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ABSTRACT

The robustness and sensitivity of gene networks to environmental changes is critical for cell survival.
How gene networks produce specific, chronologically ordered responses to genome-wide
perturbations, while robustly maintaining homeostasis, remains an open question. We analysed if
short- and mid-term genome-wide responses to shifts in RNA polymerase (RNAP) concentration are
influenced by the known topology and logic of the transcription factor network (TFN) of Escherichia
coli. We found that, at the gene cohort level, the magnitude of the single-gene, mid-term
transcriptional responses to changes in RNAP concentration can be explained by the absolute
difference between the gene’s numbers of activating and repressing input transcription factors (TFs).
Interestingly, this difference is strongly positively correlated with the number of input TFs of the gene.

Meanwhile, short-term responses showed only weak influence from the TFN. Our results suggest that
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the global topological traits of the TFEN of E. coli shape which gene cohorts respond to genome-wide

stresses.

INTRODUCTION

Gene regulatory networks (GRNSs) receive, process, act upon, and send out information, while being
robust to random fluctuations. How signals targeting one to a few genes are processed is relatively
well understood (1,2). Meanwhile, many cellular environments fluctuate (sometimes unpredictably) in
nutrient availability, pH, temperature, salts, community of other cells or species they live with, etc.,
which may cause genome-wide stresses. We investigate how GRNs produce chronologically ordered
responses to genome-wide perturbations, while robustly maintaining homeostasis.

Evidence suggests that genome-wide stresses initially perturb hundreds to thousands of genes (3)
but are quickly processed. As a result, after a transient period, only specific gene cohorts of tens to a
few hundred genes (4,5) (usually sharing common feature(s)) participate in the responsive short-,
mid- and long-term transcriptional programs (6). For example, when Escherichia coli suffers a cold
shock, a specific cohort exhibits a fast, short-term response (~70 genes), while another has a longer-
term response (~35 genes), with the rest remaining relatively passive (7,8). Since cells exhibit
predictable, temporally ordered, beneficial phenotypic changes, these response programs have likely
been positively selected during evolution.

It has been shown that global regulators (9-12), DNA supercoiling (13) and small RNAs (14),
among other, can select large cohorts of stress-specific, responsive genes. It was also reported that
60%-90% of E. coli genes respond to changing growth conditions following a constant global scaling
factor (15). Further, there is evidence that the effects of RNA polymerase (and other global regulators)
can be separate from the effects of input TFs during genome-wide responses, using fluorescent
reporters and small circuits (16,17).

Nevertheless, establishing whether and how the topology and logic of transcription factor (TF)
networks (TFN) affect genome-wide responses remains challenging (18), despite some successes
(19-22). These responses are most likely controlled, since cells exhibit predictable, ordered
responses to natural genome-wide stresses (e.g., shifts in temperature or in growth-medium
composition). The evolved features of GRNs that facilitate such outcomes remain unidentified, but
their large-scale topology should be a key player.

To investigate the influence of the topology and logic of transcription factor (TF) networks (TFN) on
large transcriptional programs, we studied what occurs following genome-wide perturbations. For this,
we considered that, in E. coli, the concentration of the key genome-wide regulator, the RNA
Polymerase, RNAP, naturally differs with medium composition (23). Also, it is well established how
transcription kinetics differ according to RNAP concentration at the single-gene level (24,25), from
which it is to be expected that changes in the latter should have genome-wide effects. We thus
increasingly diluted media to alter systematically and rapidly (26,27) the amount of RNAP (illustrated
in Figure 1A), and measured the genome-wide, short- and mid-term changes in transcript

abundances.
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Decreases in RNAP levels should, in the short-term, cause quick genome-wide decreases in
transcription rates, and thus in RNA abundances (Figure 1Bi, Supplementary Results section
Expected effects of shifting RNA polymerase concentration on a gene’s transcription dynamics). Such
shifts, likely diverse in magnitudes, should then cause downshifts in the corresponding protein
abundances. Thus, in the case of input TFs, their ‘output’ genes will, later on, be affected as well
(Figure 1B2), causing further (here named ‘mid-term’) changes in their RNA abundances (Figure 1Ba).
Meanwhile, the short-term changes mostly likely are only affected by the genes’ individual features,
since the protein abundances have not yet changed significantly in the cells.

We focused on the mid-term changes (measured by RNA-seq, Figures 1A and 1B4, dashed line).
Specifically, we hypothesized that, genes will have their RNAs further decreased or, instead,
increased, depending on whether their input TFs are activators or repressors, respectively. In detail,
genes with multiple input TFs will have a mid-term response strength correlated to the difference
between the numbers of its activator and repressor input TFs (Figures 1C1 and Cz). This difference is
here named ‘bias’ in the regulatory effects (activation or repression) of those input TFs of a gene.

At the single-gene level, we expect that the strength of the mid-term change in RNA abundances
will be influenced by the strength of the shift in RNAP and input TFs concentrations, as well as by the
specifics features of each gene and corresponding input TFs (bindings affinities, initiation kinetics,
etc.). However, many of these features are largely unknown. As such, here we only studied
empirically if the average responses of cohorts of genes can be explained by the mean bias in the
regulatory effects of their input TFs, along with the strength of the shift in RNAP concentration (Figure
1C>). In detail, we interpret the data on the genome-wide kinetics based on the information on the
TFN structure (logic and topology) (Figure 1Bs3).

E. coli was used to validate this hypothesis since its gene expression mechanisms have been
largely dissected and the kinetics of transcription, translation, and RNA and protein degradation are
well known (26,32,33). Also, its TFN is extensively mapped, with RegulonDB (34) informing on ~4700
TF interactions between ~4500 genes (and on their activating or repressing regulatory roles).
Consequently, since we know the regulatory network a priori, instead of using the data on gene
expression for network inference, we use it solely to quantify the genes’ responsiveness with respect
to the TFN topology and logic. We then investigate whether the mid-term responsiveness to shifting
RNAP concentrations is in accordance with the presently known topology and logic of the TFN, as
hypothesized (Figures 1Bi-1B4). Supplementary Table S1 has a description of the variables used

throughout the manuscript.
MATERIAL AND METHODS
Bacterial strains, media, growth conditions and curves

We used wild type MG1655 cells as a base strain to study the transcriptome. In addition, we used an
RL1314 strain with RpoC endogenously tagged with GFP (generously provided by Robert Landick) to
measure RNAP levels, and 20 YFP fusion strains with genes endogenously tagged with the YFP
coding sequence (25) to measure single-cell protein levels (Supplementary Table S4). Further, we
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used a strain carrying an rpoS::mCherry gene to measure RpoS levels (generously provided by
James Locke), shown to track RpoS (35). In addition, we measured the protein expression levels of
the spoT gene, which is one of the genes responsible for (p)ppGpp synthesis (3), using the YFP
fusion library. Finally, we measured the single-cell levels of the crl gene using a low-copy plasmid
fusion library of fluorescent (GFP) reporter strain (36).

From glycerol stocks (at - 80 °C), cells were streaked on lysogeny broth (LB) agar plates with
antibiotics and kept at 37 °C overnight. Next, a single colony was picked, inoculated into fresh LB
medium and, kept at 30 °C overnight with appropriate antibiotics and aeration at 250 rpm. From
overnight cultures (ONC), cells were diluted to 1:1000 in tailored LB media (see below) with antibiotics,
incubated at 37 °C with aeration, and allowed to grow until reaching an optical density of = 0.4 at 600
nm (ODe0o).

Using this protocol, to attain cells with different intracellular RNAP concentration, starting from LB,
we used tailored media, denoted as ‘LBiox, ‘LBo7sx, ‘LBosx’, ‘LBoz2sx’, ‘LBisx’, ‘LBzox’ and ‘LB2sx’
specifically, as in (26). Their composition for 100 ml (pH of 7.0) are, respectively: (LB1.ox) 1 g tryptone,
0.5 g yeast extract and 1 g NaCl; (LBo.7sx) 0.75 g tryptone, 0.375 g yeast extract and 1 g NaCl; (LBo.sx)
0.5 g tryptone, 0.25 g yeast extract and 1 g NaCl; and (LBo.25x) 0.25 g tryptone, 0.125 g yeast extract
and 1 g NaCl; (LBwsx) 1.5 g tryptone, 0.75 g yeast extract and 1 g NaCl; (LBzox) 2 g tryptone, 1 g
yeast extract and 1 g NaCl; (LB2:sx) 2.5 g tryptone, 1.25 g yeast extract and 1 g NaCl.

