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Abstract

Patient-derived xenograft models (PDXs) are an effective preclinical in vivo platform for
testing the efficacy of novel drug and drug combinations for cancer therapeutics. Here we
describe a repository of 79 genomically and clinically annotated lung cancer PDXs available
from The Jackson Laboratory that have been extensively characterized for histopathological
features, mutational profiles, gene expression, and copy number aberrations. Most of the
PDXs are models of non-small cell lung cancer (NSCLC), including 37 lung adenocarcinoma
(LUAD) and 33 lung squamous cell carcinoma (LUSC) models. Other lung cancer models in
the repository include four small cell carcinomas, two large cell neuroendocrine carcinomas,
two adenosquamous carcinomas, and one pleomorphic carcinoma. Models with both de novo
and acquired resistance to targeted therapies with tyrosine kinase inhibitors are available in
the collection. The genomic profiles of the LUAD and LUSC PDX models are consistent with
those observed in patient tumors of the same tumor type from The Cancer Genome Atlas
(TCGA) and to previously characterized gene expression-based molecular subtypes.
Clinically relevant mutations identified in the original patient tumors were confirmed in
engrafted tumors. Treatment studies performed for a subset of the models recapitulated the

responses expected based on the observed genomic profiles.

Significance: The collection of lung cancer Patient Derived Xenograft (PDX) models
maintained at The Jackson Laboratory retain both the histologic features and treatment-
relevant genomic alterations observed in the originating patient tumors and show expected
responses to treatment with standard-of-care agents. The models serve as a valuable
preclinical platform for translational cancer research. Information and data for the models
are freely available from the Mouse Models of Human Cancer database (MMHCdb,

http://tumor.informatics.jax.org/mtbwi/pdxSearch.do).

Introduction

Lung cancer is the leading cause of cancer deaths worldwide (1). Genome-wide analyses
have demonstrated that non-small cell lung cancer (NSCLC) differs from most other cancer
types quantitatively and qualitatively for its high level of mutational burden and genomic
complexity. Further, the two major histologic subtypes of NSCLC: lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) (2,3). LUAD and LUSC tumors have
distinctive genomic alteration signatures, pathway disruption, and immune host response.
Transcriptional subtypes for both LUAD and LUSC have been reported that are associated

with differences in patient prognosis, response to treatment, and survival (4,5).
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Genomic characterization of tumors has been instrumental in precision medicine
strategies for NSCLC through the identification of “druggable” oncogene drivers which, in turn,
has expanded treatment options and a growing number of targeted therapy approaches (6).
A prominent example of molecularly-guided therapy in NSCLC relates to the finding of
activating mutations in the epidermal growth factor receptor (EGFR) gene, resulting in
constitutive, ligand-independent receptor activity and a high degree of sensitivity to EGFR-
targeted tyrosine kinase inhibitors (TKIs) (7). The efficacy of EGFR TKlIs has been
demonstrated in a large number of clinical trials (8). Similar findings have been shown with
targeted therapies in patients with an array of other genomically-defined subtypes, such as
ALK-EML4 and ROS1 fusions, among others (9). Although advances in targeted therapies for
NSCLC have transformed treatment options, not all patients respond to treatment and the
development of acquired resistance is almost universal. Although resistance mechanisms in
some treatment settings for oncogene-driven NSCLC are well established, such as
development of the T790M “gatekeeper” mutation after therapy with first and second
generation EGFR TKiIs (10), resistance mechanisms are much more complex in most other
therapeutic settings, generally characterized as either secondary mutations or bypass
mechanisms. Testing novel treatment strategies and new therapeutic agents to overcome

acquired resistance remains a high priority for translational cancer research.

Human tumors engrafted into transplant-compliant recipient mouse hosts (Patient-Derived
Xenografts, PDX) retain critical biological properties of a patient’s tumor, including tumor
heterogeneity and genomic complexity (11). PDXs have demonstrated utility as preclinical
models for testing therapeutic strategies for many cancers, including lung cancer. Previous
studies have demonstrated that lung cancer PDX models recapitulate faithfully many aspects
of the original patient tumor for histology, karyotype, and genomics (12,13). Lung PDX models
have demonstrated the capacity to recapitulate expected sensitivity and resistance patterns
to targeted therapies, including clinical responses observed in patients. These models have
provided insights into therapies based on other molecular markers (14,15). Collections of PDX
models have allowed further studies on understanding the contributing factors affecting
engraftment rates, new treatment combinations for lung cancer models which developed

resistance, and discovery of new biomarkers for lung cancer treatment (16,17).

In collaboration with the University of California Davis Comprehensive Cancer Center and
Northern Light Eastern Maine Medical Center, we generated and characterized (18) a
repository of 79 genomically and clinically annotated lung cancer PDX models to use as a
platform to support basic research on mechanisms of treatment response and to facilitate

translational pre-clinical and co-clinical trial research. This repository is comprised of PDX
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models that were generated using the NOD.Cg-Prkdc® I12rg™"™|SzJ (NSG) mouse strain as
the host and includes models of high clinical relevance, including EGFR- and KRAS-mutated
lung adenocarcinomas (LUAD) and PI3K-mutant lung squamous cell carcinomas (LUSC).
Clinical demographic information, histology, immunohistochemistry images, summarized
genomic data, and treatment response data for these PDX models are freely available from
The Jackson Laboratory (JAX) PDX web portal hosted by the Mouse Models of Human Cancer
database (MMHCdb, http:/tumor.informatics.jax.org/mtbwi/pdxSearch.do) (19) and from PDX
Finder, a global catalog of thousands of PDX models (20).

