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Abstract 

Functional analysis of high throughput experiments using pathway analysis is now 

ubiquitous. Though powerful, these methods often produce thousands of redundant results 

owing to knowledgebase redundancies upstream. This scale of results hinders extensive 

exploration by biologists and often leads to investigator biases due to previous knowledge and 

expectations. To address this issue, we present vissE, a flexible network-based analysis 

method that summarises redundancies into biological themes and provides various analytical 

modules to characterise and visualise them with respect to the underlying data, thus providing 

a comprehensive view of the biological system. We demonstrate vissE’s versatility by applying 

it to three different technologies: bulk, single-cell and spatial transcriptomics. Applying vissE 

to a factor analysis of a breast cancer spatial transcriptomic data, we identified stromal 

phenotypes that support tumour dissemination. Its adaptability allows vissE to enhance all 

existing gene-set enrichment and pathway analysis workflows, removing investigator bias 

from molecular discovery. 

Keywords: gene-set enrichment analysis, breast cancer, epithelial-mesenchymal transition, 

cancer associated fibroblasts, single-cell RNA-seq, spatial transcriptomics 

Introduction 

Biological systems are often studied using experiments that generate vast amounts of 

molecular measurements. Rigorous statistical analyses are routinely performed to identify the 

key molecules participating in the system. This is followed by interpretation from biologists 

who then attempt to explain the observed molecular shifts in their experiments, find evidence 

for molecular mechanisms and identify novel biology. Interpreting lists of molecules can be 

difficult and laborious for biologists in cases where thousands of molecules change in the 

experiment 1. This problem has motivated the development of statistical analyses that identify 

molecular processes enriched in the list of molecules, thus providing biologists with higher-

order interpretable summaries of their experiments 2. When the molecules of interest are 
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genes, these analyses have taken up the form of gene-set enrichment analysis 2,3 where sets 

of genes representing a common biological process are statistically assessed for enrichment 

in the experiment. Such gene-sets are derived from multiple sources which typically include 

the Gene Ontology (GO) project 4, the Reactome pathway database 5, the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway database 6 and the molecular signatures database 

(MSigDB) 7,8. These gene-sets are either curated from existing scientific literature or derived 

from molecular experiments. 

Though gene-set enrichment analyses are powerful tools to study the biological 

processes underpinning biological systems, they often identify thousands of processes thus 

introducing a challenge in the interpretation of results. This is in part driven by redundancy 

introduced by the hierarchical structuring of processes in gene-set databases such as the GO, 

Reactome and KEGG 9-11. Additionally, the increasing number of experimentally derived gene-

sets in databases such as the MSigDB will naturally lead to gene-set redundancy when related 

processes are being studied. Information redundancy in such databases is not necessarily 

detrimental, especially when evidenced by independent studies, however, it does pose a 

significant challenge when interpreting the results of gene-set enrichment analyses. Related 

pathways/processes are likely to be significant because of shared significant genes from the 

upstream analysis. In such a setting, biologists interpreting the top N processes will end up 

investigating the same signal in the data and will miss any orthogonal signals that although 

not as obvious, may lead to new insight into the nature of the data. Alternatively, domain 

experts attempting to interpret the full result set will inevitably be biased by their previous 

knowledge of the systems and will tend to select and focus on familiar processes for further 

investigations. 

Three broad categories of solutions have been developed to address this problem: 

collapsing redundant information (for example, the creation of GO “slim” ontologies), 

incorporating redundancy information in the gene-set enrichment analysis method, or 

visualising redundancy in the gene-set enrichment analysis results. The first category focuses 
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on modifying the underlying database such that redundant information is collapsed to produce 

a reduced collection of discrete categories, an approach that has been applied to GO and the 

Hallmark gene-sets from MSigDB 7,12,13. The second category of methods has been primarily 

developed for GO where the graph structure is incorporated into the statistical testing 

framework 14-16. While powerful, their application is limited to the analysis of knowledgebases 

that have a hierarchical structure such as GO and Reactome, and they can only be applied to 

a single database at a time restricting the sources of gene-sets. 

On the other hand, the category of visualisation methods aims to reveal the 

redundancy structure in gene-set databases. As such, these methods can be coupled with a 

broader range of existing enrichment analysis methods 2,3, including some of the recent single-

sample gene-set enrichment analysis methods 17. These methods generally begin by 

computing pairwise gene-set similarities based on content similarity of shared genes 1,10,18-22 

or semantic similarity computed from the underlying graph structure 23. Gene-set clusters are 

subsequently identified by clustering on the similarity matrix directly 11,18,22 or by constructing 

a graph and applying graph clustering algorithms 1,10,19-21. The resulting similarity graphs are 

visualised with gene-set statistics such as p-values or enrichment scores overlayed onto 

vertices. A subset of methods attempt to collapse gene-set annotations in each cluster into a 

per-cluster annotation by either annotating each cluster using a single representative 

significant member 11,18,21,22 or by performing text-mining on all member gene-sets to identify 

an overarching biological theme 1,10,20. Table 1 summarises current methods developed to 

consolidate and visualise gene-set enrichment analysis results, detailing the approaches used 

to compute similarity, perform clustering, and annotate clusters. 

