknown, the individuals multiplexed in the pool with 16 or fewer
individuals multiplexed, Freemuxlet, Souporcell, Vireo and ScDblFinder or Freemuxlet,

460  Souporcell, Vireo and Scds are the ideal methods (Figure 5). These intersectional methods
again significantly increase the MCC on average by 0.35 (0.16 for demultiplexing methods and
0.43 for doublet detecting methods) compared to any of the individual techniques that could be
used for this experimental design (t-test FDR < 0.05 for 94.2% of comparisons; Figure S17). In
both cases, singlets should only be called if more than half of the methods in the combination

465  classify the droplet as a singlet.

However, for research questions where it is crucial to remove as many doublets as possible,
even if it means classifying some true singlets as doublets, the combination of Demuxlet and
Scds is ideal when reference SNP genotypes are available for the individuals multiplexed in the

470 pool (Figure 5). This intersectional method significantly increases the PPV compared to each
method by 0.03 and an average 0.03 increase for both demultiplexing and doublet detecting
methods (t-test FDR < 0.05). While 0.03 may appear to be a slight improvement, this change
can result in 627 true singlets and doublets reclassified for a pool of 8,661 droplets - 7.2% of the
total pool for Solo (Figure S18). However, this approach generally reduces the total number of

475  true singlets classified compared to the individual methods (Figure S18). However, if reference
SNP genotypes are not available for the individuals multiplexed in the pool, Vireo and Scds is
the best combination of methods to remove as many false singlets as possible effectively -
increasing the PPV by on average 0.03 compared to each of the individual methods (t-test FDR
< 0.05), with a 0.03 average difference for both demultiplexing and double detecting methods

480 (Figure S19). In both cases, singlets should only be called if more than half of the methods in
the combination classify the droplet as a singlet (Figure 5).

Combining Multiple Demultiplexing Methods Improves Doublet Removal for Large
Multiplexed Experimental Designs

485  For experiments that multiplex more than 16 individuals, we considered the combinations
between Demuxlet, Freemuxlet, Souporcell and Vireo (Table S11) since only a small proportion
of the doublets would be undetectable by demultiplexing methods (droplets that are homogenic;
Figure 3b). To balance doublet removal and maintain true singlets, we recommend the
combination of either Demuxlet, Freemuxlet and Vireo or Demuxlet, Freemuxlet, Souporcell and

490 Vireo. These method combinations significantly increase the MCC by, on average, 0.21
compared to all the individual methods (t-test FDR < 0.05; Figures S20a). This substantially
increases true singlets and true doublets relative to the individual methods (Figures S20a). If
reference SNP genotypes are not available for the individuals multiplexed in the pools, the
combination of Freemuxlet and Souporcell (16 multiplexed individuals) or Freemuxlet,

495  Souporcell and Vireo (> 16 multiplexed individuals; Figure 5). This combinatorial approach
results in a significant increase in the MCC (by 0.21 on average) compared to all the individual
methods (t-test FDR < 005 for 83% of comparisons; Figure S21
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Further, for research questions where it is essential to remove as many doublets as possible,
we recommend either Demuxlet and Vireo or Demuxlet and Souporcell (Figure 5). These
combinations significantly increase 0.07 PPV on average compared to individual methods (t-test
FDR < 0.05). Using these combinations decreases the number of true singlets classified while
increasing the number of true doublets relative to individual methods (Figures S20b). However,
if reference SNP genotypes are unavailable for the individuals multiplexed in the pool,
Freemuxlet and Vireo is the best intersectional method to increase the PPV compared to the
individual techniques resulting in an average improvement of 0.07 PPV (t-test FDR < 0.05;
Figure S21b). Again, the best intersectional method is to call a singlet only when more than half
the methods classify the droplet as a singlet (Figure 4).

These results collectively demonstrate that, regardless of the experimental design,
demultiplexing and doublet detecting approaches that intersect multiple methods significantly
enhance droplet classification. This is consistent across different pool sizes and will improve
singlet annotation.

