

1 **Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the**
2 **mycobacterial genome through substitution and frameshift mutagenesis.**

3 Pierre Dupuy¹, Shreya Ghosh², Oyindamola Adefisayo^{1,3}, John Buglino¹, Stewart Shuman² and
4 Michael Glickman^{1,3,*}

5 ¹Immunology Program, Sloan Kettering Institute, New York, NY 10065, USA.

6 ²Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA.

7 ³Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School,
8 1300 York Avenue, New York, NY 10065, USA

9 *To whom correspondence should be addressed. Tel: +1 646 888 2368; Fax: +1 646 422 0502

10 Email: glickmam@mskcc.org

11 ABSTRACT

12 Antibiotic resistance of *Mycobacterium tuberculosis* is exclusively a consequence of chromosomal
13 mutations. Translesion synthesis (TLS) is a widely conserved mechanism of DNA damage
14 tolerance and mutagenesis, executed by translesion polymerases such as DinBs. In mycobacteria,
15 DnaE2 is the only known agent of TLS and the role of DinB polymerases is unknown. Here we
16 demonstrate that mycobacterial DinB1 abets insertion and deletion frameshift mutagenesis in
17 homo-oligonucleotide runs. DinB1 is the primary mediator of spontaneous -1 frameshift mutations
18 in homo-oligonucleotide runs whereas DnaE2 and DinBs are redundant in DNA damage-induced
19 -1 frameshift mutagenesis. DinB1 also promotes missense mutations conferring resistance to
20 rifampicin, with a mutational signature distinct from that of DnaE2. These results highlight DinB1
21 and DnaE2 as drivers of mycobacterial genome diversification with relevance to antimicrobial
22 resistance and host adaptation.

23 INTRODUCTION

24 Genomic integrity is constantly threatened by DNA damage arising from endogenous cell
25 metabolism and exogenous environmental factors. DNA lesions, when not rectified by dedicated
26 repair systems, can persist, block DNA replication, and induce lethal fork collapse. “Translesion
27 DNA Synthesis” (TLS) is an ubiquitous tolerance pathway by which the blocked replicative
28 polymerase is transiently replaced by an alternative DNA polymerase that traverses the lesion
29 (Vaisman and Woodgate, 2017). In *E. coli*, DinB (Pol IV) and UmuDC (Pol V) are critical
30 mediators of TLS (Fuchs and Fujii, 2013; Fujii and Fuchs, 2020). In vitro, DinB and UmuDC share
31 common biochemical characteristics that facilitate their in vivo function, including low fidelity,
32 low processivity, lack of proofreading activity, and ability to bypass a variety of lesions (Reuven
33 et al., 1999; Tang et al., 1999; Wagner et al., 1999). In *E. coli*, the expression of *dinB* and *umuDC*
34 is inducible by DNA damage through the SOS response pathway (Courcelle et al., 2001) and they
35 respectively confer tolerance to alkylating agents and UV (Bjedov et al., 2007; Courcelle et al.,
36 2005; Jarosz et al., 2006). Because of their intrinsic flexibility, TLS polymerases catalyze
37 mutagenesis and play a key role in evolutionary fitness (Yeiser et al., 2002) or antibiotic resistance
38 in bacteria (Boshoff et al., 2003) and carcinogenesis in eukaryotes (Sale, 2013). In *E. coli*, DinB
39 and UmuDC are highly mutagenic, inducing substitution mutations as well as indels (Kato and
40 Nakano, 1981; Kim et al., 1997, 2001; Napolitano et al., 2000; Steinborn, 1978; Wagner and
41 Nohmi, 2000).

42 *Mycobacterium tuberculosis* (Mtb) is the causative agent of tuberculosis (TB), which kills 1.5
43 million of people annually (WHO, 2021). The major challenges impeding TB eradication efforts
44 include the lack of short regimens of therapy, likely due to antibiotic tolerance mechanisms, and
45 mutational antibiotic resistance (Nathan and Barry, 2015), which is a substantial global health
46 problem (WHO, 2021). Mtb acquires antimicrobial resistance exclusively through chromosomal
47 mutations, in contrast to the widespread mechanism of lateral gene transfer in other pathogens
48 (Gillespie, 2002). Human macrophages, the natural habitat of Mtb, expose the bacterium to diverse
49 stresses, many of which directly damage DNA (Darwin and Nathan, 2005; Ehrt and Schnappinger,
50 2009; Houghton et al., 2012; Naz et al., 2021; Stallings and Glickman, 2010). Mtb DNA repair
51 pathways, in particular translesion polymerases, represent a promising and underexplored target
52 for new TB drugs due to their role in survival within the host and in antimicrobial resistance

53 (Boshoff et al., 2003). However, the molecular pathways controlling chromosomal mutagenesis in
54 mycobacteria are only partially understood. The replication fidelity of the *Mtb* chromosome is
55 preserved by the proofreading function of the replicative polymerase *DnaE1* that, when mutated,
56 drastically increases mutation frequency (Rock et al., 2015). Mycobacteria do not encode *UmuDC*
57 but rather another TLS polymerase, a parologue of *DnaE1* called *DnaE2* (Cole et al., 1998; Erill
58 et al., 2006). In *Mtb*, *dnaE2* expression is dependent on DNA damage response (Adefisayo et al.,
59 2021; Boshoff et al., 2003). *DnaE2* is involved in UV tolerance as well as UV-induced mutagenesis
60 and also contributes to bacterial pathogenicity and the emergence of drug resistance (Boshoff et
61 al., 2003; Warner et al., 2010). To date, *DnaE2* is the only non-replicative polymerase known to
62 contribute to chromosomal mutagenesis in mycobacteria.

63 Mycobacterial genomes encode several *DinBs* paralogs: two in *Mtb* (*dinB1/dinX/Rv1537* and
64 *dinB2/dinP/Rv3056*) and three in the non-pathogenic model *Mycobacterium smegmatis*
65 (*dinB1/MSMEG_3172*, *dinB2/MSMEG_2294/MSMEG_1014* and *dinB3/MSMEG_6443*) (Cole
66 et al., 1998; Timinskas and Venclovas, 2019). *In silico* and experimental evidence indicates that
67 *DinB1*, but not *DinB2* nor *DinB3*, has a C-terminal β clamp binding motif and interacts directly
68 with the β clamp in a heterologous organism (Kana et al., 2010). *M. smegmatis* *DinB1*, *DinB2*,
69 and *DinB3* are active DNA polymerases *in vitro* (Ordonez and Shuman, 2014; Ordonez et al.,
70 2014). Initial characterization of a *dinB1dinB2* double mutant of *Mtb*, as well as the expression of
71 the proteins in *M. smegmatis*, failed to identify a role in DNA damage tolerance, mutagenesis or
72 pathogenicity *in vivo* (Kana et al., 2010).

73 Here we genetically investigate the contribution of mycobacterial TLS polymerases in DNA
74 damage tolerance, antibiotic resistance, and mutagenesis. We show that *DinB1* is highly mutagenic
75 *in vivo* with a strong ability to incorporate substitution mutations conferring the resistance to
76 rifampicin, one of the main drugs used to treat TB, and with a distinct mutagenic signature
77 compared to *DnaE2*-catalyzed resistance mutations. We also demonstrate a previously
78 unappreciated role for mycobacterial translesion polymerases in frameshift (FS) mutagenesis, with
79 *DinB1* and *DnaE2* acting as the primary agents of spontaneous and UV-induced homo-
80 oligonucleotide -1 FS mutagenesis in the mycobacterial chromosome.

81 **RESULTS**

82 **Mtb DinB1 requires an N terminal extension for activity.**

83 Although *M. smegmatis* DinBs all have vigorous polymerase activity in vitro (Ordonez and
84 Shuman, 2014; Ordonez et al., 2014), indicating that these enzymes should be active in vivo, prior
85 experiments (Kana et al., 2010) did not reveal an effect of Mtb *dinB1* or *dinB2* expression in *M.*
86 *smegmatis* on either the frequency of rifampicin resistance, FS mutagenesis in homo-
87 oligonucleotide runs, or growth. To examine this apparent discrepancy, we expressed *M.*
88 *smegmatis* *dinB1* (*dinB1*^{Msm}) from an Anhydrotetracycline (ATc) inducible promoter (tet
89 promoter) and measured bacterial growth. We found that the expression of *dinB1*^{Msm} in *M.*
90 *smegmatis* caused a substantial growth defect and loss of viability (Figures 1A, B, and S1A) that
91 was proportional to the level of inducer (Figure S1A, B). *dinB1*^{Msm} expression also triggered the
92 DNA damage response, as evinced by an increase in the steady-state level of the RecA protein at
93 4 h post-induction by ATc (Figure 1C). However, the effect of DinB1 on growth was not due to
94 activation of the DNA damage response as it was preserved in the $\Delta recA$ background (Figure S1C).

95 The effects of expression of *M. smegmatis* *dinB1* contrast with the lack of similar findings when
96 the Mtb gene was expressed (Kana et al., 2010), despite an overall identity of the two proteins of
97 75% (Figure S1E). We confirmed the published results that expression of the Mtb *dinB1* gene
98 (*dinB1*^{Mtb}) in *M. smegmatis* did not phenocopy *dinB1*^{Msm} (Figure 1D). However, we reanalyzed
99 the annotation of the *dinB1* open reading frames from *M. smegmatis* and Mtb and found an
100 alternative translational start codon fifteen nucleotides upstream of the annotated start codon of
101 Mtb *dinB1* used in prior experiments (Figures 1E and S1E). Expression of this longer form of the
102 Mtb DinB1 (*dinB1*^{Mtb+5aa}) impaired *M. smegmatis* growth (Figure 1D), suggesting that the first
103 five amino acids of DinB1 are essential for in vivo activity. These results indicate that prior
104 conclusions about lack of in vivo activity of Mtb DinB1 are attributable to expression of a truncated
105 protein.

106 **DinB1 competes with the replicative polymerase for interaction with the β clamp at the
107 replication fork.**

108 A catalytic dead mutant of *dinB1*^{Msm} (*dinB1*^{D113A}), which is unable to catalyze DNA synthesis in
109 vitro (Ordonez et al., 2014), exacerbated growth and viability defects compared to the WT
110 polymerase (Figures 1A and 1F). In contrast, expression of a *dinB1*^{Msm} mutant lacking its β clamp

111 binding domain ($dinB1^{\Delta\beta\text{clamp}}$), predicted to not interact with the replicative machinery, did not
112 cause growth inhibition or cell death (Figures 1F and 1G). These results indicate that DinB1
113 interacts with the replicative machinery in vivo and competes with the replicative DNA
114 polymerase at replication forks.

115 **DinB1 is an error prone polymerase inducing antibiotic resistance through a characteristic
116 mutagenic signature.**

117 Because of the intrinsic flexibility required for lesion bypass, most translesion polymerases are
118 error prone. To determine the mutagenic capability of mycobacterial DinB1 as well as its ability
119 to induce antibiotic resistance, we measured the frequency of rifampicin resistance (rif^R), conferred
120 by substitution mutations in the *rpoB* gene, in strains with temporally controlled expression of
121 $dinB1^{\text{Msm}}$, $dinB1^{\text{Mtb}}$, or $dinB1^{\text{Mtb+5aa}}$. In the strains carrying the empty vector or the $dinB1^{\text{Mtb}}$
122 plasmid, we respectively detected an average of 5.5 and 3.1 rif^R/10⁸ CFU 16 h after inducer
123 addition (Figure 2A). The expression of $dinB1^{\text{Msm}}$ or $dinB1^{\text{Mtb+5aa}}$ increased the frequency of rif^R
124 by 6- or 8-fold but the expression of $dinB1^{\Delta\beta\text{clamp}}$ had no effect, showing that an interaction between
125 DinB1 and the replicative machinery is required for DinB1-dependent mutagenesis. We observed
126 a similar induction of mutagenesis after $dinB1^{\text{Msm}}$ expression in $\Delta recA$ and $\Delta dnaE2$ backgrounds
127 (Figure S1D), showing that the effect of *dinB1* on mutation frequency is not the consequence of
128 the DNA damage response or the previously defined role of DnaE2 in mutagenesis (Boshoff et al.,
129 2003), further strengthening the conclusion that DinB1 is directly mutagenic.

130 To determine the mutation spectrum induced by DinB1, we sequenced the rifampicin resistance
131 determining region (RRDR) of the *rpoB* gene (Figure 2B). In absence of *dinB1* expression, the
132 majority of RRDR mutations were either G>A or C>T (37%) or A>G or T>C (28%), with a
133 minority of other mutations. Expression of $dinB1^{\text{Msm}}$ and $dinB1^{\text{Mtb+5aa}}$ strongly enhanced the
134 relative proportion of A>G or T>C. The absolute frequency of these mutations was increased by
135 18- and 21-fold after $dinB1^{\text{Msm}}$ and $dinB1^{\text{Mtb+5aa}}$ expression, respectively. Around 75% of *rpoB*
136 mutations found after *dinB1* expression were in the second nucleotide of the His442 codon
137 compared with 25% in control cells (Figure 2C and Table S2). The mutation was almost
138 exclusively CAC>CGC (His>Arg) and its absolute frequency was increased 21- and 28-fold after
139 $dinB1^{\text{Msm}}$ and $dinB1^{\text{Mtb+5aa}}$ expression, respectively (Figure 2D and Table S2).

140 These results demonstrate that DinB1 is prone to induce mutations *in vivo*, with a characteristic
141 mutagenic signature, A>G or T>C transition mutations, that contributes to rifampicin resistance at
142 a specific codon in RpoB.

143 **DnaE2 but not DinBs mediates stress-induced substitution mutagenesis.**

144 The intrinsic mutagenicity of DinB1 demonstrated above supports a role for the enzyme in
145 chromosomal mutagenesis in the absence of exogenous DNA damage. We next measured the
146 relative contributions of mycobacterial TLS polymerases (DinBs and DnaE2) in spontaneous
147 mutagenesis by characterizing *M. smegmatis* cells lacking *dnaE2*, all *dinBs*, or all known
148 translesion polymerases (*dnaE2+dinBs*).

149 In the WT strain, we detected around 5 rif^R/10⁸ CFU (Figure 3A) and 30% of *rpoB* mutations
150 found in rif^R colonies were A>G or T>C, 27% were G>A or C>T, and the remainder distributed
151 across other mutation types (Figure 3B). The deletion of TLS polymerases did not alter the
152 frequency of rif^R or shift the proportion of mutation types found in the *rpoB* gene (Figures 3A and
153 3B), indicating that the activities of DnaE2 and DinBs are not the predominant mediators of
154 substitution mutagenesis in the basal conditions tested.

155 By analyzing our recently published transcriptomic data (Adefisayo et al., 2021), we found that
156 the expression of *dinB1*, *dinB3*, and *dnaE2* was induced by UV and ciprofloxacin in *M. smegmatis*
157 whereas *dinB2* expression was unaffected (Figure S2). The expression level of *dinB1* and *dinB2*
158 in UV-irradiated cells was not impacted by *recA* deletion (Figure S2). By contrast, UV-induction
159 of *dinB3* and *dnaE2* expression was reduced in the Δ *recA* mutant, a result we confirmed by RT-
160 qPCR (Figure S2).