Table 1:Methods to visualise the results of gene-set enrichment analyses 

Method Similarity Clustering Annotation Citation 
BiNGO GO Structure - - 24 

ClueGO Cohen’s Kappa Similarity-based Most significant 
term 

18 

EnrichmentMap Jaccard index, 
Overlap coefficient 

Graph (MCL) Text-mining (word 
frequencies) 

1,10 
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enrichplot Semantic similarity, 
Jaccard index 

- - 25,26 

GOMCL Jaccard index, 
Overlap coefficient 

Graph (MCL) Most significant 
term 

21 

GOsummaries - - Text-mining 
(weighted word 
frequencies) 

27 

GScluster Overlap coefficient, 
Cohen’s Kappa 

Similarity-based 
(fuzzy clustering) 

- 28 

KOBAS-i Jaccard index Graph (Infomap) - 19 
Metascape Cohen’s Kappa Similarity-based 

(hierarchical) 
Most significant 
term 

22 

REVIGO Semantic similarity Similarity-based 
(hierarchical) 

Most informative 
common ancestor 

11 

RICHNET Jaccard index Graph (edge 
betweenness) 

Text-mining (word 
frequencies) 

20 

 

Visualisation approaches are appealing since they can be applied to any gene-set 

enrichment analysis workflow. Good visualisations should reveal structure in the data that is 

not otherwise obvious. The approaches developed in the past have been powerful but restrict 

problem formulation to that of summarising the results of gene-set enrichment analysis, thus 

they lack the ability to provide useful insight from data. Furthermore, they lack suitable tools 

to visualise, explore and interpret the results of a gene-set enrichment analysis in the context 

of the underlying data and its downstream analysis. Tools such as EnrichmentMap 10 provide 

heatmaps to allow exploration of either the gene-level statistics (e.g., logFC) or their 

expression values, but not both. Other tools within the popular clusterProfiler software 25,26 

allow exploration of gene-sets with respect to genes but fail to identify and characterise gene-

set clusters. To address this limitation in problem formulation, vissE formulates the problem 

as one of identifying and characterising higher-order biological processes with the aim of 

allowing greater application and utility in all areas of biological and clinical sciences. Higher-

order biological processes are identified by clustering on the gene-set network and are 

explored using various analytical modules including cluster annotation. Due to the open 

problem formulation, we can extend development of tools and are able to perform novel 

functional analysis workflows, such as unsupervised exploration of molecular phenotypes in 
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single-cell and spatial transcriptomics data. The methods and data described here have been 

implemented in the vissE, msigdb and emtdata R/Bioconductor packages. 

Materials and methods 

A description of the vissE methodology 

Gene-sets used in gene-set enrichment analysis often vary in the resolution of 

molecular phenotypes they represent. Different resolutions can therefore map onto the same 

biological process, and it is often of interest to identify the higher-order biological process that 

encapsulates related gene-sets. This idea is used in vissE to identify higher-order molecular 

phenotypes from a cluster of gene-sets of interest. Given a list of gene-sets, the pairwise gene-

set similarity is first computed using either the Adjusted Rand Index (ARI), the Jaccard index 

or the overlap coefficient into a similarity matrix. When working with multiple databases, the 

Adjusted Rand Index or the Jaccard index are preferred since the overlap coefficient 

specifically highlights parent-child relationships and therefore works best when using a single 

hierarchically structured database. A gene-set overlap graph is generated by appropriately 

thresholding the similarity matrix. Under the assumption that gene-sets with many shared 

genes will likely represent related biological processes, vissE aims to identify clusters of gene-

sets by applying graph clustering algorithms that harness topological information in the 

network. The preferred choice here is an algorithm based on random walks as this has been 

shown to work well for both dense and sparse graphs in identifying small and large community 

structures 29. Clusters are then ordered to maximise the statistic of interest, as well as their 

size, using the product of ranks approach described in 30. 

The next step in a vissE analysis is to characterise each gene-set cluster and interpret 

the higher-order biological processes they represent using the range of analytical modules 

available in vissE. The vissE software provides a text-based interpretation of each gene-set 

cluster. This is done by performing text-mining analysis on the names or short descriptions of 

each gene-set in the cluster. The text data are pre-processed, and a term frequency is 
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computed for each word. Concurrently, terms from the molecular signatures database 

(MSigDB) are pre-processed to compute inverse document frequencies (IDF) per term. Term 

frequencies within each gene-set cluster are then weighted against IDFs thus producing a 

term frequency inverse document frequency (TF-IDF) for each term. This helps to remove any 

database specific bias by down-weighting over-represented words in the database. To ensure 

the visualisation is not too dense, up to 25 words with the highest TF-IDF are used to represent 

each gene-set cluster and are visualised using word clouds as shown in Figure 1. These visual 

representations of biological themes summarise hundreds of enriched terms and are more 

conducive for interpretation by the user. Biologists can draw insights from these visualisations 

to interpret the biological processes represented by clusters of gene sets and quickly interpret 

gene-set enrichment analyses in the context of their data. 

 

Figure 1. A schematic representation of various vissE workflows. A vissE workflow builds interpretable 

visualisations from gene-set enrichment analyses that allow users to easily investigate phenotypes at the resolution 
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of biological themes and individual genes, while minimising investigator biases. (1) vissE is flexible for use with any 

gene-set enrichment analysis, including those from scRNA-sequencing, spatial transcriptomics and traditional bulk 

RNA-sequencing technologies. (2) A list of significant gene-sets from these analyses are used to generate a gene-

set network that is used to minimise gene-set redundancy by identifying higher-order biological themes. (3) vissE 

offers a variety of analytical modules to then explore functional themes and to build a biological narrative that 

describes the underlying biological system being explored. 

