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Abstract:

Cancers occur across species. Understanding what is consistent and varies across species can
provide new insights into cancer initiation and evolution, with significant implications for animal
welfare and wildlife conservation. We built the pan-species cancer digital pathology atlas
(PANCAD) and conducted the first pan-species study of computational comparative pathology
using a supervised convolutional neural network algorithm trained on human samples. The
artificial intelligence algorithm achieves high accuracy in measuring immune response through
single-cell classification for two transmissible cancers (canine transmissible venereal tumour,
0.94; Tasmanian devil facial tumour disease, 0.88). Furthermore, in 18 other vertebrate species
(mammalia=11, reptilia=4, aves=2, and amphibia=1), accuracy (0.57-0.94) was influenced by
cell morphological similarity preserved across different taxonomic groups, tumour sites, and
variations in the immune compartment. A new metric, named morphospace overlap, was
developed to guide veterinary pathologists towards rational deployment of this technology on
new samples. This study provides the foundation and guidelines for transferring artificial
intelligence technologies to veterinary pathology based on a new understanding of
morphological conservation, which could vastly accelerate new developments in veterinary
medicine and comparative oncology.
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Introduction

Cancers occur with phenotypically similar forms across the tree of lifel™. Understanding the
conserved and diverged aspects of cancer across species can help answer questions about the
origin and fundamental processes of its evolution. Immediate and practical advances from pan-
species studies provide new tools and valuable insights into tumorigenesis and cancer
resistance>?, leading to improved cancer care for humans and non-human animals. Specifically,
transmissible cancers presented in dogs and Tasmanian devils®1° are among the few known
naturally occurring clonally transmissible cancers'!. How transmissible cancers escape immune
surveillance remains unclear and is of central importance to understanding their biology and cell
to cell interactions.

Despite significant resources in companion animal care, clinical treatments options are limited
for a few aggressive cancers in dogs'?*® that represent one of the best models of human
cancer'*, Beyond domesticated species, various studies have identified valuable models in
wildlife!®. For instance, the naturally-emerging urogenital carcinoma in California sea lions!® and
papillomavirus triggering brain tumours in raccoons®® are remarkable examples of pathogen-
driven neoplasms. Animals managed in zoological institutes also exhibit occurrence of
neoplastic growth according to several international studies, including, a 10-year survey in the
Taipei zoo, Taiwan?’, a study of cancer development in vertebrates in French zoological
parks?8, a 42-years of mammals necropsy data compilation from the San Diego Zoo, United
States!®, and a report on renal lesions followed by neoplastic and inflammatory responses in
captive wild felids in Germany?°. Studies of these animals can provide unique insights into the
biology and evolution of cancer across the tree of life towards improving animal welfare by early
detection and helping conserve endangered species?!?2,

Challenges for establishing a unified comparative oncology agenda include sample collection,
data management, analysis, and integration?*-2’. These can be tackled by incorporating artificial
intelligence (Al) algorithms, which can empower veterinary pathology and help dissect the
complexity of cancer across species and scales, from genes to epidemiology. Computational
pathology powered by Al has revolutionised the study of human cancers and helped improve
our understanding of the immune microenvironment?®. In contrast to human cancer
management, we lack systematic and standardised Al protocols and digital archiving and
analysis of samples to study animal cancers; hence, veterinary research has not fully adopted
digital pathology? although efforts are being made to move forward internationally adopted
guidelines for tumour pathology?’.

Hence, we propose Al has the power to fuel pan-species tumour histology and efficiently
manage data-related bottlenecks. Thus far, computational pathology in the study of non-human
cancers, and non-human pathology in general, is very limited?*2°. Convolutional neural networks
have been applied to detect mitotic activity from histological slides of canine cancers®%. In
sheep, deep learning has been employed to delineate growth phases of mammary
development®°. Other machine learning technigues have been used to classify a common
gastrointestinal disease in cats®!. Along with computational pathology, incorporating Al into the
veterinary practice of imaging techniques such as CT scans, magnetic resonance imaging, and
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79  positron emission tomography3? encourages the development of integrative clinical care. Such
80 anintegrative approach promises to direct precision medicine in veterinary oncology by tailoring
81 strategies for individual patients. It includes classifying patients who differ in their treatment

82  response and/or prognostic outcomes.

