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Abstract 7 

 8 
Researchers studying cystic fibrosis (CF) pathogens have produced numerous RNA-seq datasets 9 
which are available in the gene expression omnibus (GEO). Although these studies are publicly 10 
available, substantial computational expertise and manual effort are required to compare similar 11 
studies, visualize gene expression patterns within studies, and use published data to generate new 12 
experimental hypotheses. Furthermore, it is difficult to filter available studies by domain-13 
relevant attributes such as strain, treatment, or media, or for a researcher to assess how a specific 14 
gene responds to various experimental conditions across studies. To reduce these barriers to data 15 
re-analysis, we have developed an R Shiny application called CF-Seq, which works with a 16 
compendium of 147 studies and 1,446 individual samples from 13 clinically relevant CF 17 
pathogens. The application allows users to filter studies by experimental factors and to view 18 
complex differential gene expression analyses at the click of a button. Here we present a series of 19 
use cases that demonstrate the application is a useful and efficient tool for new hypothesis 20 
generation. (CFSeq: http://scangeo.dartmouth.edu/CFSeq/) 21 
 22 
Introduction 23 

 24 
Cystic fibrosis (CF) is a monogenic, homozygous recessive genetic disease that affects over 25 
30,000 people in the US and more than 70,000 worldwide1. The disease is caused by mutations 26 
of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is expressed in a 27 
wide variety of cells throughout the body but has been predominantly studied in the context of 28 
the lungs and the digestive system2,3,4,5. In the lungs, the absence of CFTR contributes to mucus 29 
obstruction, chronic microbial infections, systemic inflammation, and progressive lung disease, 30 
which is the leading cause of mortality6,7,8,9. Furthermore, people with CF (pwCF) are commonly 31 
diagnosed with exocrine pancreatic insufficiency, and tend to exhibit microbial dysbiosis in the 32 
GI tract, which both contribute to nutritional deficits, poor growth, and a myriad of other GI 33 
symptoms5,10,11. Based on population data from the Cystic Fibrosis Foundation Patient Registry, 34 
pwCF born between 2015 and 2019 have a median life expectancy of just 46 years12. The life 35 
expectancy for pwCF has risen dramatically over the past few decades, however, as scientists, 36 
pharmaceutical companies, and physicians have developed new drugs to treat the molecular 37 
defect in CF, standardized clinical guidelines, and produced new antibiotic regimens to manage 38 
persistent bacterial infections13.  39 
 40 
Given the contribution of invasive pathogens to lung disease progression, lung microbiology has 41 
long been a key focus of CF research. CF researchers have traditionally studied a suite of 42 
“classic CF pathogens'' that are known to infect the CF lungs and exacerbate lung disease. These 43 
pathogens include the gram-negative bacterium Pseudomonas aeruginosa, the gram-positive 44 
bacterium Staphylococcus aureus, gram-negative bacteria of the genus Burkholderia, and fungal 45 
species such as Aspergillus fumigatus [Table 1]. In recent years, the set of recognized CF 46 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.07.483313doi: bioRxiv preprint 

http://scangeo.dartmouth.edu/CFSeq/
https://doi.org/10.1101/2022.03.07.483313
http://creativecommons.org/licenses/by/4.0/


