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Abstract8

Neuronal anatomy is central to the organization and function of brain cell types.9

However, anatomical variability within apparently homogeneous populations of cells can10

obscure such insights. Here, we report large-scale automation of neuronal morphology11

reconstruction and analysis on a dataset of 813 inhibitory neurons characterized using12

the Patch-seq method, which enables measurement of multiple properties from individual13

neurons, including local morphology and transcriptional signature. We demonstrate that14

these automated reconstructions can be used in the same manner as manual reconstructions15

to understand the relationship between some, but not all, cellular properties used to define16

cell types. We uncover gene expression correlates of laminar innervation on multiple17

transcriptomically defined neuronal subclasses and types. In particular, our results reveal18

correlates of the variability in Layer 1 (L1) axonal innervation in a transcriptomically19

defined subpopulation of Martinotti cells in the adult mouse neocortex.20
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Introduction21

The shape of dendrites and axons, their distribution within the neuropil, and patterns of their22

long-range projections can reveal fundamental principles of nervous system organization and23

function. In the cortex, much of our understanding depends on the anatomical and functional24

descriptions of cortical layers. Yet, the origin and role of morphological and molecular diversity25

of individual neurons within cortical layers beyond broad subclass identities is poorly understood,26

in part due to low sample numbers. While molecular profiling techniques have recently improved27

by orders of magnitude, anatomical characterization remains time consuming due to continued28

reliance on (semi-)manual reconstruction.29

Improvements in the throughput of the Patch-seq technique1–8 have enabled measurement of30

electrophysiological features, transcriptomic signatures, and local morphology in slice prepa-31

rations for thousands of neurons in recent studies.5,6 In these repetitive experiments where32

maintaining a high throughput is a primary goal,9 the brightfield microscope’s speed, ease of33

use, and ubiquity make it an attractive choice to image local neuronal morphology. While34

this choice helps to streamline the experimental steps, morphological reconstruction remains a35

major bottleneck of overall throughput, in part due to limited imaging resolution, even with36

state-of-the-art semi-manual tools.537

A rich literature exists on automated segmentation in sparse imaging scenarios. However, these38

methods typically focus on high-contrast, high-resolution images obtained by optical sectioning39

microscopy (i.e., confocal, two-photon, and light-sheet),10–18 and are not immediately applicable40

to brightfield images because of the significantly worse depth resolution and the complicated41

point spread function of the brightfield microscope. Moreover, segmentation of full local42

morphology together with identification of the axon, dendrites, and soma has remained elusive43

for methods tested on image stacks obtained by the brightfield microscope.19–22 Therefore,44

we first introduce an end-to-end automated neuron reconstruction pipeline (Figure 1a) to45

improve scalability of brightfield 3D image-based reconstructions in Patch-seq experiments46

by a few orders of magnitude. We note that our primary goal is not to report on a more47

accurate reconstruction method per se. Rather, we aim to demonstrate how automated tracing,48

with its potential mistakes, can be leveraged to rigorously address certain scientific questions49

by increasing the throughput. To this end, we select a set of brightfield images and use50

the corresponding manually reconstructed neuron traces to assign voxel-wise ground truth51

labels (axon, dendrite, soma, background). Next, we design a custom deep learning model52
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and train it on this curated ground truth dataset to perform 3D image segmentation using53

volumetric patches of the raw image as input. We implement fully automated post-processing54

steps, including basal vs. apical dendrite separation for pyramidal cells, for the resulting55

segmentations to obtain annotated traces for each neuron. We compare the accuracy of these56

automated traces with a held out set of manual reconstructions, based on geometrical precision,57

a suite of morphometric features, and arbor density representations derived from the traces.58

We utilize this pipeline to reconstruct a large set of neurons from Patch-seq experiments,59

and use the transcriptomic profiles captured from the same cells to systematically search60

for gene subsets that can predict certain aspects of neuronal anatomy. The existence of a61

hierarchical transcriptomic taxonomy23 enables studying subsets of neurons at different levels62

of the transcriptomic hierarchy. At the finest scale of the hierarchy (transcriptomic types63

or “t-types”5), we study seven interneuron types and focus on a transcriptomically defined64

sub-population of L1-projecting, Sst gene expressing neurons (Sst cells) that correspond to65

Martinotti cells (See, for instance, Ref.24). While previous studies have elucidated the role66

of Martinotti cells in gating top-down input to pyramidal neurons via their L1-innervating67

axons,25,26 the wide variability in the extent of L1 innervation behind it is not well understood.68

Our results suggest transcriptomic correlates of the innervating axonal mass, which may control69

the amount of top-down input to canonical cortical circuits. Our approach represents a general70

program to systematically connect gene expression with neuronal anatomy in a high-throughput71

and data-driven manner.72

Results73

An automated morphology reconstruction pipeline for brightfield microscopy74

As the first step to automate the reconstruction of in-slice brightfield images of biocytin-75

filled neurons, we curate a set of manually traced neurons. While this set should ideally be76

representative of the underlying image space, it should also be as small as possible to facilitate77

downstream cross-validation studies via an abundance of cells not used during training. We thus78

choose 51 manually traced neurons as the training set to represent the underlying variability79

in the image quality and neuronal identity (via the available t-type labels). We develop a80

topology-preserving variant of the fast marching algorithm13 to generate volumetric labels from81

manual traces (Figure 1b). We train a convolutional neural network (U-Net)16,27–29 using image82
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Figure 1: Neuron reconstruction pipeline for in-slice bright-field images of biocytin-filled
neurons. a, Processing pipeline. Convolutional neural network (CNN) segmentations of 3D image
stacks are post-processed by custom machine learning tools to produce digital representations of
neuronal morphologies. b, Topology preserving fast marching algorithm generates the volumetric label
from raw image stack and manual skeletonization. Dendrites (blue), axons (red), soma (green) are
separately labeled to train a supervised CNN model. Scale bar, 100 µm. c, Semantic segmentation
provides accurate soma location and boundary. d, Axon/dendrite relabeling. A neural network model
predicts node labels from multiple image brightness and trace tortuosity features based on local contexts
of different size along the initial trace. (left, example image of dendrite and axon segments; middle,
corresponding feature plots; right, automated traces of test neuron with/without relabeling vs. manual
trace). Arrow indicates nodes mislabeled by segmentation and corrected during post-processing.
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stacks and labels as the training set and employing standard data augmentation strategies83

to produce initial segmentations of neuronal morphologies (Figure 1b,c). While knowledge of84

axonal vs. dendritic branches informs most existing insight, their automated identification85

poses a challenge due to the limited field-of-view of artificial neural networks. We find that86

image and trace context that is in the vicinity of the initial segmentation is sufficient to correct87

many axon vs. dendrite labeling mistakes in an efficient way because this effectively reduces the88

problem to a single dimension, i.e., features calculated along the 1D initial trace (Figure 1d).89

We further algorithmically post-process the segmentations to correct connectivity mistakes90

introduced by the neural network and obtain the final reconstruction of axons and dendrites91

(Figure 1d, Figure 2a, Figures S1-S11, Methods). We observe that this approach offers marked92

improvements in tracing quality compared to a previous large-scale effort focusing on fluorescent,93

optical-sectioning microscopy (Figure S12). Moreover, Figure S13 shows that its segmentation94

quality remains robust when tested, without any tuning, with images from different species and95

brain structures.30–32 (Fine-tuning the existing model with a small training set representing the96

tissue of interest should further improve performance.) The overall pipeline produces neuron97

reconstructions in the commonly-used swc format33 from raw image stacks at a rate of ∼698

cells/day with a single GPU card (Methods). Our setup uses 16 cards to achieve two orders of99

magnitude improvement in speed over semi-manual segmentation5 with one anatomist. We have100

so far processed the cells reported in Ref.,5 which mapped neurons to an existing taxonomy101

of transcriptomic cell types23 and introduced a transcription-centric, multimodal analysis of102

inhibitory neurons. We have also processed a set of ∼700 excitatory neurons which are analyzed103

in Ref.34 (While we typically display only the apical and basal dendrite segmentations for104

excitatory cells, the method can also trace and label the local axon when it is captured in the105

slice (Figure S14).) After quality control steps (Methods), we focus on a set of 813 interneurons106

for further study in this paper.107

The proposed pipeline produces end-to-end automated reconstructions in single-cell imaging108