Demuxafy Improves Doublet Removal and Improves Usability

To make our intersectional approaches accessible to other researchers, we have developed
Demuxafy (https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/latest/index.html) -
an easy-to-use software platform powered by Singularity. This platform provides the
requirements and instructions to execute each demultiplexing and doublet detecting methods. In
addition, Demuxafy provides wrapper scripts that simplify method execution and effectively
summarise results. We also offer tools that help expected estimate numbers of doublets and
provide method combination recommendations based on scRNA-seq pool characteristics.
Demuxafy also combines the results from multiple different methods, provides classification
combination summaries, and provides final integrated combination classifications based on the
intersectional techniques selected by the user. The significant advantages of Demuxafy include
a centralised location to execute each of these methods, simplified ways to combine methods
with an intersectional approach, and summary tables and figures that enable practical
interpretation of multiplexed datasets (Figure 1a).

Discussion

Demultiplexing and doublet detecting methods have made large-scale scRNA-seq experiments
achievable. However, many demultiplexing and doublet detecting methods have been
developed in the recent past, and it is unclear how their performances compare. Further, the
demultiplexing techniques best detect heterogenic doublets while doublet detecting methods
identify heterotypic doublets. Therefore, we hypothesised that demultiplexing and doublet
detecting methods would be complementary and be more effective at removing doublets than
demultiplexing methods alone.

Indeed, we demonstrated the benefit of utilising a combination of demultiplexing and doublet
detecting methods. The optimal intersectional combination of methods depends on the
experimental design and capture characteristics. Our results suggest super loaded captures -
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where a high percentage of doublets is expected - will benefit from multiplexing. Further, when
many donors are multiplexed (>16), doublet detecting is not required as there are few doublets
that are homogenic and heterotypic.

We have provided two different method combination recommendations based on the
experimental design and whether removing doublets should be adequately balanced with
maintaining a high proportion of singlets or whether it is more important to remove as many
doublets as possible. This decision is highly dependent on the research question. However, we
expect that the balanced approach will be appropriate for most research questions and only
research questions that are interrogating extremely small effect sizes or transitional states will
require the more stringent doublet removal approach. Overall, our results provide researchers
with important demultiplexing and doublet detecting performance assessments and
combinatorial recommendations. Our software platform, Demuxafy (https://demultiplexing-
doublet-detecting-docs.readthedocs.io/en/latest/index.html), provides a simple implementation
of our methods in any research lab around the world, providing cleaner scRNA-seq datasets
and enhancing interpretation of results.
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Materials and Methods

Data

All data have been described previously™. Briefly, all work was approved by the Royal Hobart
Hospital, the Hobart Eye Surgeons Clinic, Human Research Ethics Committees of the Royal
Victorian Eye and Ear Hospital (11/1031), University of Melbourne (1545394) and University of
Tasmania (H0014124) in accordance with the requirements of the National Health & Medical
Research Council of Australia (NHMRC) and conformed with the Declaration of Helsinki'’.

PBMC scRNA-seq Data

Blood samples were collected and processed as described previously'®. Briefly, mononuclear
cells were isolated from whole blood samples and stored in liquid nitrogen until thawed for
scRNA-seq capture. Equal numbers of cells from 12-16 samples were multiplexed per pool and
single-cell suspensions were super loaded on a Chromium Single Cell Chip A (10x Genomics)
to capture 20,000 droplets per pool. Single-cell libraries were processed per manufacturer
instructions and the 10x Genomics Cell Ranger Single Cell Software Suite (v 2.2.0) was used to
process the data and map it to GRCh38. The quality control metrics of each pool are
demonstrated in Figure S22.

PBMC DNA SNP Genotyping

SNP genotype data were prepared as described previously®. Briefly, DNA was extracted from
blood with the QIAamp Blood Mini kit and genotyped on the lllumina Infinium Global Screening
Array. SNP genotypes were processed with Plink and GCTA before imputing on the Michigan
Imputation Server using Eagle v2.3 for phasing and Minimac3 for imputation based on the
Haplotype Reference Consortium panel (HRCrl1.1). SNP genotypes were then lifted to hg38 and
filtered for > 1% minor allele frequency (MAF) and an R?> 0.3.

Fibroblast scRNA-seq Data

The fibroblast scRNA-seq data has been described previously™. Briefly, human skin punch
biopsies from donors over the age of 18 were cultured in DMEM high glucose supplemented
with 10% fetal bovine serum (FBS), L-gluatmine, 100 U/mL penicillin and 100 pyg/mL (Thermo
Fisher Scientific, USA).