To measure cell growth curves and rates, ONC of the RL1314 strain were diluted to an initial
optical density at 600 nm (ODsoo) of = 0.05 into independent fresh media (LB1.ox, LBo.75x, LBo.5x, LBo.25x,
LBu1sx, LB2.oxand LBzsx). The cultures were aliquoted in a 24-well flat bottom transparent plate and
incubated at 37 °C with continuous shaking in a Biotek Synergy HTX Multi-Mode Reader. Growth was

monitored every 10 min for 10 hours.
Microscopy

To measure single-cell RNAP levels, ONC RL1314 cells were pre-inoculated into LBu1.ox, LBo.7sx,
LBo.sx and LBo.2sx media. Upon reaching mid-exponential growth phase, cells were pelleted by quick
centrifugation (10000 rpm for 1 min), and the supernatant was discarded. The pellet was re-
suspended in 100 pl of the remaining medium. Next, 3 ul of cells were placed in between 2%
agarose gel pad and a coverslip and imaged by confocal microscopy with a 100x objective (example
images in Supplementary Figure S1). GFP fluorescence was measured with a 488 nm laser and a
514/30 nm emission filter. Phase-contrast images were simultaneously acquired. MG1655 cells were
imaged to measure cell size in LB1ox, LBo.75x, LBosx, LBo.2sx, LB15x, LB2.0ox and LBzsx media. Finally,
MG1655 cells was also imaged in LB1ox during stationary growth. Finally, we imaged cells of the
YFP strain library to assess if their morphology and physiology were consistent with healthy cells

during measurements.

Flow-cytometry
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We performed flow-cytometry of RL1314 cells to measure single-cell RNAP over time. ONC were
diluted at 1:1000 into respective fresh media (LBiox, LBo7sx, LBosx and LBo.2sx) and grown as
described in Methods section Bacterial strains, media, and growth conditions and curves. Flow-
cytometry data was recorded every 30 min (3 biological replicates), up to 210 min. Data was also
captured in the mid-exponential phase (at 180 min), in the media studied (LB1.0ox, LBo.75x, LBo.5x, LBo.25x,
LB1sx, LB2.oxand LB2sx), with 3 biological replicates each. We used a similar protocol to perform flow-
cytometry of several strains of the YFP library (25) in LBiox and LBoz2sx (3 biological replicates,
Supplementary Table S4), including to measure single-cell SpoT levels in LB1.ox, LBo.7sx, LBo.5x, LBo.25x,
LBu1.sx, LB2.oxand LB2sx (3 biological replicates each).

Meanwhile, we measured single-cell levels of the crl gene in LBosx at 0 and 180 min, using a strain
from the GFP-promoter fusion library. Further, to measure rpoS levels, we performed flow-cytometry
of cells of the MGmCherry strain in LB1.ox, LBo.7sx, LBosxand LBo.2sx during the exponential (180 min)
and stationary growth phases (LB1.ox,14 hours after pre-inoculation). In these measurements, as well
as the measurements above, we recorded FSC-H, SSC-H and Width, to be used as proxies for cell
size and density (i.e., composition), as they are positively correlated with these features (37).

In addition, data from measurements of MG1655 cells were used to discount background
fluorescence from cells of the MGmCherry and the YFP strains. Similarly, measurements of the
W3110 strain were used to discount the background fluorescence from the RL1314 strain.

For performing flow-cytometry, 5 pl of cells were diluted in 1 ml of PBS, and vortexed. In each
condition, 50000 events were recorded. Prior to the experiments, QC was performed as
recommended by the manufacturer. Measurements were conducted using an ACEA NovoCyte Flow
Cytometer (ACEA Biosciences Inc., San Diego, USA) equipped with yellow and blue lasers.

For detecting the GFP and YFP signals, we used the FITC channel (-H parameter) with 488 nm
excitation, 530/30 nm emission, and 14 pl/min sample flow rate with a core diameter of 7.7 um. PMT
voltage was set to 550 for FITC and kept the same for all conditions. Similarly, to detect the mCherry
sinal, we used PE-Texas Red channel (-H parameter) having an excitation of 561 nm and emission of
615/20 nm and sample flow rate of 14 pl/min, with a core diameter of 7.7 ym. PMT voltage was set to
584 for PE-Texas Red and kept the same for all conditions. To remove background signal from
particles smaller than bacteria, the detection threshold was set to 5000. All events were collected by

Novo Express software from ACEA Biosciences Inc.
Protein isolation and western blotting

Western blotting was used to quantify relative RNAP levels of MG1655 cells (Supplementary Figure
S2 and Supplementary Table S2). Briefly, cells were diluted from ONC into respective fresh media
and incubated at 37 °C with aeration and grown until reaching an ODeoo = 0.4. Next, cells were
harvested by centrifugation (8000 rpm for 5 min) and pellets were lysed with B-PER bacterial protein
extraction reagent, added with a protease inhibitor for 10 min at room temperature (RT). Following

lysis, centrifugation was done at 14000 rpm for 10 min and the supernatant was collected. Next, the


https://doi.org/10.1101/2022.03.07.483226
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.07.483226; this version posted March 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

supernatant was diluted in 4X Laemmli buffer with B-mercaptoethanol and samples were boiled at 95
°C for 5 min.

Samples with ~30 pg of soluble total proteins were loaded on 4%-20% TGX stain-free precast gels
(Biorad). These proteins were then separated by electrophoresis and transferred on PVDF membrane
using TurboBlot (Biorad). Next, membranes were blocked with 5% non-fat milk at room temperature
(RT) for 1 h and probed with primary RpoC (B prime subunit of RNAP) antibodies at 1:2000 dilutions
(Biolegend) at 4 °C overnight. HRP-secondary antibody (1:5000) treatment was then done (Sigma
Aldrich) for 1 h at RT. Excess antibodies were removed by washing with buffer. The membrane was
treated with chemiluminescence reagent (Biorad) for band detection. Images were obtained by the
Chemidoc XRS system (Biorad) and band quantification was done using the Image Lab software
(v.5.2.1).

RNA-seq

a. Sample preparation

RNA-seq was performed thrice, for decreasing [LBo.7sx, LBosx, and LBo.2sx, at 180 min; LBo.sx at 60 and
125 min] and for increasing (LB1.sx, LB2.oxand LB2sx, at 180 min) medium richness relative to a control
(LB1.ox) (an independent control was used for each three sets of conditions). Cells from 3 independent
biological replicates of MG1655 in each modified medium were treated with RNA protect bacteria
reagent (Qiagen, Germany), to prevent degradation of RNA, and their total RNA was extracted using
RNeasy kit (Qiagen). RNA was treated twice with DNase (Turbo DNA-free kit, Ambion) and quantified
using Qubit 2.0 Fluorometer RNA assay (Invitrogen, Carlsbad, CA, USA). Total RNA amounts were
determined by gel electrophoresis, using a 1% agarose gel stained with SYBR safe (Invitrogen). RNA

was detected using UV with a Chemidoc XRS imager (Biorad).

b. Sequencing

i) Part 1: For shifts from LB1.ox to LBo.7sx, LBosx, and LBo.2sx, at 180 min

Sequencing was performed by Acobiom (Montpellier, France). The RNA integrity number (RIN) of the
samples was obtained with the 2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA) using
Eukaryotic Total RNA 6000 Nano Chip (Agilent Technologies). Ribosomal RNA depletion was
performed using Ribo-Zero removal kit (Bacteria) from Illumina. RNA-seq libraries were constructed
according to the lllumina's protocol. Samples were sequenced using a single-index, 1x75bp single-
end configuration (~10M reads/library) on an lllumina MiSeq instrument. Sequencing analysis and

base calling were performed using the Illumina Pipeline. Sequences were obtained after purity filtering.

ii) Part 2: For shifts from LBiox to LB1isx, LB2ox, and LB2sx at 180 min, and from LB1ox to
LBgsx at 60 and 125 min

Sequencing was performed by GENEWIZ, Inc. (Leipzig, Germany). The RIN of the samples was
obtained with the Agilent 4200 TapeStation (Agilent Technologies, Palo Alto, CA, USA). Ribosomal
RNA depletion was performed using Ribo-Zero Gold Kit (Bacterial probe) (lllumina, San Diego, CA,
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USA). RNA-seq libraries were constructed using NEBNext Ultra RNA Library Prep Kit (NEB, Ipswich,
MA, USA). Sequencing libraries were multiplexed and clustered on 1 lane of a flow-cell.