Materials and Methods
Establishing xenografts

An overview of the PDX model generation process is shown in Fig. 1. All animal
procedures were performed at The Jackson Laboratory Sacramento facility under IACUC
protocol 12027. NOD.Cg-Prkdc*® I12rg™""™SzJ (NSG; JAX Stock 005557) animals were
housed in individually ventilated polysulfone cages with HEPA filtered air at a density of up to
five mice per cage. Cages were changed every two weeks. The animal rooms were ona 12 h
light/dark cycle (6 am to 6 pm) with fluorescent lighting. The temperature and relative humidity
in the animal rooms were 22 + 4°C and 50 + 15%, respectively with 15 air exchanges per hour.
Filtered tap water, acidified to a pH of 2.5 to 3.0, and custom LabDiet 5K52 were provided ad
libitum. Mice were housed in rooms classified as “pathogen and opportunistic-free”. The list of
excluded organisms in these rooms and health reports are available on The Jackson

Laboratory website (https://www.jax.org/jax-mice-and-services/customer-support/customer-

service/animal-health).

Tumor samples from biopsies, pleural effusions, or surgical resections were obtained
from NSCLC patients and implanted subcutaneously by trocar in the right flank of up to five,
6-8 week-old female NSG mice without intervening in vitro culturing of the tumor cells.
Patients were consented by the donating institution to allow unrestricted use of the models
and associated data. Most tumors were implanted within 24 hours of surgery and the
maximum post-surgery time allowed for implantation was 48 hours. Solid tumors were
divided into 3-5 mm? fragments in RPMI medium before implantation. Pleural effusion
samples were centrifuged, and the supernatant was removed with a pipet. Pellets were then
re-suspended in Dulbecco’s Phosphate Buffered Saline (DPBS), and 200 ul were implanted
subcutaneously into the host mouse as a 1:1 bolus of pleural effusion cells in RPMI media

and growth factor free Matrigel. Matrigel was not used for subsequent passages.
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Once an implanted tumor reached 2000 mm?, it was harvested and subdivided into 3-5
mm? fragments which were implanted into five, 6-8 week old female NSG mice for expansion
to P1. For quality control assessment (see below), a 50 mm? fragment was collected in 10%
neutral buffered formalin and a formalin-fixed, paraffin-embedded block was generated. The
remaining fragments were cryopreserved in 10% DMSO. When P1 tumors reached
~2000mm?* they were harvested and subdivided into 3-5 mm?® fragments which were
subsequently embedded in FFPE for quality control, snap-frozen for genomics, placed into
RNALater (Ambion) for RNA-Seq, and viably cryopreserved in 10% DMSO.

To establish cohorts of tumor-bearing mice for drug treatment studies, 3-5 mm?® tumor
fragments or 40 pl of minced tumor were subcutaneously implanted in the right rear flank of
NSG mice by trocar or a 14-gauge disposable needle. Low passage tumor fragments (P3-P6)
were used to establish cohorts of tumor-bearing animals for dosing studies. Tumor volumes
were monitored with ULTRA-Cal IV digital calipers (Fowler, Newton, MA). Individual tumor-
bearing mice were randomized into treatment cohorts of 8-12 mice each on an accrual
(asynchronous growth) basis once individual tumors reached an initial volume of
approximately 100-300 mm?. For some studies, tumors were removed and divided, with half

of the material preserved in neutral-buffered formalin and half flash-frozen.

PDX model quality control

The quality control procedures employed for PDX models included testing the patient
tumor for LCMV (lymphocytic choriomeningitis virus) and bacterial contamination. The
engrafted tumors at PO and P1 were DNA fingerprinted using a Short Tandem Repeat (STR)
assay (21) and then compared to the profile of the patient sample to ensure correct tissue
provenance. Immunohistochemistry (IHC) for human CD45 antibodies (IR75161-2, Agilent
Technologies) was performed on FFPE blocks of engrafted tumors to identify cases of
lymphomagenesis, which have been reported previously in PDXs (22). IHC for human Ki67
(IR62661-2, Agilent Technologies) was used to ensure the propagated tumors were comprised
of human cells. H&E sections of engrafted tumors were evaluated by a board-certified
pathologist (RGE) to verify the concordance of the morphological features of the engrafted
tumor to the patient tumor. Engrafted tumors were assessed by sequencing or digital droplet
PCR to ensure that diagnostic/therapeutic molecular markers identified in patient samples

were present in the engrafted tumors (Supplementary Table S1).

Genomic characterization of engrafted tumors
The genomes of engrafted tumors were characterized at either the PO or P1 passage (Fig.

1). Sequencing using The Jackson Laboratory (JAX) Cancer Treatment Profile (CTP)
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targeted gene panel (23) was performed to determine point mutations, single nucleotide
polymorphisms insertions/deletions (indels). The JAX CTP panel comprises 358 genes, 190
of which are clinically actionable genes for cancer treatment. Transcriptome analysis was
conducted using expression microarrays or RNA sequencing (RNA-Seq). RNA-Seq data was
also used to identify putative translocations, RNA splicing abnormalities, and fusion transcript
events. Sequencing data were analyzed using Xenome to separate mouse sequences from
human-derived sequence reads (24). Copy Number Variants (CNVs) were determined using
the Affymetrix Human SNP 6.0 array. Detailed protocols for nucleic acid extraction, library
preparation, and data analysis are described elsewhere (18). The JAX Clinical Knowledge
Base (CKB) database was used to annotate variants and gene expression with clinical
relevance (25). Clinical information and analyzed genomic data of the PDX models were then
uploaded to a public PDX web portal hosted by the Mouse Models of Human Cancer database
(MMHCdb).

