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Abstract 40 
 
Recent innovations in droplet-based single-cell RNA-sequencing (scRNA-seq) have provided 
the technology necessary to investigate biological questions at cellular resolution. With the 
ability to assay thousands of cells in a single capture, pooling cells from multiple individuals has 
become a common strategy. Droplets can subsequently be assigned to a specific individual by 45 
leveraging their inherent genetic differences, and numerous computational methods have been 
developed to address this problem. However, another challenge implicit with droplet-based 
scRNA-seq is the occurrence of doublets - droplets containing two or more cells. The inaccurate 
assignment of cells to individuals or failure to remove doublets contribute unwanted noise to the 
data and result in erroneous scientific conclusions. Therefore, it is essential to assign cells to 50 
individuals and remove doublets accurately. We present a new framework to improve individual 
singlet classification and doublet removal through a multi-method intersectional approach. 
 
We developed a framework to evaluate the enhancement in donor assignment and doublet 
removal through the consensus intersection of multiple demultiplexing and doublet detecting 55 
methods. The accuracy was assessed using scRNA-seq data of ~1.4 million peripheral blood 
mononucleated cells from 1,034 unrelated individuals and ~90,000 fibroblast cells from 81 
unrelated individuals. We show that our approach significantly improves droplet assignment by 
separating singlets from doublets and classifying the correct individual compared to any single 
method. We show that the best combination of techniques varies under different biological and 60 
experimental conditions, and we present a framework to optimise cell assignment for a given 
experiment. We offer Demuxafy (https://demultiplexing-doublet-detecting-
docs.readthedocs.io/en/latest/index.html) - a framework built-in Singularity to provide clear, 
consistent documentation of each method and additional tools to simplify and improve 
demultiplexing and doublet removal. Our results indicate that leveraging multiple demultiplexing 65 
and doublet detecting methods improves accuracy and, consequently, downstream analyses in 
multiplexed scRNA-seq experiments. 
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Introduction 
Droplet-based single-cell RNA sequencing (scRNA-seq) technologies have provided the 70 
necessary tools to profile tens of thousands of single-cell transcriptomes simultaneously1. With 
these technological advances, combining cells from multiple samples in a single capture is now 
common to increase the sample size while simultaneously reducing batch effects, cost, and 
time. In addition, following cell capture and sequencing, the droplets can be demultiplexed - 
each droplet accurately assigned to each individual in the pool2–5. 75 
 
Many scRNA-seq experiments now capture upwards of 20,000 droplets, resulting in ~16% 
(3,200) doublets6. Current demultiplexing methods can also identify doublets - droplets 
containing two or more cells - from different individuals (heterogenic doublets). These doublets 
can significantly alter scientific conclusions if they are not effectively removed. Therefore, it is 80 
essential to remove doublets from droplet-based single-cell captures. 
 
However, demultiplexing methods cannot identify droplets containing multiple cells from the 
same individual (homogenic doublets) and, therefore, cannot identify all doublets in a single 
capture. If left in the dataset, those doublets could appear as transitional cells between two 85 
distinct cell types or a completely new cell type. Accordingly, additional methods have been 
developed to identify heterotypic doublets (droplets that contain two cells from different cell 
types) by comparing the transcriptional profile of each droplet to doublets simulated from the 
dataset7–13. It is important to recognise that demultiplexing methods achieve two functions - 
segregation of cells from different donors and separation of singlets from doublets - while 90 
doublet detecting methods solely classify singlets versus doublets. 
 
Therefore, demultiplexing methods and transcription-based doublet detecting methods provide 
complementary information to improve doublet detection, providing a cleaner dataset and more 
robust scientific results. There are currently five genetic-based demultiplexing2–5,14 and seven 95 
transcription-based doublet detecting methods implemented in various languages7–13. Under 
different scenarios, each of these methods is subject to varying performance, and in some 
instances, biases in their ability to accurately assign cells or detect doublets from certain 
conditions. The best combination of methods is currently unclear but, undoubtedly, will depend 
on the dataset and research question. 100 
 
Therefore, we set out to identify the best combination of genetic-based demultiplexing and 
transcription-based doublet detecting methods to both correctly remove doublets and partition 
singlets from different donors. In addition, we have developed a software platform (Demuxafy) 
that performs these intersectional methods and provides additional commands to simplify the 105 
execution and interpretation of results for each method (Figure 1a). 
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To compare the demultiplexing and doublet detecting methods, we utilised two large, 110 
multiplexed datasets - one that contained ~1.4 million peripheral blood mononuclear cells 
(PBMCs) from 1,034 donors and one with ~94,000 fibroblasts from 81 donors15. We used the 
true singlets from the PBMC dataset to generate new in silico pools to assess the performance 
of each method and the multi-method intersectional combinations (Figure 1b). 
 115 
Here, we compare 12 demultiplexing and doublet detecting methods with different 
methodological approaches and capabilities and the intersectional combinations. Five of those 
are demultiplexing methods (Demuxlet4, Freemuxlet14, ScSplit2, Souporcell5, and Vireo3) which 
leverage the common genetic variation between individuals to identify cells that came from each 
individual and to identify heterogenic doublets. The seven remaining methods (DoubletDecon9, 120 
DoubletDetection7, DoubletFinder8, ScDblFinder10, Scds11, Scrublet12, and Solo13) identify 
doublets based on their similarity to simulated doublets generated by adding the transcriptional 
profiles of two randomly selected droplets in the dataset. These methods assume that the 
proportion of real doublets in the dataset is low, so combining any two droplets is likely to 
represent the combination of two singlets. 125 
 
We identify critical differences in the performance of demultiplexing and doublet detecting 
methods to classify droplets correctly. In the case of the demultiplexing techniques, their 
performance depends on their ability to identify singlets from doublets and assign a singlet to 
the correct individual. For doublet detecting methods, the performance is based solely on their 130 
ability to differentiate a singlet from a doublet. We identify limitations in identifying specific 
doublet types and cell types by some methods. In addition, we compare the intersectional 
combinations of these methods for multiple different experimental designs and demonstrate that 
intersectional approaches significantly outperform all individual techniques. Thus, the 
intersectional methods provide enhanced singlet classification and doublet removal - a critical 135 
but often under-valued step of droplet-based scRNA-seq processing. Our results demonstrate 
that intersectional combinations of demultiplexing and doublet detecting software provide 
significant advantages in droplet-based scRNA-seq preprocessing that can alter results and 