161 We next investigated the relative contribution of DinBs and DnaE2 to stress-induced mutagenesis
162 by measuring the frequency of rif^R in strains exposed to UV, hydrogen peroxide (H₂O₂) and methyl
163 methanesulfonate (MMS). In the WT strain, we found 108-, 16-, and 24-fold increases of the rif^R
164 frequency after treatment with UV, H₂O₂, and MMS, respectively (Figure 3A). All three mutagens
165 increased the relative and absolute frequencies of G>A or C>T mutations in the RRDR whereas
166 UV also enhanced A>C or T>G mutations and H₂O₂ increased G>C or C>G mutations (Figure
167 3B). UV- and H₂O₂-induced mutagenesis was DnaE2-dependent, declining by 10- and 4-fold in
168 Δ *dnaE2* cells compared to WT, whereas MMS-induced mutagenesis was not impacted (Figure

169 3A). All types of UV- and H₂O₂-induced rif^R mutations were reduced by the *dnaE2* deletion
170 (Figure 3B). In contrast, the *dinB123* deletion did not significantly decrease the mutation frequency
171 in cells treated with UV, H₂O₂, and MMS or change the spectrum of mutation types (Figures 3A
172 and 3B). The analysis of *rpoB* mutations incorporated by DnaE2 during oxidative stress (WT vs
173 Δ *dnaE2*) revealed that, unlike DinB1, DnaE2 conferred rifampicin resistance by mutating diverse
174 *rpoB* codons (Figure 3C and Table S2). Particularly, we found that the presence of DnaE2
175 increased the absolute mutation frequency in Ser447(TCG>TTG), Ser438(TCG>TTG),
176 His442(CAC>TAC), His442(CAC>GAC), and Asn435(AAC>AAG), but not the DinB1
177 associated mutation His442(CAC>CGC).

178 These results show that DnaE2, but not DinBs, mediates UV- and H₂O₂-induced substitution
179 mutagenesis with a distinct mutation spectrum from the DinB1 signature.

180 **Redundancy of DinB1 and DnaE2 in tolerance to alkylation damage.**

181 The mutagenic properties of DinBs are intimately linked to their flexibility in lesion bypass, a
182 property that confers tolerance to agents that damage template DNA. We therefore investigated
183 the role of mycobacterial TLS polymerases in DNA damage tolerance. A previous study did not
184 identify a role for Mtb *dinB1* and *dinB2* in damage tolerance (Kana et al., 2010) but the possibility
185 of redundancy between *dinBs* and *dnaE2* was not tested. The *M. smegmatis* Δ *dnaE2* Δ *dinB123*
186 mutant was not more sensitive than the WT to H₂O₂ (Figure S3A) or ciprofloxacin (Figure S3B).
187 As reported by Boshoff et al., we found that the Δ *dnaE2* deletion increased the sensitivity to UV
188 (Figure S3C) and mitomycin C (Figure S3D) but we did not observe an additive effect caused by
189 Δ *dinB123* deletion.

190 We next investigated the role of DnaE2 and DinBs in the tolerance to alkylation damage by testing
191 the sensitivity of *M. smegmatis* TLS polymerase mutants to the chemical methylating agents MMS
192 and methylnitronitrosoguanidine (MNNG). Using disc diffusion assays, we found that the
193 Δ *dinB123* or Δ *dnaE2* mutants were not more sensitive than the WT strain to MMS but the loss of
194 the four TLS polymerases in combination conferred severe sensitivity (Figure 4A), indicating
195 substantial redundancy. We obtained similar results by plating serial dilutions of these strains on
196 agar medium containing MMS (Figure S3F) and with disc diffusion using MNNG (Figure 4C).
197 The Δ *dnaE2* Δ *dinB123* MMS and MNNG sensitivity was partially complemented by the
198 introduction of an ectopic copy of *dnaE2^{Msm}* or *dinB1^{Msm}* but not *dinB2^{Msm}* or *dinB3^{Msm}* (Figures

199 4B, 4D, S3F, and S3G). The $\Delta dnaE2$ $\Delta dinB123$ sensitivity to MMS and MNNG was also
200 complemented by an ectopic copy of $dinB1^{Mtb}$ but not $dinB2^{Mtb}$ (Figures 4B and 4D), indicating a
201 conservation of DinB1 activities between fast- and slow-growing mycobacteria.

202 Finally, we measured the effect of loss of $dinBs$ and $dnaE2$ on tolerance to N²-dG adducts. None
203 of the translesion polymerase mutants was impacted in their tolerance to 4-nitroquinoline -1-oxide
204 (4-NQO) (Figure S3E). Whereas the $\Delta dinB1$, $\Delta dinB2$, and $\Delta dnaE2$ single mutants were slightly
205 more sensitive than the WT strain to nitrofurazone (NFZ) (Jarosz et al., 2006), the $\Delta dinB123$ and
206 $\Delta dnaE2$ $\Delta dinB123$ mutants were highly sensitive (Figure 4E). Ectopic expression of $dinB1^{Msm}$,
207 $dinB3^{Msm}$, $dnaE2^{Msm}$ or $dinB1^{Mtb}$ in the $\Delta dnaE2$ $\Delta dinB123$ reversed the NFZ sensitivity (Figure
208 4F), reinforcing the substantial redundancy of translesion polymerases in mycobacteria for
209 bypassing damage. These results reveal previously unrecognized roles for DnaE2 and DinB1 in
210 the tolerance to genomic alkylation damage in mycobacteria and suggest a dominant role of DinB1
211 over the other mycobacterial DinBs in TLS.

212 **DinB1 mediates -1 frameshift mutations.**

213 The data above indicate that DinB1 catalyzes substitution mutations that confer resistance to
214 antibiotics such as rifampicin or streptomycin by abolishing drug binding while maintaining the
215 functionality of the essential antibiotic target. However, the diversity of mutational alterations of
216 the chromosome that impact bacterial phenotypes includes not only substitutions, but
217 chromosomal rearrangements, deletions, and FS mutations. Recently, FS mutagenesis has emerged
218 as an important mechanism of genome diversification in mycobacteria (Gupta and Alland, 2021;
219 Safi et al., 2019) but the agents of FS mutagenesis in mycobacteria are not known.

220 Translesion polymerases can introduce FS mutations during lesion bypass (Fujii and Fuchs, 2020;
221 Vaisman and Woodgate, 2017), which prompted us to query the role of DinBs and DnaE2 in FS
222 mutagenesis. To detect -1 FS mutations, we created a reporter system in which the chromosomal
223 *leuD* gene carries a 2-base pair deletion in the second codon (*leuD*⁻²), which confers leucine
224 auxotrophy (Figure 5A). Reversion of this mutation by -1 or +2 FS confers leucine prototrophy
225 (*leu*⁺) which is selected on leucine free media. In WT cells, the reversion frequency was 5 *leu*⁺/10⁸
226 CFU (Figure 5B). Sequencing of *leuD* in *leu*⁺ colonies revealed a -1 deletion in a run of 3T in
227 almost half the revertants (44%). The other half had +2 addition (10%), >2-nucleotide insertion
228 (7%), >2-nucleotide deletion (5%), or no mutation in *leuD* (32%) (Figure 5B and Table S3). The

229 expression of the inactive *dinB1*^{Mtb} did not increase leu⁺ frequency, but expression of *dinB1*^{Msm} or
230 *dinB1*^{Mtb+5aa} increased leu⁺ frequency 4- or 27-fold due to a dominant proportion of -1 FS in the
231 homo-oligonucleotide run of 3T.

232 We then investigated the ability of DinB1 to incorporate +1 FS mutations using a *leuD* reporter
233 with a one nucleotide deletion in the second codon (*leuD*⁻¹) (Figure S4A). In WT cells, the leu⁺
234 frequency was 1/10⁷ CFU but the mutations were mixed between +1 FS in *leuD* and an unexpected
235 class of -1 FS mutations at the 3' end of the upstream *leuC* gene, which suppressed the native *leuC*
236 stop codon and restored the reading frame of the *leuD* coding sequence to create a LeuC-LeuD
237 fusion protein (Figure S4A). The expression of *dinB1*^{Msm} increased leu⁺ frequency by 16-fold but
238 the sequencing of leu⁺ colonies revealed that *dinB1* expression exclusively catalyzed -1 FS at the
239 3' end of the *leuC* gene, with 97% of these mutations in a 3C run. These results reveal that DinB1
240 can promote -1 FS mutations in the mycobacterial genome and does so more efficiently than
241 promoting +1 FS mutations.

242 **DinB1 incorporates -1 FS and +1 FS in homo-oligonucleotide runs in vivo.**

243 The location of the FS mutations in short homo-oligonucleotide tracts of *leuC* and *leuD* suggested
244 that DinB1 may be a catalyst of FS mutagenesis in low complexity sequences. To more precisely
245 measure the capability of DinB1 to incorporate -1 and +1 FS in homo-oligonucleotide runs in vivo
246 and determine the effect of homomeric template sequence, we constructed integrative plasmids
247 carrying a gene which confers resistance to kanamycin (*kan*) inactivated by the incorporation of
248 4T (*kan*::4T), 4C (*kan*::4C), 4G (*kan*::4G), 4A (*kan*::4A), 5T (*kan*::5T), 5G (*kan*::5G), or 5A
249 (*kan*::5A) runs in the coding strand immediately 3' of the start codon (Figure 5A). These plasmids
250 do not confer kanamycin resistance, but a deletion of one nucleotide (-1 FS) in the 4X run or +1
251 FS in the 5X run will restore the reading frame of *kan* allowing selection for kan^R.

252 We first measured the ability of DinB1 to incorporate -1 FS in homo-oligonucleotide runs by using
253 the *kan*::4N constructs. We found between 5 and 18 kan^R/10⁸ CFU, depending on the run sequence,
254 in strains carrying the empty vector and the vast majority kan^R colonies had -1 FS in the homo-
255 oligonucleotide runs (Figures 5C, S4B, S4C, and S4D). Expression of *dinB1*^{Msm} enhanced -1 FS
256 in runs of 4T, 4C, 4G, and 4A by 12-, 19-, 11-, and 3-fold, respectively. *dinB1*^{Mtb+5aa} expression
257 also increased -1 FS by 14- and 19-fold in 4T and 4C runs, respectively, but had no effect on runs
258 of 4G or 4A.

259 By using the *kan*::5N constructs, we quantified the capacity of DinB1 to incorporate +1 FS in
260 homo-oligonucleotide runs. Between 10 and 74 kan^R/10⁸ CFU were detected in strains carrying
261 the empty vector, depending on the nature of the run (Figures 5D, S4E, and S4F). We found +1
262 FS in the run of the majority of the sequenced kan^R colonies of all strains. Expression of *dinB1*
263 increased the frequency of +1 FS localized in runs of 5T, 5G, and 5A by 3-, 6-, and 21-fold,
264 respectively. *dinB1*^{Mtb+5aa} expression also elicited +1 FS in the 5T (10-fold increase), 5G (3-fold
265 increase), and 5A (5-fold increase) runs. Overall, these data reveal that mycobacterial DinB1 is a
266 strong mediator of -1 FS and +1 FS in homo-oligonucleotide runs.

267 **DinB1 can slip on homo-oligonucleotide runs in vitro.**

268 To test if the DinB1 polymerase is prone to slippage on homo-oligomeric template tracts in vitro,
269 we employed a series of 5' ³²P-labeled primer-template DNA substrates consisting of a 13-bp
270 duplex with a 5'-tail composed of a run of four, six, or eight consecutive A nucleotides (A4, A6,
271 A8) immediately following the primer 3'-OH terminus and flanked by three C nucleotides (Figure
272 5E). Reaction of a DNA polymerase with the A4, A6, and A8 primer-templates in the presence of
273 only dTTP should, if the polymerase does not slip or mis-incorporate dTMP opposite the template
274 nucleotide following the A run, allow for the addition of four, six, or eight dTMP nucleotides to
275 the primer terminus. However, if the polymerase is prone to backward slippage, then the primer
276 strand can recess and realign to the template to allow one or more additional cycles of dTMP
277 addition. Whereas most of the primer extension events catalyzed by DinB1 on the A4, A6, and A8
278 templates in the presence of dTTP did indeed cease at the end of the A run (e.g., denoted by ▶ for
279 the A4 reaction in Figure 5E), we consistently detected the synthesis of a minority product one
280 nucleotide longer, consistent with a single slippage step mimetic of a +1 frameshift (Figure 5E).
281 DinB1 displayed the same behavior when reacted with a series of DNAs in which the template
282 strand tail comprised a run of four, six, or eight consecutive T nucleotides (T4, T6, T8) followed
283 by three G nucleotides (Figure 5E). In presence of dATP, the majority of the primer extension
284 events on the T4, T6, and T8 templates entailed 4, 6, and 8 cycles of dAMP addition, respectively.
285 A +1 slippage product was also detected. The propensity to slip, defined as +1/[+1 plus ▶],
286 increased progressively as the template T tract was lengthened from T4 (1%) to T6 (11%) to T8
287 (16%) (Figure 5E). The +1 products are unlikely to have arisen via addition of a 3'-terminal

288 mismatched dNMP, insofar as we could detect no extension of the 13-mer primer stands on the
289 A6 and T6 templates when DinB1 was presented with the incorrect dNTP (Figure S5).

290 The finding that a DinB1 is capable of +1 slippage synthesis on a homo-oligomeric tract when the
291 only dNTP available is that templated by the homo-oligomer does not reflect the situation in vivo
292 where the polymerase will have access to the next correctly templated dNTP. To attempt to query
293 whether provision of the next templated dNTP in vitro suppresses slippage, we included a dideoxy
294 NTP (ddNTP): either ddGTP templated by the run of three C nucleotides following the A4, A6,
295 and A8 tracts or ddCTP templated by the run of three G nucleotides flanking the T4, T6, and T8
296 tracts. Inclusion of the next templated ddNTP following the homo-oligomeric template tract was
297 only partially effective in triggering conversion of the 17, 19, and 21 nt species to the respective
298 ddG- or ddC-terminated 18, 20, and 22 nt products (Figure 5E). We considered several
299 possibilities, including: (i) that DinB1 might disengage from the primer-template when the 5' tail
300 comprising the template strand becomes shorter, and hence lose efficiency in adding opposite the
301 third nucleotide from the 5' end of the template strand; or (ii) DinB1 is inherently feeble at using
302 dideoxy NTPs as substrates; or (iii) DinB1 and the primer 3'-OH end can slip forward on the
303 template run by a single nucleotide on the homo-oligonucleotide run (mimetic of a -1 FS) and this
304 species is extended by ddNMP incorporation to yield a product that comigrates with the 17, 19,
305 and 21 nt species. These issues were addressed by reacting DinB1 with the A6 and T6 primer-
306 templates in the presence of various nucleotide substrates and combinations thereof. DinB1
307 catalyzed six steps of dTMP addition to the A6 template in the presence of dTTP and inclusion of
308 dGTP elicited three further steps of dGMP addition opposite the 5'-terminal CCC element of the
309 template strand (Figure S5), indicating that DinB1 is competent for fill-in synthesis. In the reaction
310 with ddTTP only, a small fraction of the primer was elongated by the expect single nucleotide step
311 showing that DinB1 is unable to efficiently utilize ddTTP as a substrate for correct templated
312 addition. Similar results were obtained for the T6 primer-template (Figure S5). These results
313 suggest that +1 slippage by DinB1 is dampened by the presence of the next correctly templated
314 dNTP.

315 The question remains whether any of the residual 17, 19, and 21 nt species seen in Figure 5E
316 represent -1 slips consistent with scenario (iii) above. In the case of the T tract templates, we see
317 that the fraction of products that fail to be extended in the presence of ddCTP increases

318 progressively as the template tract lengthens from 4T (13% unextended) to 6T (34%) to 8T (48%).
319 This result suggests a contribution of -1 slippage (rather than pure failure to incorporate ddC), the
320 reasoning being that lengthening the template homo-oligonucleotide run is expected to enhance
321 slippage but not impact DinB1's ability to incorporate ddNTPs.

