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Abstract

Functional analysis of high throughput experiments using pathway analysis is now
ubiquitous. Though powerful, these methods often produce thousands of redundant results
owing to knowledgebase redundancies upstream. This scale of results hinders extensive
exploration by biologists and often leads to investigator biases due to previous knowledge and
expectations. To address this issue, we present vissk, a flexible network-based analysis
method that summarises redundancies into biological themes and provides various analytical
modules to characterise and visualise them with respect to the underlying data, thus providing
a comprehensive view of the biological system. We demonstrate vissE'’s versatility by applying
it to three different technologies: bulk, single-cell and spatial transcriptomics. Applying vissE
to a factor analysis of a breast cancer spatial transcriptomic data, we identified stromal
phenotypes that support tumour dissemination. Its adaptability allows vissE to enhance all
existing gene-set enrichment and pathway analysis workflows, removing investigator bias

from molecular discovery.
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Introduction

Biological systems are often studied using experiments that generate vast amounts of
molecular measurements. Rigorous statistical analyses are routinely performed to identify the
key molecules participating in the system. This is followed by interpretation from biologists
who then attempt to explain the observed molecular shifts in their experiments, find evidence
for molecular mechanisms and identify novel biology. Interpreting lists of molecules can be
difficult and laborious for biologists in cases where thousands of molecules change in the
experiment '. This problem has motivated the development of statistical analyses that identify
molecular processes enriched in the list of molecules, thus providing biologists with higher-

order interpretable summaries of their experiments 2. When the molecules of interest are
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genes, these analyses have taken up the form of gene-set enrichment analysis 22 where sets
of genes representing a common biological process are statistically assessed for enrichment
in the experiment. Such gene-sets are derived from multiple sources which typically include
the Gene Ontology (GO) project 4, the Reactome pathway database 5, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway database © and the molecular signatures database
(MSigDB) 8. These gene-sets are either curated from existing scientific literature or derived

from molecular experiments.

Though gene-set enrichment analyses are powerful tools to study the biological
processes underpinning biological systems, they often identify thousands of processes thus
introducing a challenge in the interpretation of results. This is in part driven by redundancy
introduced by the hierarchical structuring of processes in gene-set databases such as the GO,
Reactome and KEGG *''. Additionally, the increasing number of experimentally derived gene-
sets in databases such as the MSigDB will naturally lead to gene-set redundancy when related
processes are being studied. Information redundancy in such databases is not necessarily
detrimental, especially when evidenced by independent studies, however, it does pose a
significant challenge when interpreting the results of gene-set enrichment analyses. Related
pathways/processes are likely to be significant because of shared significant genes from the
upstream analysis. In such a setting, biologists interpreting the top N processes will end up
investigating the same signal in the data and will miss any orthogonal signals that although
not as obvious, may lead to new insight into the nature of the data. Alternatively, domain
experts attempting to interpret the full result set will inevitably be biased by their previous
knowledge of the systems and will tend to select and focus on familiar processes for further

investigations.

Three broad categories of solutions have been developed to address this problem:
collapsing redundant information (for example, the creation of GO “slim” ontologies),
incorporating redundancy information in the gene-set enrichment analysis method, or

visualising redundancy in the gene-set enrichment analysis results. The first category focuses
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on modifying the underlying database such that redundant information is collapsed to produce
a reduced collection of discrete categories, an approach that has been applied to GO and the
Hallmark gene-sets from MSigDB "'2'3, The second category of methods has been primarily
developed for GO where the graph structure is incorporated into the statistical testing
framework '#%. While powerful, their application is limited to the analysis of knowledgebases
that have a hierarchical structure such as GO and Reactome, and they can only be applied to

a single database at a time restricting the sources of gene-sets.

On the other hand, the category of visualisation methods aims to reveal the
redundancy structure in gene-set databases. As such, these methods can be coupled with a
broader range of existing enrichment analysis methods 2?3, including some of the recent single-
sample gene-set enrichment analysis methods '. These methods generally begin by
computing pairwise gene-set similarities based on content similarity of shared genes "10.18-22
or semantic similarity computed from the underlying graph structure 2. Gene-set clusters are
subsequently identified by clustering on the similarity matrix directly "'822 or by constructing
a graph and applying graph clustering algorithms "1%19-2' The resulting similarity graphs are
visualised with gene-set statistics such as p-values or enrichment scores overlayed onto
vertices. A subset of methods attempt to collapse gene-set annotations in each cluster into a
per-cluster annotation by either annotating each cluster using a single representative
significant member 182122 or by performing text-mining on all member gene-sets to identify
an overarching biological theme "1%2°. Table 1 summarises current methods developed to
consolidate and visualise gene-set enrichment analysis results, detailing the approaches used

to compute similarity, perform clustering, and annotate clusters.