For shifts from LB1ox to LB1sx, LB2ox, and LB2sx at 180 min, samples were sequenced using a
single-index, 2x150bp paired-end (PE) configuration (~350M raw paired-end reads per lane) on an
lllumina HiSeq 4000 instrument. Image analysis and base calling were conducted with HiSeq Control
Software (HCS). Raw sequence data (.bcl files) were converted into fastq files and de-multiplexed
using lllumina bcl2fastq v.2.20. One mismatch was allowed for index sequence identification.

For shifts from LB1.oxto LBosxat 60 and 125 min, samples were sequenced using a single-index,
2x150bp paired-end (PE) configuration (~10M raw paired-end reads per lane) on an lllumina
NovaSeq 6000 instrument. Image analysis and base calling were conducted with NovaSeq Control
Software v1.7. Raw sequence data (.bcl files) were converted into fastq files and de-multiplexed

using lllumina bcl2fastq v.2.20. One mismatch was allowed for index sequence identification.

c. Data analysis

Regarding the RNA-seq data analysis pipeline: i) RNA sequencing reads were trimmed to remove
possible adapter sequences and nucleotides with poor quality with Trimmomatic (38) v.0.36 (for data
from sequencing part 1) and v.0.39 (for data from sequencing part 2). ii) Trimmed reads were then
mapped to the reference genome, E. coli MG1655 (NC_000913.3), using the Bowtie2 v.2.3.5.1
aligner, which outputs BAM files (39). iii) Then, featureCounts from the Rsubread R package (v.1.34.7)
was used to calculate unique gene hit counts (40). Genes with less than 5 counts in more than 3
samples, and genes whose mean counts are less than 10 were removed from further analysis. iv)
Unique gene hit counts were then used for the subsequent differential expression analysis. For this,
we used the DESeq2 R package (v.1.24.0) (41) to compare gene expression between groups of
samples and calculate p-values and log2 of fold changes (LFC) of RNA abundances using Wald tests
(function nbinomWaldTest). P-values were adjusted for multiple hypotheses testing (Benjamini—
Hochberg, BH procedure, (42)) and genes with adjusted p-values (False discovery rate (FDR)) less
than 0.05 were selected to be further tested as being differentially expressed (Methods section RNA-
seq d).

For logistical reasons, the sequencing platform for the RNA-seq data in Methods section RNA-seq
b differ from one another. Consequently, the data sets used in Figure 3 and in Figure 5 cannot be
compared quantitatively nor be used to infer gene-specific conclusions.

Finally, to analyse the data from LBi.oxand LBosxat 60 and 125 min and compare its results with
the results from the data of Methods section RNA-seq b Part 1 at 180 min, their raw count matrices
were merged and only genes that passed the filtering were studied. The filtering removed genes with
less than 5 counts in more than 6 samples, and genes whose mean counts were less than 10.

Moreover, we expect the overall sums of LFCs from each perturbation to equal zero since, in
DEseq2, the median-of-ratios normalization calculates the normalizing size factors assuming a
symmetric differential expression across conditions (i.e., same number of up- and down-regulated

genes) (43). Further, it fits a zero-centered normal distribution to the observed distribution of
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maximum-likelihood estimates (MLESs) of LFCs over all genes (41). Both steps (perhaps related) force
the mean LFC to be 0.

d. LFC criteriafor differentially expressed genes

From past methods (44-46), we classified genes as statistically significantly differentially expressed
(DE) due to the genome-wide perturbations, by setting a maximum FDR threshold for adjusted p-
values (Methods section RNA-seq c) and also a minimum threshold for the absolute LFC of RNA

numbers of individual genes (|LFC|).

From the RNA-seq data of each perturbation, from the Hiee) of genes whose FDR > 0.05, named
,u‘LFC‘(FDR > 0.05), we identified DEGs (DE Genes) as those that, in addition to having FDR < 0.05,

also have |LFC| > ,u‘LFC‘(FDR > 0.05) . Specifically, we added the conditions: |LFC| > 0.4248 for

LBo.75x, > 0.4085 for LBosx, > 0.4138 for LBo.2sx, > 0.2488 for LBu1sx, > 0.2592 for LB2.ox, and > 0.2711
for LB2sx, for accepting a gene as being significantly DE. For the data in LBosxat 60 and 125 min we
added: |LFC]| > 0.2171 for LBo.sx 60 min, and > 0.2977 for LBo.sx 125 min. This allows removing from
the data genes whose FDR < 0.05 but that, in fact, have a negligible LFC. Noteworthy, in no condition

did we remove, from the set of DEG, more than 5 genes by applying this rule.

e. RNA-seq vs Flow-cytometry

RNA and protein abundances are expected to be positively correlated in bacteria, since transcription
and translation are mechanically bound (47-49) and most regulation occurs during transcription
initiation (50), which is the lengthiest sub-process (24).

To validate that this relationship holds during the genome-wide stresses, we randomly selected a
set of genes whose LFC’s, as measured with RNA-seq, cover nearly the entire spectrum of LFCs
observed genome-wide. Next, we measured their LFC in protein abundances, using the YFP strain
library (25) (Methods section Bacterial strains, media, and growth conditions and curves) and flow-
cytometry (Methods section Flow-cytometry), at 180 min after shifting the medium. The list of selected
genes is shown in Supplementary Table S4. In detail, for the fold change levels of 1/8x, 1/4x, 1/2x, 1x,
2X, 4x, and 8x, we selected 3 genes whose LFC in RNA abundances is closest to that value (except
for the 8x fold change, since only 2 genes were available). This range of values covers nearly the

whole LFC spectrum observed by RNA-seq (Supplementary Figure S9).
Transcription Factor Network of Escherichia coli

We assembled a directed graph of the network of TF interactions between the genes present in our
RNA-seq data, based on the data in RegulonDB v10.5 (34), as of 28" of January 2022. We used all
reported TF-TF, TF-operon, and TF-TU interactions. These equally contribute to our network of gene-
gene directed interactions. In detail, a TF or regulatory protein is a complex protein that

activates/represses transcription of a transcription unit (TU) upon binding to specific DNA sites. A TU
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is one or more genes transcribed from a single promoter. Similarly, an operon are one or more genes
and associated regulatory elements, transcribed as a single unit.

The TFN graph was analysed using MATLAB (2021b) and Network Analyzer v.3.7.2 plug-in in
cytoscape (51) to extract the following network parameters specified from (51): number of nodes and
directed edges, number of connected components, number of isolated nodes and self-loops, and
single-gene in- and out-degree, edge-count, clustering coefficient, eccentricity, average minimum path
length, betweenness and stress centrality, and neighbourhood connectivity. The statistics considered

are shown in Supplementary Tables S5 and S19.
Statistical tests

a. 2-sample T-test, 2-sample KS-test and one-sample Z-test

The 2-sample T-test evaluates the null hypothesis that the two samples come from independent
random samples from normal distributions with equal means and unequal and unknown variances.
For this, we have established a significance level of 10% significance level (P-value < 0.10) when
applying the MATLAB function ttest2.

The 2-sample KS-test returns a test decision for the null hypothesis that the data from 2 data sets
are from the same continuous distribution, using the two-sample Kolmogorov-Smirnov test. As above,
we have set the null hypothesis at 10% significance level (P-value < 0.10).

The one-sample Z-test tests for the null hypothesis that the sample is from a normal distribution
with mean m and a standard deviation o. In this case, m and o are estimated from the genes with Krr

= 0. As above, we have set the null hypothesis at 10% significance level (P-value < 0.10).

b. Fisher test

The Fisher test evaluates the null hypothesis that there is no association between the two variables of
a contingency table. We reject the null hypothesis at 10% significance level (P-value < 0.1), meaning

that the variables are significantly associated.

c. Correlations between data sets

The correlation between two data sets with known uncertainties (standard error of the mean (SEM) in
each data point) was obtained by performing linear regression fitting using Ordinary Least Squares.
The best fitting line along with its 68.2% confidence interval/bounds (CB) and statistics was obtained
as described in Supplementary Materials and Methods 1.4 of (52). In short, the uncertainty of each of
the N empirical data points was represented by m points, resulting in n = Nxm points. Each of these
points is obtained by random sampling from a normal distribution whose mean (i) and standard
deviation (o) equal the mean and error of the empirical data point, respectively. It was set m = 1000,
as it was sufficient to represent the error bars of the actual data points. We obtained the coefficient of
determination (R?) and the root mean square error (RMSE) of the fitted regression line, and the p-
values of the regression coefficients. The p-value of x (P-valuei) was obtained of a T-test under the

null hypothesis that the data is best fit by a degenerate model consisting of only a constant term. If P-
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valuei is smaller than 0.1, we reject the null hypothesis that the line is horizontal, i.e., that one
variable does not linearly correlate with the other. When there are more than 3 data points, we also
calculated regression coefficient of x? (P-valuez) of a T-test under the null hypothesis that the second
order polynomial fit is no better than lower order polynomial fit, i.e., coefficient of x2 = 0. If P-value: is
smaller than 0.1, we reject the linear model favouring the quadratic.