For scRNA-seq, viable cells were flow sorted and single cell suspensions were loaded onto a
10x Genomics Single Cell 3' Chip and were processed per 10x instructions and the Cell Ranger
Single Cell Software Suite from 10x Genomics was used to process the sequencing data into
transcript count tables as previously described™. The quality control metrics of each pool are
demonstrated in Figure S23.

Fibroblast DNA SNP Genotyping

The DNA SNP genotyping for fibroblast samples has been described previously'®. Briefly, DNA
from each donor was genotyped on an Infinium HumanCore-24 v1.1 BeadChip (lllumina).
GenomeStudioTM V2.0 (lllumina), Plink and GenomeStudio were used to process the SNP
genotypes. Eagle V2.3.5 was used to phase the SNPs and it was imputed with the Michigan
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Imputation server using minimac3 and the 1000 genome phase 3 reference panel as described
previously™.

Demultiplexing Methods
All the demultiplexing methods were built and run from a singularity image.

Popscle

The Popscle v0.1-beta suite™ for population genomics in single cell data was used for Demuxlet
and Freemuxlet demultiplexing methods. The popscle dsc-pileup function was used to create a
pileup of variant calls at known genomic locations from aligned sequence reads in each droplet
with default arguments.

Demuxlet

Demuxlet® is a SNP genotype reference-based single cell demultiplexing method. Demuxlet was
run with a genotype error coefficient of 1 and genotype error offset rate of 0.05 and the other
default parameters using the popscle demuxlet command from Popscle (v0.1-beta).

Freemuxlet

Freemuxlet' is a SNP genotype reference-free single cell demultiplexing method. Freemuxlet
was run with default parameters including the number of samples included in the pool using the
popscle freemuxlet command from Popscle (v0.1-beta).

ScSplit

ScSplit v1.0.7* was downloaded from the ScSplit github and the recommended steps for data
filtering quality control prior to running ScSplit were followed. Briefly, reads that had read quality
lower than 10, were unmapped, were secondary alignments, did not pass filters, were optical
PCR duplicates, were secondary alignments or were duplicate reads were removed. The
resulting bam file was then sorted and indexed followed by freebayes to identify single
nucleotide variants (SNVs) in the dataset. The resulting SNVs were filtered for quality scores
greater than 30 and for variants present in the reference SNP genotype vcf. The resulting
filtered bam and vcf files were used as input for the scSplit count command with default settings
to count the number of reference and alternative alleles in each droplet. Next the allele matrices
were used to demultiplex the pool and assign cells to different clusters using the scSplit run
command including the number of individuals (-n) option and all other options set to default.
Finally, the individual genotypes were predicted for each cluster using the scSplit genotype
command with default parameters.

Souporcell

Souporcell’ is a SNP genotype reference-free single cell demultiplexing method. The Souporcell
v1.0 singularity image was downloaded via instructions from the gihtub page. The Souporcell
pipeline was run using the souporcell_pipeline.py script with default options and the option to
include known variant locations (--common_variants).

Vireo
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Vireo® is a single cell demultiplexing method that can be used with reference SNP genotypes or
without them. For this assessment, Vireo was used with reference SNP genotypes. Per Vireo
recommendations, we used Model 1 of the cellSNP version 0.3.2 to make a pileup of SNPs for
each droplet with the recommended options using the genotyped reference genotype file as the
list of common known SNP and filtered with SNP locations that were covered by at least 20
UMIs and had at least 10% minor allele frequency across all droplets. Vireo version 0.4.2 was
then used to demultiplex using reference SNP genotypes and indicating the number of
individuals in the pools.

Doublet Detecting Methods
All doublet detecting methods were built and run from a Singularity image.

DoubletDecon
DoubletDecon® is a transcription-based deconvolution method for identifying doublets.
DoubletDecon version 1.1.6 analysis was run in R version 3.6.3. SCTransform *° from Seurat %
version 3.2.2 was used to preprocess the scRNA-seq data and then the
Improved_Seurat_Pre_Process function was used to process the SCTransformed scRNA-seq
data. Clusters were identified using Seurat function FindClusters with resolution 0.2 and 30
principal components (PCs). Then the Main_Doublet_Decon function was used to deconvolute
doublets from singlets for six different rhops - 0.6, 0.7, 0.8, 0.9, 1.0 and 1.1. Then the rhop that
resulted in the closest number of doublets to the expected number of doublets per the following
equation:
N? «0.008

~ 1000

where N is the number of droplets captured and D is the number of expected doublets.