Analysis of genomic data from engrafted tumors

Mutation and copy number (CN) analysis and quantification of gene expression for all
engrafted tumor samples were performed as described in Woo et al. (18). Tumor mutation
burden (TMB) and microsatellite instability (MSI) were estimated for each tumor sample that
was characterized using the JAX CTP targeted gene panel. TMB was calculated using
variants that met all quality criteria (coverage, strand bias, mapping quality, and read rank
position) and were not present on a curated list of false-positive variants (loci prone to
sequencing and analysis errors and/or associated with highly polymorphic genes: MUC4,
MUC5B, MUC16, MUC17, and HLA-A). Only likely somatic mutations based on germline
filtering criteria that were predicted with high or moderate functional impact (i.e., non-
synonymous changes, frame shifts, stop losses/gains, and splice-site acceptor/donor
changes) were retained. TMB was estimated by dividing the number of variants that met the
quality criteria by the length (in Mb) of the CTP gene panel. High TMB was defined as 22
mutations/Mb, which was calculated based on the TMB distribution of all PDX models
analyzed as follows: Q3 (third quartile of TMB) + 1.5 x inter-quartile range of TMB. The

MSilsensor2 (26) algorithm (https://github.com/niu-lab/msisensor2) was used to determine the

MSI status of JAX samples. The samples with MSI-Percentage > 20% were considered MSI-
High. This threshold demonstrates good differentiation between MSI-High (MSI-H) and MSI-
Stable (MSI-S) samples during MSlsensor2 algorithm development and internal

benchmarking.

To summarize the mutations prevalent in the PDX models, oncoplots for LUAD and LUSC

were created using all the somatic and clinically relevant point mutations and indels in the
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models. All mutations were concatenated across the PDX samples for models with more than
one sample sequenced and derived a unique list of mutations per model. The list of mutations
was converted to annovar format, and the table_annovar.pl utility from annovar (Version date:
2014-11-12) with the parameters (-buildver hg38 -remove -protocol
refGene,cytoBand,exac03,avsnp147,dbnsfp30a -operation gx,r.f.f,f -nastring . -polish -
otherinfo) (27) was used to convert the variants to Mutation Annotation Format (MAF). Finally,
the oncoplot function from maftools v2.2.10 (28) was used to create the oncoplot for genes
which were mutated >30% frequency of the models. Gene mutation frequencies of LUAD and
LUSC in the TCGA PanCancer Atlas were obtained from cBioPortal (29) for comparison with
the PDX data. Genes were classified as oncogenes or tumor suppressor genes (TSGs) based
on OncoKB annotations (Download date: 2020/9/17) (30).

Copy number data were visualized using GenVisR (31) on a per-sample basis and an
overall gain and loss frequency basis within the LUAD and LUSC groups. For frequency
calculation, one sample was selected to represent each model, and logz(CN ratio) = £0.5 was

used as a cut-off to call CN gain and loss.

To summarize the expression data, the percentile rank z-score values from stranded RNA-
Seq, non-stranded RNA-Seq, and microarray platforms were combined and a correlation
heatmap was plotted using the Pretty Heatmaps package in R (https:/cran.r-

project.org/web/packages/pheatmap/index.html).

Gene expression-based subtypes of LUAD and LUSC PDXs

To determine if previously identified molecular subtypes for LUAD (TRU, PIF, and PPR)
and LUSC (CLA, PRI, BAS, and SEC) were represented in our repository of lung cancer PDX
models, we used Nearest Template Prediction (NTP) implemented in the R package
CMScaller (32). We selected genes from publicly available RNA-seq data to enrich for
classification of the subtypes, following similar methods as those recently used to develop a
classifier for colorectal cancer. TCGA raw gene expression data (non-stranded RNA-Seq)
were downloaded from the Broad GDAC Firehose repository for LUAD (7) and LUSC (33).
Molecular subtype annotations for LUAD and LUSC samples from TCGA were downloaded
using the TCGAquery_subtype function in the R package TCGAbiolinks (34). Gene
expression data were harmonized between TCGA and PDX samples and filtered for lowly
expressed genes (mean normalized expression < 1), so that only genes expressed in PDX
samples were used for training the classifier. We estimated differential expression between
subtypes in TCGA samples using the R package DESeq2 v. 1.28.1 (35). Genes were

classified as differentially expressed for each subtype using a threshold of an FDR-adjusted
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P-value of < 0.01 and an absolute log fold-change value > 1. The lists of genes identified by
these criteria as differentially expressed were compared. All differential genes that showed
discrimination between at least one subtype and the others (e.g., not commonly identified as
differentially expressed among all subtypes) were included to generate custom templates for
NTP. We also selected genes for template creation that showed a large range of expression
values among LUAD and LUSC cell lines in the Cancer Cell Line Encyclopedia (36) and highly
expressed in at least a subset of the cell lines. Finally, we selected genes to exclude from the
training set by performing a differential expression analysis between matched lung cancer
patients (7 samples) and PDX samples (41 samples) obtained from the NCI Patient-Derived
Model Repository (PDMR, NCI-Frederick, Frederick National Laboratory for Cancer Research,

https://pdmr.cancer.gov/), using DESeq2. The genes with an absolute log. fold change > 1

were excluded from the model training set as they may be lost upon engraftment.

The final list of genes used to train our NTP classifiers included 3,525 genes for LUAD and
3,544 genes for LUSC. Raw expression data from TCGA for these genes were used to
generate templates for NTP. TCGA samples were split randomly into 80% training and 20%
validation sets stratified by labeled subtype. Custom templates were then prepared for LUAD
and LUSC training sets using the functions subDEG and ntpMakeTemplates in the R package
CMScaller. Subtype prediction performance was estimated using the validation sets with the
function ntp in the R package CMScaller, specifying 1000 permutations. Performance of
subtype predictions from NTP was calculated using 20% of the labeled TCGA data held back
for validation. For each subtype, the performance of the NTP classification was measured by
precision, recall and F1-score. The overall accuracy of the predictions was calculated as the
unweighted average of the proportion of true positives to samples of each subtype. Finally,
we used the custom templates to generate subtype predictions for the unlabeled PDX models
with non-stranded RNA-Seq data, and we considered high confidence subtype classifications
with FDR-adjusted P-values < 0.05.