scenarios. However, in practice, neurons are patched near each other to increase the throughput109

of physiological and transcriptomic characterization. The resulting image, which typically110

centers on the neuron of interest, can therefore contain neurites from other neurons. Neurites111

from off-target neurons within the image stack cannot be properly characterized because they112

rarely remain in the field of view. As part of algorithmic post-processing and quality control,113

disconnected segments are removed automatically when they remain relatively far from the114

cell of interest (Methods). When multiple neurons are patched in close proximity, quality115

control by a human is needed to check for and remove nearby extraneous branches. To ensure116
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the integrity of presented results with minimal manual effort, the cell is not used if quality117

control suggests the existence of nearby branches and a manual trace is not available. If the118

manual trace already exists, we simulate manual branch removal based on a mask obtained from119

the manual trace (Methods). We report quantification results separately for reconstructions120

obtained with/without nearby branch removal.121

Evaluation of reconstruction accuracy122

We evaluate the quality of automated traces by comparing them to the manual traces which we123

regard as the ground truth. To compare a pair of automated and manual traces, we perform124

a bi-directional nearest-neighbor search to find correspondence nodes in both traces within a125

certain distance.13 A node in the automated trace that has (does not have) a corresponding126

node in the manual trace is referred to as a true (false) positive node, and a node in the127

manual trace that does not have a corresponding node in the automated trace is referred to128

as a false negative node. We calculate this metric separately for axonal and dendritic nodes,129

as well as for all nodes regardless of the type, and compute corresponding precision, recall,130

and f1-score (harmonic mean of the precision and recall) values. These metrics indicate how131

well the automated trace captures the layout of the axon/dendrites/neurites in a reconstructed132

neuron. Figure 2b and Table S1 display that, at a search radius of 10µm, the mean f1-score is133

above 0.8 for both axonal and dendritic morphologies. Therefore, we expect these automatically134

generated traces to perform comparably to their manually generated counterparts in analyses135

that do not require a resolution better than 10µm, as we demonstrate below. (Figure S15 and136

Table S2 provide basic estimates of cross-human tracing discrepancy based on one test cell.)137

To further assess the similarity in the arbor layout and other aspects of morphology that are138

not captured by the node correspondence study, we use standard morphometric features. We139

find that while many features summarizing the overall morphology can be accurately predicted,140

features related to the topology of arbor shapes, such as maximum branch order, are prone to141

mistakes (Figure 2d and Figure S16).142

While the quantitative analyses described above both suggest that automated reconstruction143

succeeds in broadly capturing neuronal morphology, including separation of axonal vs. den-144

dritic branches, they also demonstrate that important differences nevertheless remain between145

automated and manual traces. Therefore, to robustly analyze anatomical innervation patterns146

against potential topological mistakes introduced by the automated routine, we develop a 2D147
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Figure 2: Assessing quality of automated reconstructions. a, Automated and manual traces of
example test neurons (left, inhibitory neurons; right, excitatory neurons – apical and basal dendrites
are assigned for excitatory cells.) b, Neuron reconstruction accuracy. Precision, recall, and f1-score
values are calculated by comparing automated and manual trace nodes within a given distance (2,
5 and 10 µm). Mean values over 340 cells (error bars: standard deviation) are shown for axonal,
dendritic and neurite (combined axonal and dendritic) nodes. Scatter plots are shown in Figure S17.
c, Generation of 2D axonal and dendritic ADRs. Scale bar, 100 µm. d, r values (left) and average
root-mean-squared error (right) between automatically vs. manually generated features (left and
Figure S16) and ADRs for each t-type (right and Figure S18). ADRs are normalized to have unit
norm. 7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2024. ; https://doi.org/10.1101/2022.03.07.482900doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.482900
http://creativecommons.org/licenses/by-nc-nd/4.0/


arbor density representation (ADR)12,35–38 of axons and dendrites registered to a common148

laminar axis defined by cortical pia and white matter boundaries. Here, the vertical axis149

represents the distance from pia and the horizontal axis represents the radial distance from150

the soma node (Figure 2c). Note that this 2D representation still requires 3D imaging because151

many branches become undetectable in 2D projected images due to noise (e.g., Figure 1b).152

Moreover, standardizing the orientations of the brain and the tissue slice is challenging in153

high-throughput experiments so that the rotation around the laminar axis would be hard to154

control in 3D representations.155

At the level of transcriptomic types, the ADRs calculated from automated reconstructions156

appear similar to those calculated from manual segmentations based on the root-mean-squared157

difference between them (Figure 2d). To better quantify this similarity, we compare the158

performance of the ADR against that of morphometric features39 by training classifiers to159

predict t-types and subclasses (Sst, Pvalb, Vip, Sncg, Lamp5).5 We find that the ADR is not160

statistically significantly worse than the morphometric features in terms of classification accuracy161

(Boschloo’s exact test, asymptotically exact harmonic mean of p-values over multiple runs:40162

p = 0.81 for t-types, p = 0.26 for subclasses, Methods), consistent with Ref.41 (Figure 3a,b).163

We also test robustness against imperfections due to fully automated tracing by comparing the164

classification accuracy obtained from automated tracing versus manual tracing on the same set165

of cells. End-to-end automation appears to perform similarly as manual tracing in cell type166

prediction based on ADRs (Figure 3c,d) and morphometric features (Figure S19). We finally167

compare cell type identification based on automatically generated ADRs vs. manually generated168

morphometric features. We find that they are not significantly different in t-type classification169

(Boschloo’s test, harmonic mean p = 0.72), but the ∼ 5% advantage of manual morphometric170

features in subclass classification is statistically significant (Boschloo’s test, harmonic mean171

p = 0.01).172

Beyond the comparative aspect, these results demonstrate a correspondence between gene173

expression and the anatomy of local arbors as represented by the proposed registered 2D ADRs,174

which agrees with previous findings with morphometric features for these cells.5 (subclass175

accuracy of ∼ 79% vs. random at 20%, most abundant label at 47%; t-type accuracy of176

∼ 45% vs. random at ∼ 2%, most abundant label at ∼ 8%.) When the transcriptomic type177

assignments are incorrect, cells are rarely assigned to transcriptomically far-away clusters based178

on the ADR or morphometric features, as demonstrated by the dominance of the entries around179

the main diagonal in Figure 3. Note that the rows and columns of these confusion matrices are180
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organized based on the reference taxonomy to reflect transcriptomic proximity (Figures S20181

and S21). Therefore, the relative inaccuracy at the t-type level could be attributed to aspects182

of morphology not captured by the ADR or morphometric features (e.g., synapse locations),183

or other observation modalities (e.g., physiological, epigenetic) being key separators between184

closely related t-types.185

Correlates of gene expression and laminar innervation186

Having established that registered 2D ADRs are as successful as a standardized, rich set of187

morphometric features in predicting transcriptomic identity and that ADRs can be generated188

in a fully automated manner from raw images with only mild loss in performance, we aim189

to uncover more explicit connections between gene expression and anatomy as captured by190

the ADR. Since layer-specific axon and dendrite innervations are prominently and reliably191

captured by the ADR, we study their transcriptomic correlates. We treat the search for genes192

that are predictive of laminar innervation strength (neurite length innervating a given layer)193

as a sparse regression problem42,43 (Methods), and focus on 7 t-types whose morphologies194

are well sampled in our dataset with the help of automated reconstruction (3 Sst, 2 Pvalb, 2195

Lamp5 types). That is, we aim to uncover minimal gene sets whose expression can predict the196

amount of axonal and dendritic innervation of individual laminae as well as the locations of197

the soma and centroids of the axonal and dendritic trees along the laminar axis. Throughout,198

we control the false discovery rate (FDR) by applying multiple testing correction (Methods).199

Tables 1 and S3-S5 summarize these results. We observe that no single anatomical feature200

is significantly predictable from gene expression for all inhibitory t-types and every studied201

t-type has at least one significantly predictable anatomical feature. (Only the L4 dendritic202

innervation strength is significantly correlated with gene expression for cells of type Sst Chodl.)203

