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ABSTRACT  

The robustness and sensitivity of gene networks to environmental changes is critical for cell survival. 

How gene networks produce specific, chronologically ordered responses to genome-wide 

perturbations, while robustly maintaining homeostasis, remains an open question. We analysed if 

short- and mid-term genome-wide responses to shifts in RNA polymerase (RNAP) concentration are 

influenced by the known topology and logic of the transcription factor network (TFN) of Escherichia 

coli. We found that, at the gene cohort level, the magnitude of the single-gene, mid-term 

transcriptional responses to changes in RNAP concentration can be explained by the absolute 

difference between the gene’s numbers of activating and repressing input transcription factors (TFs). 

Interestingly, this difference is strongly positively correlated with the number of input TFs of the gene. 

Meanwhile, short-term responses showed only weak influence from the TFN. Our results suggest that 
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the global topological traits of the TFN of E. coli shape which gene cohorts respond to genome-wide 

stresses. 

INTRODUCTION 

Gene regulatory networks (GRNs) receive, process, act upon, and send out information, while being 

robust to random fluctuations. How signals targeting one to a few genes are processed is relatively 

well understood (1,2). Meanwhile, many cellular environments fluctuate (sometimes unpredictably) in 

nutrient availability, pH, temperature, salts, community of other cells or species they live with, etc., 

which may cause genome-wide stresses. We investigate how GRNs produce chronologically ordered 

responses to genome-wide perturbations, while robustly maintaining homeostasis. 

Evidence suggests that genome-wide stresses initially perturb hundreds to thousands of genes (3) 

but are quickly processed. As a result, after a transient period, only specific gene cohorts of tens to a 

few hundred genes (4,5) (usually sharing common feature(s)) participate in the responsive short-, 

mid- and long-term transcriptional programs (6). For example, when Escherichia coli suffers a cold 

shock, a specific cohort exhibits a fast, short-term response (~70 genes), while another has a longer-

term response (~35 genes), with the rest remaining relatively passive (7,8). Since cells exhibit 

predictable, temporally ordered, beneficial phenotypic changes, these response programs have likely 

been positively selected during evolution. 

It has been shown that global regulators (9-12), DNA supercoiling (13) and small RNAs (14), 

among other, can select large cohorts of stress-specific, responsive genes. It was also reported that 

60%-90% of E. coli genes respond to changing growth conditions following a constant global scaling 

factor (15). Further, there is evidence that the effects of RNA polymerase (and other global regulators) 

can be separate from the effects of input TFs during genome-wide responses, using fluorescent 

reporters and small circuits (16,17).  

Nevertheless, establishing whether and how the topology and logic of transcription factor (TF) 

networks (TFN) affect genome-wide responses remains challenging (18), despite some successes 

(19-22). These responses are most likely controlled, since cells exhibit predictable, ordered 

responses to natural genome-wide stresses (e.g., shifts in temperature or in growth-medium 

composition). The evolved features of GRNs that facilitate such outcomes remain unidentified, but 

their large-scale topology should be a key player.  

To investigate the influence of the topology and logic of transcription factor (TF) networks (TFN) on 

large transcriptional programs, we studied what occurs following genome-wide perturbations. For this, 

we considered that, in E. coli, the concentration of the key genome-wide regulator, the RNA 

Polymerase, RNAP, naturally differs with medium composition (23). Also, it is well established how 

transcription kinetics differ according to RNAP concentration at the single-gene level (24,25), from 

which it is to be expected that changes in the latter should have genome-wide effects. We thus 

increasingly diluted media to alter systematically and rapidly (26,27) the amount of RNAP (illustrated 

in Figure 1A), and measured the genome-wide, short- and mid-term changes in transcript 

abundances. 
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Decreases in RNAP levels should, in the short-term, cause quick genome-wide decreases in 

transcription rates, and thus in RNA abundances (Figure 1B1, Supplementary Results section 

Expected effects of shifting RNA polymerase concentration on a gene’s transcription dynamics). Such 

shifts, likely diverse in magnitudes, should then cause downshifts in the corresponding protein 

abundances. Thus, in the case of input TFs, their ‘output’ genes will, later on, be affected as well 

(Figure 1B2), causing further (here named ‘mid-term’) changes in their RNA abundances (Figure 1B4). 

Meanwhile, the short-term changes mostly likely are only affected by the genes’ individual features, 

since the protein abundances have not yet changed significantly in the cells. 

We focused on the mid-term changes (measured by RNA-seq, Figures 1A and 1B4, dashed line). 

Specifically, we hypothesized that, genes will have their RNAs further decreased or, instead, 

increased, depending on whether their input TFs are activators or repressors, respectively. In detail, 

genes with multiple input TFs will have a mid-term response strength correlated to the difference 

between the numbers of its activator and repressor input TFs (Figures 1C1 and C2). This difference is 

here named ‘bias’ in the regulatory effects (activation or repression) of those input TFs of a gene. 

At the single-gene level, we expect that the strength of the mid-term change in RNA abundances 

will be influenced by the strength of the shift in RNAP and input TFs concentrations, as well as by the 

specifics features of each gene and corresponding input TFs (bindings affinities, initiation kinetics, 

etc.). However, many of these features are largely unknown. As such, here we only studied 

empirically if the average responses of cohorts of genes can be explained by the mean bias in the 

regulatory effects of their input TFs, along with the strength of the shift in RNAP concentration (Figure 

1C2). In detail, we interpret the data on the genome-wide kinetics based on the information on the 

TFN structure (logic and topology) (Figure 1B3). 

E. coli was used to validate this hypothesis since its gene expression mechanisms have been 

largely dissected and the kinetics of transcription, translation, and RNA and protein degradation are 

well known (26,32,33). Also, its TFN is extensively mapped, with RegulonDB (34) informing on ~4700 

TF interactions between ~4500 genes (and on their activating or repressing regulatory roles). 

Consequently, since we know the regulatory network a priori, instead of using the data on gene 

expression for network inference, we use it solely to quantify the genes’ responsiveness with respect 

to the TFN topology and logic. We then investigate whether the mid-term responsiveness to shifting 

RNAP concentrations is in accordance with the presently known topology and logic of the TFN, as 

hypothesized (Figures 1B1-1B4). Supplementary Table S1 has a description of the variables used 

throughout the manuscript. 

MATERIAL AND METHODS 

Bacterial strains, media, growth conditions and curves 

We used wild type MG1655 cells as a base strain to study the transcriptome. In addition, we used an 

RL1314 strain with RpoC endogenously tagged with GFP (generously provided by Robert Landick) to 

measure RNAP levels, and 20 YFP fusion strains with genes endogenously tagged with the YFP 

coding sequence (25) to measure single-cell protein levels (Supplementary Table S4). Further, we 
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used a strain carrying an rpoS::mCherry gene to measure RpoS levels (generously provided by 

James Locke), shown to track RpoS (35). In addition, we measured the protein expression levels of 

the spoT gene, which is one of the genes responsible for (p)ppGpp synthesis (3), using the YFP 

fusion library. Finally, we measured the single-cell levels of the crl gene using a low-copy plasmid 

fusion library of fluorescent (GFP) reporter strain (36). 

From glycerol stocks (at - 80 ºC), cells were streaked on lysogeny broth (LB) agar plates with 

antibiotics and kept at 37 ºC overnight. Next, a single colony was picked, inoculated into fresh LB 

medium and, kept at 30 ºC overnight with appropriate antibiotics and aeration at 250 rpm. From 

overnight cultures (ONC), cells were diluted to 1:1000 in tailored LB media (see below) with antibiotics, 

incubated at 37 ºC with aeration, and allowed to grow until reaching an optical density of ≈ 0.4 at 600 

nm (OD600).  

Using this protocol, to attain cells with different intracellular RNAP concentration, starting from LB, 

we used tailored media, denoted as ‘LB1.0x’, ‘LB0.75x’, ‘LB0.5x’, ‘LB0.25x’, ‘LB1.5x’, ‘LB2.0x’ and ‘LB2.5x’ 

specifically, as in (26). Their composition for 100 ml (pH of 7.0) are, respectively: (LB1.0x) 1 g tryptone, 

0.5 g yeast extract and 1 g NaCl; (LB0.75x) 0.75 g tryptone, 0.375 g yeast extract and 1 g NaCl; (LB0.5x) 

0.5 g tryptone, 0.25 g yeast extract and 1 g NaCl; and (LB0.25x) 0.25 g tryptone, 0.125 g yeast extract 

and 1 g NaCl; (LB1.5x) 1.5 g tryptone, 0.75 g yeast extract and 1 g NaCl; (LB2.0x) 2 g tryptone, 1 g 

yeast extract and 1 g NaCl; (LB2.5x) 2.5 g tryptone, 1.25 g yeast extract and 1 g NaCl. 

