

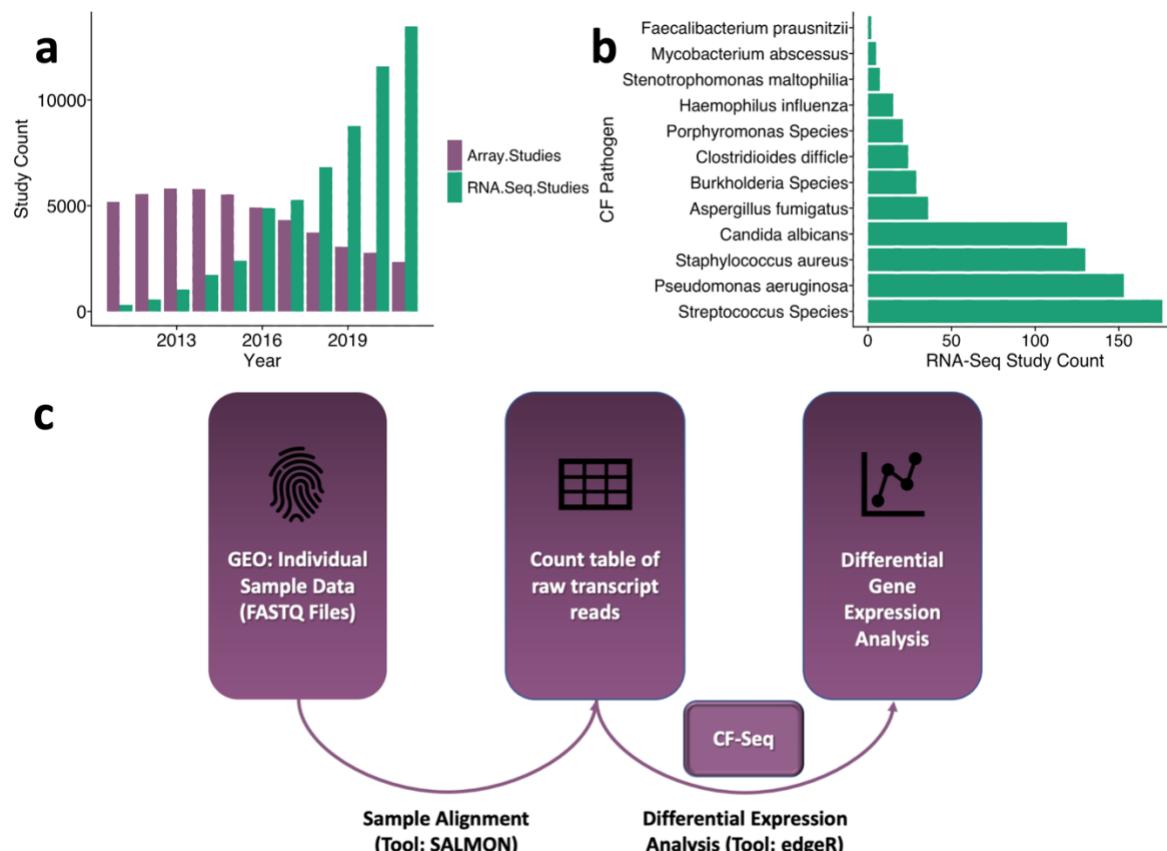
1 CF-Seq, An Accessible Web Application for Rapid Re-Analysis of Cystic 2 Fibrosis Pathogen RNA Sequencing Studies

3 *Samuel L. Neff, Thomas H. Hampton, Charles Puerner, Liviu Cengher, Georgia Doing,
4 Alexandra J. Lee, Katja Koeppen, Ambrose L. Cheung, Deborah A. Hogan, Robert A. Cramer,
5 Bruce A. Stanton*

6 **Abstract**

9 Researchers studying cystic fibrosis (CF) pathogens have produced numerous RNA-seq datasets
10 which are available in the gene expression omnibus (GEO). Although these studies are publicly
11 available, substantial computational expertise and manual effort are required to compare similar
12 studies, visualize gene expression patterns within studies, and use published data to generate new
13 experimental hypotheses. Furthermore, it is difficult to filter available studies by domain-
14 relevant attributes such as strain, treatment, or media, or for a researcher to assess how a specific
15 gene responds to various experimental conditions across studies. To reduce these barriers to data
16 re-analysis, we have developed an R Shiny application called CF-Seq, which works with a
17 compendium of 147 studies and 1,446 individual samples from 13 clinically relevant CF
18 pathogens. The application allows users to filter studies by experimental factors and to view
19 complex differential gene expression analyses at the click of a button. Here we present a series of
20 use cases that demonstrate the application is a useful and efficient tool for new hypothesis
21 generation. (CFSeq: <http://scangeo.dartmouth.edu/CFSeq/>)

22 **Introduction**

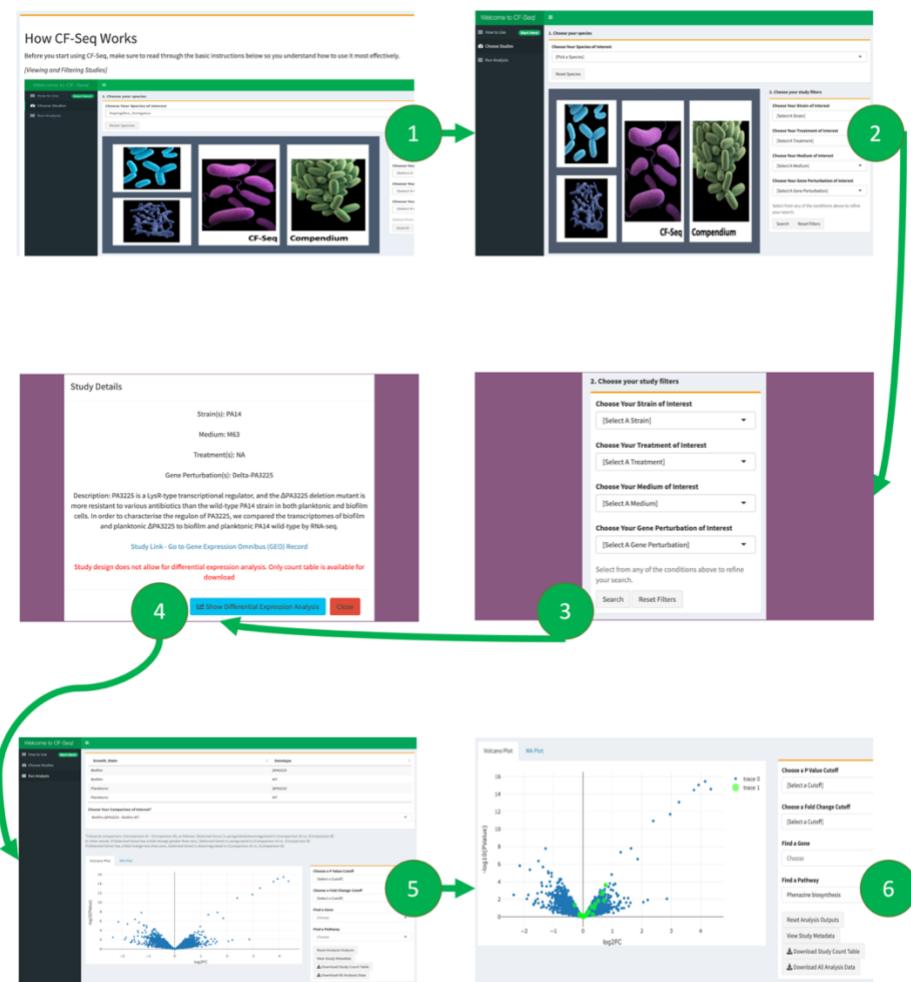

25 Cystic fibrosis (CF) is a monogenic, homozygous recessive genetic disease that affects over
26 30,000 people in the US and more than 70,000 worldwide¹. The disease is caused by mutations
27 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is expressed in a
28 wide variety of cells throughout the body but has been predominantly studied in the context of
29 the lungs and the digestive system^{2,3,4,5}. In the lungs, the absence of CFTR contributes to mucus
30 obstruction, chronic microbial infections, systemic inflammation, and progressive lung disease,
31 which is the leading cause of mortality^{6,7,8,9}. Furthermore, people with CF (pwCF) are commonly
32 diagnosed with exocrine pancreatic insufficiency, and tend to exhibit microbial dysbiosis in the
33 GI tract, which both contribute to nutritional deficits, poor growth, and a myriad of other GI
34 symptoms^{5,10,11}. Based on population data from the Cystic Fibrosis Foundation Patient Registry,
35 pwCF born between 2015 and 2019 have a median life expectancy of just 46 years¹². The life
36 expectancy for pwCF has risen dramatically over the past few decades, however, as scientists,
37 pharmaceutical companies, and physicians have developed new drugs to treat the molecular
38 defect in CF, standardized clinical guidelines, and produced new antibiotic regimens to manage
39 persistent bacterial infections¹³.

40 Given the contribution of invasive pathogens to lung disease progression, lung microbiology has
41 long been a key focus of CF research. CF researchers have traditionally studied a suite of
42 "classic CF pathogens" that are known to infect the CF lungs and exacerbate lung disease. These
43 pathogens include the gram-negative bacterium *Pseudomonas aeruginosa*, the gram-positive
44 bacterium *Staphylococcus aureus*, gram-negative bacteria of the genus *Burkholderia*, and fungal
45 species such as *Aspergillus fumigatus* [Table 1]. In recent years, the set of recognized CF

47 pathogens has expanded as epidemiological studies have identified species that are rising in
48 prevalence and impacting clinical outcomes (e.g., non-tuberculous mycobacteria species such as
49 *M. abscessus*)^{14,15}. In addition, more sensitive culture tools have allowed researchers to recognize
50 the clinical relevance of less prevalent aerobic and anaerobic species^{16,17}. Recently, researchers
51 have begun to develop model systems to interrogate the interactions between CF pathogens in
52 the lungs and to consider how the overall shape of the CF community – the diversity and
53 abundance of different bacteria – contributes to clinical outcomes¹⁸. In fact, studies have found
54 that a patient’s microbial community as a whole may be more effective at predicting disease
55 outcomes than colonization with any individual species¹⁹.

56
57 Decades of prior CF pathogen research has helped advise modern clinical treatments, and this
58 published body of research continues to serve as a source of knowledge for drug development as
59 well as inspiration for future studies. High-throughput transcriptomics experiments – of which
60 RNA-Seq studies have recently become most common – are especially useful as a source of
61 published data to inform future experiments [Figure 1a,b]. The global nature of transcriptomics
62 data – i.e., the fact that it provides a snapshot of most/all genes at once – allows for the same
63 gene to be compared across studies. In an ideal world, CF pathogen researchers would be able to
64 view which microbial strains, treatment conditions, and media have previously been utilized, and
65 perform a quick visualize analysis of gene expression under these conditions. This information
66 would offer researchers a roadmap to identify future directions for follow-up experiments.
67 However, we do not (yet) live in this ideal world. Although many data sets are publicly
68 available, substantial computational expertise and manual effort are required to compare similar
69 studies, visualize gene expression patterns within studies, and use published data to generate new
70 experimental hypotheses. Thus, there is a need develop an application that will reduce these
71 barriers to data re-analysis.