2 
 

pathogens has expanded as epidemiological studies have identified species that are rising in 47 
prevalence and impacting clinical outcomes (e.g., non-tuberculous mycobacteria species such as 48 
M. abscessus)14,15. In addition, more sensitive culture tools have allowed researchers to recognize 49 
the clinical relevance of less prevalent aerobic and anaerobic species16,17. Recently, researchers 50 
have begun to develop model systems to interrogate the interactions between CF pathogens in 51 
the lungs and to consider how the overall shape of the CF community – the diversity and 52 
abundance of different bacteria – contributes to clinical outcomes18. In fact, studies have found 53 
that a patient’s microbial community as a whole may be more effective at predicting disease 54 
outcomes than colonization with any individual species19. 55 
 56 
Decades of prior CF pathogen research has helped advise modern clinical treatments, and this 57 
published body of research continues to serve as a source of knowledge for drug development as 58 
well as inspiration for future studies. High-throughput transcriptomics experiments – of which 59 
RNA-Seq studies have recently become most common – are especially useful as a source of 60 
published data to inform future experiments [Figure 1a,b]. The global nature of transcriptomics 61 
data – i.e., the fact that it provides a snapshot of most/all genes at once – allows for the same 62 
gene to be compared across studies. In an ideal world, CF pathogen researchers would be able to 63 
view which microbial strains, treatment conditions, and media have previously been utilized, and 64 
perform a quick visualize analysis of gene expression under these conditions. This information 65 
would offer researchers a roadmap to identify future directions for follow-up experiments. 66 
However, we do not (yet) live in this ideal world. Although many data sets are publicly 67 
available, substantial computational expertise and manual effort are required to compare similar 68 
studies, visualize gene expression patterns within studies, and use published data to generate new 69 
experimental hypotheses. Thus, there is a need develop an application that will reduce these 70 
barriers to data re-analysis. 71 
 72 
One useful approach to derive biological insights from a dataset in GEO – and the one that we 73 
automate in the CF-Seq application – is to see which genes are differentially expressed under 74 
varying experimental conditions. To accomplish this analysis, a researcher would first need to 75 
locate the sample runs associated with the individual dataset. These are often stored as FASTQ 76 
files that require extensive computational skills to process. Someone with these skills could trim 77 
the sequence reads contained in the FASTQ files to remove low quality reads and adapter 78 
sequences, and align trimmed reads to a reference genome with a command-line tool like 79 
SALMON20, which yields a count table with raw gene expression counts for each sample. Then, 80 
finally, that researcher could conduct differential gene expression analysis. This final step 81 
requires knowledge of a programming language like R21,22, and specific R packages like 82 
edgeR23,24 or DESeq25 that allow for the production of biologically meaningful analysis tables 83 
and figures. Even among bioinformatics researchers, many do not have expertise in all aspects of 84 
this pipeline – and for those who do, running through the pipeline for just a single data set is 85 
typically a multi-day effort. CF-Seq has been designed so that users do not have to deal with this 86 
pipeline at all. Taking advantage of count tables that dataset contributors have left in GEO as 87 
supplemental files, CF-Seq takes care of differential expression analysis [Figure 1c].  88 
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Figure 1. Landscape of RNA-Sequencing studies available in the Gene Expression Omnibus 89 
(GEO). (a) Since 2011, the number of RNA-Seq studies hosted in GEO has risen dramatically, 90 
from several hundred to over 10,000, well eclipsing the number of microarray expression studies 91 
currently produced per year. (b) While small relative to the total set of RNA-Seq studies in GEO, 92 
there is a substantial number of RNA-Seq studies available for the CF pathogen species featured 93 
in the CF-Seq application. (c) To derive meaningful biological insights from the RNA-seq studies 94 
in GEO, the analysis pipeline outlined here must be followed. Alignment of sample RNA 95 
sequences to a reference genome is accomplished with a command line tool like SALMON, and 96 
downstream analysis with a tool such as the popular R package edgeR. CF-Seq automates the 97 
second segment of this pipeline, saving users from the need to clean up count tables, produce 98 
experimental design matrices, gather metadata, and write sophisticated analysis code in R. 99 
 100 
Our efforts to make public data more accessible are certainly not the first of their kind. In recent 101 
years, as big -omics datasets have become increasingly commonplace and researchers have 102 
encountered the challenges described above, the necessity of adopting FAIR data principles by 103 
making data sets more Findable, Accessible, Interoperable, and Reproducible has increasingly 104 
been recognized26. In this spirit, various research tools have already been developed to make 105 
publicly available data more amenable to re-use. For example, the application MetaRNA-Seq 106 
enables users to view consolidated study metadata that had been scattered across the four NCBI 107 
databases: SRA, Biosample, Bioprojects, and GEO27. Another application, the 108 
geoCancerPrognosticDatasets Retriever, allows users to use additional search parameters (e.g., 109 
cancer type) to retrieve GEO accessions for all studies of interests28. 110 
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Some existing applications designed by other research teams are actually quite similar in nature 111 
to CF-Seq and have served as strong inspiration for our own efforts. However, none are 112 
specifically geared towards CF pathogen research, and there is room to expand on their 113 
functionality [Table 2]. Our own lab has previously published tools to make publicly available 114 
data more accessible to CF researchers29,30, but these tools focus on the most commonly studied 115 
CF pathogens – namely Pseudomonas aeruginosa and Staphylococcus aureus – and don’t 116 
include data sets on many of the other clinically relevant species listed in Table 1.  117 
 118 
Building on our prior work, we present the R Shiny web application CF-Seq. CF-Seq is a web 119 
application based on a compendium of RNA-Seq experiments. This compendium contains 13 120 
clinically relevant CF pathogens; a mix of aerobes and anaerobes residing in the lung and the 121 
digestive tract. The application currently holds carefully formatted count tables and metadata for 122 
147 studies, and 1446 RNA-seq samples in total, with efforts ongoing (outlined in the Discussion 123 
section) to capture more studies and additional relevant species. All datasets currently included 124 
in the application are arranged by GEO accession number in supplemental table S1 for reference.  125 
 126 
The CF-Seq application allows differential gene expression analysis of each individual study at 127 
the click of a button, producing downloadable tables and figures depicting fold changes and p 128 
values of differentially expressed genes in a matter of seconds. For each study, the application 129 
allows users to produce tables and figures comparing individual sample groups (e.g., samples 130 
treated with antibiotic X vs. control samples, samples treated with antibiotic Y vs. samples 131 
treated with antibiotic X, etc.). For many species and strains (where KEGG pathway annotations 132 
are available) the user can also visualize how the genes in specific biological pathways are 133 
differentially expressed. Furthermore, the user can filter all studies on the same species – 134 
breaking them down by strain, media, treatment, or gene(s) perturbed – to identify all past 135 
experimental conditions (and combinations of conditions) and thus determine which have yet to 136 
be assessed [Figure 2]. This application has been developed with the close guidance of CF 137 
pathogen researchers at the Geisel School of Medicine at Dartmouth College. In this publication, 138 
we present three case studies that showcase the application’s usefulness for researchers studying 139 
three different CF pathogens (Aspergillus fumigatus, Pseudomonas aeruginosa, and 140 
Staphylococcus aureus). 141 
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Figure 2. Application workflow for CF-Seq users. Panel 1 shows the starting window of the 142 
application, where users are presented with a manual that explains the functionality and purpose 143 
of the application. Users are then directed to the study view screen, shown in panel 2, where they 144 
can select a species of interest and view available RNA-Seq studies. Panel 3 shows how filters 145 
can be applied to delineate studies with certain experimental characteristics (strain, media, 146 
treatment, gene perturbed). Panel 4 offers a look at the metadata that can be examined for each 147 
individual study. Panels 5 and 6 show the study analysis window, where analysis tables and 148 
figures can be generated for all experimental comparisons, individual genes may be highlighted, 149 
P value and fold change cutoffs can be selected, and differentially expressed genes on selected 150 
KEGG pathways can be highlighted when KEGG pathway information is available (Panel 6). 151 
Zoomed-in versions of the figure panels showing more detail are available as supplementary 152 
figures S1-S6. 153 
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Results 154 