83 In this work, we explore and exploit the conservatism of cell morphology in neoplasias across
84  species by applying an Al tool trained in human lung cancer® (Fig 1). We evaluate the accuracy
85  of this Al tool in mapping tumour cells distribution and lymphocytic infiltration in histological

86 tissues from transmissible cancers and its generalisability to 18 other species. To the best of our
87  knowledge, this is the first effort to apply computational pathology algorithms to transmissible

88  cancers and pan-species pathology beyond mammals, thereby decoding the composition of

89 cells in tumours across species. Our approach aims to pave the way for pan-species

90 comparative pathology and contribute to understanding the emergence and prevalence of

91  cancer in nature.

92
93 Results
94  Collection and quality control for veterinary histology samples

95  Ten hematoxylin and eosin (H&E)-stained tumour samples from 3 individuals with Tasmanian
96 devil facial tumour disease 1 and 2 (DFT1 and DFT2) and 6 with canine transmissible venereal
97  tumour (CTVT) were collected and digitalised from the Transmissible Cancers Group, University
98 of Cambridge. Of these, 7 passed visual quality control for image analysis. One representative
99 slide was chosen by the pathologists for each species considering scanning resolution and level
100  of immune infiltration in the tumour microenvironment. In addition, H&E samples from 18
101 species were selected from the Zoological Society of London’s (ZSL) pathological archive and
102  digitalised (classes Mammalia = 11 species, Reptilia = 4, Aves = 2, and Amphibia = 1). The
103  neoplastic lesions were broadly categorised into five main tumour groups: round-cell (n = 4),
104  epithelial (n = 9), mesenchymal (n = 4), neuroendocrine (n=2) and sex-cord stromal (n=1)
105 tumours. A rich, pan-species digital pathology atlas was created, providing digital slide images,
106 digitalisation and quality control protocols, and pathological annotations described below.

107
108 Transferring Al technologies to non-human species

109 A deep learning pipeline tailored for human lung cancer (predominantly lung adenocarcinoma,
110  including lung squamous cell carcinoma®3, Fig. 1A) was applied without modification to all 20
111  H&E samples. Briefly, this pipeline identifies the precise location of individual cells in each H&E
112  and classifies them based on nuclear morphology in one of four cell types: tumour cells,

113  lymphocytes, stromal cells (fibroblasts and endothelial cells) and ‘other’ cells (macrophages,
114 pneumocytes and non-identifiable cells) (Fig. 1B-C). We evaluated the accuracy of the

115  convolutional neural network (CNN) with 14,570 cancer, lymphocyte, and stromal single-cell
116  annotations from two board-certified specialist veterinary pathologists (CP and KH). For each
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117  slide, we computed the algorithm’s balanced single-cell classification accuracy (BCAcc, Table
118 1), as well as F1 score, precision, sensitivity and specificity (Figs S1-S2).

119  For evaluating the accuracy in classifying cells by the algorithm, we compared its predictions
120 against veterinary pathologists’ annotations. The algorithm’s average balanced accuracy across
121 cell classes showed a diverse range of variation between and within tumour groups (Figs. 2A,
122  S1-S2). Tumour types have the same overall accuracy for cell classification based on the

123  balanced classification accuracy values (LR test, overall BCAcc averaged across samples =
124  0.81; LR test, x?[3] = 0.314, p = 0.957). Moreover, despite the heterogeneous number of

125 annotations per tumour type (Fig. 2B), the balanced accuracy was not associated with the

126  number of annotations (Spearman’s p = 0.088, p = 0.71) (Fig. 2B-C).

127
128 Consistent accuracy across tumour types but higher in mammals

129  Overall, the model’s best performance was mainly in mammals (Fig. 3). In particular, the Al

130  algorithm achieves high accuracy in measuring immune response for the two transmissible

131 cancers (canine transmissible venereal tumour - CTVT, 0.94; Tasmanian devil facial tumour

132 disease- DFTD, 0.88). The canine transmissible venereal tumour (in Canis I. familiaris) exhibited
133  the best accuracy across all 20 species (overall precision = 0.98, F1 and BCAcc = 0.94, Fig. 3).
134 Surprisingly, in the metastatic sarcoma in a snake (Gonyosoma oxycephalum), the CNN also
135 reached a high accuracy (Fig. 4A, overall precision = 0.89, F1 = 0.89 and BCAcc = 0.91).