To obtain the overall best non-linear fit (and its 68.2% CI) for the empirically measured datasets
with uncertainties, Monte Carlo simulations (1000 iterations) were performed. In particular, to obtain
Figure 2B, on each iteration, we randomly sampled each data point from a normal distribution whose
mean and standard deviation are equal to the mean (actual value) and SEM of the corresponding
empirical data point, respectively. Then a sigmoid (logistic) curve fitting (R P (2020). sigm_fit
(https://www.mathworks.com/matlabcentral/fileexchange/42641-sigm_fit), MATLAB Central File
Exchange. Retrieved August 6, 2020) was used to obtain the best fitting curve and its 68.2% CB for
each iteration. Finally, the best fitting curve along with their 68.2% CB is obtained by averaging the
respective values from the 1000 iterations.

Finally, to create null-models of how variable X affects variable Y, we performed random sampling
without replacement of both X and Y datapoints. The number of samplings and the sampling size
(number of samples in each sampling) are set to the maximum array size possible to us
(~45980x45980, 15.8 GB). The sampling size is set to 5% of the number of datapoints (size_XY) and
the number of samplings (K) is set according to Max_size/(0.05xsize_XY) where Max_size = 45980/2.
Next, for both X and Y, we combine the sampled datapoints in a vector (sample_X, sample_Y) and
calculate the correlation between sample_X and sample_Y by linear regression fitting using Ordinary
Least Squares. To correct for over-representation of the original datapoints, we corrected the degrees
of freedom to be (size_XY — C), where C is the number of parameters. In detail, for the linear

regression fitting, C equals to 2 (intercept and slope of best fitting line).

d. ANCOVA test to evaluate if two lines can be distinguished

To evaluate if two lines are statistically different, we performed the analysis of covariance (ANCOVA)
test (53). ANCOVA is an extension of the one-way ANOVA to incorporate a covariate. This allows
comparing if two lines are statistically distinct in either slope or intercept, by evaluating the

significance of the T-test under the null hypothesis that both the slopes and intercepts are equal.
Figures

Figures were produced in R (v.3.6.0) using the packages ‘ggplot2’ (v.3.2.0), ‘pheatmap’ (v.1.0.12),
‘VennDiagram’ (v.1.6.20) along with ‘grid’ (v.3.6.0), ‘gridExtra’ (v.2.3), ‘gplots’ (v.3.0.1.1), ‘R.matlab’
(v.3.6.2), ‘dplyr’ (v.1.0.2), ‘scales’ (v.1.0.0), ‘Metrics’ (v.0.1.4) and fitdistrplus’ (v.1.0-14).

RESULTS

Effects of medium dilution on cell growth, morphology, and RNAP concentration
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We first studied how the RNAP concentration changes with medium dilutions. From a control medium
(‘LB1.0x’), we moved cells to diluted media (LBo.7sx, LBo.sx, or LBo.2sx, Methods section Bacterial strains,
media, and growth conditions and curves). RNAP levels start changing ~75 min later, based on an as
yet to be identified mechanism, stabilizing at ~165 min (Figure 2B). Given this timing of events,
measurements to assess the effects on the RNA population should be performed after ~165 min.

We also considered that at ~180 min (Figure 2A) the cells are at late mid-log phase. Thus,
measuring the effects of changing RNAP should occur prior to ~180 min, since leaving the mid-log
phase will involve significant, unrelated genome-wide changes in RNA abundances (54-57). From the
point of view of cell divisions, from the moment when the RNAP starts changing up to the moment
when we measure the short- and the mid-term changes in RNA abundances, on average, less than
one cell cycle and less than two cell cycles should have passed, respectively.

Interestingly, this time moment (~180 min) matches our predictions of when, on average, RNA
abundances have changed due to changes in the abundances of both RNAP as well as direct input
TF. In detail, from the timing of the changes in RNAP (Figure 2B) and from known rates of RNA and
protein production and degradation in E. coli (25,28-31), we expect widespread heterogenous short-
term changes in RNA abundances to occur, on average, at ~120-135 min after shifting the medium (at
which moment the RNAP has already changed significantly). Changes in the corresponding protein
abundances should then occur tenths of minutes later, i.e., at ~ 160-175 min (29-31).

Soon after, we expect additional changes in RNA abundances, now due to changes in direct input
TF abundances. This second stage of events, here classified as ‘mid-term’, should occur between
~165-180 min. This is also when cells are in the late mid-log phase (Figure 2A), while cell growth
rates do not yet differ between conditions (Figure 2C) and cell sizes only differ slightly (Figures 2F-2H,
Supplementary Figures S3 and S4, Methods sections Microscopy and Flow-cytometry). Such is
relevant, since growth rates affect protein concentrations due to dilution in growth and division (58,59).

Finally, at 180 min, the %8 concentration is lower than at 0 min (Figure 2| inset and Supplementary
Figure S5), in agreement with previous reports (27,35,60,61), suggesting that the cells are not
committed to the stationary growth phase. The same is observed for the Crl protein (Supplementary
Figure S6), which is a protein that contributes to the expression of genes whose promoter is
recognized by ¢% and that is known to be at higher abundance during stationary phase (reported in
(62) and confirmed here (Supplementary Figure S6)).

Given the above, to capture the average mid-term effects of RNAP shifts, we measured the
transcriptome at 180 min (Figure 2A). This timing should allow discerning the average genes’
behaviour, under the influence of their local network of TF interactions, albeit the diversity in RNA and
protein production and decay kinetics, etc. RNAP levels at that moment are shown in Figures 2D and
2E, Supplementary Figure S2 and Supplementary Table S2. Similar RNAP downshifts have been

observed in natural conditions (63) and described in (23,26,27).

Genome-wide mid-term responses correlate with shifts in RNAP concentration

11


https://doi.org/10.1101/2022.03.07.483226
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.07.483226; this version posted March 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Transcription rates are expected to follow the free RNAP concentration in a cell, rather than the total
RNAP concentration (which is the sum of the free RNAP with the RNAP engaged with the DNA). We
here measured the total RNAP concentration. However, within the range of conditions studied, the
fractions of free and DNA-bound RNAP remain rather constant (26). Therefore, the total RNAP is a
good proxy for the free RNAP. Specifically, using modified strains and plasmids controlled by lac and
tet mutant promoters (64-66), whose regulatory mechanisms have been dissected, it was shown that
their transcription rates are linearly correlated with the total RNAP concentration (26). From here on,
when mentioning RNAP concentration, we refer to the total RNAP concentration.

The increasing medium dilution and corresponding decreases in RNAP concentration (Figure 3A)
cause RNA-seq profiles at 180 min with increasingly broad distributions of single-gene LFCs
(Supplementary Figures S7 and S8A-S8C and Supplementary Table S3). Specifically, the mean

absolute LFC of the 4045 genes (,u‘LFC‘) and the number of DEGs increased with medium dilution

(Figures 3B and 3C).

These RNA changes correlate with subsequent changes in protein levels (Supplementary Figure
S9, Methods sections Flow-cytometry and RNA-seq). This suggests that no significant translational or
post-translational regulation is taking place in between the perturbation and the measurements, that

would alter protein abundances significantly.

Interestingly, while both Hiecy and DEGs numbers follow the RNAP concentration (Supplementary

Figures S8D and S10B), these relationships are not strictly linear (p-value of 0.29, Supplementary
Figure S8D), supporting the notion that, in addition to RNAP, the direct input TFs are also influential
(note that the assumption of linearity in the absence of the influence of input TFs, observed and
discussed in (26), is only expected to occur within a narrow range of parameter values).

Notably, some of the genes may be also influenced by sources other than RNAP and direct input
TFs, such as supercoiling buildup. Also, some input TFs other than the direct input TFs maybe be
influential. However, we show evidence below that this does not affect the average results (Figure 4C
and Supplementary Figure S18).