 155 
The CF-Seq application makes it simple for CF researchers to take full advantage of the 147 CF 156 
RNA-Seq data sets in the associated compendium. Upon opening the application, the user is 157 
greeted with a user manual that instructs them on how best to use CF-Seq (Figure 2, Panel 1). 158 
After reading, the user is then directed to the central, study-filtering panel of the application 159 
(Figure 2, Panel 2). Here, the user can filter studies by species, and then by strain, media, 160 
treatment, or gene perturbation (Figure 2, Panel 3). Filtered studies are presented in a table and 161 
can be selected to reveal additional metadata – including the study name, description, and link to 162 
its record in GEO (Figure 2, Panel 4). Once a study is selected, the user can click a button to 163 
reveal detailed differential expression analysis in a separate analysis tab (Figure 2, Panel 5). This 164 
analysis includes a table with the fold change (FC), p value, and counts per million (CPM) of all 165 
genes assessed in the study. For species or strains in which KEGG pathway information is 166 
available, the user is also able to visualize how the genes on different KEGG pathways are up or 167 
downregulated (Figure 2, Panel 6). 168 
 169 
A series of user stories have been developed by three of the publication co-authors to 170 
demonstrate the value of the application in a research setting. These co-authors conduct research 171 
in laboratories that frequently publish papers related to CF microbiology. The following section 172 
of the manuscript demonstrates the analysis features of the application and outlines how these 173 
researchers used the application to come up with new questions and testable hypotheses relevant 174 
to their own research. Given the current focus in the field of CF research on the CF microbiome 175 
as a polymicrobial community18,19, all three user stories focus on polymicrobial interactions 176 
between several CF pathogens. All volcano plots used as figures for the user stories were taken 177 
directly from the application. 178 
 179 
Case Study #1: Examining Aspergillus fumigatus in bacterial co-culture  180 
Dr. Charles Puerner, Cramer Laboratory, Geisel School of Medicine 181 
 182 
The infectious mold Aspergillus fumigatus is ubiquitous in the environment31. The spores from 183 
this fungus are taken into the lung by breathing and normally cleared by a healthy immune 184 
system. However, individuals with compromised immune systems and pulmonary diseases such 185 
as cystic fibrosis are particularly vulnerable to infection by this fungus. In these cases, A. 186 
fumigatus spores are capable of germinating in the lung environment and forming fungal lesions. 187 
The Cramer lab studies the biology of this organism, specifically as it relates to its disease-188 
causing capabilities. A recent publication, for example, investigated the genetic characteristics of 189 
persistent isolates taken from the lungs of a CF patient over several years32. 190 
 191 
Using the analysis capabilities of this application, we were particularly interested in a dataset 192 
which generated gene expression profiles of A. fumigatus co-cultured with the ubiquitous 193 
bacterium Pseudomonas aeruginosa (GEO: GSE122391). This dataset is interesting because 194 
both organisms are commonly found in the CF lung environment, a situation associated with 195 
worsened disease state33. The study was identified using the CF-Seq filtering feature to focus on 196 
those experiments that involved cross-species interactions.  197 
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In the analysis window of the application, the “Choose a P Value Cutoff” field was used to 198 
highlight genes whose p-value was 0.05 or less. Genes were highlighted at several timepoints 199 
comparing the co-culture of P. aeruginosa with A. fumigatus to culture of the fungus alone 200 
(Figure 3). Volcano and MA plots demonstrating the magnitude of differential expression, as 201 
well as a spreadsheet of statistically significant differentially expressed genes, were quickly 202 
downloaded for further analysis and additional figure generation [Figure 3]. Then, the 203 
downloaded table of differentially expressed genes was easily filtered outside of the application 204 
to contain only genes with a |log2FC| value of 1.5 or greater (Fold change > 2.83 = log2FC > 1.5, 205 
Fold change < 0.35 = log2FC < -1.5) [Supplemental Table S2].  206 
 207 
Using this method, the application makes it easy to identify a list of biologically significant 208 
genes which could be investigated further regarding their role in the co-culture environment 209 
(Figure 3). Genes differentially expressed with an especially high fold change and p value may 210 
be manipulated in the laboratory to see how the knockout of individual genes effects survival 211 
fitness of A. fumigatus in co-culture. 212 
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Figure 3. Expression of A. fumigatus genes following exposure to P. aeruginosa presented in 213 
volcano plot format. In the CF-Seq application, the species A. fumigatus strain A1160 was 214 
selected and the dataset “Transcriptomics analysis of Aspergillus fumigatus co-cultivated with 215 
Pseudomonas aeruginosa” was used for the subsequent analysis. Comparisons were selected 216 
comparing fungus co-cultured with bacteria to fungus alone at (a) 45, (b) 90, and (c) 180 min. 217 
Genes highlighted in orange are those whose p-value was less than 0.05. At 45 minutes, 531 of 218 
8526 total genes were differentially expressed to a statistically significant degree. At 90 minutes 219 
and 180 minutes, the number of statistically significant differentially expressed genes was 257 220 
and 514 respectively. 221 
 222 
Case Study #2: P. aeruginosa virulence factor production in polymicrobial contexts 223 
Dr. Georgia Doing, Hogan Laboratory, Geisel School of Medicine 224 
 225 
Pseudomonas aeruginosa is one of the most common pathogens associated with cystic fibrosis 226 
(CF) lung infections, remains difficult to treat with antibiotics, and is associated with lung 227 
function decline in colonized pwCF34. Along with its ability to form recalcitrant biofilms and 228 
resist antibiotic treatment, its behaviors during interactions with other bacteria are now 229 
recognized as important factors that influence P. aeruginosa infection outcomes35,36,37,38,39. 230 
Microbial interactions are often studied in the laboratory using co-cultures of P. aeruginosa with 231 
other CF pathogens such as Candida albicans and Staphylococcus aureus. These co-culture 232 
experiments have proven to be useful for modeling polymicrobial interactions. However, it is 233 
increasingly apparent that the combinatorial effects of environmental factors and pairwise and 234 
community-wide microbial interactions make for complex systems with many changing 235 
variables and a large search space39,40,41. In addition to conducting new experiments in the 236 
laboratory, the re-analysis of individual data sets related to bacterial co-culture and meta-analysis 237 
of multiple datasets will likely spur new experimental hypotheses and help provide evidence for 238 
existing theories of polymicrobial interactions. 239 
 240 
Using CF-Seq it was easy to compare two datasets from experiments where P. aeruginosa was 241 
co-cultured with C. albicans (GEO: GSE148597)40 and (GEO: GSE122048) S. aureus42. We 242 
noticed that while P. aeruginosa mainly upregulates and highly expresses genes in the KEGG 243 
pathway for phenazine biosynthesis in co-cultures with C. albicans compared to monoculture 244 
(Figure 4a), it does not do so in co-culture with S. aureus compared to monoculture (Figure 4b). 245 
Since P. aeruginosa phenazine production is induced with C. albicans fermentation43, we 246 
searched for specific genes whose expression could indicate differences in C. albicans and S. 247 
aureus metabolisms that may shed light on their different effects on P. aeruginosa phenazine 248 
production. 249 
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Figure 4 (a) P. aeruginosa genes involved in phenazine biosynthesis tend to be upregulated in 250 
co-culture with C. albicans (b) but not in co-culture with S. aureus compared to P. aeruginosa in 251 
monoculture. Green data points were highlighted by selecting the KEGG pathway for phenazine 252 
biosynthesis using the ‘find a pathway’ feature in the CF-Seq application. Genes that are 253 
differentially expressed between co-culture and monoculture conditions to a statistically 254 
significant degree (p < 0.05) were colored orange for emphasis. 255 