Table 1:Methods to visualise the results of gene-set enrichment analyses

Method Similarity Clustering Annotation Citation
BINGO GO Structure - - 2
ClueGO Cohen’s Kappa Similarity-based | Most significant 18
term
EnrichmentMap | Jaccard index, Graph (MCL) Text-mining (word | 10
Overlap coefficient frequencies)
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enrichplot Semantic similarity, | - - 25,26
Jaccard index
GOMCL Jaccard index, Graph (MCL) Most significant 2
Overlap coefficient term
GOsummaries - - Text-mining 2
(weighted word
frequencies)
GScluster Overlap coefficient, | Similarity-based | - 28
Cohen’s Kappa (fuzzy clustering)
KOBAS-i Jaccard index Graph (Infomap) | - 19
Metascape Cohen’s Kappa Similarity-based Most significant 2
(hierarchical) term
REVIGO Semantic similarity | Similarity-based Most informative |
(hierarchical) common ancestor
RICHNET Jaccard index Graph (edge Text-mining (word | 2°
betweenness) frequencies)

Visualisation approaches are appealing since they can be applied to any gene-set
enrichment analysis workflow. Good visualisations should reveal structure in the data that is
not otherwise obvious. The approaches developed in the past have been powerful but restrict
problem formulation to that of summarising the results of gene-set enrichment analysis, thus
they lack the ability to provide useful insight from data. Furthermore, they lack suitable tools
to visualise, explore and interpret the results of a gene-set enrichment analysis in the context
of the underlying data and its downstream analysis. Tools such as EnrichmentMap ' provide
heatmaps to allow exploration of either the gene-level statistics (e.g., logFC) or their
expression values, but not both. Other tools within the popular clusterProfiler software 252
allow exploration of gene-sets with respect to genes but fail to identify and characterise gene-
set clusters. To address this limitation in problem formulation, vissE formulates the problem
as one of identifying and characterising higher-order biological processes with the aim of
allowing greater application and utility in all areas of biological and clinical sciences. Higher-
order biological processes are identified by clustering on the gene-set network and are
explored using various analytical modules including cluster annotation. Due to the open
problem formulation, we can extend development of tools and are able to perform novel

functional analysis workflows, such as unsupervised exploration of molecular phenotypes in
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single-cell and spatial transcriptomics data. The methods and data described here have been

implemented in the vissE, msigdb and emtdata R/Bioconductor packages.

Materials and methods

A description of the vissE methodology

Gene-sets used in gene-set enrichment analysis often vary in the resolution of
molecular phenotypes they represent. Different resolutions can therefore map onto the same
biological process, and it is often of interest to identify the higher-order biological process that
encapsulates related gene-sets. This idea is used in visskE to identify higher-order molecular
phenotypes from a cluster of gene-sets of interest. Given a list of gene-sets, the pairwise gene-
set similarity is first computed using either the Adjusted Rand Index (ARI), the Jaccard index
or the overlap coefficient into a similarity matrix. When working with multiple databases, the
Adjusted Rand Index or the Jaccard index are preferred since the overlap coefficient
specifically highlights parent-child relationships and therefore works best when using a single
hierarchically structured database. A gene-set overlap graph is generated by appropriately
thresholding the similarity matrix. Under the assumption that gene-sets with many shared
genes will likely represent related biological processes, vissE aims to identify clusters of gene-
sets by applying graph clustering algorithms that harness topological information in the
network. The preferred choice here is an algorithm based on random walks as this has been
shown to work well for both dense and sparse graphs in identifying small and large community
structures 2°. Clusters are then ordered to maximise the statistic of interest, as well as their

size, using the product of ranks approach described in 3.

The next step in a vissE analysis is to characterise each gene-set cluster and interpret
the higher-order biological processes they represent using the range of analytical modules
available in vissk. The vissE software provides a text-based interpretation of each gene-set
cluster. This is done by performing text-mining analysis on the names or short descriptions of

each gene-set in the cluster. The text data are pre-processed, and a term frequency is
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computed for each word. Concurrently, terms from the molecular signatures database
(MSigDB) are pre-processed to compute inverse document frequencies (IDF) per term. Term
frequencies within each gene-set cluster are then weighted against IDFs thus producing a
term frequency inverse document frequency (TF-IDF) for each term. This helps to remove any
database specific bias by down-weighting over-represented words in the database. To ensure
the visualisation is not too dense, up to 25 words with the highest TF-IDF are used to represent
each gene-set cluster and are visualised using word clouds as shown in Figure 1. These visual
representations of biological themes summarise hundreds of enriched terms and are more
conducive for interpretation by the user. Biologists can draw insights from these visualisations
to interpret the biological processes represented by clusters of gene sets and quickly interpret

gene-set enrichment analyses in the context of their data.
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Figure 1. A schematic representation of various vissE workflows. A vissE workflow builds interpretable

visualisations from gene-set enrichment analyses that allow users to easily investigate phenotypes at the resolution
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of biological themes and individual genes, while minimising investigator biases. (1) vissE is flexible for use with any
gene-set enrichment analysis, including those from scRNA-sequencing, spatial transcriptomics and traditional bulk
RNA-sequencing technologies. (2) A list of significant gene-sets from these analyses are used to generate a gene-
set network that is used to minimise gene-set redundancy by identifying higher-order biological themes. (3) vissE
offers a variety of analytical modules to then explore functional themes and to build a biological narrative that
describes the underlying biological system being explored.