PDX Treatment Studies

Tumor-bearing mice at low passage (P3-P6) were assigned to cohorts (8-10 mice per
treatment group) and treated with single and combination agent therapies depending on the
lung cancer subtype and presence of targetable molecular markers. Vehicle treated mice were
used as controls. Treatment was initiated when tumors reached approximately 70-300 mm?®.
Tumors were monitored until the end of the dosing study (typically 28 days) or when the tumors
reached 2000 mm?>. To monitor for toxicity effects from treatment, animal body weight was
monitored three times weekly throughout the study, and percent body weight loss was

calculated for each mouse. Animals with >20% body weight loss were euthanized and
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recorded as treatment-related deaths. Tumor volumes were calculated from digital caliper raw
data by using the formula:

Volume (mm?) = (I x w?) / 2
The value w (width) was assigned as the smaller of two perpendicular tumor axes and the

value / (length) as the larger.

The response to treatment was classified using modified Response Evaluation Criteria In
Solid Tumors (RECIST) criteria and by Tumor Growth Inhibition (TGI). The RECIST criteria
were established using the percentage of tumor volume change (AVol) at the final study day
(i.e., seven days after the last treatment) compared with the baseline tumor volume at Day 0
or Day 1. A response classification was adapted from Gao et al. (37) as follows:

Step 1: Calculate percent change in tumor volume for each animal as V: ((end_volume —

start_volume)/start_volume) * 100) at day 21

Step 2: Within each group, find the minimum V as Vm

Step 3: Within each group, find the mean (average) V as Va

Step 4: Determine modified RECIST category as shown:

Complete response (CR): Vm < -95%, Va < -40%
Partial response (PR): Vm < -50%, Va < -20%
Stable disease (SD): Vm < 35%, Va < 30%

Progressive disease (PD): Anything else

Tumor growth inhibition (TGI) was summarized as the % of tumor volume change in
treatment arms relative to the control. The % TGl is defined as (1 — (mean volume of treated
tumors)/(mean volume of control tumors)) x 100% at study termination. Graphical summaries
of treatment responses for each cohort were generated with custom visualization software
(https://github.com/TheJacksonLaboratory/PDX-SOC) and are available from the PDX data
portal on MMHCdb.

Western blots

Immunoblotting was performed on treated tumors using methods described previously
(38).

Results
Enrollment and patient characteristics
The clinical and demographic data for the patients from whom the lung PDX models were

generated are summarized in Table 1. The median age for patients was 63 (range 42-85).
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Slightly more female (n=44) versus male patients (n=35) are represented in the patient
population from which the models were derived. Most of the patients (80%) reported their race
as White. The self-reported smoking status of the patient cohort was as follows: former (44%),
current (20%), and never (8%). Most of the patients (30 of 33) diagnosed with LUSC were
treatment naive at the time their tumor tissue was acquired to generate a PDX model. For
LUAD, half of the patients (19 of 37) were treatment-naive at the time of PDX model

generation.

PDX Models

A summary of the 79 lung PDX models described in this report is presented in
Supplementary Table S1. The collection of models is comprised mostly of lung
adenocarcinomas (37 models) and lung squamous cell carcinomas (33 models). Models for
other lung cancer types available from the repository include four small cell carcinomas, two
large cell neuroendocrine carcinomas, two adenosquamous carcinomas, and one
pleomorphic carcinoma. Only the LUAD and LUSC models were used in the analyses
described in this report. On average, 38% of implantations resulted in successful engraftment,
similar to other reports on lung cancer PDXs (34 — 39%) (16). Information about the PDX
models, including clinical information, genomic data, and treatment response studies, are

available from the Mouse Models of Human Cancer database (MMHCdb) .

Quality Control (QC)

All patient tumor samples were negative for LCMV. All engrafted tumors demonstrated
positive labeling for human Ki67 protein. Results of STR analysis for each model confirmed
the engrafted tumor originated from the expected patient tumor. All models for which
hematoxylin and eosin (H&E) stained slides were available for both patient and engrafted
tumors data were determined to have moderate to high concordance following visual
evaluation of the images by a board-certified pathologist (RGE). Representative histology

images and the pathologist’s notations for the PDX models are available from MMHCdb.

Of 95 tumors engrafted, 13 (16%) were identified as lymphoid tumors based on positive
staining for human CD45 antigen. These tumors likely arose from transplanted Epstein-Barr
Virus (EBV)-infected human B-cells (39). The corresponding PDX models were removed from
the JAX repository resulting in the final set of 79 models described here. A similar percentage

of lymphomagenesis was reported in another PDX lung cancer model collection (40).

The Xenome (24) algorithm was used to determine human and mouse origins of sequence

data generated from engrafted tumor samples. The average percentage of human

10


https://doi.org/10.1101/2022.03.06.483171
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.06.483171; this version posted March 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

sequences was 87% (53% - 99%) and 79% (50% - 89%) for the CTP assay and RNA-Seq,
respectively (Supplementary Fig. S1). The average percentage of mouse sequences
identified by Xenome for both CTP and RNA-Seq data was ~12% (0.5% - 47%). The
percentage of sequence reads that were classified as “both” or “ambiguous” were <0.2%
and ~0.6% for both platforms, respectively, and the “neither human nor mouse” category
averaged 0.04% for CTP and 7.8% for RNA-Seq. The observed differences in the
percentages of mouse and human sequences are likely due to platform differences
(sequence capture method for CTP compared to direct sequencing for RNA-Seq). The
difference was significant for human sequence reads (Welch Two Sample t-test; p-value =

0.00000002191) but not for sequence reads classified as mouse.