322 **DinB1 is the primary mediator of spontaneous -1 FS in runs of homo-oligonucleotides.**

323 To determine the relative contribution of TLS polymerases in spontaneous FS mutagenesis, we
324 measured the frequency of -1 FS in strains lacking *dnaE2* or *dinBs* using the *leuD*² reporter (Figure
325 6A). The Δ *dinB2*, Δ *dinB3*, and Δ *dnaE2* deletions did not reduce the *leu⁺* frequency or the
326 proportion of -1 FS detected in *leu⁺* colonies (Figure 6A and Table S3). In contrast, the *leu⁺*
327 frequency decreased by 5-, 3-, and 5-fold in the Δ *dinB1*, Δ *dinB123* and Δ *dnaE2* Δ *dinB123*
328 mutants, respectively, and the proportion of -1 FS mutations localized in the 3T run of *leuD* was
329 also reduced. Expression of *dinB1* in the Δ *dinB1* strain restored both the WT *leu⁺* frequency and
330 the proportion of -1 FS localized in the 3T run of *leuD* (Figure 6B and Table S3).

331 We extended these findings using the *kan*::4N reporters (Figures 6C, S6A, S6B, and S6C).
332 Compared to WT, the *kan^R* frequency measured with the *kan*::4C reporter decreased by 9-, 9-, and
333 14-fold in the Δ *dinB1*, Δ *dinB123*, and Δ *dnaE2* Δ *dinB123* mutants, respectively, but we did not
334 detect decrement in the Δ *dinB2*, Δ *dinB3*, and Δ *dnaE2* mutants (Figure 6C). The absolute frequency
335 of -1 FS detected in the 4C run was reduced 54-fold in the Δ *dinB123* mutant. In contrast, there
336 was no impact of *dinB1* deletion on the frequency of -1 FS mutation in 4T, 4G, or 4A runs (Figures
337 S6A, S6B, and S6C). In Δ *dinB123* cells, -1 FS in the 4T run was reduced 4-fold but was unaffected
338 in the 4G and 4C runs. Finally, we did not detect a significant impact of the TLS polymerase
339 deletions on spontaneous +1 FS mutagenesis using the *kan*::5T, *kan*::5G or *kan*::5A reporters
340 (Figures S6D, S6E, and S6F).

341 These results show that: (i) DinB1 is the dominant TLS polymerase involved in spontaneous -1 FS
342 mutations in some homo-oligonucleotide runs; (ii) there is a redundancy between DinB1 and at
343 least one other DinB for certain homopolymeric sequences; and (iii) endogenous levels of DinBs
344 do not mediate spontaneous +1 FS mutations in unstressed cells.

345 **DnaE2 is the primary mediator of UV-induced -1 FS mutagenesis.**

346 Prior literature (Boshoff et al., 2003) as well as our data above (Figure S2) show that some
347 mycobacterial TLS polymerases are DNA damage inducible, indicating that FS mutagenesis may
348 be enhanced by DNA damage. To query the role of DNA damage in stimulating FS mutagenesis
349 and the role of TLS polymerases in this process, we used the *leuD* and *kan* systems in conjunction
350 with UV treatment. UV irradiation increased the frequency of *leu*⁺ in the WT strain carrying the
351 *leuD*⁻² reporter by 9-fold due to the induction of three main mutation types: -1 FS in the 3T run, -
352 1 FS outside of the run, and base substitutions that in many cases created a new in-frame
353 translational start codon that restored LeuD (Figure 7A and Table S3). The induction of the three
354 mutation types was reduced in Δ *dnaE2* and Δ *dnaE2* Δ *dinB123* mutants. The residual UV-
355 dependent increase of the -1 FS mutations in the *leuD* 3T run in the Δ *dnaE2* mutant was completely
356 abolished in the Δ *dnaE2* Δ *dinB123* mutant, suggesting redundancy between DnaE2 and DinBs for
357 damage-induced frameshifting.

358 We also measured the impact of UV on -1 FS using the *kan* reporters. In the WT strain carrying
359 the *kan*::4T vector, irradiation increased the frequency of *kan*^R by 5-fold and 100% of the
360 sequenced clones had a -1 FS in the homo-oligonucleotide run (Figure 7B). The -1 FS frequency
361 was not reduced in either the Δ *dnaE2* or Δ *dinB123* mutants but decreased 5-fold in the Δ *dnaE2*
362 Δ *dinB123* mutant. UV treatment also enhanced -1 FS in the 4C, 4G, and 4A runs in WT cells but
363 not in the *dnaE2* mutant (Figures S7A, S7B, and S7C). 25% and 43% of the DnaE2-dependent
364 mutagenic events detected with the *kan*::4G and *kan*::4A reporters, respectively, comprised -1 FS
365 mutations located outside of the homo-oligonucleotide runs (Figures S7B and S7C), showing that
366 the frameshifting activity of DnaE2 is not restricted to homo-oligonucleotide runs. Finally,
367 although we detected a DnaE2-dependent increase of *kan*^R frequency in strains carrying *kan*::5T,
368 *kan*::5G, or *kan*::5A reporters (Figures S7D, S7E, and S7F), these events were not due to FS
369 mutagenesis and rather were nucleotide substitutions that created a new start codon.

370 These results reveal that DnaE2 is a major contributor to -1 FS mutations in response to DNA
371 damage and that these FS are not restricted to homo-oligonucleotide runs. We also found that the
372 DinBs have a redundant role with DnaE2 in -1 FS mutagenesis in response to DNA damage which
373 differs depending on the sequence context.

374 **DISCUSSION**

375 **A network of translesion polymerases mediates chromosomal mutagenesis.**

376 Two decades ago, Boshoff *et al.* highlighted the importance of DnaE2 in mutagenesis, DNA
377 damage tolerance, and pathogenicity in Mtb (Boshoff *et al.*, 2003). Because prior attempts to
378 deduce a function for DinBs failed to reveal any phenotype (Kana *et al.*, 2010), DnaE2 has been
379 considered the only mycobacterial TLS polymerase mediating chromosomal mutagenesis.
380 However, our studies support a significant revision to this view and implicate a network of
381 translesion polymerases in chromosomal mutagenesis.

382 **Translesion polymerases mediate sequence specific rifampicin resistance in mycobacteria.**

383 We confirmed published findings (Boshoff *et al.*, 2003) showing that DnaE2 catalyzes the
384 acquisition of rifampicin resistance in response to DNA damage. We found that DnaE2 has the
385 ability to induce a spectrum of *rpoB* mutations, particularly S447L, S438L, H442Y, and H442D.
386 The codons of these amino acids are conserved between *M. smegmatis* and Mtb and these
387 mutations represent ~75% of the *rpoB* mutations detected in the sequenced rif^R Mtb clinical
388 isolates (Tables S2, S4, and WHO mutations catalogue, 2021).

389 Here we report that DinB1 can induce rifampicin resistance through a mutagenic activity. In
390 contrast to the diverse mutation spectrum of DnaE2, DinB1 confers rif^R through a unique *rpoB*
391 mutation (CAC>CGC; H442R). This mutation has been detected in rif^R Mtb clinical isolates at a
392 frequency between 0.8 and 5%, depending on the study (Cavusoglu *et al.*, 2004; Hirano *et al.*,
393 1999; Matsiota-Bernard *et al.*, 1998; Qian *et al.*, 2002; Rudeeaneksin *et al.*, 2021; WHO mutations
394 catalogue, 2021; Williams *et al.*, 1998) (Tables S2 and S4). Coupled with the finding that *dinB1*
395 expression is induced in pulmonary TB (Rachman *et al.*, 2006), we believe that our data support
396 shared and sequence context specific roles for DinB1 and DnaE2 in substitution mutagenesis and
397 antibiotic resistance. This shared role raises several questions about how DinB1 and DnaE2
398 cooperate or compete at the replication fork. Both DinB1 and DnaE2 interact with the β clamp,
399 DinB1 directly and DnaE2 via the ImuB protein (Gessner *et al.*, 2021; Warner *et al.*, 2010).
400 Whether these two proteins compete for the same binding site, are recruited based on the type of
401 damage, or can occupy different sites on the β clamp remains to be determined.

402 This work, together with the previous DnaE2 studies, suggests that TLS polymerases may be
403 attractive drug targets to prevent the acquisition of antibiotic resistance in Mtb (Boshoff et al.,
404 2003; Warner et al., 2010). However, we recently showed that mycobacterial TLS polymerases
405 contribute to antibiotic bactericidal action elicited by the genomic incorporation of oxidized
406 nucleotides when the MutT system is depleted (Dupuy et al., 2020). Thus, TLS inhibition might
407 have salutary effects on resistance, while diminishing the bactericidal effects of some antibiotics,
408 a balance that will need to be assessed.

409 **DinB1 and DnaE2 as agents of frameshift mutagenesis.**

410 In addition to its role in substitution mutagenesis, we found that DinB1 is the primary mediator of
411 spontaneous -1 FS mutagenesis whereas DnaE2 is involved in DNA damage-induced -1 FS
412 mutagenesis. We demonstrated that DinB1 is prone to FS in homo-oligonucleotide runs and that
413 the FS mutagenic activity of DinB1 is conserved between *M. smegmatis* and Mtb. We observed
414 low frequency of DinB1 slippage on homo-oligonucleotide runs in vitro, contrasting with the
415 significant increase of -1 and +1 FS frequency measured in vivo when DinB1 is expressed.
416 Because we found that DinB1 mutagenesis depends on its β clamp interaction, we hypothesize that
417 slippage might be increased if the β clamp was tethering DinB1 to the template.

418 FS mutations are an increasingly recognized source of genomic diversity in Mtb. Mycobacterial
419 genomes have a similar frequency of nucleotide substitutions compared to other bacteria but a
420 higher frequency of FS mutations in homo-oligonucleotide runs (Springer et al., 2004). This can
421 be explained by the absence of the conventional MutS/L mismatch repair in mycobacteria,
422 functionally replaced by a NucS-dependent system which can correct substitution mutations but
423 not indels (Castañeda-García et al., 2017, 2020). A recent in silico analysis of 5977 clinical Mtb
424 isolates established that indels appear every 74,497 bases in genic regions and that the most
425 common indel is -1 FS (two times more frequent than +1 FS and 6-fold more frequent than any
426 other indel) (Gupta and Allard, 2021). These indels are significantly enriched in homo-
427 oligonucleotide runs.

428 Two seminal recent studies (Bellerose et al., 2019; Safi et al., 2019) demonstrated a link between
429 Mtb antibiotic tolerance and homo-oligonucleotide FS mutagenesis. Specifically, FS mutations in
430 a run of 7C in the *glpK* gene, which encodes an enzyme of the glycerol metabolism, was found to
431 control antibiotic tolerance and colony phase variation. This reversible phase variation is based on

432 two successive FS mutations: first a +1 FS in *glpK* conferring tolerance and second a -1 FS
433 restoring the original open reading frame of *glpK*. Reversible gene silencing through frameshifting
434 is not restricted to the *glpK* gene. For example, another reversible drug resistance mechanism
435 mediated by FS in the *orn* gene has recently been reported in Mtb (Safi et al., 2020). Moreover,
436 Gupta and Alland identified 74 events in the genome of Mtb clinical isolates designated as “frame-
437 shift scars”: two FS mutations in the same gene that disrupt and subsequently restore the integrity
438 of the gene (Gupta and Alland, 2021). These events have been found in 48 genes of Mtb and
439 multiple scars were detected in the ESX-1 gene cluster encoding a secretion system important for
440 Mtb virulence. Frequent frameshifting in homo-oligonucleotide runs of the ESX-1 gene cluster of
441 Mtb clinical isolates has also been reported (Godfroid et al., 2020). High FS incidence has also
442 been found in PE-PPE genes (Godfroid et al., 2020; Gupta and Alland, 2021) encoding secreted
443 proteins (Fishbein et al., 2015). The Mtb genome contains around 170 000 runs of three homo-
444 oligonucleotides or more (Sreenu et al., 2007). We believe that our study indicates that TLS
445 polymerases are major contributors to the mycobacterial genome plasticity and advance DinB1
446 and DnaE2 as the prime mediators of homo-oligonucleotide FS mutagenesis.

447 **Redundant activities between TLS polymerases confer tolerance to alkylation damage.**

448 In this study, we also discovered that *dinB1* and *dnaE2* have a redundant role in resistance to
449 alkylation damage in *M. smegmatis*. The ability of DinB to confer alkylation damage tolerance has
450 been reported in *E. coli* (Bjedov et al., 2007) and for *Pseudomonas aeruginosa* and *Pseudomonas*
451 *putida*, taxa in which a DnaE2 homolog also plays a role (Jatsenko et al., 2017). Alkylation damage
452 can be generated by exogenous and endogenous sources (Beranek, 1990; De Bont and van
453 Larebeke, 2004). Most endogenous sources of alkylation damage in bacteria are produced by
454 metabolic enzymes catalyzing nitrosylation (Sedgwick, 1997; Taverna and Sedgwick, 1996). Mtb
455 is exposed to nitrosative stress during macrophage infection (Ehrt and Schnappinger, 2009;
456 Stallings and Glickman, 2010). A recent study reported that the pathogenic bacterium *Brucella*
457 *abortus* encounters alkylating stress during macrophage infection and that the alkylation-specific
458 repair systems are required for long-term mouse infection (Poncin et al., 2019). In Mtb, the deletion
459 of similar alkylation-specific repair systems causes sensitivity to alkylating agents but does not
460 impact virulence (Durbach et al., 2003; Yang et al., 2011), suggesting a possible functional
461 redundancy between alkylation-specific repair systems and the TLS polymerases. Future studies

462 will be conducted to investigate the redundancy between DnaE2, DinBs, and the alkylation-
463 specific repair systems in the tolerance to alkylation damage and Mtb survival during infection.

464 In summary, we have discovered a role of mycobacterial TLS polymerases, in particular DinB1,
465 in alkylation damage tolerance, genome plasticity, and antibiotic resistance. We believe that the
466 capability of DinB1 and DnaE2 to incorporate FS in homo-oligonucleotide runs complements
467 recent data implicating reversible gene silencing through FS mutagenesis as an important
468 mechanism of genome diversification in *M. tuberculosis* with links to antibiotic tolerance and
469 virulence.