Perhaps more interestingly, we find that the sets of laminae innervation-predicting genes within204

transcriptomically defined subclasses and t-types are highly reproducible (Table S5) and almost205

mutually exclusive(Figure 4g). These observations support a connectivity-related organization206

of cortical cells.44 (Multiple discrete and continuous factors of variability may shape neuronal207

phenotypes6,45 and their dissection may not be possible by studying a subset of non-adjacent208

t-types.) They also put forth a related question: can gene expression further predict innervation209

strength of a single layer in a continuum?210
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Figure 3: Comparison of cell type classification accuracy based on the ADR vs. a set of
classical morphometric features. Confusion matrix for the classification of 42 t-types based on
axonal and dendritic ADRs (a) and morphometric features (b), using a combination of 246 automatically
and 501 manually reconstructed cells. Confusion matrix for the classification of 38 t-types based on
ADRs, using 488 manually (c) and automatically (d) reconstructed cells. Accuracy values reported in
the headers refer to mean ± s.d. of the overall t-type and t-subclass classifiers, respectively, across
cross-validation folds. Rightmost columns list the number of cells in each t-type (n).
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Sst Calb2 Pdlim5 Sst Hpse Cbln4 Sst Chodl Pvalb Reln Itm2a
L1 axon 0 / 0.40 1.000 0.637 0.023 / 0.13
L2/3 axon 0.013 / 0.30 1.000 1.000 0 / 0.35
L4 axon 0.689 0.332 0.607 0 / 0.35
L5 axon 0.033 / 0.15 0.013 / 0.25 1.000 0.102
L1 dendrite 0.042 / 0.17 1.000 0.689 0.088
L2/3 dendrite 0.033 / 0.15 1.000 0.332 0.013 / 0.27
L4 dendrite 0.697 0 / 0.40 0.013 / 0.40 0.058
L5 dendrite 0 / 0.19 0.102 0.393 0 / 0.25
soma depth 0 / 0.26 0.023 / 0.21 0.246 0 / 0.34
axon centroid 0.023 / 0.16 0.210 0.058 0 / 0.34
dendrite centroid 0.150 0.023 / 0.26 0.096 0 / 0.39

Pvalb Tpbg Lamp5 Lsp1 Lamp5 Plch2 Dock5
L1 axon 0.033 / 0.21 0.013 / 0.56 0.042 / 0.40
L2/3 axon 0.023 / 0.27 0.042 / 0.52 0.323
L4 axon 0.216 1.000 0.351
L5 axon 0.058 0.135 0.081
L1 dendrite 0 / 0.42 0.283 0 / 0.40
L2/3 dendrite 0.042 / 0.21 1.000 1.000
L4 dendrite 0.074 0.393 1.000
L5 dendrite 0.013 / 0.26 1.000 1.000
soma depth 0.013 / 0.29 0.023 / 0.48 0.067
axon centroid 0.058 0.013 / 0.44 0.074
dendrite centroid 0.013 / 0.38 0.023 / 0.46 0.074

Table 1: Statistical significance and effect size values for predicting anatomical features from gene
expression via sparse linear regression for five different cell types. For each entry, the FDR-corrected
p-value as calculated by a non-parametric shuffle test is listed. If the value is considered statistically
significant at p ≤ 0.05, the R2 value is also displayed (p / R2). p-values less than or equal to 0.05 and
R2 values larger than or equal to 0.25 are shown in bold. A p value of 0 indicates that the calculated p
value is less than 0.001, the sensitivity of the shuffle test, and less than 0.013 after FDR correction.
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Tuning laminar innervation within a cell type: a comparative study211

To elucidate this question, we choose a transcriptomically defined subpopulation that is well-212

sampled in our dataset with the help of automated reconstruction, produces a large effect size213

in the gene regression study (Table 1), and has been a source of confusion due to its anatomical214

variability: Sst Calb2 Pdlim5 neurons23 represent a transcriptomically homogeneous subset of215

Martinotti cells, which are inhibitory neurons with L1-innervating axons that gate top-down216

input to pyramidal neurons.25,26 However, the amount of axon reaching L1 varies widely across217

cells.5 Tables 1 and S5 show that a small set of genes, including genes implicated in synapse218

formation, cell-cell recognition and adhesion, and neurite outgrowth and arborization,46–48 can219

nevertheless predict the L1-innervating skeletal mass of neurons belonging to this homogeneous220

population (R2 = 0.40, p < 0.001, non-parametric shuffle test). Since the somata of this221

population are distributed across L2/3, L4, and L5 (Figure 4b), one potential explanation222

for this result is that gene expression is correlated with the overall depth location of the223

cells rather than L1 innervation strength in particular (Figure 4c). Therefore, we repeat the224

sparse regression study after removing the piecewise linear contribution of soma depth to L1225

innervation (linear fit and subtraction for only the L1 innervating subpopulation because the226

relationship is trivially nonexistent for the non-innervating subpopulation, Methods). We find227

that the expression levels of a small set of genes are still statistically significantly predictive of228

L1 innervation: R2 = 0.31, p < 0.001, non-parametric shuffle test. (Repeating with a linear fit229

and subtraction for the whole population does not change the qualitative result: R2 = 0.30,230

p < 0.001.)231

Next, we obtain a comparative perspective on the L1 innervation result for the Sst Calb2232

Pdlim5 subset of Martinotti cells by juxtaposing this result with that for the cells of the233

Lamp5 Lsp1 type. Somata of these cells are also distributed across multiple cortical layers234

and their axons have highly variable levels of L1 innervation. Sparse regression again succeeds235

in finding a small set of genes whose expression level can predict L1 innervation (R2 = 0.56,236

p = 0.01, non-parametric shuffle test, Table 1). However, it fails to uncover a statistically237

significant gene set after removing the piecewise linear contribution of soma depth: R2 = 0.06,238

p = 0.26, non-parametric shuffle test. (Repeating with a linear fit and subtraction for the whole239

population does not change the qualitative result: R2 = 0.08, p = 0.39.) That is, in contrast240

to the Sst Calb2 Pdlim5 cells, soma depth almost completely explains the variability in L1241

innervation for cells in the Lamp5 Lsp1 population (Figure 4e,f).242
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Figure 4: L1 axonal innervation correlates with expression of subset of genes in Martinotti
cells. Example neurons of Sst Calb2 Pdlim5 and Lamp5 Lsp1 t-types (a). 1D axonal arbor density for
the 52 cells in the Sst Calb2 Pdlim5 t-type (b) and the 22 cells in the Lamp5 Lsp1 t-type (e). (Yellow
horizontal dashed lines and red dots indicate cortical layer boundaries and soma depth, respectively).
Normalized L1-axon skeletal mass vs. normalized soma depth (0:pia, 1:white matter boundary) for
the Sst Calb2 Pdlim5 cells (c) and the Lamp5 Lsp1 cells (f). Lines fitted to cells with nonzero L1
innervation. Cells whose axons don’t reach L1 are shown in gray. d, Gene expression vs. L1-axon
skeletal mass for the genes selected by the sparse regression analysis. (L1-axon mass decreases from
left to right.) g, Similarity matrix for the sets of laminae-predicting genes within transcriptomic types
and subclasses. (See Table S5.) Each entry denotes the number of genes in the intersection between
the corresponding row and column.
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Lastly, we consider the possibility that the cells whose axons do not reach L1 are simply243

irrelevant for this study and bias the statistics. (Axons of 3 out of 52 cells in the Sst Calb2244

Pdlim5 population, and 7 out of 22 cells in the Lamp5 Lsp1 population do not reach L1.) We245

repeat the above comparison after removing the cells whose axons don’t reach L1 altogether246

from this study. Sparse regression still uncovers a statistically significant relationship between247

L1 innervation strength and a set of genes for the Sst Calb2 Pdlim5 population after removing248

the linear contribution of soma depth (R2 = 0.28, p < 0.001). In contrast, it again fails to find249

a statistically significant relationship for the Lamp5 Lsp1 population (R2 = 0.05, p = 0.39).250

To summarize, while axons of Lamp5 Lsp1 cells appear to shift along the laminar axis according251

to their soma location within the cortical depth, soma location does not seem to dictate252

the axonal L1 innervation of Sst Calb2 Pdlim5 neurons, whose strength can nevertheless be253

predicted by gene expression. For both of these t-types, the automated reconstruction pipeline254

increased the sample size by more than 60% (Sst Calb2 Pdlim5: 63%, Lamp5 Lsp1: 69%),255

empowering the statistical analysis pursued here. Similarly, the sample counts for the t-types256

studied in Table 1 increased between 48% and 138%. (The increase over the whole dataset is257