To measure cell growth curves and rates, ONC of the RL1314 strain were diluted to an initial 

optical density at 600 nm (OD600) of ≈ 0.05 into independent fresh media (LB1.0x, LB0.75x, LB0.5x, LB0.25x, 

LB1.5x, LB2.0x and LB2.5x). The cultures were aliquoted in a 24-well flat bottom transparent plate and 

incubated at 37 ºC with continuous shaking in a Biotek Synergy HTX Multi-Mode Reader. Growth was 

monitored every 10 min for 10 hours. 

Microscopy 

To measure single-cell RNAP levels, ONC RL1314 cells were pre-inoculated into LB1.0x, LB0.75x, 

LB0.5x and LB0.25x media. Upon reaching mid-exponential growth phase, cells were pelleted by quick 

centrifugation (10000 rpm for 1 min), and the supernatant was discarded. The pellet was re-

suspended in 100 µl of the remaining medium. Next, 3 µl of cells were placed in between 2% 

agarose gel pad and a coverslip and imaged by confocal microscopy with a 100x objective (example 

images in Supplementary Figure S1). GFP fluorescence was measured with a 488 nm laser and a 

514/30 nm emission filter. Phase-contrast images were simultaneously acquired. MG1655 cells were 

imaged to measure cell size in LB1.0x, LB0.75x, LB0.5x, LB0.25x, LB1.5x, LB2.0x and LB2.5x media. Finally, 

MG1655 cells was also imaged in LB1.0x during stationary growth.  Finally, we imaged cells of the 

YFP strain library to assess if their morphology and physiology were consistent with healthy cells 

during measurements. 

Flow-cytometry 
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We performed flow-cytometry of RL1314 cells to measure single-cell RNAP over time. ONC were 

diluted at 1:1000 into respective fresh media (LB1.0x, LB0.75x, LB0.5x and LB0.25x) and grown as 

described in Methods section Bacterial strains, media, and growth conditions and curves. Flow-

cytometry data was recorded every 30 min (3 biological replicates), up to 210 min. Data was also 

captured in the mid-exponential phase (at 180 min), in the media studied (LB1.0x, LB0.75x, LB0.5x, LB0.25x, 

LB1.5x, LB2.0x and LB2.5x), with 3 biological replicates each. We used a similar protocol to perform flow-

cytometry of several strains of the YFP library (25) in LB1.0x and LB0.25x (3 biological replicates, 

Supplementary Table S4), including to measure single-cell SpoT levels in LB1.0x, LB0.75x, LB0.5x, LB0.25x, 

LB1.5x, LB2.0x and LB2.5x (3 biological replicates each).  

Meanwhile, we measured single-cell levels of the crl gene in LB0.5x at 0 and 180 min, using a strain 

from the GFP-promoter fusion library. Further, to measure rpoS levels, we performed flow-cytometry 

of cells of the MGmCherry strain in LB1.0x, LB0.75x, LB0.5x and LB0.25x during the exponential (180 min) 

and stationary growth phases (LB1.0x,14 hours after pre-inoculation). In these measurements, as well 

as the measurements above, we recorded FSC-H, SSC-H and Width, to be used as proxies for cell 

size and density (i.e., composition), as they are positively correlated with these features (37).  

In addition, data from measurements of MG1655 cells were used to discount background 

fluorescence from cells of the MGmCherry and the YFP strains. Similarly, measurements of the 

W3110 strain were used to discount the background fluorescence from the RL1314 strain.   

For performing flow-cytometry, 5 μl of cells were diluted in 1 ml of PBS, and vortexed. In each 

condition, 50000 events were recorded. Prior to the experiments, QC was performed as 

recommended by the manufacturer. Measurements were conducted using an ACEA NovoCyte Flow 

Cytometer (ACEA Biosciences Inc., San Diego, USA) equipped with yellow and blue lasers. 

For detecting the GFP and YFP signals, we used the FITC channel (-H parameter) with 488 nm 

excitation, 530/30 nm emission, and 14 μl/min sample flow rate with a core diameter of 7.7 μm. PMT 

voltage was set to 550 for FITC and kept the same for all conditions. Similarly, to detect the mCherry 

sinal, we used PE-Texas Red channel (-H parameter) having an excitation of 561 nm and emission of 

615/20 nm and sample flow rate of 14 μl/min, with a core diameter of 7.7 μm. PMT voltage was set to 

584 for PE-Texas Red and kept the same for all conditions. To remove background signal from 

particles smaller than bacteria, the detection threshold was set to 5000. All events were collected by 

Novo Express software from ACEA Biosciences Inc. 

Protein isolation and western blotting 

Western blotting was used to quantify relative RNAP levels of MG1655 cells (Supplementary Figure 

S2 and Supplementary Table S2). Briefly, cells were diluted from ONC into respective fresh media 

and incubated at 37 ºC with aeration and grown until reaching an OD600 ≈ 0.4. Next, cells were 

harvested by centrifugation (8000 rpm for 5 min) and pellets were lysed with B-PER bacterial protein 

extraction reagent, added with a protease inhibitor for 10 min at room temperature (RT). Following 

lysis, centrifugation was done at 14000 rpm for 10 min and the supernatant was collected. Next, the 
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supernatant was diluted in 4X Laemmli buffer with β-mercaptoethanol and samples were boiled at 95 

ºC for 5 min. 

Samples with ~30 μg of soluble total proteins were loaded on 4%-20% TGX stain-free precast gels 

(Biorad). These proteins were then separated by electrophoresis and transferred on PVDF membrane 

using TurboBlot (Biorad). Next, membranes were blocked with 5% non-fat milk at room temperature 

(RT) for 1 h and probed with primary RpoC (β prime subunit of RNAP) antibodies at 1:2000 dilutions 

(Biolegend) at 4 °C overnight. HRP-secondary antibody (1:5000) treatment was then done (Sigma 

Aldrich) for 1 h at RT. Excess antibodies were removed by washing with buffer. The membrane was 

treated with chemiluminescence reagent (Biorad) for band detection. Images were obtained by the 

Chemidoc XRS system (Biorad) and band quantification was done using the Image Lab software 

(v.5.2.1). 

RNA-seq  

a. Sample preparation 

RNA-seq was performed thrice, for decreasing [LB0.75x, LB0.5x, and LB0.25x, at 180 min; LB0.5x at 60 and 

125 min] and for increasing (LB1.5x, LB2.0x and LB2.5x, at 180 min) medium richness relative to a control 

(LB1.0x) (an independent control was used for each three sets of conditions). Cells from 3 independent 

biological replicates of MG1655 in each modified medium were treated with RNA protect bacteria 

reagent (Qiagen, Germany), to prevent degradation of RNA, and their total RNA was extracted using 

RNeasy kit (Qiagen). RNA was treated twice with DNase (Turbo DNA-free kit, Ambion) and quantified 

using Qubit 2.0 Fluorometer RNA assay (Invitrogen, Carlsbad, CA, USA). Total RNA amounts were 

determined by gel electrophoresis, using a 1% agarose gel stained with SYBR safe (Invitrogen). RNA 

was detected using UV with a Chemidoc XRS imager (Biorad).  

b. Sequencing  

i) Part 1: For shifts from LB1.0x to LB0.75x, LB0.5x, and LB0.25x, at 180 min 

Sequencing was performed by Acobiom (Montpellier, France). The RNA integrity number (RIN) of the 

samples was obtained with the 2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA) using 

Eukaryotic Total RNA 6000 Nano Chip (Agilent Technologies). Ribosomal RNA depletion was 

performed using Ribo-Zero removal kit (Bacteria) from Illumina. RNA-seq libraries were constructed 

according to the Illumina's protocol. Samples were sequenced using a single-index, 1x75bp single-

end configuration (~10M reads/library) on an Illumina MiSeq instrument. Sequencing analysis and 

base calling were performed using the Illumina Pipeline. Sequences were obtained after purity filtering.  

ii) Part 2: For shifts from LB1.0x to LB1.5x, LB2.0x, and LB2.5x at 180 min, and from LB1.0x to 

LB0.5x at 60 and 125 min 

Sequencing was performed by GENEWIZ, Inc. (Leipzig, Germany). The RIN of the samples was 

obtained with the Agilent 4200 TapeStation (Agilent Technologies, Palo Alto, CA, USA). Ribosomal 

RNA depletion was performed using Ribo-Zero Gold Kit (Bacterial probe) (Illumina, San Diego, CA, 
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USA). RNA-seq libraries were constructed using NEBNext Ultra RNA Library Prep Kit (NEB, Ipswich, 

MA, USA). Sequencing libraries were multiplexed and clustered on 1 lane of a flow-cell.  