Figure 1: Study design and qualitative method classifications. a) Demuxafy is a platform to perform 
demultiplexing and doublet detecting with consistent documentation. Demuxafy also provides wrapper 
scripts to quickly summarize the results from each method and assign clusters to each individual with 
reference genotypes when a reference-free demultiplexing method is used. Finally, Demuxafy provides 
a script to easily combine the results from multiple different methods into a single data frame and it 
provides a final assignment for each droplet based on the combination of multiple methods. In addition, 
Demuxafy provides summaries of the number of droplets classified as singlets or doublets by each 
method and a summary of the number of droplets assigned to each individual by each of the 
demultiplexing methods. b) Two datasets are included in this analysis - a PBMC dataset and a fibroblast 
dataset. The PBMC dataset contains 74 pools that captured approximately 20,000 droplets each with 
12-16 donor cells multiplexed per pool. The fibroblast dataset contains 11 pools of roughly 7,000 
droplets per pool with sizes ranging from six to eight donors per pool. All pools were processed by all 
demultiplexing and doublet detecting methods and the droplet and donor classifications were compared 
between the methods and between the PBMCs and fibroblasts. Then the PBMC droplets that were 
classified as singlets by all methods were taken as ‘true singlets’ and used to generate new pools in 
silico. Those pools were then processed by each of the demultiplexing and doublet detecting methods 
and intersectional combinations of demultiplexing and doublet detecting methods were tested for 
different experimental designs.  
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conclusions drawn from the data. Finally, to provide easy implementation of our intersectional 
approach, we provide Demuxafy (https://demultiplexing-doublet-detecting-140 
docs.readthedocs.io/en/latest/index.html) a complete platform to perform demultiplexing and 
doublet detecting intersectional methods (Figure 1a).  
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Results 145 
 
Study Design 
To study demultiplexing and doublet detecting methods, we developed an experimental design 
that applies the different techniques to empirical pools and pools generated in silico from the 
combination of true singlets - droplets identified as singlets by every method (Figure 1a). For 150 
the first phase of this study, we used two empirical multiplexed datasets – the peripheral blood 
mononuclear cell (PBMC) dataset containing ~1.4 million cells from 1,034 donors and a 
fibroblast dataset of ~94,000 cells from 81 individuals (Table S1). We chose these two datasets 
to assess the methods in heterogeneous (PBMC) and homogeneous (fibroblast) cell types. 
 155 
Demultiplexing and Doublet Detecting Methods Perform Similarly for 
Heterogeneous and Homogeneous Cell Types 
We applied the demultiplexing methods (Demuxlet, Freemuxlet, ScSplit, Souporcell and Vireo) 
and doublet detecting methods (DoubletDecon, DoubletDetection, DoubletFinder, ScDblFinder, 
Scds, Scrublet and Solo) to the two datasets and assessed the results from each method. We 160 
first compared the droplet assignments of the different techniques. In the cases where two 
demultiplexing methods were compared to one another, both the droplet type (singlet or 
doublet) and the assignment of the droplet to an individual had to match to be considered in 
agreement. In all other comparisons (i.e., demultiplexing versus doublet detecting and doublet 
detecting versus doublet), only the droplet type (singlet or doublet) was considered for 165 
agreement. We found that the two method types were more similar to other methods of the 
same type (i.e., demultiplexing versus demultiplexing and doublet detecting versus doublet 
detecting) than they were to methods from a different type (demultiplexing methods versus 
doublet detecting methods (Figure 2a-b). We found that the similarity of the demultiplexing and 
doublet detecting methods to one another was consistent in the PBMC and fibroblast datasets 170 
(Pearson correlation R = 0.78, P-value = 8.1*10-28; Figure 2a-b, Figure S1a). In addition, 
demultiplexing methods were more similar than doublet detecting methods for both the PBMC 
and fibroblast datasets (Wilcoxon rank-sum test: P < 0.01; Figure 2a-b and S1).  
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175 
 
 
 
 
 180 
 

Figure 2: Demultiplexing and Doublet Detecting Method Performance 
Comparison. a-b) Heatmap of agreement of droplet classifications between different 
methods for the PBMCs (a) and fibroblasts (b). c-d) Upset plot of the PBMC (c) and 
fibroblast (d) droplets classified as singlets by different methods. The majority of 
droplets are classified as singlets by all methods, but there are small numbers of 
droplets classified as doublets by specific methods. e-f) The number of droplets 
classified as singlets (box plots) and doublets (bar plots) by all methods in the PBMC 
(e) and fibroblast (f) pools. g-h) The number of donors that were not identified by each 
method in each pool for PBMCs (g) and fibroblasts (h). PBMC: peripheral blood 
mononuclear cell. 

8
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The number of droplets classified as singlets by multiple methods and the QC metrics for each 
grouping of methods was consistent for both the PBMC and fibroblast datasets (Figures 2c-d, 
S2). These data indicate that the methods behave similarly, relative to one another, for 
heterogeneous and homogeneous datasets. 185 
 
Next, we sought to identify the droplets concordantly classified by all demultiplexing and doublet 
detecting methods in the PBMC and fibroblast datasets. On average, 1,146 singlets were 
identified for each individual by all the methods in the PBMC dataset. Likewise, 504 droplets 
were identified as singlets for each individual by all the methods in the fibroblast pools. 190 
However, the concordance of doublets identified by all methods was very low for both datasets 
(Figure 2e-f). Notably, while the concordance between the two approaches could be high 
(Figure 2a-b), the consistency of classifying a droplet as a doublet by all methods was relatively 
low (Figure 2e-f). This suggests that doublet identification is not consistent between all the 
methods. Therefore, further investigation is required to identify the reasons for these 195 
inconsistencies between methods. It also suggests that combining multiple methods for doublet 
classification may be necessary for more complete doublet removal. Further, some methods 
could not identify all the individuals in each pool (Figure 2g-h). The non-concordance between 
different methods demonstrates the need to effectively test each method on a dataset where the 
droplet types are known. 200 
 
Computational Resources Vary for Demultiplexing and Doublet Detecting 
Methods 
We recorded each method’s computational resources for the PBMC pools, with ~20,000 cells 
captured per pool (Table S1). ScSplit took the most time and steps to run the demultiplexing 205 
methods, but Demuxlet and Freemuxlet used the most memory. Solo took the longest time, and 
most memory to run for the Doublet Detecting methods but is the only method built to be run 
directly from the command line, making it easy to implement (Figure S3). 
 