50%, from 543 to 813 cells.) Since t-types correspond to leaf nodes of the cell type hierarchy,258

their sample sizes are much smaller than the subclass-level counts. Therefore, automated259

reconstruction can be beneficial both by capturing more of the biological variability in single260

cell morphologies of populations at the finest level of transcriptomically defined taxonomies261

and by enabling cross-validation schemes similar to the ones pursued here.262

Discussion263

While classification of neuronal cell types is increasingly based on single cell and nucleus264

genomic technologies, characterization of neuron morphology – a classical approach – captures265

an aspect of neuronal identity that is stable over long time scales, is intimately related to266

connectivity and function, and can now be connected with genomic attributes through the use267

of simultaneous profiling techniques such as Patch-seq. Nevertheless, light microscopy based268

methods of neuronal reconstruction often inadequately reproduce the determinant attributes of269

morphological signature, especially in high-throughput settings. Here, we have presented an270

end-to-end automated neuronal morphology reconstruction pipeline for brightfield microscopy,271

whose simple setup supports flexible, single or multimodal, characterization protocols. We have272

also proposed an arbor density representation as a descriptor of cortical neuronal anatomy that273
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is robust against noise in high-throughput imaging scenarios as well as mistakes of automated274

reconstruction. Its success suggests that detailed morphological reconstructions may ultimately275

not be necessary if the only aim is inferring the cell type label.276

Through the use of sparsity arguments and statistical testing, we demonstrated that this277

pipeline can help reveal relationships between gene expression and neuronal anatomy, where278

a large number of anatomical reconstructions enables accurate inference in the presence of279

a large gene set. As an application, we studied the correlation between gene expression280

and laminar innervation on a Patch-seq dataset of cortical neurons5 and showed that the281

gene correlates of different innervation patterns have little overlap across transcriptomically282

defined subpopulations. While the same program can potentially also address the relationship283

between morphological and electrophysiological properties of neurons, the accuracy of automated284

reconstructions should further improve for use in detailed compartmental models.49285

Finally, we focused on axonal innervation of L1 by a transcriptomically defined subpopulation286

of Somatostatin-expressing Martinotti cells. We found that the innervation strength is relatively287

weakly correlated with soma depth for this cell type, but not all types. Moreover, a subset of288

genes can predict the remaining variability in the innervation strength after the effect of soma289

depth is removed, suggesting a control mechanism beyond simple shifting of the morphology290

within the cortical depth for this cell type. Considering that neurons in this population are291

thought to gate top-down input to cortical pyramidal neurons,25,26 this result suggests tuning292

of innervation strength in a continuum within the discrete laminar organization of the mouse293

cortex,45,50–52 potentially to improve task performance of the underlying neuronal network.294

From a segmentation perspective, we believe our work represents a significant step forward as the295

first study to produce hundreds of automatically reconstructed morphologies obtained from the296

brightfield microscope (Fig. S1-S11). As demonstrated in the main text, these cortical neuron297

morphologies are statistically indistinguishable from their manually generated counterparts in298

certain aspects (e.g., cell type identification), but not in many others (e.g., arbor topology).299

Indeed, much further improvement is needed to achieve complete and accurate tracing of300

neurons. Nevertheless, advances in computer vision algorithms and computing infrastructure301

that can support complicated models and large datasets suggest that qualitative improvements302

may be within reach in the next few years. Larger training sets will improve generalization,303

enable the use of larger image contexts and the effective tuning of more parameters (e.g., the304

use of the popular transformer architecture.53,54) The presented method can increase the speed305

of manually verified trace generation. In addition, existing manually traced neurons without306
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transcriptomic characterization (e.g., Ref.39) can still be useful in training the segmentation307

model. Finally, while voxel-based loss functions, such as the one used in our model, are easier308

and faster to train, single voxel mistakes can change the connectivity due to the filamentous309

appearance of the arbor under the light microscope. Therefore, topology-aware objective310

functions55,56 can improve the topological accuracy of the segmentations, a relative weakness of311

the proposed model. If perfect segmentation is required, we expect a human expert to remain312

in the loop in the near future, primarily to verify the accuracy of the branching points.313
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Methods555

Dataset556

The dataset profiling local morphology and transcriptome of GABAergic mouse visual cortical557

neurons was generated as part of the Patch-seq recordings described in Ref.5 This dataset558

includes 2,341 cells with transcriptomic profiling and high resolution image stacks, where the559

brain sections were imaged on an upright AxioImager Z2 microscope (Zeiss) equipped with an560

Axiocam506 monochrome camera. Tiled image stacks of individual cells were acquired with a561

63× objective lens (Zeiss Plan-Apochromat 63×/1.4 NA or Zeiss LD LCI Plan-Apochromat562

63×/1.2 NA) at an interval of 0.28 µm or 0.44 µm along the Z axis. Individual cells were563

manually placed in the appropriate cortical region and layer within the Allen Mouse Common564

Coordinate Framework (CCF)57,58 by matching the 20X image of the slice with a “virtual” slice565

at an appropriate location and orientation within the CCF. 1,259 cells were removed from566

the dataset either because they were mapped to nearby regions (instead of visual cortex) or567

because their images had incomplete axons. 543 of the remaining 1,082 bright-field image568

stacks of biocytin-filled neurons were reconstructed both manually and automatically, and this569

set is used for training and testing of the t-type classification algorithms and for error/R2-570

value quantification. The remaining 539 cells were reconstructed only automatically. To571

ensure the quality of scientific results presented in Table 1 and Figure 4, we excluded 118572

images with multiple neurons in the field of view and 151 images that failed at different573

stages of the pipeline (missing pia/white matter annotations, annotation-related failed upright574

transformation, reconstruction failing visual inspection) from those analyses. Finally, 16 cells in575

the manually and automatically reconstructed population and 20 cells in the automatically-only576

reconstructed population were not used for analyses involving t-types because these cells were577
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deemed to not have “highly consistent” t-type mappings in Ref.5578

Volumetric training data generation from skeletonized morphologies579

Segmentation of neuronal morphologies from 3D image stack requires voxel-wise labels while580

manual reconstructions specified by traces only provide a set of vertices and edges corresponding581

to the layout of the underlying morphology. We developed a topology-preserving fast marching582

algorithm to generate volumetric ground truth using raw image stacks and manual traces by583

adapting a fast-marching based segmentation algorithm13,59 initialized with trace vertices to584

segment image voxels. This segmentation should be consistent with the layout of morphology585

traces, without introducing topological errors (e.g., splits, merges, holes). We ensured this by586

incorporating simple point methods in digital topology60 into the segmentation algorithm. (i.e.,587

the proposal generated by fast marching is disallowed if the proposed voxel value flip changes588

the underlying topology.) We noticed that the soma can be incompletely filled by the fast589

marching algorithm. Therefore, we treated the soma region separately and used a sequence of590

erosion and dilation operations followed by manual thresholding to achieve complete labeling.591

Each voxel was labeled as axon, dendrite, soma, background.592

Neural network architecture and training593

We used a 3D U-Net convolutional neural network28 to perform multi-class segmentation (i.e.594

each voxel is assigned a probability of belonging to classes specified in the label set). We trained595

two separate models using raw images and volumetric ground truth; one with 51 inhibitory596

neurons, and another with 75 excitatory neurons from mouse cortex. The weights of the597

excitatory model were initialized with those of the trained inhibitory model, except for the598

classification layer. The U-Net architecture consists of a contracting path to capture context599

and a symmetric expanding path that enables precise localization and has been shown to600

achieve state-of-the-art performance in many segmentation tasks.27,28 Building on previous601

work,16 we developed an efficient Pytorch implementation that runs on graphical processing602

units (GPUs). To address GPU memory constraints, during each training epoch the training603

set was divided randomly into subsets of 3 stacks. Training proceeded sequentially using all604

subsets in an epoch, and data loading time did not exceed 10% of the total training time. We605

trained the model on batches of 3D patches (128× 128× 32 px3, XYZ), which were randomly606
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sampled from the subset of 3 stacks loaded into memory. All the models were trained using607

the Adam optimizer61 with a learning rate of 0.1. Training with a GeForce GTX 1080 GPU608

for ∼ 50 epochs took ∼ 3 weeks. Since the neuron occupies a small fraction of the image609

volume, we chose patches that contained at least one voxel belonging to the neuron. To add610

salient, negative examples to the training set, we also included a number of patches with bright611

backgrounds produced by staining artifacts and pial surface. To enable the model to generalize612

from relatively small number of training examples and improve the segmentation accuracy, we613

augmented training data by 90◦ rotations and vertical/horizontal flips in the image (XY) plane.614