We also performed RNA-seq prior to when most signals, generated by the shift in RNAP,
propagated in the TFN. First, we measured LFCs at 60 mins after diluting the medium (Figure 1).

From Figure 2B, at this moment, RNAP abundances have not yet changed relative to the control. In

agreement, the genome-wide Hitecl is very weak (Figure 3D). We further performed RNA-seq at 125

min. At this moment, RNAP levels have already reduced significantly (Figure 2B), but we do not
expect input TF abundances to have changed significantly given protein production times (Figure 1).
In agreement, |LFC|s at 125 min are stronger than at 60 min, but much weaker than at 180 min
(Figure 3D). We conclude that the mid-term changes in the TFN have not occurred yet (further
evidence is provided below). Given this, from here onwards, we focus on the state of the TFN at 180

min.
Influences from regulators other than RNAP
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We investigated whether other factors influenced the global response of the TFN. We considered
global regulators (GR), o factors, (p)ppGpp, and non-coding sSRNAs. We assumed the classification of
GR in (67,68) as an input TF that regulates a large number of genes that rarely regulate themselves
and participate in metabolic pathways. Meanwhile, we did not account for promoters’ close proximity
(e.g., tandem formation), since a recent study (69) showed that, under similar stress, while close
proximity causes transcription interference (reducing overall transcription levels), it does not influence
if a gene is up- or down-regulated by input TFs.

First, from the RNA-seq, given the large numbers of DEGs (more than 1000 for the two strongest

dilutions (Supplementary Figure S10A)), and the linear correlation between these numbers and Hiec

(Supplementary Figure S10C), we argue that the responsive genes are not constrained to a specific
cluster, such as genes responding to a global regulator (GR) other than RNAP (the most influential is,
arguably, o7°with 1555 genes recognizing it, while other GRs control less than 510 genes each (34)).

Also, from the RNA-seq, we analysed the relative abundances of GRs, ¢ factors and of their output
genes. From Supplementary Figures S26A and S26C, apart from rpoS (an input TF recognized by
321 genes) and flhC (an input TF recognized by 75 genes), GRs and ¢ factors did not change
significantly (Supplementary Figure S26). Further, those two changes (rpoS and flhC) were positively
correlated with the RNAP concentration (Figure 2I inset and Supplementary Figure S5), not allowing
to separate their effects. Also noteworthy, alternative o factors did not change significantly relative to
07% (Supplementary Figure S26E), which would have changed the competition for RNAP binding.

Given this, we failed to find evidence that the o factors and GRs were influential, globally, in the
mid-term responses. Supplementary Table S15 lists the conclusion for each specific GR and o factor
and Supplementary Figure S27 shows these results at 125 min.

We then investigated if (p)ppGpp could be influential since, under some nutrient starvation
conditions, they affect ~1000 genes by binding RNAP and altering its affinity for their promoters (3).
Reports suggest that the effects are rapid (5 to 10 min (3)). In agreement, genes responsive to
(P)ppGpp (3) exhibited abnormal short-term responses (Supplementary Table S20). However, their
mid-term responses at 180 min were no longer atypical and, instead, followed the RNAP changes.
The expression of spoT, one of the genes responsible for ppGpp synthesis, also followed the RNAP
(Supplementary Figure S28). As such, we could not establish a long-lasting global influence from
(P)pPGpp in response to growth-medium dilution. Nevertheless, the LFCs of the 14 out of the 22
genes coding for rRNAs listed in RegulonDB did reveal atypical behaviors (Supplementary Table S22).

Next, we searched for unique behaviours in sRNAs by analysing the LFC of the 93 sRNAs
reported in RegulonDB. Their behaviour was not atypical, neither at 180 min after the perturbations
(Supplementary Table S21), nor at 125 min. Further, we analysed if their output genes followed their
behaviour. We found that the LFCs of genes directly regulated by the SRNAs were not correlated with
their input TFs, neither at 125 min, nor at 180 min after the medium shifts. Specifically, of the 93
sRNAs, 37 of them have known output genes (in a total of 145 outputs). The RNA-seq data provided
information on the LFC of 40 of the 145 outputs. When searching for linear correlations between the
pairs of LFCs of sRNAs and their output genes, respectively, in the short-term (125 min in LBo.sx) and
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in the mid-term (180 min in LBosx), we found an R? of 0.03 (p value = 0.18) at 125 min and an R? of
0.05 (p value = 0.10) at 180 min, respectively. We thus cannot conclude that SRNAs were influential

during the short- and mid-term responses to the stresses.
Input TFs influence the transcriptional response

If the TEN influences the genes’ mid-term response to the shift in RNAP concentration, this should
cause genes with and genes without input TFs to behave differently, since the latter should only be
affected by the RNAP abundances.

In agreement, genes with input TFs had higher Hiiee) than genes without input TFs (Figure 4A,

Supplementary Table S6 and Supplementary Figure S13). Also, the |LFC| of output genes and of
genes coding for their direct input TFs correlate statistically (Figure 4B, Supplementary Figure S14
and Supplementary Table S7). Therefore, on average, TF-gene interactions affected the single-gene,

mid-term responses as hypothesized (Figure 1).
Input TFs influence all genes within operons

When considering the TFN topology, we have accounted for TF-gene interactions both between the
input TF and the first gene of an operon or transcription unit (TU), but we also accounted for the
interactions between the same input TF and the other genes of the operon or TU (illustration of TUs
and operons in Supplementary Figure S11B, which follows the standard definition of a group of two or
more genes transcribed as a polycistronic unit (1)).

If we had not account for all these interactions, we would have failed to correlate the activities of
genes interacting with each other. For example, consider an operon consisting of genes X1 and Xz
and assume that gene A represses X1 and Xz, by repressing their common promoter. If X1 is an input
TF to gene C, while Xzis an input TF to gene D, then gene A should indirectly affect both genes C and
D. If we had ignored the interaction between A and Xz, because it is not the first gene in its operon,
we would be able to explain why A affects C, but we would fail to explain why A affects D.

Further, many operons contain sets of genes whose RNAs code for subunits of the same protein
complex (70,71). However, the opposite is also true and, the fraction of complexes encoded by
proteins from different TU’s is higher than those encoded from the same operon (72). This supports
the need to track interactions between input TFs and genes in any position in an operon or TU.

To test if the positioning of the genes in the operon influenced their responsiveness to their input
TFs, as a case study, we considered operons with 3 genes (which account for ~21% of all operons
with more than 1 gene (34)). We found that the positioning of the genes did not affect significantly
how they relate to the input TFs (Supplementary Figure S16). We obtained similar results for TUs
(Supplementary Figure S17). The tests of statistical significance are shown in Supplementary Tables
S9-S12.

Genes expressing TFs are correlated with their nearest neighbour output genes
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In general, we expect that, after a genome-wide perturbation, signals will propagate between nearest
neighbour genes. Depending on the measurement time and given the diversity in the kinetics of
different genes and RNA and protein lifetimes, this should result in some signals propagating between
genes considerably distanced in the TFN, with the number of such signals decreasing rapidly with the
path length between the pairs of genes considered.

Given the interval between the shift in RNAP levels and the sampling for RNA-seq (Figure 1), we
hypothesized that, on average, at 180 min (i.e., ~70 min after the RNAP changed relative to the
control), mostly only genes directly linked by input TFs should exhibit correlated responses. Results in
Figure 4C support this. Genes distanced by 1 input TF (L = 1, i.e., directly linked) have related |LFC|s,
while genes distanced by 2 input TFs in the TFN have much less correlated responses (albeit still
statistically significant). Finally, we found no correlations between the |LFC]|s, of genes distanced by 3
input TFs (Supplementary Figure S18).

Noteworthy, the lack of correlation between genes separated by L > 1 could also be partially due
to interference from the TFs of the ‘intermediary’ genes between the gene pairs. However, this is only
a possibility when all input TFs involved can change in abundance in less than 60 min, which is likely
uncommon in E. coli. This is supported by the RNA-seq data at 125 min after medium dilution
(Supplementary Figure S19), where even direct input TFs and output genes are weakly correlated,
suggesting lack of time for most signals to have propagated between nearest neighbours
(Supplementary Figure S19).