In addition to the word cloud, visskE enables characterisation of gene-set clusters using
individual genes based on specific gene-level statistics of interest. In the context of a
differential expression analysis, this could be the log fold change of each gene. A gene
statistics plots comprising the statistic of interest of each gene and the number of gene-sets
in the cluster that a gene belongs to can be generated (Figure 1). These gene statistics could
be used to infer gene relevance within a process in the context of the specific experiment.
High frequency genes could be interpreted as representative of clusters, and by extension,
the associated higher-order biological process. Genes with both high statistics and
frequencies within a cluster would be of interest in explaining the cluster with regards to the
experiment. An analytical module within vissE also allows visualisation of protein-protein
interactions between genes in a gene-set cluster, providing an independent line of evidence
for common underlying higher-order biological processes. These analytical modules
collectively allow vissk to be a powerful tool for understanding the higher-order processes

identified as show in Figure 1.

Deriving the overlap graph

Pairwise gene-set similarities for gene-sets of interest, such as those that are
significant in a gene-set enrichment analysis, are computed using the Adjusted Rand Index
(ARI), the Jaccard Index or the overlap coefficient. A gene-set overlap graph is built by
thresholding the similarity matrix and represented using the igraph R package *'. Gene-sets
without any connections are dropped from the graph. All graphs in the package are visualised

using the ggraph R package.
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Pre-processing text for text-mining analysis

Text used to annotate gene-set clusters is first split using the “_”, “/, “@”, “(”, “)” and
“|” characters to generate words. Punctuation marks, extra white spaces, words that are
numbers, stop words used in the English language and user provided blacklisted words are
removed. Words such as KEGG, hallmark and other such prefixes and suffixes commonly
used to name or describe gene-sets are removed by default. All characters are transformed
to lowercase characters. String lemmatisation is performed to produce lemmatised words. All

text-mining analysis is performed using the tm R package *2.

Developing a protein-protein interaction network

The international molecular exchange consortium data was used to produce a protein-
protein interaction (PPI) network for human and mouse 3. The full PPl was downloaded in the
PSI-MI TAB format (as of 6 July 2021) and records where both the source and target nodes
are of the same species were retained. The human and mouse PPls were then filtered out
and separated. Uniprot IDs were mapped to Entrez IDs to allow gene-level queries from vissE.
Human to mouse ortholog data from the HGNC Comparison of Orthology Predictions (HCOP)
database 34 were used to infer PPIs for each organism using the other. This was done to
provide better coverage for organisms like mouse that have not been studied as extensively.
Inferred interactions were annotated in the resulting data and can therefore be filtered out
when necessary. Duplicated edges, defined as interactions involving the same two Entrez IDs,
were combined with the maximum confidence score taken as the confidence score. The

resulting PPls are available from the msigdb R/Bioconductor package.

Processing bulk RNA-seq data

Sequencing reads from 2® were downloaded from the sequencing reads archive (SRA)
using sratools. The Subread % aligner was used to align reads to the GRCh38 human
reference genome and featureCounts ¥ was used to quantify reads per gene. Genes with

low expression were filtered out and normalisation factors were calculated using the TMM
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method 3. This data is made available through the emtdata R/Bioconductor package.
Differential expression analysis was performed using the quasi-likelihood pipeline % from the
edgeR R/Bioconductor package “°. Gene-sets from the hallmark collection (h), Reactome,
KEGG, WikiPathways, and the gene ontology were downloaded from the molecular signatures
database (MSigDB v7.2) using the msigdb R/Bioconductor package. These were then used

to perform gene-set enrichment analysis using the limma::fry method.

Processing scRNA-seq data

Pre-processed data from 4! was downloaded from the gene expression omnibus
(GSE161529) with quality control performed as described in the original publication. Three
ER+ breast cancer samples (IDs), three BRCA1 triple negative breast cancers (IDs) and one
triple negative breast cancer sample (ID) were selected for further analysis. Data from each
sample were normalised using the scran R package #? and then integrated by identifying
integration anchors using the Seurat R package “3. PCA was performed on the top 2000 highly
variable genes defined based on the mean-variance relationship of genes. Cell type
annotation was performed using the SingleR * and scClassify * R packages. Cells were
first annotated using the human primary cell atlas data (HPCA) %6 and ovarian cancer data 4’
independently using SingleR. Endothelial cells identified using the HPCA reference were
annotated as such. From the remainder of cells, malignant cells and fibroblasts were
annotated using the ovarian cancer data as a reference. The remaining cells were annotated
using the HPCA as a reference. T-cells identified using the HPCA as a reference were further
annotated using the joint estimation model of scClassify to further sub-divide T-cell subtypes.
Malignant cells were further annotated as estrogen receptor positive (ER+), triple negative
breast cancer (TNBC) or TNBC BRCA1-mutant based on the subtype of the patient they
originated from. Data were visualised using uniform manifold approximations (UMAPS)
computed from the first 50 principal components (PCs) using implementations in the scater

R package.
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Processing spatial transcriptomics data

Visium spatial targeted data of human invasive lobular carcinoma breast tissue (ER
positive, PR positive, HER2 negative) used in this study was obtained from the 10X Genomics
demonstration datasets “¢. Data were pre-processed using Space Ranger software v1.2.0.
Spots with library sizes smaller than 3000 and less than 500 expressed genes were filtered
out while the rest were normalised using the scran R package 2. PCA was performed on the
top 2000 highly variable genes defined based on the mean-variance relationship of genes.
Cell type deconvolution was performed with the RCTD method #° using a single-cell dataset

(GSM4909302) from the previous section as a reference.