Genomic characterization: Somatic mutation

Genes on the JAX CTP panel that were mutated in at least 30% of the LUAD and LUSC
PDX models are summarized in Fig. 2A and B. The complete gene list with gene mutation
frequencies in PDX models of LUAD, LUSC, all lung cancer, and all other cancer types is
available in Supplementary Table S2. As has been observed previously in many human
cancers, TP53 is the most commonly mutated gene in both the LUAD and LUSC subtypes of
non-small cell lung cancer (7,33). Large genes such as titin (TTN), usherin (USH2A), and
mucins (MUC4, MUC5B, MUC16, MUC17) also have high mutation frequencies. As reported
previously, it is likely that the high mutation frequencies in these genes are a consequence of

their size and do not represent driver mutations (3).

An evaluation of mutation frequencies between adenocarcinomas and squamous cell
tumors in the JAX PDX repository revealed that mutation frequencies for some genes are
characteristic of the NSCLC subtype (Fig. 2C). Because of the relatively small number of PDX
models in this analysis, these trends cannot be considered definitive. However, several of the
patterns in the JAX collection are also observed in the TCGA PanCancer Atlas from cBioPortal
(29) (Fig. 2D). Genes that are more frequently mutated in LUSC in both the JAX lung PDX
and TCGA datasets include NFE2L2, TP53, and MUC4. Genes that show higher mutation
frequencies in LUAD in both datasets include KRAS, EGFR, NOTCH4, HMCN1, and MUC17.
Other genes identified as being characteristic of LUAD and LUSC in the two collections that
did not overlap included AURKA, FER1L5 ,TET2 and ALK. Several factors could explain these
differences. First, the JAX PDX samples were sequenced at very high coverage (mean
coverage = 941x) compared to the whole-exome sequencing of TCGA samples (~100x) (41).
Second, the types of samples used to generate the two resources differ. The tumor types used
to generate the JAX resource were often selected by collaborating clinical oncologists based

on known clinical (e.g., stage, prior treatment, metastasis, relapse) and/or genomic features.

11


https://doi.org/10.1101/2022.03.06.483171
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.06.483171; this version posted March 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Also, a greater proportion of late-stage tumors (Stage Il or later) are found in the JAX PDX
models (LUAD: 89%, LUSC: 63%) compared to TCGA PanCancer Atlas (LUAD: 41%, LUSC:
51%) (Supplementary Fig. S2).

Mutations in EGFR, KRAS, ALK, and ERBBZ2 in lung cancer are known to confer sensitivity
or resistance to tyrosine kinase inhibitors (TKls) and other targeted therapies. For 22 of the
LUAD PDX models, genomic testing of the patient tumor was provided. All the engrafted
tumors retained the clinically relevant mutations of the donor patient’s tumor (Supplementary
Table S1). The confirmed mutations include EGFR L858R and T790M mutations, EGFR exon
19 deletion, EGFR exon 20 insertion, ERBB2 exon 20 insertion, EML4-ALK fusion, and KRAS
G12. For model TM01244, the expected EGFR T790M mutation was not observed in the
sequence data from the CTP targeted gene panel, but the presence of the mutation was
confirmed by droplet digital PCR (ddPCR). The failure of the targeted gene sequencing to
identify the mutation in this case could be due to the random sampling of a heterogeneous

patient tumor carrying subclonal mutations during the establishment of the PDX model (11,42).

Although patients with LUSC have limited targeted treatment options compared to those
diagnosed with LUAD, recent findings of recurrent genomic alterations that are characteristic
of this histologic subtype, including activating alterations in PIK3CA, KRAS, and MET that may
have therapeutic implications, and provide future therapeutic avenues for research after
chemotherapy/immunotherapy options have been exhausted (43). Within the JAX PDX
collection, clinically relevant mutations of these genes were found in 25 of the LUSC models
(Supplementary Table S1). Only one patient tumor was tested before establishing the PDX
model. The KRAS G12C mutation detected in the patient tumor was also observed in the
engrafted tumor (TM00231).

Considering both LUAD and LUSC models, 84% (n=69) of the engrafted tumors harbored
clinically relevant mutations where clinical relevance was based on annotations from the JAX
CKB database (25). We also computed the TMB and MSI for all PDX samples with CTP
sequencing data (Supplementary Fig. S3, Supplementary Table S1) as TMB and MSI are
used as biomarkers for immunotherapy response (44-48). We observed trends similar to other
lung cancer data sets, where lung tumors are rarely MSI-high, but do have high TMB scores
(44,48). Within the JAX PDX collection, none of the lung cancer PDX models are MSI-high
(MSI score > 20); while ten of the models are classified as high tumor mutation burden (TMB
score > 22). The MSI and TMB scores are similar across multiple samples and passages of
the same model, indicating that these genomic features are maintained throughout passaging

and expansion.
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Genomic characterization: Copy Number Alteration

Recurrent gains and losses of chromosomal regions have been documented in NSCLC
previously, including gains in MYC, EGFR, CCND1 and losses in LRP1B and CDKNZ2A (7,33).
In LUSC, gains in 3q and losses in 3p and 5q occur more frequently than in LUAD (49). An
overview of the gains and losses observed in engrafted tumors from the JAX NSCLC PDX
model collection is provided in Fig. 3; gain and loss frequencies of individual genes are
provided in Supplementary Table S3. The frequently amplified and deleted chromosomal

regions are consistent with previous studies.