72
73 One useful approach to derive biological insights from a dataset in GEO – and the one that we
74 automate in the CF-Seq application – is to see which genes are differentially expressed under
75 varying experimental conditions. To accomplish this analysis, a researcher would first need to
76 locate the sample runs associated with the individual dataset. These are often stored as FASTQ
77 files that require extensive computational skills to process. Someone with these skills could trim
78 the sequence reads contained in the FASTQ files to remove low quality reads and adapter
79 sequences, and align trimmed reads to a reference genome with a command-line tool like
80 SALMON²⁰, which yields a count table with raw gene expression counts for each sample. Then,
81 finally, that researcher could conduct differential gene expression analysis. This final step
82 requires knowledge of a programming language like R^{21,22}, and specific R packages like
83 edgeR^{23,24} or DESeq²⁵ that allow for the production of biologically meaningful analysis tables
84 and figures. Even among bioinformatics researchers, many do not have expertise in all aspects of
85 this pipeline – and for those who do, running through the pipeline for just a single data set is
86 typically a multi-day effort. CF-Seq has been designed so that users do not have to deal with this
87 pipeline at all. Taking advantage of count tables that dataset contributors have left in GEO as
88 supplemental files, CF-Seq takes care of differential expression analysis [Figure 1c].


89 **Figure 1. Landscape of RNA-Sequencing studies available in the Gene Expression Omnibus**
90 (*GEO*). (a) Since 2011, the number of RNA-Seq studies hosted in *GEO* has risen dramatically,
91 from several hundred to over 10,000, well eclipsing the number of microarray expression studies
92 currently produced per year. (b) While small relative to the total set of RNA-Seq studies in *GEO*,
93 there is a substantial number of RNA-Seq studies available for the CF pathogen species featured
94 in the CF-Seq application. (c) To derive meaningful biological insights from the RNA-seq studies
95 in *GEO*, the analysis pipeline outlined here must be followed. Alignment of sample RNA
96 sequences to a reference genome is accomplished with a command line tool like *SALMON*, and
97 downstream analysis with a tool such as the popular R package *edgeR*. CF-Seq automates the
98 second segment of this pipeline, saving users from the need to clean up count tables, produce
99 experimental design matrices, gather metadata, and write sophisticated analysis code in R.

100 Our efforts to make public data more accessible are certainly not the first of their kind. In recent
101 years, as big -omics datasets have become increasingly commonplace and researchers have
102 encountered the challenges described above, the necessity of adopting FAIR data principles by
103 making data sets more Findable, Accessible, Interoperable, and Reproducible has increasingly
104 been recognized²⁶. In this spirit, various research tools have already been developed to make
105 publicly available data more amenable to re-use. For example, the application *MetaRNA-Seq*
106 enables users to view consolidated study metadata that had been scattered across the four NCBI
107 databases: SRA, Biosample, Bioprojects, and *GEO*²⁷. Another application, the
108 *geoCancerPrognosticDatasets Retriever*, allows users to use additional search parameters (e.g.,
109 cancer type) to retrieve *GEO* accessions for all studies of interests²⁸.

111 Some existing applications designed by other research teams are actually quite similar in nature
112 to CF-Seq and have served as strong inspiration for our own efforts. However, none are
113 specifically geared towards CF pathogen research, and there is room to expand on their
114 functionality [Table 2]. Our own lab has previously published tools to make publicly available
115 data more accessible to CF researchers^{29,30}, but these tools focus on the most commonly studied
116 CF pathogens – namely *Pseudomonas aeruginosa* and *Staphylococcus aureus* – and don’t
117 include data sets on many of the other clinically relevant species listed in Table 1.

118
119 Building on our prior work, we present the R Shiny web application CF-Seq. CF-Seq is a web
120 application based on a compendium of RNA-Seq experiments. This compendium contains 13
121 clinically relevant CF pathogens; a mix of aerobes and anaerobes residing in the lung and the
122 digestive tract. The application currently holds carefully formatted count tables and metadata for
123 147 studies, and 1446 RNA-seq samples in total, with efforts ongoing (outlined in the Discussion
124 section) to capture more studies and additional relevant species. All datasets currently included
125 in the application are arranged by GEO accession number in supplemental table S1 for reference.
126

127 The CF-Seq application allows differential gene expression analysis of each individual study at
128 the click of a button, producing downloadable tables and figures depicting fold changes and p
129 values of differentially expressed genes in a matter of seconds. For each study, the application
130 allows users to produce tables and figures comparing individual sample groups (e.g., samples
131 treated with antibiotic X vs. control samples, samples treated with antibiotic Y vs. samples
132 treated with antibiotic X, etc.). For many species and strains (where KEGG pathway annotations
133 are available) the user can also visualize how the genes in specific biological pathways are
134 differentially expressed. Furthermore, the user can filter all studies on the same species –
135 breaking them down by strain, media, treatment, or gene(s) perturbed – to identify all past
136 experimental conditions (and combinations of conditions) and thus determine which have yet to
137 be assessed [Figure 2]. This application has been developed with the close guidance of CF
138 pathogen researchers at the Geisel School of Medicine at Dartmouth College. In this publication,
139 we present three case studies that showcase the application’s usefulness for researchers studying
140 three different CF pathogens (*Aspergillus fumigatus*, *Pseudomonas aeruginosa*, and
141 *Staphylococcus aureus*).

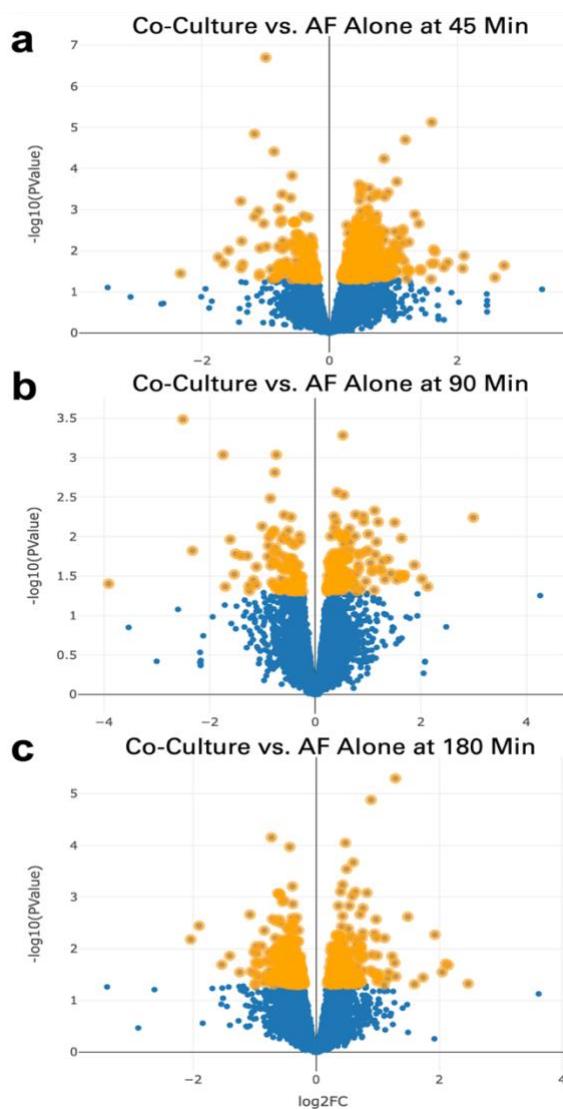
142 **Figure 2.** Application workflow for CF-Seq users. Panel 1 shows the starting window of the
143 application, where users are presented with a manual that explains the functionality and purpose
144 of the application. Users are then directed to the study view screen, shown in panel 2, where they
145 can select a species of interest and view available RNA-Seq studies. Panel 3 shows how filters
146 can be applied to delineate studies with certain experimental characteristics (strain, media,
147 treatment, gene perturbed). Panel 4 offers a look at the metadata that can be examined for each
148 individual study. Panels 5 and 6 show the study analysis window, where analysis tables and
149 figures can be generated for all experimental comparisons, individual genes may be highlighted,
150 P value and fold change cutoffs can be selected, and differentially expressed genes on selected
151 KEGG pathways can be highlighted when KEGG pathway information is available (Panel 6).
152 Zoomed-in versions of the figure panels showing more detail are available as supplementary
153 figures S1-S6.

154 **Results**

155
156 The CF-Seq application makes it simple for CF researchers to take full advantage of the 147 CF
157 RNA-Seq data sets in the associated compendium. Upon opening the application, the user is
158 greeted with a user manual that instructs them on how best to use CF-Seq (Figure 2, Panel 1).
159 After reading, the user is then directed to the central, study-filtering panel of the application
160 (Figure 2, Panel 2). Here, the user can filter studies by species, and then by strain, media,
161 treatment, or gene perturbation (Figure 2, Panel 3). Filtered studies are presented in a table and
162 can be selected to reveal additional metadata – including the study name, description, and link to
163 its record in GEO (Figure 2, Panel 4). Once a study is selected, the user can click a button to
164 reveal detailed differential expression analysis in a separate analysis tab (Figure 2, Panel 5). This
165 analysis includes a table with the fold change (FC), p value, and counts per million (CPM) of all
166 genes assessed in the study. For species or strains in which KEGG pathway information is
167 available, the user is also able to visualize how the genes on different KEGG pathways are up or
168 downregulated (Figure 2, Panel 6).
169

170 A series of user stories have been developed by three of the publication co-authors to
171 demonstrate the value of the application in a research setting. These co-authors conduct research
172 in laboratories that frequently publish papers related to CF microbiology. The following section
173 of the manuscript demonstrates the analysis features of the application and outlines how these
174 researchers used the application to come up with new questions and testable hypotheses relevant
175 to their own research. Given the current focus in the field of CF research on the CF microbiome
176 as a polymicrobial community^{18,19}, all three user stories focus on polymicrobial interactions
177 between several CF pathogens. All volcano plots used as figures for the user stories were taken
178 directly from the application.
179

180 **Case Study #1: Examining *Aspergillus fumigatus* in bacterial co-culture**


181 *Dr. Charles Puerner, Cramer Laboratory, Geisel School of Medicine*

182
183 The infectious mold *Aspergillus fumigatus* is ubiquitous in the environment³¹. The spores from
184 this fungus are taken into the lung by breathing and normally cleared by a healthy immune
185 system. However, individuals with compromised immune systems and pulmonary diseases such
186 as cystic fibrosis are particularly vulnerable to infection by this fungus. In these cases, *A.*
187 *fumigatus* spores are capable of germinating in the lung environment and forming fungal lesions.
188 The Cramer lab studies the biology of this organism, specifically as it relates to its disease-
189 causing capabilities. A recent publication, for example, investigated the genetic characteristics of
190 persistent isolates taken from the lungs of a CF patient over several years³².
191

192 Using the analysis capabilities of this application, we were particularly interested in a dataset
193 which generated gene expression profiles of *A. fumigatus* co-cultured with the ubiquitous
194 bacterium *Pseudomonas aeruginosa* (GEO: [GSE122391](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122391)). This dataset is interesting because
195 both organisms are commonly found in the CF lung environment, a situation associated with
196 worsened disease state³³. The study was identified using the CF-Seq filtering feature to focus on
197 those experiments that involved cross-species interactions.