 256 
Digging deeper into the data on an individual gene level, the upregulation of lactate permeases 257 
and lactate dehydrogenases by P. aeruginosa in co-culture with either C. albicans or S. aureus 258 
suggest both C. albicans and S. aureus were producing lactate in these experiments (Figure 5a). 259 
However, while P. aeruginosa upregulated alcohol dehydrogenases in co-culture with C. 260 
albicans, it did not do so in co-culture with S. aureus, suggesting C. albicans was likely 261 
producing ethanol while S. aureus was not (Figure 5b). Amongst the many differences between 262 
these two co-cultures, differences in microbially-produced fermentation products could lead to 263 
differences in P. aeruginosa phenazine production.  264 
 265 
Since both co-cultures elicited lactate metabolism, but only co-culture with C. albicans elicited 266 
ethanol metabolism, CF-Seq analysis suggests that ethanol specifically promotes phenazine 267 
production while lactate may have a neutral or repressive effect (Figure 5c). This hypothesis 268 
could easily be tested in the lab by the addition of sub-lethal concentrations of ethanol to P. 269 
aeruginosa and S. aureus co-culture and measuring phenazine biosynthesis to test the hypothesis 270 
that phenazine production would increase. Importantly, CF-Seq facilitated the re-analysis of 271 
public data that led to the development of a hypothesis in approximately 30 minutes. By contrast, 272 
the process of identifying these experiments, downloading the data, performing comparisons, and 273 
generating figures by hand would have taken approximately 16 hours, based on similar 274 
exploratory analyses that we have performed previously.  275 
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Figure 5. (a) P. aeruginosa upregulates the expression of lactate permease lldP (red point) and 276 
other lactate metabolism genes including lactate dehydrogenases (present in the cluster of dark 277 
blue points near lldP) in co-culture with C. albicans. (b) Similarly, lactate dehydrogenase lldA 278 
(red point) and other lactate metabolism genes (included in dark blue points near lldA) are 279 
upregulated in co-culture with S. aureus as well. (c) P. aeruginosa upregulated alcohol 280 
dehydrogenase adh in co-culture with C. albicans (d) but not in co-culture with S. aureus. (e) In 281 
complex co-culture P. aeruginosa will have to integrate multiple signals such as the positive 282 
influence of ethanol and a possible negative influence of lactate that converge to influence 283 
phenazine production. After CF-Seq exploratory analysis, our hypothesis is that the presence of 284 
ethanol will supersede that of lactate to promote phenazine production. 285 
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Case Study #3: Examining superoxide dismutase response in Staphylococcus aureus under 286 
a variety of clinically relevant conditions 287 
Liviu Cengher, Cheung Laboratory, Geisel School of Medicine 288 
 289 
Staphylococcus aureus is a human commensal and opportunistic pathogen that contributes to a 290 
wide range of diseases – from skin and soft-tissue disorders to respiratory diseases like cystic 291 
fibrosis44. Disease is mediated by several S. aureus virulence factors that are produced in 292 
response to environmental cues, and which play a wide range of roles45. Two-component 293 
systems (TCS) are important regulatory factors that have paired sensing and regulatory peptides 294 
that respond to environmental and host cues46,47. The SaeR/S TCS senses reactive oxygen species 295 
(ROS) and regulates responses that counteract and inhibit ROS production by the human 296 
immune system. For example, activation of the TCS may lead to enhanced expression of 297 
virulence factors superoxide dismutase sodA and sodM48.  298 
 299 
In this case study we investigated sodA and sodM expression across experiments with different 300 
bacterial strains and treatments to explore similarities and differences in ROS response. 301 
Specifically, we compared sodA and sodM expression in conditions likely to be present in the CF 302 
lung to identify conditions that upregulate one and/or both of the two genes. To start, we 303 
evaluated the effect of S. aureus co-culture with P. aeruginosa (vs. S. aureus in monoculture, 304 
GEO: GSE122048)42. Co-occurrence of P. aeruginosa and S. aureus is frequent in a hospital 305 
setting, and tends to induce a fermentative state in S.aureus49,50. Both sodA and sodM were 306 
upregulated in these conditions (Figure 6a,b). CF-Seq analysis of the transcriptome of ‘persister 307 
cells’ primed to survive (predominantly ROS mediated) killing after residing inside of immune 308 
system macrophages (GEO: GSE139659)48,51 revealed that sodM was upregulated in the 309 
‘persister cells’ that resisted killing by the immune system (Figure 6d). Since sodM was 310 
upregulated in common between these two studies, it would be worth re-examining both 311 
conditions in tandem: subjecting S. aureus to bacterial co-culture with P. aeruginosa to see if 312 
this induces a persister-like phenotype in S. aureus. Given that both conditions – persistence 313 
within host cells and co-infection with Pseudomonas – may be present at once in an individual 314 
with CF, such experiments would paint a fuller picture of the S. aureus transcriptional state in an 315 
infection. 316 
 317 
Furthermore, we also identified a study where treatment with apicidin, an antibiotic known to 318 
inhibit bacterial quorum sensing, led to downregulation of sodA and relatively low levels of 319 
sodM expression (Figure 6e,f)52. We might compare sodA downregulation in this study with the 320 
co-culture study (GEO: GSE122048). There would be interesting therapeutic implications for 321 
future experiments that determine the outcome of combining co-culture conditions (upregulating 322 
Sod genes) with antibiotic-induced quorum sensing inhibition (downregulation/low expression of 323 
Sod genes) to see which effect dominates. In addition, one might examine conditions which 324 
could favor sodM expression over sodA expression, like the availability of iron and manganese in 325 
co-culture and in polymicrobial infections53,54. Normally the analysis performed in this case 326 
study would necessitate a close reading of multiple published articles and require deciphering 327 
often unhelpful supplemental data tables. Finding relevant experiments and performing 328 
subsequent analysis would involve many hours of work. Using CF-Seq, useful results were 329 
found within approximately 10 minutes. 330 
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Figure 6. Expression of virulence factors sodA and sodM in S. aureus tends to diverge under 331 
different experimental conditions. Volcano plots of all genes are shown to demonstrate the 332 
expression values of sodA and sodM relative to other genes detected. (a,b) In co-culture with P. 333 
aeruginosa, both sodA and SodM expression are upregulated, sodA to a much greater extent. 334 
(c,d). In ‘persister cells’, the expression pattern was quite different: sodM expression was more 335 
markedly upregulated while sodA expression was downregulated (e,f). Finally, exposure to 336 
apicidin was found to induce downregulation of sodA, but no significant change in sodM. In all 337 
cases, aside from sodM expression in figure 6f, sodA and sodM were differentially expressed to a 338 
statistically significant degree (p < 0.05)  339 
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Discussion 340 