136  Inthe 18 other vertebrate species (mammalia=11, reptilia=4, aves=2, and amphibia=1),

137  accuracy varies (0.57-0.94). The performance of cancer cells and lymphocyte classification,
138 measured as balanced accuracy, did not vary between tumour types (LR test, cancer cells:
139  median = 0.825, x?[3] = 1.358, p = 0.715; lymphocytes: median = 0.915, x*[3] = 0.308, p =

140  0.959). However, the classification accuracy of stromal cells differs between tumour types (LR
141  test, median = 0.773,x%3] = 10.308, p = 0.016), with p-adjusted significant only for differences
142  between epithelial-round cell (z-test, estimate = -0.092, SE = 0.031, z = -3.073, p = 0.018) and
143  mesenchymal-round cell tumour types (estimate = -0.121, SE = 0.039, z = -3.073, p = 0.011).
144  All other comparisons have a p-value higher than 0.05. Surprisingly, in both cases where we
145  reported significant differences, the balanced accuracy of stromal cells in round-cell tumour
146  types was higher than mesenchymal or epithelial tumour types. In our cohort, the round-cell
147  tumour types were present in the dog (Canis familiaris), the Tasmanian devil (Sarcophillus
148 harrisii), the pygmy goat (Capra hircus) and the ring-tailed coati (Nasua nasua). These results
149  show a high classification accuracy of the model consistent with expert pathologists’ annotations
150 across tumour types for cancer cells and lymphocytes and slight variations in the case of

151  stromal cells.

152
153 Species and cancer-specific challenges

154  The detection of cancer cells presented more challenging classifications in lymphosarcoma from
155 the common goat (Capra hircus), the ring-tailed coati (Nasua nasua) and in lipoma from the
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156  dwarf crocodile (Osteolaemus tetraspis), which by their cell morphology and tissue architecture
157  may be difficult to be classified by an algorithm trained with epithelial cells from human lung
158 adenocarcinoma (Fig. 4B). These results suggest that the accuracy of computational pathology
159 at single-cell resolution depends on the type of target cancer and its degree of differentiation
160 from the training cancer type. Morphologically complex cancers that drastically change their
161 morphological features or cancers with a high degree of similarity to the normal cells (e.qg.

162 lymphosarcoma) represent significant hurdles for transfer learning.

163
164 Morphological preservation across species

165 To explore the morphological similarity between human and non-human samples, which could
166  explain the accuracy of the Al algorithm, we visualised the morphological space of ~32K cells
167 annotated by expert pathologists using principal component analysis (Fig 5). The PCA analysis
168  was used for dimension reduction (Fig 5) of the 27 features extracted by the Al algorithm at the
169 individual cell level (Table S2). The first three PCA dimensions account for 84.1% of the

170  morphological variance (Fig S3A). The first dimension explains 49.4% of the morphological
171  variance, and the cell features with the highest contributions to that explained variance are

172  associated with nucleus size (area, perimeter, diameter, radius, convex area) and maximum
173  intensity in the colour channels (Fig S3B). These variables are positively correlated with the first
174  dimension, with high importance to explaining individual cells’ position in the morphological
175 space (Fig S3C). The overlap of the volumes in PCA space suggests a high degree of

176  morphological similarity between human and non-human cells (Table S3). For non-human

177  lymphocytes, 84.55% of their morphological space intersects with the human lymphocyte

178 morphospace. And for non-human tumour cells volume, which shows higher morphological
179  variability, 86.49% of its volume is captured by human tumour cells’ volume.

180 Morphospace overlap as a new guidance metric

181  To further dissect the relationship between the Al performance and morphological similarity

182  across species, we developed a new metric, termed morphospace overlap, as the average of
183  overlaps of cancer cell/lymphocyte morphological space between a species and humans. We
184  found that the Al model’'s balanced accuracy is positively correlated with morphospace overlap
185 (Pearson's correlation = 0.68, p=0.001; Fig 5B), suggesting that the Al model performed better
186  on species sharing higher morphological similarity with human cells. Species-specific analyses
187  revealed further understanding of the model's performance. Among the tissues with higher

188  balanced accuracy and high morphospace overlap are dog’s CTVT (Fig 5C), Tasmanian devils’
189 DFTD (Fig 5D) and snake’s sarcoma (Fig 5E) (morphospace overlap (%) = 82.6, 72.2, and 83.4,
190 balanced accuracy = 0.94, 0.88, and 0.91, respectively) and the goat’s lymphosarcoma (Fig 5F)
191 as one of the challenging cases, with smaller morphological overlap between its tumour cells
192 and human’s cells (morphospace overlap (%) = 47.4, balanced accuracy = 0.7). Species with
193 >70% morphospace overlap had an average of 87.5% balanced accuracy (range 79-94%), and
194  species with >80% morphospace overlap averaged 88% balanced accuracy (range 80-94%).
195 Thus, this new metric may be a useful tool for pathologists to determine the usability of our Al
196  tool.
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197
198 Discussion