Copy number profiles of individual PDX samples are shown in Supplementary Fig. S4.
Amplifications reported for patient tumors were also observed in the corresponding PDX
model. For example, MET, EGFR, and MYC amplifications reported in a patient tumor were
recapitulated in the corresponding PDX model (TM00784). Different engrafted tumor samples

derived from the same PDX model had high concordance in copy number (11).

Genomic characterization: Transcriptional profiling

Unsupervised hierarchical clustering of the lung models based on gene expression is
shown in Fig. 4A. The samples are clustered primarily by the platform (RNA-Seq or
microarray) and then by the diagnosis within each method. The highest similarity is observed
between different samples of the same model assayed by the same platform. Tumor samples
derived from the same PDX model display a higher correlation in expression, regardless of
platforms, than the background of correlating different models (Supplementary Fig. S5),
indicating that the expression profile is retained during engraftment, expansion, and

passaging.

It is well known that copy numbers can regulate the expression of cancer driver genes
(50). We observed a positive correlation between the copy number of amplified and deleted
genes and gene expression level across 63 lung PDX samples assayed for both copy number
and expression profiles (Pearson correlation coefficient = 0.54, p < 10™"°) for a subset of
frequently amplified and deleted genes in both LUAD and LUSC PDX models (Supplementary
Fig. S6A). Supplementary Fig. S6B shows the concordance between gene expression and
the copy number for these genes individually. Based on these examples, it is evident that the
amplification status elevates the gene expression levels of these frequently amplified genes,
which are also well-known oncogenes. Similarly, the deletion status decreases the gene

expression levels of these frequently deleted genes, which are also well-known TSGs.

13


https://doi.org/10.1101/2022.03.06.483171
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.06.483171; this version posted March 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

The patient tumor associated with model TM01244 was noted as having elevated MET
expression, but this property was only recapitulated as low-level over-expression (percentile
rank z-score = 0.44, 0.51) in the engrafted tumors. Given that the EGFR T790M mutation
present in the patient tumor was only detected by ddPCR in the PDX tumor, it is likely that the

engrafted tumor is a subclone of the patient tumor where these markers are absent.

Transcriptional Subtyping

We adapted a PDX molecular subtyping tool developed for colorectal cancer PDX models,
CMScaller (32), to classify the expression subtypes for the LUAD and LUSC models (4,5,51).
The previously reported gene expression subtypes for LUAD include terminal respiratory unit
(TRU), proximal inflammatory (PIF) and proximal proliferative (PPR). For LUSC, the subtypes
include classical (CLA), primitive (PRI), basal (BAS) and secretory (SEC) transcriptional
subtypes.

For the training set, RNA-Seq data and subtype labels for LUAD and LUSC from TCGA
were used (7,33). This analysis yielded 793 and 1224 template genes to classify LUAD and
LUSC subtypes respectively (Supplementary Table S7 and S8), resulting in high accuracies
of 93% and 92% for the TCGA validation set (Supplementary Table S4). For the JAX PDX
models, 31 out of 36 LUAD samples and 24 out of 24 LUSC samples were classified in
expression subtype categories with high confidence (FDR-adjusted P-values < 0.05)
(Supplementary Tables S5 and S6). Among the LUAD samples, 32% were classified as PIF,
32% as PPR and 35% as TRU. Among the LUSC samples, 38% were classified as BAS, 38%
were classified as CLA, 8% were classified as PRI, and 17% were classified as SEC. For
models with multiple samples, all were predicted as the same subtype within each model,
except for LUSC model TM01448 in which PT and PO were classified as BAS and SEC,
respectively. Spatial tumor heterogeneity in the tumor sample used to establish the PDX
model is a plausible explanation for these classification differences (52). Indeed, the patient
and PO tumor samples share the same clinically relevant mutations except for a PTEN

nonsense mutation that was detected only in the PT sample.

To further confirm the reliability of the classifications, we compared the expression of the
template genes between TCGA samples with known subtype labels and the predicted
subtypes of the samples of the PDX models. We observed high correlation within the template
genes of each respective LUAD or LUSC subtype (Fig. 4B). This confirms that the expression
level of the template genes is replicated in the lung cancer PT/PDX samples. The subtypes
were also enriched in other genome alteration profiles (mutations and copy number

aberrations) (5,7,33,51). Despite the limited number of samples, we observed higher
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proportion in some of the reported subtype-enriched alterations within the respective
predicted PDX subtypes (Fig. 4C). In particular, the LUAD PPR subtype was reported to be
enriched in STK71 and KRAS alterations in other PT datasets, and the PDX models classified
as PPR subtype showed higher frequencies of these alterations compared other subtypes.
The same observation can also be made for the NFE2L2 alteration enriched in LUSC CLA
subtype. As such, the PDX models displayed subtype-specific expression and/or alteration

profiles similar to those reported in patient tumor subtyping studies.

Treatment responses in PDX models

The lung cancer PDX models in the JAX repository originated from both treatment-naive
and previously treated patient tumors. Many of the tumors submitted for PDX generation were
selected based on the presence of clinically relevant mutations per National Comprehensive
Cancer Network (NCCN) guidelines (Supplementary Table S1) (10,25,53). Eighteen of the
models have tumors that harbor activating mutations in the KRAS gene, of increased clinical
significance due to the recent development of small molecule inhibitors to KRAS G12C-
mutated cancers. Cohorts of tumor-bearing mice of a subset of the lung cancer PDX models

were enrolled in dosing studies to evaluate responses to drug treatment.