470 **STAR METHODS**

471 **Key resources table**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
anti-RecA	Pocono Rabbit Farm & Laboratory	(Wipperman et al., 2018)
anti-RpoB	Biolegend	Cat#663905 RRID: AB_2566583
Bacterial and virus strains		
<i>Mycobacterium smegmatis</i> mc ² 155 (Wild type)		
Wild-type	(Snapper et al., 1990)	N/A
PDS122 (<i>ΔdinB2</i>)	(Dupuy et al., 2020)	N/A
PDS139 (<i>ΔdnaE2</i>)	(Dupuy et al., 2020)	N/A
PDS353 (<i>ΔrecA</i>)	(Dupuy et al., 2020)	N/A
PDS380 (<i>ΔdinB1</i>)	(Dupuy et al., 2020)	N/A
PDS382 (<i>ΔdinB3</i>)	(Dupuy et al., 2020)	N/A
PDS388 (<i>ΔdinB1 ΔdinB2 ΔdinB3</i>)	(Dupuy et al., 2020)	N/A
PDS394 (<i>ΔdnaE2 ΔdinB1 ΔdinB2 ΔdinB3</i>)	(Dupuy et al., 2020)	N/A
PDS622 (<i>leuD</i> ¹)	This work	N/A
PDS630 (<i>leuD</i> ²)	This work	N/A
PDS632 (<i>leuD</i> ² <i>ΔdinB2</i>)	This work	N/A
PDS684 (<i>leuD</i> ² <i>ΔnaE2</i>)	This work	N/A
PDS686 (<i>leuD</i> ² <i>ΔdinB1</i>)	This work	N/A
PDS688 (<i>leuD</i> ² <i>ΔdinB3</i>)	This work	N/A
PDS690 (<i>leuD</i> ² <i>ΔdinB123</i>)	This work	N/A
PDS692 (<i>leuD</i> ² <i>ΔnaE2ΔdinB2</i>)	This work	N/A
<i>Escherichia coli</i>		
<i>E. coli</i> DH5α (F ⁻ <i>Φ80lacZΔM15</i> Δ(<i>lacZYA-argF</i>) U169 <i>recA1 endA1 hsdR17</i> (r _K ^r , m _K ^r) <i>phoA supE44 thi-1 gyrA96 relA1 λ</i>)	Lab stock	N/A
Chemicals, peptides, and recombinant proteins		
Hygromycin	Fisher scientific	Cat#10687010
Streptomycin	Thermofisher scientific	Cat#15140122
Kanamycin	Fisher scientific	Cat#AAJ1792406
Ciprofloxacin	Fisher scientific	Cat#AC449620050
Hydrogen peroxide	Fisher scientific	Cat#H325-100
Methyl methanesulfonate (MMS)	Alfa Aesar	Cat#H55120
Methylnitronitrosoguanidine (MNNG)	Pfaltz and Bauer	Cat#NC9068843
Nitrofurazone (NFZ)	Sigma-Aldrich	Cat#1465004
4-nitroquinoline-1-oxide (4-NQO)	Sigma-Aldrich	Cat#N8141
Anhydrotetracycline (ATc)	Fisher scientific	Cat#AAJ66688MA
Mitomycin C (MMC)	Sigma-Aldrich	Cat#10107409001
<i>BstB1</i> restriction enzyme	New England Biolabs	Cat#R0519L
<i>Cla1</i> restriction enzyme	New England Biolabs	Cat#R0197L
<i>EcoR1</i> restriction enzyme	New England Biolabs	Cat#R0101L
<i>Nde1</i> restriction enzyme	New England Biolabs	Cat#R0111L
Phusion High Fidelity Polymerase	Fisher scientific	Cat#F530L

In-Fusion HD Cloning Kit	Takara Bio USA	Cat#639650
QIAprep Spin Miniprep Kit	Qiagen	Cat#27106
QIAquick Gel Extraction Kit	Qiagen	Cat#28706
<i>M. smegmatis</i> DinB1	(Ordonez et al., 2014)	N/A
Amersham ECL western blotting detection reagents	GE Healthcare	Cat#RPN2106
NuPAGE™ 4 to 12%, Bis-Tris gel	Novex	Cat#NP0336PK2

Experimental models: Organisms/strains

M. smegmatis mc²155

Wild-type	(Snapper et al., 1990)	N/A
PDS122 (Δ dinB2)	(Dupuy et al., 2020)	N/A
PDS139 (Δ dnaE2)	(Dupuy et al., 2020)	N/A
PDS353 (Δ recA)	(Dupuy et al., 2020)	N/A
PDS380 (Δ dinB1)	(Dupuy et al., 2020)	N/A
PDS382 (Δ dinB3)	(Dupuy et al., 2020)	N/A
PDS388 (Δ dinB1 Δ dinB2 Δ dinB3)	(Dupuy et al., 2020)	N/A
PDS394 (Δ dnaE2 Δ dinB1 Δ dinB2 Δ dinB3)	(Dupuy et al., 2020)	N/A
PDS622 (<i>leuD</i> ¹)	This work	N/A
PDS630 (<i>leuD</i> ²)	This work	N/A
PDS632 (<i>leuD</i> ² Δ dinB2)	This work	N/A
PDS684 (<i>leuD</i> ² Δ dnaE2)	This work	N/A
PDS686 (<i>leuD</i> ² Δ dinB1)	This work	N/A
PDS688 (<i>leuD</i> ² Δ dinB3)	This work	N/A
PDS690 (<i>leuD</i> ² Δ dinB123)	This work	N/A
PDS692 (<i>leuD</i> ² Δ dnaE2 Δ dinB2)	This work	N/A

Oligonucleotides

For plasmid constructs (detailed in Table S1)

ODP290: CAGAAAGGAGGCCATATGGAGGGCACCGTC	This work	N/A
ODP291: AGGTCGACGGTATCGCTACGGCGTCTCTGG	This work	N/A
ODP292: AGGTCGACGGTATCGCTACTTTCGAACTGCGGGTGGCTCCACGGCGTG CTCTGGTAG	This work	N/A
ODP293: GGCAGACGACAGCTGTCGAGG	This work	N/A
ODP294: CAGCTGTCGTTCCGAGGCCCTCGGTGAACC	This work	N/A
ODP295: CAGGAACCGTCCATGTCCAG	This work	N/A
ODP296: ATGGACCGGTTCTGGCATCCGTCGAGCAGC	This work	N/A
ODP343: CAGAAAGGAGGCCATGTGCTGCACCTGGACATG	This work	N/A
ODP344: AGGTCGACGGTATCGTACCGGTCGCCGAC	This work	N/A
ODP389: CTAGTATGCATCATAAGGCTTGGCCTACATGGAC	This work	N/A
ODP390: CATCACGCTTCTCCTCGTG	This work	N/A
ODP391: AGGAGAACGCGTGATGGCTTCACCACTCACACC	This work	N/A
ODP392: CTAGGCAATTGCATATGTAGTCATCAATCCTGAACGG	This work	N/A
ODP393: AGGAGAACGCGTGATGGCTTCACCACTCACACC	This work	N/A
ODP425: TCCAGCTGCAGAATTATGGTGGCGTTACTCGG	This work	N/A
ODP426: CTTATCTGTGAATTCTGTGAATCC	This work	N/A
ODP427: AAATTACACAGATAAGATGACCAATGGGTGCTCAC	This work	N/A
ODP428: GATAAGCTTCGAATTTCGAGGTTAGGTGCCTGCAG	This work	N/A
ODP429: TCCAGCTGCAGAATTGCTGTTGCGCTGATCGATC	This work	N/A

ODP430: GATAAGCTCGAATTCTTAGTCCGGCAGCATGG	This work	N/A
ODP433: CCGGATATCCGACAGGCCG	This work	N/A
ODP434: CTGTCGGATATCCGGCCGGACCTGGAACAACCCGAG	This work	N/A
ODP435: TCCAGCTGCAGAATTATGGCACCGTCACTGCCGAAC	This work	N/A
ODP436: GATAAGCTCGAATTTCACCGTCGCCGACGTC	This work	N/A
ODP437: TCCAGCTGCAGAATTACGCAATCGCACTCCTGTTG	This work	N/A
ODP438: GATAAGCTCGAATTCTAGGCCAGTTCAACCGCACTC	This work	N/A
ODP443: TCCAGCTGCAGAATTCCCAAGGACACTGAGTCC	This work	N/A
ODP444: GATAAGCTCGAATTGCTGACTCATACCAGGC	This work	N/A
ODP445: CATAACACCCCTGTATTACTG	This work	N/A
ODP446: ACAAGGGGTTTAGCCATATTCAACGGGAAACG	This work	N/A
ODP447: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP448: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP449: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP450: ACAAGGGGTTTAGCCATATTCAACGGGAAACG	This work	N/A
ODP451: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP452: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP453: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP454: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP455: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP456: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP457: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP480: TCCAGCTGCAGAATTGAGTCGACCTCACCGTTGAC	This work	N/A
ODP481: GATAAGCTCGAATTGAGTCGACGTGCTGCCGGAAG	This work	N/A
ODP490: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP491: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP492: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP493: ACAAGGGGTTTAGCCCATATTCAACGGGAAACG	This work	N/A
ODP514: CAGAAAGGAGGCCATGTGGAGTCCCGCTGG	This work	N/A
OAM118: GTACCAAGATCTTAAATACGATCTGGCGTGC	This work	N/A
OAM185: CATCGATAAGCTCACTCTCGAACTGGGGTGGCTCCACCGGAAGTCG CGGGAG	This work	N/A
For in vitro frameshifting assay		
SG-FS1: CGTGTGCCCTTC	This work	N/A
SG-FS2: GGGTTTGAAGGGCGACACG	This work	N/A
SG-FS3: GGGTTTGAAGGGCGACACG	This work	N/A
SG-FS4: GGGTTTGAAGGGCGACACG	This work	N/A
SG-FS5: CCCAAAAGAAGGGCGACAC	This work	N/A
SG-FS6: CCCAAAAAGAAGGGCGACAC	This work	N/A
SG-FS7: CCCAAAAAAAGAAGGGCGACAC	This work	N/A
SG-FS8: TTTCCCCGAAGGGCGACACG	This work	N/A
SG-FS9: TTTCCCCCGAAGGGCGACACG	This work	N/A
SG-FS10: TTTCCCCCCCCCGAAGGGCGACACG	This work	N/A
SG-FS11: AAAGGGGGGAAGGGCGACACG	This work	N/A
SG-FS12: AAAGGGGGGAAGGGCGACACG	This work	N/A
SG-FS13: AAAGGGGGGGGAAGGGCGACACG	This work	N/A
For <i>rpoB</i>, <i>leuD</i>, <i>leuC</i> and <i>kan</i> mutation sequencing (PCR and sequencing primers)		
ODP378 (fw <i>rpoB</i>): CAAGAAGCTGGGCCTGAACGC	This work	N/A

ODP379 (rev <i>rpoB</i>): GCGGTTGGCGTCGTCGTG	This work	N/A
ODP380 (seq <i>rpoB</i>): GAGCGTGTGCGTGCAG	This work	N/A
ODP398 (fw <i>leuC-leuD</i>): ACCACGTTCGAGTTCAAGG	This work	N/A
ODP395 (rev <i>leuC-leuD</i>): TTCAGGCAGCTAGCGAAC	This work	N/A
ODP399 (seq <i>leuC-leuD</i>): TCCAACCGCAACTCGAGG	This work	N/A
ODP476 (fw <i>kan</i>): TGGCCTTGCTGCCCTTGC	This work	N/A
ODP477 (rev <i>kan</i>): TTCAACAAAGCCGCCGTCCC	This work	N/A
ODP479 (seq <i>kan</i>): ACTGAATCCGGTGAGAATGG	This work	N/A
Recombinant DNA		
Plasmids (cloning details in Table S1)		
pmsg419: Empty ATc-on system vector (hyg ^R , OriMyc)	This work	N/A
pAJF067: Gene replacement vector (hyg ^R , galK, sacB)	This work	N/A
pDB60: Complementation vector (strep ^R , attP(L5))	This work	N/A
pAJF266: pMV306kan-derivative (kan ^R , attP(L5), pdnaK)	Lab stock	(Stover et al., 1991)
pDB60-dnaE2: pDB60 derivative for <i>dnaE2</i> ^{Msm} complem.	This work	N/A
pDP64 : pmsg419 derivative for <i>dinB1</i> ^{Msm} expression	This work	N/A
pDP65: pmsg419 derivative for <i>dinB1</i> ST expression	This work	N/A
pDP66: pmsg419 derivative for <i>dinB1</i> ^{D113A-ST}	This work	N/A
pDP67 : pmsg419 derivative for <i>dinB1</i> ^{F23L-ST}	This work	N/A
pDP88: pmsg419 derivative for <i>dinB1</i> ^{Mtb} expression	This work	N/A
pDP104: pAJF067 derivative for <i>leuD</i> ^{A4} deletion (leuD ⁻¹)	This work	N/A
pDP105: pAJF067 derivative for <i>leuD</i> ^{A4-5} deletion (leuD ⁻²)	This work	N/A
pDP112: pDB60 derivative for <i>dinB1</i> ^{Msm} complementation	This work	N/A
pDP114: pDB60 derivative for <i>dinB2</i> ^{Msm} complementation	This work	N/A
pDP115: pDB60 derivative for <i>dinB3</i> ^{Msm} complementation	This work	N/A
pDP117: pmsg419 derivative for <i>dinB1</i> ^{Δβclamp} expression	This work	N/A
pDP118: pDB60 derivative for <i>dinB1</i> ^{Mtb} complementation	This work	N/A
pDP119: pDB60 derivative for <i>dinB2</i> ^{Mtb} complementation	This work	N/A
pDP120: pDB60 derivative with <i>kan</i> ::3T	This work	N/A
pDP121 : pDB60 derivative with <i>kan</i> ::3C	This work	N/A
pDP122: pDB60 derivative with <i>kan</i> ::3G	This work	N/A
pDP123: pDB60 derivative with <i>kan</i> ::3A	This work	N/A
pDP124: pDB60 derivative with <i>kan</i> ::4T	This work	N/A
pDP125: pDB60 derivative with <i>kan</i> ::4C	This work	N/A
pDP126: pDB60 derivative with <i>kan</i> ::4G	This work	N/A
pDP127: pDB60 derivative with <i>kan</i> ::4A	This work	N/A
pDP128: pDB60 derivative with <i>kan</i> ::6T	This work	N/A
pDP129: pDB60 derivative with <i>kan</i> ::6C	This work	N/A
pDP130: pDB60 derivative with <i>kan</i> ::6G	This work	N/A
pDP131: pDB60 derivative with <i>kan</i> ::6A	This work	N/A
pDP144: pDB60 derivative with <i>kan</i> ::5T	This work	N/A
pDP145: pDB60 derivative with <i>kan</i> ::5C	This work	N/A
pDP146: pDB60 derivative with <i>kan</i> ::5G	This work	N/A
pDP147: pDB60 derivative with <i>kan</i> ::5A	This work	N/A
pDP157: pmsg419 derivative for <i>dinB1</i> ^{Mtb+5aa} expression	This work	N/A
Software and algorithms		
Prism 9	GraphPad	https://www.graphpad.com/

Clone manager 9	Sci Ed Software	https://www.scied.com/
Illustrator	Adobe	https://www.adobe.com/

472 **Resource availability**

473 Lead contact:

474 Further information and requests for resources and reagents should be directed to and will be
475 fulfilled by the lead contact, Dr. Michael Glickman (Glickmam@mskcc.org).

476 Material availability:

477 Plasmids and strains generated in this study will be made available on request.

478 Data and code availability:

479 All data generated in this study are presented in the Figures and Tables. Any additional information
480 required to reanalyze the data reported in this paper is available from the lead contact upon request.

481 **Experimental model and subject details**

482 **Bacterial strains.** Strains used in this work are listed in the key resources table. *Escherichia coli*
483 strains were cultivated at 37°C in Luria-Bertani (LB) medium. *M. smegmatis* strains were grown
484 at 37°C in Middlebrook 7H9 medium (Difco) supplemented with 0.5% glycerol, 0.5% dextrose,
485 0.1% Tween 80. Antibiotics were used at the following concentrations: 5 µg/ml streptomycin (Sm),
486 50 µg/ml hygromycin (Hyg).