In addition to the word cloud, vissE enables characterisation of gene-set clusters using 

individual genes based on specific gene-level statistics of interest. In the context of a 

differential expression analysis, this could be the log fold change of each gene. A gene 

statistics plots comprising the statistic of interest of each gene and the number of gene-sets 

in the cluster that a gene belongs to can be generated (Figure 1). These gene statistics could 

be used to infer gene relevance within a process in the context of the specific experiment. 

High frequency genes could be interpreted as representative of clusters, and by extension, 

the associated higher-order biological process. Genes with both high statistics and 

frequencies within a cluster would be of interest in explaining the cluster with regards to the 

experiment. An analytical module within vissE also allows visualisation of protein-protein 

interactions between genes in a gene-set cluster, providing an independent line of evidence 

for common underlying higher-order biological processes. These analytical modules 

collectively allow vissE to be a powerful tool for understanding the higher-order processes 

identified as show in Figure 1. 

Deriving the overlap graph 

Pairwise gene-set similarities for gene-sets of interest, such as those that are 

significant in a gene-set enrichment analysis, are computed using the Adjusted Rand Index 

(ARI), the Jaccard Index or the overlap coefficient. A gene-set overlap graph is built by 

thresholding the similarity matrix and represented using the igraph R package 31. Gene-sets 

without any connections are dropped from the graph. All graphs in the package are visualised 

using the ggraph R package. 
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Pre-processing text for text-mining analysis 

Text used to annotate gene-set clusters is first split using the “_”, “/”, “@”, “(”, “)” and 

“|” characters to generate words. Punctuation marks, extra white spaces, words that are 

numbers, stop words used in the English language and user provided blacklisted words are 

removed. Words such as KEGG, hallmark and other such prefixes and suffixes commonly 

used to name or describe gene-sets are removed by default. All characters are transformed 

to lowercase characters. String lemmatisation is performed to produce lemmatised words. All 

text-mining analysis is performed using the tm R package 32. 

Developing a protein-protein interaction network 

The international molecular exchange consortium data was used to produce a protein-

protein interaction (PPI) network for human and mouse 33. The full PPI was downloaded in the 

PSI-MI TAB format (as of 6th July 2021) and records where both the source and target nodes 

are of the same species were retained. The human and mouse PPIs were then filtered out 

and separated. Uniprot IDs were mapped to Entrez IDs to allow gene-level queries from vissE. 

Human to mouse ortholog data from the HGNC Comparison of Orthology Predictions (HCOP) 

database 34 were used to infer PPIs for each organism using the other. This was done to 

provide better coverage for organisms like mouse that have not been studied as extensively. 

Inferred interactions were annotated in the resulting data and can therefore be filtered out 

when necessary. Duplicated edges, defined as interactions involving the same two Entrez IDs, 

were combined with the maximum confidence score taken as the confidence score. The 

resulting PPIs are available from the msigdb R/Bioconductor package. 

Processing bulk RNA-seq data 

Sequencing reads from 35 were downloaded from the sequencing reads archive (SRA) 

using sratools. The Subread 36 aligner was used to align reads to the GRCh38 human 

reference genome and featureCounts 37 was used to quantify reads per gene. Genes with 

low expression were filtered out and normalisation factors were calculated using the TMM 
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method 38. This data is made available through the emtdata R/Bioconductor package. 

Differential expression analysis was performed using the quasi-likelihood pipeline 39 from the 

edgeR R/Bioconductor package 40. Gene-sets from the hallmark collection (h), Reactome, 

KEGG, WikiPathways, and the gene ontology were downloaded from the molecular signatures 

database (MSigDB v7.2) using the msigdb R/Bioconductor package. These were then used 

to perform gene-set enrichment analysis using the limma::fry method. 

Processing scRNA-seq data 

Pre-processed data from 41 was downloaded from the gene expression omnibus 

(GSE161529) with quality control performed as described in the original publication. Three 

ER+ breast cancer samples (IDs), three BRCA1 triple negative breast cancers (IDs) and one 

triple negative breast cancer sample (ID) were selected for further analysis. Data from each 

sample were normalised using the scran R package 42 and then integrated by identifying 

integration anchors using the Seurat R package 43. PCA was performed on the top 2000 highly 

variable genes defined based on the mean-variance relationship of genes. Cell type 

annotation was performed using the SingleR 44 and scClassify 45 R packages. Cells were 

first annotated using the human primary cell atlas data (HPCA) 46 and ovarian cancer data 47 

independently using SingleR. Endothelial cells identified using the HPCA reference were 

annotated as such. From the remainder of cells, malignant cells and fibroblasts were 

annotated using the ovarian cancer data as a reference. The remaining cells were annotated 

using the HPCA as a reference. T-cells identified using the HPCA as a reference were further 

annotated using the joint estimation model of scClassify to further sub-divide T-cell subtypes. 

Malignant cells were further annotated as estrogen receptor positive (ER+), triple negative 

breast cancer (TNBC) or TNBC BRCA1-mutant based on the subtype of the patient they 

originated from. Data were visualised using uniform manifold approximations (UMAPs) 

computed from the first 50 principal components (PCs) using implementations in the scater 

R package. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.06.483195doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483195
http://creativecommons.org/licenses/by/4.0/


Processing spatial transcriptomics data 

Visium spatial targeted data of human invasive lobular carcinoma breast tissue (ER 

positive, PR positive, HER2 negative) used in this study was obtained from the 10X Genomics 

demonstration datasets 48. Data were pre-processed using Space Ranger software v1.2.0. 

Spots with library sizes smaller than 3000 and less than 500 expressed genes were filtered 

out while the rest were normalised using the scran R package 42. PCA was performed on the 

top 2000 highly variable genes defined based on the mean-variance relationship of genes. 