The number of input TFs of a gene correlates to the magnitude of its transcriptional response

We investigated if the genes mid-term responses are sensitive to their number of input TFs, Krr
(Supplementary Figure S20A). When averaging the results from the three perturbations (Figure 4D),

we found that the average of the absolute LFCs, ,u‘LFC‘, increases with Krr, whether considering all
genes or just the DEGs (Figure 4D, Supplementary Figure S21 and Supplementary Tables S13). This
holds true even for non-DEGs (Figure 4D), which justifies also considering these genes when
studying the genome-wide effects. In agreement, we found no trend in the fraction of DEGs when
plotted against Krr (Supplementary Figure S23).

For comparison, neither at 60 min nor 125 min do the genes’ response and their number of input

TFs correlate (Supplementary Figures S14 and S15 and Supplementary Tables S7 and S8).

We verified that the relationship between ,u‘LFC‘ and Krr at 180 min is not an artifact caused by a

decrease in cohort size with Krr. We used bootstrapping to obtain cohorts of randomly sampled

genes with increasing Krr (10000 cohorts). We imposed a cohort size equal to the number of genes

with Kt = 7 (27 genes). The new, estimated Higc) Was always within the SEM of the Hitecy of the

cohorts of all genes (Figure 4D). Finally, we again verified that considering only the first gene of each

operon does not affect how Hircy and Krr relate (Supplementary Figure S25).
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The correlation between input and output genes responses decreases with the number of

input TFs

Most input TFs discernibly affect the output genes (Supplementary Figure S14), except when Kt > 5
(perhaps due to saturation).

Nevertheless, the correlation between inputs and outputs appears to be decreasing with Krr, as
the average slopes of the fitted lines between |LFC| of the output and |LFC| of each input
(Supplementary Figure S14) decreased with the Krr of the output gene (Supplementary Figure S20B),
as did the R2 between input-output pairs (Supplementary Table S7).

This could explain why, when plotting |[LFC| against the RNAP concentration, there is a weak trend

towards increased slope with Krr (Supplementary Figures S20C and S21)

The variability in single-gene |LFC| increases with Kt

We also investigated if the variability in |LFC|s, as quantified by its standard deviation o, relates

|LFc| ®
with Krr. There should exist (at least) four sources of this variability: a) RNA-seq measurement noise
(73,74); b) intrinsic and c¢) extrinsic noise in gene expression (75,76), and d) TF and non-TF
dependent regulatory mechanisms.

Examples of the variability are shown in Supplementary Figures S24C (genes with null Ktg), S24F
(genes with two global regulators, FNR and ArcA) and S24D and S24E (genes controlled by the
global regulators FIS or CRP) (see also Supplementary Table S14). Overall, from a genome-wide

perspective, OLec| increases with Krr (Supplementary Figure S24A) in a similar manner as does

,u‘LFC‘ , and the two values are also related (Supplementary Figure S24B).

Other topological features of the TFN do not influence mid-term responses

Globally, the TFN of E. coli has in- and out-degree distributions that are well fit by power laws
(Supplementary Figures S12Ei:, S12E;, S12F: and S12F2) (77,78), which may explain its relatively
short mean path length (Supplementary Figure S12G and Supplementary Table S5).

Having established a relationship between the response kinetics and the indegree of the TFN, we
next searched for correlations between |LFC| and other single-gene topological traits (Methods
section Transcription Factor Network of Escherichia coli), namely, the average shortest path length,
betweenness, closeness and stress centrality, clustering coefficient, eccentricity, out-degree,
neighbourhood connectivity, and edge-count (51). Of these, only the clustering coefficient was
statistically correlated with the |LFC| (p-value < 0.1) (Supplementary Table S20). However, it should

not be influential, since the corresponding R? is nearly zero (R? = 0.01).
The numbers of activating and repressing input TFs differ in most genes

In our original hypothesis, the mid-term response (|LFC]) of a gene should follow from the bias in the

numbers of activators and repressors in its set of input TFs (Figure 1B4 and Supplementary Figure
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S11A). In detail, we predicted that if the sum of regulatory effects (r) of the input TFs (i.e., bias
b= ‘Z r‘) is null (unbiased), then the gene should have weak or zero mid-term LFC. Also, the |LFC]|
should increase with b .

We tested this hypothesis by extracting information on the input TFs and corresponding I values

for each gene from RegulonDB. We set I of an input TF to +1 if it is activating, to -1 if it is repressing,

and to O if it is either dual or unknown (Supplementary Figure S12B), and we obtained the absolute
sum of the regulatory effects of the input TFs for each gene: |b|

From the data in RegulonDB, while the gene-TF interactions that are repressions and activations
exist in similar numbers, the numbers of repressor TFs exist in larger numbers (Supplementary
Figures S12A-S12C).

Also, of the genes with input TFs, most (~85%) have a non-zero |b| (Supplementary Figure S12D

and Supplementary Table S16). This can explain why so many are mid-term responsive (Figure 3C),
even though the genome-wide numbers of activation and repression interactions are similar
(Supplementary Figure S12B). This may also explain why genes with Krr = 1 have higher |LFC| than
genes with Krr = 0 (Figure 4A).

The bias in the input TFs follows the number of input TFs

Using information from RegulonDB, we found that the mean bias, Mg increases with Krr (Figure 5A,

light blue), except for Krr > 5, which includes only ~64 out of 4045 genes (Supplementary Table S17).
The same is observed if considering only the first gene of each operon (Supplementary Figure S29).

To test if these results were affected by local topological specificities, we employed an ensemble

approach (Supplementary Results section Estimation of the expected My and ,u‘b‘ using an

ensemble approach) which reduces their influence in the estimations (79). We sampled genes (with

replacement) to form cohorts with a given average Krr (from 1 to 5, due to insufficient samples for

higher Krr). Since this caused the relationship between ,u‘b‘ and Krr to be more stable (Figure 5A),

from here onwards, we use the ensemble approach to study the influence of the logical and

topological features on the response’s dynamics to the RNAP shifts.
The bias of the sets of input TFs can explain the mid-term responses of individual genes

From the data in RegulonDB and using the ensemble approach (Supplementary Results section

Estimation of the expected My and Hyy using an ensemble approach), we formed random cohorts of

genes with an imposed average |b| Next, from the mid-term RNA-seq data, we calculated the
average L | of the set of cohorts with a given M- We found that Hiecy increases with iy Figure
5B.
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Interestingly, Hy and My are strongly correlated in the TFN of E. coli (Figure 5C). To assert
which one controls Hipe|» We assembled cohorts differing in £, but not in M- In these, Hiiee)
does not increase with M. (Figure 5D). We also assembled cohorts differing in My but not in My -
In these, Hiiee) increases with My (Figure 5E). Thus, the increase of Hp with M. (Figure 5C), is
what explains the increase in Hieg with Krr (Figure 4D).

Finally, for comparison, we also investigated the relationship between Hiy and Hy prior to the

perturbation and in the short-term (at 60 min and at 125 mins after shifting the medium, respectively

Figure 1A). From Figure 5F, first, the My at 125 min is stronger than at 60 min. This agrees with

the expectation that shifts in RNAP suffice to shift the |[LFC| of many genes. Second, the Hiee) at 180

min is stronger than at 125 min. This agrees with our expectation that, at 125 min, input TFs numbers

have not yet changed significantly in order to enhance the |LFC| of their output genes (Figure 1).
RNA numbers follow the RNAP concentration, not the medium composition

We next increased growth medium richness, instead of diluting it (Methods section Bacterial strains,
media, and growth conditions and curves). As before, we limited this so as to not alter growth rates
significantly in the first 180 min (Figures 6A and 6B), while altering RNAP levels (Figure 6C).

As before (Figure 4C), at mid-term, only genes directly linked by input TFs showed correlation in
their |LFC| (Figures 6D1-6Ds and Supplementary Figure S32), supporting the previous assumption
concerning the kinetics of transcription, translation, and signals propagation via shifts in input TFs
numbers (Figure 1).

Meanwhile, in contrast to above, shifting cells from LBiox to the richer LBisx medium was

accompanied by a decrease in the RNAP concentration (Figure 7A), followed by substantial

alterations in the RNA populations, with a large humber of DEGs and high ,u‘LFC‘ (Figures 7B and 7C,

respectively). Also, as previously, in the mid-term, genes with input TFs reacted more strongly (Figure
7C).
These results support the initial assumption that the changes in RNA abundances follow the RNAP

concentration, rather than the medium richness.

Further increases in medium richness do not decrease RNAP concentration and RNA numbers

also do not change

Finally, we further increased growth-medium richness (to LB2ox and to LBzsx). This caused no
significant change in RNAP levels and concentration (Figures 6C and 7A). In agreement with the
assumption that the shifts in the RNAP concentration was the cause for the short-term changes in

RNA abundances, which then cause the mid-term changes, we observed no significant changes in
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DEGs or Hiecy at mid-term, when compared with the LBaisx condition (Figures 7B and 7C,

respectively).