 341 
As the user stories demonstrate, the CF-Seq application provides value to CF pathogen 342 
researchers in a number of ways. First, CF-Seq allows rapid analysis of numerous data sets, 343 
reducing the time of analysis from days in some cases to minutes. Second, multiple CF 344 
pathogens can be analyzed including bacteria such as Pseudomonas aeruginosa and 345 
Staphylococcus aureus, and fungi such as Aspergillus fumigatus and Candida albicans. Third, 346 
the R scripts underlying the application (publicly available in our Git Repository: 347 
https://github.com/samlo777/cf-seq.git) not only allow for rapid analysis of the CF pathogens 348 
currently included in the application, but may be repurposed to study other microbes relevant to 349 
other diseases. Fourth, CF-Seq affords researchers a better understanding of prior CF pathogen 350 
experiments by revealing experimental parameters – details on strain, media, treatment, and gene 351 
perturbation – that have been tested in the past. With the ability to filter studies based on these 352 
parameters, users may identify the set of experiments that relate to their own specific interests 353 
and capabilities, filling knowledge gaps that they notice in the field of research. Not only does 354 
the application make prior studies more visible and accessible, but also makes their individual 355 
samples and the expression levels of individual genes possible to investigate more closely. While 356 
any given publication tends to emphasize the differential expression of just a few relevant genes 357 
to tell a concise and cohesive biological story, the CF-Seq application allows users to explore the 358 
expression of genes that may not have been of interest to the initial study authors but are of 359 
interest to the users themselves. 360 
 361 
The ability to discern the whole field of prior experiments in minutes without slowly trawling 362 
through online databases like GEO is a tantalizing prospect. As it stands, the application serves 363 
as a valuable tool for validating existing hypotheses and generating new ones to test. That said, 364 
efforts are still ongoing to expand the application – adding older microarray studies to the 365 
compendium of data and making efforts to gather count table data for RNA-Seq studies in which 366 
count tables have not yet been provided directly by the authors as supplemental information in 367 
GEO. Additional RNA-Seq studies may be gathered by taking advantage of pipelines built to 368 
convert FASTQ sample files in GEO into count tables amenable to analysis by edgeR. For 369 
example, we may employ the pipeline recently developed by Doing et al. (2022) to create a 370 
compendium of P. aeruginosa data sets, modifying it such that its use extends to other CF 371 
pathogens of interest55. We may also take advantage of crowd-sourced metadata curation 372 
approaches like that of Wang et al. (2016), in which participants were recruited to help identify 373 
studies in GEO involving gene or drug perturbations, or comparison of normal and diseased 374 
tissue56. Crowdsourcing curation efforts would make the process of adding additional study data 375 
to the application more efficient and speed up the inclusion of new studies. 376 
 377 
Finally, the application sheds light on the value of automated bioinformatic analysis for 378 
researchers of all backgrounds. Performing differential expression analysis is by no means a 379 
feasible task for those lacking a computational background, and even for those who have such a 380 
background, analysis is still quite time-consuming (as the authors of the user stories note). Not 381 
only does the CF-Seq application save time and provide detailed statistical analysis, but it also 382 
serves a didactic purpose for those who have less experience working with transcriptomic data – 383 
demonstrating what differential expression analysis looks like and how it may be interpreted. 384 
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Tools such as CF-Seq, and the other data re-analysis applications cited throughout this 385 
publication, demonstrate the immense value of bioinformatic tools for scientific research.  386 
In sum, providing CF pathogen researchers a more detailed view of the prior experiments 387 
conducted in their own domain will make research more coordinated, systematic, and efficient. 388 
The CF-Seq application allows users to see exactly what combinations of experimental factors 389 
have been assessed thus far, and take logical, incremental steps – investigate a new treatment, a 390 
new mutation, a new growth medium, or some combination thereof – to test novel experimental 391 
hypotheses and improve understanding of pathogen behavior. For the field of bioinformatics 392 
specifically, such an application helps demonstrate the value and enhance appreciation for both 393 
data re-analysis and the tools that enable it. More generally, applications like CF-Seq help 394 
democratize the research process, allowing all scientists, regardless of specialization, to set their 395 
minds at work determining where research should go next.  396 
 397 
Methods 398 

