

1 **AI-powered pan-species computational pathology: bridging clinic and wildlife care**

2 Khalid AbdulJabbar^{1,2+}, Simon P. Castillo^{1,2+}, Katherine Hughes³, Hannah Davidson^{4,5}, Amy M.
3 Boddy⁶, Lisa M. Abegglen^{7,8}, Elizabeth P. Murchison^{3,9}, Trevor A. Graham^{1,5}, Simon Spiro⁴,
4 Chiara Palmieri¹⁰, Yinyin Yuan^{1,2*}

5 **Affiliations:**

6 ¹Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK

7 ²Division of Molecular Pathology, The Institute of Cancer Research, London, UK

8 ³Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.

9 ⁴Zoological Society of London, London, UK.

10 ⁵Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary
11 University of London, Charterhouse Sq, London, UK.

12 ⁶Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA.

13 ⁷Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City,
14 UT, USA.

15 ⁸PEEL Therapeutics, Inc., Salt Lake City, UT, USA and Haifa, Israel.

16 ⁹Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge,
17 Cambridge, UK.

18 ¹⁰School of Veterinary Science, The University of Queensland, 4343 Gatton, Queensland,
19 Australia.

20 ⁺Authors contributed equally. ^{*}Correspondence to Yinyin Yuan (yinyin.yuan@icr.ac.uk)

21 **Abstract:**

22 Cancers occur across species. Understanding what is consistent and varies across species can
23 provide new insights into cancer initiation and evolution, with significant implications for animal
24 welfare and wildlife conservation. We built the pan-species cancer digital pathology atlas
25 (PANCAD) and conducted the first pan-species study of computational comparative pathology
26 using a supervised convolutional neural network algorithm trained on human samples. The
27 artificial intelligence algorithm achieves high accuracy in measuring immune response through
28 single-cell classification for two transmissible cancers (canine transmissible venereal tumour,
29 0.94; Tasmanian devil facial tumour disease, 0.88). Furthermore, in 18 other vertebrate species
30 (mammalia=11, reptilia=4, aves=2, and amphibia=1), accuracy (0.57-0.94) was influenced by
31 cell morphological similarity preserved across different taxonomic groups, tumour sites, and
32 variations in the immune compartment. A new metric, named morphospace overlap, was
33 developed to guide veterinary pathologists towards rational deployment of this technology on
34 new samples. This study provides the foundation and guidelines for transferring artificial
35 intelligence technologies to veterinary pathology based on a new understanding of
36 morphological conservation, which could vastly accelerate new developments in veterinary
37 medicine and comparative oncology.

38 **Introduction**

39 Cancers occur with phenotypically similar forms across the tree of life^{1–4}. Understanding the
40 conserved and diverged aspects of cancer across species can help answer questions about the
41 origin and fundamental processes of its evolution. Immediate and practical advances from pan-
42 species studies provide new tools and valuable insights into tumorigenesis and cancer
43 resistance^{5–8}, leading to improved cancer care for humans and non-human animals. Specifically,
44 transmissible cancers presented in dogs and Tasmanian devils^{9,10} are among the few known
45 naturally occurring clonally transmissible cancers¹¹. How transmissible cancers escape immune
46 surveillance remains unclear and is of central importance to understanding their biology and cell
47 to cell interactions.

48 Despite significant resources in companion animal care, clinical treatments options are limited
49 for a few aggressive cancers in dogs^{12,13} that represent one of the best models of human
50 cancer¹⁴. Beyond domesticated species, various studies have identified valuable models in
51 wildlife¹⁵. For instance, the naturally-emerging urogenital carcinoma in California sea lions¹⁶ and
52 papillomavirus triggering brain tumours in raccoons¹⁵ are remarkable examples of pathogen-
53 driven neoplasms. Animals managed in zoological institutes also exhibit occurrence of
54 neoplastic growth according to several international studies, including, a 10-year survey in the
55 Taipei zoo, Taiwan¹⁷, a study of cancer development in vertebrates in French zoological
56 parks¹⁸, a 42-years of mammals necropsy data compilation from the San Diego Zoo, United
57 States¹⁹, and a report on renal lesions followed by neoplastic and inflammatory responses in
58 captive wild felids in Germany²⁰. Studies of these animals can provide unique insights into the
59 biology and evolution of cancer across the tree of life towards improving animal welfare by early
60 detection and helping conserve endangered species^{21,22}.

61 Challenges for establishing a unified comparative oncology agenda include sample collection,
62 data management, analysis, and integration^{23–27}. These can be tackled by incorporating artificial
63 intelligence (AI) algorithms, which can empower veterinary pathology and help dissect the
64 complexity of cancer across species and scales, from genes to epidemiology. Computational
65 pathology powered by AI has revolutionised the study of human cancers and helped improve
66 our understanding of the immune microenvironment²⁸. In contrast to human cancer
67 management, we lack systematic and standardised AI protocols and digital archiving and
68 analysis of samples to study animal cancers; hence, veterinary research has not fully adopted
69 digital pathology²⁵ although efforts are being made to move forward internationally adopted
70 guidelines for tumour pathology²⁷.

71 Hence, we propose AI has the power to fuel pan-species tumour histology and efficiently
72 manage data-related bottlenecks. Thus far, computational pathology in the study of non-human
73 cancers, and non-human pathology in general, is very limited^{24,25}. Convolutional neural networks
74 have been applied to detect mitotic activity from histological slides of canine cancers^{13,29}. In
75 sheep, deep learning has been employed to delineate growth phases of mammary
76 development³⁰. Other machine learning techniques have been used to classify a common
77 gastrointestinal disease in cats³¹. Along with computational pathology, incorporating AI into the
78 veterinary practice of imaging techniques such as CT scans, magnetic resonance imaging, and

79 positron emission tomography³² encourages the development of integrative clinical care. Such
80 an integrative approach promises to direct precision medicine in veterinary oncology by tailoring
81 strategies for individual patients. It includes classifying patients who differ in their treatment
82 response and/or prognostic outcomes.

83 In this work, we explore and exploit the conservatism of cell morphology in neoplasias across
84 species by applying an AI tool trained in human lung cancer³³ (Fig 1). We evaluate the accuracy
85 of this AI tool in mapping tumour cells distribution and lymphocytic infiltration in histological
86 tissues from transmissible cancers and its generalisability to 18 other species. To the best of our
87 knowledge, this is the first effort to apply computational pathology algorithms to transmissible
88 cancers and pan-species pathology beyond mammals, thereby decoding the composition of
89 cells in tumours across species. Our approach aims to pave the way for pan-species
90 comparative pathology and contribute to understanding the emergence and prevalence of
91 cancer in nature.

92

93 **Results**

94 **Collection and quality control for veterinary histology samples**

95 Ten hematoxylin and eosin (H&E)-stained tumour samples from 3 individuals with Tasmanian
96 devil facial tumour disease 1 and 2 (DFT1 and DFT2) and 6 with canine transmissible venereal
97 tumour (CTVT) were collected and digitalised from the Transmissible Cancers Group, University
98 of Cambridge. Of these, 7 passed visual quality control for image analysis. One representative
99 slide was chosen by the pathologists for each species considering scanning resolution and level
100 of immune infiltration in the tumour microenvironment. In addition, H&E samples from 18
101 species were selected from the Zoological Society of London's (ZSL) pathological archive and
102 digitalised (classes Mammalia = 11 species, Reptilia = 4, Aves = 2, and Amphibia = 1). The
103 neoplastic lesions were broadly categorised into five main tumour groups: round-cell (n = 4),
104 epithelial (n = 9), mesenchymal (n = 4), neuroendocrine (n=2) and sex-cord stromal (n=1)
105 tumours. A rich, pan-species digital pathology atlas was created, providing digital slide images,
106 digitalisation and quality control protocols, and pathological annotations described below.

107

108 **Transferring AI technologies to non-human species**

109 A deep learning pipeline tailored for human lung cancer (predominantly lung adenocarcinoma,
110 including lung squamous cell carcinoma³³, Fig. 1A) was applied without modification to all 20
111 H&E samples. Briefly, this pipeline identifies the precise location of individual cells in each H&E
112 and classifies them based on nuclear morphology in one of four cell types: tumour cells,
113 lymphocytes, stromal cells (fibroblasts and endothelial cells) and 'other' cells (macrophages,
114 pneumocytes and non-identifiable cells) (Fig. 1B-C). We evaluated the accuracy of the
115 convolutional neural network (CNN) with 14,570 cancer, lymphocyte, and stromal single-cell
116 annotations from two board-certified specialist veterinary pathologists (CP and KH). For each

117 slide, we computed the algorithm's balanced single-cell classification accuracy (BCAcc, Table
118 1), as well as F1 score, precision, sensitivity and specificity (Figs S1-S2).

119 For evaluating the accuracy in classifying cells by the algorithm, we compared its predictions
120 against veterinary pathologists' annotations. The algorithm's average balanced accuracy across
121 cell classes showed a diverse range of variation between and within tumour groups (Figs. 2A,
122 S1-S2). Tumour types have the same overall accuracy for cell classification based on the
123 balanced classification accuracy values (LR test, overall BCAcc averaged across samples =
124 0.81; LR test, $\chi^2[3] = 0.314$, $p = 0.957$). Moreover, despite the heterogeneous number of
125 annotations per tumour type (Fig. 2B), the balanced accuracy was not associated with the
126 number of annotations (Spearman's $p = 0.088$, $p = 0.71$) (Fig. 2B-C).