End-to-end neuron reconstruction pipeline615

An end-to-end automated pipeline combined segmentation of raw image stacks into soma, axon,616

and dendrite structures with post-processing routines to produce a swc file. Segmentation617

with trained models using a single high-end GPU takes ∼5.8 min per Gvoxel, or ∼186 min618

for average 32 Gvoxel image stack. Our pipeline had access to 16 GPU (NVIDIA Titan619

X) cards. Even though the model trained using inhibitory neurons generalized well on all620

types of neurons, we found that the model trained using excitatory neurons improved the621

axon/dendrite assignment accuracy on excitatory neurons. Segmentation was post-processed622

by thresholding the background, followed by connected component analysis to remove short623

segments, skeletonization, and converting to a digital reconstruction in the swc format.624

Axon/dendrite relabeling625

Since the initial segmentation by the UNet-based neural network assigns every foreground voxel626

one of {soma, axon, dendrite} based on local context defined by the patch size, it is prone627

to occasional errors, particularly in distinguishing between axon and dendrite. These errors628

propagate to the labeling of nodes in the tree representation. In order to improve this initial629

node labeling, we developed an error correction approach which utilizes the initial segmentation630

to make a decision based on a larger spatial context.631

We trained a secondary neural network model to predict the labels based on features calculated632

using the raw image stack and the initial trace. First, for each connected component in the633

skeleton of the initial segmentation, we identified the longest path from the node closest to634

soma and calculated features on the node set defining that path: (i) The first 6 features are 1D635
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arrays of image brightness values calculated for every node in the set at different spatial scales636

using spherical kernels of varying radii (1, 2, 4, 8, 16, 32). (ii) A second set of 6 features are 1D637

arrays of neurite tortuosity values calculated for every node in the set as ratios of path and638

Euclidean distances between each node and its n-th neighbor away from the soma (n = 4, 8, 16,639

32, 64, 128). (iii) Two additional features are 1D arrays of node type of every node in the set640

and a single number representing distance of the closest node to the soma. For each 1D array,641

we used the first 2048 nodes and zero-padded shorter arrays to have a uniform array size.642

The neural network architecture consists of three arms, two arms have two convolutional layers643

with 4 and 8 7x3 filters followed by 4x1 max pooling, a fully connected layer and a dropout644

layer each. These arms process feature sets (i) and (ii) above by stacking the sets of 6 1D arrays645

along a second dimension. The third arm processes feature set (iii) and has two convolutional646

layers with 4 and 8 7x1 filters followed by 4x1 max pooling, a fully connected layer and a647

dropout layer. The outputs of these three arms are concatenated with the ‘distance to soma648

feature’. Finally, the concatenated hidden feature map is processed by two fully connected649

layers to produce a single scalar softmax output indicating the inferred label type. The network650

model was trained using examples from the training dataset of the semantic segmentation651

model, and is used to relabel the neuron traces during postprocessing. Averaging predicted652

label type over the 9 longest paths improved relabeling accuracy for connected components653

longer than 2048 nodes.654

Connecting disconnected segments655

Due to a combination of staining artifacts and limitations of brightfield imaging, the initial656

reconstruction is often characterized by multiple disconnected subtrees. We introduced artificial657

breaks to manual traces to train a random forest classifier to predict whether nearby pairs of658

connected components should be merged. First, we find all pairs of segment (subtree) end points659

that are located within a certain distance. Next, for each pair of end points, we calculate the660

Euclidean distance and four collinearity values which measure the segments’ orientation relative661

to each other. Specifically, for each end point, we calculate two vectors representing segment662

end orientation at two different spatial scales (i.e., the orientation of the branch terminating at663

that end point). The collinearity values are the dot products of each of these vectors with the664

vector between end points of the pair. Finally, for each end point in the pair we also calculate665

the above features for the closest four other end points. As a result, for every pair of end666
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nodes we have a total of 45 features. Only segments of the same type, axon or dendrite, are667

considered for merging.668

Additional postprocessing669

We passed the reconstructions through a series of additional post-processing for extraneous670

cell/artefact removal, down sampling, node sorting and pruning. We used quality control by a671

human to check for the presence of disconnected branches of extraneous cells that were not672

removed during postprocessing. We excluded samples that did not pass this quality control if673

they did not have a manual trace. For samples with a manual trace, we used a neighborhood674

of the manual trace to simulate manual removal of extraneous cells by masking with that675

neighborhood. We excluded these samples from reconstruction accuracy quantification and676

used them only for cell type classification. For excitatory neurons (Fig. 2a, and Ref.34), we677

trained a random forest classifier to identify apical dendrite segments in excitatory auto-trace678

reconstructions. The classifier was trained on geometric features that distinguish apical dendrite679

segments from the basal dendrite (e.g. upright distance from soma). This classifier achieved a680

mean accuracy of 85% percent across 10-fold cross validation.681

Morphometric feature calculation682

Reconstructions were transformed to an upright position that is perpendicular with respect to683

pia and white matter surfaces. Morphometric features as described in39 were calculated using684

the skeleton_keys python package. Following Ref.,39 z-dimension features were not included.685

Arbor density generation of axons and dendrites686

We represented axonal and dendritic morphologies as 2D density maps registered to a common687

local coordinate axis using the pia/white matter boundaries. First, we applied upright transform688

to the reconstructed neuron followed by the correction of z-shrinkage and the variable tilt angle689

of the acute slice.39 Next, adapting our previous work12,38 we conformally mapped pia and690

white matter boundaries to flat surfaces, calculated a nonlinear transformation on the whole691

tissue by a least-square fit to pia/white matter mappings, and applied this transformation to the692
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morphology trace. Finally, we used the registered trace to generate a 2D density representation.693

The polar axes representing the cortical depth and the lateral distance from the soma (Figure 2c)694

make this representation invariant to rotations around the laminar axis. We calculated these695

maps separately for axons and dendrites. We downsampled these maps to 120px× 4px images696

with a pixel size of 8µm× 125µm to be robust to minor changes in morphology. We normalized697

the intensity by the lateral area corresponding to each pixel so that each pixel value represents698

local arbor density.699

Assessing neuron reconstruction accuracy700

To assess the quality of automated neuron reconstructions, we used manual reconstructions as701

the ground truth. We quantified the correspondence of trace nodes, as described in the main702

text, to evaluate the accuracy of the trace layout. We calculated precision, recall and f1-score703

metrics at three distances (2, 5, and 10 µm), and reported mean and standard deviation values704

for the test set of 340 neurons (all samples that have manual traces excluding the ones used705

for training models or required masking). In addition, we evaluated the accuracy of neuron706

morphology representations, morphometric features and ADRs, for the same set. After realizing707

that the image coordinates used for manual vs. automated tracing were nonlinearly warped708

with respect to each other for one cell (penultimate cell in Figure S10), we removed that cell709

from the single cell-level node correspondence, ADR, and feature-based comparison studies. (It710

was used in all cell typing studies.) We reported the Pearson correlation coefficient r for each711

morphometric feature. We calculated the average root-mean-squared error per t-type between712

normalized axon/dendrite ADRs derived from automated and manual reconstructions.713

Supervised classification714

Supervised classification using morphometric features was performed by training a random715

forest classifier implemented in the scikit-learn Python package62 using 5-fold cross-validation.716

