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Abstract  
Patient-derived xenograft models (PDXs) are an effective preclinical in vivo platform for 

testing the efficacy of novel drug and drug combinations for cancer therapeutics. Here we 

describe a repository of 79 genomically and clinically annotated lung cancer PDXs available 

from The Jackson Laboratory that have been extensively characterized for histopathological 

features, mutational profiles, gene expression, and copy number aberrations. Most of the 

PDXs are models of non-small cell lung cancer (NSCLC), including 37 lung adenocarcinoma 

(LUAD) and 33 lung squamous cell carcinoma (LUSC) models. Other lung cancer models in 

the repository include four small cell carcinomas, two large cell neuroendocrine carcinomas, 

two adenosquamous carcinomas, and one pleomorphic carcinoma. Models with both de novo 

and acquired resistance to targeted therapies with tyrosine kinase inhibitors are available in 

the collection. The genomic profiles of the LUAD and LUSC PDX models are consistent with 

those observed in patient tumors of the same tumor type from The Cancer Genome Atlas 

(TCGA) and to previously characterized gene expression-based molecular subtypes. 

Clinically relevant mutations identified in the original patient tumors were confirmed in 

engrafted tumors. Treatment studies performed for a subset of the models recapitulated the 

responses expected based on the observed genomic profiles. 

 

Significance: The collection of lung cancer Patient Derived Xenograft (PDX) models 

maintained at The Jackson Laboratory retain both the histologic features and  treatment-

relevant genomic alterations observed in the originating patient tumors and show expected 

responses to treatment with standard-of-care agents. The models serve as a valuable 

preclinical platform for translational cancer research.  Information and data for the models 

are freely available from the Mouse Models of Human Cancer database (MMHCdb, 

http://tumor.informatics.jax.org/mtbwi/pdxSearch.do).  

 

Introduction 
Lung cancer is the leading cause of cancer deaths worldwide (1). Genome-wide analyses 

have demonstrated that non-small cell lung cancer (NSCLC) differs from most other cancer 

types quantitatively and qualitatively for its high level of mutational burden and genomic 

complexity. Further, the two major histologic subtypes of NSCLC: lung adenocarcinoma 

(LUAD) and lung squamous cell carcinoma (LUSC)  (2,3). LUAD and LUSC tumors have 

distinctive genomic alteration signatures, pathway disruption, and immune host response. 

Transcriptional subtypes for both LUAD and LUSC have been reported that are associated 

with differences in patient prognosis, response to treatment, and survival (4,5).  
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Genomic characterization of tumors has been instrumental in precision medicine 

strategies for NSCLC through the identification of “druggable” oncogene drivers which, in turn, 

has expanded treatment options and a growing number of  targeted therapy approaches (6). 

A prominent example of molecularly-guided therapy in NSCLC relates to the finding of 

activating mutations in the epidermal growth factor receptor (EGFR) gene, resulting in 

constitutive, ligand-independent receptor activity and a high degree of sensitivity to EGFR-

targeted tyrosine kinase inhibitors (TKIs) (7). The efficacy of EGFR TKIs has been 

demonstrated in a large number of clinical trials (8). Similar findings have been shown with 

targeted therapies in patients with an array of other genomically-defined subtypes, such as  

ALK-EML4 and ROS1 fusions, among others (9). Although advances in targeted therapies for 

NSCLC have transformed treatment options, not all patients respond to treatment and the 

development of acquired  resistance is almost universal. Although resistance mechanisms in 

some treatment settings for oncogene-driven NSCLC are well established, such as 

development of the T790M “gatekeeper” mutation after therapy with first and second 

generation EGFR TKIs (10), resistance mechanisms are much more complex in most other 

therapeutic settings, generally characterized as either secondary mutations or bypass 

mechanisms. Testing novel treatment strategies and new therapeutic agents to overcome 

acquired resistance remains a high priority for translational cancer research. 

 

Human tumors engrafted into transplant-compliant recipient mouse hosts (Patient-Derived 

Xenografts, PDX) retain critical biological properties of a patient’s tumor, including tumor 

heterogeneity and genomic complexity (11). PDXs have demonstrated utility as preclinical 

models for testing therapeutic strategies for many cancers, including lung cancer. Previous 

studies have demonstrated that lung cancer PDX models recapitulate faithfully many aspects 

of the original patient tumor for histology, karyotype, and genomics (12,13). Lung PDX models 

have demonstrated the capacity to recapitulate expected sensitivity and resistance patterns 

to targeted therapies, including clinical responses observed in patients. These models have 

provided insights into therapies based on other molecular markers (14,15). Collections of PDX 

models have allowed further studies on understanding the contributing factors affecting 

engraftment rates, new treatment combinations for lung cancer models which developed 

resistance, and discovery of new biomarkers for lung cancer treatment (16,17).  

 

In collaboration with the University of California Davis Comprehensive Cancer Center and 

Northern Light Eastern Maine Medical Center, we generated and characterized (18) a 

repository of 79 genomically and clinically annotated lung cancer PDX models to use as a 

platform to support basic research on mechanisms of treatment response and to facilitate 

translational pre-clinical and co-clinical trial research. This repository is comprised of PDX 
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models that were generated using the NOD.Cg-Prkdc
scid

 Il2rg
tm1Wjl/SzJ (NSG) mouse strain as 

the host and includes models of high clinical relevance, including EGFR- and KRAS-mutated 

lung adenocarcinomas (LUAD) and PI3K-mutant lung squamous cell carcinomas (LUSC).  

Clinical demographic information, histology, immunohistochemistry images, summarized 

genomic data, and treatment response data for these PDX models are freely available from 

The Jackson Laboratory (JAX) PDX web portal hosted by the Mouse Models of Human Cancer 

database (MMHCdb, http://tumor.informatics.jax.org/mtbwi/pdxSearch.do) (19) and from PDX 

Finder,  a global catalog of thousands of PDX models (20). 