For shifts from LB1.0x to LB1.5x, LB2.0x, and LB2.5x at 180 min, samples were sequenced using a 

single-index, 2x150bp paired-end (PE) configuration (~350M raw paired-end reads per lane) on an 

Illumina HiSeq 4000 instrument.  Image analysis and base calling were conducted with HiSeq Control 

Software (HCS).  Raw sequence data (.bcl files) were converted into fastq files and de-multiplexed 

using Illumina bcl2fastq v.2.20. One mismatch was allowed for index sequence identification. 

For shifts from LB1.0x to LB0.5x at 60 and 125 min, samples were sequenced using a single-index, 

2x150bp paired-end (PE) configuration (~10M raw paired-end reads per lane) on an Illumina 

NovaSeq 6000 instrument. Image analysis and base calling were conducted with NovaSeq Control 

Software v1.7.  Raw sequence data (.bcl files) were converted into fastq files and de-multiplexed 

using Illumina bcl2fastq v.2.20. One mismatch was allowed for index sequence identification. 

c. Data analysis 

Regarding the RNA-seq data analysis pipeline: i) RNA sequencing reads were trimmed to remove 

possible adapter sequences and nucleotides with poor quality with Trimmomatic (38) v.0.36 (for data 

from sequencing part 1) and v.0.39 (for data from sequencing part 2). ii) Trimmed reads were then 

mapped to the reference genome, E. coli MG1655 (NC_000913.3), using the Bowtie2 v.2.3.5.1 

aligner, which outputs BAM files (39). iii) Then, featureCounts from the Rsubread R package (v.1.34.7) 

was used to calculate unique gene hit counts (40). Genes with less than 5 counts in more than 3 

samples, and genes whose mean counts are less than 10 were removed from further analysis. iv) 

Unique gene hit counts were then used for the subsequent differential expression analysis. For this, 

we used the DESeq2 R package (v.1.24.0) (41) to compare gene expression between groups of 

samples and calculate p-values and log2 of fold changes (LFC) of RNA abundances using Wald tests 

(function nbinomWaldTest). P-values were adjusted for multiple hypotheses testing (Benjamini–

Hochberg, BH procedure, (42)) and genes with adjusted p-values (False discovery rate (FDR)) less 

than 0.05 were selected to be further tested as being differentially expressed (Methods section RNA-

seq d).  

For logistical reasons, the sequencing platform for the RNA-seq data in Methods section RNA-seq 

b differ from one another. Consequently, the data sets used in Figure 3 and in Figure 5 cannot be 

compared quantitatively nor be used to infer gene-specific conclusions. 

Finally, to analyse the data from LB1.0x and LB0.5x at 60 and 125 min and compare its results with 

the results from the data of Methods section RNA-seq b Part 1 at 180 min, their raw count matrices 

were merged and only genes that passed the filtering were studied. The filtering removed genes with 

less than 5 counts in more than 6 samples, and genes whose mean counts were less than 10.  

Moreover, we expect the overall sums of LFCs from each perturbation to equal zero since, in 

DEseq2, the median-of-ratios normalization calculates the normalizing size factors assuming a 

symmetric differential expression across conditions (i.e., same number of up- and down-regulated 

genes) (43). Further, it fits a zero-centered normal distribution to the observed distribution of 
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maximum-likelihood estimates (MLEs) of LFCs over all genes (41). Both steps (perhaps related) force 

the mean LFC to be 0. 

d. LFC criteria for differentially expressed genes 

From past methods (44-46), we classified genes as statistically significantly differentially expressed 

(DE) due to the genome-wide perturbations, by setting a maximum FDR threshold for adjusted p-

values (Methods section RNA-seq c) and also a minimum threshold for the absolute LFC of RNA 

numbers of individual genes (|LFC|). 

From the RNA-seq data of each perturbation, from the 
LFC

  of genes whose FDR > 0.05, named 

( 0.05)
LFC

FDR  , we identified DEGs (DE Genes) as those that, in addition to having FDR < 0.05, 

also have |LFC| > ( 0.05)
LFC

FDR  . Specifically, we added the conditions: |LFC| > 0.4248 for 

LB0.75x, > 0.4085 for LB0.5x, > 0.4138 for LB0.25x, > 0.2488 for LB1.5x, > 0.2592 for LB2.0x, and > 0.2711 

for LB2.5x, for accepting a gene as being significantly DE. For the data in LB0.5x at 60 and 125 min we 

added: |LFC| > 0.2171 for LB0.5x 60 min, and > 0.2977 for LB0.5x 125 min. This allows removing from 

the data genes whose FDR < 0.05 but that, in fact, have a negligible LFC. Noteworthy, in no condition 

did we remove, from the set of DEG, more than 5 genes by applying this rule. 

e. RNA-seq vs Flow-cytometry  

RNA and protein abundances are expected to be positively correlated in bacteria, since transcription 

and translation are mechanically bound (47-49) and most regulation occurs during transcription 

initiation (50), which is the lengthiest sub-process (24).  

To validate that this relationship holds during the genome-wide stresses, we randomly selected a 

set of genes whose LFC’s, as measured with RNA-seq, cover nearly the entire spectrum of LFCs 

observed genome-wide. Next, we measured their LFC in protein abundances, using the YFP strain 

library (25) (Methods section Bacterial strains, media, and growth conditions and curves) and flow-

cytometry (Methods section Flow-cytometry), at 180 min after shifting the medium. The list of selected 

genes is shown in Supplementary Table S4. In detail, for the fold change levels of 1/8x, 1/4x, 1/2x, 1x, 

2x, 4x, and 8x, we selected 3 genes whose LFC in RNA abundances is closest to that value (except 

for the 8x fold change, since only 2 genes were available). This range of values covers nearly the 

whole LFC spectrum observed by RNA-seq (Supplementary Figure S9). 

Transcription Factor Network of Escherichia coli 

We assembled a directed graph of the network of TF interactions between the genes present in our 

RNA-seq data, based on the data in RegulonDB v10.5 (34), as of 28th of January 2022. We used all 

reported TF-TF, TF-operon, and TF-TU interactions. These equally contribute to our network of gene-

gene directed interactions. In detail, a TF or regulatory protein is a complex protein that 

activates/represses transcription of a transcription unit (TU) upon binding to specific DNA sites. A TU 
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is one or more genes transcribed from a single promoter. Similarly, an operon are one or more genes 

and associated regulatory elements, transcribed as a single unit. 

The TFN graph was analysed using MATLAB (2021b) and Network Analyzer v.3.7.2 plug-in in 

cytoscape (51) to extract the following network parameters specified from (51): number of nodes and 

directed edges, number of connected components, number of isolated nodes and self-loops, and 

single-gene in- and out-degree, edge-count, clustering coefficient, eccentricity, average minimum path 

length, betweenness and stress centrality, and neighbourhood connectivity. The statistics considered 

are shown in Supplementary Tables S5 and S19.  

Statistical tests 

a. 2-sample T-test, 2-sample KS-test and one-sample Z-test  

The 2-sample T-test evaluates the null hypothesis that the two samples come from independent 

random samples from normal distributions with equal means and unequal and unknown variances. 

For this, we have established a significance level of 10% significance level (P-value < 0.10) when 

applying the MATLAB function ttest2.  

The 2-sample KS-test returns a test decision for the null hypothesis that the data from 2 data sets 

are from the same continuous distribution, using the two-sample Kolmogorov-Smirnov test. As above, 

we have set the null hypothesis at 10% significance level (P-value < 0.10). 

The one-sample Z-test tests for the null hypothesis that the sample is from a normal distribution 

with mean m and a standard deviation . In this case, m and  are estimated from the genes with KTF 

= 0. As above, we have set the null hypothesis at 10% significance level (P-value < 0.10). 

b. Fisher test 

The Fisher test evaluates the null hypothesis that there is no association between the two variables of 

a contingency table. We reject the null hypothesis at 10% significance level (P-value < 0.1), meaning 

that the variables are significantly associated. 

c. Correlations between data sets 

The correlation between two data sets with known uncertainties (standard error of the mean (SEM) in 

each data point) was obtained by performing linear regression fitting using Ordinary Least Squares. 

The best fitting line along with its 68.2% confidence interval/bounds (CB) and statistics was obtained 

as described in Supplementary Materials and Methods 1.4 of (52). In short, the uncertainty of each of 

the N empirical data points was represented by m points, resulting in n = N×m points. Each of these 

points is obtained by random sampling from a normal distribution whose mean (µ) and standard 

deviation (σ) equal the mean and error of the empirical data point, respectively. It was set m = 1000, 

as it was sufficient to represent the error bars of the actual data points. We obtained the coefficient of 

determination (R2) and the root mean square error (RMSE) of the fitted regression line, and the p-

values of the regression coefficients. The p-value of x (P-value1) was obtained of a T-test under the 

null hypothesis that the data is best fit by a degenerate model consisting of only a constant term. If P-
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value1 is smaller than 0.1, we reject the null hypothesis that the line is horizontal, i.e., that one 

variable does not linearly correlate with the other. When there are more than 3 data points, we also 

calculated regression coefficient of x2 (P-value2) of a T-test under the null hypothesis that the second 

order polynomial fit is no better than lower order polynomial fit, i.e., coefficient of x2 = 0. If P-value2 is 

smaller than 0.1, we reject the linear model favouring the quadratic. 