127

128 **Consistent accuracy across tumour types but higher in mammals**

129 Overall, the model's best performance was mainly in mammals (Fig. 3). In particular, the AI
130 algorithm achieves high accuracy in measuring immune response for the two transmissible
131 cancers (canine transmissible venereal tumour - CTVT, 0.94; Tasmanian devil facial tumour
132 disease- DFTD, 0.88). The canine transmissible venereal tumour (in *Canis l. familiaris*) exhibited
133 the best accuracy across all 20 species (overall precision = 0.98, F1 and BCAcc = 0.94, Fig. 3).
134 Surprisingly, in the metastatic sarcoma in a snake (*Gonyosoma oxycephalum*), the CNN also
135 reached a high accuracy (Fig. 4A, overall precision = 0.89, F1 = 0.89 and BCAcc = 0.91).

136 In the 18 other vertebrate species (mammalia=11, reptilia=4, aves=2, and amphibia=1),
137 accuracy varies (0.57-0.94). The performance of cancer cells and lymphocyte classification,
138 measured as balanced accuracy, did not vary between tumour types (LR test, cancer cells:
139 median = 0.825, $\chi^2[3] = 1.358$, $p = 0.715$; lymphocytes: median = 0.915, $\chi^2[3] = 0.308$, $p =$
140 0.959). However, the classification accuracy of stromal cells differs between tumour types (LR
141 test, median = 0.773, $\chi^2[3] = 10.308$, $p = 0.016$), with p-adjusted significant only for differences
142 between epithelial-round cell (z-test, estimate = -0.092, SE = 0.031, $z = -3.073$, $p = 0.018$) and
143 mesenchymal-round cell tumour types (estimate = -0.121, SE = 0.039, $z = -3.073$, $p = 0.011$).
144 All other comparisons have a p-value higher than 0.05. Surprisingly, in both cases where we
145 reported significant differences, the balanced accuracy of stromal cells in round-cell tumour
146 types was higher than mesenchymal or epithelial tumour types. In our cohort, the round-cell
147 tumour types were present in the dog (*Canis familiaris*), the Tasmanian devil (*Sarcophillus*
148 *harrisii*), the pygmy goat (*Capra hircus*) and the ring-tailed coati (*Nasua nasua*). These results
149 show a high classification accuracy of the model consistent with expert pathologists' annotations
150 across tumour types for cancer cells and lymphocytes and slight variations in the case of
151 stromal cells.

152

153 **Species and cancer-specific challenges**

154 The detection of cancer cells presented more challenging classifications in lymphosarcoma from
155 the common goat (*Capra hircus*), the ring-tailed coati (*Nasua nasua*) and in lipoma from the

156 dwarf crocodile (*Osteolaemus tetraspis*), which by their cell morphology and tissue architecture
157 may be difficult to be classified by an algorithm trained with epithelial cells from human lung
158 adenocarcinoma (Fig. 4B). These results suggest that the accuracy of computational pathology
159 at single-cell resolution depends on the type of target cancer and its degree of differentiation
160 from the training cancer type. Morphologically complex cancers that drastically change their
161 morphological features or cancers with a high degree of similarity to the normal cells (e.g.
162 lymphosarcoma) represent significant hurdles for transfer learning.

163

164 **Morphological preservation across species**

165 To explore the morphological similarity between human and non-human samples, which could
166 explain the accuracy of the AI algorithm, we visualised the morphological space of ~32K cells
167 annotated by expert pathologists using principal component analysis (Fig 5). The PCA analysis
168 was used for dimension reduction (Fig 5) of the 27 features extracted by the AI algorithm at the
169 individual cell level (Table S2). The first three PCA dimensions account for 84.1% of the
170 morphological variance (Fig S3A). The first dimension explains 49.4% of the morphological
171 variance, and the cell features with the highest contributions to that explained variance are
172 associated with nucleus size (area, perimeter, diameter, radius, convex area) and maximum
173 intensity in the colour channels (Fig S3B). These variables are positively correlated with the first
174 dimension, with high importance to explaining individual cells' position in the morphological
175 space (Fig S3C). The overlap of the volumes in PCA space suggests a high degree of
176 morphological similarity between human and non-human cells (Table S3). For non-human
177 lymphocytes, 84.55% of their morphological space intersects with the human lymphocyte
178 morphospace. And for non-human tumour cells volume, which shows higher morphological
179 variability, 86.49% of its volume is captured by human tumour cells' volume.

180 **Morphospace overlap as a new guidance metric**

181 To further dissect the relationship between the AI performance and morphological similarity
182 across species, we developed a new metric, termed morphospace overlap, as the average of
183 overlaps of cancer cell/lymphocyte morphological space between a species and humans. We
184 found that the AI model's balanced accuracy is positively correlated with morphospace overlap
185 (Pearson's correlation = 0.68, p=0.001; Fig 5B), suggesting that the AI model performed better
186 on species sharing higher morphological similarity with human cells. Species-specific analyses
187 revealed further understanding of the model's performance. Among the tissues with higher
188 balanced accuracy and high morphospace overlap are dog's CTVT (Fig 5C), Tasmanian devils'
189 DFTD (Fig 5D) and snake's sarcoma (Fig 5E) (morphospace overlap (%) = 82.6, 72.2, and 83.4,
190 balanced accuracy = 0.94, 0.88, and 0.91, respectively) and the goat's lymphosarcoma (Fig 5F)
191 as one of the challenging cases, with smaller morphological overlap between its tumour cells
192 and human's cells (morphospace overlap (%) = 47.4, balanced accuracy = 0.7). Species with
193 >70% morphospace overlap had an average of 87.5% balanced accuracy (range 79-94%), and
194 species with >80% morphospace overlap averaged 88% balanced accuracy (range 80-94%).
195 Thus, this new metric may be a useful tool for pathologists to determine the usability of our AI
196 tool.

197

198 **Discussion**

199 Comparative oncology pursues the understanding of cancer as a shared phenomenon among
200 species. Here, we have explored the potential of AI through automated pathological image
201 analysis to study cancer morphology and immune response across the tree of life. Previous
202 studies have often been limited to a single species, with applications mainly focused on canine
203 and mouse models (e.g.,^{8,13,34}). To the best of our knowledge, this is the first study of
204 computational pathology that includes tumours from vertebrates beyond mammals, such as
205 aves, reptiles and one amphibian. Although the algorithm was trained on human samples, it
206 could distinguish three major cell types with remarkable accuracy in most of the species
207 (19/20 species reached an accuracy $\geq 70\%$ and 12/20 species $\geq 80\%$). Broadly, our
208 comparative analysis revealed that regardless of species, morphological conservation across
209 species dictates that cells can be detected and correctly classified by a human specimen-
210 trained AI, fostering our endeavour to develop pan-species computational pathology.

211 Since the model was trained with human epithelial tumour samples, the specimens for testing
212 include other tumour types such as mesenchymal, round cell and neuroendocrine that can have
213 a greater variety of cell morphology, and such diversity of species, and tumour types and sites,
214 likely underpins the wide range of accuracy (0.57-0.94) achieved. For example, in the case of
215 the malignant spindle cell tumour (haemangiosarcoma in a lemur), the neoplastic endothelial
216 cells have large, rounded nuclei, which may appear morphologically similar to that of epithelial
217 cancer cells, as opposed to the elongated nuclei of normal endothelial cells (Fig. 4C). Similarly,
218 for the chimpanzee (*Pan troglodytes*) with a spindle cell sarcoma, the neoplastic fibroblasts are
219 hard to differentiate from reactive fibroblasts with a spindle shape (Fig. 4D). This is a challenge
220 both for the automated analysis and manually by pathologists. Another challenging aspect is the
221 immune compartment, which is highly variable among mammals, birds and reptiles³⁵, imposing
222 difficulties that seem complicated to pass with a generic algorithm. Moreover, this is amplified
223 when evaluating cancer affecting the lymphatic tissue, such as lymphosarcoma in the coati (*N.*
224 *nasua*) and pygmy goat (*C. hircus*), where the white blood cell morphology is altered.
225 Lymphosarcoma cells generally appear similar to normal lymphoid cells, resulting in narrow
226 discriminability chances. In those cases, it may be appropriate to take alternative strategies
227 such as re-train the model, test available models for lymphosarcoma (e.g.,³⁶), or develop a new
228 model incorporating other tissue characteristics. To address this issue, we developed a new
229 metric, named morphospace overlap, to guide pathologists who wish to apply the AI tools to
230 their samples based on morphological similarity.

231 Based on our data, the transferability of existing AI technologies developed for humans to the
232 veterinary domain may be significantly higher than previously thought. Medical treatment for
233 animals has dramatically improved in veterinary clinics, zoological institutions and even wildlife
234 veterinarians³⁷, leading to better options for diagnosing and treating cancer in animal patients²³.
235 Despite these significant advances in veterinary oncology³⁸, there are significant constraints and
236 limited availability of veterinary specialists³⁹, and consequently, digital tools are not widely
237 used^{24,25}. Thus, computational pathology for different species and tumour types will bring

238 tremendous advances for clinical veterinary care and comparative oncology research^{24,40}. Many
239 of the advantages are similar to those for human pathology, with the greatest benefits being
240 accessibility to veterinary pathologists, time saved and increased diagnostic accuracy.

241 Significant challenges remain. For instance, our study's low rate of samples passing quality
242 control highlights a marked difference in sample management between veterinary and human
243 cancer care. Therefore, the pan-species digital pathology atlas, protocols and guidelines for
244 veterinary pathologists provided in this study represent a big step towards rational and efficient
245 transfer of AI technologies to veterinary medicine.