 

Materials and Methods 
Establishing xenografts 

An overview of the PDX model generation process is shown in Fig. 1. All animal 

procedures were performed at The Jackson Laboratory Sacramento facility under IACUC 

protocol 12027. NOD.Cg-Prkdc
scid

 Il2rg
tm1Wjl/SzJ (NSG; JAX Stock 005557) animals were 

housed in individually ventilated polysulfone cages with HEPA filtered air at a density of up to 

five mice per cage. Cages were changed every two weeks. The animal rooms were on a 12 h 

light/dark cycle (6 am to 6 pm) with fluorescent lighting. The temperature and relative humidity 

in the animal rooms were 22 ± 4°C and 50 ± 15%, respectively with 15 air exchanges per hour. 

Filtered tap water, acidified to a pH of 2.5 to 3.0, and custom LabDiet 5K52 were provided ad 

libitum. Mice were housed in rooms classified as “pathogen and opportunistic-free”. The list of 

excluded organisms in these rooms and health reports are available on The Jackson 

Laboratory website (https://www.jax.org/jax-mice-and-services/customer-support/customer-

service/animal-health). 

 

Tumor samples from biopsies, pleural effusions, or surgical resections were obtained 

from NSCLC patients and implanted subcutaneously by trocar in the right flank of up to five, 

6-8 week-old female NSG mice without intervening in vitro culturing of the tumor cells. 

Patients were consented by the donating institution to allow unrestricted use of the models 

and associated data. Most tumors were implanted within 24 hours of surgery and the 

maximum post-surgery time allowed for implantation was 48 hours. Solid tumors were 

divided into 3-5 mm3 fragments in RPMI medium before implantation. Pleural effusion 

samples were centrifuged, and the supernatant was removed with a pipet. Pellets were then 

re-suspended in Dulbecco’s Phosphate Buffered Saline (DPBS), and 200 μl were implanted 

subcutaneously into the host mouse as a 1:1 bolus of pleural effusion cells in RPMI media 

and growth factor free Matrigel. Matrigel was not used for subsequent passages.  
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Once an implanted tumor reached 2000 mm3, it was harvested and subdivided into 3-5 

mm3 fragments which were implanted into five, 6-8 week old female NSG mice for expansion 

to P1. For quality control assessment (see below), a 50 mm3 fragment was collected in 10% 

neutral buffered formalin and a formalin-fixed, paraffin-embedded block was generated. The 

remaining fragments were cryopreserved in 10% DMSO. When P1 tumors reached 

~2000mm3, they were harvested and subdivided into 3-5 mm3 fragments which were 

subsequently embedded in FFPE for quality control, snap-frozen for genomics, placed into 

RNALater (Ambion) for RNA-Seq, and viably cryopreserved in 10% DMSO.  

 

To establish cohorts of tumor-bearing mice for drug treatment studies, 3-5 mm3 tumor 

fragments or 40 µl of minced tumor were subcutaneously implanted in the right rear flank of 

NSG mice by trocar or a 14-gauge disposable needle. Low passage tumor fragments (P3-P6) 

were used to establish cohorts of tumor-bearing animals for dosing studies. Tumor volumes 

were monitored with ULTRA-Cal IV digital calipers (Fowler, Newton, MA). Individual tumor-

bearing mice were randomized into treatment cohorts of 8-12 mice each on an accrual 

(asynchronous growth) basis once individual tumors reached an initial volume of 

approximately 100-300 mm3. For some studies, tumors were removed and divided, with half 

of the material preserved in neutral-buffered formalin and half flash-frozen. 

  

PDX model quality control 

The quality control procedures employed for PDX models included testing the patient 

tumor for LCMV (lymphocytic choriomeningitis virus) and bacterial contamination. The 

engrafted tumors at P0 and P1 were DNA fingerprinted using a Short Tandem Repeat (STR) 

assay (21) and then compared to the profile of the patient sample to ensure correct tissue 

provenance.  Immunohistochemistry (IHC) for human CD45 antibodies (IR75161-2, Agilent 

Technologies) was performed on FFPE blocks of engrafted tumors to identify cases of 

lymphomagenesis, which have been reported previously in PDXs (22). IHC for human Ki67 

(IR62661-2, Agilent Technologies) was used to ensure the propagated tumors were comprised 

of human cells. H&E sections of engrafted tumors were evaluated by a board-certified 

pathologist (RGE) to verify the concordance of the morphological features of the engrafted 

tumor to the patient tumor. Engrafted tumors were assessed by sequencing or digital droplet 

PCR to ensure that diagnostic/therapeutic molecular markers identified in patient samples 

were present in the engrafted tumors (Supplementary Table S1). 

 

Genomic characterization of engrafted tumors 

The genomes of engrafted tumors were characterized at either the P0 or P1 passage (Fig. 

1). Sequencing using The Jackson Laboratory (JAX) Cancer Treatment Profile (CTP) 
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targeted gene panel (23) was performed to determine point mutations, single nucleotide 

polymorphisms insertions/deletions (indels). The JAX CTP panel comprises 358 genes, 190 

of which are clinically actionable genes for cancer treatment. Transcriptome analysis was 

conducted using expression microarrays or RNA sequencing (RNA-Seq).  RNA-Seq data was 

also used to identify putative translocations, RNA splicing abnormalities, and fusion transcript 

events. Sequencing data were analyzed using Xenome to separate mouse sequences from 

human-derived sequence reads (24). Copy Number Variants (CNVs) were determined using 

the Affymetrix Human SNP 6.0 array. Detailed protocols for nucleic acid extraction, library 

preparation, and data analysis are described elsewhere (18). The JAX Clinical Knowledge 

Base (CKB) database was used to annotate variants and gene expression with clinical 

relevance (25). Clinical information and analyzed genomic data of the PDX models were then 

uploaded to a public PDX web portal hosted by the Mouse Models of Human Cancer database 

(MMHCdb).  