To obtain the overall best non-linear fit (and its 68.2% CI) for the empirically measured datasets 

with uncertainties, Monte Carlo simulations (1000 iterations) were performed. In particular, to obtain 

Figure 2B, on each iteration, we randomly sampled each data point from a normal distribution whose 

mean and standard deviation are equal to the mean (actual value) and SEM of the corresponding 

empirical data point, respectively. Then a sigmoid (logistic) curve fitting (R P (2020). sigm_fit 

(https://www.mathworks.com/matlabcentral/fileexchange/42641-sigm_fit), MATLAB Central File 

Exchange. Retrieved August 6, 2020) was used to obtain the best fitting curve and its 68.2% CB for 

each iteration. Finally, the best fitting curve along with their 68.2% CB is obtained by averaging the 

respective values from the 1000 iterations. 

Finally, to create null-models of how variable X affects variable Y, we performed random sampling 

without replacement of both X and Y datapoints. The number of samplings and the sampling size 

(number of samples in each sampling) are set to the maximum array size possible to us 

(~45980x45980, 15.8 GB). The sampling size is set to 5% of the number of datapoints (size_XY) and 

the number of samplings (K) is set according to Max_size/(0.05size_XY) where Max_size = 45980/2. 

Next, for both X and Y, we combine the sampled datapoints in a vector (sample_X, sample_Y) and 

calculate the correlation between sample_X and sample_Y by linear regression fitting using Ordinary 

Least Squares. To correct for over-representation of the original datapoints, we corrected the degrees 

of freedom to be (size_XY – C), where C is the number of parameters. In detail, for the linear 

regression fitting, C equals to 2 (intercept and slope of best fitting line).  

d. ANCOVA test to evaluate if two lines can be distinguished 

To evaluate if two lines are statistically different, we performed the analysis of covariance (ANCOVA) 

test (53). ANCOVA is an extension of the one-way ANOVA to incorporate a covariate. This allows 

comparing if two lines are statistically distinct in either slope or intercept, by evaluating the 

significance of the T-test under the null hypothesis that both the slopes and intercepts are equal. 

Figures 

Figures were produced in R (v.3.6.0) using the packages ‘ggplot2’ (v.3.2.0), ‘pheatmap’ (v.1.0.12), 

‘VennDiagram’ (v.1.6.20) along with ‘grid’ (v.3.6.0), ‘gridExtra’ (v.2.3), ‘gplots’ (v.3.0.1.1), ‘R.matlab’ 

(v.3.6.2), ‘dplyr’ (v.1.0.2), ‘scales’ (v.1.0.0), ‘Metrics’ (v.0.1.4) and ‘fitdistrplus’ (v.1.0-14). 

RESULTS 

Effects of medium dilution on cell growth, morphology, and RNAP concentration  
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We first studied how the RNAP concentration changes with medium dilutions. From a control medium 

(‘LB1.0×’), we moved cells to diluted media (LB0.75×, LB0.5×, or LB0.25×, Methods section Bacterial strains, 

media, and growth conditions and curves). RNAP levels start changing ~75 min later, based on an as 

yet to be identified mechanism, stabilizing at ~165 min (Figure 2B).  Given this timing of events, 

measurements to assess the effects on the RNA population should be performed after ~165 min. 

We also considered that at ~180 min (Figure 2A) the cells are at late mid-log phase. Thus, 

measuring the effects of changing RNAP should occur prior to ~180 min, since leaving the mid-log 

phase will involve significant, unrelated genome-wide changes in RNA abundances (54-57). From the 

point of view of cell divisions, from the moment when the RNAP starts changing up to the moment 

when we measure the short- and the mid-term changes in RNA abundances, on average, less than 

one cell cycle and less than two cell cycles should have passed, respectively. 

Interestingly, this time moment (~180 min) matches our predictions of when, on average, RNA 

abundances have changed due to changes in the abundances of both RNAP as well as direct input 

TF. In detail, from the timing of the changes in RNAP (Figure 2B) and from known rates of RNA and 

protein production and degradation in E. coli (25,28-31), we expect widespread heterogenous short-

term changes in RNA abundances to occur, on average, at ~120-135 min after shifting the medium (at 

which moment the RNAP has already changed significantly). Changes in the corresponding protein 

abundances should then occur tenths of minutes later, i.e., at ~ 160-175 min (29-31).  

Soon after, we expect additional changes in RNA abundances, now due to changes in direct input 

TF abundances. This second stage of events, here classified as ‘mid-term’, should occur between 

~165-180 min. This is also when cells are in the late mid-log phase (Figure 2A), while cell growth 

rates do not yet differ between conditions (Figure 2C) and cell sizes only differ slightly (Figures 2F-2H, 

Supplementary Figures S3 and S4, Methods sections Microscopy and Flow-cytometry). Such is 

relevant, since growth rates affect protein concentrations due to dilution in growth and division (58,59). 

Finally, at 180 min, the 38 concentration is lower than at 0 min (Figure 2I inset and Supplementary 

Figure S5), in agreement with previous reports (27,35,60,61), suggesting that the cells are not 

committed to the stationary growth phase. The same is observed for the Crl protein (Supplementary 

Figure S6), which is a protein that contributes to the expression of genes whose promoter is 

recognized by 38 and that is known to be at higher abundance during stationary phase (reported in 

(62) and confirmed here (Supplementary Figure S6)). 

Given the above, to capture the average mid-term effects of RNAP shifts, we measured the 

transcriptome at 180 min (Figure 2A). This timing should allow discerning the average genes’ 

behaviour, under the influence of their local network of TF interactions, albeit the diversity in RNA and 

protein production and decay kinetics, etc. RNAP levels at that moment are shown in Figures 2D and 

2E, Supplementary Figure S2 and Supplementary Table S2. Similar RNAP downshifts have been 

observed in natural conditions (63) and described in (23,26,27).  

Genome-wide mid-term responses correlate with shifts in RNAP concentration 
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Transcription rates are expected to follow the free RNAP concentration in a cell, rather than the total 

RNAP concentration (which is the sum of the free RNAP with the RNAP engaged with the DNA). We 

here measured the total RNAP concentration. However, within the range of conditions studied, the 

fractions of free and DNA-bound RNAP remain rather constant (26). Therefore, the total RNAP is a 

good proxy for the free RNAP. Specifically, using modified strains and plasmids controlled by lac and 

tet mutant promoters (64-66), whose regulatory mechanisms have been dissected, it was shown that 

their transcription rates are linearly correlated with the total RNAP concentration (26). From here on, 

when mentioning RNAP concentration, we refer to the total RNAP concentration. 

The increasing medium dilution and corresponding decreases in RNAP concentration (Figure 3A) 

cause RNA-seq profiles at 180 min with increasingly broad distributions of single-gene LFCs 

(Supplementary Figures S7 and S8A-S8C and Supplementary Table S3). Specifically, the mean 

absolute LFC of the 4045 genes (
LFC

 ) and the number of DEGs increased with medium dilution 

(Figures 3B and 3C).  

These RNA changes correlate with subsequent changes in protein levels (Supplementary Figure 

S9, Methods sections Flow-cytometry and RNA-seq). This suggests that no significant translational or 

post-translational regulation is taking place in between the perturbation and the measurements, that 

would alter protein abundances significantly. 

Interestingly, while both 
LFC

  and DEGs numbers follow the RNAP concentration (Supplementary 

Figures S8D and S10B), these relationships are not strictly linear (p-value of 0.29, Supplementary 

Figure S8D), supporting the notion that, in addition to RNAP, the direct input TFs are also influential 

(note that the assumption of linearity in the absence of the influence of input TFs, observed and 

discussed in (26), is only expected to occur within a narrow range of parameter values). 

Notably, some of the genes may be also influenced by sources other than RNAP and direct input 

TFs, such as supercoiling buildup. Also, some input TFs other than the direct input TFs maybe be 

influential. However, we show evidence below that this does not affect the average results (Figure 4C 

and Supplementary Figure S18). 

We also performed RNA-seq prior to when most signals, generated by the shift in RNAP, 

propagated in the TFN. First, we measured LFCs at 60 mins after diluting the medium (Figure 1). 

From Figure 2B, at this moment, RNAP abundances have not yet changed relative to the control. In 

agreement, the genome-wide 
LFC

  is very weak (Figure 3D). We further performed RNA-seq at 125 

min. At this moment, RNAP levels have already reduced significantly (Figure 2B), but we do not 

expect input TF abundances to have changed significantly given protein production times (Figure 1). 