Spots mapping stroma surrounded by different types of malignant cells were defined
by mapping the pathologist’s annotations onto the spatial transcriptomics data. Pixels within a
150-pixel circular radius were used to define spots. Spots with more than 75% stromal
annotated pixels were defined as stromal spots. The surroundings of stromal spots were
defined based on a square grid. Windows starting at x-coordinates 3000 and 9000 pixels and
of width 6000 pixels, and y-coordinates 16000 onwards, were defined as stroma surrounded
by malignant mesenchymal cells and stroma surrounded by malignant epithelial cells
respectively. Only the stromal spots within these windows were used for the differential
expression analysis. Pseudo-replicates were defined by splitting windows within each group
into three equally sized bins along the x-axis. Pseudo-bulk samples were subsequently
created and subjected to a differential expression analysis * followed by a fry analysis, and

finally a vissE analysis.

Gene-set enrichment analysis of factors

Factors identified in a factor analysis often have loadings, amplitudes or weights
representing feature importance. Principal components analysis (PCA) of RNA sequencing
data produces gene loadings that reflect the relevance of each gene to the principal
component (PC) of interest. Gene loadings can be used to compute gene-set scores that

reflect the importance of each gene in the PC. We used the singscore method ' implemented
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in the singscore R/Bioconductor package to compute gene-set scores for each gene-set in
a PC for the single-cell and spatial transcriptomics datasets. In each PC, genes were ranked
using their gene loadings. Scores were computed for all gene-sets in the hallmark collection
(h), Reactome, KEGG, WikiPathways, gene ontology and the single-cell gene-sets collection
(c8) of the molecular signatures database (MSigDB v7.2). This produced gene-set scores for

these gene-sets in each PC identified using PCA.

Running EnrichmentMap

The EnrichmentMap plugin (v3.3.2) in Cytoscape (v3.9.0) was used to identify and
characterise higher-order phenotypes in the bulk RNA-seq data. Genes ranked based on
logFCs were used to perform gene-set enrichment analysis using the GSEA method & as per
the EnrichmentMap workflow . The gene-set database used was the same as that used for
the visskE analysis. Default setting were used to generate the gene-set overlap graph, identify

clusters and annotate clusters.

Results

Higher-order molecular phenotypes involved in an epithelial to

mesenchymal transition in breast cancer

Here we demonstrate the application of vissE to a standard differential expression
analysis. In epithelial tumours, malignant cells can undergo an epithelial to mesenchymal
transition (EMT) and acquire mesenchymal properties such as migration and motility. The
process of EMT is thought to enable cancers to metastasise %°. While often characterised as
a single process, the transition from an epithelial to mesenchymal phenotype involves various
complex changes to cells and their microenvironment *'. To explore these processes, we used
data from the human mammary epithelial (HMLE) cell line system in Cursons, et al. % where
a mesenchymal subline of the HMLE cell line (mesHMLE) was induced by TGF stimulation
and maintained with epidermal growth factor (EGF). Differential expression analysis was

performed followed by gene-set enrichment analysis that identified 1240 significant gene-sets
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at the FDR level 0.1. These gene-set were then processed using vissE to identify higher-order
biological processes. A threshold of 0.25 was applied on the adjusted Rand index (ARI) to
produce the gene-set overlap network. Disconnected gene-sets were dropped producing a
network with 1170 nodes and 4113 edges. Community detection using the walktrap algorithm
identified 195 non-overlapping gene-set clusters that were then characterised using tools
within vissk. Figure 2 shows four higher-order processes that are expected to change during

EMT, demonstrating how vissE captures key biological properties of a dataset.
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Figure 2. Using vissE to identify and characterise biological themes observed in an epithelial to mesenchymal
transition (EMT) in the human mammary epithelial (HMLE) cell line. a) A gene-set overlap graph of gene-sets
enriched during an EMT with nodes representing individual gene-sets and edges representing overlaps based on
the adjusted rand index (ARI). Nodes are coloured based on the direction and significance of enrichment: green
nodes represent gene-sets enriched in mesenchymal cells and blue in epithelial cells. Four gene-set clusters
representing biological themes are identified, containing 14, 104, 31 and 34 gene-sets respectively. b) Cluster
annotations generated by text-mining analysis of gene-set names. c¢) Log fold-change (logFC) of genes belonging
to gene-sets in the cluster plot against the number of gene-sets in the cluster the gene belongs to. d) Protein-
protein interaction (PPI) networks between genes that belong to gene-sets in the cluster. Each node represents a
gene and edges represent known PPls. Nodes are coloured based on the logFC.
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We identified higher-order phenotypic changes associated with cell-cell interaction
reflect the loss of junctions and cell-cell adhesion in epithelial cells that is necessary for their
transition into a mesenchymal phenotype °'. Specifically, Figure 2 shows that cluster 3,
identified by vissE, represents tight junctions that were downregulated in mesenchymal cells
relative to the epithelial HMLE cells. This and other themes are recognised and interpretable
when word clouds are generated either using set names or short descriptions (Additional File
1: Supplementary Figure 1). Key genes identified include claudin genes (CLDNSs) such as
CLDN?Y and E-cadherin (CDH1) (Figure 2c, cluster 3), that are known epithelial markers and
are predictive of an epithelial state °2. Other than downstream phenotypic changes, vissE also
captured changes in signalling such as differences in EGFR/HER2 signalling between HMLE
and mesHMLE cell lines (Figure 2, cluster 9). Specifically following through the analysis of
cluster 9 in Figure 2, EGFR/HER2 signalling (text as ‘erbb2 signal’) was relatively lower in
mesHMLE compared to HMLE (Figure 2a) and protein interactions amongst key ERBB
signalling proteins including ERBB2/3/4, EGFR and downstream signalling proteins like SHC1
and SOS2 were observed. The HMLE cell line has been demonstrated to depend on autocrine
EGFR signalling for growth and proliferation 5354, hence, it is expected that EGFR/HER2
signalling activity in HMLE is higher than in mesHMLE. Additionally, TGF@ transactivates
EGFR in breast cancer * therefore removal of TGFB stimulation in the mesHMLE subline
attenuated EGFR/HER?2 signalling as evidenced by the relative downregulation of EGF
signalling ligands such as AREG in Figure 2c. However, since EGFR/HER2 signalling was not
completely lost in the mesHMLE subline, its mesenchymal phenotype was stably maintained
(AveLogCPM of AREG in mesHMLE was 4.321). The signalling events identified in cluster 9
clearly reflect the biology expected in this experiment and validates the vissE workflow. All