 

Analysis of genomic data from engrafted tumors 

Mutation and copy number (CN) analysis and quantification of gene expression for all 

engrafted tumor samples were performed as described in Woo et al. (18). Tumor mutation 

burden (TMB) and microsatellite instability (MSI) were estimated for each tumor sample that 

was characterized using the JAX CTP targeted gene panel. TMB was calculated using 

variants that met all quality criteria (coverage, strand bias, mapping quality, and read rank 

position) and were not present on a curated list of false-positive variants (loci prone to 

sequencing and analysis errors and/or associated with highly polymorphic genes: MUC4, 

MUC5B, MUC16, MUC17, and HLA-A). Only likely somatic mutations based on germline 

filtering criteria that were predicted with high or moderate functional impact (i.e., non-

synonymous changes, frame shifts, stop losses/gains, and splice-site acceptor/donor 

changes) were retained. TMB was estimated by dividing the number of variants that met the 

quality criteria by the length (in Mb) of the CTP gene panel. High TMB was defined as 22 

mutations/Mb, which was calculated based on the TMB distribution of all PDX models 

analyzed as follows: Q3 (third quartile of TMB) + 1.5 x inter-quartile range of TMB. The 

MSIsensor2 (26) algorithm (https://github.com/niu-lab/msisensor2) was used to determine the 

MSI status of JAX samples. The samples with MSI-Percentage > 20% were considered MSI-

High. This threshold demonstrates good differentiation between MSI-High (MSI-H) and MSI-

Stable (MSI-S) samples during MSIsensor2 algorithm development and internal 

benchmarking.  

 

To summarize the mutations prevalent in the PDX models, oncoplots for LUAD and LUSC 

were created using all the somatic and clinically relevant point mutations and indels in the 
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models. All mutations were concatenated across the PDX samples for models with more than 

one sample sequenced and derived a unique list of mutations per model. The list of mutations 

was converted to annovar format, and the table_annovar.pl utility from annovar (Version date: 

2014-11-12) with the parameters (-buildver hg38 -remove -protocol 

refGene,cytoBand,exac03,avsnp147,dbnsfp30a -operation gx,r,f,f,f -nastring . -polish -

otherinfo) (27) was used to convert the variants to Mutation Annotation Format (MAF). Finally, 

the oncoplot function from maftools v2.2.10 (28) was used to create the oncoplot for genes 

which were mutated >30% frequency of the models. Gene mutation frequencies of LUAD and 

LUSC in the TCGA PanCancer Atlas were obtained from cBioPortal (29) for comparison with 

the PDX data. Genes were classified as oncogenes or tumor suppressor genes (TSGs) based 

on OncoKB annotations (Download date: 2020/9/17) (30). 

 

Copy number data were visualized using GenVisR (31) on a per-sample basis and an 

overall gain and loss frequency basis within the LUAD and LUSC groups. For frequency 

calculation, one sample was selected to represent each model, and log2(CN ratio) = ±0.5 was 

used as a cut-off to call CN gain and loss.  

 

To summarize the expression data, the percentile rank z-score values from stranded RNA-

Seq, non-stranded RNA-Seq, and microarray platforms were combined and a correlation 

heatmap was plotted using the Pretty Heatmaps package in R (https://cran.r-

project.org/web/packages/pheatmap/index.html). 

 

Gene expression-based subtypes of LUAD and LUSC PDXs 

To determine if previously identified molecular subtypes for LUAD (TRU, PIF, and PPR) 

and LUSC (CLA, PRI, BAS, and SEC) were represented in our repository of lung cancer PDX 

models, we used Nearest Template Prediction (NTP) implemented in the R package 

CMScaller (32). We selected genes from publicly available RNA-seq data to enrich for 

classification of the subtypes, following similar methods as those recently used to develop a 

classifier for colorectal cancer. TCGA raw gene expression data (non-stranded RNA-Seq) 

were downloaded from the Broad GDAC Firehose repository for LUAD (7) and LUSC (33). 

Molecular subtype annotations for LUAD and LUSC samples from TCGA were downloaded 

using the TCGAquery_subtype function in the R package TCGAbiolinks (34). Gene 

expression data were harmonized between TCGA and PDX samples and filtered for lowly 

expressed genes (mean normalized expression ≤ 1), so that only genes expressed in PDX 

samples were used for training the classifier. We estimated differential expression between 

subtypes in TCGA samples using the R package DESeq2 v. 1.28.1 (35). Genes were 

classified as differentially expressed for each subtype using a threshold of an FDR-adjusted 
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P-value of ≤ 0.01 and an absolute log2 fold-change value > 1. The lists of genes identified by 

these criteria as differentially expressed were compared. All differential genes that showed 

discrimination between at least one subtype and the others (e.g., not commonly identified as 

differentially expressed among all subtypes) were included to generate custom templates for 

NTP. We also selected genes for template creation that showed a large range of expression 

values among LUAD and LUSC cell lines in the Cancer Cell Line Encyclopedia (36) and highly 

expressed in at least a subset of the cell lines. Finally, we selected genes to exclude from the 

training set by performing a differential expression analysis between matched lung cancer 

patients (7 samples) and PDX samples (41 samples) obtained from the NCI Patient-Derived 

Model Repository (PDMR, NCI-Frederick, Frederick National Laboratory for Cancer Research, 

https://pdmr.cancer.gov/), using DESeq2. The genes with an absolute log2 fold change ³ 1 

were excluded from the model training set as they may be lost upon engraftment. 

 
The final list of genes used to train our NTP classifiers included 3,525 genes for LUAD and 

3,544 genes for LUSC. Raw expression data from TCGA for these genes were used to 

generate templates for NTP. TCGA samples were split randomly into 80% training and 20% 

validation sets stratified by labeled subtype. Custom templates were then prepared for LUAD 

and LUSC training sets using the functions subDEG and ntpMakeTemplates in the R package 

CMScaller. Subtype prediction performance was estimated using the validation sets with the 

function ntp in the R package CMScaller, specifying 1000 permutations. Performance of 

subtype predictions from NTP was calculated using 20% of the labeled TCGA data held back 

for validation. For each subtype, the performance of the NTP classification was measured by 

precision, recall and F1-score. The overall accuracy of the predictions was calculated as the 

unweighted average of the proportion of true positives to samples of each subtype. Finally, 

we used the custom templates to generate subtype predictions for the unlabeled PDX models 

with non-stranded RNA-Seq data, and we considered high confidence subtype classifications 

with FDR-adjusted P-values < 0.05.  