487 **Plasmids.** Oligonucleotides and plasmids used in this study are listed in the key resources table.
488 Details of PCR primer pairs and restriction enzymes used for each plasmid construct are detailed
489 in Table S1. Plasmids were constructed in *E. coli* DH5α. For the construct of complementation
490 plasmids, ORFs together with their 5' flanking regions (~500 bp) were amplified by PCR using
491 *M. smegmatis* mc²155 or *M. tuberculosis* Erdman genomic DNA as template. The PCR products
492 were cloned into pDB60 digested with *EcoRI* using recombination-based cloning (In-Fusion,
493 Takara). For the constructs of *dinB1* expression plasmids, ORFs were amplified using *M.*
494 *smegmatis* mc²155 or *M. tuberculosis* Erdman genomic DNA and were cloned into pmsg419
495 digested with *Clal*. For the *leuD* inactivation plasmid construct, the ~500 bp regions flanking the
496 deleted nucleotides were amplified using *M. smegmatis* mc²155 genomic DNA as template and
497 were cloned into pAJF067 digested with *NdeI* using recombination based cloning (In-Fusion,

498 Takara). For plasmids carrying the *kan* gene inactivated by run of homo-oligonucleotides, the *kan*
499 gene was amplified by PCR using the pAJF266 vector as template. The amplified fragments were
500 cloned into pDP60 digested with *EcoRI* using recombination-based cloning (In-Fusion). The
501 absence of mutations in constructs was verified by DNA sequencing.

502 **Method details**

503 **Construct of *M. smegmatis* strains.** Plasmids were introduced into *M. smegmatis* by
504 electrotransformation. The construct of unmarked deletion mutants used in this study is detailed
505 in Dupuy et al., 2020. Unmarked 1 bp and 2 bp deletions upstream of the start codon of *leuD* were
506 incorporated in each strain using a double recombination reaction as described in Barkan et al.,
507 2011 and using plasmids listed in the key resources table and Table S1. Plasmids carrying *kan*
508 genes inactivated by an homo-oligonucleotide run, listed in the key resources table and Table S1,
509 were introduced at the *attB* site of the *M. smegmatis* genome.

510 **Growth and cell viability.** Cells in exponential growth phase cultured without inducer were back
511 diluted in fresh 7H9 medium supplemented with 50 nM of inducer (Anhydrotetracycline: ATc) to
512 OD₆₀₀=0.001. Growth was measured by monitoring OD₆₀₀ for 48h. When OD₆₀₀ reached a value
513 around 1, cultures were back diluted in fresh +ATc 7H9 medium to OD₆₀₀=0.001 and measured
514 values were multiplied by the dilution factor. For cell viability, +ATc 7H9 liquid cultures were
515 pelleted, resuspended in -ATc 7H9 and serial dilutions were spotted and cultured on -ATc Difco
516 Middlebrook 7H10 agar medium and incubated 48 h at 37°C. The number of CFU was counted
517 and the result expressed in number of CFU per Optical Density Unit (ODU: CFU in 1 ml of a
518 culture at OD₆₀₀=1). For growth on agar medium, cells were grown in log phase without inducer
519 and 5 µl of serial dilutions were spotter on 7H10 medium supplemented with 0, 5 or 50 nM of ATc
520 and incubated at 37°C for 72 h.

521 **Disc diffusion assay.** Bacteria were grown to exponential phase, diluted in 3 ml of pre-warmed
522 top agar (7H9, 6 mg/ml agar) to an OD₆₀₀ of 0.01 and plated on 7H10. A filter disc was put on the
523 dried top agar and was spotted with 2.5 µl of 10 M H₂O₂, 10 mg/ml ciprofloxacin (cip), 500 µg/ml
524 mitomycin C (MMC), 100% MMS (MMS), 100 mg/ml methylnitronitrosoguanidine (MNNG), 50
525 mg/ml 4-nitroquinoline 1-oxide (4-NQO), or 100 mg/ml nitrofurazone. The diameter of the growth
526 inhibition zone was measured after incubation for 48 h at 37°C.

527 **Agar-based assay.** Bacterial cultures grown to exponential phase were diluted to an OD₆₀₀ of 0.1.
528 Serial dilutions were performed from 10⁰ to 10⁻⁵ in 7H9 and 5 µl of each dilution was plated on
529 7H10 or 7H10 supplemented with 0.05% MMS. Pictures were taken after 3 d incubation at 37°C.

530 **UV sensitivity assay.** Bacterial cultures in exponential growth phase were diluted to an OD₆₀₀ of 0.1
531 and serial dilutions (5 µl) were spotted on 7H10 plates. The plates were exposed to UV
532 radiation (wavelength=254 nm) at doses of 0, 5, 10, 15 or 20 J m⁻² using a Stratalinker 2400 UV
533 Crosslinker (Stratagene). Plates were imaged after 3 d incubation at 37°C.

534 **Western Blot.** Cell lysates were prepared from 2 ml aliquots of a log-phase culture (OD₆₀₀ of 0.4)
535 withdrawn at 0 h, 4 h, or 24 h after ATc addition to the cultures. Cells were pelleted, resuspended
536 in PBS buffer supplemented with 0.1% Tween 20 (PBST), lysed by incubation with 10 mg/ml
537 lysozyme for 15 min at 37°C, and treated with 100 mM dithiothreitol for 10 min at 95°C. Proteins
538 were separated by electrophoresis in a NuPAGE™ 4 to 12%, Bis-Tris gel (Novex) and transferred
539 to a PVDF membrane. Blots were blocked and probed in 5% Omnipro blot milk in PBST. Proteins on
540 blots were detected using anti-RpoB or anti-RecA antibodies incubated for 1 h at 1:10,000
541 dilutions and secondary Horseradish peroxidase (HRP)-antibodies. Blots were imaged in iBright
542 FL1000 (Invitrogen) after treatment of the membrane with Amersham ECL western blotting
543 detection reagents (GE Healthcare) according to manufacturer's instructions.

544 **Mutation frequency determination.** Bacteria were grown to exponential phase in 7H9 medium
545 from a single colony. In experiments with deletion mutants, cultures were back-diluted at an OD₆₀₀
546 of 0.0005 in fresh medium and cultured for 24 h. For *dinB1* expression experiments, cultures were
547 back diluted at OD₆₀₀ of 0.004 in fresh medium supplemented with 50 nM ATc and cultured in
548 presence of the inducer for 16 h. Cells (OD₆₀₀ ~0.5) were concentrated 20-fold by centrifugation
549 and pellet resuspension and 100 µl of a 10⁻⁶ dilution was plated on 7H10 agar whereas 200 µl was
550 plated on 7H10 with 100 µg/ml rif or 4 µg/ml Kan for the measurement of substitution mutations
551 or FS mutations in homo-oligonucleotide runs, respectively. For the measurement of FS mutations
552 in *leuD*, cells were cultivated in 7H9 medium supplemented with 50 µg/ml leucine and plated on
553 7H10 (200 µl) or 7H10 supplemented with 50 µg/ml leucine. For stress-induced mutagenesis, cells
554 were treated with UV (10 J m⁻²) or H₂O₂ (2.5 mM) for 2 h, washed and incubated for 4 h at 37°C
555 in fresh medium. MMS (0.010%) was added to the cultures 4 h before plating. Mutation frequency
556 was expressed by the mean number of selected colonies per 10⁸ CFU from independent cultures.

557 For each strain and condition, the number of independent cultures used to measure the mutation
558 frequency is indicated by the number of grey dots in each bar of graphs. For the determination of
559 the mutation spectrum, the rifampicin resistance determining region (RRDR) of the *rpoB* gene in
560 rif^R colonies, the *kan* gene in kan^R colonies or the *leuD* gene in leu⁺ colonies, was amplified and
561 sequenced using primers listed in the key resources table. Mutation spectra were expressed as
562 relative frequency, percent of mutations types found in each strain or condition, or absolute
563 frequency, number of mutation types per 10⁸ CFU obtained by multiplying the relative frequency
564 of the mutation by the rif^R, leu⁺ or kan^R frequency.

565 **In vitro DNA slippage assay.** Recombinant *M. smegmatis* DinB1 was produced in *E. coli* and
566 purified as described previously (Ordonez et al., 2014). Protein concentration was determined by
567 using the Bio-Rad dye reagent with bovine serum albumin as the standard. A 5' ³²P-labeled primer
568 DNA strand was prepared by reaction of a 13-mer oligonucleotide, 5'-dCGTGTGCCCTTC, with
569 T4 polynucleotide kinase and [γ³²P]ATP. The labeled DNA was separated from free ATP by
570 electrophoresis through a nondenaturing 18% polyacrylamide gel and then eluted from an excised
571 gel slice. The primer-templates for assays of DNA polymerase were formed by annealing the 5'
572 ³²P-labeled 13-mer pDNA strand (SG-FS1) to a series of unlabeled template strands (SG-FS2-13)
573 at 1:3 molar ratio to form the primer-templates depicted in Figs. 5C and S5. Polymerase reaction
574 mixtures (10 μl) containing 50 mM Tris-HCl, pH 7.5, 5 mM MnCl₂, 0.125 mM dNTP or ddNTP
575 as specified, 1 pmol (0.1 μM) ³²P-labeled primer-template DNA, and 10 pmol (1 μM) DinB1 were
576 incubated at 37°C for 15 min. The reactions were quenched by adding 10 μl of 90% formamide,
577 50 mM EDTA, 0.01% bromophenol blue-xylene cyanol. The samples were heated at 95°C for 5
578 min and then analyzed by electrophoresis through a 40-cm 18% polyacrylamide gel containing 7.5
579 M urea in 44.5 mM Tris-borate, pH 8.3, 1 mM EDTA. The products were visualized by
580 autoradiography. Where specified, the gel was scanned with a Typhoon FLA7000 imager and the
581 relative distributions of individual extension products were quantified with ImageQuant software.

582 **RT-qPCR and RNA sequencing.** RT-qPCR experiments were conducted exactly as described in
583 Adefisayo et al., 2021 whereas RNAseq results were obtained from the RNAseq raw data
584 published in Adefisayo et al., 2021.

585 **Quantification and statistical analysis.** One-way analysis of variance (ANOVA) and a
586 Bonferroni post-test were performed using prism9 software (GraphPad) on ln-transformed data for

587 all statistical analyses of this work except for growth and viability experiments for which a two-
588 ways ANOVA was used.

589 **ACKNOWLEDGMENTS**

590 This work is supported by NIH (NIH grant #AI064693) and this research was funded in part
591 through the NIH/NCI Cancer Center Support Grant P30CA008748. P. Dupuy was supported in
592 part by a « Jeune Scientifique » salary award from the French National Institute of Agronomic
593 Science (INRA). We thank all Glickman and Shuman lab members for helpful discussions. We
594 thank Jamie Bean for reanalyzing the RNAseq data.–

595 **AUTHORS CONTRIBUTIONS**

596 P.D., S.G., O.A., S.S., and M.G. designed research; P.D., S.G., O.A., and J.B. performed research;
597 P.D., S.G., O.A., S.S., and M.G. analyzed data; P.D. and M.G. wrote the paper, with input from
598 S.S.

599 **DECLARATION OF INTERESTS**

600 MG has received consulting fees from Vedanta Biosciences, PRL NYC, and Fimbrion
601 Therapeutics and has equity in Vedanta biosciences.

602 **SUPPLEMENTAL INFORMATION**

603 Figures S1-S7 and Tables S1-S4.

604 REFERENCES

605 Adefisayo, O.O., Dupuy, P., Nautiyal, A., Bean, J.M., and Glickman, M.S. (2021). Division of
606 labor between SOS and PafBC in mycobacterial DNA repair and mutagenesis. *Nucleic Acids*
607 *Res.* 49, 12805–12819.

608 Barkan, D., Stallings, C.L., and Glickman, M.S. (2011). An improved counterselectable marker
609 system for mycobacterial recombination using galK and 2-deoxy-galactose. *Gene* 470, 31–36.

610 Bellerose, M.M., Baek, S.-H., Huang, C.-C., Moss, C.E., Koh, E.-I., Proulx, M.K., Smith, C.M.,
611 Baker, R.E., Lee, J.S., Eum, S., et al. (2019). Common Variants in the Glycerol Kinase Gene
612 Reduce Tuberculosis Drug Efficacy. *MBio* 10, e00663-19.

613 Beranek, D.T. (1990). Distribution of methyl and ethyl adducts following alkylation with
614 monofunctional alkylating agents. *Mutat. Res.* 231, 11–30.

615 Bjedov, I., Dasgupta, C.N., Slade, D., Le Blastier, S., Selva, M., and Matic, I. (2007).
616 Involvement of *Escherichia coli* DNA polymerase IV in tolerance of cytotoxic alkylating DNA
617 lesions in vivo. *Genetics* 176, 1431–1440.

618 Boshoff, H.I.M., Reed, M.B., Barry, C.E., and Mizrahi, V. (2003). DnaE2 polymerase
619 contributes to in vivo survival and the emergence of drug resistance in *Mycobacterium*
620 tuberculosis. *Cell* 113, 183–193.

621 Castañeda-García, A., Prieto, A.I., Rodríguez-Beltrán, J., Alonso, N., Cantillon, D., Costas, C.,
622 Pérez-Lago, L., Zegeye, E.D., Herranz, M., Plociński, P., et al. (2017). A non-canonical
623 mismatch repair pathway in prokaryotes. *Nat. Commun.* 8, 14246.

624 Castañeda-García, A., Martín-Blecua, I., Cebrián-Sastre, E., Chiner-Oms, A., Torres-Puente, M.,
625 Comas, I., and Blázquez, J. (2020). Specificity and mutagenesis bias of the mycobacterial
626 alternative mismatch repair analyzed by mutation accumulation studies. *Sci. Adv.* 6, eaay4453.

627 Cavusoglu, C., Karaca-Derici, Y., and Bilgic, A. (2004). In-vitro activity of rifabutin against
628 rifampicin-resistant *Mycobacterium* tuberculosis isolates with known rpoB mutations. *Clin.*
629 *Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis.* 10, 662–665.

630 Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V.,
631 Eiglmeier, K., Gas, S., Barry, C.E., et al. (1998). Deciphering the biology of *Mycobacterium*
632 tuberculosis from the complete genome sequence. *Nature* 393, 537–544.

633 Courcelle, C.T., Belle, J.J., and Courcelle, J. (2005). Nucleotide excision repair or polymerase V-
634 mediated lesion bypass can act to restore UV-arrested replication forks in *Escherichia coli*. *J.*
635 *Bacteriol.* 187, 6953–6961.

636 Courcelle, J., Khodursky, A., Peter, B., Brown, P.O., and Hanawalt, P.C. (2001). Comparative
637 gene expression profiles following UV exposure in wild-type and SOS-deficient *Escherichia*
638 *coli*. *Genetics* 158, 41–64.

639 Darwin, K.H., and Nathan, C.F. (2005). Role for Nucleotide Excision Repair in Virulence of
640 *Mycobacterium tuberculosis*. *Infect. Immun.* 73, 4581–4587.

641 De Bont, R., and van Larebeke, N. (2004). Endogenous DNA damage in humans: a review of
642 quantitative data. *Mutagenesis* 19, 169–185.

643 Dupuy, P., Howlader, M., and Glickman, M.S. (2020). A multilayered repair system protects the
644 mycobacterial chromosome from endogenous and antibiotic-induced oxidative damage. *Proc.*
645 *Natl. Acad. Sci.* 117, 19517–19527.

646 Durbach, S.I., Springer, B., Machowski, E.E., North, R.J., Papavinasasundaram, K.G., Colston,
647 M.J., Böttger, E.C., and Mizrahi, V. (2003). DNA Alkylation Damage as a Sensor of Nitrosative
648 Stress in *Mycobacterium tuberculosis*. *Infect. Immun.* 71, 997–1000.