Cell type deconvolution was performed with the RCTD method 49 using a single-cell dataset 

(GSM4909302) from the previous section as a reference. 

Spots mapping stroma surrounded by different types of malignant cells were defined 

by mapping the pathologist’s annotations onto the spatial transcriptomics data. Pixels within a 

150-pixel circular radius were used to define spots. Spots with more than 75% stromal 

annotated pixels were defined as stromal spots. The surroundings of stromal spots were 

defined based on a square grid. Windows starting at x-coordinates 3000 and 9000 pixels and 

of width 6000 pixels, and y-coordinates 16000 onwards, were defined as stroma surrounded 

by malignant mesenchymal cells and stroma surrounded by malignant epithelial cells 

respectively. Only the stromal spots within these windows were used for the differential 

expression analysis. Pseudo-replicates were defined by splitting windows within each group 

into three equally sized bins along the x-axis. Pseudo-bulk samples were subsequently 

created and subjected to a differential expression analysis 39 followed by a fry analysis, and 

finally a vissE analysis. 

Gene-set enrichment analysis of factors 

Factors identified in a factor analysis often have loadings, amplitudes or weights 

representing feature importance. Principal components analysis (PCA) of RNA sequencing 

data produces gene loadings that reflect the relevance of each gene to the principal 

component (PC) of interest. Gene loadings can be used to compute gene-set scores that 

reflect the importance of each gene in the PC. We used the singscore method 17 implemented 
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in the singscore R/Bioconductor package to compute gene-set scores for each gene-set in 

a PC for the single-cell and spatial transcriptomics datasets. In each PC, genes were ranked 

using their gene loadings. Scores were computed for all gene-sets in the hallmark collection 

(h), Reactome, KEGG, WikiPathways, gene ontology and the single-cell gene-sets collection 

(c8) of the molecular signatures database (MSigDB v7.2). This produced gene-set scores for 

these gene-sets in each PC identified using PCA. 

Running EnrichmentMap 

The EnrichmentMap plugin (v3.3.2) in Cytoscape (v3.9.0) was used to identify and 

characterise higher-order phenotypes in the bulk RNA-seq data. Genes ranked based on 

logFCs were used to perform gene-set enrichment analysis using the GSEA method 8 as per 

the EnrichmentMap workflow 1. The gene-set database used was the same as that used for 

the vissE analysis. Default setting were used to generate the gene-set overlap graph, identify 

clusters and annotate clusters. 

Results 

Higher-order molecular phenotypes involved in an epithelial to 

mesenchymal transition in breast cancer 

Here we demonstrate the application of vissE to a standard differential expression 

analysis. In epithelial tumours, malignant cells can undergo an epithelial to mesenchymal 

transition (EMT) and acquire mesenchymal properties such as migration and motility. The 

process of EMT is thought to enable cancers to metastasise 50. While often characterised as 

a single process, the transition from an epithelial to mesenchymal phenotype involves various 

complex changes to cells and their microenvironment 51. To explore these processes, we used 

data from the human mammary epithelial (HMLE) cell line system in Cursons, et al. 35 where 

a mesenchymal subline of the HMLE cell line (mesHMLE) was induced by TGFβ stimulation 

and maintained with epidermal growth factor (EGF). Differential expression analysis was 

performed followed by gene-set enrichment analysis that identified 1240 significant gene-sets 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.06.483195doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483195
http://creativecommons.org/licenses/by/4.0/


at the FDR level 0.1. These gene-set were then processed using vissE to identify higher-order 

biological processes. A threshold of 0.25 was applied on the adjusted Rand index (ARI) to 

produce the gene-set overlap network. Disconnected gene-sets were dropped producing a 

network with 1170 nodes and 4113 edges. Community detection using the walktrap algorithm 

identified 195 non-overlapping gene-set clusters that were then characterised using tools 

within vissE. Figure 2 shows four higher-order processes that are expected to change during 

EMT, demonstrating how vissE captures key biological properties of a dataset. 

 

Figure 2. Using vissE to identify and characterise biological themes observed in an epithelial to mesenchymal 
transition (EMT) in the human mammary epithelial (HMLE) cell line. a) A gene-set overlap graph of gene-sets 
enriched during an EMT with nodes representing individual gene-sets and edges representing overlaps based on 
the adjusted rand index (ARI). Nodes are coloured based on the direction and significance of enrichment: green 
nodes represent gene-sets enriched in mesenchymal cells and blue in epithelial cells. Four gene-set clusters 
representing biological themes are identified, containing 14, 104, 31 and 34 gene-sets respectively. b) Cluster 
annotations generated by text-mining analysis of gene-set names. c) Log fold-change (logFC) of genes belonging 
to gene-sets in the cluster plot against the number of gene-sets in the cluster the gene belongs to. d) Protein-
protein interaction (PPI) networks between genes that belong to gene-sets in the cluster. Each node represents a 
gene and edges represent known PPIs. Nodes are coloured based on the logFC. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.06.483195doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483195
http://creativecommons.org/licenses/by/4.0/


We identified higher-order phenotypic changes associated with cell-cell interaction 

reflect the loss of junctions and cell-cell adhesion in epithelial cells that is necessary for their 

transition into a mesenchymal phenotype 51. Specifically, Figure 2 shows that cluster 3, 

identified by vissE, represents tight junctions that were downregulated in mesenchymal cells 

relative to the epithelial HMLE cells. This and other themes are recognised and interpretable 

when word clouds are generated either using set names or short descriptions (Additional File 

1: Supplementary Figure 1). Key genes identified include claudin genes (CLDNs) such as 