 

PDX Treatment Studies 

Tumor-bearing mice at low passage (P3-P6) were assigned to cohorts (8-10 mice per 

treatment group) and treated with single and combination agent therapies depending on the 

lung cancer subtype and presence of targetable molecular markers. Vehicle treated mice were 

used as controls. Treatment was initiated when tumors reached approximately 70-300 mm3. 

Tumors were monitored until the end of the dosing study (typically 28 days) or when the tumors 

reached 2000 mm3. To monitor for toxicity effects from treatment, animal body weight was 

monitored three times weekly throughout the study, and percent body weight loss was 

calculated for each mouse. Animals with >20% body weight loss were euthanized and 
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recorded as treatment-related deaths. Tumor volumes were calculated from digital caliper raw 

data by using the formula: 

Volume (mm3) = (l ´ w2) / 2 

The value w (width) was assigned as the smaller of two perpendicular tumor axes and the 

value l (length) as the larger. 

 

The response to treatment was classified using modified Response Evaluation Criteria In 

Solid Tumors (RECIST) criteria and by Tumor Growth Inhibition (TGI). The RECIST criteria 

were established using the percentage of tumor volume change (ΔVol) at the final study day 

(i.e., seven days after the last treatment) compared with the baseline tumor volume at Day 0 

or Day 1. A response classification was adapted from Gao et al. (37) as follows: 

Step 1: Calculate percent change in tumor volume for each animal as V: ((end_volume – 

start_volume)/start_volume) * 100) at day 21 
Step 2: Within each group, find the minimum V as Vm 

Step 3: Within each group, find the mean (average) V as Va 

Step 4: Determine modified RECIST category as shown: 

Complete response (CR): Vm < -95%, Va < -40% 

Partial response (PR): Vm < -50%, Va < -20% 

Stable disease (SD): Vm < 35%, Va < 30% 

Progressive disease (PD): Anything else 

 

Tumor growth inhibition (TGI) was summarized as the % of tumor volume change in 

treatment arms relative to the control. The % TGI is defined as (1 – (mean volume of treated 

tumors)/(mean volume of control tumors)) × 100% at study termination. Graphical summaries 

of treatment responses for each cohort were generated with custom visualization software 

(https://github.com/TheJacksonLaboratory/PDX-SOC) and are available from the PDX data 

portal on MMHCdb.   

 

Western blots 

 Immunoblotting was performed on treated tumors using methods described previously 

(38). 

 

Results 
Enrollment and patient characteristics 

The clinical and demographic data for the patients from whom the lung PDX models were 

generated are summarized in Table 1. The median age for patients was 63 (range 42-85). 
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Slightly more female (n=44) versus male patients (n=35) are represented in the patient 

population from which the models were derived. Most of the patients (80%) reported their race 

as White. The self-reported smoking status of the patient cohort was as follows: former (44%), 

current (20%), and never (8%). Most of the patients (30 of 33) diagnosed with LUSC were 

treatment naïve at the time their tumor tissue was acquired to generate a PDX model. For 

LUAD, half of the patients (19 of 37) were treatment-naïve at the time of PDX model 

generation.  

 

PDX Models 

A summary of the 79 lung PDX models described in this report is presented in 

Supplementary Table S1. The collection of models is comprised mostly of lung 

adenocarcinomas (37 models) and lung squamous cell carcinomas (33 models). Models for 

other lung cancer types available from the repository include four small cell carcinomas, two 

large cell neuroendocrine carcinomas, two adenosquamous carcinomas, and one 

pleomorphic carcinoma. Only the LUAD and LUSC models were used in the analyses 

described in this report. On average, 38% of implantations resulted in successful engraftment, 

similar to other reports on lung cancer PDXs (34 – 39%) (16).  Information about the PDX 

models, including clinical information, genomic data, and treatment response studies, are 

available from the Mouse Models of Human Cancer database (MMHCdb) .  

 

Quality Control (QC)  

All patient tumor samples were negative for LCMV. All engrafted tumors demonstrated 

positive labeling for human Ki67 protein. Results of STR analysis for each model confirmed 

the engrafted tumor originated from the expected patient tumor. All models for which 

hematoxylin and eosin (H&E) stained slides were available for both patient and engrafted 

tumors data were determined to have moderate to high concordance following visual 

evaluation of the images by a board-certified pathologist (RGE). Representative histology 

images and the pathologist’s notations for the PDX models are available from MMHCdb.  

 

Of 95 tumors engrafted, 13 (16%) were identified as lymphoid tumors based on positive 

staining for human CD45 antigen. These tumors likely arose from transplanted Epstein-Barr 

Virus (EBV)-infected human B-cells (39). The corresponding PDX models were removed from 

the JAX repository resulting in the final set of 79 models described here. A similar percentage 

of lymphomagenesis was reported in another PDX lung cancer model collection (40).  

 

The Xenome (24) algorithm was used to determine human and mouse origins of sequence 

data generated from engrafted tumor samples. The average percentage of human 
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sequences was 87% (53% - 99%) and 79% (50% - 89%) for the CTP assay and RNA-Seq, 

respectively (Supplementary Fig. S1). The average percentage of mouse sequences 

identified by Xenome for both CTP and RNA-Seq data was ~12% (0.5% - 47%). The 

percentage of sequence reads that were classified as “both” or “ambiguous” were <0.2% 

and ~0.6% for both platforms, respectively, and the “neither human nor mouse” category 

averaged 0.04% for CTP and 7.8% for RNA-Seq. The observed differences in the 

percentages of mouse and human sequences are likely due to platform differences 

(sequence capture method for CTP compared to direct sequencing for RNA-Seq). The 

difference was significant for human sequence reads (Welch Two Sample t-test; p-value = 

0.00000002191) but not for sequence reads classified as mouse. 
 