649 Ehrt, S., and Schnappinger, D. (2009). Mycobacterial survival strategies in the phagosome:
650 defence against host stresses. *Cell. Microbiol.* 11, 1170–1178.

651 Erill, I., Campoy, S., Mazon, G., and Barbé, J. (2006). Dispersal and regulation of an adaptive
652 mutagenesis cassette in the bacteria domain. *Nucleic Acids Res.* 34, 66–77.

653 Fishbein, S., van Wyk, N., Warren, R.M., and Sampson, S.L. (2015). Phylogeny to function:
654 PE/PPE protein evolution and impact on *Mycobacterium tuberculosis* pathogenicity. *Mol.*
655 *Microbiol.* 96, 901–916.

656 Fuchs, R.P., and Fujii, S. (2013). Translesion DNA synthesis and mutagenesis in prokaryotes.
657 *Cold Spring Harb. Perspect. Biol.* 5, a012682.

658 Fujii, S., and Fuchs, R.P. (2020). A Comprehensive View of Translesion Synthesis in
659 *Escherichia coli*. *Microbiol. Mol. Biol. Rev. MMBR* 84, e00002-20.

660 Gessner, S., Martin, Z., Reiche, M.A., Santos, J.A., Dhar, N., Dinkele, R., Wet, T.D., Ramudzuli,
661 A., Anoosheh, S., Lang, D.M., et al. (2021). The mycobacterial mutasome: composition and
662 recruitment in live cells. 2021.11.16.468908.

663 Gillespie, S.H. (2002). Evolution of drug resistance in *Mycobacterium tuberculosis*: clinical and
664 molecular perspective. *Antimicrob. Agents Chemother.* 46, 267–274.

665 Godfroid, M., Dagan, T., Merker, M., Kohl, T.A., Diel, R., Maurer, F.P., Niemann, S., and
666 Kupczok, A. (2020). Insertion and deletion evolution reflects antibiotics selection pressure in a
667 *Mycobacterium tuberculosis* outbreak. *PLoS Pathog.* 16, e1008357.

668 Gupta, A., and Alland, D. (2021). Reversible gene silencing through frameshift indels and
669 frameshift scars provide adaptive plasticity for *Mycobacterium tuberculosis*. *Nat. Commun.* 12,
670 4702.

671 Hirano, K., Abe, C., and Takahashi, M. (1999). Mutations in the *rpoB* Gene of Rifampin-
672 Resistant *Mycobacterium tuberculosis* Strains Isolated Mostly in Asian Countries and Their
673 Rapid Detection by Line Probe Assay. *J. Clin. Microbiol.* 37, 2663–2666.

674 Houghton, J., Townsend, C., Williams, A.R., Rodgers, A., Rand, L., Walker, K.B., Böttger, E.C.,
675 Springer, B., and Davis, E.O. (2012). Important Role for *Mycobacterium tuberculosis* UvrD1 in
676 Pathogenesis and Persistence apart from Its Function in Nucleotide Excision Repair. *J. Bacteriol.*

677 Jarosz, D.F., Godoy, V.G., Delaney, J.C., Essigmann, J.M., and Walker, G.C. (2006). A single
678 amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. *Nature*
679 439, 225–228.

680 Jatsenko, T., Sidorenko, J., Saumaa, S., and Kivisaar, M. (2017). DNA Polymerases ImuC and
681 DinB Are Involved in DNA Alkylation Damage Tolerance in *Pseudomonas aeruginosa* and
682 *Pseudomonas putida*. *PLoS One* 12, e0170719.

683 Kana, B.D., Abrahams, G.L., Sung, N., Warner, D.F., Gordhan, B.G., Machowski, E.E.,
684 Tsenova, L., Sacchettini, J.C., Stoker, N.G., Kaplan, G., et al. (2010). Role of the DinB
685 Homologs Rv1537 and Rv3056 in *Mycobacterium tuberculosis*. *J. Bacteriol.* 192, 2220–2227.

686 Kato, T., and Nakano, E. (1981). Effects of the umuC36 mutation on ultraviolet-radiation-
687 induced base-change and frameshift mutations in *Escherichia coli*. *Mutat. Res.* 83, 307–319.

688 Kim, S.-R., Maenhaut-Michel, G., Yamada, M., Yamamoto, Y., Matsui, K., Sofuni, T., Nohmi,
689 T., and Ohmori, H. (1997). Multiple pathways for SOS-induced mutagenesis in *Escherichia coli*:
690 An overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any
691 exogenous treatment to damage DNA. *Proc. Natl. Acad. Sci. U. S. A.* 94, 13792–13797.

692 Kim, S.R., Matsui, K., Yamada, M., Gruz, P., and Nohmi, T. (2001). Roles of chromosomal and
693 episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in
694 *Escherichia coli*. *Mol. Genet. Genomics MGG* 266, 207–215.

695 Matsiota-Bernard, P., Vrioni, G., and Marinis, E. (1998). Characterization of rpoB Mutations in
696 Rifampin-Resistant Clinical *Mycobacterium tuberculosis* Isolates from Greece. *J. Clin.*
697 *Microbiol.*

698 Napolitano, R., Janel-Bintz, R., Wagner, J., and Fuchs, R.P.P. (2000). All three SOS-inducible
699 DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. *EMBO J.* 19,
700 6259–6265.

701 Nathan, C., and Barry, C.E. (2015). TB drug development: immunology at the table. *Immunol.*
702 *Rev.* 264, 308–318.

703 Naz, S., Dabral, S., Nagarajan, S.N., Arora, D., Singh, L.V., Kumar, P., Singh, Y., Kumar, D.,
704 Varshney, U., and Nandicoori, V.K. (2021). Compromised base excision repair pathway in
705 *Mycobacterium tuberculosis* imparts superior adaptability in the host. *PLoS Pathog.* 17,
706 e1009452.

707 Ordonez, H., and Shuman, S. (2014). *Mycobacterium smegmatis* DinB2 misincorporates
708 deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass. *Nucleic*
709 *Acids Res.* 42, 12722–12734.

710 Ordonez, H., Uson, M.L., and Shuman, S. (2014). Characterization of three mycobacterial DinB
711 (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide
712 incorporation. *Nucleic Acids Res.* 42, 11056–11070.

713 Poncin, K., Roba, A., Jimmidi, R., Potemberg, G., Fioravanti, A., Francis, N., Willemart, K.,
714 Zeippen, N., Machelart, A., Biondi, E.G., et al. (2019). Occurrence and repair of alkylating stress
715 in the intracellular pathogen *Brucella abortus*. *Nat. Commun.* 10, 4847.

716 Qian, L., Abe, C., Lin, T.-P., Yu, M.-C., Cho, S.-N., Wang, S., and Douglas, J.T. (2002). *rpoB*
717 genotypes of *Mycobacterium tuberculosis* Beijing family isolates from East Asian countries. *J.*
718 *Clin. Microbiol.* 40, 1091–1094.

719 Rachman, H., Strong, M., Ulrichs, T., Grode, L., Schuchhardt, J., Mollenkopf, H., Kosmiadi,
720 G.A., Eisenberg, D., and Kaufmann, S.H.E. (2006). Unique transcriptome signature of
721 *Mycobacterium tuberculosis* in pulmonary tuberculosis. *Infect. Immun.* 74, 1233–1242.

722 Reuveni, N.B., Arad, G., Maor-Shoshani, A., and Livneh, Z. (1999). The Mutagenesis Protein
723 UmuC Is a DNA Polymerase Activated by UmuD', RecA, and SSB and Is Specialized for
724 Translesion Replication *. *J. Biol. Chem.* 274, 31763–31766.

725 Rock, J.M., Lang, U.F., Chase, M.R., Ford, C.B., Gerrick, E.R., Gawande, R., Coscolla, M.,
726 Gagneux, S., Fortune, S.M., and Lamers, M.H. (2015). DNA replication fidelity in
727 *Mycobacterium tuberculosis* is mediated by an ancestral prokaryotic proofreader. *Nat. Genet.* 47,
728 677–681.

729 Rudeeaneksin, J., Phetsuksiri, B., Nakajima, C., Bunchoo, S., Suthum, K., Tipkrua, N.,
730 Fukushima, Y., and Suzuki, Y. (2021). Drug-resistant *Mycobacterium tuberculosis* and its
731 genotypes isolated from an outbreak in western Thailand. *Trans. R. Soc. Trop. Med. Hyg.* 115,
732 886–895.

733 Safi, H., Gopal, P., Lingaraju, S., Ma, S., Levine, C., Dartois, V., Yee, M., Li, L., Blanc, L., Ho
734 Liang, H.-P., et al. (2019). Phase variation in *Mycobacterium tuberculosis* *glpK* produces
735 transiently heritable drug tolerance. *Proc. Natl. Acad. Sci. U. S. A.* 116, 19665–19674.

736 Safi, H., Lingaraju, S., Ma, S., Husain, S., Hoque, M., Soteropoulos, P., Rustad, T., Sherman,
737 D.R., and Alland, D. (2020). Rapidly Correcting Frameshift Mutations in the *Mycobacterium*
738 *tuberculosis* *orn* Gene Produce Reversible Ethambutol Resistance and Small-Colony-Variant
739 Morphology. *Antimicrob. Agents Chemother.* 64, e00213-20.

740 Sale, J.E. (2013). Translesion DNA Synthesis and Mutagenesis in Eukaryotes. *Cold Spring Harb.*
741 *Perspect. Biol.* 5, a012708.

742 Sedgwick, B. (1997). Nitrosated peptides and polyamines as endogenous mutagens in O6-
743 alkylguanine-DNA alkyltransferase deficient cells. *Carcinogenesis* 18, 1561–1567.

744 Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T., and Jacobs, W.R. (1990). Isolation and
745 characterization of efficient plasmid transformation mutants of *Mycobacterium smegmatis*. *Mol.*
746 *Microbiol.* 4, 1911–1919.

747 Springer, B., Sander, P., Sedlacek, L., Hardt, W.-D., Mizrahi, V., Schär, P., and Böttger, E.C.
748 (2004). Lack of mismatch correction facilitates genome evolution in mycobacteria. *Mol.*
749 *Microbiol.* 53, 1601–1609.

750 Sreenu, V.B., Kumar, P., Nagaraju, J., and Nagarajam, H.A. (2007). Simple sequence repeats in
751 mycobacterial genomes. *J. Biosci.* 32, 3–15.

752 Stallings, C.L., and Glickman, M.S. (2010). Is *Mycobacterium tuberculosis* stressed out? A
753 critical assessment of the genetic evidence. *Microbes Infect. Inst. Pasteur* 12, 1091–1101.

754 Steinborn, G. (1978). Uvm mutants of *Escherichia coli* K12 deficient in UV mutagenesis. I.
755 Isolation of uvm mutants and their phenotypical characterization in DNA repair and
756 mutagenesis. *Mol. Gen. Genet. MGG* 165, 87–93.

757 Stover, C.K., de la Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennett, L.T., Bansal,
758 G.P., Young, J.F., Lee, M.H., and Hatfull, G.F. (1991). New use of BCG for recombinant
759 vaccines. *Nature* 351, 456–460.

760 Tang, M., Shen, X., Frank, E.G., O'Donnell, M., Woodgate, R., and Goodman, M.F. (1999).
761 UmuD'2C is an error-prone DNA polymerase, *Escherichia coli* pol V. *Proc. Natl. Acad. Sci.* 96,
762 8919–8924.

763 Taverna, P., and Sedgwick, B. (1996). Generation of an endogenous DNA-methylating agent by
764 nitrosation in *Escherichia coli*. *J. Bacteriol.* 178, 5105–5111.

765 Timinskas, K., and Venclovas, Č. (2019). New insights into the structures and interactions of
766 bacterial Y-family DNA polymerases. *Nucleic Acids Res.* 47, 4393–4405.

767 Vaisman, A., and Woodgate, R. (2017). Translesion DNA polymerases in eukaryotes: what
768 makes them tick? *Crit. Rev. Biochem. Mol. Biol.* 52, 274–303.

769 Wagner, J., and Nohmi, T. (2000). *Escherichia coli* DNA polymerase IV mutator activity:
770 genetic requirements and mutational specificity. *J. Bacteriol.* 182, 4587–4595.

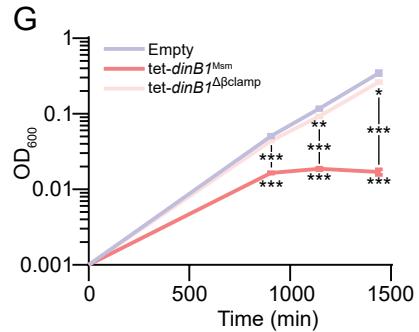
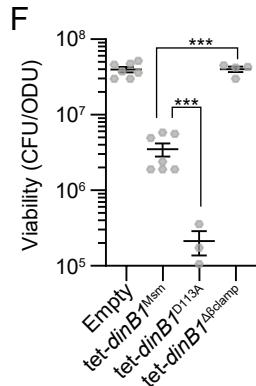
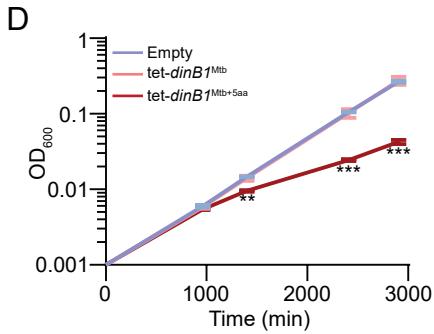
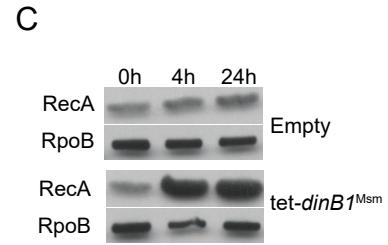
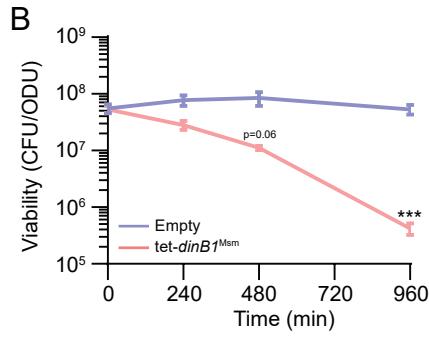
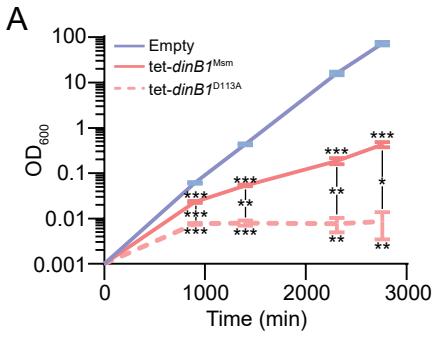
771 Wagner, J., Gruz, P., Kim, S.R., Yamada, M., Matsui, K., Fuchs, R.P., and Nohmi, T. (1999).
772 The *dinB* gene encodes a novel *E. coli* DNA polymerase, DNA pol IV, involved in mutagenesis.
773 *Mol. Cell* 4, 281–286.

774 Warner, D.F., Ndwandwe, D.E., Abrahams, G.L., Kana, B.D., Machowski, E.E., Venclovas, C.,
775 and Mizrahi, V. (2010). Essential roles for *imuA*'- and *imuB*-encoded accessory factors in
776 *DnaE2*-dependent mutagenesis in *Mycobacterium tuberculosis*. *Proc. Natl. Acad. Sci. U. S. A.*
777 107, 13093–13098.