This was repeated 20 times. Supervised classification using ADRs was done by training a feed-717

forward neural network classifier using our Pytorch implementation. The network architecture718

consists of a convolutional layer with 7x3x1 filters, a 4x1x1 max pooling layer, a convolutional719

layer with 7x3x1 filters, a 3x1x1 max pooling layer, a layer that concatenates the hidden features720

with the soma depth value, and a fully connected layer with the number of units corresponding721
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to the number of classes. Each convolutional layer uses the rectified linear function as the722

non-linear transformation.723

Since the depth locations of neurons vary within the cortex, we introduced a novel type of724

data augmentation based on simulation of cell type-dependent neuronal shift along the laminar725

axis. Namely, for each t-type we calculated the range of soma depth variations, and applied a726

random shift within that range to the input soma depth value, as well as the corresponding727

shift to the ADR intensity in the laminar direction. This cell type-dependent random shift of728

the ADR and the soma depth together with a modulation of the intensity values of the ADR729

improved the accuracy of classification.730

The networks were trained using the cross-entropy loss function and the Adam optimizer with a731

learning rate of 0.001. Training using 10-fold cross-validation with GeForce GTX 1080 GPU for732

50,000 epochs took ∼ 24 h. A set of 246 automatically and 501 manually reconstructed cells was733

used for training classifiers shown in Figure 3a and b, and a set of the same 488 automatically734

and manually reconstructed cells were used for Figure 3c,d and Figure S19. Both sets included735

only cells from t-types with at least 5 cells. Confusion matrices, mean and standard deviation736

of accuracy across cross-validation folds were reported.737

We performed Boschloo’s exact test on 2x2 contingency tables where columns/rows store738

total numbers of correct and incorrect predictions for two given classifiers. When comparing739

ADR-based to morphometric feature-based classifiers, we calculated the contingency table for740

each of the 20 repetitions used in the feature-based classifier study. We calculated the p-value741

of one-sided Boschloo’s test to evaluate the null hypothesis of ADR-based accuracy being less742

than feature-based accuracy. To aggregate the 20 p-values, we used Ref.40 and the Python743

implementation at https://github.com/benjaminpatrickevans/harmonicmeanp to report744

the p-value of the asymptotically exact harmonic mean p-value test for t-type and subclass745

predictions.746

Cophenetic agreement: To take the hierarchical organization of transcriptomically defined747

mouse cortical cell types23 into account when evaluating the accuracies of the different classifi-748

cation tasks, we defined resolution index per cell as the scaled height of the closest common749

ancestor of assigned and predicted labels in the t-type hierarchical tree63 (Figures S20 and S21).750

Accordingly, the resolution index for a correctly classified t-type (“leaf node” label) is 1. In the751

worst case, the closest ancestor for an assigned and predicted label can be the root node of the752

taxonomy, which corresponds to a resolution index of 0. We report the mean and s.e.m. values753
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for this measure of cophenetic agreement between true and predicted assignments for each cell754

type in Figures S20 and S21.755

Sparse feature selection analysis756

Following Ref.,64 a set of 1,252 genes were used for this analysis. This set was obtained by757

excluding genes if they satisfy any of the following criteria: (1) they are highly expressed in758

non-neuronal cells, (2) they have previously reported sex or mitochondrial associations, and (3)759

they are much more highly expressed in Patch-seq data vs. Fluorescence Activated Cell Sorting760

(FACS) data (or vice versa) and therefore may be associated with the experimental platform5.761

Further, we removed gene models and some other families of unannotated genes that may be762

difficult to interpret. We also used the β score, a published measure to evaluate the degree763

to which gene expression is exclusive to t-types,65 to exclude genes expressed broadly across764

t-types. Gene expression values were CPM normalized, and then loge(•+ 1) transformed for765

all the downstream analyses.766

A set of 777 neurons was used for the feature selection analysis where automated reconstructions767

comprise ∼ 32% of this set (∼ 44% of the subset of 7 t-types studied in Figure 4). Every neuron768

in the dataset was characterized by the expression levels of the set of 1252 genes, and their769

axonal and dendritic 1D arbor density representations were organized into two 120× 1 vectors.770

For each neuron, axon/dendrite layer-specific skeletal masses normalized by total skeletal mass771

were calculated to quantify layer-specific innervation for axonal and dendritic morphologies,772

and axon/dendrite centroids were calculated to characterize laminar position of the morphology.773

To select a small subset of genes that are responsible for the variability in individual anatomical774

features within each transcriptomic type or subclass, we solved the Lasso regression problem66
775

(LassoCV command in the scikit-learn library62) for each anatomical feature using the cells in776

that transcriptomic set. We analyzed only the sets corresponding to the types and subclasses777

with at least 20 cells. Briefly, let Kt denote the number of cells of type or subclass t for which778

we have both anatomical features yt (a Kt× 1 vector) and gene expression values Xt (a Kt×N779

matrix). We solve780

minimize
1

2Kt

‖yt – Xtwt‖22 + α‖wt‖1

by performing nested 5-fold cross-validation. For each cross-validation fold, we passed the781

training set into LassoCV which performed another splitting of the data to determine the782

hyperparameter α and the set of selected genes. We selected the 10 genes with maximum783
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absolute weight values and calculated the coefficient of determination, R2, for the test set.784

Finally, we selected the 10 most frequent genes across the 5 folds and calculated the mean test785

R2 value. To evaluate statistical significance, we shuffled the rows of the gene expression matrix786

Xt 1000 times and used the same procedure to calculate mean test R2 value for each shuffled787

run. We calculated the one-sided p-value as the fraction of shuffled runs with R2 values greater788

than or equal to the true R2. Finally, we performed multiple testing correction of p-values789

using Benjamini-Yekutieli method67 to control the false discovery rate (multipletests command790

in the statsmodels library68). We report resulting p-values and test R2 values for t-types in791

Table 1 and for t-types and subclasses in Tables S3 and S4.792

Data availability793

Transcriptomic and morphological data supporting the findings of this study is available on-794

line at https://portal.brain-map.org/explore/classes/multimodal-characterization795

(“Neurons in Mouse Primary Visual Cortex”). Additional dataset of automated morphological796

reconstructions is available at https://github.com/ogliko/patchseq-autorecon.797

Code availability798

Code pertaining to this study as well as the trained neural network model for automated799

segmentation are available at https://github.com/ogliko/patchseq-autorecon and https:800