Genomic characterization: Somatic mutation 

Genes on the JAX CTP panel that were mutated in at least 30% of the LUAD and LUSC 

PDX models are summarized in Fig. 2A and B. The complete gene list with gene mutation 

frequencies in PDX models of LUAD, LUSC, all lung cancer, and all other cancer types is 

available in Supplementary Table S2.  As has been observed previously in many human 

cancers, TP53 is the most commonly mutated gene in both the LUAD and LUSC subtypes of 

non-small cell lung cancer (7,33).  Large genes such as titin (TTN), usherin (USH2A), and 

mucins (MUC4, MUC5B, MUC16, MUC17) also have high mutation frequencies. As reported 

previously, it is likely that the high mutation frequencies in these genes are a consequence of 

their size and do not represent driver mutations (3). 

 

An evaluation of mutation frequencies between adenocarcinomas and squamous cell 

tumors in the JAX PDX repository revealed that mutation frequencies for some genes are 

characteristic of the NSCLC subtype (Fig. 2C). Because of the relatively small number of PDX 

models in this analysis, these trends cannot be considered definitive. However, several of the 

patterns in the JAX collection are also observed in the TCGA PanCancer Atlas from cBioPortal 

(29) (Fig. 2D). Genes that are more frequently mutated in LUSC in both the JAX lung PDX 

and TCGA datasets include NFE2L2, TP53, and MUC4. Genes that show higher mutation 

frequencies in LUAD in both datasets include KRAS, EGFR, NOTCH4, HMCN1, and MUC17. 
Other genes identified as being characteristic of LUAD and LUSC in the two collections that 

did not overlap included AURKA, FER1L5 ,TET2 and ALK. Several factors could explain these 

differences. First, the JAX PDX samples were sequenced at very high coverage (mean 

coverage = 941x) compared to the whole-exome sequencing of TCGA samples (~100x) (41). 

Second, the types of samples used to generate the two resources differ. The tumor types used 

to generate the JAX resource were often selected by collaborating clinical oncologists based 

on known clinical (e.g., stage, prior treatment, metastasis, relapse) and/or genomic features. 
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Also, a greater proportion of late-stage tumors (Stage II or later) are found in the JAX PDX 

models (LUAD: 89%, LUSC: 63%) compared to TCGA PanCancer Atlas (LUAD: 41%, LUSC: 

51%) (Supplementary Fig. S2).  

 

Mutations in EGFR, KRAS, ALK, and ERBB2 in lung cancer are known to confer sensitivity 

or resistance to tyrosine kinase inhibitors (TKIs) and other targeted therapies. For 22 of the 

LUAD PDX models, genomic testing of the patient tumor was provided. All the engrafted 

tumors retained the clinically relevant mutations of the donor patient’s tumor (Supplementary 

Table S1). The confirmed mutations include EGFR L858R and T790M mutations, EGFR exon 

19 deletion, EGFR exon 20 insertion, ERBB2 exon 20 insertion, EML4-ALK fusion, and KRAS 

G12. For model TM01244, the expected EGFR T790M mutation was not observed in the 

sequence data from the CTP targeted gene panel, but the presence of the mutation was 

confirmed by droplet digital PCR (ddPCR). The failure of the targeted gene sequencing to 

identify the mutation in this case could be due to the random sampling of a heterogeneous 

patient tumor carrying subclonal mutations during the establishment of the PDX model (11,42).  

 

Although patients with LUSC have limited targeted treatment options compared to those 

diagnosed with LUAD, recent findings of recurrent genomic alterations that are characteristic 

of this histologic subtype, including activating alterations in PIK3CA, KRAS, and MET that may 

have therapeutic implications, and provide future therapeutic avenues for research after 

chemotherapy/immunotherapy options have been exhausted (43). Within the JAX PDX 

collection, clinically relevant mutations of these genes were found in 25 of the LUSC models 

(Supplementary Table S1). Only one patient tumor was tested before establishing the PDX 

model. The KRAS G12C mutation detected in the patient tumor was also observed in the 

engrafted tumor (TM00231).  

 

Considering both LUAD and LUSC models, 84% (n=69) of the engrafted tumors harbored 

clinically relevant mutations where clinical relevance was based on annotations from the JAX 

CKB database (25). We also computed the TMB and MSI for all PDX samples with CTP 

sequencing data (Supplementary Fig. S3, Supplementary Table S1) as TMB and MSI are 

used as biomarkers for immunotherapy response (44-48). We observed trends similar to other 

lung cancer data sets, where lung tumors are rarely MSI-high, but do have high TMB scores 

(44,48). Within the JAX PDX collection, none of the lung cancer PDX models are MSI-high 

(MSI score > 20); while  ten of the models are classified as high tumor mutation burden (TMB 

score > 22). The MSI and TMB scores are similar across multiple samples and passages of 

the same model, indicating that these genomic features are maintained throughout passaging 

and expansion.  
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Genomic characterization: Copy Number Alteration  

Recurrent gains and losses of chromosomal regions have been documented in NSCLC 

previously, including gains in MYC, EGFR, CCND1 and losses in LRP1B and CDKN2A (7,33). 

In LUSC, gains in 3q and losses in 3p and 5q occur more frequently than in LUAD (49). An 

overview of the gains and losses observed in engrafted tumors from the JAX NSCLC PDX 

model collection is provided in Fig. 3; gain and loss frequencies of individual genes are 

provided in Supplementary Table S3. The frequently amplified and deleted chromosomal 

regions are consistent with previous studies.   

 

Copy number profiles of individual PDX samples are shown in Supplementary Fig. S4. 

Amplifications reported for patient tumors were also observed in the corresponding PDX 

model. For example, MET, EGFR, and MYC amplifications reported in a patient tumor were 

recapitulated in the corresponding PDX model (TM00784). Different engrafted tumor samples 

derived from the same PDX model had high concordance in copy number (11).  