CLDN7 and E-cadherin (CDH1) (Figure 2c, cluster 3), that are known epithelial markers and 

are predictive of an epithelial state 52. Other than downstream phenotypic changes, vissE also 

captured changes in signalling such as differences in EGFR/HER2 signalling between HMLE 

and mesHMLE cell lines (Figure 2, cluster 9). Specifically following through the analysis of 

cluster 9 in Figure 2, EGFR/HER2 signalling (text as ‘erbb2 signal’) was relatively lower in 

mesHMLE compared to HMLE (Figure 2a) and protein interactions amongst key ERBB 

signalling proteins including ERBB2/3/4, EGFR and downstream signalling proteins like SHC1 

and SOS2 were observed. The HMLE cell line has been demonstrated to depend on autocrine 

EGFR signalling for growth and proliferation 53,54, hence, it is expected that EGFR/HER2 

signalling activity in HMLE is higher than in mesHMLE. Additionally, TGFβ transactivates 

EGFR in breast cancer 55 therefore removal of TGFβ stimulation in the mesHMLE subline 

attenuated EGFR/HER2 signalling as evidenced by the relative downregulation of EGF 

signalling ligands such as AREG in Figure 2c. However, since EGFR/HER2 signalling was not 

completely lost in the mesHMLE subline, its mesenchymal phenotype was stably maintained 

(AveLogCPM of AREG in mesHMLE was 4.321). The signalling events identified in cluster 9 

clearly reflect the biology expected in this experiment and validates the vissE workflow. All 

other themes identified by vissE are included in Additional File 2. 

Other than the known or expected processes, vissE was able to identify other 

processes of interests. Cluster 12 identified an up-regulated higher-order process involving 

proteoglycans such as VCAN and SDC1, and sulfate proteoglycans (SPGs). These genes are 
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known to regulate cell adhesion and motility 56 and were mostly up regulated in mesenchymal 

HMLE cells as seen in Figure 2c. Similarly, cluster 31 represents numerous collagen genes 

that were up regulated in mesHMLE cells. Both these clusters represent different components 

of the extra cellular matrix (ECM). TGFβ signalling in mesenchymal cells has been known to 

directly affect accumulation of fibrillar collagens in the ECM 57 and the results from cluster 31 

suggest this is also the case in the TGFβ stimulated HMLE system. Up-regulation of genes in 

clusters 12 and 31 suggest a more rigid ECM that promotes EMT via nuclear localisation of 

TWIST1 58. Our differential expression analysis supported this hypothesised mechanism as 

evidenced by the up regulation of TWIST1 in mesHMLE (logFC = 2.403, FDR = 0.002). Further 

validations of the mechanism that promote TGFβ-induced EMT is the up-regulation of 

proteoglycans in response to the growth factor, such as versican (VCAN) 59 and aggrecan 

(ACAN) 60, which provides a favourable ECM for migrating mesenchymal cells and enables 

detachment of cells from the basement membrane 61. Collectively, the vissE analysis was able 

to identify and visualise these higher-order processes, capturing the cell-extracellular matrix 

remodelling that is required for EMT in a clear and unbiased manner. 

We contrast vissE with two alternative analysis strategies common in the literature. In 

the first, we focus on the top N gene-sets from an enrichment analysis and in the second we 

compare to results from the EnrichmentMap tool. We assessed redundancy in the selected 

top N gene-sets by computing the degree of overlap of DE genes in the top 50 significant 

gene-sets. Many of the top 50 gene-sets shared a large number of DE genes, suggesting that 

their significance was attained due to the same set of underlying DE genes. Additionally, these 

gene-sets formed clusters based on their DE gene overlap demonstrating that the same sets 

of processes were captured repeatedly in the top 50 gene-sets (Additional File 1: 

Supplementary Figure 2). EnrichmentMap revealed many of the same processes we identified 

using vissE, however, the method clustered considerably fewer gene-sets for the biological 

themes it identified, for example, it identified only 6 gene-sets in the sulfate proteoglycan 

cluster as opposed to the 31 vissE identified (Additional File 1: Supplementary Figure 3). This 
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was the case for most other biological themes, demonstrating that vissE provided better 

coverage of the enrichment results than EnrichmentMap. In some cases, the default cluster 

annotation from EnrichmentMap produced uninformative cluster labels such as labelling a 

cluster representing positive regulation of alpha and beta T-cell activity as “positive beta 

alpha”. 

De-novo identification of higher-order molecular phenotypes in single-cell 

RNA-seq experiments 

Single-cell RNA-sequencing experiments are now commonly used to probe 

phenotypes associated with cell identity; molecular measurements at the cellular level can 

allow finer dissection of molecular phenotypes in a biological system. Powerful exploratory 

analysis without any presumptions on the biology can be performed with such high-resolution 

data. Unlike the bulk RNA-seq setting where we begin with a specific research question or 

hypothesis, such as a comparison between known groups, here we introduce a more flexible 

framework to explore molecular phenotypes. Very few approaches exist for this type of 

analysis of single-cell transcriptomic data. Firstly, factor analysis of the high-dimensional data 

is performed to identify factors that represent the underlying biological processes. In most 

cases, methods such as principal components analysis (PCA) are used to identify orthogonal 

factors that, in essence, reflect orthogonal groups of biological processes. Here, we used 

principal components analysis to identify the top 5 factors from a single-cell RNA-seq breast 

cancer dataset containing 51660 cells from seven patients across two breast cancer subtypes 