778 WHO (2021). Global tuberculosis report 2021.

779 WHO mutations catalogue (2021). Catalogue of mutations in *Mycobacterium tuberculosis*
780 complex and their association with drug resistance.

781 Williams, D.L., Spring, L., Collins, L., Miller, L.P., Heifets, L.B., Gangadharam, P.R.J., and
782 Gillis, T.P. (1998). Contribution of *rpoB* Mutations to Development of Rifamycin Cross-
783 Resistance in *Mycobacterium tuberculosis*. *Antimicrob. Agents Chemother.* 42, 1853–1857.

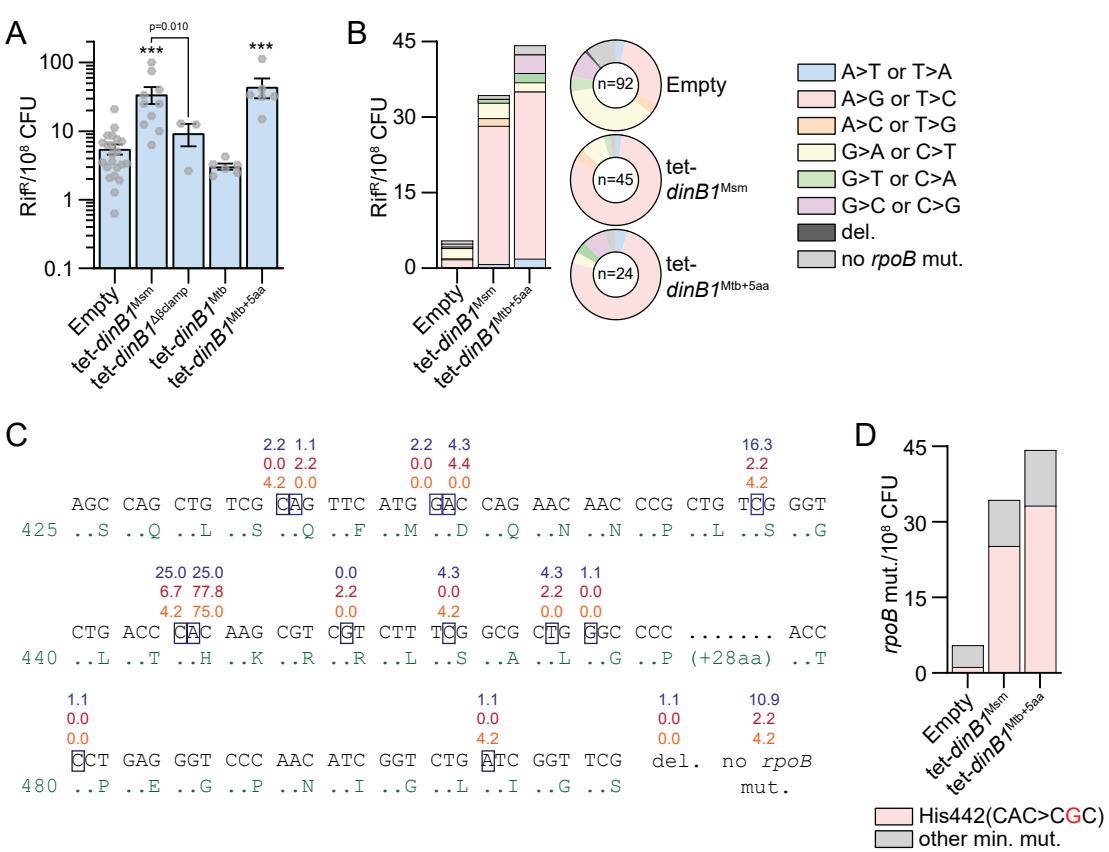






784 Wipperman, M.F., Heaton, B.E., Nautiyal, A., Adefisayo, O., Evans, H., Gupta, R., van
785 Ditmarsch, D., Soni, R., Hendrickson, R., Johnson, J., et al. (2018). Mycobacterial Mutagenesis
786 and Drug Resistance Are Controlled by Phosphorylation- and Cardiolipin-Mediated Inhibition of
787 the RecA Coprotease. *Mol. Cell* 72, 152–161.e7.

788 Yang, M., Aamodt, R.M., Dalhus, B., Balasingham, S., Helle, I., Andersen, P., Tønjum, T.,
789 Alseth, I., Rognes, T., and Bjørås, M. (2011). The *ada* operon of *Mycobacterium tuberculosis*
790 encodes two DNA methyltransferases for inducible repair of DNA alkylation damage. *DNA*
791 *Repair* 10, 595–602.

792 Yeiser, B., Pepper, E.D., Goodman, M.F., and Finkel, S.E. (2002). SOS-induced DNA
793 polymerases enhance long-term survival and evolutionary fitness. *Proc. Natl. Acad. Sci. U. S. A.*
794 99, 8737–8741.

795

Figure 1. DinB1 competes with the replicative polymerase for interaction with the β clamp at the replication fork. Growth (A, D, and G) and viability (B and F) of strains carrying an inducible (tet=Anhydrotetracycline inducible promoter) DinB1 or its indicated derivates (Msm=*M. smegmatis*, Mtb=annotated *M. tuberculosis* DinB1, Mtb+5aa=N terminal extended DinB1, *dinB1* D113A=catalytically inactive *M. smegmatis* DinB1, $\Delta\beta$ clamp (Δ QESLF: 356-360 amino acids of *M. smegmatis* DinB1)) in presence of inducer. The viability in (F) was measured 24 h after inducer addition. (C) Anti-RecA/RpoB immunoblot from indicated strains with indicated times of inducer treatment. (E) Alignment of Msm and Mtb DinB1 N-termini with the potential start codons underlined. The blue boxed valine corresponds to the start codon of the published DinB1 noted as $\text{DinB1}^{\text{Mtb}}$ above, whereas the red boxed valine shows an alternative start codon of an extended DinB1 denoted as $\text{DinB1}^{\text{Mtb+5aa}}$. Results shown are means (\pm SEM) of biological triplicates (A, B, D, and G) or from biological replicates symbolized by grey dots (F). Stars above or under the means mark a statistical difference with the reference strain (empty vector) and lines connecting two strains show a statistical difference between them (*, $P<0.05$; **, $P<0.01$; ***, $P<0.001$).


E

GGT **ATG** GAG GGC ACC GTC GCT CGG ACC GCG AGC CGC AGA TGG GTC CTG CAT CTG GAC ATG GAC >>>
..G **M** ..E ..G ..T ..V ..A ..R ..T ..A ..S ..R ..R ..W ..V ..L ..H ..L ..D ..M ..D >>> **dinB1^{Msm}**

TCG GTA GCC CCA AAT AGC ATC ACG GGT **GTC** GAG TCC CGC TGG **GTC** CTG CAC CTG GAC ATG GAT >>>
..S ..V ..A ..P ..N ..S ..I ..T ..G **V** ..E ..S ..R ..W ..V ..L ..H ..L ..D ..M ..D >>> **dinB1^{Mtb}**

Figure 1. DinB1 competes with the replicative polymerase for interaction with the β clamp at the replication fork.

Figure 2. *DinB1* is an error prone polymerase inducing antibiotic resistance through a characteristic mutagenic signature. (A) Rifampicin resistance (*rif^R*) frequency in indicated strains in presence of inducer. Results shown are means (\pm SEM) of data obtained from biological replicates symbolized by grey dots. Stars above bars mark a statistical difference with the reference strain (empty vector) and lines connecting two strains show a statistical difference between them (***, $P < 0.001$). (B) Relative (pie chart) and absolute (bar chart) frequencies of nucleotide changes detected in *rpoB* of indicated strains *rif^R*. The number of sequenced *rif^R* is given in the center of each pie chart. (C) Location and relative frequency in % of mutated nucleotides in *rpoB* found in empty (blue), tet-*dinB1*^{Msm} (red) or tet-*dinB1*^{Mtb} (orange) *rif^R*. (D) Absolute frequency of the main *rpoB* mutations found in indicated strains.

Figure 2. DinB1 is an error prone polymerase inducing antibiotic resistance through a characteristic mutagenic signature.

Figure 3. DnaE2 but not DinBs mediates stress-induced substitution mutagenesis. (A) Rifampicin resistance (rif^R) frequency in indicated strains and conditions. Results shown are means (\pm SEM) of data obtained from biological replicates symbolized by grey dots. Stars above bars mark a statistical difference with the reference strain (WT of each condition) (*, $P<0.05$; **, $P<0.01$). (B) Relative (pie chart) and absolute (bar chart) frequencies of nucleotide changes detected in $rpoB$ of indicated strains rif^R . The number of sequenced rif^R is given in the center of each pie chart. (C) Location and relative frequency of mutated nucleotides of $rpoB$ found in rif^R of $\Delta\text{DNAE2}+\text{H}_2\text{O}_2$ (orange) or WT+H₂O₂ (red). The bar chart shows the absolute frequency of the main $rpoB$ mutations found in indicated strains.

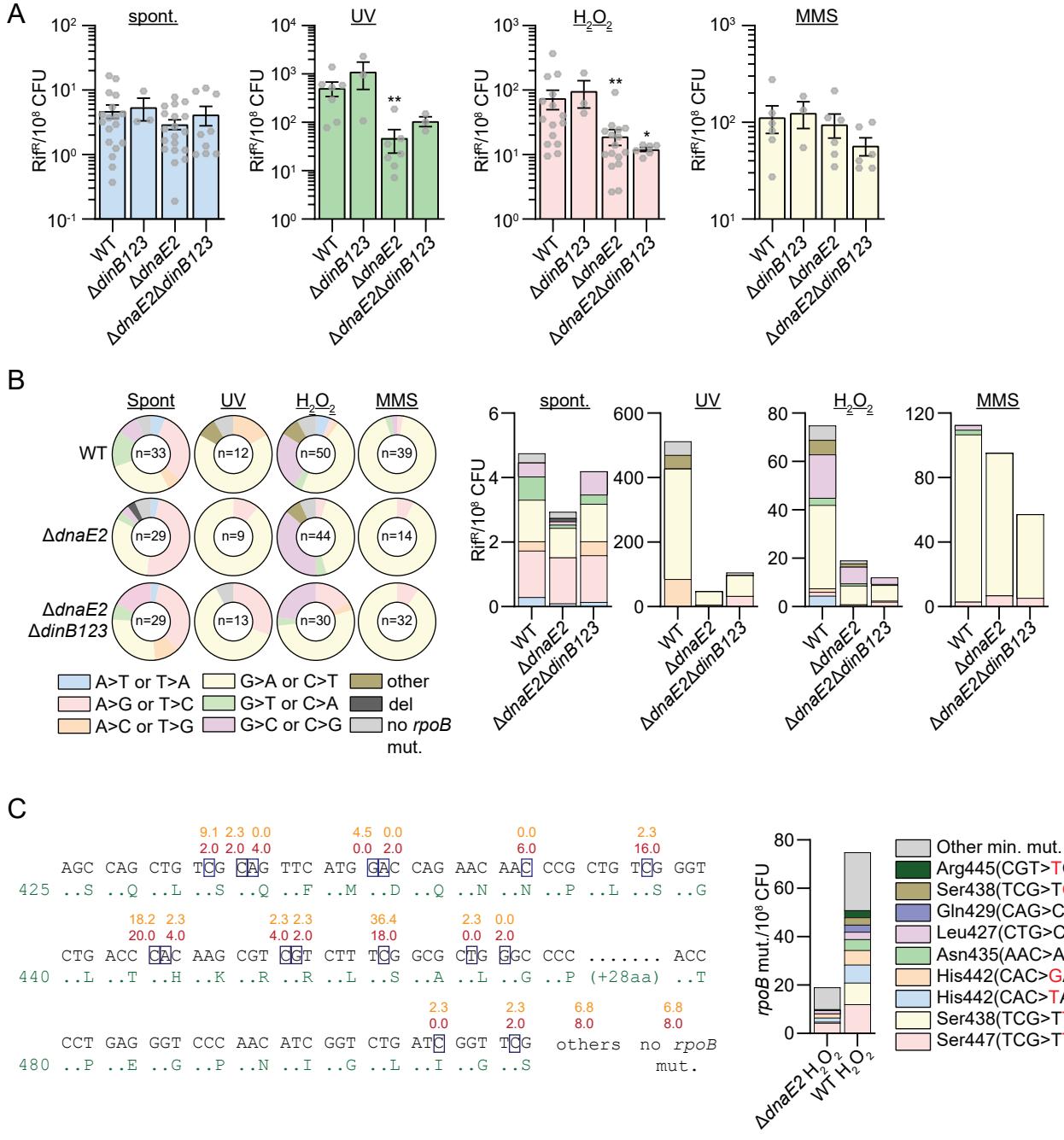


Figure 3. DnaE2 but not DinBs mediates stress-induced substitution mutagenesis.

Figure 4. Redundancy of DinB1 and DnaE2 in tolerance to alkylation damage. Sensitivities of indicated strains to indicated alkylating agents measured by disc diffusion assay. Results shown are means (\pm SEM) of data obtained from biological replicates symbolized by grey dots. Stars above the means mark a statistical difference with the reference strain (WT or $\Delta dnaE2$ $\Delta dinB123+empty$ in complementation experiments) (*, $P<0.05$; **, $P<0.01$; ***, $P<0.001$).

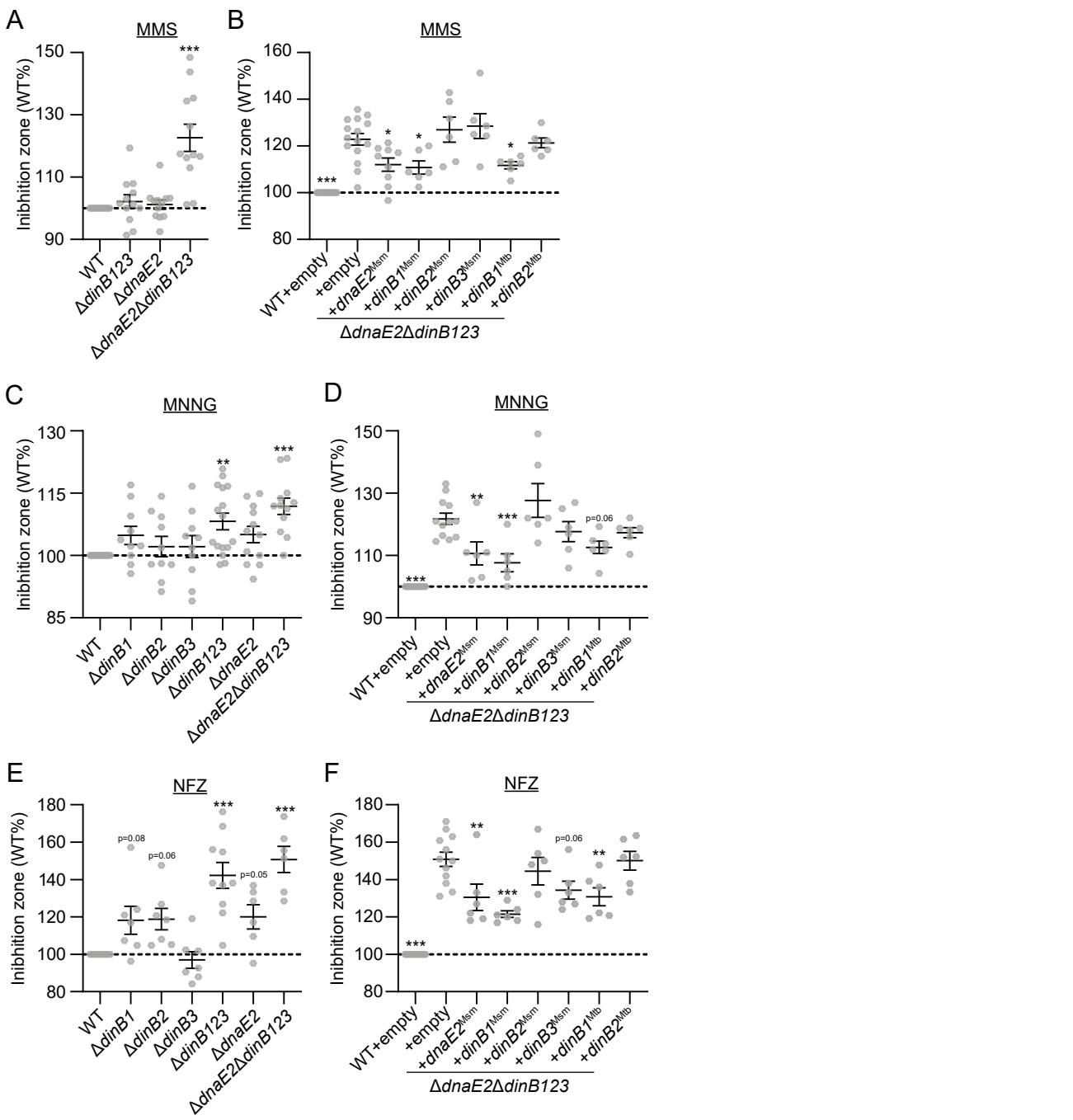


Figure 4. Redundancy of DinB1 and DnaE2 in tolerance to alkylation damage.