246 Another potential impact of this study is to empower precision medicine for treating animal
247 cancers. Accurate diagnosis and timely treatment could be critical in preserving endangered
248 and threatened species that represent important breeding populations⁴¹. We demonstrated how
249 the AI tool can be used to study lymphocytic infiltration in canine transmissible venereal tumours
250 and Tasmanian devil facial tumours with high accuracy and spatial resolution (Fig. 1B-C). As a
251 transmissible disease, the immune response at the organismal level may offer new alternatives
252 to understand the spread of the disease at a population scale from an epidemiological
253 perspective^{42,43}. These tumours can colonise a new host by crossing the barriers of
254 histocompatibility associated with the immune system and expressing immunosuppressive
255 cytokines^{44,45}. The quantification and spatial detection of both tumour and immune cells can help
256 study immune evasion and treatment in transmissible cancers, building on progress on
257 understanding T cells immune infiltration in Tasmanian devils⁴⁶ and immune regulation in dog's
258 CTVT tumour regression⁴⁷. Furthermore, a detailed study of the tumour microenvironment can
259 guide new discoveries to understand the mechanisms behind sensitivity and resistance to
260 standard treatments such as chemotherapy,^{48,49}. By enabling precision medicine we can
261 advance towards a more personalised and integrative approach to veterinary care⁵⁰.

262 Comparative oncology also brings tremendous benefits to human cancer research^{5,51,52}. Our
263 knowledge of cancer in wild animals is limited, and computational pathology can greatly expand
264 research opportunities that compare cancer in the wild to managed populations, as well as
265 comparisons with human cancer. Cross-species cancer comparisons may help address
266 fundamental questions in cancer biology and evolution. This work revealed highly conserved
267 morphology features across many species, particularly in epithelial and round-cell tumours,
268 highlighting potential evolvability constraints for certain tumour types. The mismatch between
269 species' evolutionary history and the conserved cellular morphological diversity raises new
270 questions on the origin of cell morphological patterns; is morphological conservation fixed early
271 in metazoan evolutionary history? Or is it the result of stabilising selection imposed by the
272 extracellular matrix to meet homeostatic conditions?^{53,54} Addressing the conserved features and
273 differences in tumour biology can lead to novel research, therapeutics and discoveries that one
274 day could be translated into human and non-human clinical care^{37,55}.

275 Limitations of this study include the limited availability of samples and annotations. It will be
276 important to validate our findings on extended pan-species cohorts and advance our
277 understanding of intratumor heterogeneity across different species and derive more controlled
278 interspecies comparisons. With detailed multiplexing profiles, future attempts can shed more
279 light on immune compositions in the microenvironment.

280 This work represents a step forward in incorporating machine learning in diagnostic
281 investigations of natural and emerging diseases in animals, enhancing accuracy and sensitivity
282 and complementing veterinary pathologists' capability in the decision-making process.
283 Computational pathology can bring valuable opportunities for automated diagnosis, tumour
284 grading, scoring, and precision medicine for animal cancers.

285

286 Materials and Methods

287 In total, 99 H&E samples from 29 species were identified from the Zoological Society of
288 London's (ZSL) pathological archive, derived from clinical or postmortem examinations of ZSL
289 London Zoo's living collections (Table S1). Of these, 51 slides from 22 species passed quality
290 control for image analysis, and 18 slides representing 18 species were selected by the
291 pathologists for subsequent analyses. Exclusion criteria were the lack of tumour components
292 and the presence of high amounts of melanin/pigments in the tissue samples hindering the
293 correct identification of individual cells. Samples were either obtained through tissue biopsies
294 from surgery or routine postmortem examinations from animals that were i) examined directly
295 after euthanasia or ii) stored at 4 degrees Celsius and examined within two days of death. A
296 suspect tumour was removed, fixed in 10% buffered formalin solution and trimmed before being
297 sent to external institutions (IZVG Pathology and Finn Pathologists) for histopathological
298 processing, where they were subsequently embedded in paraffin blocks, sectioned and stained
299 with H&E for analysis. Additionally, two samples were provided by the Transmissible Cancer
300 Group, University of Cambridge, as previously reported in the following studies: *Canis familiaris*
301⁵⁶ and *Sarcophilus harrisii*⁹.

302 All slides were scanned using NanoZoomer S210 digital slide scanner (C13239-01) and
303 NanoZoomer digital pathology system v.3.1.7 (Hamamatsu) at 40X (228 nm/pixel resolution).
304 The entire deep learning-based single-cell analysis pipeline described in³³ was implemented.
305 This pipeline was designed and developed for human lung tumour specimens. Briefly, all 20
306 whole-section images were first down-scaled to $\times 20$ and then tiled into 2000×2000 images
307 for subsequent three-stage analysis. Firstly, all viable H&E tissue areas are segmented.
308 Secondly, within the segmented tissue image, a spatially-constrained convolutional neural
309 network predicts for each pixel the probability that it belongs to the centre of a nucleus; cell
310 nuclei were then detected from the probability map obtained from the deep network. Lastly,
311 each identified cell was classified using a neighbouring ensemble predictor coupled with a
312 spatially constrained convolutional neural network. There were four cell classes: cancer
313 (malignant epithelial) cells, lymphocytes (including plasma cells), noninflammatory stromal cells
314 (fibroblasts and endothelial cells) and an 'other' cell type that included non-identifiable cells, less
315 abundant cells such as macrophages and chondrocytes and 'normal' pneumocytes and
316 bronchial epithelial cells.

317 Because the evaluation of the 'other' cell type class would be less mean, given the context of
318 this study, we focused on the three main classes. Two board-certified specialist veterinary
319 pathologists (CP and KH) annotated 14,570 cancer, lymphocyte and stromal single-cell
320 annotations on raw whole-section images.

321 Features extraction at the cell level was done with two steps: a pre-trained MicroNet model⁵⁷ on
322 lung H&Es to segment all cells, followed by automatic extraction of morphological
323 measurements for the set of properties from each cell's mask. This allowed the extraction of 27
324 features for immune and tumour cells annotated by pathologists in the human and non-human
325 slides (MATLAB function 'regionprops' with additional modifications as defined in Table S2).
326 Annotated cells were mapped to the segmented cell centroid with a strict threshold of 4 pixels (<
327 2 μ m, which is less than 1/3 of a lymphocyte cell), and were visually assessed to confirm correct
328 mapping. Dimension reduction was performed using principal component analysis. Then, we
329 selected the first three dimensions of the PCA, enabling us to build a morphological volume for
330 each cell class. We computed morphological space overlap using the R package 'dynRB', which
331 calculates overlap based on the product of overlap at each dimension, the mean overlap across
332 dimensions, or the geometrical mean across the PCA dimensions. We focus on quantifying the
333 percentage of animal cells' morphological space that is covered by human cells' morphological
334 space.

335 The algorithms' performance for detecting and classifying cells across all species was evaluated
336 directly against the ground truth provided by pathologists' annotations. Individual class accuracy
337 statistics were calculated using the R function 'confusionMatrix' from the R package 'caret'. To
338 analyse the variability in the classification balanced accuracy values, BCAcc, across tumour or
339 cell types, we fit a generalised linear model considering a beta distribution (logit link function) for
340 continuous values between 0 and 1 (R package betareg). We computed likelihood ratio tests (R
341 package lmeTest) to evaluate if the distribution of balances accuracy between tumour types
342 comes from the same χ^2 distribution. When the χ^2 test was significant ($p < 0.05$), we applied
343 multiple comparisons correcting p-values using Tukey's procedures (R package emmeans). All
344 the statistical tests were performed in R (version 4.0.3) and corresponding R codes are
345 available at <https://github.com/simonpcastillo/PanSpeciesHistology>.

346

347

Tables

Table 1 Summary of overall balanced classification accuracy (BCAcc) by species. Balanced accuracy is computed as the average of sensitivity and specificity, 'overall' refers to the average of cancer, stromal and lymphocyte cells.

Code	Common name	Species	Diagnosis	Neoplasia site	Tumour type	Annotations	BCAcc
BITARI	Puff adder	<i>Bitis arietans</i>	Carcinoma	Pancreas	Epithelial	336	0.88
CANFAM	Dog	<i>Canis familiaris</i>	Canine transmissible venereal tumor	Intra vaginal	Round-cell	629	0.94
CAPHIR	West African pygmy goat	<i>Capra hircus</i>	Lymphosarcoma	Forestomach	Round-cell	965	0.70
CRAHEA	Panay cloudrunner	<i>Crateromys heaneyi</i>	Hepatocellular carcinoma	Liver	Epithelial	730	0.89
CYACYA	Red-legged honeycreeper	<i>Cyanerpes cyaneus</i>	Sertoli cell tumor	Testis	Sex-cord stromal	762	0.86
DASBYR	Kowari	<i>Dasyuroides byrniae</i>	Squamous cell carcinoma	Mouth	Epithelial	462	0.74
GALMOH	Greater bushbaby	<i>Galago moholi</i>	Squamous cell carcinoma	Skin	Epithelial	684	0.79
GONOXY	Redtailed ratsnake	<i>Gonyosoma oxycephala</i>	Metastatic anaplastic sarcoma	Multiple	Mesenchymal	526	0.91
LEMCAT	Ring-tailed lemur	<i>Lemur catta</i>	Haemangiosarcoma	Kidney	Mesenchymal	1049	0.79
LEOCHR	Golden-headed Lion Tamarin	<i>Leontopithecus chrysomelas</i>	Adenoma	Pituitary	Epithelial	601	0.94
LEPFAL	Mountain chicken frog	<i>Leptodactylus fallax</i>	Adenocarcinoma	Celomic cavity	Epithelial	740	0.81
MELURS	Sri Lankan sloth bear	<i>Melursus ursinus inornatus</i>	Pheochromocytoma	Adrenal	Neuroendocrine	959	0.88
MUSPUT	Domestic polecat	<i>Mustela putorius furo</i>	Sebaceous epithelioma	Skin	Epithelial	702	0.88