(Figure 3a). The identified factors were interpreted by performing gene-set enrichment 

analysis on each factor using singscore 17 as described in the methods. Higher-order 

phenotypes were then identified in each factor by performing a vissE analysis on gene-sets 

with absolute scores greater than 0.2. A Jaccard index threshold of 0.25 was applied in vissE 

to generate the gene-set overlap network. 
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Figure 3. Using vissE to identify and characterise a proliferative phenotype in single-cell transcriptomic data of 
seven breast cancer patients from. a-c) A uniform manifold approximation projection (UMAP) of cells from 7 patients 
annotated by a) inferred cell types. b) the projection of the fourth principal component (PC4). c) expression of the 
MKI67 gene that encodes the Ki67 marker of proliferation. d) A gene-set overlap graph of gene-sets enriched in 
PC4 with nodes representing individual gene-sets and edges representing overlaps based on the adjusted rand 
index (ARI). Nodes are coloured based on the direction and significance of enrichment: green nodes represent 
gene-sets enriched in PC4 high cells. Six gene-set clusters representing biological themes are identified, containing 
36, 76, 32, 7, 22 and 34 gene-sets respectively. e) Cluster annotations generated by text-mining analysis of gene-
set names. f) Gene loadings (also known as weights) for genes belonging to gene-sets in the cluster plot against 
the number of gene-sets in the cluster the gene belongs to. g) Protein-protein interaction (PPI) networks between 
genes that belong to gene-sets in the cluster. Each node represents a gene and edges represent known PPIs. 
Nodes are coloured based on gene loadings (also known as weight). 
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Figure 3 shows the results when vissE and singscore are applied to the fourth principal 

component (PC4) of the data. Figures 3a-b show the UMAP projections of cells with the cell 

type and the PCA projection on factor 4 (i.e., PC4) annotated accordingly. These plots show 

that the molecular phenotype identified by the fourth principal component does not represent 

a cell type nor cells from a single patient (Additional File 1: Supplementary Figure 4) but a 

phenotype that is common to cells from various cell types, including malignant cells and 

immune cells. Functional analysis of Factor 4 (PC4) using singscore identified 704 gene-sets 

with absolute scores greater than 0.2. Analysing these gene-set using vissE with an ARI 

threshold of 0.3 identified 82 gene-set clusters. Six representative clusters shown in Figures 

3d-g clearly reveal a proliferative phenotype that is present in a subset of cancer and immune 

cells (as shown in panel a-c, other clusters found in Additional File 3). 

Specifically, cluster 2, the largest cluster in Figure 3d represents the broader set of 

gene-sets associated with the cell cycle as evident from the word cloud in Figure 3e and the 

genes highlighted in Figure 3f. These clusters capture gene-sets related to cell proliferation, 

including cell cycle stages (cluster 2) or organelle activity such as chromosome segregation 

(cluster 1), centrosomic changes (cluster 4) and microtubule formation (cluster 8). Most genes 

in these representative clusters have positive PC loadings (as shown by the gene-level 

statistics/weights in Figure 3g) suggesting they are positively associated with factor 4 and by 

extent, the process of proliferation. Clusters 7 and 10 represent processes that are required 

for a smooth transition through the cell cycle. DNA damage repair is required to ensure error 

free replication 62 and the secretome pathway of retrograde transport via the Golgi is required 

for recycling membrane bound proteins during cell division 63. These clusters are themselves 

heavily interlinked indicating a strong dependence between the processes they represent. 

The gene-level statistics in Figure 3g can link interpretations back to specific genes, 

enabling the identification of key regulators or markers of the processes identified. For 

instance, genes identified in clusters 1, 2, 4 and 8 such as AURKA and CDK1 are known 

kinases regulating cell cycle progression 64. Furthermore, vissE also provides the protein-

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.06.483195doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483195
http://creativecommons.org/licenses/by/4.0/


protein interaction network (Figure 3f) that serve as a line of evidence independent from the 

enrichment analysis and/or gene set membership that can be further explored using 

specialised network analysis tools to identify key proteins in the relevant processes. 

Collectively, these findings suggest that factor 4 is identifying a subpopulation of proliferating 

cells as validated by the expression of the MKI67 gene (Figure 3c). They also showcase how 

vissE captures shared phenotypic characteristics that span several cell types across various 

patients. 

Higher-order spatially resolved molecular phenotypes of tumour 

promoting cancer associated fibroblasts 

The advent of spatially resolved transcriptomics data has enhanced the context-

specific exploration of biology. The factor analysis pipeline described in the previous section 

can be used to perform an unbiased exploration of molecular phenotypes in any transcriptomic 

data, including spatial transcriptomics data. We applied the factor analysis pipeline to a human 

invasive lobular carcinoma breast tissue (estrogen receptor positive, progesterone receptor 

positive, and HER2 negative) dataset 48 that contains transcriptomics measurements profiled 

across 4325 spots. The data were pre-processed, and factors were identified by applying PCA 

to the 3364 spots that passed quality control (see Methods). The top 5 factors identified were 

subjected to a gene-set enrichment analysis using singscore 17 and resulting gene-sets with 

absolute scores greater than 0.2 were interpreted using vissE by applying an ARI threshold of 