Figure 5. DinB1 promotes -1 and +1 frameshift mutations in homo-oligonucleotide runs. (A) *leuD* and *kan* frameshift (FS) reporter assays. *leuD* and *kan* open reading frame N-termini in which 2 base pairs in the second *leuD* codon were removed (blue box) or 4T/5T runs (red box) were incorporated upstream the start codon of *kan*. Reversion can occur by FS mutations that restore the *leuD* or *kan* reading frames resulting in phenotypic leucine prototrophy (*leu*⁺) or kanamycin resistance (*kan*^R). The red box in *leuD* shows the run of 3T in which the majority of detected FS in *leu*⁺ were found. (B) *leu*⁺ and (C and D) *kan*^R frequencies in the indicated strains in presence of inducer. Results shown are means (\pm SEM) of data obtained from biological replicates symbolized by grey dots. Stars above the means mark a statistical difference with the reference strain (empty) (*, $P<0.05$; ***, $P<0.001$). Relative (pie chart) and absolute (bar chart) frequencies of nucleotide changes detected in *leuD* of *leu*⁺ cells or in *kan* of *kan*^R cells represented with colors: red=-1 FS in the 3T run (B), 4T run (C), or 5T run (D), other colors=FS outside of the run, and grey=no detected mutation. The number of sequenced *leu*⁺ or *kan*^R colonies is given in the center of each pie chart. (E) DinB1 polymerase reaction mixtures containing 5' ³²P-labeled primer-template DNAs with A4, A6, A8, T4, T6, or T8 runs in the template strand (depicted below and included as indicated above the lanes) and 125 μ M deoxynucleotides and dideoxynucleotides (as specified above the lanes) were incubated at 37°C for 15 min. DinB1 was omitted from reactions in lanes -. The reaction products were analyzed by urea-PAGE and visualized by autoradiography. The +1 slippage products are indicated.

A

*leuD*²

```

ATG GAG GCT TTC ACC ACT CAC ACC GGC ATC
TAC CTC CGA AAG TGG TGA GTG TGG CCG TAG
...m ..e...a ..f ...t ..t ..h ...t ..g ...

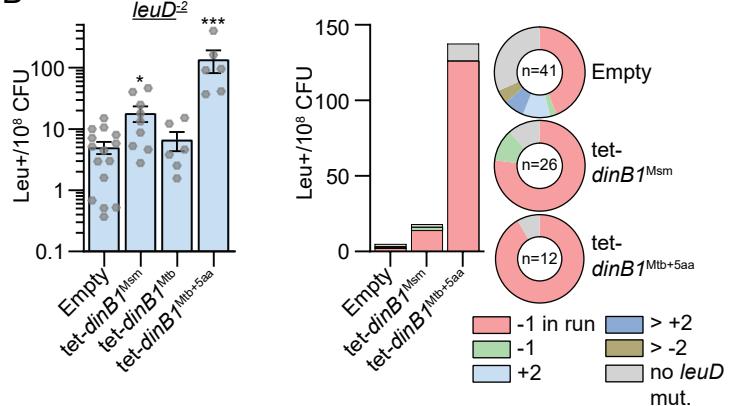
```

kan::4T

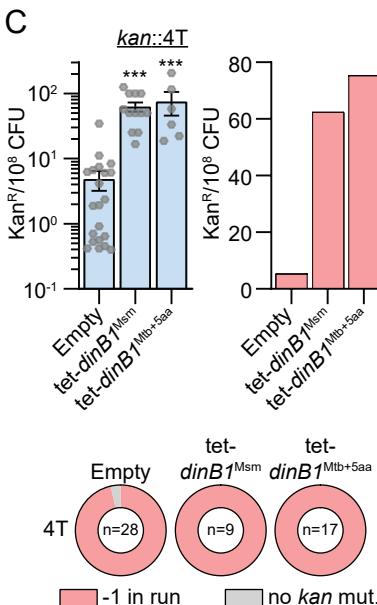
```

ATG TTTT AGC CAT ATT CAA CGG GAA ACG
TAC AAAA TCG GTA TAA GTT GCC CTT TGC
...m .... ..s ...h ..i ..q ...r ..e ...

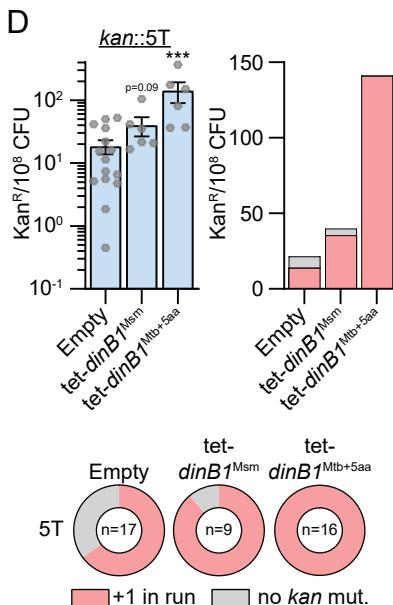
```


kan::5T

```


ATG TTTTT AGC CAT ATT CAA CGG GAA ACG
TAC AAAAA TCG GTA TAA GTT GCC CTT TGC
...m ..... ..s ...h ..i ..q ...r ..e ...

```


B

C

D

E

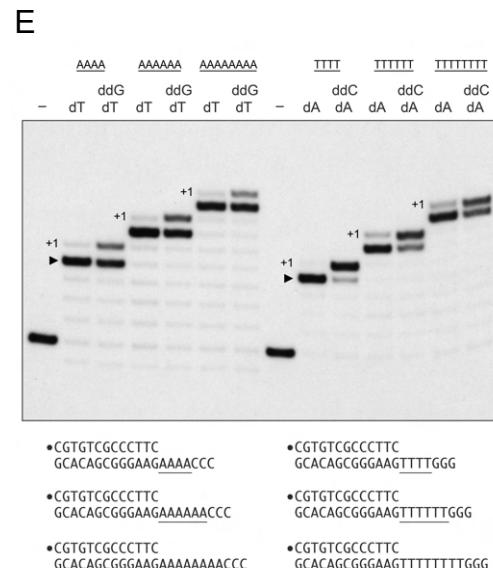


Figure 5. *DinB1* promotes -1 and +1 frameshift mutations in homo-oligonucleotide runs.

Figure 6. DinB1 is the primary mediator of spontaneous -1 frameshift mutations in homo-oligonucleotide runs. (A and B) leu⁺ or (C) kan^R frequency in the indicated strains and relative (pie chart) or absolute (bar chart) frequencies of nucleotide changes detected in *leuD* or *kan* coded by color. The number of sequenced leu⁺ or kan^R colonies is given in the center of each pie chart. Results shown are means (\pm SEM) of data obtained from biological replicates symbolized by grey dots. Stars above bars mark a statistical difference with the reference strain (WT) and lines connecting two strains show a statistical difference between them (*, P<0.05; **, P<0.01; ***, P<0.001).

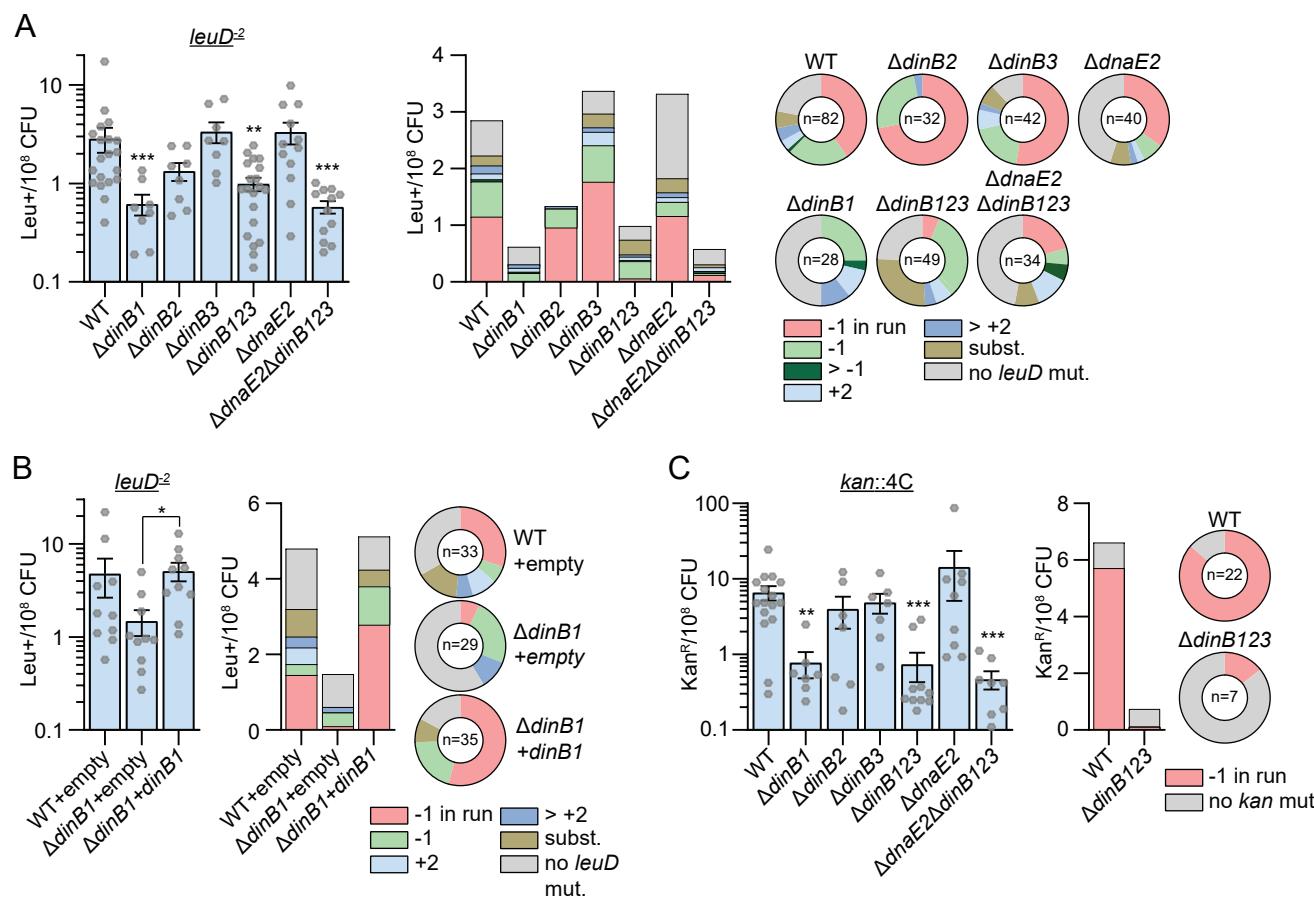


Figure 6. *DinB1* is the primary mediator of spontaneous -1 frameshift mutations in homo-oligonucleotide runs.

Figure 7. DnaE2 is the primary mediator of DNA damage-induced -1 frameshift mutations in homo-oligonucleotide runs. (A) leu⁺ or (B) kan^R frequency in indicated strains/conditions and relative (pie chart) or absolute (bar chart) frequencies of nucleotide changes detected in *leuD* or *kan* coded by color. The number of sequenced leu⁺ or kan^R colonies is given in the center of each pie chart. Results shown are means (\pm SEM) of data obtained from biological replicates symbolized by grey dots. Stars above bars mark a statistical difference with the reference strain (WT+UV) and lines connecting two strains show a statistical difference between them (*, P<0.05; **, P<0.01; ***, P<0.001).

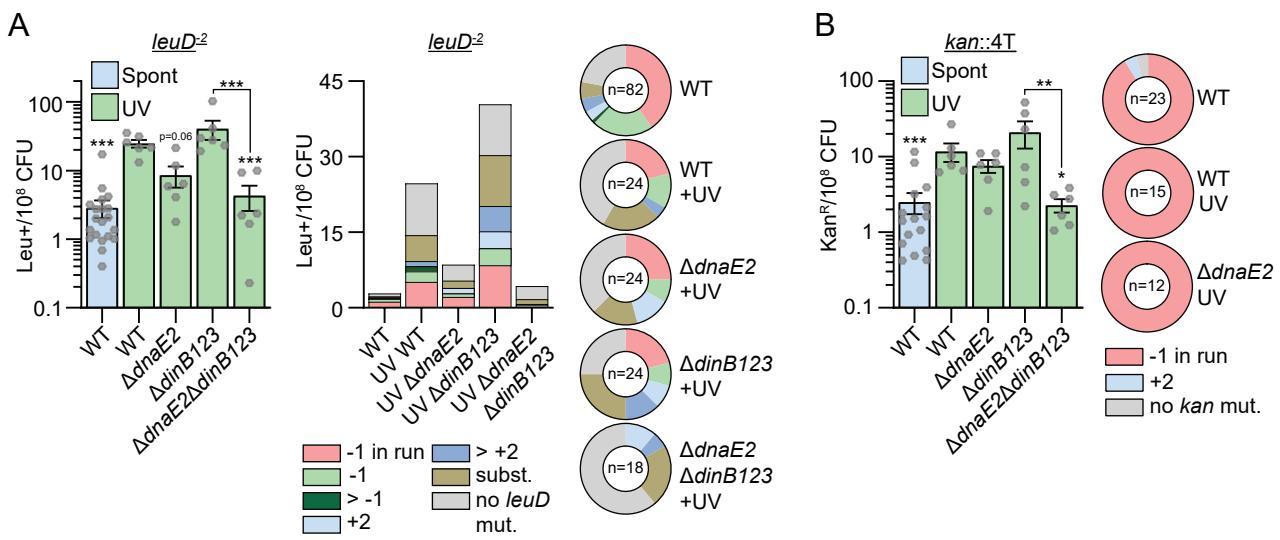


Figure 7. DnaE2 is the primary mediator of DNA damage-induced -1 frameshift mutations in homo-oligonucleotide runs.