NASNAS	Brown-nosed coati	<i>Nasua nasua</i>	Lymphosarcoma	Multiple	Round-cell	520	0.57
OSTTET	West African dwarf crocodile	<i>Osteolaemus tetraspis tetraspis</i>	Lipoma	Liver	Neuroendocrine	1142	0.77
PANTRO	Chimpanzee	<i>Pan troglodytes</i>	Spindle cell tumor	Palate	Mesenchymal	866	0.75
SARHAR	Tasmanian devil	<i>Sarcophilus harrisii</i>	Devil facial tumor 1 (DFT1)	Hard palate near left side	Round-cell	484	0.88
SPHHUM	Humbolt penguin	<i>Spheniscus humboldti</i>	Renal cell adenoma	Kidney	Epithelial	452	0.72
SUSBAR	Bearded Pig	<i>Sus barbatus</i>	Adenocarcinoma	Uterus	Epithelial	1595	0.80
VARPRA	Emerald monitor	<i>Varanus prasinus</i>	Spindle cell sarcoma	Multiple	Mesenchymal	366	0.80

Figures

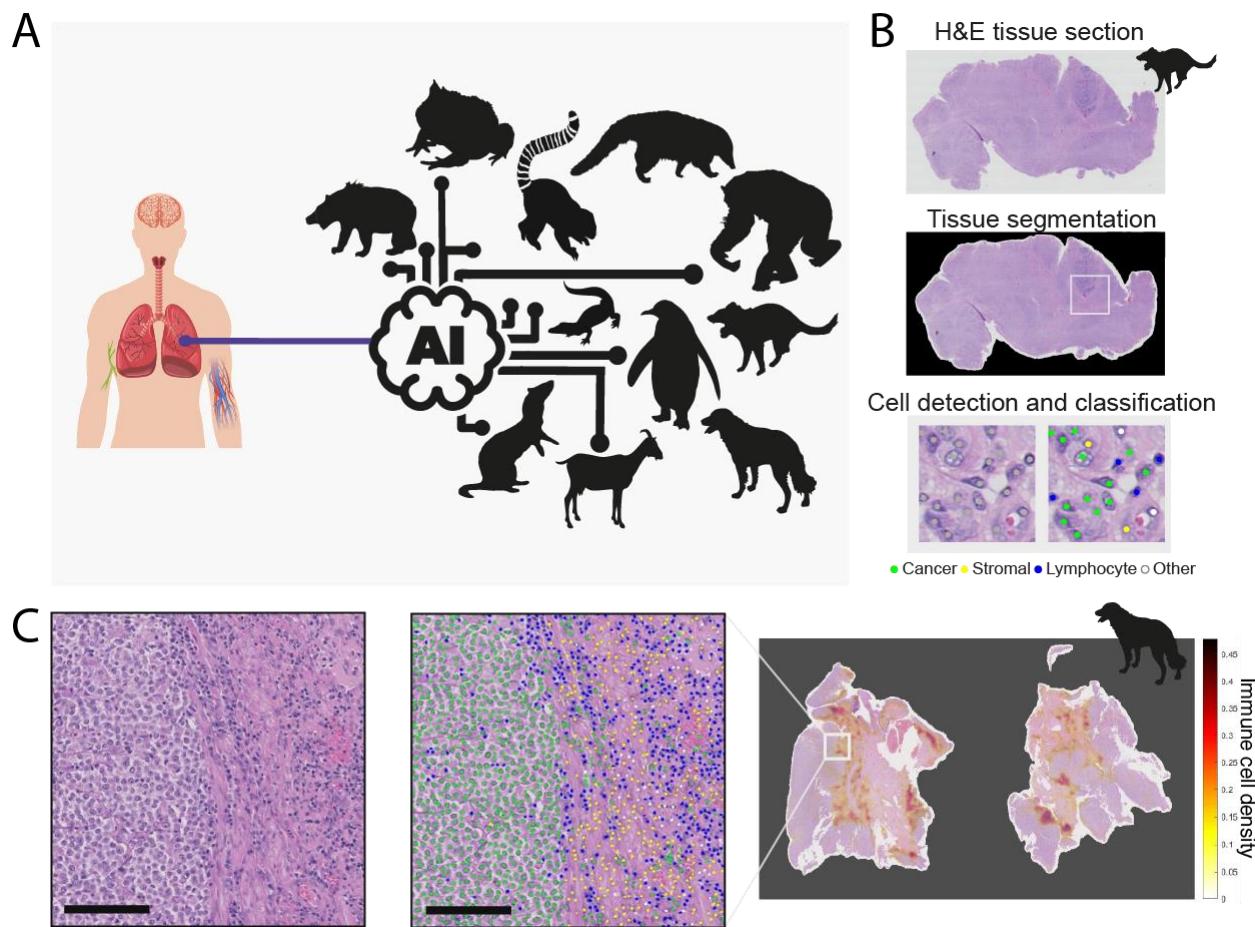


Figure 1 Pan-species computational pathology. (A) *Transfer learning* of cell identification from human lung to pan-species tumour pathology. (B) Overview of the H&E single-cell analysis pipeline illustrated from a Tasmanian devil's (SARHAR) facial tumour. This AI pipeline ³³ first segments the viable tissue area, then detects and classifies all cells into cancer, stromal, lymphocyte and others. For more details, see Methods. (C) The same pipeline is implemented to spatially profile the immune microenvironment in a dog's (CANFAM) transmissible venereal tumour. Scale bar, 250 μ m. Cell colours are denoted as four training classes, green: cancer (malignant epithelial) cells; blue: lymphocytes (including plasma cells); yellow: noninflammatory stromal cells (fibroblasts and endothelial cells); white: 'other' cell class that included nonidentifiable cells, less abundant cells such as macrophages and chondrocytes and 'normal' pneumocytes.

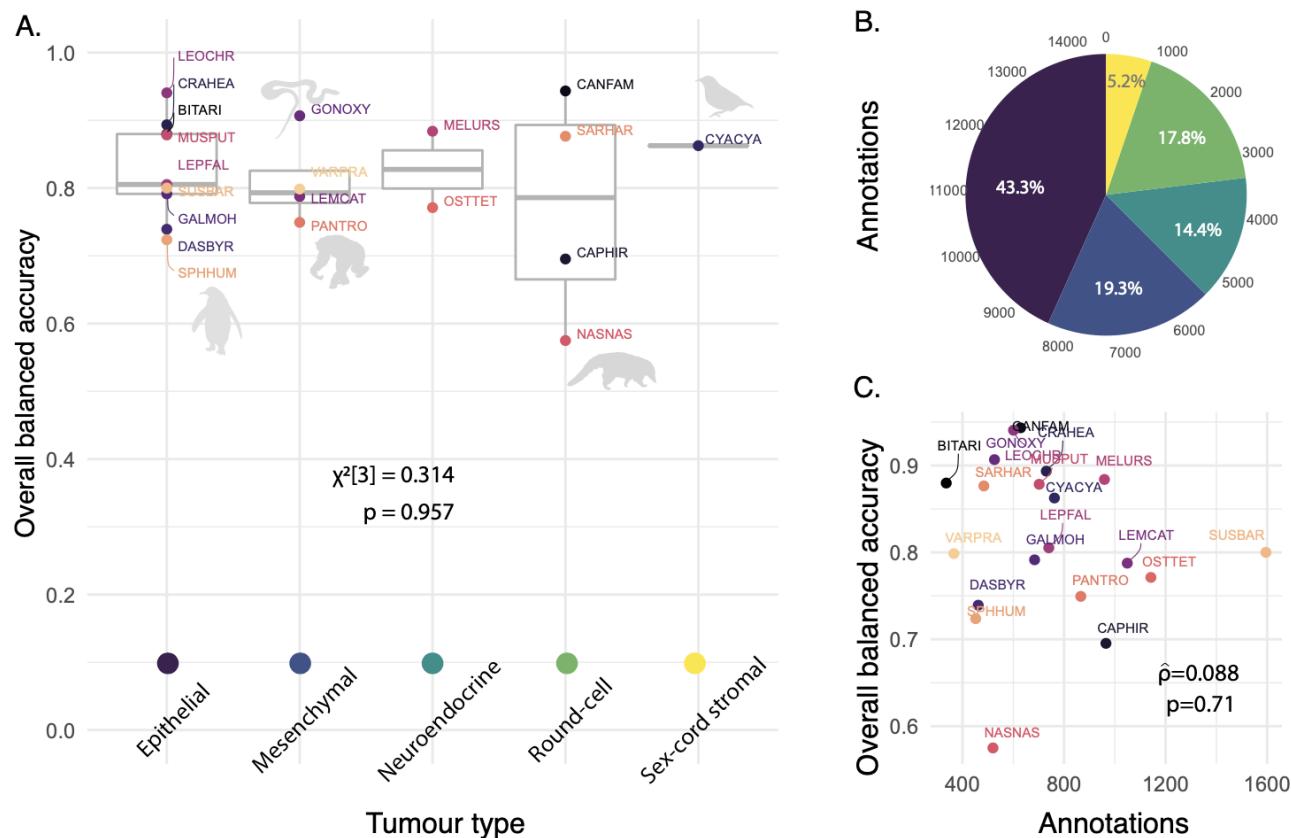


Figure 2 AI single-cell prediction comparison across tumour types. Balanced accuracy is computed as the average of sensitivity and specificity, 'overall' refers to the average of cancer, stromal and lymphocyte cells. (A) Pan-species overall balanced accuracy grouped by tumour type. (B) Distribution of the number of annotations by tumour type (colours correspond to tumour type in A). (C) Relationship between the number of annotations and the overall balanced accuracy for each species using Spearman's correlation. Species in (A) and (C) are labelled with their codes, for more species information, see Table 1.