0.2. 
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Figure 4. Using vissE to identify and characterise a cancer associated fibroblast (CAF) phenotype in spatial 
transcriptomics data of a breast cancer patient. a) A H&E image of the breast cancer tissue profiled using the 10X 
visium technology. b) Spots profiled coloured by the projection of the first principal component (PC4). c) 
Pathologist’s annotations of stromal (olive-green), malignant (purple) and mesenchymal-like (gold) regions of the 
tissue overlayed on the H&E image. d) A gene-set overlap graph of gene-sets enriched in PC1 with nodes 
representing individual gene-sets and edges representing overlaps based on the adjusted rand index (ARI). Nodes 
are coloured based on the direction and significance of enrichment: green nodes represent gene-sets enriched in 
PC1-high spots. Six gene-set clusters representing biological themes are identified, containing 69, 21, 8, 6, 11 and 
5 gene-sets respectively. e) Cluster annotations generated by text-mining analysis of gene-set names. f) Gene 
loadings (also known as weights) for genes belonging to gene-sets in the cluster plot against the number of gene-
sets in the cluster the gene belongs to. g) Protein-protein interaction (PPI) networks between genes that belong to 
gene-sets in the cluster. Each node represents a gene and edges represent known PPIs. Nodes are coloured 
based on gene loadings (also known as weight). h) Cell type deconvolution (left) and expression of CAF-related 
marker genes (center) for the top 20% of spots with the highest PC1 projection vs. all other spots (region marked 
in the right panel). 
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The original H&E stained tissue slide (Figure 4a) was profiled using spatial 

transcriptomics and annotated by a pathologist for regions of stroma, malignant epithelial cells, 

and malignant mesenchymal cells (Figure 4b). Spots were projected onto PC1 and 

subsequently mapped onto the original spatial landscape to explore and characterise the 

resultant spatial patterns (Figure 4c). A key finding was that the gene expression pattern of 

stroma adjacent to epithelial cells differed from the stroma adjacent to mesenchymal-like cells 

(Figure 4b). Regions with positive PC1 projections captured stroma infiltrated by 

mesenchymal-like malignant cells (Figure 4b-c). The singscore analysis of this PC identified 

880 gene sets that were then clustered into 107 biological themes using vissE. Our vissE 

analysis showed that these regions were enriched in collagen-related (cluster 1), sulfate 

proteoglycan metabolism (cluster 4) and other cell-ECM binding (cluster 13) gene-sets, 

characterising the tumour-stromal interactions between cell populations at the boundaries of 

the tumour (Figure 4d-g, other clusters found in Additional File 4). Positive gene weights 

(Figure 4f) for stroma-specific genes, including collagens (e.g., COL4A1), VCAN, FN1 and 

many ECM proteins (Figure 4f-g), further indicated ECM remodelling and suggested the 

contribution of fibroblasts to this transcriptomic signal. Gene-sets relating to growth factor 

expression (cluster 11) and chemotaxis (clusters 11, 12 and 25) were also enriched. In 

addition, cluster 25 relates to the regulation of VEGF-induced migration, including the 

expression of key VEGF-related genes (NRP1, NRP2, FLT1, KDR, PGF), which can promote 

tumour dissemination by supporting the invasion of malignant cells into the stroma. These 

results, coupled with the up-regulation of chemokines (CXCL12) and growth factors (PDGF 

and TGFβ, see Figure 4g) reflect the tumour-stromal interactions in this tumour 

microenvironment that support the invasion of mesenchymal-like malignant cells in adjacent 

stroma.  

These higher-order biological themes point to a cancer-associated fibroblast (CAF) 

phenotype. Biomarkers of CAFs like PDGFRA, PDGFRB, TGFB1 (cluster 12 and 25), FAP 

(cluster 13), MMP9 (cluster 11), LOXL1 and αSMA (also known as ACTA2) are more highly 
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expressed in PC1-high regions (top 20% spots) as seen in Figure 4h. Cell type deconvolution 

results agreed with this hypothesis. PC1-high regions demonstrated strong evidence for 

fibroblasts and weak support for malignant cells (Figure 4h). The few malignant cells present 

in these regions (Figure 4h) could contribute to CAF formation via TGFβ signalling as 

evidenced by the upregulation of TGFβ1 and its receptors (cluster 11) 65. ECM stiffening 

induces mechanical stress that further activates CAFs 66. Upregulation of the CAF-induced 

pre-metastatic niche (PMN) marker POSTN (cluster 11) 67, chemotaxis and vasculature 

(clusters 12 and 25) as well as higher deconvolution weights of endothelial cells and 

macrophages in the PC1-high regions are evidence for a tumour promoting role of CAFs at 

the leading edge of tumours 68. 

To validate these findings, we performed a supervised differential expression analysis 

of the stroma surrounded by different types of malignant cells defined using our pathologist’s 

annotations. We found that gene expression signatures and higher-order themes identified in 

our unsupervised PCA analysis (Figure 4) were consistent with those identified in our 

supervised analysis of the stroma (Additional File 1: Supplementary Figure 5), demonstrating 

that these stromal regions are secreting extracellular matrix constituents and remodelling the 

ECM to support the invasion of mesenchymal cancer cells. 

Discussion 

Functional interpretation of high-dimensional molecular data has been a challenge 

since the advent of high through-put technologies. The rate of data generation greatly 

outcompetes the rate of their analysis and interpretation, leaving many data under-explored. 

While statistical and computational tools have assisted in identifying molecules/features of 

interest in data, these results are difficult to interpret functionally. Gene-set enrichment 

analysis is a solution to functional exploration of molecular data; however, it results in the 

identification of numerous biological processes and often limits a holistic interpretation of the 

data. In such scenarios, it is common to use the top significant processes to understand the 
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biological system being studied. In this study, we showed that while such an approach will 

control the FDR at a desired level, the top gene-sets would provide redundant biological insight 

because of a shared set of significant genes/molecules (Additional File 1: Supplementary 

Figure 2). This effect would be amplified when hierarchically structured knowledgebases are 

used. The vissE method tackles gene-set redundancy by condensing information from all 

significant gene-sets into higher-order biological processes, thus hierarchically structuring the 

results in an easily browsable manner: starting with identification of higher-order processes of 

interest, then dissecting the gene-sets within that process, and finally drilling down to the 

genes common across those gene-sets. Associations between different higher-order 

processes can also be explored providing a more comprehensive landscape of the system 

being studied. 