Targeted treatment of EGFR mutant PDXs. Nine PDX models in the JAX collection harbor
activating mutations in EGFR (L858R, exon 19 deletion, exon 20 insertion) and were tested
for response to tyrosine kinase inhibition. Six of the models (TM00199, TM00204, TM00219,
TM00253, and TM00784) were derived from patients at the time of progression on either
single-agent or combinations of erlotinib; two of the models (J0O00100672 and TM00193) were
derived from treatment-naive patients. Both TM00204 and TM00219 harbor the EGFR T790M
mutation, and TM00784 harbors MET amplification. These markers are associated with
acquired resistance to treatment with tyrosine kinase inhibitors (10,53). JO0O0100672 harbors
the exon 20 insertion associated with de novo resistance to TKI inhibitors (54). TM00253
harbors the mutation EGFR V834L, which is associated with decreased response to erlotinib
(55). Cohorts of tumor-bearing mice of these models, except for TM00193, were treated with
single-agent erlotinib. TM00199 displayed partial response, TM00253 displayed stable
disease, and the other four models with TKI treatment resistance mutations displayed
progressive disease (Fig. 5A, Supplementary Fig. S7 and S8). The overall lack of complete
response recapitulated the treatment response observed in the patients and the response

expected from the EGFR mutation status of these models.

Two models (TM00199 and TM00219) were tested using second-generation treatment

strategies to test treatment options following the development of resistance to first-generation
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TKIs (56). The cohort of tumor bearing animals from these models received the combination
of afatinib and cetuximab along with single-agent erlotinib, afatinib, cetuximab, and vehicle
controls for a 21-day study followed by an observation period of up to 90 days. As expected,
TMO00199 did not respond to treatment with erlotinib. Single-agent afatinib-treated animals
subsequently progressed after a succession of treatment, whereas animals treated with
cetuximab (with or without afatinib) exhibited complete response. The treatment effects on
EGFR expression and phosphorylation were examined at six and 24-hour timepoints (Figure
6). After a single treatment, the EGFR tyrosine kinase inhibitors erlotinib and afatinib induced
near-complete downregulation of EGFR phosphorylation within six hours, rebounding to
control levels after 24 hours (Figure 6A). In contrast, cetuximab showed moderate
downregulation by six hours and complete downregulation at 24 hours accompanied by
diminished total protein expression. The combination of afatinib plus cetuximab resulted in
ablated phosphorylation at six hours, maintained at the 24 timepoints, associated with reduced

protein expression.

The TM00219 model was derived from a patient at the time of erlotinib progression,
associated with the emergence of the T790M EGFR resistance mutation which was observed
in both the patient post-erlotinib treatment biopsy and the engrafted tumor. This model showed
no benefit from erlotinib or cetuximab, with only marginal albeit statistically significant activity
from afatinib. In this unresponsive model, none of the EGFR-targeted agents could entirely

suppress EGFR phosphorylation at six or 24 hours (Figure 6B).

Targeted treatment of an EML4-ALK fusion PDX model. LUAD model TM00206 harbors
the EML4-ALK fusion and, as expected, had a robust response to treatment with the ALK
tyrosine kinase inhibitor, crizotinib (Fig. 5A, Supplementary Fig. S7 and S9) (57). The
response at the cohort level was categorized as a complete response (CR). However, 2 of the
9 mice in the treatment cohort were classified as partial response (PR). Acquired crizotinib
resistance has been reported in ALK-rearranged NSCLCs (58) and the clinical records for the
patient reveal that the individual’s cancer progressed while on treatment. The variability in the
response in the corresponding PDX models may be due to the presence of resistant
subclones. Although the treated PDXs were not tested for known resistance variants, the
genomic data from two early passage (P0O) tumors for this model revealed the presence of
reported resistance mutations at a subclonal level. The ALK L1196M mutation was detected
at an allele frequency of 22% and a low-level KIT amplification (log(CN/ploidy) = 0.43) was
detected in one of the PO tumors (LG0812PE1330P0), while low-level amplification in ALK
and EML4, possibly the fusion, was detected in another PO sample (LG0812PE1332P0).
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Treatment of KRAS-mutant PDXs. Twelve models harboring various gain-of-function
KRAS mutations (Supplementary Table 1) were treated with a MEK1/2 inhibitor (trametinib),
which acts through the inhibition of the MAPK pathway downstream of KRAS. The treatment
responses were classified as progressive disease for all models which is consistent with the
results in clinical trials where single-agent trametinib showed no improved efficacy compared
to docetaxel in patients with advanced KRAS-mutant NSCLC (Fig. 5, Supplementary Fig. S7)
(59). Partial response was observed for the combination of docetaxel and trametinib for KRAS-
mutant (G12D) model J000095635 compared to single-agents (stable and progressive
disease, respectively). For model J000096652 (KRAS G12C), the combination docetaxel and
trametinib showed no additional benefit over single-agent docetaxel. Both treatment arms

were classified as PR (Fig. 5A, Supplementary Fig. S7 and S10).

Discussion

The treatment of NSCLC has rapidly evolved, with chemotherapy being replaced by either
targeted therapies or immunotherapy in many clinical scenarios. In order for continued
advances to be made, preclinical models which accurately reflect the complexity and
heterogeneity of human cancers, as well as being predictive of drug sensitivity and resistance
patterns observed in patients, are mandatory. Given the complexities of drug-tumor
interactions together with inter- and intra-patient tumor heterogeneity, PDX models stand apart
in the preclinical arena as experimentally tractable and reproducible models that recapitulate
the clinically relevant genomic properties and treatment responses of the patient tumors from

which they are derived.