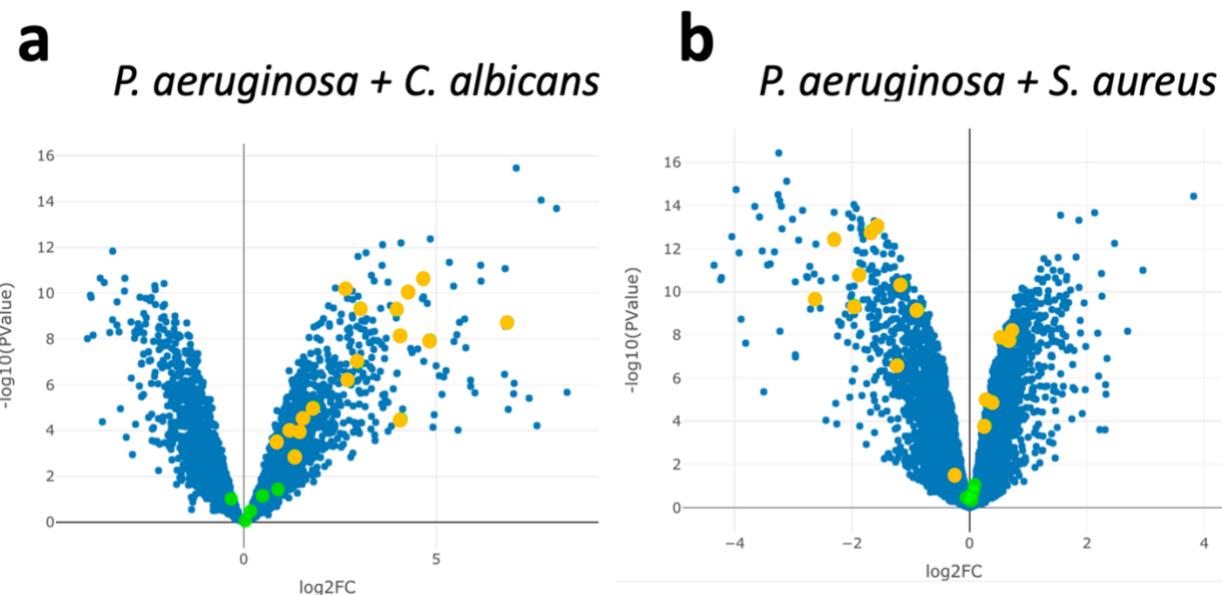
198 In the analysis window of the application, the “Choose a P Value Cutoff” field was used to
199 highlight genes whose p-value was 0.05 or less. Genes were highlighted at several timepoints
200 comparing the co-culture of *P. aeruginosa* with *A. fumigatus* to culture of the fungus alone
201 (Figure 3). Volcano and MA plots demonstrating the magnitude of differential expression, as
202 well as a spreadsheet of statistically significant differentially expressed genes, were quickly
203 downloaded for further analysis and additional figure generation [Figure 3]. Then, the
204 downloaded table of differentially expressed genes was easily filtered outside of the application
205 to contain only genes with a $|\log_2\text{FC}|$ value of 1.5 or greater (Fold change $> 2.83 = \log_2\text{FC} > 1.5$,
206 Fold change $< 0.35 = \log_2\text{FC} < -1.5$) [Supplemental Table S2].
207

208 Using this method, the application makes it easy to identify a list of biologically significant
209 genes which could be investigated further regarding their role in the co-culture environment
210 (Figure 3). Genes differentially expressed with an especially high fold change and p value may
211 be manipulated in the laboratory to see how the knockout of individual genes effects survival
212 fitness of *A. fumigatus* in co-culture.

213 *Figure 3. Expression of A. fumigatus genes following exposure to P. aeruginosa presented in*
214 *volcano plot format. In the CF-Seq application, the species A. fumigatus strain A1160 was*
215 *selected and the dataset “Transcriptomics analysis of Aspergillus fumigatus co-cultivated with*
216 *Pseudomonas aeruginosa” was used for the subsequent analysis. Comparisons were selected*
217 *comparing fungus co-cultured with bacteria to fungus alone at (a) 45, (b) 90, and (c) 180 min.*
218 *Genes highlighted in orange are those whose p-value was less than 0.05. At 45 minutes, 531 of*
219 *8526 total genes were differentially expressed to a statistically significant degree. At 90 minutes*
220 *and 180 minutes, the number of statistically significant differentially expressed genes was 257*
221 *and 514 respectively.*

222

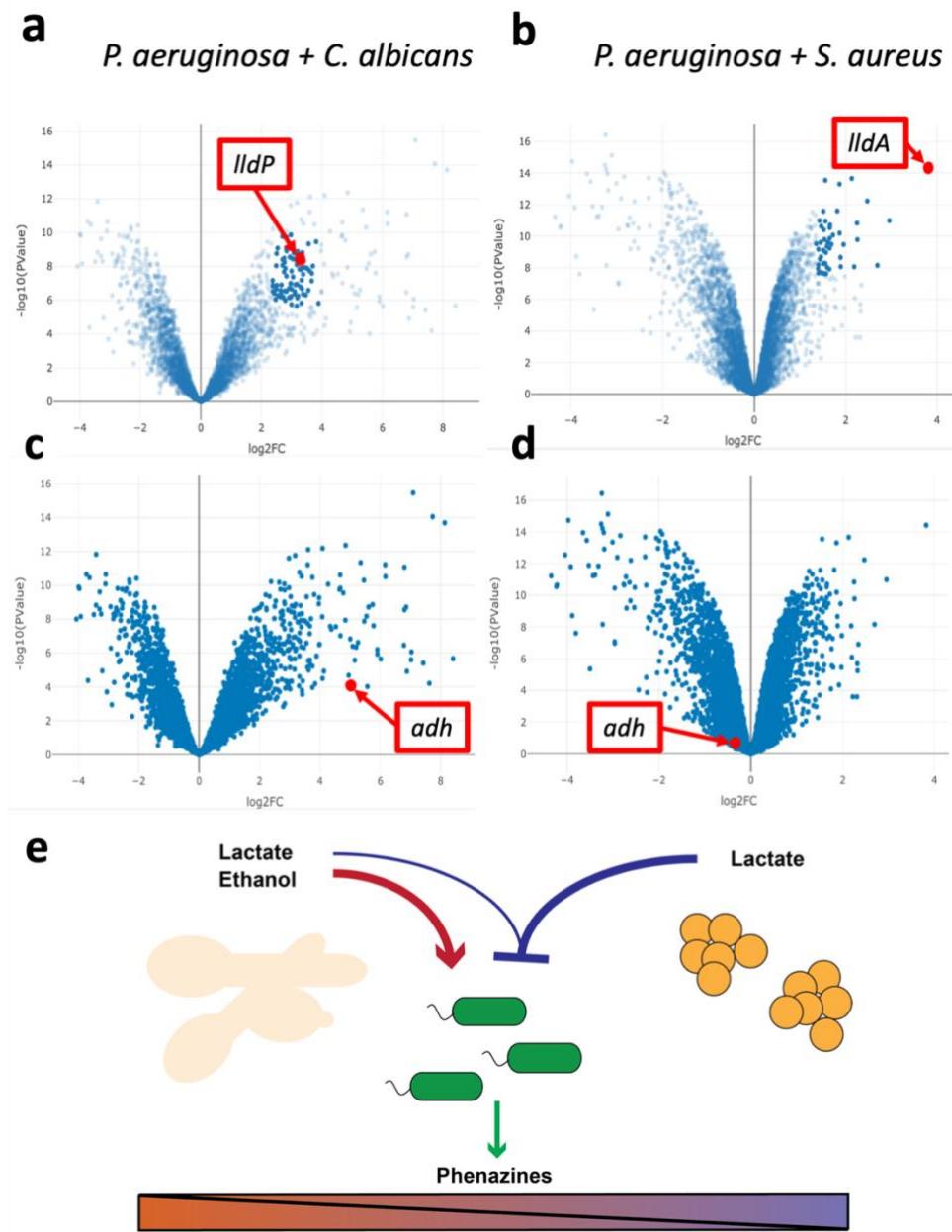
223 **Case Study #2: P. aeruginosa virulence factor production in polymicrobial contexts**


224 Dr. Georgia Doing, Hogan Laboratory, Geisel School of Medicine

225

226 *Pseudomonas aeruginosa* is one of the most common pathogens associated with cystic fibrosis
227 (CF) lung infections, remains difficult to treat with antibiotics, and is associated with lung
228 function decline in colonized pwCF³⁴. Along with its ability to form recalcitrant biofilms and
229 resist antibiotic treatment, its behaviors during interactions with other bacteria are now
230 recognized as important factors that influence *P. aeruginosa* infection outcomes^{35,36,37,38,39}.
231 Microbial interactions are often studied in the laboratory using co-cultures of *P. aeruginosa* with
232 other CF pathogens such as *Candida albicans* and *Staphylococcus aureus*. These co-culture
233 experiments have proven to be useful for modeling polymicrobial interactions. However, it is
234 increasingly apparent that the combinatorial effects of environmental factors and pairwise and
235 community-wide microbial interactions make for complex systems with many changing
236 variables and a large search space^{39,40,41}. In addition to conducting new experiments in the
237 laboratory, the re-analysis of individual data sets related to bacterial co-culture and meta-analysis
238 of multiple datasets will likely spur new experimental hypotheses and help provide evidence for
239 existing theories of polymicrobial interactions.

240


241 Using CF-Seq it was easy to compare two datasets from experiments where *P. aeruginosa* was
242 co-cultured with *C. albicans* (GEO: [GSE148597](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148597))⁴⁰ and (GEO: [GSE122048](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122048)) *S. aureus*⁴². We
243 noticed that while *P. aeruginosa* mainly upregulates and highly expresses genes in the KEGG
244 pathway for phenazine biosynthesis in co-cultures with *C. albicans* compared to monoculture
245 (Figure 4a), it does not do so in co-culture with *S. aureus* compared to monoculture (Figure 4b).
246 Since *P. aeruginosa* phenazine production is induced with *C. albicans* fermentation⁴³, we
247 searched for specific genes whose expression could indicate differences in *C. albicans* and *S.*
248 *aureus* metabolisms that may shed light on their different effects on *P. aeruginosa* phenazine
249 production.

250 *Figure 4 (a)* *P. aeruginosa* genes involved in phenazine biosynthesis tend to be upregulated in
251 co-culture with *C. albicans* (b) but not in co-culture with *S. aureus* compared to *P. aeruginosa* in
252 monoculture. Green data points were highlighted by selecting the KEGG pathway for phenazine
253 biosynthesis using the 'find a pathway' feature in the CF-Seq application. Genes that are
254 differentially expressed between co-culture and monoculture conditions to a statistically
255 significant degree ($p < 0.05$) were colored orange for emphasis.