 

Genomic characterization: Transcriptional profiling  

Unsupervised hierarchical clustering of the lung models based on gene expression is 

shown in Fig. 4A. The samples are clustered primarily by the platform (RNA-Seq or 

microarray) and then by the diagnosis within each method. The highest similarity is observed 

between different samples of the same model assayed by the same platform. Tumor samples 

derived from the same PDX model display a higher correlation in expression, regardless of 

platforms, than the background of correlating different models (Supplementary Fig. S5), 

indicating that the expression profile is retained during engraftment, expansion, and 

passaging.  

 

It is well known that copy numbers can regulate the expression of cancer driver genes 

(50). We observed a positive correlation between the copy number of amplified and deleted 

genes and gene expression level across 63 lung PDX samples assayed for both copy number 

and expression profiles (Pearson correlation coefficient = 0.54, p < 10-15) for a subset of 

frequently amplified and deleted genes in both LUAD and LUSC PDX models (Supplementary 

Fig. S6A). Supplementary Fig. S6B shows the concordance between gene expression and 

the copy number for these genes individually. Based on these examples, it is evident that the 

amplification status elevates the gene expression levels of these frequently amplified genes, 

which are also well-known oncogenes. Similarly, the deletion status decreases the gene 

expression levels of these frequently deleted genes, which are also well-known TSGs. 
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The patient tumor associated with model TM01244 was noted as having elevated MET 

expression, but this property was only recapitulated as low-level over-expression (percentile 

rank z-score = 0.44, 0.51) in the engrafted tumors. Given that the EGFR T790M mutation 

present in the patient tumor was only detected by ddPCR in the PDX tumor, it is likely that the 

engrafted tumor is a subclone of the patient tumor where these markers are absent.  

 

Transcriptional Subtyping 

We adapted a PDX molecular subtyping tool developed for colorectal cancer PDX models, 

CMScaller (32), to classify the expression subtypes for the LUAD and LUSC models (4,5,51). 

The previously reported gene expression subtypes for LUAD include terminal respiratory unit 

(TRU), proximal inflammatory (PIF) and proximal proliferative (PPR). For LUSC, the subtypes 

include classical (CLA), primitive (PRI), basal (BAS) and secretory (SEC) transcriptional 

subtypes.  

 

For the training set, RNA-Seq data and subtype labels for LUAD and LUSC from TCGA 

were used (7,33). This analysis yielded 793 and 1224 template genes to classify LUAD and 

LUSC subtypes respectively (Supplementary Table S7 and S8), resulting in high accuracies 

of 93% and 92% for the TCGA validation set (Supplementary Table S4). For the JAX PDX 

models, 31 out of 36 LUAD samples and 24 out of 24 LUSC samples were classified in 

expression subtype categories with high confidence (FDR-adjusted P-values < 0.05) 

(Supplementary Tables S5 and S6). Among the LUAD samples, 32% were classified as PIF, 

32% as PPR and 35% as TRU. Among the LUSC samples, 38% were classified as BAS, 38% 

were classified as CLA, 8% were classified as PRI, and 17% were classified as SEC. For 

models with multiple samples, all were predicted as the same subtype within each model, 

except for LUSC model TM01448 in which PT and P0 were classified as BAS and SEC, 

respectively. Spatial tumor heterogeneity in the tumor sample used to establish the PDX 

model is a plausible explanation for these classification differences (52). Indeed, the patient 

and P0 tumor samples share the same clinically relevant mutations except for a PTEN 

nonsense mutation that was detected only in the PT sample.  

 

To further confirm the reliability of the classifications, we compared the expression of the 

template genes between TCGA samples with known subtype labels and the predicted 

subtypes of the samples of the PDX models. We observed high correlation within the template 

genes of each respective LUAD or LUSC subtype (Fig. 4B). This confirms that the expression 

level of the template genes is replicated in the lung cancer PT/PDX samples. The subtypes 

were also enriched in other genome alteration profiles (mutations and copy number 

aberrations) (5,7,33,51). Despite the limited number of samples, we observed higher 
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proportion in some of the reported subtype-enriched alterations within the respective 

predicted PDX subtypes (Fig. 4C). In particular, the LUAD PPR subtype was reported to be 

enriched in STK11 and KRAS alterations in other PT datasets, and the PDX models classified 

as PPR subtype showed higher frequencies of these alterations compared other subtypes. 

The same observation can also be made for the NFE2L2 alteration enriched in LUSC CLA 

subtype. As such, the PDX models displayed subtype-specific expression and/or alteration 

profiles similar to those reported in patient tumor subtyping studies.   

 

Treatment responses in PDX models 

The lung cancer PDX models in the JAX repository originated from both treatment-naïve 

and previously treated patient tumors. Many of the tumors submitted for PDX generation were 

selected based on the presence of clinically relevant mutations per National Comprehensive 

Cancer Network (NCCN) guidelines (Supplementary Table S1) (10,25,53). Eighteen of the 

models have tumors that harbor activating mutations in the KRAS gene, of increased clinical 

significance due to the recent development of small molecule inhibitors to KRAS G12C-

mutated cancers. Cohorts of tumor-bearing mice of a subset of the lung cancer PDX models 

were enrolled in dosing studies to evaluate responses to drug treatment.  

 

Targeted treatment of EGFR mutant PDXs. Nine PDX models in the JAX collection harbor 

activating mutations in EGFR (L858R, exon 19 deletion, exon 20 insertion) and were tested 

for response to tyrosine kinase inhibition. Six of the models (TM00199, TM00204, TM00219, 

TM00253, and TM00784) were derived from patients at the time of progression on either 

single-agent or combinations of erlotinib; two of the models (J000100672 and TM00193) were 

derived from treatment-naïve patients. Both TM00204 and TM00219 harbor the EGFR T790M 

mutation, and TM00784 harbors MET amplification. These markers are associated with 

acquired resistance to treatment with tyrosine kinase inhibitors (10,53). J000100672 harbors 

the exon 20 insertion associated with de novo resistance to TKI inhibitors (54). TM00253 

harbors the mutation EGFR V834L, which is associated with decreased response to erlotinib 

(55). Cohorts of tumor-bearing mice of these models, except for TM00193, were treated with 

single-agent erlotinib. TM00199 displayed partial response, TM00253 displayed stable 

disease, and the other four models with TKI treatment resistance mutations displayed 

progressive disease (Fig. 5A, Supplementary Fig. S7 and S8). The overall lack of complete 

response recapitulated the treatment response observed in the patients and the response 

expected from the EGFR mutation status of these models. 