Generate Pools with Known Singlets and Doublets 210 
However, there is no gold standard to identify which droplets are singlets or doublets. Therefore, 
in the second phase of our experimental design (Figure 1a), we used the PBMC droplets 
classified as singlets by all methods to generate new pools in silico. We chose to use the PBMC 
dataset since our first analyses indicated that method performance is similar for homogeneous 
(fibroblast) and heterogeneous (PBMC) cell types (Figure 2 and S1) and because we had many 215 
more individuals available to generate new pools from the PBMC dataset (Table S1). 
 
We generated 70 pools - ten each of pools that included two, four, eight, 16, 32, 64 or 128 
individuals (Table S2). We assume a maximum 20% doublet rate as it is unlikely researchers 
would use a technology that has a higher doublet rate (Figure 3a). 220 
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We next classified the PBMC cell types for each droplet used to generate the in-silico pools with 225 
Azimuth to quickly identify the heterotypic doublets in the in-silico data16 (Figure S4). As these 
pools have been generated in silico using empirical singlets that have been well annotated, we 
next identified the proportion of doublets in each pool that were heterogenic, heterotypic, both 
and neither. This approach demonstrates that a significant percentage of doublets are only 
detectable by doublet detecting methods (homogenic and heterotypic) for pools with 16 or fewer 230 
donors multiplexed (Figure 3b). 
 
While the total number of doublets that would be missed if only using demultiplexing methods 
appears small for fewer multiplexed individuals (Figure 3b), it is important to recognise that this 
is partly a function of the ~1,146 singlet cells per individual used to generate these pools. 235 
Hence, the in-silico pools with fewer individuals also have fewer cells. Therefore, to obtain 
numbers of doublets that are directly comparable to one another, we calculated the number of 
each doublet type that would be expected to be captured with 20,000 cells when two, four, 
eight, 16 or 32 individuals were multiplexed (Figure S5). These results demonstrate that many 
doublets would be falsely classified as singlets since they are homogenic when just using 240 
demultiplexing methods for a pool of 20,000 cells captured with a 16% doublet rate (Figure S5). 
However, as more individuals are multiplexed, the number of droplets that would not be 
detectable by demultiplexing methods (homogenic) decreases. This suggests that typical 
workflows that use only one demultiplexing method to remove doublets from pools that capture 
20,000 droplets with 16 or fewer multiplexed individuals fail to adequately remove between 173 245 
(16 multiplexed individuals) and 1,325 (2 multiplexed individuals) doublets that are homogenic 
and heterotypic which could be detected by doublet detecting methods (Figure S5). Therefore, 
a technique that uses both demultiplexing and doublet detecting methods in parallel will 
complement more complete doublet removal methods. Consequently, we next set up to identify 
the demultiplexing and doublet detecting methods that perform the best on their own and in 250 
concert with other methods. 
 
Doublet and Singlet Droplet Classification Effectiveness Varies for 
Demultiplexing and Doublet Detecting Methods 
Demultiplexing Methods Fail to Classify Homogenic Doublets 255 
We next investigated what percentage of the droplets were correctly classified by each 
demultiplexing and doublet detecting method. Demultiplexing methods correctly classify a large 
portion of the singlets and heterogenic doublets (Figure 3c). This pattern is highly consistent 

Figure 3: In silico Pool Doublet Annotation and Method Performance. a) The percent of singlets 
and doublets in the in-silico pools - separated by the number of multiplexed individuals per pool. b) 
The percentage and number of doublets that are heterogenic (detectable by demultiplexing methods), 
heterotypic (detectable by doublet detecting methods), both (detectable by either method category) 
and neither (not detectable with current methods) for each multiplexed pool size. c) Percent of 
droplets that each of the demultiplexing and doublet detecting methods classified correctly for singlets 
and doublet subtypes for different multiplexed pool sizes. d) Mathew’s Correlation Coefficient (MCC) 
for each of the methods for each of the multiplexed pool sizes. e) Balanced accuracy for each of the 
methods for each of the multiplexed pool sizes 
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across different cell types, with the notable exceptions being decreased correct classifications 
for erythrocytes and platelets when greater than 16 individuals are multiplexed (Figure S6). 260 
 
However, Demuxlet consistently demonstrates the highest correct heterogenic doublet 
classification. Further, the percentage of the heterogenic doublets classified correctly by 
Souporcell decreases when large numbers of donors are multiplexed. ScSplit is not as effective 
as the other demultiplexing methods at classifying heterogenic doublets, partly due to the 265 
unique doublet classification method, which assumes that the doublets will generate a single 
cluster separate from the donors (Table 1). In addition, we note that all the demultiplexing 
methods except ScSplit are significantly better at detecting heterogenic doublets that are also 
heterotypic compared to those that are homotypic (Figure S7). This may be because reads 
from two different cells in a single droplet that overlap a given genetic variant are more likely 270 
when the two cells are the same cell type. However, importantly, the demultiplexing methods 
identify almost none of the homogenic doublets for any multiplexed pool size - demonstrating 
the need to include doublet detecting methods to supplement the demultiplexing method doublet 
detection. 
 275 
Doublet Detecting Method Classification Performances Vary Greatly 
In addition to assessing each of the methods with default settings, we also evaluated 
ScDblFinder and Solo with ‘known doublets’ provided. These two methods can take already 
known doublets and use them when detecting doublets. For these cases, we used the droplets 
that were classified as doublets by all the demultiplexing methods as ‘known doublets’. 280 
 
Generally, the doublet detecting methods showed more variation in the percentage of droplets 
that they classified correctly (F-test P < 0.04) except for pools that included two or four 
multiplexed individuals (F-test P > 0.12). Most of the methods classified a similarly high 
percentage of singlets correctly, with the exceptions of DoubletDecon and DoubletFinder for all 285 
pool sizes as well as Scds for pools containing less than eight individuals (Figure 3c). However, 
unlike the demultiplexing methods, there are explicit cell-type-specific biases for many of the 
doublet detecting methods (Figure S8). These differences are most notable for cell types with 
fewer cells (i.e., ASDC and cDC2) and proliferating cells (i.e., CD4 Proliferating, CD8 
Proliferating and NK Proliferating). DoubletDetection and Scrublet preserve the highest 290 
percentage of singlets for all proliferating cell types, which may be crucial for specific 
experimental questions (Figure S8). 
 