 399 
Data Extraction 400 
 401 
The CF-Seq application currently includes 147 RNA-Seq studies of 13 CF pathogens. All studies 402 
can be found in NCBI’s Gene Expression Omnibus (GEO) and are linked directly to GEO within 403 
the application. Before incorporating studies into the application, the landscape of CF pathogen 404 
studies in GEO was surveyed. Clinically relevant pathogens of interest were chosen based on the 405 
cystic fibrosis literature (their relevance, supported by clinical and laboratory studies, is 406 
documented in Table 1). The set of all RNA-sequencing studies for each of these pathogens was 407 
identified in GEO by querying the database of GEO data sets by pathogen name (e.g., 408 
Pseudomonas aeruginosa, Staphylococcus aureus, etc.), filtering studies to include only those 409 
that constituted “expression profiling by high throughput sequencing” (in GEO, this corresponds 410 
to ‘RNA sequencing’), and selecting the pathogen of interest specifically in the ‘organism’ field. 411 
This final step excludes datasets that constitute transcriptomic profiles of human cells, or cells of 412 
some other organism, exposed to the pathogen of interest.  413 
 414 
For practical reasons, only studies with certain attributes are included in this release of the 415 
compendium. The application is limited to studies where: A) a count table was provided in the 416 
supplemental files associated with the study in GEO, B) that count table was in a tabular format 417 
(.csv, .xlsx, .txt) so that it could be loaded into R with the read.table() or read.csv() functions, C) 418 
sample groups were clearly distinguishable such that it was possible to perform differential 419 
expression analysis, and D) the count table included raw counts and not normalized counts 420 
(edgeR and other differential expression analysis packages require raw counts to perform 421 
analysis). Efforts to circumvent some of these limitations and add more studies into the 422 
application are discussed in the Discussion section of this manuscript. 423 
 424 
Data Cleaning and Storage 425 
 426 
For studies that met the criteria for inclusion in the application, each count table was subjected to 427 
the following formatting protocol. Count tables downloaded directly from GEO were re-428 
structured, if necessary, so that the first column of the table included gene names, and all 429 
subsequent columns contained raw read data for each experimental sample. In addition to count 430 
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tables, two other data files were constructed for each study. The first file is a design matrix 431 
which delineates experimental samples by condition (e.g., control, treatment group X, treatment 432 
group Y) and lists the number of replicates for each condition. This design matrix is a 433 
requirement for differential expression analysis with edgeR. The second file, labeled ‘additional 434 
metadata’, includes manually gathered metadata on the strain(s), media, treatment conditions, 435 
and genes perturbed in each study, whenever applicable. Collecting this data enables filtering of 436 
studies by experimental conditions within the application.  437 
 438 
All data files – count tables, design matrices, and additional metadata – were deposited in a local 439 
directory of folders, with a single folder for each species, and sub-folders within each species for 440 
the three types of data files (count table, design matrix, additional metadata). A copy of this 441 
directory structure can be found in the Git Repository associated with this publication 442 
[https://github.com/samlo777/cf-seq.git], so that any reader may download the data and/or use it 443 
to run the Shiny application on their own computer if they so choose.  444 
 445 
Code Development Approach  446 
 447 
The CF-Seq application code was developed in discrete modules to make testing as straight-448 
forward as possible. Each of the application’s interactive features (filtering studies, selecting a 449 
study, choosing experimental comparisons to analyze, etc.) were developed in a hierarchical 450 
fashion: the code was first tested to ensure that it worked properly for a single study, then 451 
adjusted and generalized such that it worked for a single species, and ultimately for all species 452 
included in the application.  453 
 454 
The application code is broken down into 3 files. The first, named ‘app.R’, contains the 455 
functional code for the application. This file houses the UI code (which dictates the appearance 456 
of the application), and the server code (which provides functional code for all the drop-down 457 
menus, tables, and output figures) as two separate blocks. Both the name of this file, and the two-458 
section structure, are an essential requirement of all Shiny applications. In addition, another code 459 
file, labeled ‘Data Setup.R’, was generated to load in all the study data and compress it into the 460 
easily accessible structure (a list of lists) accessible to the code in the app.R file. In addition to 461 
loading in the count tables, design matrices, and additional metadata, this code file also contains 462 
blocks of code that perform differential expression analysis – and deposit the outputs of this 463 
analysis (including tables of fold changes, p values, and counts per million for each gene) into 464 
the list of lists object alongside their respective studies. The third code file, labeled 465 
‘PathwayData.R’, contains code that programmatically accesses data from the KEGG database 466 
and structures that data such that the genes of each species are linked to their respective KEGG 467 
biological pathway identifiers (if available). The data structures generated by this code file are 468 
necessary for the biological pathway feature of the application.   469 
 470 
The application takes advantage of several publicly available, open-source R packages. 471 
Alongside the ‘shiny’ package57 (which is essential for all R Shiny applications), the 472 
‘shinydashboard’58 package was used to provide a UI template, with several tabs for different 473 
application components. ‘shinyjs’59 was used to develop some of the more complicated 474 
application features (e.g., data tables with interactive buttons) that require JavaScript code to run. 475 
The ‘DT’60 package was employed to create searchable and filterable tables. The package 476 
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‘plotly’61 was used to generate interactive volcano plots and MA plots to represent differential 477 
expression analysis results, and the differential gene expression analysis itself was performed 478 
with the ‘edgeR’23,24 package. Finally, the ‘tidyverse’62 suite of packages, including ‘stringr’63 479 
for string manipulation, were used throughout the application code to manipulate data structures.  480 
 481 
Validation: Beta Testing Protocol 482 
 483 
To ensure that the study data and metadata loaded into the application recapitulated the data 484 
present in GEO, and that all application features worked as expected, a beta testing protocol was 485 
established. Three of the paper co-authors, each possessing either domain knowledge in CF 486 
microbiology or bioinformatics, were recruited to test different segments of the application: (1) 487 
the ability to filter studies based on experimental characteristics, (2) the ability to view detailed 488 
metadata for each individual study, and (3) the ability to perform and visualize differential 489 
expression analysis. The beta testing protocol was guided by a series of requirements tables that 490 
listed out all the features to be validated (beta testers were instructed to indicate Y/N if a feature 491 
worked as expected and provide notes if it did not). These tables are included for reference in the 492 
supplemental material [Supplemental Tables S3 – S5] 493 
 494 
After all components of the application were tested, any features that did not work properly were 495 
fixed – and additional improvements were made to enhance the usability of the application based 496 
on beta tester feedback. Furthermore, after the bugs identified in beta testing were fixed, a 497 
second round of review was undertaken to ensure that study metadata accurately reflected the 498 
true study metadata in GEO. One at a time, each study in the application was referenced back to 499 
GEO to ensure that none of the manually curated metadata was missing or incorrect.  500 
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Project Documentation 501 

 502 
Documentation for the CF-Seq application can be found in several locations. Users are presented 503 
with a user manual when they first open the application. This guide can also be found as a .pdf 504 
file in the Git repository [https://github.com/samlo777/cf-seq.git], which also contains the 505 
application’s source code and a README file that outlines the repository contents. 506 
 507 
Data Availability  508 

 509 
All data – including count tables derived from GEO, and manufactured design matrices and 510 
metadata tables – are available in the Git repository [https://github.com/samlo777/cf-seq.git] 511 
 512 
Code Availability 513 