256
257 Digging deeper into the data on an individual gene level, the upregulation of lactate permeases
258 and lactate dehydrogenases by *P. aeruginosa* in co-culture with either *C. albicans* or *S. aureus*
259 suggest both *C. albicans* and *S. aureus* were producing lactate in these experiments (Figure 5a).
260 However, while *P. aeruginosa* upregulated alcohol dehydrogenases in co-culture with *C.*
261 *albicans*, it did not do so in co-culture with *S. aureus*, suggesting *C. albicans* was likely
262 producing ethanol while *S. aureus* was not (Figure 5b). Amongst the many differences between
263 these two co-cultures, differences in microbially-produced fermentation products could lead to
264 differences in *P. aeruginosa* phenazine production.
265

266 Since both co-cultures elicited lactate metabolism, but only co-culture with *C. albicans* elicited
267 ethanol metabolism, CF-Seq analysis suggests that ethanol specifically promotes phenazine
268 production while lactate may have a neutral or repressive effect (Figure 5c). This hypothesis
269 could easily be tested in the lab by the addition of sub-lethal concentrations of ethanol to *P.*
270 *aeruginosa* and *S. aureus* co-culture and measuring phenazine biosynthesis to test the hypothesis
271 that phenazine production would increase. Importantly, CF-Seq facilitated the re-analysis of
272 public data that led to the development of a hypothesis in approximately 30 minutes. By contrast,
273 the process of identifying these experiments, downloading the data, performing comparisons, and
274 generating figures by hand would have taken approximately 16 hours, based on similar
275 exploratory analyses that we have performed previously.

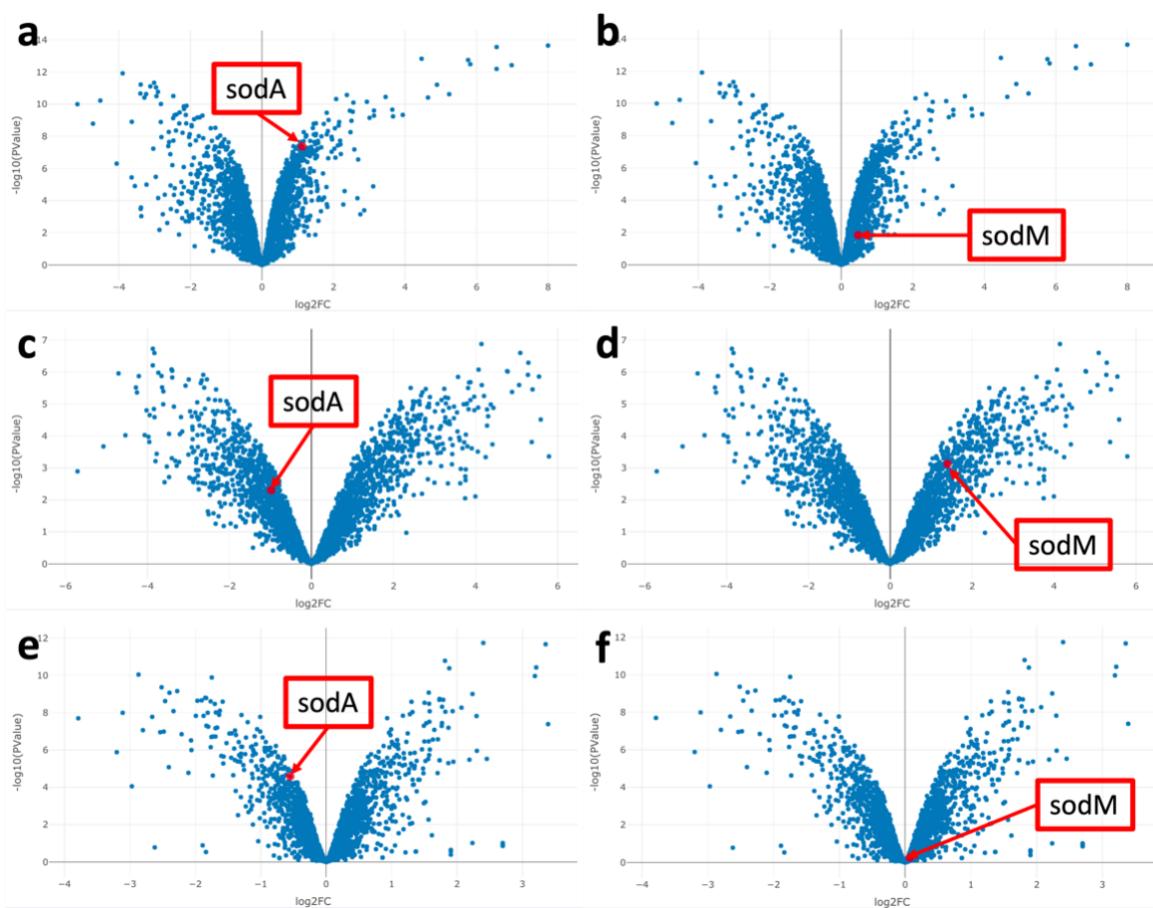
276 *Figure 5. (a) P. aeruginosa upregulates the expression of lactate permease *lldP* (red point) and*
 277 *other lactate metabolism genes including lactate dehydrogenases (present in the cluster of dark*
 278 *blue points near *lldP*) in co-culture with *C. albicans*. (b) Similarly, lactate dehydrogenase *lldA**
 279 *(red point) and other lactate metabolism genes (included in dark blue points near *lldA*) are*
 280 *upregulated in co-culture with *S. aureus* as well. (c) *P. aeruginosa* upregulated alcohol*
 281 *dehydrogenase *adh* in co-culture with *C. albicans* (d) but not in co-culture with *S. aureus*. (e) In*
 282 *complex co-culture *P. aeruginosa* will have to integrate multiple signals such as the positive*
 283 *influence of ethanol and a possible negative influence of lactate that converge to influence*
 284 *phenazine production. After CF-Seq exploratory analysis, our hypothesis is that the presence of*
 285 *ethanol will supersede that of lactate to promote phenazine production.*

286 **Case Study #3: Examining superoxide dismutase response in *Staphylococcus aureus* under
287 a variety of clinically relevant conditions**

288 Liviu Cengher, Cheung Laboratory, Geisel School of Medicine

289

290 *Staphylococcus aureus* is a human commensal and opportunistic pathogen that contributes to a
291 wide range of diseases – from skin and soft-tissue disorders to respiratory diseases like cystic
292 fibrosis⁴⁴. Disease is mediated by several *S. aureus* virulence factors that are produced in
293 response to environmental cues, and which play a wide range of roles⁴⁵. Two-component
294 systems (TCS) are important regulatory factors that have paired sensing and regulatory peptides
295 that respond to environmental and host cues^{46,47}. The *SaeR/S* TCS senses reactive oxygen species
296 (ROS) and regulates responses that counteract and inhibit ROS production by the human
297 immune system. For example, activation of the TCS may lead to enhanced expression of
298 virulence factors superoxide dismutase *sodA* and *sodM*⁴⁸.


299

300 In this case study we investigated *sodA* and *sodM* expression across experiments with different
301 bacterial strains and treatments to explore similarities and differences in ROS response.

302 Specifically, we compared *sodA* and *sodM* expression in conditions likely to be present in the CF
303 lung to identify conditions that upregulate one and/or both of the two genes. To start, we
304 evaluated the effect of *S. aureus* co-culture with *P. aeruginosa* (vs. *S. aureus* in monoculture,
305 GEO: [GSE122048](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122048))⁴². Co-occurrence of *P. aeruginosa* and *S. aureus* is frequent in a hospital
306 setting, and tends to induce a fermentative state in *S. aureus*^{49,50}. Both *sodA* and *sodM* were
307 upregulated in these conditions (Figure 6a,b). CF-Seq analysis of the transcriptome of ‘persister
308 cells’ primed to survive (predominantly ROS mediated) killing after residing inside of immune
309 system macrophages (GEO: [GSE139659](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139659))^{48,51} revealed that *sodM* was upregulated in the
310 ‘persister cells’ that resisted killing by the immune system (Figure 6d). Since *sodM* was
311 upregulated in common between these two studies, it would be worth re-examining both
312 conditions in tandem: subjecting *S. aureus* to bacterial co-culture with *P. aeruginosa* to see if
313 this induces a persister-like phenotype in *S. aureus*. Given that both conditions – persistence
314 within host cells and co-infection with *Pseudomonas* – may be present at once in an individual
315 with CF, such experiments would paint a fuller picture of the *S. aureus* transcriptional state in an
316 infection.

317

318 Furthermore, we also identified a study where treatment with apicidin, an antibiotic known to
319 inhibit bacterial quorum sensing, led to downregulation of *sodA* and relatively low levels of
320 *sodM* expression (Figure 6e,f)⁵². We might compare *sodA* downregulation in this study with the
321 co-culture study (GEO: [GSE122048](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122048)). There would be interesting therapeutic implications for
322 future experiments that determine the outcome of combining co-culture conditions (upregulating
323 *Sod* genes) with antibiotic-induced quorum sensing inhibition (downregulation/low expression of
324 *Sod* genes) to see which effect dominates. In addition, one might examine conditions which
325 could favor *sodM* expression over *sodA* expression, like the availability of iron and manganese in
326 co-culture and in polymicrobial infections^{53,54}. Normally the analysis performed in this case
327 study would necessitate a close reading of multiple published articles and require deciphering
328 often unhelpful supplemental data tables. Finding relevant experiments and performing
329 subsequent analysis would involve many hours of work. Using CF-Seq, useful results were
330 found within approximately 10 minutes.

331 *Figure 6. Expression of virulence factors sodA and sodM in *S. aureus* tends to diverge under*
332 *different experimental conditions. Volcano plots of all genes are shown to demonstrate the*
333 *expression values of sodA and sodM relative to other genes detected. (a,b) In co-culture with *P.**
334 *aeruginosa, both sodA and SodM expression are upregulated, sodA to a much greater extent.*

335 *(c,d). In 'persister cells', the expression pattern was quite different: sodM expression was more*
336 *markedly upregulated while sodA expression was downregulated (e,f). Finally, exposure to*
337 *apicidin was found to induce downregulation of sodA, but no significant change in sodM. In all*
338 *cases, aside from sodM expression in figure 6f, sodA and sodM were differentially expressed to a*
339 *statistically significant degree ($p < 0.05$)*

340 **Discussion**

341
342 As the user stories demonstrate, the CF-Seq application provides value to CF pathogen
343 researchers in a number of ways. First, CF-Seq allows rapid analysis of numerous data sets,
344 reducing the time of analysis from days in some cases to minutes. Second, multiple CF
345 pathogens can be analyzed including bacteria such as *Pseudomonas aeruginosa* and
346 *Staphylococcus aureus*, and fungi such as *Aspergillus fumigatus* and *Candida albicans*. Third,
347 the R scripts underlying the application (publicly available in our Git Repository:
348 <https://github.com/samlo777/cf-seq.git>) not only allow for rapid analysis of the CF pathogens
349 currently included in the application, but may be repurposed to study other microbes relevant to
350 other diseases. Fourth, CF-Seq affords researchers a better understanding of prior CF pathogen
351 experiments by revealing experimental parameters – details on strain, media, treatment, and gene
352 perturbation – that have been tested in the past. With the ability to filter studies based on these
353 parameters, users may identify the set of experiments that relate to their own specific interests
354 and capabilities, filling knowledge gaps that they notice in the field of research. Not only does
355 the application make prior studies more visible and accessible, but also makes their individual
356 samples and the expression levels of individual genes possible to investigate more closely. While
357 any given publication tends to emphasize the differential expression of just a few relevant genes
358 to tell a concise and cohesive biological story, the CF-Seq application allows users to explore the
359 expression of genes that may not have been of interest to the initial study authors but are of
360 interest to the users themselves.