As expected, all doublet detecting methods identified heterotypic doublets more effectively than 
homotypic doublets (Figure 3c). However, Scds classified the most doublets correctly across all 295 
doublet types for 16 individuals or fewer pools. Solo was as good or more effective at identifying 
doublets than Scds for pools containing more than 16 individuals. ScDblFinder is also among 
the methods that correctly identifies the highest percentage of doublets, although it performs 
better for heterotypic doublets than homotypic doublets. It is also important to note that it was 
not feasible to run ScDblFinder or DoubletDecon for the largest pools containing 128 300 
multiplexed individuals and an average of 123,169 droplets (range: 119,942 - 127,173 droplets). 
ScDblFinder and Solo performed similarly when executed with and without known doublets 
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(79% of Solo and 78% of ScDblFinder P > 0.05). Further, for the few conditions where the 
performance of ScDblFinder and Solo were significantly different with and without using known 
doublets, the method run without known doublets identified a substantially higher percentage 305 
correct than the method run with known doublets (100% of ScDblFinder and 96% of Solo). This 
suggests that providing known doublets to Solo and ScDblFinder does not offer an added 
benefit. 
 
False Singlets and Doublets Demonstrate Different Metrics than Correctly Classified 310 
Droplets 
We next asked whether specific cell metrics might contribute to false singlet and doublet 
classifications for different methods. Therefore, we compared the number of genes, number of 
UMIs, mitochondrial percentage and ribosomal percentage of the false singlets and doublets to 
equal numbers of correctly classified cells for each demultiplexing and doublet detecting 315 
method. 
 
The number of UMIs (Figure S9 and Table S3) and genes (Figure S10 and Table S4) 

demonstrated very similar distributions for all comparisons and all methods (Spearman ⍴ =  

0.99, P < 2.2*10-308). The number of UMIs and genes were consistently higher in false singlets 320 

and lower in false doublets for most demultiplexing methods except smaller pool sizes and most 
Vireo pools (Figures S9a and S10a; Tables S3 and S4). The number of UMIs and genes was 
consistently higher in droplets falsely classified as singlets by the doublet detecting methods 
than the correctly identified droplets (Figure S9b and S10b; Tables S3 and S4). However, there 
was less consistency in the number of UMIs and genes detected in false singlets than correctly 325 
classified droplets between the different doublet detecting methods (Figures S9b and S10b; 
Tables S3 and S4).  
 
The ribosomal percentage of the droplets falsely classified as singlets or doublets is similar to 
the correctly classified droplets for most methods - although they are statistically different for 330 
larger pool sizes (Figure S11a and Table S5). However, the false doublets classified by some 
doublet detecting methods (DoubletDetection, DoubletFinder, ScDblFinder, ScDblFinder) with 
known doublets and Scds) demonstrated lower ribosomal percentages (Figure S11b and Table 
S5).  
 335 
Like the ribosomal percentage, the mitochondrial percentage is also relatively similar for false 
singlets compared to correctly classified droplets for both demultiplexing (Figure S12a and 
Table S6) and doublet detecting methods (Figure S12b). Still, it is statistically different for 
larger pool sizes of some techniques (Figure S12b and Table S6). However, the mitochondrial 
percentage for false doublets is statistically higher than the correctly classified droplets for most 340 
demultiplexing and doublet detecting methods. Still, it is especially noticeable for Souporcell, 
Vireo, DoubletDecon and DoubletFinder (Figure S12b).  
 
Overall, these results demonstrate a strong relationship between the number of genes and 
UMIs and limited influence of ribosomal or mitochondrial percentage in a droplet and false 345 
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classification, suggesting that the number of genes and UMIs can significantly bias singlet and 
doublet classification by demultiplexing and doublet detecting methods. 
 
Performances Vary Between Demultiplexing and Doublet Detecting Method and Across 
the Number of Multiplexed Individuals 350 
We assessed the method performance with two metrics: the balanced accuracy and the 
Mathews correlation coefficient (MCC). We chose the balanced accuracy since, with 
unbalanced group sizes, it is a better measure of performance than accuracy itself. Further, the 
MCC has been demonstrated as a more reliable statistical measure of performance since it 
considers all possible categories - true singlets (true positives), false singlets (false positives), 355 
true doublets (true negatives) and false doublets (false negatives). Therefore, a high score on 
the MCC scale indicates high performance in each metric. However, we provide a wide range of 
performance metrics for each method (Table S7). For demultiplexing methods, both the droplet 
type (singlet or doublet) and the individual assignment were required to be considered a ‘true 
singlet’. In contrast, only the droplet type (singlet or doublet) was needed for doublet detection 360 
methods. 
 

The MCC and balanced accuracy metrics are strikingly similar (Spearman’s ⍴ = 0.93; P < 

2.2*10-16). The demultiplexing methods (except ScSplit) perform better on average than the 
doublet detecting methods for both the MCC (Student’s t-test P < 4.4*10-14_ and balanced 365 
accuracy) and balanced accuracy (Student’s t-test P < 4*10-6). Further, the performance of 
Souporcell decreases for pools with more than 32 individuals multiplexed for both metrics 
(Student’s t-test for MCC: P < 7*10-6 and balanced accuracy: P < 3.2*10-5). Scds, Solo, 
ScDblFinder and DoubletDetection are among the top-performing doublet detecting methods. 
Still, a large variation in the MCC and balanced accuracy is observed in smaller pool sizes 370 
(Spearman’s P = 2.8*10-3 for MCC and P = 4*10-4 for balanced accuracy; Figure 3d-e). 
 