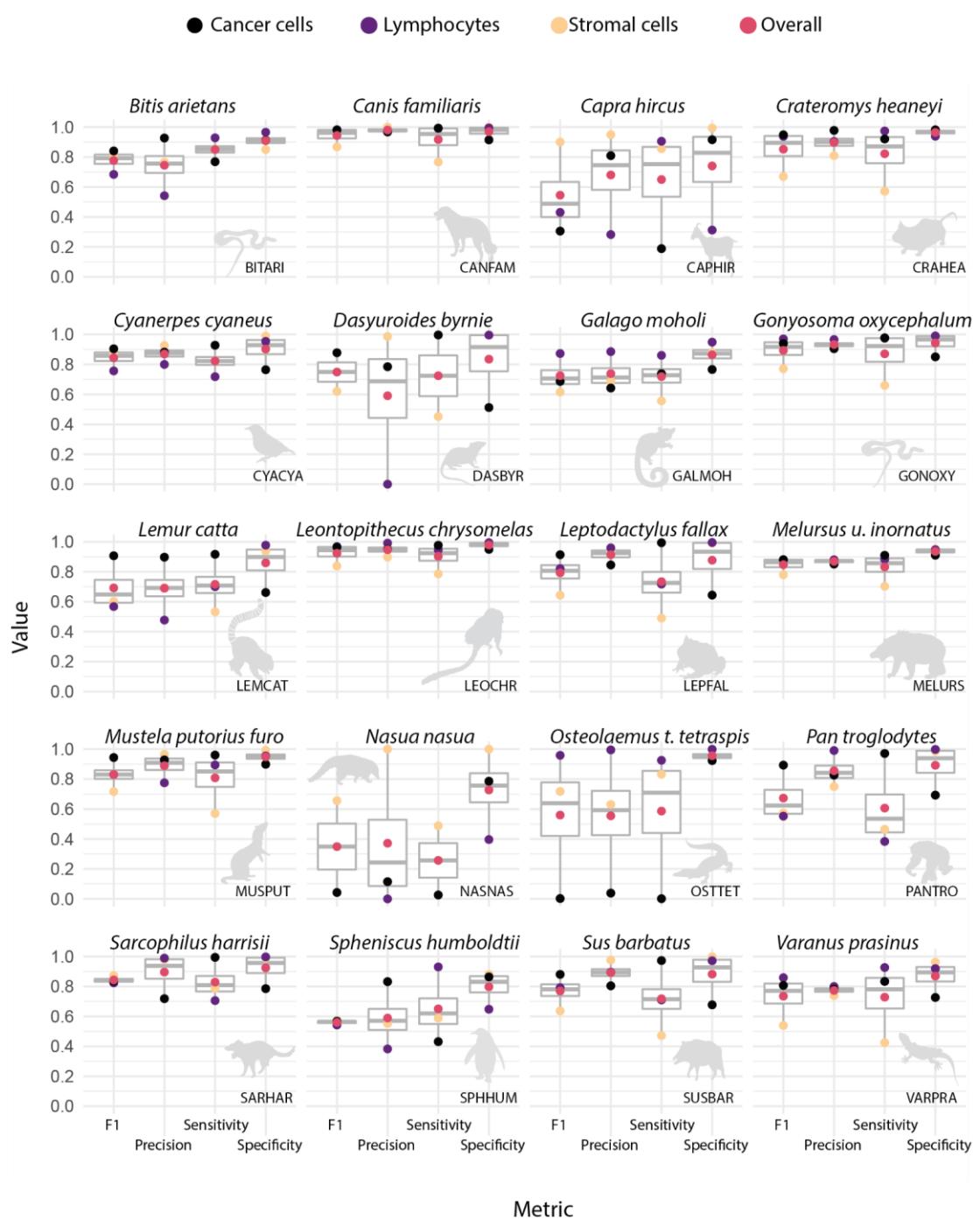


Figure 3 AI prediction variability for inter and intra- species tumour microenvironment cells. For each species, four metrics were evaluated including F1, precision, sensitivity and specificity (as labelled on the bottom x-axis) for the prediction accuracy of cancer, lymphocyte and stromal cells as well as their average shown as 'overall' (as denoted with colours on the top x-axis). For species codes, see Table 1.

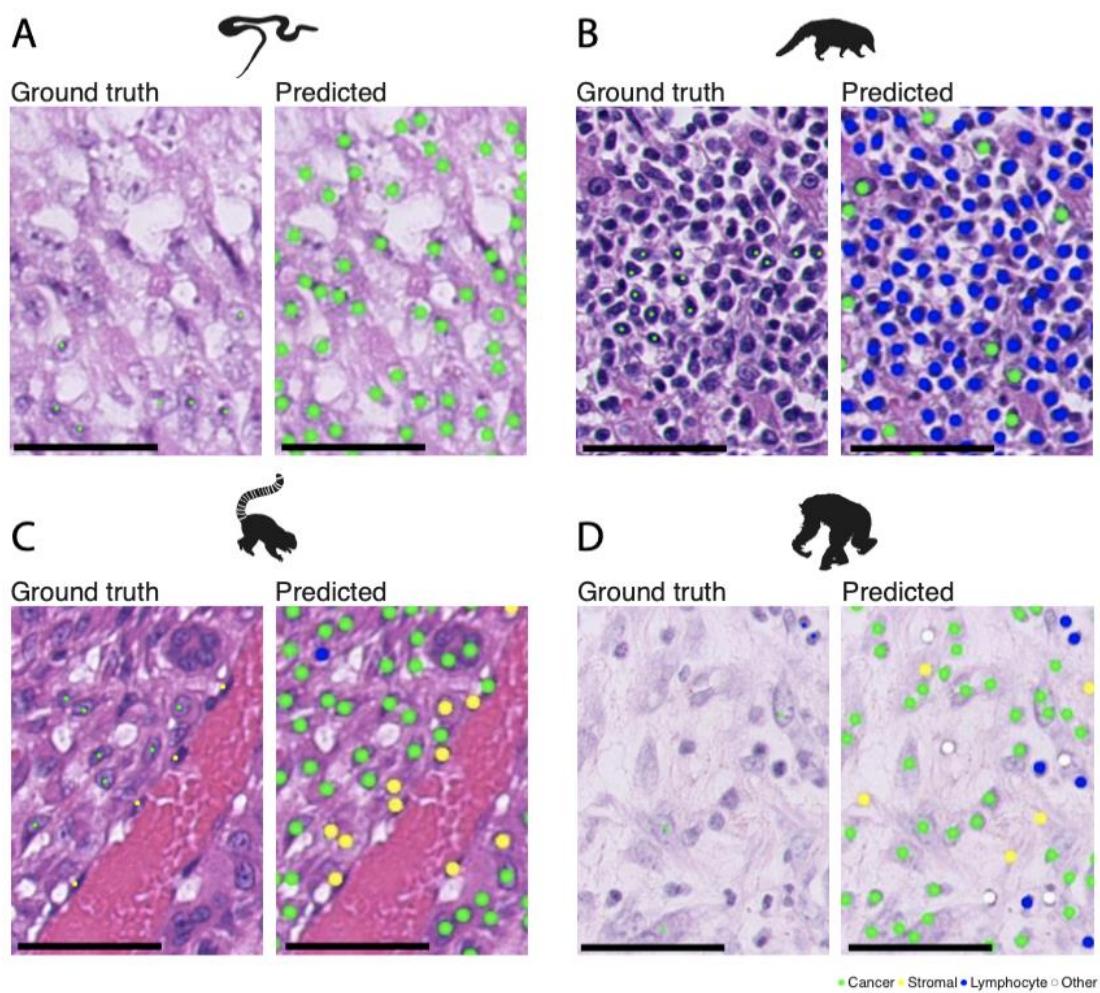


Figure 4 Strengths and pitfalls of current methods. Each H&E example is shown as a raw image with expert pathology annotations on some cells (left) and AI cell identification (right). Scale bar, 100 μ m. Cell colours are denoted as four training classes, green: cancer (malignant epithelial) cells; blue: lymphocytes (including plasma cells); yellow: noninflammatory stromal cells (fibroblasts and endothelial cells); white: 'other' cell class that included nonidentifiable cells, less abundant cells such as macrophages and chondrocytes and 'normal' pneumocytes. (A) Correct identification of cancer cells from a mesenchymal tumour (metastatic anaplastic sarcoma) in a snake (GONOXY). (B) A challenging brown-nosed coati (NASNAS) case was diagnosed with a round-cell tumour (lymphosarcoma) where the cancer cell morphology is difficult to be recognised by an algorithm trained with epithelial cells from human lung cancer. (C) A malignant spindle cell tumour from a ring-tailed lemur (LEMCAT) with a haemangiosarcoma disease, as shown, the neoplastic endothelial cells have large rounded nuclei, which may appear morphologically similar to epithelial cancer cells, as opposed to the AI model's own normal -stromal- endothelial cells. However, the model successfully distinguished the majority of neoplastic from stromal cells. Further complexity is in the occurrence of epithelioid haemangiosarcoma where the cells of origin are endothelial cells but they actually become epithelial-like. (D) In the case of a chimpanzee (PANTRO) with a spindle cell sarcoma, the neoplastic fibroblasts are harder to differentiate from reactive fibroblasts.