 

Two models (TM00199 and TM00219) were tested using second-generation treatment 

strategies to test treatment options following the development of resistance to first-generation 
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TKIs (56). The cohort of tumor bearing animals from these models received the combination 

of afatinib and cetuximab along with single-agent erlotinib, afatinib, cetuximab, and vehicle 

controls for a 21-day study followed by an observation period of up to 90 days. As expected, 

TM00199 did not respond to treatment with erlotinib. Single-agent afatinib-treated animals 

subsequently progressed after a succession of treatment, whereas animals treated with 

cetuximab (with or without afatinib) exhibited complete response. The treatment effects on 

EGFR expression and phosphorylation were examined at six and 24-hour timepoints (Figure 

6). After a single treatment, the EGFR tyrosine kinase inhibitors erlotinib and afatinib induced 

near-complete downregulation of EGFR phosphorylation within six hours, rebounding to 

control levels after 24 hours (Figure 6A). In contrast, cetuximab showed moderate 

downregulation by six hours and complete downregulation at 24 hours accompanied by 

diminished total protein expression. The combination of afatinib plus cetuximab resulted in 

ablated phosphorylation at six hours, maintained at the 24 timepoints, associated with reduced 

protein expression. 

 

The TM00219 model was derived from a patient at the time of erlotinib progression, 

associated with the emergence of the T790M EGFR resistance mutation which was observed 

in both the patient post-erlotinib treatment biopsy and the engrafted tumor. This model showed 

no benefit from erlotinib or cetuximab, with only marginal albeit statistically significant activity 

from afatinib. In this unresponsive model, none of the EGFR-targeted agents could entirely 

suppress EGFR phosphorylation at six or 24 hours (Figure 6B).  

 

Targeted treatment of an EML4-ALK fusion PDX model. LUAD model TM00206 harbors 

the EML4-ALK fusion and, as expected, had a robust response to treatment with the ALK 

tyrosine kinase inhibitor, crizotinib (Fig. 5A, Supplementary Fig. S7 and S9) (57). The 

response at the cohort level was categorized as a complete response (CR). However, 2 of the 

9 mice in the treatment cohort were classified as partial response (PR). Acquired crizotinib 

resistance has been reported in ALK-rearranged NSCLCs (58) and the clinical records for the 

patient reveal that the individual’s cancer progressed while on treatment. The variability in the 

response in the corresponding PDX models may be due to the presence of resistant 

subclones. Although the treated PDXs were not tested for known resistance variants, the 

genomic data from two early passage (P0) tumors for this model revealed the presence of 

reported resistance mutations at a subclonal level. The ALK L1196M mutation was detected 

at an allele frequency of 22% and a low-level KIT amplification (log(CN/ploidy) = 0.43) was 

detected in one of the P0 tumors (LG0812PE1330P0), while low-level amplification in ALK 

and EML4, possibly the fusion, was detected in another P0 sample (LG0812PE1332P0).  
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Treatment of KRAS-mutant PDXs. Twelve models harboring various gain-of-function 

KRAS mutations (Supplementary Table 1) were treated with a MEK1/2 inhibitor (trametinib), 

which acts through the inhibition of the MAPK pathway downstream of KRAS. The treatment 

responses were classified as progressive disease for all models which is  consistent with the 

results in clinical trials where single-agent trametinib showed no improved efficacy compared 

to docetaxel in patients with advanced KRAS-mutant NSCLC (Fig. 5, Supplementary Fig. S7) 

(59). Partial response was observed for the combination of docetaxel and trametinib for KRAS-

mutant (G12D) model J000095635 compared to single-agents (stable and progressive 

disease, respectively). For model J000096652 (KRAS G12C), the combination docetaxel and 

trametinib showed no additional benefit over single-agent docetaxel. Both treatment arms 

were classified as PR (Fig. 5A, Supplementary Fig. S7 and S10).  

 

Discussion 

The treatment of NSCLC has rapidly evolved, with chemotherapy being replaced by either 

targeted therapies or immunotherapy in many clinical scenarios. In order for continued 

advances to be made, preclinical models which accurately reflect the complexity and 

heterogeneity of human cancers, as well as being predictive of drug sensitivity and resistance 

patterns observed in patients, are mandatory. Given the complexities of drug-tumor 

interactions together with inter- and intra-patient tumor heterogeneity, PDX models stand apart 

in the preclinical arena as experimentally tractable and reproducible models that recapitulate 

the clinically relevant genomic properties and treatment responses of the patient tumors from 

which they are derived.  

 

The repository of lung cancer PDX models maintained at The Jackson Laboratory was 

generated, characterized, and annotated in collaboration with clinical investigators. For 

models with corresponding patient tumor genomic data, the implanted tumors in the lung 

PDXs maintained the histological characteristics and genomic properties of patient tumors 

from which they were derived. Treatment responses for targeted agents in the models were 

consistent with expectations based on the presence of specific molecular targets and also 

recapitulated the clinical outcomes of patients who subsequently received the same therapies. 

The PDX models available from the JAX repository are a validated resource for preclinical 

investigations into the efficacy of new cancer treatments and for basic research into the 

mechanisms of acquired resistance to target-directed therapies and for developing strategies 

to overcome treatment resistance.  
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Table 1. Summary of clinical and demographic data for patients whose tumor material was used to generate 

the JAX collection of lung cancer PDX models. 