Overall, between one and 59% of droplets were incorrectly classified by the demultiplexing or 
doublet detecting methods depending on the technique and the multiplexed pool size (Figure 
S13). Demuxlet, Freemuxlet, Souporcell and Vireo demonstrated the lowest percentage of 375 
incorrect droplets with about one per cent wrong in the smaller pools (2 multiplexed individuals) 
and about three per cent inaccurate for pools with at least 16 multiplexed individuals (although 
Souporcell identified a slightly higher per cent of droplets incorrectly in the largest pools). 
Seeing as some transitional states and cell types are present in low percentages in total cell 
populations (i.e., ASDCs at 0.02%), incorrect classification of droplets could alter scientific 380 
interpretations of the data, and it is, therefore, ideal for decreasing the number of erroneous 
assignments as much as possible. 
 
Our results demonstrate significant differences in overall performance between different 
demultiplexing and doublet detecting methods. We further noticed some differences in the use 385 
of the methods. Therefore, we have accumulated these results and each method’s unique 
characteristics and benefits in a heatmap for visual interpretation (Figure 4). 
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Framework for Improving Singlet Classifications via Method Combinations 
After identifying the demultiplexing and doublet detecting methods that performed well
individually, we next sought to test whether using intersectional combinations of multiple395 
methods would enhance droplet classifications and provide a software platform - Demuxafy -
capable of supporting the execution of these intersectional combinations. 
 
We recognise that different experimental designs will be required for other projects. As such, we
considered this when testing combinations of methods. We regarded as multiple experiment400 
designs and provided recommendations on two different levels of filtering doublets: 1) a
balanced approach that attempts to remove true doublets while not removing too many true
singlets (assessed with the MCC) and 2) an approach that removes as many doublets as
possible even if some droplets that are true singlets are classified as doublets (assessed with
the positive predictive value [PPV]). We considered all possible combinations of methods that405 
achieved greater than 0.5 MCC or greater than 0.8 balanced accuracies for any pool size
(Figure 3d-e). Those methods included four demultiplexing methods (Demuxlet, Freemuxlet,
Vireo and Souporcell) and four doublet detecting methods (DoubletDetection, ScDblFinder,
Scds and Solo). We also considered two different intersectional methods: 1) more than half had
to classify a droplet as a singlet to be called a singlet, and 2) at least half of the methods had to410 

Figure 4: Assessment of each of the demultiplexing and doublet detecting methods. 
Assessments of a variety of metrics for each of the demultiplexing (top) and doublet detecting (bottom) 
methods. 
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classify a droplet as a singlet to be called a singlet. Significantly, these two intersectional 
methods only differ when an even number of methods are being considered. For combinations 
that include demultiplexing methods, the individual called by the majority of the methods is the 
individual used for that droplet. When ties occur, the individual is considered ‘unassigned’. 
 415 
Combining Multiple Doublet Detecting Methods Improve Doublet Removal for Non-
Multiplexed Experimental Designs 
For the non-multiplexed experimental design, we considered all possible method combinations 
of DoubletDetection, ScDblFinder, Scds and Solo (Table S9). We identified important 
differences depending on the number of droplets captured and have provided recommendations 420 
accordingly. We identified that ScDblFinder and Scds is the ideal combination for balanced 
droplet calling when less than 3,000 droplets are captured. ScDblFinder, Scds, Solo and 
DoubletDetection is the best combination when 3,000-10,000 droplets are captured. Scds, Solo, 
and DoubletDetection is the best combination when more than 10,000 droplets are captured. It’s 
important to note that even a slight increase in the MCC significantly impacts the number of true 425 
singlets and true doublets classified with the degree of benefit highly dependent on the original 
method performance (Figure S14). The combined method increases the MCC compared to 
individual doublet detecting methods on average by 0.23 and up to 0.73 - a significant 
improvement in the MCC (t-test FDR < 0.05 for 95% of comparisons). For all combinations, the 
intersectional droplet method requires more than half of the methods to consider the droplet a 430 
singlet to classify it as a singlet (Figure 5).  
 
For experimental questions where it is crucial to remove as many doublets as possible, the 
combination of ScDblFinder and Scds is the best for pools with less than 5,000 droplets 
captured, Solo and Scds are ideal when 5,000-10,000 droplets are captured, and the 435 
combination of Solo and DoubletDetection is ideal when more than 10,000 droplets are 
captured. Notably, the combined method demonstrates a higher PPV than any individual 
method - a PPV increase of up to 0.16 and an average increase of 0.04 - which is significant for 
most method comparisons (96.7% of comparisons t-test FDR < 0.05). Of note, even a relatively 
small change in the PPV of 0.02 for a pool that captures 8,661 droplets results in the 440 
reannotation of 868 droplets (10% of total droplets). Compared to the individual methods, these 
intersectional methods decrease the number of true singlets but increase the number of true 
doublets annotated (Figure S15). Again, in all cases, the best intersectional approach is to call 
a singlet where more than half of the methods classify the droplet as a singlet (Figure 5). 
 445 
Combining Multiple Demultiplexing and Doublet Detecting Methods Improve Doublet 
Removal for Multiplexed Experimental Designs 
For experiments where 16 or fewer individuals are multiplexed with reference SNP genotypes 
available, we considered all possible combinations between Demuxlet, Freemuxlet, Souporcell, 
Vireo, DoubletDetection, scDblFinder, Scds and Solo (Table S10). To provide a balance 450 
between doublet removal and maintaining true singlets, the best combinations are Demuxlet, 
Souporcell, Vireo and Scds or Freemuxlet, Souporcell, Vireo and Scds (Figure 5). These 
intersectional methods increase the MCC compared to the individual methods (t-test FDR < 
0.05 for 96.4% of comparisons), generally resulting in increased true singlets and doublets 
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compared to the individual methods (Figure S16). The improvement in MCC depends on every 455 
single method's performance but, on average, increases by 0.33 (0.14 for demultiplexing 
methods and 0.43 for doublet detecting methods) and up to 0.89. For experiments where the 
reference SNP genotypes are unknown, the individuals multiplexed in the pool with 16 or fewer 
individuals multiplexed, Freemuxlet, Souporcell, Vireo and ScDblFinder or Freemuxlet, 
Souporcell, Vireo and Scds are the ideal methods (Figure 5). These intersectional methods 460 
again significantly increase the MCC on average by 0.35 (0.16 for demultiplexing methods and 
0.43 for doublet detecting methods) compared to any of the individual techniques that could be 
used for this experimental design (t-test FDR < 0.05 for 94.2% of comparisons; Figure S17). In 
both cases, singlets should only be called if more than half of the methods in the combination 
classify the droplet as a singlet. 465 
 