In agreement, |LFC|s at 125 min are stronger than at 60 min, but much weaker than at 180 min 

(Figure 3D). We conclude that the mid-term changes in the TFN have not occurred yet (further 

evidence is provided below). Given this, from here onwards, we focus on the state of the TFN at 180 

min.  

Influences from regulators other than RNAP  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.07.483226doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483226
http://creativecommons.org/licenses/by-nd/4.0/


13 

 

We investigated whether other factors influenced the global response of the TFN. We considered 

global regulators (GR),  factors, (p)ppGpp, and non-coding sRNAs. We assumed the classification of 

GR in (67,68) as an input TF that regulates a large number of genes that rarely regulate themselves 

and participate in metabolic pathways. Meanwhile, we did not account for promoters’ close proximity 

(e.g., tandem formation), since a recent study (69) showed that, under similar stress, while close 

proximity causes transcription interference (reducing overall transcription levels), it does not influence 

if a gene is up- or down-regulated by input TFs. 

First, from the RNA-seq, given the large numbers of DEGs (more than 1000 for the two strongest 

dilutions (Supplementary Figure S10A)), and the linear correlation between these numbers and 
LFC

  

(Supplementary Figure S10C), we argue that the responsive genes are not constrained to a specific 

cluster, such as genes responding to a global regulator (GR) other than RNAP (the most influential is, 

arguably, σ70 with 1555 genes recognizing it, while other GRs control less than 510 genes each (34)).   

Also, from the RNA-seq, we analysed the relative abundances of GRs, σ factors and of their output 

genes. From Supplementary Figures S26A and S26C, apart from rpoS (an input TF recognized by 

321 genes) and flhC (an input TF recognized by 75 genes), GRs and σ factors did not change 

significantly (Supplementary Figure S26). Further, those two changes (rpoS and flhC) were positively 

correlated with the RNAP concentration (Figure 2I inset and Supplementary Figure S5), not allowing 

to separate their effects. Also noteworthy, alternative σ factors did not change significantly relative to 

σ70 (Supplementary Figure S26E), which would have changed the competition for RNAP binding. 

Given this, we failed to find evidence that the  factors and GRs were influential, globally, in the 

mid-term responses. Supplementary Table S15 lists the conclusion for each specific GR and σ factor 

and Supplementary Figure S27 shows these results at 125 min. 

We then investigated if (p)ppGpp could be influential since, under some nutrient starvation 

conditions, they affect ~1000 genes by binding RNAP and altering its affinity for their promoters (3). 

Reports suggest that the effects are rapid (5 to 10 min (3)). In agreement, genes responsive to 

(p)ppGpp (3) exhibited abnormal short-term responses (Supplementary Table S20). However, their 

mid-term responses at 180 min were no longer atypical and, instead, followed the RNAP changes. 

The expression of spoT, one of the genes responsible for ppGpp synthesis, also followed the RNAP 

(Supplementary Figure S28). As such, we could not establish a long-lasting global influence from 

(p)ppGpp in response to growth-medium dilution. Nevertheless, the LFCs of the 14 out of the 22 

genes coding for rRNAs listed in RegulonDB did reveal atypical behaviors (Supplementary Table S22). 

Next, we searched for unique behaviours in sRNAs by analysing the LFC of the 93 sRNAs 

reported in RegulonDB. Their behaviour was not atypical, neither at 180 min after the perturbations 

(Supplementary Table S21), nor at 125 min. Further, we analysed if their output genes followed their 

behaviour. We found that the LFCs of genes directly regulated by the sRNAs were not correlated with 

their input TFs, neither at 125 min, nor at 180 min after the medium shifts. Specifically, of the 93 

sRNAs, 37 of them have known output genes (in a total of 145 outputs). The RNA-seq data provided 

information on the LFC of 40 of the 145 outputs. When searching for linear correlations between the 

pairs of LFCs of sRNAs and their output genes, respectively, in the short-term (125 min in LB0.5x) and 
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in the mid-term (180 min in LB0.5x), we found an R2 of 0.03 (p value = 0.18) at 125 min and an R2 of 

0.05 (p value = 0.10) at 180 min, respectively. We thus cannot conclude that sRNAs were influential 

during the short- and mid-term responses to the stresses.  

Input TFs influence the transcriptional response 

If the TFN influences the genes’ mid-term response to the shift in RNAP concentration, this should 

cause genes with and genes without input TFs to behave differently, since the latter should only be 

affected by the RNAP abundances. 

In agreement, genes with input TFs had higher 
LFC

  than genes without input TFs (Figure 4A, 

Supplementary Table S6 and Supplementary Figure S13). Also, the |LFC| of output genes and of 

genes coding for their direct input TFs correlate statistically (Figure 4B, Supplementary Figure S14 

and Supplementary Table S7). Therefore, on average, TF-gene interactions affected the single-gene, 

mid-term responses as hypothesized (Figure 1). 

Input TFs influence all genes within operons 

When considering the TFN topology, we have accounted for TF-gene interactions both between the 

input TF and the first gene of an operon or transcription unit (TU), but we also accounted for the 

interactions between the same input TF and the other genes of the operon or TU (illustration of TUs 

and operons in Supplementary Figure S11B, which follows the standard definition of a group of two or 

more genes transcribed as a polycistronic unit (1)).  

If we had not account for all these interactions, we would have failed to correlate the activities of 

genes interacting with each other. For example, consider an operon consisting of genes X1 and X2 

and assume that gene A represses X1 and X2, by repressing their common promoter. If X1 is an input 

TF to gene C, while X2 is an input TF to gene D, then gene A should indirectly affect both genes C and 

D. If we had ignored the interaction between A and X2, because it is not the first gene in its operon, 

we would be able to explain why A affects C, but we would fail to explain why A affects D.  

Further, many operons contain sets of genes whose RNAs code for subunits of the same protein 

complex (70,71). However, the opposite is also true and, the fraction of complexes encoded by 

proteins from different TU’s is higher than those encoded from the same operon (72). This supports 

the need to track interactions between input TFs and genes in any position in an operon or TU. 

To test if the positioning of the genes in the operon influenced their responsiveness to their input 

TFs, as a case study, we considered operons with 3 genes (which account for ~21% of all operons 

with more than 1 gene (34)). We found that the positioning of the genes did not affect significantly 

how they relate to the input TFs (Supplementary Figure S16). We obtained similar results for TUs 

(Supplementary Figure S17). The tests of statistical significance are shown in Supplementary Tables 

S9-S12. 

Genes expressing TFs are correlated with their nearest neighbour output genes  
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In general, we expect that, after a genome-wide perturbation, signals will propagate between nearest 

neighbour genes. Depending on the measurement time and given the diversity in the kinetics of 

different genes and RNA and protein lifetimes, this should result in some signals propagating between 

genes considerably distanced in the TFN, with the number of such signals decreasing rapidly with the 

path length between the pairs of genes considered. 

Given the interval between the shift in RNAP levels and the sampling for RNA-seq (Figure 1), we 

hypothesized that, on average, at 180 min (i.e., ~70 min after the RNAP changed relative to the 

control), mostly only genes directly linked by input TFs should exhibit correlated responses. Results in 

Figure 4C support this. Genes distanced by 1 input TF (L = 1, i.e., directly linked) have related |LFC|s, 

while genes distanced by 2 input TFs in the TFN have much less correlated responses (albeit still 

statistically significant). Finally, we found no correlations between the |LFC|s, of genes distanced by 3 

input TFs (Supplementary Figure S18).  

Noteworthy, the lack of correlation between genes separated by L > 1 could also be partially due 

to interference from the TFs of the ‘intermediary’ genes between the gene pairs. However, this is only 

a possibility when all input TFs involved can change in abundance in less than 60 min, which is likely 

uncommon in E. coli. This is supported by the RNA-seq data at 125 min after medium dilution 

(Supplementary Figure S19), where even direct input TFs and output genes are weakly correlated, 

suggesting lack of time for most signals to have propagated between nearest neighbours 

(Supplementary Figure S19). 

The number of input TFs of a gene correlates to the magnitude of its transcriptional response 

We investigated if the genes mid-term responses are sensitive to their number of input TFs, KTF 

(Supplementary Figure S20A). When averaging the results from the three perturbations (Figure 4D), 

we found that the average of the absolute LFCs, 
LFC

 , increases with KTF, whether considering all 

genes or just the DEGs (Figure 4D, Supplementary Figure S21 and Supplementary Tables S13). This 

holds true even for non-DEGs (Figure 4D), which justifies also considering these genes when 

studying the genome-wide effects. In agreement, we found no trend in the fraction of DEGs when 

plotted against KTF (Supplementary Figure S23). 