other themes identified by visskE are included in Additional File 2.

Other than the known or expected processes, vissE was able to identify other
processes of interests. Cluster 12 identified an up-regulated higher-order process involving

proteoglycans such as VCAN and SDC1, and sulfate proteoglycans (SPGs). These genes are
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known to regulate cell adhesion and motility 5 and were mostly up regulated in mesenchymal
HMLE cells as seen in Figure 2c. Similarly, cluster 31 represents numerous collagen genes
that were up regulated in mesHMLE cells. Both these clusters represent different components
of the extra cellular matrix (ECM). TGF signalling in mesenchymal cells has been known to
directly affect accumulation of fibrillar collagens in the ECM °” and the results from cluster 31
suggest this is also the case in the TGFf stimulated HMLE system. Up-regulation of genes in
clusters 12 and 31 suggest a more rigid ECM that promotes EMT via nuclear localisation of
TWIST1 %8, Our differential expression analysis supported this hypothesised mechanism as
evidenced by the up regulation of TWIST1 in mesHMLE (logFC = 2.403, FDR = 0.002). Further
validations of the mechanism that promote TGFB-induced EMT is the up-regulation of
proteoglycans in response to the growth factor, such as versican (VCAN) *° and aggrecan
(ACAN) %, which provides a favourable ECM for migrating mesenchymal cells and enables
detachment of cells from the basement membrane 8. Collectively, the vissE analysis was able
to identify and visualise these higher-order processes, capturing the cell-extracellular matrix

remodelling that is required for EMT in a clear and unbiased manner.

We contrast vissE with two alternative analysis strategies common in the literature. In
the first, we focus on the top N gene-sets from an enrichment analysis and in the second we
compare to results from the EnrichmentMap tool. We assessed redundancy in the selected
top N gene-sets by computing the degree of overlap of DE genes in the top 50 significant
gene-sets. Many of the top 50 gene-sets shared a large number of DE genes, suggesting that
their significance was attained due to the same set of underlying DE genes. Additionally, these
gene-sets formed clusters based on their DE gene overlap demonstrating that the same sets
of processes were captured repeatedly in the top 50 gene-sets (Additional File 1:
Supplementary Figure 2). EnrichmentMap revealed many of the same processes we identified
using vissE, however, the method clustered considerably fewer gene-sets for the biological
themes it identified, for example, it identified only 6 gene-sets in the sulfate proteoglycan

cluster as opposed to the 31 vissE identified (Additional File 1: Supplementary Figure 3). This
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was the case for most other biological themes, demonstrating that vissE provided better
coverage of the enrichment results than EnrichmentMap. In some cases, the default cluster
annotation from EnrichmentMap produced uninformative cluster labels such as labelling a
cluster representing positive regulation of alpha and beta T-cell activity as “positive beta

alpha”.

De-novo identification of higher-order molecular phenotypes in single-cell
RNA-seq experiments

Single-cell RNA-sequencing experiments are now commonly used to probe
phenotypes associated with cell identity; molecular measurements at the cellular level can
allow finer dissection of molecular phenotypes in a biological system. Powerful exploratory
analysis without any presumptions on the biology can be performed with such high-resolution
data. Unlike the bulk RNA-seq setting where we begin with a specific research question or
hypothesis, such as a comparison between known groups, here we introduce a more flexible
framework to explore molecular phenotypes. Very few approaches exist for this type of
analysis of single-cell transcriptomic data. Firstly, factor analysis of the high-dimensional data
is performed to identify factors that represent the underlying biological processes. In most
cases, methods such as principal components analysis (PCA) are used to identify orthogonal
factors that, in essence, reflect orthogonal groups of biological processes. Here, we used
principal components analysis to identify the top 5 factors from a single-cell RNA-seq breast
cancer dataset containing 51660 cells from seven patients across two breast cancer subtypes
(Figure 3a). The identified factors were interpreted by performing gene-set enrichment
analysis on each factor using singscore ' as described in the methods. Higher-order
phenotypes were then identified in each factor by performing a vissE analysis on gene-sets
with absolute scores greater than 0.2. A Jaccard index threshold of 0.25 was applied in vissE