361
362 The ability to discern the whole field of prior experiments in minutes without slowly trawling
363 through online databases like GEO is a tantalizing prospect. As it stands, the application serves
364 as a valuable tool for validating existing hypotheses and generating new ones to test. That said,
365 efforts are still ongoing to expand the application – adding older microarray studies to the
366 compendium of data and making efforts to gather count table data for RNA-Seq studies in which
367 count tables have not yet been provided directly by the authors as supplemental information in
368 GEO. Additional RNA-Seq studies may be gathered by taking advantage of pipelines built to
369 convert FASTQ sample files in GEO into count tables amenable to analysis by edgeR. For
370 example, we may employ the pipeline recently developed by Doing et al. (2022) to create a
371 compendium of *P. aeruginosa* data sets, modifying it such that its use extends to other CF
372 pathogens of interest⁵⁵. We may also take advantage of crowd-sourced metadata curation
373 approaches like that of Wang et al. (2016), in which participants were recruited to help identify
374 studies in GEO involving gene or drug perturbations, or comparison of normal and diseased
375 tissue⁵⁶. Crowdsourcing curation efforts would make the process of adding additional study data
376 to the application more efficient and speed up the inclusion of new studies.

377
378 Finally, the application sheds light on the value of automated bioinformatic analysis for
379 researchers of all backgrounds. Performing differential expression analysis is by no means a
380 feasible task for those lacking a computational background, and even for those who have such a
381 background, analysis is still quite time-consuming (as the authors of the user stories note). Not
382 only does the CF-Seq application save time and provide detailed statistical analysis, but it also
383 serves a didactic purpose for those who have less experience working with transcriptomic data –
384 demonstrating what differential expression analysis looks like and how it may be interpreted.

385 Tools such as CF-Seq, and the other data re-analysis applications cited throughout this
386 publication, demonstrate the immense value of bioinformatic tools for scientific research.
387 In sum, providing CF pathogen researchers a more detailed view of the prior experiments
388 conducted in their own domain will make research more coordinated, systematic, and efficient.
389 The CF-Seq application allows users to see exactly what combinations of experimental factors
390 have been assessed thus far, and take logical, incremental steps – investigate a new treatment, a
391 new mutation, a new growth medium, or some combination thereof – to test novel experimental
392 hypotheses and improve understanding of pathogen behavior. For the field of bioinformatics
393 specifically, such an application helps demonstrate the value and enhance appreciation for both
394 data re-analysis and the tools that enable it. More generally, applications like CF-Seq help
395 democratize the research process, allowing all scientists, regardless of specialization, to set their
396 minds at work determining where research should go next.
397

398 **Methods**

399
400 **Data Extraction**
401
402 The CF-Seq application currently includes 147 RNA-Seq studies of 13 CF pathogens. All studies
403 can be found in NCBI's Gene Expression Omnibus (GEO) and are linked directly to GEO within
404 the application. Before incorporating studies into the application, the landscape of CF pathogen
405 studies in GEO was surveyed. Clinically relevant pathogens of interest were chosen based on the
406 cystic fibrosis literature (their relevance, supported by clinical and laboratory studies, is
407 documented in Table 1). The set of all RNA-sequencing studies for each of these pathogens was
408 identified in GEO by querying the database of GEO data sets by pathogen name (e.g.,
409 *Pseudomonas aeruginosa*, *Staphylococcus aureus*, etc.), filtering studies to include only those
410 that constituted “expression profiling by high throughput sequencing” (in GEO, this corresponds
411 to ‘RNA sequencing’), and selecting the pathogen of interest specifically in the ‘organism’ field.
412 This final step excludes datasets that constitute transcriptomic profiles of human cells, or cells of
413 some other organism, exposed to the pathogen of interest.
414

415 For practical reasons, only studies with certain attributes are included in this release of the
416 compendium. The application is limited to studies where: A) a count table was provided in the
417 supplemental files associated with the study in GEO, B) that count table was in a tabular format
418 (.csv, .xlsx, .txt) so that it could be loaded into R with the read.table() or read.csv() functions, C)
419 sample groups were clearly distinguishable such that it was possible to perform differential
420 expression analysis, and D) the count table included raw counts and not normalized counts
421 (edgeR and other differential expression analysis packages require raw counts to perform
422 analysis). Efforts to circumvent some of these limitations and add more studies into the
423 application are discussed in the Discussion section of this manuscript.
424

425 **Data Cleaning and Storage** 426

427 For studies that met the criteria for inclusion in the application, each count table was subjected to
428 the following formatting protocol. Count tables downloaded directly from GEO were re-
429 structured, if necessary, so that the first column of the table included gene names, and all
430 subsequent columns contained raw read data for each experimental sample. In addition to count

431 tables, two other data files were constructed for each study. The first file is a design matrix
432 which delineates experimental samples by condition (e.g., control, treatment group X, treatment
433 group Y) and lists the number of replicates for each condition. This design matrix is a
434 requirement for differential expression analysis with edgeR. The second file, labeled ‘additional
435 metadata’, includes manually gathered metadata on the strain(s), media, treatment conditions,
436 and genes perturbed in each study, whenever applicable. Collecting this data enables filtering of
437 studies by experimental conditions within the application.

438
439 All data files – count tables, design matrices, and additional metadata – were deposited in a local
440 directory of folders, with a single folder for each species, and sub-folders within each species for
441 the three types of data files (count table, design matrix, additional metadata). A copy of this
442 directory structure can be found in the Git Repository associated with this publication
443 [<https://github.com/samlo777/cf-seq.git>], so that any reader may download the data and/or use it
444 to run the Shiny application on their own computer if they so choose.

445
446 **Code Development Approach**
447

448 The CF-Seq application code was developed in discrete modules to make testing as straight-
449 forward as possible. Each of the application’s interactive features (filtering studies, selecting a
450 study, choosing experimental comparisons to analyze, etc.) were developed in a hierarchical
451 fashion: the code was first tested to ensure that it worked properly for a single study, then
452 adjusted and generalized such that it worked for a single species, and ultimately for all species
453 included in the application.

454
455 The application code is broken down into 3 files. The first, named ‘app.R’, contains the
456 functional code for the application. This file houses the UI code (which dictates the appearance
457 of the application), and the server code (which provides functional code for all the drop-down
458 menus, tables, and output figures) as two separate blocks. Both the name of this file, and the two-
459 section structure, are an essential requirement of all Shiny applications. In addition, another code
460 file, labeled ‘Data Setup.R’, was generated to load in all the study data and compress it into the
461 easily accessible structure (a list of lists) accessible to the code in the app.R file. In addition to
462 loading in the count tables, design matrices, and additional metadata, this code file also contains
463 blocks of code that perform differential expression analysis – and deposit the outputs of this
464 analysis (including tables of fold changes, p values, and counts per million for each gene) into
465 the list of lists object alongside their respective studies. The third code file, labeled
466 ‘PathwayData.R’, contains code that programmatically accesses data from the KEGG database
467 and structures that data such that the genes of each species are linked to their respective KEGG
468 biological pathway identifiers (if available). The data structures generated by this code file are
469 necessary for the biological pathway feature of the application.

470
471 The application takes advantage of several publicly available, open-source R packages.
472 Alongside the ‘shiny’ package⁵⁷ (which is essential for all R Shiny applications), the
473 ‘shinydashboard’⁵⁸ package was used to provide a UI template, with several tabs for different
474 application components. ‘shinyjs’⁵⁹ was used to develop some of the more complicated
475 application features (e.g., data tables with interactive buttons) that require JavaScript code to run.
476 The ‘DT’⁶⁰ package was employed to create searchable and filterable tables. The package

477 ‘plotly’⁶¹ was used to generate interactive volcano plots and MA plots to represent differential
478 expression analysis results, and the differential gene expression analysis itself was performed
479 with the ‘edgeR’^{23,24} package. Finally, the ‘tidyverse’⁶² suite of packages, including ‘stringr’⁶³
480 for string manipulation, were used throughout the application code to manipulate data structures.
481

482 **Validation: Beta Testing Protocol**

483

484 To ensure that the study data and metadata loaded into the application recapitulated the data
485 present in GEO, and that all application features worked as expected, a beta testing protocol was
486 established. Three of the paper co-authors, each possessing either domain knowledge in CF
487 microbiology or bioinformatics, were recruited to test different segments of the application: (1)
488 the ability to filter studies based on experimental characteristics, (2) the ability to view detailed
489 metadata for each individual study, and (3) the ability to perform and visualize differential
490 expression analysis. The beta testing protocol was guided by a series of requirements tables that
491 listed out all the features to be validated (beta testers were instructed to indicate Y/N if a feature
492 worked as expected and provide notes if it did not). These tables are included for reference in the
493 supplemental material [Supplemental Tables S3 – S5]

494

495 After all components of the application were tested, any features that did not work properly were
496 fixed – and additional improvements were made to enhance the usability of the application based
497 on beta tester feedback. Furthermore, after the bugs identified in beta testing were fixed, a
498 second round of review was undertaken to ensure that study metadata accurately reflected the
499 true study metadata in GEO. One at a time, each study in the application was referenced back to
500 GEO to ensure that none of the manually curated metadata was missing or incorrect.

501 **Project Documentation**

502
503 Documentation for the CF-Seq application can be found in several locations. Users are presented
504 with a user manual when they first open the application. This guide can also be found as a .pdf
505 file in the Git repository [<https://github.com/samlo777/cf-seq.git>], which also contains the
506 application's source code and a README file that outlines the repository contents.
507

508 **Data Availability**

509
510 All data – including count tables derived from GEO, and manufactured design matrices and
511 metadata tables – are available in the Git repository [<https://github.com/samlo777/cf-seq.git>]
512

513 **Code Availability**

514
515 All CF-Seq code is open source and has been made available for use on GitHub
516 [<https://github.com/samlo777/cf-seq.git>].
517

518 The application is also hosted on a server maintained by Dartmouth College and is accessible at
519 the following web link [<http://scangeo.dartmouth.edu/CFSeq/>].
520

521 In its current version, CF-Seq utilizes the following R package versions: *shiny* (1.6.0),
522 *shinydashboard* (0.7.1), *shinyjs* (2.0.0), *DT* (0.19.1), *plotly* (4.9.4.1), *ggplot2* (3.3.5), *edgeR*
523 (3.34.1), *tidyverse* (1.3.1), *stringr* (1.4.0).

524 **References**

525

526 1. About Cystic Fibrosis | Cystic Fibrosis Foundation. <https://www.cff.org/intro-cf/about-cystic-fibrosis/>.

527

528 2. Kälin, N., Claaß, A., Sommer, M., Puchelle, E. & Tümmler, B. ΔF508 CFTR protein expression in tissues from patients with cystic fibrosis. *J Clin Invest* **103**, 1379–1389 (1999).

529

530 3. Painter, R. G. *et al.* CFTR Expression in Human Neutrophils and the Phagolysosomal Chlorination Defect in Cystic Fibrosis. *Biochemistry* **45**, 10260–10269 (2006).

531

532 4. Tousson, A., Van Tine, B. A., Naren, A. P., Shaw, G. M. & Schwiebert, L. M. Characterization of CFTR expression and chloride channel activity in human endothelia. *American Journal of Physiology-Cell Physiology* **275**, C1555–C1564 (1998).

533

534

535 5. Kelly, T. & Buxbaum, J. Gastrointestinal Manifestations of Cystic Fibrosis. *Dig Dis Sci* **60**, 1903–1913 (2015).