DoubletDetection

DoubletDetection” is a transcription-based method for identifying doublets. DoubletDetection
version 2.5.2 analysis was run in python version 3.6.8. Droplets without any UMIs were
removed before analysis with DoubletDetection. Then the doubletdetection.BoostClassifier
function was run with 50 iterations with use_phenograph set to False and standard_scaling set
to True. The predicted number of doublets per iteration was visualized across all iterations and
any pool that did not converge after 50 iterations, it was run again with increasing numbers of
iterations until they reached convergence.

DoubletFinder

DoubletFinder® is a transcription-based doublet detecting method. DoubletFinder version 2.0.3
was implemented in R version 3.6.3. First, droplets that were more than 3 median absolute
deviations (mad) away from the median for mitochondrial per cent, ribosomal per cent, number
of UMIs or number of genes were removed per developer recommendations. Then the data was
normalized with SCTransform followed by cluster identification using FindClusters with
resolution 0.3 and 30 principal components (PCs). Then, pKs were selected by the pK that
resulted in the largest BCyyn. Finally, the homotypic doublet proportions were calculated and
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the number of expected doublets with the highest doublet proportion were classified as doublets
per the following equation:
B N?x0.008

1000
where N is the number of droplets captured and D is the number of expected doublets.

ScDblFinder

ScDblFinder® is a transcription-based method for detecting doublets from scRNA-seq data.
ScDblFinder 1.3.25 was implemented in R version 4.0.3. ScDblFinder was implemented with
two sets of options. The first included implementation with the expected doublet rate as
calculated by:

NZ%0.008
1000

where N is the number of droplets captured and R is the expected doublet rate. The second
condition included the same expected number of doublets and included the doublets that had
already been identified by all the demultiplexing methods.

Scds

Scds™ is a transcription-based doublet detecting method. Scds version 1.1.2 analysis was
completed in R version 3.6.3. Scds was implemented with the cxds function and bcds functions
with default options followed by the cxds bcds_hybrid with estNdbl set to TRUE so that
doublets will be estimated based on the values from the cxds and bcds functions.

Scrublet
Scrublet® is a transcription-based doublet detecting method for single-cell RNA-seq data.
Scrublet was implemented in python version 3.6.3. Scrublet was implemented per developer
recommendations with at least three counts per droplet, three cells expressing a given gene, 30
PCs and a doublet rate based on the following equation:

N2 %0.008

~ 1000

where N is the number of droplets captured and R is the expected doublet rate. Four different
minimum number of variable gene percentiles: 80, 85, 90 and 95. Then, the best variable gene
percentile was selected based on the distribution of the simulated doublet scores and the
location of the doublet threshold selection. In the case that the selected threshold does not fall
between a bimodal distribution, those pools were run again with a manual threshold set.

Solo

Solo®® is a transcription-based method for detecting doublets in scRNA-seq data. Solo was
implemented with default parameters and an expected number of doublets based on the
following equation:
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N?%0.008

1000
where N is the number of droplets captured and D is the number of expected doublets. Solo
was additionally implemented in a second run for each pool with the doublets that were
identified by all the demultiplexing methods as known doublets to initialize the model.

In Silico Pool Generation

Cells that were identified as singlets by all methods were used to simulate pools with the
synth_pool.py script provided by the Vireo * package. Ambient RNA was simulated by changing
the barcodes and UMIs on a random selection of reads for 2, 5 or 10% of the total UMIs. High
mitochondrial per cent simulations were produced by replacing reads in 5, 10 or 25% of the
randomly selected cells with mitochondrial reads. The number of reads to replace was derived
from a normal distribution with an average of 30 and a standard deviation of three. Decreased
read coverage of pools was simulated by down-sampling the reads by two-thirds of the original
coverage.

Classification Annotation

Demultiplexing Methods

Demultiplexing methods classifications were considered correct if the droplet annotation (singlet
or doublet) and the individual annotation was correct. If the droplet type was correct but the
individual annotation was incorrect (i.e., classified as a singlet but annotated as the wrong
individual), then the droplet was incorrectly classified.

Doublet Detecting Methods
Doublet detecting methods were considered to have correct classifications if the droplet
annotation matched the known droplet type.

Analyses
All downstream analyses were completed in R version 4.0.2.
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