to generate the gene-set overlap network.
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Figure 3. Using vissE to identify and characterise a proliferative phenotype in single-cell transcriptomic data of
seven breast cancer patients from. a-c) A uniform manifold approximation projection (UMARP) of cells from 7 patients
annotated by a) inferred cell types. b) the projection of the fourth principal component (PC4). c) expression of the
MKI67 gene that encodes the Ki67 marker of proliferation. d) A gene-set overlap graph of gene-sets enriched in
PC4 with nodes representing individual gene-sets and edges representing overlaps based on the adjusted rand
index (ARI). Nodes are coloured based on the direction and significance of enrichment: green nodes represent
gene-sets enriched in PC4 high cells. Six gene-set clusters representing biological themes are identified, containing
36, 76, 32, 7, 22 and 34 gene-sets respectively. e) Cluster annotations generated by text-mining analysis of gene-
set names. f) Gene loadings (also known as weights) for genes belonging to gene-sets in the cluster plot against
the number of gene-sets in the cluster the gene belongs to. g) Protein-protein interaction (PPI) networks between
genes that belong to gene-sets in the cluster. Each node represents a gene and edges represent known PPIs.
Nodes are coloured based on gene loadings (also known as weight).
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Figure 3 shows the results when vissE and singscore are applied to the fourth principal
component (PC4) of the data. Figures 3a-b show the UMAP projections of cells with the cell
type and the PCA projection on factor 4 (i.e., PC4) annotated accordingly. These plots show
that the molecular phenotype identified by the fourth principal component does not represent
a cell type nor cells from a single patient (Additional File 1: Supplementary Figure 4) but a
phenotype that is common to cells from various cell types, including malignant cells and
immune cells. Functional analysis of Factor 4 (PC4) using singscore identified 704 gene-sets
with absolute scores greater than 0.2. Analysing these gene-set using vissE with an ARI
threshold of 0.3 identified 82 gene-set clusters. Six representative clusters shown in Figures
3d-g clearly reveal a proliferative phenotype that is present in a subset of cancer and immune

cells (as shown in panel a-c, other clusters found in Additional File 3).

Specifically, cluster 2, the largest cluster in Figure 3d represents the broader set of
gene-sets associated with the cell cycle as evident from the word cloud in Figure 3e and the
genes highlighted in Figure 3f. These clusters capture gene-sets related to cell proliferation,
including cell cycle stages (cluster 2) or organelle activity such as chromosome segregation
(cluster 1), centrosomic changes (cluster 4) and microtubule formation (cluster 8). Most genes
in these representative clusters have positive PC loadings (as shown by the gene-level
statistics/weights in Figure 3g) suggesting they are positively associated with factor 4 and by
extent, the process of proliferation. Clusters 7 and 10 represent processes that are required
for a smooth transition through the cell cycle. DNA damage repair is required to ensure error
free replication %2 and the secretome pathway of retrograde transport via the Golgi is required
for recycling membrane bound proteins during cell division 3. These clusters are themselves

heavily interlinked indicating a strong dependence between the processes they represent.

The gene-level statistics in Figure 3g can link interpretations back to specific genes,
enabling the identification of key regulators or markers of the processes identified. For
instance, genes identified in clusters 1, 2, 4 and 8 such as AURKA and CDK1 are known

kinases regulating cell cycle progression . Furthermore, vissE also provides the protein-
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protein interaction network (Figure 3f) that serve as a line of evidence independent from the
enrichment analysis and/or gene set membership that can be further explored using
specialised network analysis tools to identify key proteins in the relevant processes.
Collectively, these findings suggest that factor 4 is identifying a subpopulation of proliferating
cells as validated by the expression of the MKI67 gene (Figure 3c). They also showcase how
vissE captures shared phenotypic characteristics that span several cell types across various

patients.

Higher-order spatially resolved molecular phenotypes of tumour

promoting cancer associated fibroblasts

The advent of spatially resolved transcriptomics data has enhanced the context-
specific exploration of biology. The factor analysis pipeline described in the previous section
can be used to perform an unbiased exploration of molecular phenotypes in any transcriptomic
data, including spatial transcriptomics data. We applied the factor analysis pipeline to a human
invasive lobular carcinoma breast tissue (estrogen receptor positive, progesterone receptor
positive, and HER2 negative) dataset *® that contains transcriptomics measurements profiled
across 4325 spots. The data were pre-processed, and factors were identified by applying PCA
to the 3364 spots that passed quality control (see Methods). The top 5 factors identified were
subjected to a gene-set enrichment analysis using singscore '” and resulting gene-sets with
absolute scores greater than 0.2 were interpreted using vissE by applying an ARI threshold of