For comparison, neither at 60 min nor 125 min do the genes’ response and their number of input 

TFs correlate (Supplementary Figures S14 and S15 and Supplementary Tables S7 and S8). 

We verified that the relationship between 
LFC

  and KTF at 180 min is not an artifact caused by a 

decrease in cohort size with KTF. We used bootstrapping to obtain cohorts of randomly sampled 

genes with increasing KTF (10000 cohorts). We imposed a cohort size equal to the number of genes 

with KTF = 7 (27 genes). The new, estimated 
LFC

  was always within the SEM of the 
LFC

  of the 

cohorts of all genes (Figure 4D). Finally, we again verified that considering only the first gene of each 

operon does not affect how 
LFC

  and KTF relate (Supplementary Figure S25). 
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The correlation between input and output genes responses decreases with the number of 

input TFs 

Most input TFs discernibly affect the output genes (Supplementary Figure S14), except when KTF > 5 

(perhaps due to saturation).  

Nevertheless, the correlation between inputs and outputs appears to be decreasing with KTF, as 

the average slopes of the fitted lines between |LFC| of the output and |LFC| of each input 

(Supplementary Figure S14) decreased with the KTF of the output gene (Supplementary Figure S20B), 

as did the R2 between input-output pairs (Supplementary Table S7).   

This could explain why, when plotting |LFC| against the RNAP concentration, there is a weak trend 

towards increased slope with KTF (Supplementary Figures S20C and S21) 

The variability in single-gene |LFC| increases with KTF 

We also investigated if the variability in |LFC|s, as quantified by its standard deviation 
LFC

 , relates 

with KTF. There should exist (at least) four sources of this variability: a) RNA-seq measurement noise 

(73,74); b) intrinsic and c) extrinsic noise in gene expression (75,76), and d) TF and non-TF 

dependent regulatory mechanisms.  

Examples of the variability are shown in Supplementary Figures S24C (genes with null KTF), S24F 

(genes with two global regulators, FNR and ArcA) and S24D and S24E (genes controlled by the 

global regulators FIS or CRP) (see also Supplementary Table S14). Overall, from a genome-wide 

perspective, 
LFC

  increases with KTF (Supplementary Figure S24A) in a similar manner as does 

LFC
 , and the two values are also related (Supplementary Figure S24B).   

Other topological features of the TFN do not influence mid-term responses  

Globally, the TFN of E. coli has in- and out-degree distributions that are well fit by power laws 

(Supplementary Figures S12E1, S12E2, S12F1 and S12F2) (77,78), which may explain its relatively 

short mean path length (Supplementary Figure S12G and Supplementary Table S5).   

Having established a relationship between the response kinetics and the indegree of the TFN, we 

next searched for correlations between |LFC| and other single-gene topological traits (Methods 

section Transcription Factor Network of Escherichia coli), namely, the average shortest path length, 

betweenness, closeness and stress centrality, clustering coefficient, eccentricity, out-degree, 

neighbourhood connectivity, and edge-count (51). Of these, only the clustering coefficient was 

statistically correlated with the |LFC| (p-value < 0.1) (Supplementary Table S20). However, it should 

not be influential, since the corresponding R2 is nearly zero (R2 = 0.01).  

The numbers of activating and repressing input TFs differ in most genes 

In our original hypothesis, the mid-term response (|LFC|) of a gene should follow from the bias in the 

numbers of activators and repressors in its set of input TFs (Figure 1B4 and Supplementary Figure 
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S11A). In detail, we predicted that if the sum of regulatory effects ( r ) of the input TFs (i.e., bias 

b r=  ) is null (unbiased), then the gene should have weak or zero mid-term LFC. Also, the |LFC| 

should increase with b . 

We tested this hypothesis by extracting information on the input TFs and corresponding r  values 

for each gene from RegulonDB. We set r  of an input TF to +1 if it is activating, to -1 if it is repressing, 

and to 0 if it is either dual or unknown (Supplementary Figure S12B), and we obtained the absolute 

sum of the regulatory effects of the input TFs for each gene: b .  

From the data in RegulonDB, while the gene-TF interactions that are repressions and activations 

exist in similar numbers, the numbers of repressor TFs exist in larger numbers (Supplementary 

Figures S12A-S12C). 

Also, of the genes with input TFs, most (~85%) have a non-zero b  (Supplementary Figure S12D 

and Supplementary Table S16). This can explain why so many are mid-term responsive (Figure 3C), 

even though the genome-wide numbers of activation and repression interactions are similar 

(Supplementary Figure S12B). This may also explain why genes with KTF ≥ 1 have higher |LFC| than 

genes with KTF = 0 (Figure 4A). 

The bias in the input TFs follows the number of input TFs 

Using information from RegulonDB, we found that the mean bias, 
b

 , increases with KTF (Figure 5A, 

light blue), except for KTF > 5, which includes only ~64 out of 4045 genes (Supplementary Table S17). 

The same is observed if considering only the first gene of each operon (Supplementary Figure S29).  

To test if these results were affected by local topological specificities, we employed an ensemble 

approach (Supplementary Results section Estimation of the expected 
TFK  and

b
  using an 

ensemble approach) which reduces their influence in the estimations (79). We sampled genes (with 

replacement) to form cohorts with a given average KTF (from 1 to 5, due to insufficient samples for 

higher KTF). Since this caused the relationship between 
b

  and KTF to be more stable (Figure 5A), 

from here onwards, we use the ensemble approach to study the influence of the logical and 

topological features on the response’s dynamics to the RNAP shifts. 

The bias of the sets of input TFs can explain the mid-term responses of individual genes 

From the data in RegulonDB and using the ensemble approach (Supplementary Results section 

Estimation of the expected 
TFK  and

b
  using an ensemble approach), we formed random cohorts of 

genes with an imposed average b . Next, from the mid-term RNA-seq data, we calculated the 

average 
LFC

  of the set of cohorts with a given 
b

 . We found that 
LFC

  increases with 
b

  Figure 

5B.  
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Interestingly, 
b

  and 
TFK  are strongly correlated in the TFN of E. coli (Figure 5C). To assert 

which one controls 
LFC

 , we assembled cohorts differing in 
TFK , but not in 

b
 . In these, 

LFC
  

does not increase with 
TFK  (Figure 5D). We also assembled cohorts differing in 

b
 , but not in 

TFK . 

In these, 
LFC

  increases with 
b

  (Figure 5E). Thus, the increase of 
b

  with 
TFK  (Figure 5C), is 

what explains the increase in 
LFC

  with KTF (Figure 4D). 

Finally, for comparison, we also investigated the relationship between 
b

  and 
TFK  prior to the 

perturbation and in the short-term (at 60 min and at 125 mins after shifting the medium, respectively 

Figure 1A). From Figure 5F, first, the 
LFC

  at 125 min is stronger than at 60 min. This agrees with 

the expectation that shifts in RNAP suffice to shift the |LFC| of many genes. Second, the 
LFC

  at 180 

min is stronger than at 125 min. This agrees with our expectation that, at 125 min, input TFs numbers 

have not yet changed significantly in order to enhance the |LFC| of their output genes (Figure 1). 

RNA numbers follow the RNAP concentration, not the medium composition 

We next increased growth medium richness, instead of diluting it (Methods section Bacterial strains, 

media, and growth conditions and curves). As before, we limited this so as to not alter growth rates 

significantly in the first 180 min (Figures 6A and 6B), while altering RNAP levels (Figure 6C). 

As before (Figure 4C), at mid-term, only genes directly linked by input TFs showed correlation in 

their |LFC| (Figures 6D1-6D3 and Supplementary Figure S32), supporting the previous assumption 

concerning the kinetics of transcription, translation, and signals propagation via shifts in input TFs 

numbers (Figure 1). 

Meanwhile, in contrast to above, shifting cells from LB1.0x to the richer LB1.5x medium was 

accompanied by a decrease in the RNAP concentration (Figure 7A), followed by substantial 

alterations in the RNA populations, with a large number of DEGs and high 
LFC

 (Figures 7B and 7C, 

respectively). Also, as previously, in the mid-term, genes with input TFs reacted more strongly (Figure 

7C).   

These results support the initial assumption that the changes in RNA abundances follow the RNAP 

concentration, rather than the medium richness. 

Further increases in medium richness do not decrease RNAP concentration and RNA numbers 

also do not change 

Finally, we further increased growth-medium richness (to LB2.0x and to LB2.5x). This caused no 

significant change in RNAP levels and concentration (Figures 6C and 7A). In agreement with the 

assumption that the shifts in the RNAP concentration was the cause for the short-term changes in 

RNA abundances, which then cause the mid-term changes, we observed no significant changes in 
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DEGs or 
LFC

  at mid-term, when compared with the LB1.5x condition (Figures 7B and 7C, 

respectively).  