The redundancy of biological knowledge both within and between knowledgebases is 

exploited by vissE to enable robust identification of higher-order processes. Within-

knowledgebase redundancy helps derive higher-order processes while between-

knowledgebase redundancy provides additional independent evidence of processes. As such, 

vissE can accumulate and structure functional evidence derived from gene-set enrichment 

analysis methods. Accumulation of gene-sets across knowledgebases can also assist in 

reducing the impact of poor-quality gene-sets as their effect would be averaged out. A caveat 

to collecting information from across sources is that database size may skew results, 

especially when said databases are not capturing related information. For instance, including 

the immunologic signatures collection (c7) from the MSigDB in a vissE analysis of non-

lymphoid cancer cell lines will bias some of the results towards immunologic phenotypes 

because of the large size of this collection (5219 gene sets in v7.2), despite these cell lines 

not having an immune phenotype. 

This is a specific instance of a more general limitation that applies to gene-set 

enrichment analysis: biological processes and phenomena that are widely studied will be 

overrepresented in knowledgebases and will therefore skew results of enrichment analysis. 
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Due to these limitations, it is important to choose related knowledgebases when performing a 

vissE analysis. Our recommendation for studying cancer systems and other non-lymphoid 

systems is to use the hallmark collection (h), the canonical pathways sub-collection (CP) of 

the curated gene-sets collection (c2), the cell type signatures collection (c8) and the ontology 

collection (c5) excluding the human phenotype ontology (HPO) of MSigDB. Other 

subcollections should be included in a study-specific manner. Similarly, vissE and other 

summarisation tools inherit limitations of gene-set enrichment analysis. Importantly, since this 

is a knowledge-driven tool, the discoveries made using vissE will be limited to known pathways 

and biological processes. However, vissE does allow exploration of the relatedness of 

processes in the biological system being studied, supporting the discovery of context-specific 

phenotypes. Though unknown processes cannot be identified, their presence can be 

suggested by vissE due to a guilt-by-association: the unknown process is likely to interact with 

other known processes and the vissE graph can show how these known processes are 

associated, leading to plausible hypothesis and potential explanations regarding the unknown 

process. 

An important analytical module in the vissE arsenal is the text-mining analysis of gene-

set clusters that facilitates cluster interpretation. The results of this analytical module, like any 

other analysis tool, depend on the quality of the underlying data. Concisely named gene-sets 

accompanied with succinct short descriptions would result in informative and interpretable 

word clouds. Curated knowledgebases such as pathway databases and GO generally use a 

controlled vocabulary to represent biological processes and are therefore rich information 

sources for text mining. The results in this study primarily used these sources and the resultant 

word clouds were biologically meaningful and easy to interpret. Consistent word clouds from 

text mining of names and short descriptions (Additional File 1: Supplementary Figure 1) 

attested to this claim and motivate our selection of specific sub-collections from the MSigDB. 

Collections such as the chemical and genetic perturbations (CGN) in the MSigDB contain 

many informative gene-sets however these have been named by individual contributors 
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without a consistent naming convention and are limited in their utility in a text mining analysis. 

Concise, functional naming of gene-sets in repositories provides valuable information for 

downstream analysis of results and should be encouraged by knowledgebases. 

Combining factor analysis with gene-set enrichment analysis and vissE, we were able 

to demonstrate a novel pipeline for unsupervised identification and characterisation of 

molecular phenotypes in various data modalities. Factor analysis has been previously used to 

explore expression patterns in an unbiased way however, the extension of this pipeline with 

singscore and vissE allowed us to gain a multifaceted view of the phenotype underlying the 

factors identified. Through this pipeline, we were able to identify and characterise proliferating 

cells in single cell transcriptomic data and the more nuanced phenotype of tumour promoting 

cancer associated fibroblasts (CAFs) in spatially resolved transcriptomics data. Despite 

capturing linear relationships in the data, the factor analysis algorithm we used proved to be 

powerful when combined with a functional interpretation pipeline. Since factors identified using 

PCA are orthogonal, we expect that biological processes captured using it are also orthogonal. 

The same process appearing across different factors would likely represent different context-

specific states that produce context-specific outcomes. We expect PCA to perform better than 

other sophisticated approaches because it can capture modules of co-occurring context-

specific processes within orthogonal factors that can then be decoupled using vissE. Other 

approaches such as independent components analysis (ICA) may reveal independent 

processes that biologists would then have to investigate for associations. The choice of PCA 

was easily justified with the results of the spatial transcriptomics analysis: using our pipeline, 

we were able to recover and characterise spatial structures associated with complex molecular 

phenotypes despite not having used the spatial context in the analysis. These results showed 

that spatially resolved transcriptomic data has the potential to recapitulate fine-grained spatial 

structures using purely transcriptomic measurements. The problem then becomes associating 

these gene expression signatures with known biology, which is in essence the problem that 

vissE has been designed to address. 
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The tool presented here, vissE, takes us a step forward in gaining a more holistic view 

of biological systems when coupled with state-of-the-art statistical methodology, and 

importantly, helps to remove investigator bias in interpretation. 
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