However, for research questions where it is crucial to remove as many doublets as possible, 
even if it means classifying some true singlets as doublets, the combination of Demuxlet and 
Scds is ideal when reference SNP genotypes are available for the individuals multiplexed in the 
pool (Figure 5). This intersectional method significantly increases the PPV compared to each 470 
method by 0.03 and an average 0.03 increase for both demultiplexing and doublet detecting 
methods (t-test FDR < 0.05). While 0.03 may appear to be a slight improvement, this change 
can result in 627 true singlets and doublets reclassified for a pool of 8,661 droplets - 7.2% of the 
total pool for Solo (Figure S18). However, this approach generally reduces the total number of 
true singlets classified compared to the individual methods (Figure S18). However, if reference 475 
SNP genotypes are not available for the individuals multiplexed in the pool, Vireo and Scds is 
the best combination of methods to remove as many false singlets as possible effectively - 
increasing the PPV by on average 0.03 compared to each of the individual methods (t-test FDR 
< 0.05), with a 0.03 average difference for both demultiplexing and double detecting methods 
(Figure S19). In both cases, singlets should only be called if more than half of the methods in 480 
the combination classify the droplet as a singlet (Figure 5). 
 
Combining Multiple Demultiplexing Methods Improves Doublet Removal for Large 
Multiplexed Experimental Designs 
For experiments that multiplex more than 16 individuals, we considered the combinations 485 
between Demuxlet, Freemuxlet, Souporcell and Vireo (Table S11) since only a small proportion 
of the doublets would be undetectable by demultiplexing methods (droplets that are homogenic; 
Figure 3b). To balance doublet removal and maintain true singlets, we recommend the 
combination of either Demuxlet, Freemuxlet and Vireo or Demuxlet, Freemuxlet, Souporcell and 
Vireo. These method combinations significantly increase the MCC by, on average, 0.21 490 
compared to all the individual methods (t-test FDR < 0.05; Figures S20a). This substantially 
increases true singlets and true doublets relative to the individual methods (Figures S20a). If 
reference SNP genotypes are not available for the individuals multiplexed in the pools, the 
combination of Freemuxlet and Souporcell (16 multiplexed individuals) or Freemuxlet, 
Souporcell and Vireo (> 16 multiplexed individuals; Figure 5). This combinatorial approach 495 
results in a significant increase in the MCC (by 0.21 on average) compared to all the individual 
methods (t-test FDR < 0.05 for 83% of comparisons; Figure S21
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Figure 5: Recommended Method Combinations Dependent on Experimental Design. Method combinations are provided for two different doublet 
removal levels - a balanced approach that removes doublets and tries to limit the number of singlets that are removed (top panel) and a strict doublet removal
approach that eliminates as many doublets as possible even if some singlets are removed (bottom panel). Recommendations are provided for different 
experimental designs, including those that are not multiplexed (left) and multiplexed (right), including experiments that have reference SNP genotypes 
available vs those that do not and finally, multiplexed experiments with different numbers of individuals multiplexed. The single-colour bar provides the metrics
of individual methods. In contrast, the multi-colour bars provide the metrics for combining techniques as indicated by the colours in those bars. A student’s t-
test was used to compare the single methods to the combined methods, and significant differences (P < 0.05) are indicated with an Asterix (*) and the colour 
shows the single method that was compared to that combination of methods 
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Further, for research questions where it is essential to remove as many doublets as possible, 
we recommend either Demuxlet and Vireo or Demuxlet and Souporcell (Figure 5). These 
combinations significantly increase 0.07 PPV on average compared to individual methods (t-test 
FDR < 0.05). Using these combinations decreases the number of true singlets classified while 
increasing the number of true doublets relative to individual methods (Figures S20b). However, 
if reference SNP genotypes are unavailable for the individuals multiplexed in the pool, 
Freemuxlet and Vireo is the best intersectional method to increase the PPV compared to the 
individual techniques resulting in an average improvement of 0.07 PPV (t-test FDR < 0.05; 
Figure S21b). Again, the best intersectional method is to call a singlet only when more than half 
the methods classify the droplet as a singlet (Figure 4). 
 
These results collectively demonstrate that, regardless of the experimental design, 
demultiplexing and doublet detecting approaches that intersect multiple methods significantly 
enhance droplet classification. This is consistent across different pool sizes and will improve 
singlet annotation. 
 
Demuxafy Improves Doublet Removal and Improves Usability 
To make our intersectional approaches accessible to other researchers, we have developed 
Demuxafy (https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/latest/index.html) - 
an easy-to-use software platform powered by Singularity. This platform provides the 
requirements and instructions to execute each demultiplexing and doublet detecting methods. In 
addition, Demuxafy provides wrapper scripts that simplify method execution and effectively 
summarise results. We also offer tools that help expected estimate numbers of doublets and 
provide method combination recommendations based on scRNA-seq pool characteristics. 
Demuxafy also combines the results from multiple different methods, provides classification 
combination summaries, and provides final integrated combination classifications based on the 
intersectional techniques selected by the user. The significant advantages of Demuxafy include 
a centralised location to execute each of these methods, simplified ways to combine methods 
with an intersectional approach, and summary tables and figures that enable practical 
interpretation of multiplexed datasets (Figure 1a). 
 
 
Discussion 
Demultiplexing and doublet detecting methods have made large-scale scRNA-seq experiments 
achievable. However, many demultiplexing and doublet detecting methods have been 
developed in the recent past, and it is unclear how their performances compare. Further, the 
demultiplexing techniques best detect heterogenic doublets while doublet detecting methods 
identify heterotypic doublets. Therefore, we hypothesised that demultiplexing and doublet 
detecting methods would be complementary and be more effective at removing doublets than 
demultiplexing methods alone. 
 