Also, as before, TF

LFC
  follows 

b
  (Figures 7D and Supplementary Figure S33) and it does so 

almost identically in the three perturbations, as expected from the original assumptions (Figure 1). 

DISCUSSION 

We investigated if the mid-term responses to genome-wide perturbations of E. coli’s TFN are 

mediated by its topology and logic. We diluted LB medium since this dramatically and reproducibly 

affects the RNAP concentration (26,27). The increasingly strong nature of the dilutions facilitated the 

verification of how the RNAP concentration and single-gene, mid-term |LFC|s related. We focused on 

mid-term transcriptional responses (Figure 1), since short-term responses are unlikely to have been 

influenced by the TFN due to protein folding and maturation times, etc. Meanwhile, long-term 

responses were most likely affected by the TFN. However, dissecting them would have been onerous, 

due to the complicating effects of loss, backpropagation, and coalescence of possibly dozens of 

signals from origins other than direct input TFs.  

Since we lack information on the affinity between each gene and their input TFs, on how the input 

TFs operate, and on how the de novo presence of an input TF alters the binding or activity of other 

input TFs on the same promoter, we would have failed to predict the behaviour of individual genes 

with accuracy. As such, we instead predicted the responses of gene cohorts, whose behaviour is less 

influenced by particular single-gene features (other than the features specific to the cohorts), as these 

should average out at the cohort level. Further, as in (18), we were only able to correlate absolute 

LFCs of input and output genes (Figure 4B), likely due to limitations in RNA-seq technology and the 

analysis, and/or missing information on the TFN. Nevertheless, the present information on input TFs 

and their regulatory effect sufficed to relate the TFN with the genes’ response. 

From the RNA-seq data on three time points, we provided evidence that both the TFN and the 

RNAP affect the results at mid-term (~180 min), and not before that. In addition, while other factors 

also influenced genes’ behaviour at mid-term, including single-gene features, they only had minor, 

local effects. In detail, first, we could not find evidence of GRs (including σ38) and (p)ppGpp being 

material in the global mid-term behaviour (although (p)ppGpp may be significant in the short-term 

response). Second, we excluded the medium as directly influencing RNA abundances. Third, we 

excluded global network parameters, other than KTF, as being influential as well since none of them 

correlated to single-gene responses. Fourth, we did not find evidence for significant translational or 

post-translational regulation, because RNA and protein abundances correlated well, and so did the 

RNA levels of input TFs and of output genes. Finally, sRNAs did not respond atypically to the RNAP 

shifts neither in the short-term, nor in in the mid-term. 

We have made six key observations on the influence of the logic and topology of the TFN on the 

mid-term response. First, genes without input TFs were less responsive. Second, the |LFC| of input 

and output genes correlated positively. Thus, we argue that, on average, input TFs enhanced the 
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|LFC| of individual genes. Third, only nearest neighbour genes in the TFN consistently correlated in 

|LFC|’s, suggesting that either the effects of the shift in RNAP only reached nearest neighbour genes 

or they ‘dissipated’ beyond that. However, since the correlations between nearest neighbours were 

weaker in the short-term than in the mid-term, we expect the first possibility to be more likely. This 

observation also suggests that there is a degree of genome-wide homogeneity in how long input TF 

amounts take to change (likely due to physical limitations on the rates constants controlling bacterial 

gene expression), in agreement with the constraints on timing variability reported in (6). Fourth, the 

behaviour was orderly (rather than chaotic), with most genes responsive to the weak perturbations 

also responding to the stronger perturbations, suggesting the existence of features (on genes and/or 

the TFN) affecting the responsiveness (Supplementary Figure S34). Similarly, there is a good overlap 

between the sets of genes responsive in the short and in the mid-term, but weak overlap to those 

responsive prior to the perturbation (Supplementary Figure S35). Fifth, on average, as KTF increased, 

the correlation between the input and each output gene decreased, which is likely unavoidable and 

may be a limiting factor in how many input TFs genes can have. Finally, it is 
b

  that (partially) 

controls the genes’ responsiveness to the stress, while the apparent relationship between 
TFK  and 

LFC
  is only due to the linear correlation between 

b
  and 

TFK . Nevertheless, the possible values 

of 
b

  are limited by the values of 
TFK . 

These observations are evidence that the genome-wide responsiveness to this stress depends on 

the TFN structure, in agreement with past studies (9,20,21,67,80). Expanding this research may thus 

inform on how to improve the robustness and plasticity of synthetic circuits. Further, as suggested in 

(20), bacteria subjected to stress, rather than under optimal conditions, may be a better proxy of their 

state when infecting a host. Thus, imposing stresses may be a valuable strategy to identify new target 

genes for antibiotics that act by disrupting bacterial adaptability to new conditions.  

The use of medium dilution as a genome-wide stress is a good proxy for nutrient imbalance, and 

we identified ~900 responsive genes, even for moderate nutritional stress, of which only 58 are 

essential under optimal conditions. It is plausible that some of the responsive genes, particularly those 

responsive to all 3 medium dilutions, may be essential to adapt to poorer media, and thus are 

potential new drug targets. Conversely, it may be possible to tune these genes to assist in the 

performance of metabolic tasks, without disturbing the basic biology of the cells. As such, they may 

be appropriate targets for modifications that could improve the yield and sustainability of bio-industrial 

processes.  

Finally, our findings may assist in developing new models of single-gene, mid-term transcriptional 

responses to genome-wide perturbations, where short-term responses are controlled by single-gene 

features, while mid-term responses are also influenced by the topology and logic of the TFN.  Such 

large-scale TFN models could be of use in exploring how natural TFNs perform complex 

transcriptional programs, responsive to large-scale stresses, such as environmental shifts and 

antibiotics. Further, they may assist in identifying the critical elements of the TFN during stress 
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responses. We hypothesize that the combined regulatory effect of the input TFs of E. coli genes (here 

quantified by 
b

 ) is critical in the responses to various different genome-wide stresses. These efforts 

will be facilitated by ongoing information gathering on single-gene features (34,81-83), including on 

microorganisms other than E. coli.  
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FIGURES LEGENDS 

 

 
 

Figure 1. Expected short- and mid-term effects of quick downshifts of the RNAP amounts on 

the TFN of E. coli. 
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(A) Example changes in mean RNAP ( RNAP ) and 68% CB (shadow) relative to control (LB1.0x) after 

diluting the medium (LB0.5x). Vertical red lines mark when the transcriptome measurements at 60 min, 

125 min, and 180 min. Given the RNAP levels and the kinetics of RNA and protein abundances, these 

moments are named ‘prior to RNAP changes’ and ‘short-’, and ‘mid-term’ changes in RNA 

abundances. 

(B1) Known TF-gene interactions (red and green lines, if repressing and activating, respectively) and 

genes with (pink) and without (blue) input TFs of E. coli.   

(B2) Illustration of the effects of a local topology of activating (green) and repressing (red) input TFs 

on mid-term responses. Genes (balls) are coloured (blue, yellow, and green) according to the events 

in B4. 

(B3) Data collected on the genome-wide kinetics as well as data collected on the TFN structure. 

(B4) Following a medium dilution, intracellular RNAP concentrations (black arrow) decrease after a 

time lag, and RNA abundances (red arrow) will decrease accordingly. Compared to when at ~0 min, 

the RNAP at ~120 min and corresponding RNAs at ~125 min should be lower (25,28). Given 

translation times (~50 min (29-31)), at ~175 min, the protein abundances, including input TFs, coded 

by the perturbed RNAs (green arrow) should differ as well. Fluctuations in these input TFs 

abundances will then propagate to nearest neighbour ‘output’ genes, further shifting their RNA 

abundances (blue arrow) depending on whether the input TF is an activator or a repressor. Finally, 

the yellow arrow represents (not measured) long-term changes (~230 min or longer). We performed 

RNA-seq at ~60 min (prior to RNAP changes), ~125 min (short-term RNA changes), and ~180 min 

(mid-term RNA changes, affected by input TFs). Finally, the green dashed line marks when the RNAP 

level already differs significantly from the control (see example Figure 1A).  

(C1) Illustration of biases in sets of input TFs of individual genes. Considering TF-gene interactions as 

either repressions (regulatory effect of -1) or activations (regulatory effect of +1), the overall effect of a 

set of input TFs during these stresses should be predictable from the sum of the input TFs regulatory 

effects, named ‘bias’, ( b ). Regulatory effects obtained from RegulonDB. 

(C2) Example average response (
LFC

  from RNA-seq) at 180 min of gene cohorts with a given 
b

 . 

Figures created with BioRender.com.  
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Figure 2. Cell growth and morphology, and RNAP concentration after medium dilutions. 

(A) Growth curves from OD600 measured every 10 min (Methods section Bacterial strains, media, and 

growth conditions and curves). The vertical dashed red lines mark when RNA-seq was performed. 