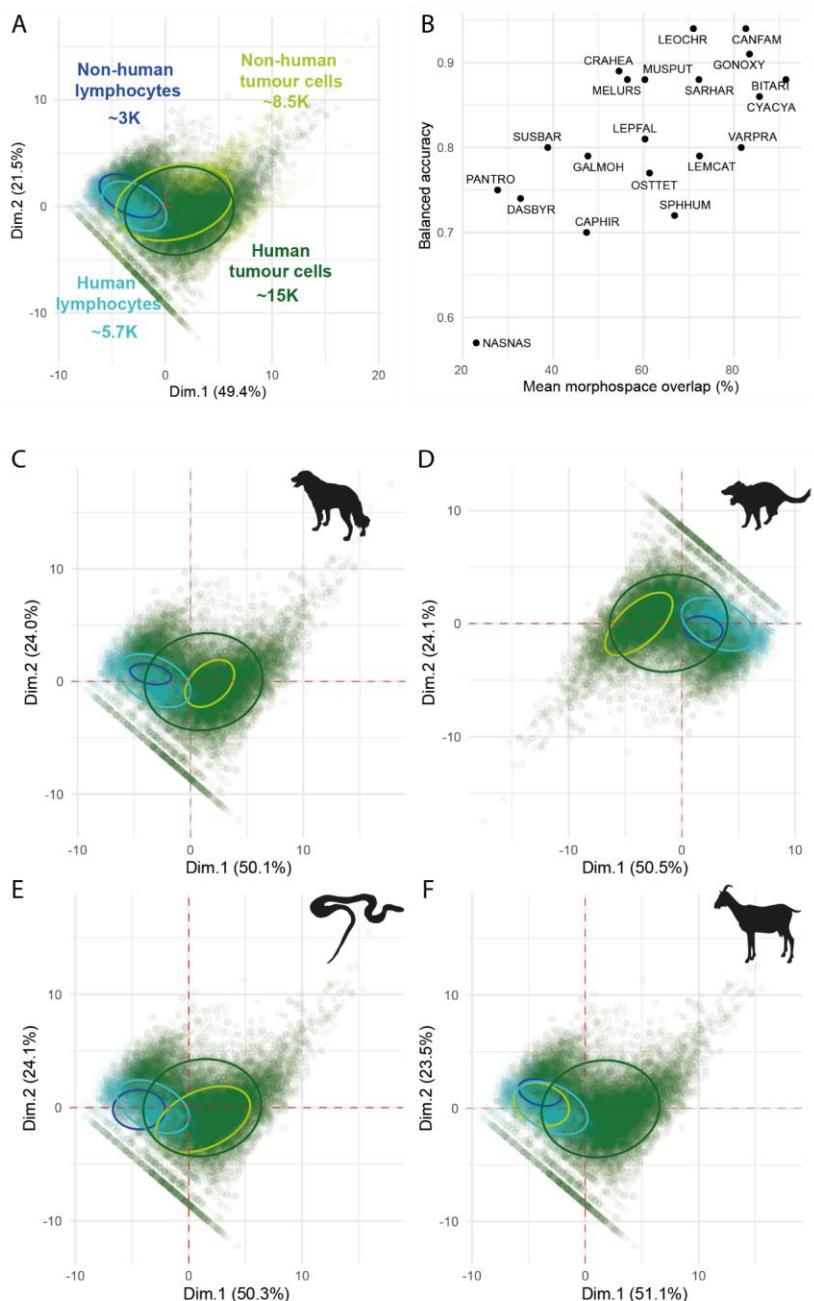


Figure 5 Overlap across the morphological space. (A) Overall high overlap between human and non-human cell morphologies across two dimensions of the principal component analysis, and their explained variances, of the morphological space made by ~31K cells annotated by pathologists. (B) the mean morphospace overlap across animal tumour cells and lymphocytes correlates with the model's balanced accuracy. (C-F) Species-specific morphological space overlap with human morphospace; (C) *Canis lupus familiaris* (CANFAM), (D) *Sarcophilus harrisii* (SARHAR), (E) *Gonyosoma oxycephala* (GONOXY) and (F) *Capra hircus* (CAPHIR). Ellipses denote 95% of the distribution.

References

1. Aktipis, C. A. *et al.* Cancer across the tree of life: cooperation and cheating in multicellularity. *Phil. Trans. R. Soc. B* **370**, 20140219 (2015).
2. Kitsoulis, C. V., Baxevanis, A. D. & Abatzopoulos, T. J. The occurrence of cancer in vertebrates: a mini review. *J of Biol Res-Thessaloniki* **27**, 9 (2020).
3. Aktipis, C. A. & Nesse, R. M. Evolutionary foundations for cancer biology. *Evol Appl* **6**, 144–159 (2013).
4. Hughes, K. Comparative mammary gland postnatal development and tumourigenesis in the sheep, cow, cat and rabbit: Exploring the menagerie. *Seminars in Cell & Developmental Biology* **114**, 186–195 (2021).
5. Abegglen, L. M. *et al.* Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans. *JAMA* **314**, 1850–1860 (2015).
6. Sulak, M. *et al.* TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. *eLife* **5**, e11994 (2016).
7. Shao, Y. W. *et al.* Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. *Oncogene* **38**, 291–298 (2019).
8. Wong, K. *et al.* Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. *Nature Communications* **10**, 353 (2019).
9. Stammnitz, M. R. *et al.* The Origins and Vulnerabilities of Two Transmissible Cancers in Tasmanian Devils. *Cancer Cell* **33**, 607-619.e15 (2018).
10. Murchison, E. P. Clonally transmissible cancers in dogs and Tasmanian devils. *Oncogene* **27**, S19–S30 (2008).
11. Dujon, A. M. *et al.* Transmissible Cancers in an Evolutionary Perspective. *iScience* **23**, 101269 (2020).
12. Pi Castro, D. *et al.* Expression of FOXP3 in Canine Gliomas: Immunohistochemical Study of Tumor-Infiltrating Regulatory Lymphocytes. *Journal of Neuropathology & Experimental Neurology* **79**, 184–193 (2020).
13. Aubreville, M. *et al.* A completely annotated whole slide image dataset of canine breast cancer to aid human breast cancer research. *Scientific Data* **7**, 417 (2020).
14. Gardner, H. L., Fenger, J. M. & London, C. A. Dogs as a Model for Cancer. *Annual Review of Animal Biosciences* **4**, 199–222 (2016).
15. Pesavento, P. A., Agnew, D., Keel, M. K. & Woolard, K. D. Cancer in wildlife: patterns of emergence. *Nat Rev Cancer* **18**, 646–661 (2018).
16. Browning, H. M., Gulland, F. M. D., Hammond, J. A., Colegrave, K. M. & Hall, A. J. Common cancer in a wild animal: the California sea lion (*Zalophus californianus*) as an emerging model for carcinogenesis. *Philos Trans R Soc Lond B Biol Sci* **370**, (2015).

17. Chang, P. H. *et al.* Spontaneous neoplasms in zoo mammals, birds, and reptiles in Taiwan - A 10-year survey. *Animal Biology* **62**, 95–110 (2012).
18. Madsen, T. *et al.* Cancer Prevalence and Etiology in Wild and Captive Animals. *Ecology and Evolution of Cancer* 11–46 (2017) doi:10.1016/B978-0-12-804310-3.00002-8.
19. Boddy, A. M. *et al.* Lifetime cancer prevalence and life history traits in mammals. *Evolution, Medicine, and Public Health* **2020**, 187–195 (2020).
20. Junginger, J. *et al.* Pathology in Captive Wild Felids at German Zoological Gardens. *PLOS ONE* **10**, e0130573 (2015).
21. McAloose, D. & Newton, A. L. Wildlife cancer: a conservation perspective. *Nat Rev Cancer* **9**, 517–526 (2009).
22. Tuia, D. *et al.* Perspectives in machine learning for wildlife conservation. *Nat Commun* **13**, 792 (2022).
23. Boddy, A. M., Harrison, T. M. & Abegglen, L. M. Comparative Oncology: New Insights into an Ancient Disease. *iScience* **23**, 101373 (2020).
24. Bertram, C. A. & Klopferleisch, R. The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine. *Vet Pathol* **54**, 756–766 (2017).
25. Zuraw, A. & Aeffner, F. Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review. *Vet Pathol* **59**, 6–25 (2022).
26. Hoenerhoff, M. J., Meyerholz, D. K., Brayton, C. & Beck, A. P. Challenges and Opportunities for the Veterinary Pathologist in Biomedical Research. *Vet Pathol* **58**, 258–265 (2021).
27. Meuten, D. J. *et al.* International Guidelines for Veterinary Tumor Pathology: A Call to Action. *Vet Pathol* **58**, 766–794 (2021).
28. Ezanno, P. *et al.* Research perspectives on animal health in the era of artificial intelligence. *Vet Res* **52**, 40 (2021).
29. Aubreville, M. *et al.* Deep learning algorithms out-perform veterinary pathologists in detecting the mitotically most active tumor region. *Scientific Reports* **10**, 16447 (2020).
30. Nagy, D. *et al.* Developing ovine mammary terminal duct lobular units have a dynamic mucosal and stromal immune microenvironment. *Commun Biol* **4**, 993 (2021).
31. Awasyeh, A. *et al.* Evaluation of supervised machine-learning algorithms to distinguish between inflammatory bowel disease and alimentary lymphoma in cats. *J VET Diagn Invest* **28**, 679–687 (2016).
32. Mattoon, J. S. & Bryan, J. N. The future of imaging in veterinary oncology: Learning from human medicine. *The Veterinary Journal* **197**, 541–552 (2013).
33. AbdulJabbar, K. *et al.* Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. *Nature Medicine* **26**, 1054–1062 (2020).