Indeed, we demonstrated the benefit of utilising a combination of demultiplexing and doublet 
detecting methods. The optimal intersectional combination of methods depends on the 
experimental design and capture characteristics. Our results suggest super loaded captures - 
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where a high percentage of doublets is expected - will benefit from multiplexing. Further, when 
many donors are multiplexed (>16), doublet detecting is not required as there are few doublets 
that are homogenic and heterotypic. 
 
We have provided two different method combination recommendations based on the 
experimental design and whether removing doublets should be adequately balanced with 
maintaining a high proportion of singlets or whether it is more important to remove as many 
doublets as possible. This decision is highly dependent on the research question. However, we 
expect that the balanced approach will be appropriate for most research questions and only 
research questions that are interrogating extremely small effect sizes or transitional states will 
require the more stringent doublet removal approach. Overall, our results provide researchers 
with important demultiplexing and doublet detecting performance assessments and 
combinatorial recommendations. Our software platform, Demuxafy (https://demultiplexing-
doublet-detecting-docs.readthedocs.io/en/latest/index.html), provides a simple implementation 
of our methods in any research lab around the world, providing cleaner scRNA-seq datasets 
and enhancing interpretation of results.  
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Materials and Methods 
Data 
All data have been described previously15. Briefly, all work was approved by the Royal Hobart 
Hospital, the Hobart Eye Surgeons Clinic, Human Research Ethics Committees of the Royal 
Victorian Eye and Ear Hospital (11/1031), University of Melbourne (1545394) and University of 
Tasmania (H0014124) in accordance with the requirements of the National Health & Medical 
Research Council of Australia (NHMRC) and conformed with the Declaration of Helsinki17. 
 
PBMC scRNA-seq Data 
Blood samples were collected and processed as described previously18. Briefly, mononuclear 
cells were isolated from whole blood samples and stored in liquid nitrogen until thawed for 
scRNA-seq capture. Equal numbers of cells from 12-16 samples were multiplexed per pool and 
single-cell suspensions were super loaded on a Chromium Single Cell Chip A (10x Genomics) 
to capture 20,000 droplets per pool. Single-cell libraries were processed per manufacturer 
instructions and the 10x Genomics Cell Ranger Single Cell Software Suite (v 2.2.0) was used to 
process the data and map it to GRCh38. The quality control metrics of each pool are 
demonstrated in Figure S22. 
 
PBMC DNA SNP Genotyping 
SNP genotype data were prepared as described previously18. Briefly, DNA was extracted from 
blood with the QIAamp Blood Mini kit and genotyped on the Illumina Infinium Global Screening 
Array. SNP genotypes were processed with Plink and GCTA before imputing on the Michigan 
Imputation Server using Eagle v2.3 for phasing and Minimac3 for imputation based on the 
Haplotype Reference Consortium panel (HRCr1.1). SNP genotypes were then lifted to hg38 and 
filtered for > 1% minor allele frequency (MAF) and an R2 > 0.3. 
 
Fibroblast scRNA-seq Data 
The fibroblast scRNA-seq data has been described previously15. Briefly, human skin punch 
biopsies from donors over the age of 18 were cultured in DMEM high glucose supplemented 
with 10% fetal bovine serum (FBS), L-gluatmine, 100 U/mL penicillin and 100 μg/mL (Thermo 
Fisher Scientific, USA).  
 
For scRNA-seq, viable cells were flow sorted and single cell suspensions were loaded onto a 
10x Genomics Single Cell 3’ Chip and were processed per 10x instructions and the Cell Ranger 
Single Cell Software Suite from 10x Genomics was used to process the sequencing data into 
transcript count tables as previously described15. The quality control metrics of each pool are 
demonstrated in Figure S23. 
 
Fibroblast DNA SNP Genotyping 
The DNA SNP genotyping for fibroblast samples has been described previously15. Briefly, DNA 
from each donor was genotyped on an Infinium HumanCore-24 v1.1 BeadChip (Illumina). 
GenomeStudioTM V2.0 (Illumina), Plink and GenomeStudio were used to process the SNP 
genotypes. Eagle V2.3.5 was used to phase the SNPs and it was imputed with the Michigan 
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Imputation server using minimac3 and the 1000 genome phase 3 reference panel as described 
previously15. 
 
Demultiplexing Methods 
All the demultiplexing methods were built and run from a singularity image. 
 
Popscle 
The Popscle v0.1-beta suite14 for population genomics in single cell data was used for Demuxlet 
and Freemuxlet demultiplexing methods. The popscle dsc-pileup function was used to create a 
pileup of variant calls at known genomic locations from aligned sequence reads in each droplet 
with default arguments. 
 
Demuxlet 
Demuxlet2 is a SNP genotype reference-based single cell demultiplexing method. Demuxlet was 
run with a genotype error coefficient of 1 and genotype error offset rate of 0.05 and the other 
default parameters using the popscle demuxlet command from Popscle (v0.1-beta). 
 
Freemuxlet 
Freemuxlet14 is a SNP genotype reference-free single cell demultiplexing method. Freemuxlet 
was run with default parameters including the number of samples included in the pool using the 
popscle freemuxlet command from Popscle (v0.1-beta).  
 
ScSplit 
ScSplit v1.0.72 was downloaded from the ScSplit github and the recommended steps for data 
filtering quality control prior to running ScSplit were followed. Briefly, reads that had read quality 
lower than 10, were unmapped, were secondary alignments, did not pass filters, were optical 
PCR duplicates, were secondary alignments or were duplicate reads were removed. The 
resulting bam file was then sorted and indexed followed by freebayes to identify single 
nucleotide variants (SNVs) in the dataset. The resulting SNVs were filtered for quality scores 
greater than 30 and for variants present in the reference SNP genotype vcf. The resulting 
filtered bam and vcf files were used as input for the scSplit count command with default settings 
to count the number of reference and alternative alleles in each droplet. Next the allele matrices 
were used to demultiplex the pool and assign cells to different clusters using the scSplit run 
command including the number of individuals (-n) option and all other options set to default. 
Finally, the individual genotypes were predicted for each cluster using the scSplit genotype 
command with default parameters. 
 
Souporcell 
Souporcell5 is a SNP genotype reference-free single cell demultiplexing method. The Souporcell 
v1.0 singularity image was downloaded via instructions from the gihtub page. The Souporcell 
pipeline was run using the souporcell_pipeline.py script with default options and the option to 
include known variant locations (--common_variants). 
 