After ~180 min, cells subject to different dilutions (LBmx) start differing in growth rates. 

(B) Mean single-cell RNAP-GFP fluorescence relative to the control (LB1.0x),  RNAP FITC H − , measured 

every 15 min for 210 min by flow-cytometry (FITC-H channel). The mean cellular background 

fluorescence in each condition was subtracted (Methods section Flow-cytometry). The vertical dashed 

red lines mark when RNA-seq was performed. 

(C) Growth rates at 180 min after medium dilution. The inset shows the corresponding doubling times. 

(D) Mean single-cell RNAP levels (  RNAP FITC H − ) at 180 min relative to the control (Methods section 

Flow-cytometry).  
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(E)  RNAP FITC H −  plotted against  RNAP WB  (RNAP levels measured by Western Blot, Methods section 

Protein isolation and western blotting). The inset shows  RNAP WB  alone.  

(F) Mean cell area relative to the control, extracted from phase-contrast images (~2000 cells per 

condition) (Methods section Microscopy). The inset shows the mean cell width relative to the control.  

(G) Mean (relative to the control) Width, FSC-H and SSC-H obtained by flow-cytometry (Methods 

section Flow-cytometry).  

(H) Mean (relative to the control) FSC-H versus SSC-H in each condition, obtained from 3 biological 

replicates. The inset shows the mean ratio between the relative FSC-H and SSC-H.  

(I) Mean mCherry-tagged RpoS (
  PE Texas ed HRpoS R − −

) concentration in the stationary growth phase 

relative to the exponential growth (set to 1), as measured by mean single-cell fluorescence (PE-Texas 

Red channel, Methods section Flow-cytometry) over mean cell area (  cell area ) (Methods section 

Microscopy), after subtracting mean background fluorescence(s). The inset shows the same, but after 

each medium dilution. 

Measurements in (D)-(I) taken 180 min after medium dilution. Data points are from 3 biological 

replicates (except for (A) and (B), where 6 replicates were used).   stands for mean relative to the 

control.  In (A)-(C) error bars represent the SEM. In (B) and (D)-(I), black error bars are the SEM and 

red error bars are the 95% confidence bounds (CB) of the SEM. In (C), (E) and (H), the best fitting 

lines and their 68% CB and statistics (R2 and RMSE), and P-values at 10% significance level) were 

obtained as described in Methods section Statistical tests c. 
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Figure 3. Genome-wide effects on the transcriptome of diluting the medium.  

(A) Ratio between the RNAP measured by FITC-H (  RNAP FITC H − ) at 180 min (Methods section Flow-

cytometry), and the mean cell area (  cell area ) obtained by phase-contrast microscopy (Methods 

section Microscopy). Values relative to the control (LB1.0x).  

(B) 
LFC

  in each medium.  

(C) Venn diagram of the number (and percentage relative to the total number of genes) of DEG. In (A) 

and (C), black error bars are the SEM, while red error bars are the 95% CB of the SEM.  

(D) Violin plot with the maximum, minimum, median, interquartile ranges, and probability density of 

the distributions prior to RNAP changes (LB0.5x at 60 min) and the subsequent short- (LB0.5x at 125 min) 

and mid-term (LB0.5x at 180 min) responses to shifting RNAP. The inset shows 
LFC

  of the 

distributions.  
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Figure 4. Genome-wide propagation of the effects of shifting RNAP in the TFN.  

(A) 
LFC

  of N genes with and without input TFs (KTF > 0 and = 0, respectively). On the top of each 

bar is the number of DEGs in each set.  

(B) |LFC| of genes with KTF = 1 versus the |LFC| of genes coding their direct input TFs. Data from the 

LB0.5x shift. The red line is the best fit. The blue line is the null-model fitting lines and was obtained as 

described in Methods section Statistical tests c. The green line is the best fit after sorting the input-

output pair values to maximize the correlation. Shadows are their 68% CB. The equations of the red 

fitting lines with ‘’ inform on the standard error of the slope.  

(C) Scatter plots between |LFC| of output and input genes distanced by a minimum path length L of 1, 

2, and 3 input TFs (edges) in the TFN, respectively (data from LB0.5x). Only for L = 1 do the activities 

of output and input genes correlate (P-value1 > 0 and R2 > 0).  
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(D) 
LFC

  of all genes, DEG, non-DEG, and cohorts of randomly selected genes of the same size 

(‘same sized cohorts’) for KTF = 0 to 7, using merged data from all shifts (LB0.75x, LB0.5x and LB0.25x). 

Black error bars are the SEM and red error bars are the 95% CB of the SEM. Best fitting lines and 

68% CB obtained using FITLM (MATLAB). p-values, obtained using the null hypothesis that the data 

is best fit by a horizontal line, are not rejected at 10% significance level. (B) and (C) do not include a 

few data points to facilitate visualization. See Supplementary Figures S14 and S18 for complete data.  

 
 

Figure 5. Effect of biases 
b

  on the magnitude of the response of output genes.  

(A) 
b

  as a function of KTF (light blue) of gene cohorts with all genes (light blue) and of gene cohorts 

assembled using the ensemble approach (dark blue). Supplementary Table S17 shows the fractions 

of genes with equal b  and KTF. Black error bars are the SEM, and red error bars are the 95% CB of 

the SEM. Dark blue bars not shown for KTF > 5 due to small sample sizes. 

(B) Mid-term 
LFC

  as a function of 
b

 , obtained using the ensemble approach (Supplementary 

Results section Estimation of the expected 
TFK  and 

b
  using an ensemble approach, 

Supplementary Figures S30 and S31 and Supplementary Table S18). 

(C) 
b

  plotted against the corresponding 
TFK , mean of KTF of the cohorts in (B). The inset shows 

the inverse correlation plot for the cohorts in Supplementary Figure S30, assembled based on 
TFK  
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(Supplementary Results section Estimation of the expected 
TFK  and 

b
  using an ensemble 

approach). Shown are best fitting lines and 68% CB (shadow areas, barely visible), R2, RMSE, and P-

value (Methods section Statistical tests c).  

(D) 
LFC

  of gene cohorts with increasing 
TFK , but constant 

b
  (from 1 to 5) (Supplementary 

Results section Estimation of the expected 
TFK  and 

b
  using an ensemble approach).  

(E) 
LFC

  of gene cohorts with increasing 
b

 , but constant 
TFK  (from 1 to 5) (Supplementary 

Results section Estimation of the expected 
TFK  and 

b
  using an ensemble approach).  

(F) 
LFC

  as a function of 
b

  prior to RNAP changes (60 min) as well as the short-term (125 min) 

and the mid-term responses (180 min) to RNAP changes when shifting to LB0.5x. 

In (D) and (E) the data is merged from the 3 conditions corresponding to (B). In all figures the error 

bars are the SEM. Since the 3 conditions differ slightly in mean values (Figure 5B), the SEM is larger 

than when observing each condition separately. 

 
Figure 6. RNAP levels following increasing medium richness and corresponding relationships 

between |LFC|s of pairs of genes separated by specific path lengths, L.   

(A) Growth curves from OD600 assessed every 10 min (Methods section Bacterial strains, media, and 

growth conditions and curves), following each medium shift. 

(B) Growth rates at 180 min after medium enrichment. The inset shows the corresponding doubling 

times. 
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(C) Mean RNAP levels relative to the control estimated from single-cell RNAP-GFP fluorescence 

intensities (FITC-H) (  RNAP FITC H − ).  

(D1-D3) Scatter plots between absolute LFC (|LFC|) of outputs and corresponding input genes 

distanced by L (path length) of 1, 2, and 3 transcription factors, respectively.  Data from the LB2.5x 

condition. Shown are the best fitting line and its 68% CB (blue shadow), and the R2 and RMSE of the 

fitted regression line, along with its p-value at 10% significance level under the null hypothesis that 

this line is horizontal.  

From (A) to (C) the black error bars are the SEM and red error bars represent the 95% CB of the SEM. 

 
Figure 7. Genome-wide effects of increasing medium richness.  

(A) RNAP concentrations relative to the control, estimated from  RNAP FITC H −  divided by mean cell 

area (  cell area ). 

(B) Venn diagrams of the DEG.  
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(C) 
LFC

  of N genes with KTF equal to and larger than 0, following each medium shift. Above each 

bar are the number of DEG.  

(D) 
LFC

  as a function of 
b

  after the growth-medium shifts. 
LFC

  obtained using the ensemble 

approach (Supplementary Results section Estimation of the expected 
TFK  and 

b
  using an 

ensemble approach, Supplementary Figure S33). Each blue cross is the average outcome from up to 

24400 cohorts of 10 genes. In (A) and (C), the black error bars are the SEM and the red error bars 

are the 95% CB of the SEM. In (D), the small error bars are the SEM (most not visible).  
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