The repository of lung cancer PDX models maintained at The Jackson Laboratory was
generated, characterized, and annotated in collaboration with clinical investigators. For
models with corresponding patient tumor genomic data, the implanted tumors in the lung
PDXs maintained the histological characteristics and genomic properties of patient tumors
from which they were derived. Treatment responses for targeted agents in the models were
consistent with expectations based on the presence of specific molecular targets and also
recapitulated the clinical outcomes of patients who subsequently received the same therapies.
The PDX models available from the JAX repository are a validated resource for preclinical
investigations into the efficacy of new cancer treatments and for basic research into the
mechanisms of acquired resistance to target-directed therapies and for developing strategies

to overcome treatment resistance.
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Table 1. Summary of clinical and demographic data for patients whose tumor material was used to generate

the JAX collection of lung cancer PDX models.

Squamous Cell

Characteristics Adenocarcinoma (LUAD) Carcinoma (LUSC) Other
N= 37 33 9
Age Median (range) 58 (42-79) 67 (50-85) 60 (50-78)

Sex Female/Male 2413 12/21 8/1
White/Not Hispanic 22 16 6

White/Not Reported 5 11 1

White/Hispanic 1 0 0

Asian or Pacific Islander/Not Hispanic 5 1 0

Race/Ethnicity

American Indian or Alaskan Native/Not Hispanic 1 1 0

American Indian or Alaskan Native/Hispanic 0 1 0

Not Reported/Not Hispanic 1 1 0

Not reported/Not reported 2 2 2

Tumor Type Primary/Relapse/Metastatic 22/114 3111 7102

I (A, B) 4 7 2

I1(A,B) 5 9 0

Stage Il (A,B) 5 9 5

IV (A,B) 23 4 3

Not reported 0 4 1

Smoker 7 6 3

Former 15 17 3

Smoking Status

Never 6 0 0

Unknown 9 10 3

Treatment Naive? |Y/N/Unknown 19/16/2 30/2/1 5/31
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Figure 1. Overview of PDX model generation and characterization for the JAX PDX Resource
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Figure 2. Somatic mutations in lung cancer PDX models A,B. Oncoplot of the most frequently mutated genes
in LUAD (A) and LUSC (B) PDX models. The oncoplot shows the PDX models in a horizontal orientation,
annotated with smoking status, gender, treatment status and stage of cancer. Genes with mutation frequency
> 30% is shown on the vertical axis. The bar plot at the top has the frequency of mutations for each PDX
model, while the right bar plot has the frequency of mutations in each gene. Colors in the oncoplot columns
indicate different mutation types (see legend for details). The bottom panel shows the classification of the
SNPs into transitions and transversions. (C) Comparison of gene mutation frequency in LUAD and LUSC
PDX models (frequency >30%). (D) Comparison of gene mutation frequency in LUAD and LUSC TCGA
samples (left: frequency >10%, right: frequency < 10%). Oncogene and Tumor Suppressor Gene (TSG)

annotations from OncoKB.
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Figure 3. Copy number alterations in lung cancer PDX models A,B. Frequency of copy number gain and
loss for (A) LUAD and (B) LUSC PDX models. CN Gain: log2(CN/ploidy) > 0.5; CN Loss: log2(CN/ploidy) <

-0.5. One sample per model was used to calculate the frequency.
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Figure 4. Gene expression in lung cancer PDX models. (A) Hierarchical clustering of gene expression
percentile rank z-score for all lung cancer PDX samples and platforms. The heatmap is based on correlation
values of expression percentile rank z-score expression for LUSC and LUAD PDX samples from sequencing
and array platforms. The top horizontal color bars indicate the library preparation methods and platforms,
and subtype designation. Sample labels are indicated by model ID, sample ID and library
preparation/platform. (B) Expression (quantile-normalized raw RSEM counts) correlation of nearest template
prediction genes between TCGA (LUAD: n=230, LUSC: n=178) and PDX (LUAD: n=36, LUSC: n=24)
samples for LUAD and LUSC. The color bars indicate the subtype labels for TCGA and subtype predictions
for PDX. (C) Proportion of PDX models with mutations reported to be enriched in LUAD and LUSC subtypes
as indicated on the left. LUAD subtypes: proximal-inflammatory (PIF), proximal-proliferative (PPR), terminal
respiratory unit (TRU). LUSC subtypes: basal (BAS), classical (CLA), primitive (PRI) and secretory (SEC).
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Figure 5
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Figure 5. Treatment response of cancer drugs on the PDX models A,B,C. Modified RECIST classification
summary plot for PDX models classified as (A) LUAD, (B) LUSC, and (C) all other lung cancer types. Colors
indicate RECIST classification for a treatment cohort (CR: complete response, PR: partial response, SD:
stable disease, and PD: progressive disease). Number of treatments in each RECIST category is shown at
the top, and number of models in each RECIST category is shown on the right side of each plot. Plots were

generated with the R package Xeva (version 1.6.0).
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Figure 6. Treatment induced changes in phosphorylation of EGFR, AKT, ERK, P38 at 6 and 24 hours in lung
PDX models treated with erlotinib, afatinib, cetuximab, and afatinib+cetuximab. (A) In model TM00199, a
single treatment of erlotinib and afatinib induced near-complete downregulation of EGFR phosphorylation
within six hours, rebounding to control levels after 24 hours. Treatment with cetuximab demonstrated
moderate downregulation by six hours and complete downregulation at 24 hours accompanied by diminished
total protein expression. The combination of afatinib plus cetuximab resulted in ablated phosphorylation at
six hours, maintained at the 24 timepoints, associated with reduced protein expression. (B) In model

TM00219 none of the EGFR-targeted agents could entirely suppress EGFR phosphorylation at 6 or 24 hours.
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