0.2.
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Figure 4. Using vissE to identify and characterise a cancer associated fibroblast (CAF) phenotype in spatial
transcriptomics data of a breast cancer patient. a) A H&E image of the breast cancer tissue profiled using the 10X
visium technology. b) Spots profiled coloured by the projection of the first principal component (PC4). c)
Pathologist’s annotations of stromal (olive-green), malignant (purple) and mesenchymal-like (gold) regions of the
tissue overlayed on the H&E image. d) A gene-set overlap graph of gene-sets enriched in PC1 with nodes
representing individual gene-sets and edges representing overlaps based on the adjusted rand index (ARI). Nodes
are coloured based on the direction and significance of enrichment: green nodes represent gene-sets enriched in
PC1-high spots. Six gene-set clusters representing biological themes are identified, containing 69, 21, 8, 6, 11 and
5 gene-sets respectively. e) Cluster annotations generated by text-mining analysis of gene-set names. f) Gene
loadings (also known as weights) for genes belonging to gene-sets in the cluster plot against the number of gene-
sets in the cluster the gene belongs to. g) Protein-protein interaction (PPI) networks between genes that belong to
gene-sets in the cluster. Each node represents a gene and edges represent known PPls. Nodes are coloured
based on gene loadings (also known as weight). h) Cell type deconvolution (leff) and expression of CAF-related
marker genes (center) for the top 20% of spots with the highest PC1 projection vs. all other spots (region marked
in the right panel).
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The original H&E stained tissue slide (Figure 4a) was profiled using spatial
transcriptomics and annotated by a pathologist for regions of stroma, malignant epithelial cells,
and malignant mesenchymal cells (Figure 4b). Spots were projected onto PC1 and
subsequently mapped onto the original spatial landscape to explore and characterise the
resultant spatial patterns (Figure 4c). A key finding was that the gene expression pattern of
stroma adjacent to epithelial cells differed from the stroma adjacent to mesenchymal-like cells
(Figure 4b). Regions with positive PC1 projections captured stroma infiltrated by
mesenchymal-like malignant cells (Figure 4b-c). The singscore analysis of this PC identified
880 gene sets that were then clustered into 107 biological themes using vissE. Our visskE
analysis showed that these regions were enriched in collagen-related (cluster 1), sulfate
proteoglycan metabolism (cluster 4) and other cell-ECM binding (cluster 13) gene-sets,
characterising the tumour-stromal interactions between cell populations at the boundaries of
the tumour (Figure 4d-g, other clusters found in Additional File 4). Positive gene weights
(Figure 4f) for stroma-specific genes, including collagens (e.g., COL4A1), VCAN, FN1 and
many ECM proteins (Figure 4f-g), further indicated ECM remodelling and suggested the
contribution of fibroblasts to this transcriptomic signal. Gene-sets relating to growth factor
expression (cluster 11) and chemotaxis (clusters 11, 12 and 25) were also enriched. In
addition, cluster 25 relates to the regulation of VEGF-induced migration, including the
expression of key VEGF-related genes (NRP1, NRP2, FLT1, KDR, PGF), which can promote
tumour dissemination by supporting the invasion of malignant cells into the stroma. These
results, coupled with the up-regulation of chemokines (CXCL12) and growth factors (PDGF
and TGFB, see Figure 4g) reflect the tumour-stromal interactions in this tumour
microenvironment that support the invasion of mesenchymal-like malignant cells in adjacent

stroma.

These higher-order biological themes point to a cancer-associated fibroblast (CAF)
phenotype. Biomarkers of CAFs like PDGFRA, PDGFRB, TGFB1 (cluster 12 and 25), FAP

(cluster 13), MMP9 (cluster 11), LOXL1 and aSMA (also known as ACTA2) are more highly
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expressed in PC1-high regions (top 20% spots) as seen in Figure 4h. Cell type deconvolution
results agreed with this hypothesis. PC1-high regions demonstrated strong evidence for
fibroblasts and weak support for malignant cells (Figure 4h). The few malignant cells present
in these regions (Figure 4h) could contribute to CAF formation via TGFB signalling as
evidenced by the upregulation of TGFB1 and its receptors (cluster 11) 5. ECM stiffening
induces mechanical stress that further activates CAFs . Upregulation of the CAF-induced
pre-metastatic niche (PMN) marker POSTN (cluster 11) ¢, chemotaxis and vasculature
(clusters 12 and 25) as well as higher deconvolution weights of endothelial cells and
macrophages in the PC1-high regions are evidence for a tumour promoting role of CAFs at

the leading edge of tumours .

To validate these findings, we performed a supervised differential expression analysis
of the stroma surrounded by different types of malignant cells defined using our pathologist’s
annotations. We found that gene expression signatures and higher-order themes identified in
our unsupervised PCA analysis (Figure 4) were consistent with those identified in our
supervised analysis of the stroma (Additional File 1: Supplementary Figure 5), demonstrating
that these stromal regions are secreting extracellular matrix constituents and remodelling the

ECM to support the invasion of mesenchymal cancer cells.

Discussion

Functional interpretation of high-dimensional molecular data has been a challenge
since the advent of high through-put technologies. The rate of data generation greatly
outcompetes the rate of their analysis and interpretation, leaving many data under-explored.
While statistical and computational tools have assisted in identifying molecules/features of
interest in data, these results are difficult to interpret functionally. Gene-set enrichment
analysis is a solution to functional exploration of molecular data; however, it results in the
identification of numerous biological processes and often limits a holistic interpretation of the

data. In such scenarios, it is common to use the top significant processes to understand the
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biological system being studied. In this study, we showed that while such an approach will
control the FDR at a desired level, the top gene-sets would provide redundant biological insight
because of a shared set of significant genes/molecules (Additional File 1: Supplementary
Figure 2). This effect would be amplified when hierarchically structured knowledgebases are
used. The vissE method tackles gene-set redundancy by condensing information from all
significant gene-sets into higher-order biological processes, thus hierarchically structuring the
results in an easily browsable manner: starting with identification of higher-order processes of
interest, then dissecting the gene-sets within that process, and finally drilling down to the
genes common across those gene-sets. Associations between different higher-order
processes can also be explored providing a more comprehensive landscape of the system

being studied.