 514 
All CF-Seq code is open source and has been made available for use on GitHub 515 
[https://github.com/samlo777/cf-seq.git].  516 
 517 
The application is also hosted on a server maintained by Dartmouth College and is accessible at 518 
the following web link [http://scangeo.dartmouth.edu/CFSeq/)].  519 
 520 
In its current version, CF-Seq utilizes the following R package versions: shiny (1.6.0), 521 
shinydashboard (0.7.1), shinyjs (2.0.0), DT (0.19.1), plotly (4.9.4.1), ggplot2 (3.3.5), edgeR 522 
(3.34.1), tidyverse (1.3.1), stringr (1.4.0). 523 
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Table 1. Clinical relevance of cystic fibrosis pathogens with studies featured in the CF-Seq 

application  

 

Genus Species Type Location Clinical Relevance 
Aspergillus Aspergillus 

fumigatus 
Fungus Lung  

- Aspergillus colonization is 

associated with lower lung 

function and more 

frequent hospitalization64 

- Long-term colonization is 

also associated with 

declining chest computed 

tomography (CT) scores 

over time65 

- Aspergillus colonization 

can result in a hard-to-treat 

chronic condition called 

allergic bronchopulmonary 

aspergillosis (ABPA)66 

 

Bacteroides Multiple Bacterium Gut  

- For infants with CF, the 

stool microbiota does not 

exhibit the increase in 

diversity that is observed 

in infants without CF over 

the first several years of 

life. Specifically, infants 

with CF tend to see 

reduced levels of the 

genus Bacteroides (the 

same has been noted for 

Veillonella species,  

Prevotella species, and 

Bifidobacterium species as 

well)67,68 

- Exposure of intestinal cell 

lines to Bacteroides 

species supernatant has the 

effect of reducing IL-8 

production, suggesting that 

absence of Bacteroides 

species may contribute to 

inflammation in the CF 

gut67 

 

Burkholderia Multiple Bacterium Lung  

- Burkholderia species 

infections are extremely 

difficult to eradicate after 
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the bacteria occupy the CF 

lungs and establishes 

chronic infection69 

- Associated with highly 

unpredictable clinical 

symptoms, in some cases 

severe decline in lung 

function and high 

mortality69 

- Burkholderia cenocepacia 

and Burkholderia 

multivorans are the most 

common species isolated 

from the CF lungs, with B. 
cenocepacia infections 

generally being more 

severe69 

- Like Pseudomonas, 

Burkholderia can be found 

as a dominant pathogen in 

the lungs of some adult 

pwCF70 

- Burkholderia infection is a 

common contraindication 

for lung transplant71 

 

Candida Candida albicans Fungus Lung  

- Candida albicans is the 

most common fungus 

isolated from the lungs of 

pwCF72 

- pwCF receiving frequent 

IV antibiotics are 

susceptible to Candida 

sepsis, requiring extensive 

anti-fungal treatment and 

precluding further IV 

antibiotic treatment72 

- A mild association 

between Candida albicans 

colonization and lung 

function decline has been 

observed73 

 

Clostridium Clostridium 

difficile 
Bacterium Gut  

- pwCF present with a much 

higher prevalence of GI 

colonization with C. 
difficile than the general 

population, although 
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severe C. difficile infection 

is not common and 

carriage of C. difficile is 

usually asymptomatic74 

- High prevalence of C. 

difficile in the CF 

population is thought to 

stem from frequent 

antibiotic use and hospital-

based exposure75 

 

Fusobacterium Fusobacterium 

nucleatum 
Bacterium Lung  

- Fusobacterium nucleatum, 

an anaerobe, is known to 

be present on occasion in 

the cystic fibrosis lung, 

with one study finding that 

of 109 pwCF, it was 

detected in 5.5% of 

subjects76 

- A study has shown that F. 
nucleatum and P. 

aeruginosa frequently 

coexist in the lungs – and 

this co-culture state has 

been found to be 

associated with increased 

bacterial count and 

bacterial tolerance to 

antibiotics77 

- Production of short-chain 

fatty acids by anaerobes 

has been found to induce 

IL-8 production in CF 

bronchial epithelial cells in 

vitro, which may 

contribute to pulmonary 

inflammation in vivo76 

 
Haemophilus Haemophilus 

influenza 
Bacterium Lung  

- H. influenza commonly 

infects pwCF in early 

childhood, alongside 

Staphylococcus aureus, 

although detection has 

been waning in recent 

years78 

- Long term colonization 

with hyper-mutable H. 

influenza strains has been 
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found to be more common 

in pwCF than the general 

population79 

 

Mycobacterium Mycobacterium 

abscessus 
Bacterium Lung  

- Increasing in prevalence 

and associated with 

dramatic disease 

progression80 

- Often requires extensive 

antibiotic treatment80 

- Can be a contraindication 

for lung transplant80 

 

Pseudomonas Pseudomonas 

aeruginosa 
Bacterium Lung  

- With increasing age, P. 

aeruginosa tends to 

dominate the airway, 

evolving to resist 

antibiotics and out-

competing other airway 

pathogens70 

- Once chronic infection is 

established, constant 

antibiotic use is required 

to keep the bacterium at 

bay; once established it 

can rarely be eradicated81 

- P. aeruginosa infection 

has been associated with 

worsening lung function 

over time82 

 

Porphyromonas Multiple Bacterium Lung  

- The genera 

Porphyromonas is 

commonly detected in the 

CF lungs83 
- Recent studies suggest that 

certain Porphyromonas 

species (namely P. 

catoniae) are abundant in 

pwCF who are not 

colonized with P. 

aeruginosa, and that 

significant decline in P. 

catoniae may serve as a 

biomarker for the onset of 

P. aeruginosa infection5 
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Staphylococcus Staphylococcus 

aureus 
Bacterium Lung  

- S. aureus often colonizes 

the lungs of pwCF at a 

relatively early age, but 

has been found to co-exist 

in some cases with P. 
aeruginosa in older 

people84 

- pwCF infected with both 

S. aureus and P. 

aeruginosa tend to exhibit 

worse lung function than 

those infected with either  

P. aeruginosa or S. aureus 

alone85 

- pwCF infected with S. 
aureus alone (vs. those 

with P. aeruginosa alone) 

tend to have better clinical 

outcomes85 

 

Stenotrophomonas Stenotrophomonas 

maltophilia 
Bacterium Lung  

- S. maltophilia has a known 

capacity to persistently 

colonize the CF lung and 

to become multidrug 

resistant86,87 

 

Streptococcus Multiple Bacterium Lung  

- In young children with CF, 

before the lungs are 

dominated by the classic 

CF pathogens (e.g., P. 

aeruginosa, S. aureus), 

Streptococcus species tend 

to be the predominate 

species88 

- The clinical implications 

of Streptococcus infection 

for pwCF are complex – 

infection with certain 

species like the S. milleri 
group are associated with 

pulmonary exacerbation 

(acute, rapid decline in 

lung function), yet 

enhanced relative 

abundance of 

Streptococcus species in 

the lungs is associated 
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with more mild lung 

disease89 

 

 

Table 2. Applications similar in nature to CF-Seq are described to acknowledge the significant 

contribution that these researchers have made to making public data more FAIR, and the 

inspiration their work has provided for CF-Seq. The table also briefly summarizes how these 

applications are limited for CF pathogen research specifically to demonstrate the unique value 

of CF-Seq.  