Also, as before, ,u‘TLFFC‘ follows M (Figures 7D and Supplementary Figure S33) and it does so

almost identically in the three perturbations, as expected from the original assumptions (Figure 1).
DISCUSSION

We investigated if the mid-term responses to genome-wide perturbations of E. coli's TFN are
mediated by its topology and logic. We diluted LB medium since this dramatically and reproducibly
affects the RNAP concentration (26,27). The increasingly strong nature of the dilutions facilitated the
verification of how the RNAP concentration and single-gene, mid-term |[LFC|s related. We focused on
mid-term transcriptional responses (Figure 1), since short-term responses are unlikely to have been
influenced by the TFN due to protein folding and maturation times, etc. Meanwhile, long-term
responses were most likely affected by the TFN. However, dissecting them would have been onerous,
due to the complicating effects of loss, backpropagation, and coalescence of possibly dozens of
signals from origins other than direct input TFs.

Since we lack information on the affinity between each gene and their input TFs, on how the input
TFs operate, and on how the de novo presence of an input TF alters the binding or activity of other
input TFs on the same promoter, we would have failed to predict the behaviour of individual genes
with accuracy. As such, we instead predicted the responses of gene cohorts, whose behaviour is less
influenced by particular single-gene features (other than the features specific to the cohorts), as these
should average out at the cohort level. Further, as in (18), we were only able to correlate absolute
LFCs of input and output genes (Figure 4B), likely due to limitations in RNA-seq technology and the
analysis, and/or missing information on the TFN. Nevertheless, the present information on input TFs
and their regulatory effect sufficed to relate the TFN with the genes’ response.

From the RNA-seq data on three time points, we provided evidence that both the TFN and the
RNAP affect the results at mid-term (~180 min), and not before that. In addition, while other factors
also influenced genes’ behaviour at mid-term, including single-gene features, they only had minor,
local effects. In detail, first, we could not find evidence of GRs (including o%8) and (p)ppGpp being
material in the global mid-term behaviour (although (p)ppGpp may be significant in the short-term
response). Second, we excluded the medium as directly influencing RNA abundances. Third, we
excluded global network parameters, other than Krr, as being influential as well since none of them
correlated to single-gene responses. Fourth, we did not find evidence for significant translational or
post-translational regulation, because RNA and protein abundances correlated well, and so did the
RNA levels of input TFs and of output genes. Finally, SRNAs did not respond atypically to the RNAP
shifts neither in the short-term, nor in in the mid-term.

We have made six key observations on the influence of the logic and topology of the TFN on the
mid-term response. First, genes without input TFs were less responsive. Second, the |[LFC| of input

and output genes correlated positively. Thus, we argue that, on average, input TFs enhanced the
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[LFC| of individual genes. Third, only nearest neighbour genes in the TFEN consistently correlated in
ILFC|’s, suggesting that either the effects of the shift in RNAP only reached nearest neighbour genes
or they ‘dissipated’ beyond that. However, since the correlations between nearest neighbours were
weaker in the short-term than in the mid-term, we expect the first possibility to be more likely. This
observation also suggests that there is a degree of genome-wide homogeneity in how long input TF
amounts take to change (likely due to physical limitations on the rates constants controlling bacterial
gene expression), in agreement with the constraints on timing variability reported in (6). Fourth, the
behaviour was orderly (rather than chaotic), with most genes responsive to the weak perturbations
also responding to the stronger perturbations, suggesting the existence of features (on genes and/or
the TFN) affecting the responsiveness (Supplementary Figure S34). Similarly, there is a good overlap
between the sets of genes responsive in the short and in the mid-term, but weak overlap to those
responsive prior to the perturbation (Supplementary Figure S35). Fifth, on average, as Krr increased,

the correlation between the input and each output gene decreased, which is likely unavoidable and

may be a limiting factor in how many input TFs genes can have. Finally, it is ,u‘b‘ that (partially)
controls the genes’ responsiveness to the stress, while the apparent relationship between My and
Higcy is only due to the linear correlation between My and My - Nevertheless, the possible values

of My are limited by the values of 14 .

These observations are evidence that the genome-wide responsiveness to this stress depends on
the TFN structure, in agreement with past studies (9,20,21,67,80). Expanding this research may thus
inform on how to improve the robustness and plasticity of synthetic circuits. Further, as suggested in
(20), bacteria subjected to stress, rather than under optimal conditions, may be a better proxy of their
state when infecting a host. Thus, imposing stresses may be a valuable strategy to identify new target
genes for antibiotics that act by disrupting bacterial adaptability to new conditions.

The use of medium dilution as a genome-wide stress is a good proxy for nutrient imbalance, and
we identified ~900 responsive genes, even for moderate nutritional stress, of which only 58 are
essential under optimal conditions. It is plausible that some of the responsive genes, particularly those
responsive to all 3 medium dilutions, may be essential to adapt to poorer media, and thus are
potential new drug targets. Conversely, it may be possible to tune these genes to assist in the
performance of metabolic tasks, without disturbing the basic biology of the cells. As such, they may
be appropriate targets for modifications that could improve the yield and sustainability of bio-industrial
processes.

Finally, our findings may assist in developing new models of single-gene, mid-term transcriptional
responses to genome-wide perturbations, where short-term responses are controlled by single-gene
features, while mid-term responses are also influenced by the topology and logic of the TFN. Such
large-scale TFN models could be of use in exploring how natural TFNs perform complex
transcriptional programs, responsive to large-scale stresses, such as environmental shifts and

antibiotics. Further, they may assist in identifying the critical elements of the TFN during stress
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responses. We hypothesize that the combined regulatory effect of the input TFs of E. coli genes (here

guantified by My ) is critical in the responses to various different genome-wide stresses. These efforts

will be facilitated by ongoing information gathering on single-gene features (34,81-83), including on

microorganisms other than E. coli.
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Figure 1. Expected short- and mid-term effects of quick downshifts of the RNAP amounts on

the TFN of E. coli.
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(A) Example changes in mean RNAP ( g ,p) and 68% CB (shadow) relative to control (LB1.ox) after

diluting the medium (LBo.sx). Vertical red lines mark when the transcriptome measurements at 60 min,
125 min, and 180 min. Given the RNAP levels and the kinetics of RNA and protein abundances, these
moments are named ‘prior to RNAP changes’ and ‘short-’, and ‘mid-term’ changes in RNA
abundances.

(B1) Known TF-gene interactions (red and green lines, if repressing and activating, respectively) and
genes with (pink) and without (blue) input TFs of E. coli.

(B2) lllustration of the effects of a local topology of activating (green) and repressing (red) input TFs
on mid-term responses. Genes (balls) are coloured (blue, yellow, and green) according to the events
in Ba.

(B3) Data collected on the genome-wide kinetics as well as data collected on the TFN structure.

(B4) Following a medium dilution, intracellular RNAP concentrations (black arrow) decrease after a
time lag, and RNA abundances (red arrow) will decrease accordingly. Compared to when at ~0 min,
the RNAP at ~120 min and corresponding RNAs at ~125 min should be lower (25,28). Given
translation times (~50 min (29-31)), at ~175 min, the protein abundances, including input TFs, coded
by the perturbed RNAs (green arrow) should differ as well. Fluctuations in these input TFs
abundances will then propagate to nearest neighbour ‘output’ genes, further shifting their RNA
abundances (blue arrow) depending on whether the input TF is an activator or a repressor. Finally,
the yellow arrow represents (not measured) long-term changes (~230 min or longer). We performed
RNA-seq at ~60 min (prior to RNAP changes), ~125 min (short-term RNA changes), and ~180 min
(mid-term RNA changes, affected by input TFs). Finally, the green dashed line marks when the RNAP
level already differs significantly from the control (see example Figure 1A).

(C4) lllustration of biases in sets of input TFs of individual genes. Considering TF-gene interactions as
either repressions (regulatory effect of -1) or activations (regulatory effect of +1), the overall effect of a
set of input TFs during these stresses should be predictable from the sum of the input TFs regulatory

effects, named ‘bias’, (b ). Regulatory effects obtained from RegulonDB.