536

537 6. Lyczak, J. B., Cannon, C. L. & Pier, G. B. Lung Infections Associated with Cystic Fibrosis. *Clinical Microbiology Reviews* (2002) doi:10.1128/CMR.15.2.194-222.2002.

538

539 7. Bonfield, T. L. *et al.* Inflammatory cytokines in cystic fibrosis lungs. *Am J Respir Crit Care Med* **152**, 2111–2118 (1995).

540

541 8. Kreda, S. M., Davis, C. W. & Rose, M. C. CFTR, Mucins, and Mucus Obstruction in Cystic Fibrosis. *Cold Spring Harb Perspect Med* **2**, a009589 (2012).

542

543 9. Hey, J. *et al.* Epigenetic reprogramming of airway macrophages promotes polarization and inflammation in muco-obstructive lung disease. *Nat Commun* **12**, 6520 (2021).

544

545 10. Hayden, H. S. *et al.* Fecal dysbiosis in infants with cystic fibrosis is associated with early linear growth failure. *Nature Medicine* **26**, 215–222 (2020).

546

547 11. Garg, M. & Ooi, C. Y. The Enigmatic Gut in Cystic Fibrosis: Linking Inflammation,
548 Dysbiosis, and the Increased Risk of Malignancy. *Curr Gastroenterol Rep* **19**, 6 (2017).

549 12. Understanding Changes in Life Expectancy | Cystic Fibrosis Foundation.
550 <https://www.cff.org/managing-cf/understanding-changes-life-expectancy>.

551 13. Cohen-Cymberknob, M., Shoseyov, D. & Kerem, E. Managing Cystic Fibrosis: Strategies
552 That Increase Life Expectancy and Improve Quality of Life. *Am J Respir Crit Care Med* **183**,
553 1463–1471 (2011).

554 14. Veziris, N. *et al.* Non-tuberculous mycobacterial pulmonary diseases in France: an 8 years
555 nationwide study. *BMC Infect Dis* **21**, 1165 (2021).

556 15. Johansen, M. D., Herrmann, J.-L. & Kremer, L. Non-tuberculous mycobacteria and the rise
557 of *Mycobacterium abscessus*. *Nat Rev Microbiol* **18**, 392–407 (2020).

558 16. Silveira, C. B. *et al.* Multi-Omics Study of Keystone Species in a Cystic Fibrosis
559 Microbiome. *Int J Mol Sci* **22**, 12050 (2021).

560 17. Pust, M.-M. & Tümmeler, B. Bacterial low-abundant taxa are key determinants of a healthy
561 airway metagenome in the early years of human life. *Computational and Structural
562 Biotechnology Journal* **20**, 175–186 (2022).

563 18. O'Toole, G. A. *et al.* Model Systems to Study the Chronic, Polymicrobial Infections in
564 Cystic Fibrosis: Current Approaches and Exploring Future Directions. *mBio* (2021)
565 doi:10.1128/mBio.01763-21.

566 19. Widder, S. *et al.* Association of bacterial community types, functional microbial processes
567 and lung disease in cystic fibrosis airways. *ISME J* 1–10 (2021) doi:10.1038/s41396-021-
568 01129-z.

569 20. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and
570 bias-aware quantification of transcript expression. *Nat Methods* **14**, 417–419 (2017).

571 21. R Core Team. *R: A language and environment for statistical computing*. (R Foundation for
572 Statistical Computing, 2018).

573 22. RStudio Team. *RStudio: Integrated Development for R*. (RStudio, Inc., 2019).

574 23. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
575 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140
576 (2010).

577 24. Chen, Y., Lun, A. T. L. & Smyth, G. K. From reads to genes to pathways: differential
578 expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood
579 pipeline. *F1000Res* **5**, 1438 (2016).

580 25. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
581 RNA-seq data with DESeq2. *Genome Biology* **15**, 550 (2014).

582 26. Wilkinson, M. D. *et al.* The FAIR Guiding Principles for scientific data management and
583 stewardship. *Sci Data* **3**, 160018 (2016).

584 27. Kumar, P. *et al.* MetaRNA-Seq: An Interactive Tool to Browse and Annotate Metadata from
585 RNA-Seq Studies. *Biomed Res Int* **2015**, 318064 (2015).

586 28. Alameer, A. & Chicco, D. geoCancerPrognosticDatasetsRetriever: a bioinformatics tool to
587 easily identify cancer prognostic datasets on Gene Expression Omnibus (GEO).
588 *Bioinformatics* btab852 (2021) doi:10.1093/bioinformatics/btab852.

589 29. Koeppen, K., Stanton, B. A. & Hampton, T. H. ScanGEO: parallel mining of high-
590 throughput gene expression data. *Bioinformatics* **33**, 3500–3501 (2017).

591 30. Li, Z. *et al.* GAUGE-Annotated Microbial Transcriptomic Data Facilitate Parallel Mining
592 and High-Throughput Reanalysis To Form Data-Driven Hypotheses. *mSystems* **6**, e01305-
593 20.

594 31. Latgé, J.-P. & Chamilos, G. *Aspergillus fumigatus* and Aspergillosis in 2019. *Clinical*
595 *Microbiology Reviews* (2019) doi:10.1128/CMR.00140-18.

596 32. Ross, B. S., Lofgren, L. A., Ashare, A., Stajich, J. E. & Cramer, R. A. *Aspergillus fumigatus*
597 In-Host HOG Pathway Mutation for Cystic Fibrosis Lung Microenvironment Persistence.
598 *mBio* (2021) doi:10.1128/mBio.02153-21.

599 33. Keown, K., Reid, A., Moore, J. E., Taggart, C. C. & Downey, D. G. Coinfection with
600 *Pseudomonas aeruginosa* and *Aspergillus fumigatus* in cystic fibrosis. *European Respiratory*
601 *Review* **29**, (2020).

602 34. 2019 Patient Registry Annual Data Report. (2019).

603 35. Camus, L., Briaud, P., Vandenesch, F. & Moreau, K. How Bacterial Adaptation to Cystic
604 Fibrosis Environment Shapes Interactions Between *Pseudomonas aeruginosa* and
605 *Staphylococcus aureus*. *Frontiers in Microbiology* **12**, (2021).

606 36. Delhaes, L. *et al.* The Airway Microbiota in Cystic Fibrosis: A Complex Fungal and
607 Bacterial Community—Implications for Therapeutic Management. *PLOS ONE* **7**, e36313
608 (2012).

609 37. Jean-Pierre, F., Vyas, A., Hampton, T. H., Henson, M. A. & O'Toole, G. A. One versus
610 Many: Polymicrobial Communities and the Cystic Fibrosis Airway. *mBio* **12**, e00006-21
611 (2021).

612 38. Khanolkar, R. A. *et al.* Ecological Succession of Polymicrobial Communities in the Cystic
613 Fibrosis Airways. *mSystems* (2020) doi:10.1128/mSystems.00809-20.

614 39. Quinn, R. A. *et al.* Ecological networking of cystic fibrosis lung infections. *NPJ Biofilms*
615 *Microbiomes* **2**, 4 (2016).

616 40. Doing, G., Koeppen, K., Occipinti, P., Harty, C. E. & Hogan, D. A. Conditional antagonism
617 in co-cultures of *Pseudomonas aeruginosa* and *Candida albicans*: An intersection of ethanol
618 and phosphate signaling distilled from dual-seq transcriptomics. *PLoS Genet* **16**, e1008783
619 (2020).

620 41. Bisht, K., Baishya, J. & Wakeman, C. A. *Pseudomonas aeruginosa* polymicrobial
621 interactions during lung infection. *Current Opinion in Microbiology* **53**, 1–8 (2020).

622 42. Tognon, M., Köhler, T., Luscher, A. & van Delden, C. Transcriptional profiling of
623 *Pseudomonas aeruginosa* and *Staphylococcus aureus* during in vitro co-culture. *BMC*
624 *Genomics* **20**, 30 (2019).

625 43. Chen, A. I. *et al.* *Candida albicans* Ethanol Stimulates *Pseudomonas aeruginosa* WspR-
626 Controlled Biofilm Formation as Part of a Cyclic Relationship Involving Phenazines. *PLoS*
627 *Pathog* **10**, e1004480 (2014).

628 44. Lowy, F. D. *Staphylococcus aureus* Infections. *New England Journal of Medicine* **339**, 520–
629 532 (1998).

630 45. Cheung, A. L., Bayer, A. S., Zhang, G., Gresham, H. & Xiong, Y.-Q. Regulation of
631 virulence determinants in vitro and in vivo in *Staphylococcus aureus*. *FEMS Immunology &*
632 *Medical Microbiology* **40**, 1–9 (2004).

633 46. Haag, A. F. & Bagnoli, F. The Role of Two-Component Signal Transduction Systems in
634 *Staphylococcus aureus* Virulence Regulation. in *Staphylococcus aureus: Microbiology, Pathology, Immunology, Therapy and Prophylaxis* (eds. Bagnoli, F., Rappuoli, R. & Grandi,
635 G.) 145–198 (Springer International Publishing, 2017). doi:10.1007/82_2015_5019.

637 47. Wu, S., Lin, K., Liu, Y., Zhang, H. & Lei, L. Two-component signaling pathways modulate
638 drug resistance of *Staphylococcus aureus* (Review). *Biomed Rep* **13**, 5 (2020).

639 48. Guerra, F. E. *et al.* *Staphylococcus aureus* SaeR/S-regulated factors reduce human neutrophil
640 reactive oxygen species production. *J Leukoc Biol* **100**, 1005–1010 (2016).

641 49. Filkins, L. M. *et al.* Coculture of *Staphylococcus aureus* with *Pseudomonas aeruginosa*
642 Drives *S. aureus* towards Fermentative Metabolism and Reduced Viability in a Cystic
643 Fibrosis Model. *Journal of Bacteriology* (2015) doi:10.1128/JB.00059-15.

644 50. Fischer, A. J. *et al.* Sustained Coinfections with *Staphylococcus aureus* and *Pseudomonas*
645 *aeruginosa* in Cystic Fibrosis. *Am J Respir Crit Care Med* **203**, 328–338 (2021).

646 51. Peyrusson, F. *et al.* Intracellular *Staphylococcus aureus* persisters upon antibiotic exposure.
647 *Nat Commun* **11**, 2200 (2020).

648 52. Parlet, C. P. *et al.* Apicidin Attenuates MRSA Virulence through Quorum-Sensing Inhibition
649 and Enhanced Host Defense. *Cell Rep* **27**, 187-198.e6 (2019).

650 53. Garcia, Y. M. *et al.* A Superoxide Dismutase Capable of Functioning with Iron or
651 Manganese Promotes the Resistance of *Staphylococcus aureus* to Calprotectin and
652 Nutritional Immunity. *PLOS Pathogens* **13**, e1006125 (2017).

653 54. Lalaouna, D. *et al.* RsaC sRNA modulates the oxidative stress response of *Staphylococcus*
654 *aureus* during manganese starvation. *Nucleic Acids Research* **47**, 9871–9887 (2019).

655 55. Doing, G. *et al.* Computationally efficient assembly of a *Pseudomonas aeruginosa* gene
656 expression compendium. 2022.01.24.477642 (2022) doi:10.1101/2022.01.24.477642.