 

Application Name Description Value Added Limitations for CF 

Pathogen Research 

One-Stop RNA-Seq90 

 

Link 

 

 

One-Stop RNA-

Seq provides a 

web interface 

that enables 

users without a 

computational 

background 

to perform 

common forms 

of RNA-seq 

analysis on 

selected data 

sets.  

Provides many 

data analysis 

modules for 

analysis of 

uploaded data: 

quality control, 

differential gene 

expression 

analysis, gene set 

enrichment 

analysis, 

alternative splicing 

analysis, and more.  

The application is geared 

towards users who want to 

analyze data from their own 

experiments (it requires data 

upload to perform analysis), 

not those who want to get a 

sense of prior research in a 

specific domain or filter 

domain studies by 

experimental parameters 

(strain, treatment, media, 

gene(s) perturbed, etc.).  

 

Furthermore, the ability to 

analyze study data is limited 

to studies of species with 

compatible reference 

genomes (human, mouse, C. 

elegans). 

 

START91 

 

Link 

START is an 

easy-to-use web 

interface that 

allows users to 

upload RNA-seq 

data sets, 

perform 

automated 

differential 

expression 

analysis, and 

view results.   

Provides many 

data analysis 

modules for 

differential gene 

expression 

analysis of 

uploaded data: 

PCA plots, 

volcano plots, box 

plots, and heat 

maps.  

 

Provides many 

options for the 

The application is geared 

towards users who want to 

analyze data from their own 

experiments (it requires data 

upload to perform analysis), 

not those who want to get a 

sense of prior research in a 

specific domain or filter 

domain studies by 

experimental parameters 

(strain, treatment, media, 

gene(s) perturbed, etc.).  
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analysis of 

individual studies, 

including selecting 

the groups of 

experimental 

samples to 

compare, selecting 

genes of interest to 

view, and filtering 

analysis result by 

statistical 

significance (p 

value) 

GREIN92 

 

Link 

GREIN 

combines 

thousands of 

processed RNA-

Seq data sets, 

makes their 

metadata 

available for 

viewing, and 

gives access to 

analysis results 

for each 

individual study. 

Provides a large 

suite of processed 

studies and makes 

their data more 

accessible, with 

metadata, count 

tables and 

visualization 

(density plots, heat 

maps, etc.) 

provided to users. 

 

Furthermore, it 

allows user to 

visualize data from 

tens of thousands 

of individual 

studies. 

Geared towards analysis of 

individual studies but does 

not permit comparison of 

studies by experimental 

parameters (strain, 

treatment, media, gene(s) 

perturbed, etc.) across 

studies. This would require 

manual annotation of these 

parameters in the 

application, guided by 

domain-specific researchers 

(this manual annotation has 

been performed for CF-

Seq). 

 

Also, geared towards 

human, mouse, and rat 

studies – not studies that are 

very relevant to CF 

pathogen researchers  

easyGEO (part of 

eVITTA) 
93 

 

Link 

easyGEO, one 

element of the 

three-part ‘easy 

Visualization 

and Inference 

Toolbox for 

Transcriptome 

Analysis’ 

(eVITTA) suite, 

allows users to 

view metadata 

and analyze the 

Allows users to 

search for a GEO 

accession (for any 

species) and pull-

out information 

about experimental 

metadata as well 

as data like count 

tables from the 

study if they were 

provided in GEO.  

 

Geared towards analysis of 

individual studies but does 

not permit comparison of 

studies by experimental 

parameters (strain, 

treatment, media, gene(s) 

perturbed, etc.). This would 

require manual annotation 

of these parameters in the 

application, guided by 

domain-specific researchers  
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results of studies 

in GEO by 

simply 

searching for 

their study 

accession 

number(s).  

This data can then 

be fed into the 

analysis modules 

of the app to 

produce 

differential 

expression 

analysis results.  

Still requires some manual 

user cleaning and re-upload 

of count tables, though the 

requisite files to clean are 

extracted from GEO and 

handed off to the user. 

Gene Expression 

Browser (GXB)94 

 

Link 

GXB is a 

curated 

compendium of 

93 public 

datasets from 

human 

monocyte 

immunological 

studies 

Allows users to 

filter studies by 

experimental 

characteristics 

(disease, sample 

source, platform) 

 

For each study, the 

user can view 

expression values 

for individual 

genes across 

experimental 

samples, download 

data analysis 

figures, and visit 

corresponding web 

pages in GEO and 

Pubmed 

Geared specifically towards 

studies of human monocyte 

gene expression. The 

studies are not directly 

relevant for researchers who 

study cystic fibrosis 

pathogens.  

ImaGEO: Integrative 

Meta-Analysis of 

GEO Data95 

 

Link 

ImaGEO is 

geared towards 

meta-analysis of 

gene expression 

across studies. 

The application 

works for 

studies on a set 

of species 

including 

humans and 

other model 

organisms 

(Yeast, fruit fly, 

mouse, rat, and 

CF pathogen 

Pseudomonas 

aeruginosa) 

Allows users to 

paste in 2-10 GEO 

study identifiers, 

manually select 

control and 

experimental 

conditions, and 

create a report 

showing genes that 

were differentially 

expressed across 

studies in a data 

table and heat 

map.    

Compatible with a strong 

list of model organisms, but 

is not compatible with most 

microbes of interest to CF 

pathogen researchers 

(except for Pseudomonas 

aeruginosa) 

 

Focused on meta-analysis of 

small groups of studies, so 

does not permit comparison 

of experimental parameters 

(strain, treatment, media, 

gene(s) perturbed, etc.).  
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