//github.com/rhngla/topo-preserve-fastmarching. Morphometric features are calculated801
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Figure S1: Morphological reconstructions of inhibitory neurons ordered by t-type – 1 of
11. 543 neurons have both automated and manual reconstructions, 270 - only automated ones. For
each t-type, cells with both automated and manual reconstructions are shown first, separated by faint
dashed lines, followed by cells that are reconstructed only automatically. Dendrites and axon are
in darker and lighter colors, respectively. Best viewed digitally. PQT: poor quality transcriptomic
characterization – not used for t-type related analyses. T: cells used in segmentation model training.
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Figure S2: Morphological reconstructions of inhibitory neurons ordered by t-type – 2 of
11. Please refer to the caption of Figure S1.
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Figure S3: Morphological reconstructions of inhibitory neurons ordered by t-type – 3 of
11. Please refer to the caption of Figure S1.
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Figure S4: Morphological reconstructions of inhibitory neurons ordered by t-type – 4 of
11. Please refer to the caption of Figure S1.
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Figure S5: Morphological reconstructions of inhibitory neurons ordered by t-type – 5 of
11. Please refer to the caption of Figure S1.
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Figure S6: Morphological reconstructions of inhibitory neurons ordered by t-type – 6 of
11. Please refer to the caption of Figure S1.
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Figure S7: Morphological reconstructions of inhibitory neurons ordered by t-type – 7 of
11. Please refer to the caption of Figure S1.
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Figure S8: Morphological reconstructions of inhibitory neurons ordered by t-type – 8 of
11. Please refer to the caption of Figure S1.
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Figure S9: Morphological reconstructions of inhibitory neurons ordered by t-type – 9 of
11. Please refer to the caption of Figure S1.
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Figure S10: Morphological reconstructions of inhibitory neurons ordered by t-type – 10
of 11. Please refer to the caption of Figure S1.
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Figure S11: Morphological reconstructions of inhibitory neurons ordered by t-type – 11 of
11. Please refer to the caption of Figure S1.
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Figure S12: A qualitative comparative study of automated reconstruction accuracy based
on three example test inhibitory neurons. Minimum intensity projection of image stacks (left
column), automated reconstructions using the app2 algorithm69,70 (second column), automated
reconstructions using the proposed method (third column), manual reconstructions (right column).
We tried multiple parameter values to optimize app2’s performance. For manual and our automated
reconstructions: dendrites (blue), axons (red), soma (black). For automated reconstructions using
app2: neurites (gray). Scale bar, 100 µm.
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Figure S13: Morphological reconstructions of example neurons from other datasets, with-
out tuning the segmentation model. Left column: minimum intensity projection of image stacks,
middle column: automated reconstruction, right column: manual reconstruction. a, A human cortical
inhibitory cell. b, Another human cortical inhibitory cell. All experimental steps prior to imaging were
performed by a different laboratory and imaging was done at the Allen Institute30). c, A macaque
subcortical inhibitory cell. d, Mouse subcortical inhibitory cell. Dendrites (blue), axons (red), soma
(black). e, Part of a cat cortical excitatory cell, a part of the DIADEM dataset,31 originally obtained
by Ref.32 – different colors indicate different connected components. Scale bar, 100 µm.
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Figure S14: Morphological reconstructions of example excitatory neurons with traced
axons. The method can trace and label the axon as well when it is captured in the slice. Minimum
intensity projection of image stacks (left column), automated reconstructions (middle column), manual
reconstructions (right column). Basal dendrites (blue), apical dendrites (magenta), axon (red), soma
(black). Scale bar, 100 µm.
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Figure S15: Comparison of automated vs. multiple manual reconstructions for one example
test neuron. This neuron is not used for training. Multiple manual reconstructions are obtained
to estimate cross-human agreement. Minimum intensity projection of the image stack (top left),
automated reconstruction (top middle), manual reconstructions (bottom). Dendrites (blue), axons
(red), soma (black). Scale bar, 100 µm. See Table S2 for quantification.
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Figure S16: Comparison of automatically vs. manually generated morphometric features.
Scatter plots for every feature are shown. For each feature, the y-axis denotes values based on manual
traces and the x-axis denotes values based on automated traces. Each dot depicts an individual cell,
and its color indicates the cell’s t-type, consistent with the coloring scheme in Ref.5
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Figure S17: Neuron reconstruction accuracy. Scatter plots for precision vs. recall calculated by
comparing automated and manual trace nodes within a given distance (2, 5, and 10 µm), as described
in the main text, are shown for axonal, dendritic, and neurite (axonal or dendritic) nodes. Each dot
depicts an individual cell, and its color indicates the cell’s t-type, consistent with the coloring scheme
in Ref.5
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Figure S18: Comparison of automatically vs. manually generated ADRs. Scatter plots for
the root-mean-squared error (left) and Pearson’s correlation r values (right) for each cell’s automatically
reconstructed axonal vs. dendritic arbors, with respect to the corresponding manual traces, are shown.
Each dot depicts an individual cell, and its color indicates the cell’s t-type, consistent with the coloring
scheme in Ref.5
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Figure S19: Comparison of cell type classification accuracy based on a set of classical
morphometric features using manually vs. automatically reconstructed cells. Confusion
matrix for the classification of 38 t-types based on features, using 488 manually (a) and automatically
(b) reconstructed cells. Accuracy values reported in the headers refer to mean ± s.d. of the overall
t-type and t-subclass classifiers, respectively, across cross-validation folds. Rightmost column lists the
number of cells in each t-type (n).
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Figure S20: Arbor density-based cell type classification performance using resolution index.
The depth of the Tasic et al. GABAergic neuron hierarchical tree is normalized to the 0-1 range,
and resolution index for each cell is defined as the value of the closest common ancestor of the true
and predicted leaf node labels. Perfect classification corresponds to resolution index of 1. Error bars
indicate resolution index (mean ± SE over 10-fold stratified cross validation sets) for each cell type.
The overall mean across cell types is indicated by blue on the y-axis. Cell types absent from the
dataset are indicated by grayed out labels on the x-axis. Classification was performed with multi-layer
perceptron classifiers using arbor density representation of all (a), manually (b) and automatically
(c) reconstructed neurons as input. Resolution index values are not strictly comparable across panels
because the numbers of cells and types are not identical. Left panel: 747 cells, 42 types; middle and
right panels: 488 cells, 38 types. (See Figure 3.)
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Figure S21: Feature-based cell type classification performance using resolution index. As
before, error bars indicate resolution index (mean ± SE over 5-fold stratified cross validation sets
repeated 20 times) for each cell type. The overall mean across cell types is indicated by blue on
the y-axis. Cell types absent from the dataset are indicated by grayed out labels on the x-axis.
Classification was performed with random forest classifiers using morphometric features of all (a),
manually (b) and automatically reconstructed cells (c) as input. Resolution index values are not
strictly comparable across panels because the numbers of cells and types are not identical. Left panel:
747 cells, 42 types; middle and right panels: 488 cells, 38 types. (See Figure 3.)
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Precision Axon Dendrite Neurite

Distance, µm raw masked raw masked raw masked

2 0.81 ± 0.08 0.83 ± 0.07 0.72 ± 0.15 0.73 ± 0.15 0.89 ± 0.04 0.91 ± 0.03

5 0.89 ± 0.07 0.91 ± 0.06 0.76 ± 0.14 0.77 ± 0.14 0.95 ± 0.03 0.97 ± 0.02

10 0.93 ± 0.06 0.96 ± 0.05 0.82 ± 0.12 0.82 ± 0.12 0.97 ± 0.03 0.99 ± 0.01

Recall Axon Dendrite Neurite

Distance, µm raw masked raw masked raw masked

2 0.58 ± 0.16 0.58 ± 0.16 0.81 ± 0.20 0.81 ± 0.20 0.73 ± 0.11 0.73 ± 0.11

5 0.66 ± 0.16 0.66 ± 0.16 0.83 ± 0.19 0.83 ± 0.19 0.80 ± 0.11 0.80 ± 0.11

10 0.75 ± 0.16 0.75 ± 0.16 0.87 ± 0.17 0.87 ± 0.17 0.87 ± 0.09 0.87 ± 0.09

F1-score Axon Dendrite Neurite

Distance, µm raw masked raw masked raw masked

2 0.66 ± 0.13 0.67 ± 0.13 0.74 ± 0.16 0.74 ± 0.16 0.80 ± 0.08 0.80 ± 0.08

5 0.75 ± 0.13 0.76 ± 0.13 0.78 ± 0.15 0.78 ± 0.15 0.87 ± 0.07 0.87 ± 0.07

10 0.82 ± 0.12 0.83 ± 0.12 0.83 ± 0.13 0.83 ± 0.13 0.92 ± 0.06 0.92 ± 0.06

Table S1: Neuron reconstruction accuracy. Precision, recall, and F1-score values are calculated
by comparing automated and manual trace nodes within a given distance (2, 5, and 10 µm). Mean ±
s.d. of the values over 340 cells are reported for axonal, dendritic, and neurite (combined axonal and
dendritic) nodes of raw and masked automated traces.
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Precision Axon Dendrite Neurite

Distance, µm manual auto manual auto manual auto

2 0.93 ± 0.02 0.88 ± 0.01 0.99 ± 0.00 0.82 ± 0.00 0.93 ± 0.02 0.91 ± 0.01

5 0.97 ± 0.01 0.92 ± 0.01 1.00 ± 0.00 0.86 ± 0.01 0.97 ± 0.01 0.94 ± 0.01

10 0.98 ± 0.01 0.95 ± 0.01 1.00 ± 0.00 0.89 ± 0.01 0.98 ± 0.01 0.96 ± 0.01

Recall Axon Dendrite Neurite

Distance, µm manual auto manual auto manual auto

2 0.92 ± 0.01 0.91 ± 0.01 0.98 ± 0.00 0.65 ± 0.00 0.92 ± 0.01 0.92 ± 0.01

5 0.96 ± 0.02 0.96 ± 0.01 0.99 ± 0.00 0.71 ± 0.00 0.96 ± 0.01 0.98 ± 0.01

10 0.97 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.73 ± 0.00 0.97 ± 0.01 0.99 ± 0.00

F1-score Axon Dendrite Neurite

Distance, µm manual auto manual auto manual auto

2 0.92 ± 0.01 0.89 ± 0.00 0.99 ± 0.00 0.73 ± 0.00 0.93 ± 0.01 0.91 ± 0.00

5 0.96 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.78 ± 0.00 0.97 ± 0.00 0.96 ± 0.00