657 56. Wang, Z. *et al.* Extraction and analysis of signatures from the Gene Expression Omnibus by
658 the crowd. *Nat Commun* **7**, 12846 (2016).

659 57. Chang, W. *et al.* *shiny: Web Application Framework for R.* (2021).

660 58. Chang, W. & Borges Ribeiro, B. *shinydashboard: Create Dashboards with 'Shiny'*. (2018).

661 59. Attali, D. *shinyjs: Easily Improve the User Experience of Your Shiny Apps in Seconds*.

662 (2020).

663 60. Xie, Y. *et al. DT: A Wrapper of the JavaScript Library 'DataTables'*. (2021).

664 61. Sievert, C. *Interactive Web-Based Data Visualization with R, plotly, and shiny*. (Chapman
665 and Hall/CRC, 2020).

666 62. Wickham, H. *et al.* Welcome to the Tidyverse. *Journal of Open Source Software* **4**, 1686
667 (2019).

668 63. Wickham, H. *stringr: Simple, Consistent Wrappers for Common String Operations*. (2019).

669 64. Speirs, J. J., van der Ent, C. K. & Beekman, J. M. Effects of *Aspergillus fumigatus*
670 colonization on lung function in cystic fibrosis. *Current Opinion in Pulmonary Medicine* **18**,
671 632–638 (2012).

672 65. Breuer, O. *et al.* *Aspergillus* Infections and Progression of Structural Lung Disease in
673 Children with Cystic Fibrosis. *Am J Respir Crit Care Med* **201**, 688–696 (2020).

674 66. Lattanzi, C. *et al.* Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis:
675 An Update on the Newest Diagnostic Tools and Therapeutic Approaches. *Pathogens* **9**, 716
676 (2020).

677 67. Antosca, K. M. *et al.* Altered Stool Microbiota of Infants with Cystic Fibrosis Shows a
678 Reduction in Genera Associated with Immune Programming from Birth. *Journal of
679 Bacteriology* (2019) doi:10.1128/JB.00274-19.

680 68. Duytschaever, G. *et al.* Cross-Sectional and Longitudinal Comparisons of the Predominant
681 Fecal Microbiota Compositions of a Group of Pediatric Patients with Cystic Fibrosis and

682 Their Healthy Siblings. *Applied and Environmental Microbiology* (2011)

683 doi:10.1128/AEM.05933-11.

684 69. Zlosnik, J. E. A. *et al.* *Burkholderia* Species Infections in Patients with Cystic Fibrosis in

685 British Columbia, Canada. 30 Years' Experience. *Annals ATS* **12**, 70–78 (2015).

686 70. Fodor, A. A. *et al.* The Adult Cystic Fibrosis Airway Microbiota Is Stable over Time and

687 Infection Type, and Highly Resilient to Antibiotic Treatment of Exacerbations. *PLOS ONE*

688 **7**, e45001 (2012).

689 71. Chaparro, C. *et al.* Infection with *Burkholderia cepacia* in Cystic Fibrosis. *Am J Respir Crit*

690 *Care Med* **163**, 43–48 (2001).

691 72. Renner, S., Nachbaur, E., Jaksch, P. & Dehlink, E. Update on Respiratory Fungal Infections

692 in Cystic Fibrosis Lung Disease and after Lung Transplantation. *J Fungi (Basel)* **6**, 381

693 (2020).

694 73. Shakirchi, M. A., Klingspor, L., Bergman, P., Hjelte, L. & Monestrol, I. de. A 16-year

695 retrospective study on fungal prevalence and diversity in patients with cystic fibrosis:

696 *Candida dubliniensis* was associated with a decline in lung function. *International Journal of*

697 *Infectious Diseases* **96**, 663–670 (2020).

698 74. Piccolo, F. *et al.* *Clostridium difficile* infection in cystic fibrosis: an uncommon but life-

699 threatening complication. *Respirol Case Rep* **5**, e00204 (2016).

700 75. Dunwoody, R., Steel, A., Landy, J. & Simmonds, N. *Clostridium difficile* and cystic fibrosis:

701 management strategies and the role of faecal transplantation. *Paediatric Respiratory Reviews*

702 **26**, 16–18 (2018).

703 76. Mirković, B. *et al.* The Role of Short-Chain Fatty Acids, Produced by Anaerobic Bacteria, in

704 the Cystic Fibrosis Airway. *Am J Respir Crit Care Med* **192**, 1314–1324 (2015).

705 77. Li, Q. *et al.* *Fusobacterium nucleatum* Interaction with *Pseudomonas aeruginosa* Induces
706 Biofilm-Associated Antibiotic Tolerance via *Fusobacterium* Adhesin A. *ACS Infect. Dis.* **6**,
707 1686–1696 (2020).

708 78. Hoppe, J. E. & Sagel, S. D. Shifting Landscape of Airway Infection in Early Cystic Fibrosis.
709 *Am J Respir Crit Care Med* **200**, 528–529 (2019).

710 79. Román, F., Cantón, R., Pérez-Vázquez, M., Baquero, F. & Campos, J. Dynamics of Long-
711 Term Colonization of Respiratory Tract by *Haemophilus influenzae* in Cystic Fibrosis
712 Patients Shows a Marked Increase in Hypermutable Strains. *Journal of Clinical*
713 *Microbiology* (2004) doi:10.1128/JCM.42.4.1450-1459.2004.

714 80. Brugha, R. & Spencer, H. *Mycobacterium abscessus* in cystic fibrosis. *Science* **372**, 465–466
715 (2021).

716 81. Ciofu, O. & Tolker-Nielsen, T. Tolerance and Resistance of *Pseudomonas aeruginosa*
717 Biofilms to Antimicrobial Agents—How *P. aeruginosa* Can Escape Antibiotics. *Frontiers in*
718 *Microbiology* **10**, 913 (2019).

719 82. Malhotra, S., HayesJr, D. & Wozniak, D. J. Cystic Fibrosis and *Pseudomonas aeruginosa*:
720 the Host-Microbe Interface. *Clinical Microbiology Reviews* (2019) doi:10.1128/CMR.00138-
721 18.

722 83. Lamoureux, C. *et al.* An observational study of anaerobic bacteria in cystic fibrosis lung
723 using culture dependant and independent approaches. *Sci Rep* **11**, 6845 (2021).

724 84. Briaud, P. *et al.* Impact of Coexistence Phenotype Between *Staphylococcus aureus* and
725 *Pseudomonas aeruginosa* Isolates on Clinical Outcomes Among Cystic Fibrosis Patients.
726 *Frontiers in Cellular and Infection Microbiology* **10**, 266 (2020).

727 85. Ahlgren, H. G. *et al.* Clinical outcomes associated with *Staphylococcus aureus* and
728 *Pseudomonas aeruginosa* airway infections in adult cystic fibrosis patients. *BMC Pulmonary*
729 *Medicine* **15**, 67 (2015).

730 86. Hansen, C. R. *Stenotrophomonas maltophilia*: to be or not to be a cystic fibrosis pathogen.
731 *Current Opinion in Pulmonary Medicine* **18**, 628–631 (2012).

732 87. Esposito, A. *et al.* Evolution of *Stenotrophomonas maltophilia* in Cystic Fibrosis Lung over
733 Chronic Infection: A Genomic and Phenotypic Population Study. *Front Microbiol* **8**, 1590
734 (2017).

735 88. Zemanick, E. T. *et al.* Airway microbiota across age and disease spectrum in cystic fibrosis.
736 *Eur Respir J* **50**, 1700832 (2017).

737 89. Scott, J. E. & O'Toole, G. A. The Yin and Yang of *Streptococcus* Lung Infections in Cystic
738 Fibrosis: a Model for Studying Polymicrobial Interactions. *Journal of Bacteriology* (2019)
739 doi:10.1128/JB.00115-19.

740 90. Li, R., Hu, K., Liu, H., Green, M. R. & Zhu, L. J. OneStopRNAseq: A Web Application for
741 Comprehensive and Efficient Analyses of RNA-Seq Data. *Genes (Basel)* **11**, 1165 (2020).

742 91. Nelson, J. W., Sklenar, J., Barnes, A. P. & Minnier, J. The START App: a web-based
743 RNAseq analysis and visualization resource. *Bioinformatics* **33**, 447–449 (2017).

744 92. Mahi, N. A., Najafabadi, M. F., Pilarczyk, M., Kouril, M. & Medvedovic, M. GREIN: An
745 Interactive Web Platform for Re-analyzing GEO RNA-seq Data. *Sci Rep* **9**, 7580 (2019).

746 93. Cheng, X., Yan, J., Liu, Y., Wang, J. & Taubert, S. eVITTA: a web-based visualization and
747 inference toolbox for transcriptome analysis. *Nucleic Acids Research* **49**, W207–W215
748 (2021).

749 94. Rinchai, D., Boughorbel, S., Presnell, S., Quinn, C. & Chaussabel, D. A curated
750 compendium of monocyte transcriptome datasets of relevance to human monocyte
751 immunobiology research. (2016) doi:10.12688/f1000research.8182.2.

752 95. Toro-Domínguez, D. *et al.* ImaGEO: integrative gene expression meta-analysis from GEO
753 database. *Bioinformatics* **35**, 880–882 (2019).

754 **Acknowledgements**

755
756 Support for these studies was provided by the Cystic Fibrosis Foundation (grants STANTO19R0
757 – CFF and CRAMER19GO – CFF), the NIH (grants P30 DK117469, R01 HL151385, and
758 R01AI146121), and The Flatley Foundation.

759
760 **Author Information**

761
762 **Affiliations**
763
764 *Geisel School of Medicine, Dartmouth College, Hanover, NH, USA*
765 Samuel L. Neff, Thomas H. Hampton, Charles Puerner, Liviu Cengher, Georgia Doing, Katja
766 Koeppen, Ambrose L. Cheung, Deborah A. Hogan, Robert A. Cramer, Bruce A. Stanton

767
768 *University of Pennsylvania, Philadelphia, PA, USA*
769 Alexandra J. Lee

770
771 **Contributions**
772

773 S.N. wrote the publication except for the user stories, and conceived of, developed, and tested the
774 CF-Seq application. T.H. provided valuable guidance and inspiration through the entire app
775 development and publication writing process. K.K. provided helpful guidance on app
776 development and handled hosting of the app on the online server. L.C., C.P., and A.L. all helped
777 with beta testing the application. L.C., C.P., and G.D. provided user stories demonstrating how
778 the application could be used to test wet bench hypotheses. B.S. provided domain expertise
779 (specifically, on *P. aeruginosa*), guidance on publication, and primary funding for the project.
780 A.C., D.H., and R.C. also provided domain expertise and guidance. All authors reviewed drafts
781 of the publication and provided feedback.

782
783 **Corresponding Author**
784 Correspondence to Dr. Bruce Stanton (Bruce.A.Stanton@dartmouth.edu)

785
786 **Ethics Declarations**

787
788 **Competing interest**
789 The authors declare no competing interests.