34. Elyada, E. *et al.* Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. *Cancer Discov* **9**, 1102–1123 (2019).
35. Montali, R. J. Comparative pathology of inflammation in the higher vertebrates (reptiles, birds and mammals). *Journal of Comparative Pathology* **99**, 1–26 (1988).
36. Syrykh, C. *et al.* Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. *npj Digital Medicine* **3**, 1–8 (2020).
37. Mestrinho, L. A. & Santos, R. R. Translational oncotargets for immunotherapy: From pet dogs to humans. *Advanced Drug Delivery Reviews* **172**, 296–313 (2021).
38. Dobson, J. M. Significant advances in veterinary oncology – 60 years on. *Journal of Small Animal Practice* **60**, 711–722 (2019).
39. Gyles, C. Meeting demands in specialist training — whose responsibility? *Can Vet J* **50**, 687–690 (2009).
40. Riccardo, F., Aurisicchio, L., Impellizeri, J. A. & Cavallo, F. The importance of comparative oncology in translational medicine. *Cancer Immunol Immunother* **64**, 137–148 (2015).
41. McCallum, H. Tasmanian devil facial tumour disease: lessons for conservation biology. *Trends in Ecology & Evolution* **23**, 631–637 (2008).
42. Ujvari, B., Gatenby, R. A. & Thomas, F. The evolutionary ecology of transmissible cancers. *Infection, Genetics and Evolution* **39**, 293–303 (2016).
43. Jones, E. A., Cheng, Y. & Belov, K. The origin, dynamics, and molecular evolution of transmissible cancers. *AGG* **5**, 317–326 (2015).
44. Patchett, A. & Woods, G. Targeting transmissible cancers in animals. *Science* **365**, 438–440 (2019).
45. Siddle, H. V. & Kaufman, J. Immunology of naturally transmissible tumours. *Immunology* **144**, 11–20 (2015).
46. Pye, R. *et al.* Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. *Biology Letters* **12**, 20160553 (2016).
47. Frampton, D. *et al.* Molecular Signatures of Regression of the Canine Transmissible Venereal Tumor. *Cancer Cell* **33**, 620-633.e6 (2018).
48. Hui, L. & Chen, Y. Tumor microenvironment: Sanctuary of the devil. *Cancer Letters* **368**, 7–13 (2015).
49. Klopferleisch, R., Kohn, B. & Gruber, A. D. Mechanisms of tumour resistance against chemotherapeutic agents in veterinary oncology. *The Veterinary Journal* **207**, 63–72 (2016).
50. Klopferleisch, R. Personalised medicine in veterinary oncology: One to cure just one. *The Veterinary Journal* **205**, 128–135 (2015).
51. Nunney, L., Maley, C. C., Breen, M., Hochberg, M. E. & Schiffman, J. D. Peto's paradox and the promise of comparative oncology. *Philosophical Transactions of the Royal Society B: Biological Sciences* **370**, 20140177 (2015).

52. Schiffman, J. D. & Breen, M. Comparative oncology: what dogs and other species can teach us about humans with cancer. *Philosophical Transactions of the Royal Society B: Biological Sciences* **370**, 20140231 (2015).
53. Bissell, M. J. & Barcellos-Hoff, M. H. The Influence of Extracellular Matrix on Gene Expression: Is Structure the Message? *Journal of Cell Science* **1987**, 327–343 (1987).
54. Watt, F. M. The extracellular matrix and cell shape. *Trends in Biochemical Sciences* **11**, 482–485 (1986).
55. Klingemann, H. Immunotherapy for Dogs: Running Behind Humans. *Front Immunol* **9**, 133 (2018).
56. Strakova, A. *et al.* Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer. *Nat Commun* **11**, 3059 (2020).
57. Raza, S. E. A. *et al.* Micro-Net: A unified model for segmentation of various objects in microscopy images. *Medical Image Analysis* **52**, 160–173 (2019).

Acknowledgements:

The authors wish to thank Edmund Flach from the Zoological Society of London, as well as external pathologists Mark Stidworthy, Daniella Denk, Cheryl Sangster, and Ann Pocknell. LMA acknowledges support from the Department of Pediatrics Research Enterprise (University of Utah). Figure icons were taken from phylopic.org (CC BY 3.0), thanks to Sarah Werning, Rebecca Groom, T. Michael Keesey and Tony Hisgett.

Funding:

The Arizona Cancer Evolution Center, University of Arizona, USA.

National Institutes of Health grant U54 CA217376 (YY, AMB, LMA, TAG)

National Institutes of Health grant R01 CA185138 (YY)

Cancer Research UK Career Establishment Award C45982/A21808 (YY)

Cancer Research UK Early Detection Program Award C9203/A28770 (YY)

Cancer Research UK Sarcoma Accelerator C56167/A29363 (YY)

Cancer Research UK Brain tumour Award C25858/A28592 (YY, SPC)

Rosetrees Trust A2714 (YY)

Children's Cancer and Leukaemia Group CCLGA201906 (YY)

The Royal Marsden Hospital, the ICR National Institute of Health Research Biomedical Research Centre (YY).

Department of Pediatrics Research Enterprise, University of Utah (LMA)

Author contributions:

Conceptualization: KA, SPC, EPM, TAG, CP, YY; Methodology: KA, SPC, CP, KH, HD, SS, EF; Investigation: KA, SPC, CP, YY; Writing: SPC, KA, YY, AMB, LMA, CP, YY, with input from all authors.

Competing interests:

The funders had no role in the design of the study; the collection, analysis, or interpretation of the data; the writing of the manuscript; or the decision to submit the manuscript for publication.

Y.Y. has received speakers bureau honoraria from Roche and consulted for Merck and Co Inc.
L.M.A. is a share-holder and consultant to PEEL Therapeutics, Inc.

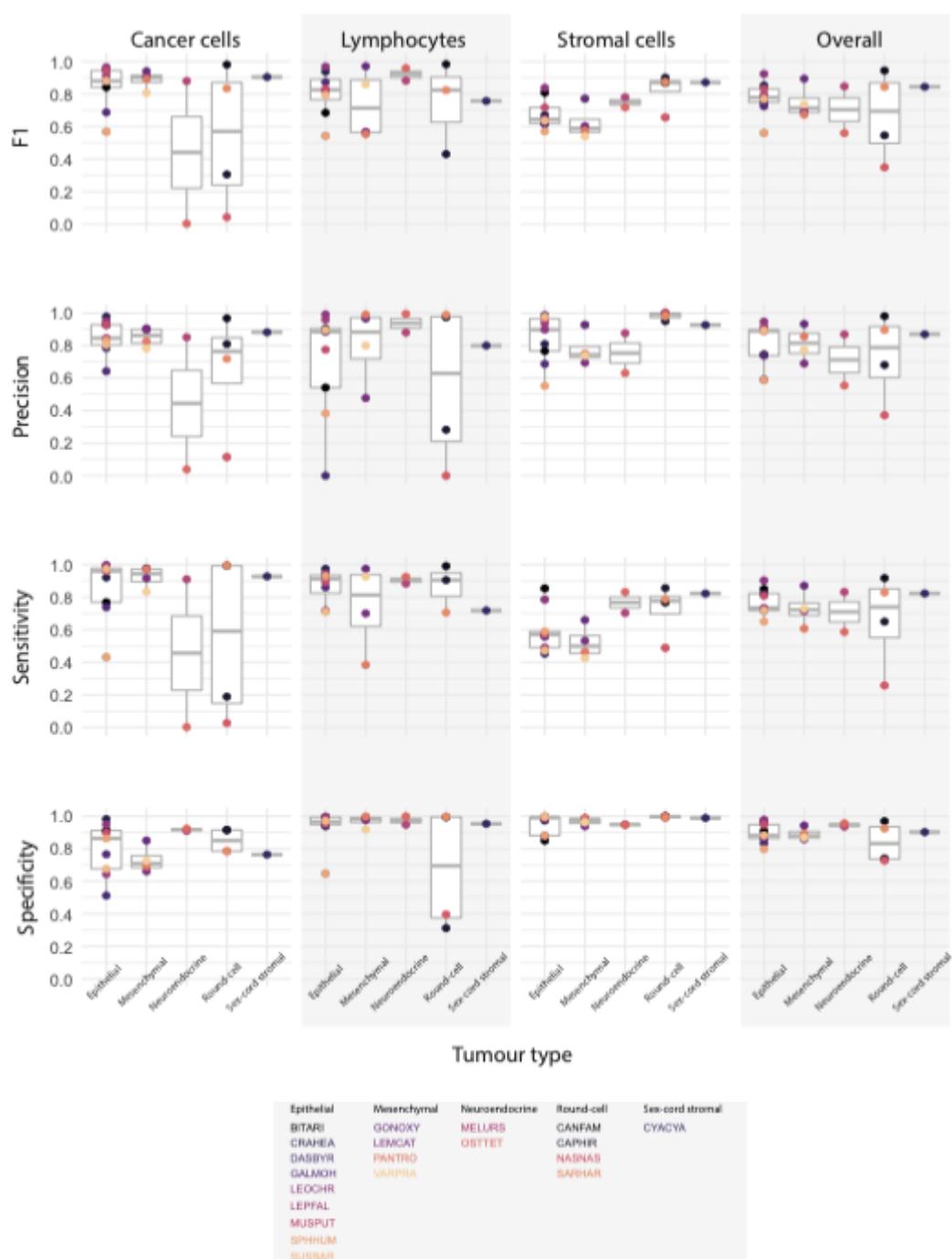
Data and materials availability:

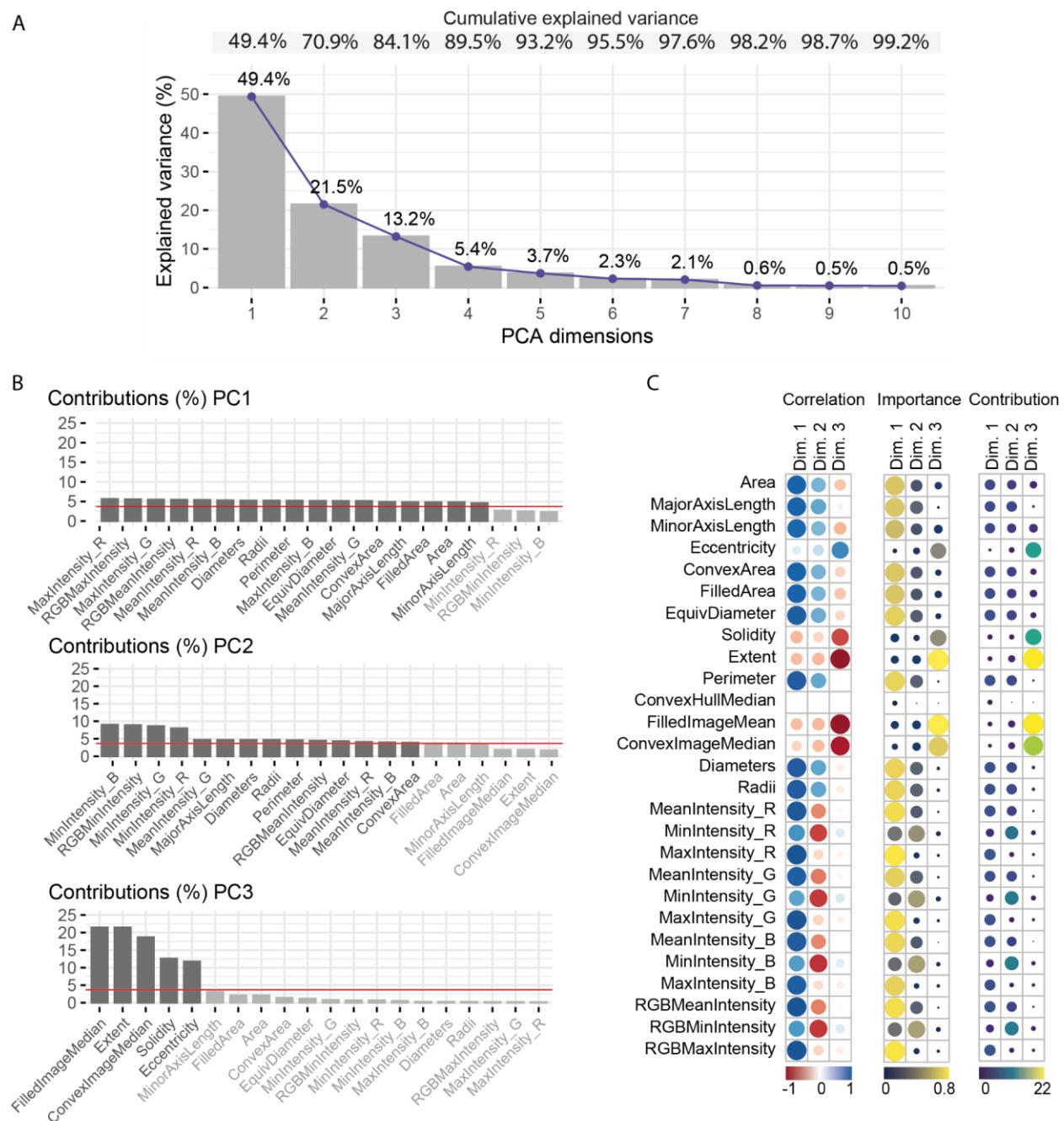
The deep-learning pipeline for digital pathology image analysis is previously available for non-commercial research purposes at <https://github.com/qalid7/compath>. All code used for statistical analyses of image data and morphospace overlap test tool was developed in R (v.4.0.3) and it is available at <https://github.com/simonpcastillo/PanSpeciesHistology>. A rich, pan-species digital pathology atlas will be made publicly available upon publication, providing pan-species digital slide images, slide digitalisation and quality control protocols, and pathological annotations of 14,570 single-cell annotations across 20 species.

Supplementary



Supplementary Figure 1 Extended AI single-cell prediction comparison across tumour types. Balanced accuracy is computed as the average of sensitivity and specificity for (A) cancer, (B) stromal and (C) lymphocyte cells for all species. Species are grouped according to their tumour type and are labelled with their codes, for more species information, see Table 1.





Supplementary Figure 3 Analysis of the morphological space. (A) Dimensions of the principal component analysis (PCA) and their explained variances. (B) The highest 20 contributions to PCA dimensions' explained variances. Darker bars are features above the mean contribution (red line). (C) From left to right, correlation, importance and contribution of the single-cell morphological features to PCA dimension.

Supplementary Table 1 Summary of sample preparation methods as provided from the Zoological Society of London's pathological archive.

Case ID	Species code	Pathologists	Method
B01/17	MUSPUT	IZVG/RVC- DD	Biopsy: removed during surgery and formalin-fixed
B02/18	GALMOH	IZVG/RVC- DD	Biopsy: removed during surgery and formalin-fixed
B04/17	LEMCAT	IZVG/RVC- MS	Biopsy: removed during surgery and formalin-fixed
B07-8/04	PANTRO	ZSL- AP	Biopsy - removed during surgery and formalin-fixed
B09/04	DASBYR	ZSL- AP	Biopsy - removed during surgery and formalin-fixed
W17M035	MELURS	IZVG/RVC- MS	Euthanasia: Carcass fresh – PM examination one day after death
W17R187	OSTTET	IZVG/RVC- DD	Natural death: Carcass fresh - PM on day of death
ZA1360/15	LEPFAL	IZVG/RVC- MS	Natural death: Carcass slightly autolysed – PM on day of death
ZB017/18	CYACYA	IZVG/RVC- MS	Euthanasia: Carcass fresh – PM examination one day after death
ZB485/19	SPHHUM	IZVG/RVC- CS	Euthanasia: No comment on carcass condition - PM carried out 2 days after euthanasia
ZM134/17	CAPHIR	IZVG/RVC- CS	Carcass fresh – euthanised and PM'd on day of death
ZM138/17	SUSBAR	IZVG/RVC- MS	Carcass fresh - PM on day of death
ZM203/17	LEOCHR	IZVG/RVC- MS	Carcass fresh - PM on day of death
ZM633/18	CRAHEA	IZVG/RVC- DD	Euthanasia: Carcass fresh – PM examination one day after death
ZM748/18	NASNAS	IZVG/RVC- CS	Euthanasia: Carcass fresh – PM examination one day after death
ZR1145/15	GONOXY	IZVG/RVC- MS	Euthanasia: Carcass fresh - kept in fridge two days before examination

ZR1148/18	VARPRA	IZVG/RVC- DD	Euthanasia: Carcass fresh – PM examination one day after death
ZR474/19	BITARI	IZVG/RVC- CS	Euthanasia: Carcass fresh – PM examination one day after death

Supplementary Table 2 The 27 single-cell features extracted to compute the morphological space.

Feature	Description
Area	Two-dimensional extension of a shape
MajorAxisLength	Longest diameter
MinorAxisLength	Shortest diameter
Eccentricity	Magnitude inversely related to shape curvature
ConvexArea	Area resulting from connecting the external points of the shape
FilledArea	Area of a corresponding image with holes filled in
EquivDiameter	Diameter of a circle with the same area as the region
Solidity	Extent to which the shape fills the convex area
Extent	Ratio of pixels in the region to pixels in the total bounding box
Perimeter	Length of the shape boundary
ConvexHullMean	Smallest convex polygon that can contain the region
FilledImageMean	Average of pixels corresponding to the segmented mask, with all holes filled
ConvexImageMean	Average of pixels corresponding to a segmented mask which specifies the convex hull of the region
Diameters	Cell diameter using major and minor axes
Radii	Cell radius
MeanIntensity_R	Mean pixel intensity in the red channel
MinIntensity_R	Minimum pixel intensity in the red channel
MaxIntensity_R	Maximum pixel intensity in the red channel

MeanIntensity_G	Mean pixel intensity in the green channel
MinIntensity_G	Minimum pixel intensity in the green channel
MaxIntensity_G	Maximum pixel intensity in the green channel
MeanIntensity_B	Mean pixel intensity in the blue channel
MinIntensity_B	Minimum pixel intensity in the blue channel
MaxIntensity_B	Maximum pixel intensity in the blue channel
RGBMeanIntensity	Mean pixel intensity in the composed image
RGBMinIntensity	Minimum pixel intensity in the composed image
RGBMaxIntensity	Maximum pixel intensity in the composed image

Supplementary table 3 Morphological volumes overlap of human cells on non-human cells' morphological space calculated by the three methods. The highest overlap values for non-human lymphocytes and tumour cells are bold-faced.

Morphological volume of	Covered by the volume of	% Overlap (product)	% Overlap (mean)	% Overlap (geom. mean)
Non-human lymphocytes	Human lymphocytes	63.47	84.55	81.25
Non-human lymphocytes	Human tumour cells	40.41	67.6	59.84
Non-human tumour cells	Human lymphocytes	16.56	54.82	50.24
Non-human tumour cells	Human tumour cells	67.97	86.49	86.14