The redundancy of biological knowledge both within and between knowledgebases is
exploited by vissE to enable robust identification of higher-order processes. Within-
knowledgebase redundancy helps derive higher-order processes while between-
knowledgebase redundancy provides additional independent evidence of processes. As such,
vissE can accumulate and structure functional evidence derived from gene-set enrichment
analysis methods. Accumulation of gene-sets across knowledgebases can also assist in
reducing the impact of poor-quality gene-sets as their effect would be averaged out. A caveat
to collecting information from across sources is that database size may skew results,
especially when said databases are not capturing related information. For instance, including
the immunologic signatures collection (c7) from the MSigDB in a vissE analysis of non-
lymphoid cancer cell lines will bias some of the results towards immunologic phenotypes
because of the large size of this collection (5219 gene sets in v7.2), despite these cell lines

not having an immune phenotype.

This is a specific instance of a more general limitation that applies to gene-set
enrichment analysis: biological processes and phenomena that are widely studied will be

overrepresented in knowledgebases and will therefore skew results of enrichment analysis.
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Due to these limitations, it is important to choose related knowledgebases when performing a
vissE analysis. Our recommendation for studying cancer systems and other non-lymphoid
systems is to use the hallmark collection (h), the canonical pathways sub-collection (CP) of
the curated gene-sets collection (c2), the cell type signatures collection (c8) and the ontology
collection (c5) excluding the human phenotype ontology (HPO) of MSigDB. Other
subcollections should be included in a study-specific manner. Similarly, vissE and other
summarisation tools inherit limitations of gene-set enrichment analysis. Importantly, since this
is a knowledge-driven tool, the discoveries made using vissE will be limited to known pathways
and biological processes. However, vissE does allow exploration of the relatedness of
processes in the biological system being studied, supporting the discovery of context-specific
phenotypes. Though unknown processes cannot be identified, their presence can be
suggested by vissE due to a guilt-by-association: the unknown process is likely to interact with
other known processes and the vissE graph can show how these known processes are
associated, leading to plausible hypothesis and potential explanations regarding the unknown

process.

An important analytical module in the vissE arsenal is the text-mining analysis of gene-
set clusters that facilitates cluster interpretation. The results of this analytical module, like any
other analysis tool, depend on the quality of the underlying data. Concisely named gene-sets
accompanied with succinct short descriptions would result in informative and interpretable
word clouds. Curated knowledgebases such as pathway databases and GO generally use a
controlled vocabulary to represent biological processes and are therefore rich information
sources for text mining. The results in this study primarily used these sources and the resultant
word clouds were biologically meaningful and easy to interpret. Consistent word clouds from
text mining of names and short descriptions (Additional File 1: Supplementary Figure 1)
attested to this claim and motivate our selection of specific sub-collections from the MSigDB.
Collections such as the chemical and genetic perturbations (CGN) in the MSigDB contain

many informative gene-sets however these have been named by individual contributors
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without a consistent naming convention and are limited in their utility in a text mining analysis.
Concise, functional naming of gene-sets in repositories provides valuable information for

downstream analysis of results and should be encouraged by knowledgebases.

Combining factor analysis with gene-set enrichment analysis and vissE, we were able
to demonstrate a novel pipeline for unsupervised identification and characterisation of
molecular phenotypes in various data modalities. Factor analysis has been previously used to
explore expression patterns in an unbiased way however, the extension of this pipeline with
singscore and vissE allowed us to gain a multifaceted view of the phenotype underlying the
factors identified. Through this pipeline, we were able to identify and characterise proliferating
cells in single cell transcriptomic data and the more nuanced phenotype of tumour promoting
cancer associated fibroblasts (CAFs) in spatially resolved transcriptomics data. Despite
capturing linear relationships in the data, the factor analysis algorithm we used proved to be
powerful when combined with a functional interpretation pipeline. Since factors identified using
PCA are orthogonal, we expect that biological processes captured using it are also orthogonal.
The same process appearing across different factors would likely represent different context-
specific states that produce context-specific outcomes. We expect PCA to perform better than
other sophisticated approaches because it can capture modules of co-occurring context-
specific processes within orthogonal factors that can then be decoupled using viss. Other
approaches such as independent components analysis (ICA) may reveal independent
processes that biologists would then have to investigate for associations. The choice of PCA
was easily justified with the results of the spatial transcriptomics analysis: using our pipeline,
we were able to recover and characterise spatial structures associated with complex molecular
phenotypes despite not having used the spatial context in the analysis. These results showed
that spatially resolved transcriptomic data has the potential to recapitulate fine-grained spatial
structures using purely transcriptomic measurements. The problem then becomes associating
these gene expression signatures with known biology, which is in essence the problem that

vissE has been designed to address.
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The tool presented here, vissE, takes us a step forward in gaining a more holistic view
of biological systems when coupled with state-of-the-art statistical methodology, and

importantly, helps to remove investigator bias in interpretation.
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