   
Adenocarcinoma (LUAD) Squamous Cell 

Carcinoma (LUSC) Other

N= 37 33 9

Age Median (range) 58 (42-79) 67 (50-85) 60 (50-78)

Sex Female/Male 24/13 12/21 8/1

White/Not Hispanic 22 16 6

White/Not Reported 5 11 1

White/Hispanic 1 0 0

Asian or Pacific Islander/Not Hispanic 5 1 0

American Indian or Alaskan Native/Not Hispanic 1 1 0

American Indian or Alaskan Native/Hispanic 0 1 0

Not Reported/Not Hispanic 1 1 0

Not reported/Not reported 2 2 2

Tumor Type Primary/Relapse/Metastatic 22/1/14 31/1/1 7/0/2

I (A, B) 4 7 2

II (A,B) 5 9 0

III (A,B) 5 9 3

IV (A,B) 23 4 3

Not reported 0 4 1

Smoker 7 6 3

Former 15 17 3

Never 6 0 0

Unknown 9 10 3

Treatment Naive? Y/N/Unknown 19/16/2 30/2/1 5/3/1

Characteristics

Race/Ethnicity

Stage

Smoking Status
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Figure 1. Overview of PDX model generation and characterization for the JAX PDX Resource 
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Figure 2. Somatic mutations in lung cancer PDX models A,B. Oncoplot of the most frequently mutated genes 

in LUAD (A) and LUSC (B) PDX models. The oncoplot shows the PDX models in a horizontal orientation, 

annotated with smoking status, gender, treatment status and stage of cancer. Genes with mutation frequency 

> 30% is shown on the vertical axis. The bar plot at the top has the frequency of mutations for each PDX 

model, while the right bar plot has the frequency of mutations in each gene. Colors in the oncoplot columns 

indicate different mutation types (see legend for details). The bottom panel shows the classification of the 

SNPs into transitions and transversions. (C) Comparison of gene mutation frequency in LUAD and LUSC 

PDX models (frequency >30%). (D) Comparison of gene mutation frequency in LUAD and LUSC TCGA 

samples (left: frequency >10%, right: frequency < 10%). Oncogene and Tumor Suppressor Gene (TSG) 

annotations from OncoKB.  
  



 24 

 
  

Figure 3 

A 

B 

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

−1.0

−0.5

0.0

0.5

1.0

Chromosomes

Pr
op

or
tio

n 
of

 C
op

y 
N

um
be

r G
ai

ns
/L

os
se

s

Chromosomes
-1.0

-0.5

0.0

0.5

1.0

Pr
op

or
tio

n 
of

 C
op

y 
N

um
be

r G
ai

ns
/L

os
se

s chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 ch
r1
9

ch
r2
0

ch
r2
1

ch
r2
2

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

−1.0

−0.5

0.0

0.5

1.0

Chromosomes

Pr
op

or
tio

n 
of

 C
op

y 
N

um
be

r G
ai

ns
/L

os
se

s

Chromosomes
-1.0

-0.5

0.0

0.5

1.0

Pr
op

or
tio

n 
of

 C
op

y 
N

um
be

r G
ai

ns
/L

os
se

s

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 ch
r1
9

ch
r2
0

ch
r2
1

ch
r2
2



 25 

 
Figure 3. Copy number alterations in lung cancer PDX models A,B. Frequency of copy number gain and 

loss for (A) LUAD and (B) LUSC PDX models. CN Gain: log2(CN/ploidy) > 0.5; CN Loss: log2(CN/ploidy) < 

-0.5. One sample per model was used to calculate the frequency.  
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Figure 4. Gene expression in lung cancer PDX models. (A) Hierarchical clustering of gene expression 

percentile rank z-score for all lung cancer PDX samples and platforms. The heatmap is based on correlation 

values of expression percentile rank z-score expression for LUSC and LUAD PDX samples from sequencing 

and array platforms. The top horizontal color bars indicate the library preparation methods and platforms, 

and subtype designation. Sample labels are indicated by model ID, sample ID and library 

preparation/platform. (B) Expression (quantile-normalized raw RSEM counts) correlation of nearest template 

prediction genes between TCGA (LUAD: n=230, LUSC: n=178) and PDX (LUAD: n=36, LUSC: n=24) 

samples for LUAD and LUSC. The color bars indicate the subtype labels for TCGA and subtype predictions 

for PDX. (C) Proportion of PDX models with mutations reported to be enriched in LUAD and LUSC subtypes 

as indicated on the left. LUAD subtypes: proximal-inflammatory (PIF), proximal-proliferative (PPR), terminal 

respiratory unit (TRU). LUSC subtypes: basal (BAS), classical (CLA), primitive (PRI) and secretory (SEC). 

  



 28 

 
  

A 

B C 

Figure 5 



 29 

 
Figure 5. Treatment response of cancer drugs on the PDX models A,B,C. Modified RECIST classification 

summary plot for PDX models classified as (A) LUAD, (B) LUSC, and (C) all other lung cancer types. Colors 

indicate RECIST classification for a treatment cohort (CR: complete response, PR: partial response, SD: 

stable disease, and PD: progressive disease). Number of treatments in each RECIST category is shown at 

the top, and number of models in each RECIST category is shown on the right side of each plot. Plots were 

generated with the R package Xeva (version 1.6.0).   
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Figure 6. Treatment induced changes in phosphorylation of EGFR, AKT, ERK, P38 at 6 and 24 hours in lung 

PDX models treated with erlotinib, afatinib, cetuximab, and afatinib+cetuximab. (A) In model TM00199,  a 

single treatment of erlotinib and afatinib induced near-complete downregulation of EGFR phosphorylation 

within six hours, rebounding to control levels after 24 hours. Treatment with cetuximab demonstrated 

moderate downregulation by six hours and complete downregulation at 24 hours accompanied by diminished 

total protein expression. The combination of afatinib plus cetuximab resulted in ablated phosphorylation at 

six hours, maintained at the 24 timepoints, associated with reduced protein expression. (B) In model 

TM00219 none of the EGFR-targeted agents could entirely suppress EGFR phosphorylation at 6 or 24 hours. 
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