Vireo 
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Vireo3 is a single cell demultiplexing method that can be used with reference SNP genotypes or 
without them. For this assessment, Vireo was used with reference SNP genotypes. Per Vireo 
recommendations, we used Model 1 of the cellSNP version 0.3.2 to make a pileup of SNPs for 
each droplet with the recommended options using the genotyped reference genotype file as the 
list of common known SNP and filtered with SNP locations that were covered by at least 20 
UMIs and had at least 10% minor allele frequency across all droplets. Vireo version 0.4.2 was 
then used to demultiplex using reference SNP genotypes and indicating the number of 
individuals in the pools. 
 
Doublet Detecting Methods 
All doublet detecting methods were built and run from a Singularity image. 
 
DoubletDecon 
DoubletDecon9 is a transcription-based deconvolution method for identifying doublets. 
DoubletDecon version 1.1.6 analysis was run in R version 3.6.3. SCTransform 19 from Seurat 20 
version 3.2.2 was used to preprocess the scRNA-seq data and then the 
Improved_Seurat_Pre_Process function was used to process the SCTransformed scRNA-seq 
data. Clusters were identified using Seurat function FindClusters with resolution 0.2 and 30 
principal components (PCs). Then the Main_Doublet_Decon function was used to deconvolute 
doublets from singlets for six different rhops - 0.6, 0.7, 0.8, 0.9, 1.0 and 1.1. Then the rhop that 
resulted in the closest number of doublets to the expected number of doublets per the following 
equation: 

� �
�
�
� 0.008

1000
 

where N is the number of droplets captured and D is the number of expected doublets. 
 
DoubletDetection 
DoubletDetection7 is a transcription-based method for identifying doublets. DoubletDetection 
version 2.5.2 analysis was run in python version 3.6.8. Droplets without any UMIs were 
removed before analysis with DoubletDetection. Then the doubletdetection.BoostClassifier 
function was run with 50 iterations with use_phenograph set to False and standard_scaling set 
to True. The predicted number of doublets per iteration was visualized across all iterations and 
any pool that did not converge after 50 iterations, it was run again with increasing numbers of 
iterations until they reached convergence. 
 
 
DoubletFinder 
DoubletFinder8 is a transcription-based doublet detecting method. DoubletFinder version 2.0.3 
was implemented in R version 3.6.3. First, droplets that were more than 3 median absolute 
deviations (mad) away from the median for mitochondrial per cent, ribosomal per cent, number 
of UMIs or number of genes were removed per developer recommendations. Then the data was 
normalized with SCTransform followed by cluster identification using FindClusters with 
resolution 0.3 and 30 principal components (PCs). Then, pKs were selected by the pK that 
resulted in the largest BCMVN. Finally, the homotypic doublet proportions were calculated and 
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the number of expected doublets with the highest doublet proportion were classified as doublets 
per the following equation: 

� �
�
�
� 0.008

1000
 

where N is the number of droplets captured and D is the number of expected doublets. 
 
 
ScDblFinder 
ScDblFinder10 is a transcription-based method for detecting doublets from scRNA-seq data. 
ScDblFinder 1.3.25 was implemented in R version 4.0.3. ScDblFinder was implemented with 
two sets of options. The first included implementation with the expected doublet rate as 
calculated by: 

	 �
�
�
� 0.008

1000
 

where N is the number of droplets captured and R is the expected doublet rate. The second 
condition included the same expected number of doublets and included the doublets that had 
already been identified by all the demultiplexing methods. 
 
 
Scds 
Scds11 is a transcription-based doublet detecting method. Scds version 1.1.2 analysis was 
completed in R version 3.6.3. Scds was implemented with the cxds function and bcds functions 
with default options followed by the cxds_bcds_hybrid with estNdbl set to TRUE so that 
doublets will be estimated based on the values from the cxds and bcds functions. 
 
 
Scrublet 
Scrublet12 is a transcription-based doublet detecting method for single-cell RNA-seq data. 
Scrublet was implemented in python version 3.6.3. Scrublet was implemented per developer 
recommendations with at least three counts per droplet, three cells expressing a given gene, 30 
PCs and a doublet rate based on the following equation: 

	 �
�
�
� 0.008

1000
 

where N is the number of droplets captured and R is the expected doublet rate. Four different 
minimum number of variable gene percentiles: 80, 85, 90 and 95. Then, the best variable gene 
percentile was selected based on the distribution of the simulated doublet scores and the 
location of the doublet threshold selection. In the case that the selected threshold does not fall 
between a bimodal distribution, those pools were run again with a manual threshold set. 
 
 
Solo 
Solo13 is a transcription-based method for detecting doublets in scRNA-seq data. Solo was 
implemented with default parameters and an expected number of doublets based on the 
following equation: 
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� �
�
�
� 0.008

1000
 

where N is the number of droplets captured and D is the number of expected doublets. Solo 
was additionally implemented in a second run for each pool with the doublets that were 
identified by all the demultiplexing methods as known doublets to initialize the model. 
 
In Silico Pool Generation 
Cells that were identified as singlets by all methods were used to simulate pools with the 
synth_pool.py script provided by the Vireo 3 package. Ambient RNA was simulated by changing 
the barcodes and UMIs on a random selection of reads for 2, 5 or 10% of the total UMIs. High 
mitochondrial per cent simulations were produced by replacing reads in 5, 10 or 25% of the 
randomly selected cells with mitochondrial reads. The number of reads to replace was derived 
from a normal distribution with an average of 30 and a standard deviation of three. Decreased 
read coverage of pools was simulated by down-sampling the reads by two-thirds of the original 
coverage. 
 
Classification Annotation 
Demultiplexing Methods 
Demultiplexing methods classifications were considered correct if the droplet annotation (singlet 
or doublet) and the individual annotation was correct. If the droplet type was correct but the 
individual annotation was incorrect (i.e., classified as a singlet but annotated as the wrong 
individual), then the droplet was incorrectly classified. 
 
Doublet Detecting Methods 
Doublet detecting methods were considered to have correct classifications if the droplet 
annotation matched the known droplet type. 
 
Analyses 
All downstream analyses were completed in R version 4.0.2. 
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