10 0.98 ± 0.00 0.97 ± 0.00 1.00 ± 0.00 0.80 ± 0.00 0.98 ± 0.00 0.98 ± 0.00

Table S2: Neuron reconstruction accuracy for multiple manual traces vs. the automated
trace for a single test cell. See Figure S15 for projections of the raw image and the corresponding
reconstructions for this test neuron. Precision, recall, and F1-score values are calculated by comparing
pairs of trace nodes within a given distance (2, 5, and 10 µm). Mean ± s.d. of the values over three
pairwise comparisons are reported for axonal, dendritic, and neurite (combined axonal and dendritic)
nodes of manual vs. manual traces and automated vs. manual traces.
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Sst Calb2 Pdlim5 Sst Hpse Cbln4 Sst Chodl Pvalb Reln Itm2a Pvalb Tpbg Lamp5 Lsp1
L1 axon 0 / 0.40 1.000 0.637 0.023 / 0.13 0.033 / 0.21 0.013 / 0.56
L2/3 axon 0.013 / 0.30 1.000 1.000 0 / 0.35 0.023 / 0.27 0.042 / 0.52
L4 axon 0.689 0.332 0.607 0 / 0.35 0.216 1.000
L5 axon 0.033 / 0.15 0.013 / 0.25 1.000 0.102 0.058 0.135
L6 axon 1.000 0.081 0.288 0.182 1.000 0.058
L1 dendrite 0.042 / 0.17 1.000 0.689 0.088 0 / 0.42 0.283
L2/3 dendrite 0.033 / 0.15 1.000 0.332 0.013 / 0.27 0.042 / 0.21 1.000
L4 dendrite 0.697 0 / 0.40 0.013 / 0.40 0.058 0.074 0.393
L5 dendrite 0 / 0.19 0.102 0.393 0 / 0.25 0.013 / 0.26 1.000
L6 dendrite 1.000 0.088 0.866 0.051 0.363 1.000
soma depth 0 / 0.26 0.023 / 0.21 0.246 0 / 0.34 0.013 / 0.29 0.023 / 0.48
axon centroid 0.023 / 0.16 0.210 0.058 0 / 0.34 0.058 0.013 / 0.44
dendrite centroid 0.150 0.023 / 0.26 0.096 0 / 0.39 0.013 / 0.38 0.023 / 0.46

Lamp5 Plch2 Dock5 Sst Pvalb Lamp5 Vip
L1 axon 0.042 / 0.40 0 / 0.29 0 / 0.29 0 / 0.47 0 / 0.24
L2/3 axon 0.322 0 / 0.41 0 / 0.66 0.813 0 / 0.27
L4 axon 0.351 0 / 0.44 0 / 0.40 0.210 0 / 0.18
L5 axon 0.081 0 / 0.33 0 / 0.21 1.000 0 / 0.18
L6 axon 0.540 0 / 0.37 0 / 0.52 1.000 0.813
L1 dendrite 0 / 0.40 0.023 / 0.01 0 / 0.42 0 / 0.25 1.000
L2/3 dendrite 1.000 0 / 0.37 0 / 0.66 1.000 0 / 0.48
L4 dendrite 1.000 0 / 0.42 0 / 0.28 1.000 0 / 0.16
L5 dendrite 1.000 0 / 0.19 0 / 0.24 1.000 0 / 0.34
L6 dendrite 1.000 0 / 0.44 0 / 0.59 1.000 0.689
soma depth 0.067 0 / 0.48 0 / 0.70 0 / 0.24 0 / 0.33
axon centroid 0.074 0 / 0.53 0 / 0.72 0 / 0.25 0 / 0.29
dendrite centroid 0.074 0 / 0.45 0 / 0.68 0 / 0.26 0 / 0.21

Table S3: Statistical significance and effect size values for predicting anatomical features
from gene expression via sparse linear regression for seven different cell types and four
subclasses. For each entry, the FDR-corrected p-value as calculated by a non-parametric shuffle test
is listed. (See Sparse feature selection analysis under Methods.) If the value is considered statistically
significant at p ≤ 0.05, the R2 value is also displayed (p / R2). p-values less than or equal to 0.05 and
R2 values larger than or equal to 0.25 are shown in bold.
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Sst Calb2 Pdlim5 Sst Hpse Cbln4 Sst Chodl Pvalb Reln Itm2a Pvalb Tpbg Lamp5 Lsp1
L1 axon 0 / 0.40 0.481 0.090 0.002 / 0.13 0.003 / 0.21 0.001 / 0.56
L2/3 axon 0.001 / 0.30 0.232 0.306 0 / 0.35 0.002 / 0.27 0.004 / 0.52
L4 axon 0.100 0.044 / 0.01 0.085 0 / 0.35 0.027 / 0.06 0.312
L5 axon 0.003 / 0.15 0.001 / 0.25 0.347 0.012 / 0.07 0.006 / 0.14 0.016 / -0.45
L6 axon 0.251 0.009 / 0.10 0.037 / 0.11 0.022 / -0.05 0.227 0.006 / 0.32
L1 dendrite 0.004 / 0.17 0.895 0.100 0.010 / -0.26 0 / 0.42 0.036 / -0.03
L2/3 dendrite 0.003 / 0.15 0.234 0.044 / 0.05 0.001 / 0.27 0.004 / 0.21 0.189
L4 dendrite 0.102 0 / 0.40 0.001 / 0.40 0.006 / 0.09 0.008 / 0.15 0.054
L5 dendrite 0 / 0.19 0.012 / 0.13 0.054 0 / 0.25 0.001 / 0.26 0.174
L6 dendrite 0.230 0.010 / 0.15 0.130 0.005 / 0.08 0.049 / 0.01 0.177
soma depth 0 / 0.26 0.002 / 0.21 0.031 / 0.06 0 / 0.34 0.001 / 0.29 0.002 / 0.48
axon centroid 0.002 / 0.16 0.026 / 0.04 0.006 / 0.26 0 / 0.34 0.006 / 0.21 0.001 / 0.44
dendrite centroid 0.018 / 0.18 0.002 / 0.26 0.011 / 0.22 0 / 0.39 0.001 / 0.38 0.002 / 0.46

Lamp5 Plch2 Dock5 Sst Pvalb Lamp5 Vip
L1 axon 0.004 / 0.40 0 / 0.29 0 / 0.29 0 / 0.47 0 / 0.24
L2/3 axon 0.042 / 0.08 0 / 0.41 0 / 0.66 0.120 0 / 0.27
L4 axon 0.047 / 0.01 0 / 0.44 0 / 0.40 0.026 / 0.01 0 / 0.18
L5 axon 0.009 / 0.07 0 / 0.33 0 / 0.21 0.186 0 / 0.18
L6 axon 0.075 0 / 0.37 0 / 0.52 0.177 0.121
L1 dendrite 0 / 0.40 0.002 / 0.01 0 / 0.42 0 / 0.25 0.208
L2/3 dendrite 0.218 0 / 0.37 0 / 0.66 0.510 0 / 0.48
L4 dendrite 0.285 0 / 0.42 0 / 0.28 0.214 0 / 0.16
L5 dendrite 0.217 0 / 0.19 0 / 0.24 0.217 0 / 0.34
L6 dendrite 0.292 0 / 0.44 0 / 0.59 0.160 0.099
soma depth 0.007 / 0.20 0 / 0.48 0 / 0.70 0 / 0.24 0 / 0.33
axon centroid 0.008 / 0.23 0 / 0.53 0 / 0.72 0 / 0.25 0 / 0.29
dendrite centroid 0.008 / 0.16 0 / 0.45 0 / 0.68 0 / 0.26 0 / 0.21

Table S4: Statistical significance and effect size values for predicting anatomical features
from gene expression via sparse linear regression for seven different cell types and four
subclasses – before FDR correction. For each entry, original p-value as calculated by a non-
parametric shuffle test is listed. If the value is considered statistically significant at p ≤ 0.05, the R2

value is also displayed (p / R2). p-values less than or equal to 0.05 and R2 values larger than or equal
to 0.25 are shown in bold.
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Table S5: Gene sets selected via sparse linear regression for different cell types/subclasses
and anatomical features. Only statistically significant sets with R2 ≥ 0.25 are shown (See Sup-
plementary Table 1). Numbers in parentheses denote the number of times the preceding gene was
selected out of 5 cross-validation runs. 27
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