(C.) Example average response (y‘LFC‘ from RNA-seq) at 180 min of gene cohorts with a given My

Figures created with BioRender.com.
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Figure 2. Cell growth and morphology, and RNAP concentration after medium dilutions.
(A) Growth curves from ODsoo measured every 10 min (Methods section Bacterial strains, media, and
growth conditions and curves). The vertical dashed red lines mark when RNA-seq was performed.

After ~180 min, cells subject to different dilutions (LBmx) start differing in growth rates.

(B) Mean single-cell RNAP-GFP fluorescence relative to the control (LB1.ox), tgyap prrc_n » Measured

every 15 min for 210 min by flow-cytometry (FITC-H channel). The mean cellular background
fluorescence in each condition was subtracted (Methods section Flow-cytometry). The vertical dashed
red lines mark when RNA-seq was performed.

(C) Growth rates at 180 min after medium dilution. The inset shows the corresponding doubling times.

(D) Mean single-cell RNAP levels ( figyap rirc_n ) @t 180 min relative to the control (Methods section

Flow-cytometry).
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(E) Hrnap Frre_n Plotted against tip.pws (RNAP levels measured by Western Blot, Methods section

Protein isolation and western blotting). The inset shows fig ey alone.

(F) Mean cell area relative to the control, extracted from phase-contrast images (~2000 cells per
condition) (Methods section Microscopy). The inset shows the mean cell width relative to the control.
(G) Mean (relative to the control) Width, FSC-H and SSC-H obtained by flow-cytometry (Methods
section Flow-cytometry).

(H) Mean (relative to the control) FSC-H versus SSC-H in each condition, obtained from 3 biological

replicates. The inset shows the mean ratio between the relative FSC-H and SSC-H.

(I) Mean mCherry-tagged RpoS (luRpoS PE_Texas Red_H ) CONCeNtration in the stationary growth phase

relative to the exponential growth (set to 1), as measured by mean single-cell fluorescence (PE-Texas

Red channel, Methods section Flow-cytometry) over mean cell area ( L 4. ) (Methods section

Microscopy), after subtracting mean background fluorescence(s). The inset shows the same, but after
each medium dilution.
Measurements in (D)-(I) taken 180 min after medium dilution. Data points are from 3 biological

replicates (except for (A) and (B), where 6 replicates were used). ¢ stands for mean relative to the

control. In (A)-(C) error bars represent the SEM. In (B) and (D)-(l), black error bars are the SEM and
red error bars are the 95% confidence bounds (CB) of the SEM. In (C), (E) and (H), the best fitting
lines and their 68% CB and statistics (RZ and RMSE), and P-values at 10% significance level) were

obtained as described in Methods section Statistical tests c.
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Figure 3. Genome-wide effects on the transcriptome of diluting the medium.

(A) Ratio between the RNAP measured by FITC-H ( Llguap rrrc_p ) @t 180 min (Methods section Flow-

cytometry), and the mean cell area ( f ... ) Obtained by phase-contrast microscopy (Methods

section Microscopy). Values relative to the control (LBx1.ox).

(B) Ky in each medium.

(C) Venn diagram of the number (and percentage relative to the total number of genes) of DEG. In (A)
and (C), black error bars are the SEM, while red error bars are the 95% CB of the SEM.

(D) Violin plot with the maximum, minimum, median, interquartile ranges, and probability density of
the distributions prior to RNAP changes (LBosx at 60 min) and the subsequent short- (LBo.sx at 125 min)

and mid-term (LBosx at 180 min) responses to shifting RNAP. The inset shows Higcy of the

distributions.
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Figure 4. Genome-wide propagation of the effects of shifting RNAP in the TFN.

(A) Higcy of N genes with and without input TFs (Krr > 0 and = 0, respectively). On the top of each

bar is the number of DEGs in each set.

(B) |LFC]| of genes with Krr = 1 versus the |LFC| of genes coding their direct input TFs. Data from the

LBo.sx shift. The red line is the best fit. The blue line is the null-model fitting lines and was obtained as

described in Methods section Statistical tests c. The green line is the best fit after sorting the input-

output pair values to maximize the correlation. Shadows are their 68% CB. The equations of the red

fitting lines with ‘+’ inform on the standard error of the slope.

(C) Scatter plots between |LFC| of output and input genes distanced by a minimum path length L of 1,

2, and 3 input TFs (edges) in the TEN, respectively (data from LBosx). Only for L = 1 do the activities

of output and input genes correlate (P-value: > 0 and R? > 0).
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(D) Mgy of all genes, DEG, non-DEG, and cohorts of randomly selected genes of the same size

(‘same sized cohorts’) for Ktr = 0 to 7, using merged data from all shifts (LBo.7sx, LBo.sx and LBo.2sx).
Black error bars are the SEM and red error bars are the 95% CB of the SEM. Best fitting lines and
68% CB obtained using FITLM (MATLAB). p-values, obtained using the null hypothesis that the data
is best fit by a horizontal line, are not rejected at 10% significance level. (B) and (C) do not include a

few data points to facilitate visualization. See Supplementary Figures S14 and S18 for complete data.
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Figure 5. Effect of biases ,u‘b‘ on the magnitude of the response of output genes.

(A) ,u‘b‘ as a function of Krr (light blue) of gene cohorts with all genes (light blue) and of gene cohorts
assembled using the ensemble approach (dark blue). Supplementary Table S17 shows the fractions
of genes with equal |b| and Krr. Black error bars are the SEM, and red error bars are the 95% CB of
the SEM. Dark blue bars not shown for Krr > 5 due to small sample sizes.

(B) Mid-term Higc| @S @ function of Mg » obtained using the ensemble approach (Supplementary
Results section Estimation of the expected My and My using an ensemble approach,
Supplementary Figures S30 and S31 and Supplementary Table S18).

© My plotted against the corresponding My » mean of Krr of the cohorts in (B). The inset shows

the inverse correlation plot for the cohorts in Supplementary Figure S30, assembled based on My
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(Supplementary Results section Estimation of the expected M and Hy using an ensemble

approach). Shown are best fitting lines and 68% CB (shadow areas, barely visible), R2, RMSE, and P-
value (Methods section Statistical tests c).

(D) My of gene cohorts with increasing My but constant y‘b‘ (from 1 to 5) (Supplementary
Results section Estimation of the expected M and H using an ensemble approach).
(E) My of gene cohorts with increasing Hip) » but constant My (from 1 to 5) (Supplementary
Results section Estimation of the expected My and H using an ensemble approach).

(F) Hiec @S @ function of My prior to RNAP changes (60 min) as well as the short-term (125 min)

and the mid-term responses (180 min) to RNAP changes when shifting to LBo.sx.
In (D) and (E) the data is merged from the 3 conditions corresponding to (B). In all figures the error
bars are the SEM. Since the 3 conditions differ slightly in mean values (Figure 5B), the SEM is larger

than when observing each condition separately.
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Figure 6. RNAP levels following increasing medium richness and corresponding relationships
between |LFC|s of pairs of genes separated by specific path lengths, L.

(A) Growth curves from ODsoo assessed every 10 min (Methods section Bacterial strains, media, and
growth conditions and curves), following each medium shift.

(B) Growth rates at 180 min after medium enrichment. The inset shows the corresponding doubling

times.
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(C) Mean RNAP levels relative to the control estimated from single-cell RNAP-GFP fluorescence
intensities (FITC-H) ( tgrnap Fite—n )-

(D;-D3) Scatter plots between absolute LFC (|JLFC|) of outputs and corresponding input genes
distanced by L (path length) of 1, 2, and 3 transcription factors, respectively. Data from the LB2.sx
condition. Shown are the best fitting line and its 68% CB (blue shadow), and the RZ and RMSE of the
fitted regression line, along with its p-value at 10% significance level under the null hypothesis that
this line is horizontal.

From (A) to (C) the black error bars are the SEM and red error bars represent the 95% CB of the SEM.
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Figure 7. Genome-wide effects of increasing medium richness.

(A) RNAP concentrations relative to the control, estimated from tipyap pirc_y divided by mean cell

area (/ucell area )

(B) Venn diagrams of the DEG.
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© Mgy of N genes with Krr equal to and larger than 0, following each medium shift. Above each
bar are the number of DEG.

(D) Hige| @S @ function of My after the growth-medium shifts. Hiecy obtained using the ensemble
approach (Supplementary Results section Estimation of the expected My and My using an

ensemble approach, Supplementary Figure S33). Each blue cross is the average outcome from up to
24400 cohorts of 10 genes. In (A) and (C), the black error bars are the SEM and the red error bars
are the 95% CB of the SEM. In (D), the small error bars are the SEM (most not visible).
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