Table 1. Clinical relevance of cystic fibrosis pathogens with studies featured in the CF-Seq application

Genus	Species	Type	Location	Clinical Relevance
<i>Aspergillus</i>	<i>Aspergillus fumigatus</i>	Fungus	Lung	<ul style="list-style-type: none">- <i>Aspergillus</i> colonization is associated with lower lung function and more frequent hospitalization⁶⁴- Long-term colonization is also associated with declining chest computed tomography (CT) scores over time⁶⁵- <i>Aspergillus</i> colonization can result in a hard-to-treat chronic condition called allergic bronchopulmonary aspergillosis (ABPA)⁶⁶
<i>Bacteroides</i>	Multiple	Bacterium	Gut	<ul style="list-style-type: none">- For infants with CF, the stool microbiota does not exhibit the increase in diversity that is observed in infants without CF over the first several years of life. Specifically, infants with CF tend to see reduced levels of the genus <i>Bacteroides</i> (the same has been noted for <i>Veillonella</i> species, <i>Prevotella</i> species, and <i>Bifidobacterium</i> species as well)^{67,68}- Exposure of intestinal cell lines to <i>Bacteroides</i> species supernatant has the effect of reducing IL-8 production, suggesting that absence of <i>Bacteroides</i> species may contribute to inflammation in the CF gut⁶⁷
<i>Burkholderia</i>	Multiple	Bacterium	Lung	<ul style="list-style-type: none">- <i>Burkholderia</i> species infections are extremely difficult to eradicate after

				<p>the bacteria occupy the CF lungs and establishes chronic infection⁶⁹</p> <ul style="list-style-type: none">- Associated with highly unpredictable clinical symptoms, in some cases severe decline in lung function and high mortality⁶⁹- <i>Burkholderia cenocepacia</i> and <i>Burkholderia multivorans</i> are the most common species isolated from the CF lungs, with <i>B. cenocepacia</i> infections generally being more severe⁶⁹- Like <i>Pseudomonas</i>, <i>Burkholderia</i> can be found as a dominant pathogen in the lungs of some adult pwCF⁷⁰- <i>Burkholderia</i> infection is a common contraindication for lung transplant⁷¹
<i>Candida</i>	<i>Candida albicans</i>	Fungus	Lung	<ul style="list-style-type: none">- <i>Candida albicans</i> is the most common fungus isolated from the lungs of pwCF⁷²- pwCF receiving frequent IV antibiotics are susceptible to <i>Candida</i> sepsis, requiring extensive anti-fungal treatment and precluding further IV antibiotic treatment⁷²- A mild association between <i>Candida albicans</i> colonization and lung function decline has been observed⁷³
<i>Clostridium</i>	<i>Clostridium difficile</i>	Bacterium	Gut	<ul style="list-style-type: none">- pwCF present with a much higher prevalence of GI colonization with <i>C. difficile</i> than the general population, although

				<ul style="list-style-type: none">- severe <i>C. difficile</i> infection is not common and carriage of <i>C. difficile</i> is usually asymptomatic⁷⁴- High prevalence of <i>C. difficile</i> in the CF population is thought to stem from frequent antibiotic use and hospital-based exposure⁷⁵
<i>Fusobacterium</i>	<i>Fusobacterium nucleatum</i>	Bacterium	Lung	<ul style="list-style-type: none">- <i>Fusobacterium nucleatum</i>, an anaerobe, is known to be present on occasion in the cystic fibrosis lung, with one study finding that of 109 pwCF, it was detected in 5.5% of subjects⁷⁶- A study has shown that <i>F. nucleatum</i> and <i>P. aeruginosa</i> frequently coexist in the lungs – and this co-culture state has been found to be associated with increased bacterial count and bacterial tolerance to antibiotics⁷⁷- Production of short-chain fatty acids by anaerobes has been found to induce IL-8 production in CF bronchial epithelial cells in vitro, which may contribute to pulmonary inflammation in vivo⁷⁶
<i>Haemophilus</i>	<i>Haemophilus influenza</i>	Bacterium	Lung	<ul style="list-style-type: none">- <i>H. influenza</i> commonly infects pwCF in early childhood, alongside <i>Staphylococcus aureus</i>, although detection has been waning in recent years⁷⁸- Long term colonization with hyper-mutable <i>H. influenza</i> strains has been

				found to be more common in pwCF than the general population ⁷⁹
<i>Mycobacterium</i>	<i>Mycobacterium abscessus</i>	Bacterium	Lung	<ul style="list-style-type: none">- Increasing in prevalence and associated with dramatic disease progression⁸⁰- Often requires extensive antibiotic treatment⁸⁰- Can be a contraindication for lung transplant⁸⁰
<i>Pseudomonas</i>	<i>Pseudomonas aeruginosa</i>	Bacterium	Lung	<ul style="list-style-type: none">- With increasing age, <i>P. aeruginosa</i> tends to dominate the airway, evolving to resist antibiotics and out-competing other airway pathogens⁷⁰- Once chronic infection is established, constant antibiotic use is required to keep the bacterium at bay; once established it can rarely be eradicated⁸¹- <i>P. aeruginosa</i> infection has been associated with worsening lung function over time⁸²
<i>Porphyromonas</i>	Multiple	Bacterium	Lung	<ul style="list-style-type: none">- The genera <i>Porphyromonas</i> is commonly detected in the CF lungs⁸³- Recent studies suggest that certain <i>Porphyromonas</i> species (namely <i>P. catoniae</i>) are abundant in pwCF who are not colonized with <i>P. aeruginosa</i>, and that significant decline in <i>P. catoniae</i> may serve as a biomarker for the onset of <i>P. aeruginosa</i> infection⁵

<i>Staphylococcus</i>	<i>Staphylococcus aureus</i>	Bacterium	Lung	<ul style="list-style-type: none">- <i>S. aureus</i> often colonizes the lungs of pwCF at a relatively early age, but has been found to co-exist in some cases with <i>P. aeruginosa</i> in older people⁸⁴- pwCF infected with both <i>S. aureus</i> and <i>P. aeruginosa</i> tend to exhibit worse lung function than those infected with either <i>P. aeruginosa</i> or <i>S. aureus</i> alone⁸⁵- pwCF infected with <i>S. aureus</i> alone (vs. those with <i>P. aeruginosa</i> alone) tend to have better clinical outcomes⁸⁵
<i>Stenotrophomonas</i>	<i>Stenotrophomonas maltophilia</i>	Bacterium	Lung	<ul style="list-style-type: none">- <i>S. maltophilia</i> has a known capacity to persistently colonize the CF lung and to become multidrug resistant^{86,87}
<i>Streptococcus</i>	Multiple	Bacterium	Lung	<ul style="list-style-type: none">- In young children with CF, before the lungs are dominated by the classic CF pathogens (e.g., <i>P. aeruginosa</i>, <i>S. aureus</i>), <i>Streptococcus</i> species tend to be the predominate species⁸⁸- The clinical implications of <i>Streptococcus</i> infection for pwCF are complex – infection with certain species like the <i>S. milleri</i> group are associated with pulmonary exacerbation (acute, rapid decline in lung function), yet enhanced relative abundance of <i>Streptococcus</i> species in the lungs is associated

				with more mild lung disease ⁸⁹
--	--	--	--	---

Table 2. Applications similar in nature to CF-Seq are described to acknowledge the significant contribution that these researchers have made to making public data more FAIR, and the inspiration their work has provided for CF-Seq. The table also briefly summarizes how these applications are limited for CF pathogen research specifically to demonstrate the unique value of CF-Seq.

Application Name	Description	Value Added	Limitations for CF Pathogen Research
One-Stop RNA-Seq ⁹⁰ Link	One-Stop RNA-Seq provides a web interface that enables users without a computational background to perform common forms of RNA-seq analysis on selected data sets.	Provides many data analysis modules for analysis of uploaded data: quality control, differential gene expression analysis, gene set enrichment analysis, alternative splicing analysis, and more.	The application is geared towards users who want to analyze data from their own experiments (it requires data upload to perform analysis), not those who want to get a sense of prior research in a specific domain or filter domain studies by experimental parameters (strain, treatment, media, gene(s) perturbed, etc.). Furthermore, the ability to analyze study data is limited to studies of species with compatible reference genomes (human, mouse, <i>C. elegans</i>).
START ⁹¹ Link	START is an easy-to-use web interface that allows users to upload RNA-seq data sets, perform automated differential expression analysis, and view results.	Provides many data analysis modules for differential gene expression analysis of uploaded data: PCA plots, volcano plots, box plots, and heat maps. Provides many options for the	The application is geared towards users who want to analyze data from their own experiments (it requires data upload to perform analysis), not those who want to get a sense of prior research in a specific domain or filter domain studies by experimental parameters (strain, treatment, media, gene(s) perturbed, etc.).

		analysis of individual studies, including selecting the groups of experimental samples to compare, selecting genes of interest to view, and filtering analysis result by statistical significance (p value)	
GREIN ⁹² Link	GREIN combines thousands of processed RNA-Seq data sets, makes their metadata available for viewing, and gives access to analysis results for each individual study.	Provides a large suite of processed studies and makes their data more accessible, with metadata, count tables and visualization (density plots, heat maps, etc.) provided to users. Furthermore, it allows user to visualize data from tens of thousands of individual studies.	Geared towards analysis of individual studies but does not permit comparison of studies by experimental parameters (strain, treatment, media, gene(s) perturbed, etc.) across studies. This would require manual annotation of these parameters in the application, guided by domain-specific researchers (this manual annotation has been performed for CF-Seq). Also, geared towards human, mouse, and rat studies – not studies that are very relevant to CF pathogen researchers
easyGEO (part of eVITTA) ⁹³ Link	easyGEO, one element of the three-part ‘easy Visualization and Inference Toolbox for Transcriptome Analysis’ (eVITTA) suite, allows users to view metadata and analyze the	Allows users to search for a GEO accession (for any species) and pull-out information about experimental metadata as well as data like count tables from the study if they were provided in GEO.	Geared towards analysis of individual studies but does not permit comparison of studies by experimental parameters (strain, treatment, media, gene(s) perturbed, etc.). This would require manual annotation of these parameters in the application, guided by domain-specific researchers

	results of studies in GEO by simply searching for their study accession number(s).	This data can then be fed into the analysis modules of the app to produce differential expression analysis results.	Still requires some manual user cleaning and re-upload of count tables, though the requisite files to clean are extracted from GEO and handed off to the user.
Gene Expression Browser (GXB) ⁹⁴ Link	GXB is a curated compendium of 93 public datasets from human monocyte immunological studies	Allows users to filter studies by experimental characteristics (disease, sample source, platform) For each study, the user can view expression values for individual genes across experimental samples, download data analysis figures, and visit corresponding web pages in GEO and Pubmed	Geared specifically towards studies of human monocyte gene expression. The studies are not directly relevant for researchers who study cystic fibrosis pathogens.
ImaGEO: Integrative Meta-Analysis of GEO Data ⁹⁵ Link	ImaGEO is geared towards meta-analysis of gene expression across studies. The application works for studies on a set of species including humans and other model organisms (Yeast, fruit fly, mouse, rat, and CF pathogen <i>Pseudomonas aeruginosa</i>)	Allows users to paste in 2-10 GEO study identifiers, manually select control and experimental conditions, and create a report showing genes that were differentially expressed across studies in a data table and heat map.	Compatible with a strong list of model organisms, but is not compatible with most microbes of interest to CF pathogen researchers (except for <i>Pseudomonas aeruginosa</i>) Focused on meta-analysis of small groups of studies, so does not permit comparison of experimental parameters (strain, treatment, media, gene(s) perturbed, etc.).