199 Comparative oncology pursues the understanding of cancer as a shared phenomenon among
200 species. Here, we have explored the potential of Al through automated pathological image
201  analysis to study cancer morphology and immune response across the tree of life. Previous
202  studies have often been limited to a single species, with applications mainly focused on canine
203  and mouse models (e.g.,2**4). To the best of our knowledge, this is the first study of

204  computational pathology that includes tumours from vertebrates beyond mammals, such as
205 aves, reptiles and one amphibian. Although the algorithm was trained on human samples, it

206  could distinguish three major cell types with remarkable accuracy in most of the species

207  (19/20 species reached an accuracy = 70% and 12/20 species = 80%). Broadly, our

208  comparative analysis revealed that regardless of species, morphological conservation across
209  species dictates that cells can be detected and correctly classified by a human specimen-
210 trained Al, fostering our endeavour to develop pan-species computational pathology.

211  Since the model was trained with human epithelial tumour samples, the specimens for testing
212  include other tumour types such as mesenchymal, round cell and neuroendocrine that can have
213  agreater variety of cell morphology, and such diversity of species, and tumour types and sites,
214  likely underpins the wide range of accuracy (0.57-0.94) achieved. For example, in the case of
215  the malignant spindle cell tumour (haemangiosarcoma in a lemur), the neoplastic endothelial
216 cells have large, rounded nuclei, which may appear morphologically similar to that of epithelial
217  cancer cells, as opposed to the elongated nuclei of normal endothelial cells (Fig. 4C). Similarly,
218  for the chimpanzee (Pan troglodytes) with a spindle cell sarcoma, the neoplastic fibroblasts are
219 hard to differentiate from reactive fibroblasts with a spindle shape (Fig. 4D). This is a challenge
220  both for the automated analysis and manually by pathologists. Another challenging aspect is the
221  immune compartment, which is highly variable among mammals, birds and reptiles®, imposing
222  difficulties that seem complicated to pass with a generic algorithm. Moreover, this is amplified
223  when evaluating cancer affecting the lymphatic tissue, such as lymphosarcoma in the coati (N.
224  nasua) and pygmy goat (C. hircus), where the white blood cell morphology is altered.

225  Lymphosarcoma cells generally appear similar to normal lymphoid cells, resulting in narrow

226  discriminability chances. In those cases, it may be appropriate to take alternative strategies

227  such as re-train the model, test available models for lymphosarcoma (e.g., %), or develop a new
228  model incorporating other tissue characteristics. To address this issue, we developed a new
229  metric, named morphospace overlap, to guide pathologists who wish to apply the Al tools to
230  their samples based on morphological similarity.

231  Based on our data, the transferability of existing Al technologies developed for humans to the
232  veterinary domain may be significantly higher than previously thought. Medical treatment for
233  animals has dramatically improved in veterinary clinics, zoological institutions and even wildlife
234  veterinarians®, leading to better options for diagnosing and treating cancer in animal patients?.
235 Despite these significant advances in veterinary oncology®8, there are significant constraints and
236 limited availability of veterinary specialists®®, and consequently, digital tools are not widely

237  used??®, Thus, computational pathology for different species and tumour types will bring
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238 tremendous advances for clinical veterinary care and comparative oncology research?*4, Many
239 of the advantages are similar to those for human pathology, with the greatest benefits being
240  accessibility to veterinary pathologists, time saved and increased diagnostic accuracy.

241  Significant challenges remain. For instance, our study's low rate of samples passing quality
242  control highlights a marked difference in sample management between veterinary and human
243  cancer care. Therefore, the pan-species digital pathology atlas, protocols and guidelines for
244  veterinary pathologists provided in this study represent a big step towards rational and efficient
245  transfer of Al technologies to veterinary medicine.

246  Another potential impact of this study is to empower precision medicine for treating animal

247  cancers. Accurate diagnosis and timely treatment could be critical in preserving endangered
248  and threatened species that represent important breeding populations**. We demonstrated how
249  the Al tool can be used to study lymphocytic infiltration in canine transmissible venereal tumours
250 and Tasmanian devil facial tumours with high accuracy and spatial resolution (Fig. 1B-C). As a
251 transmissible disease, the immune response at the organismal level may offer new alternatives
252  to understand the spread of the disease at a population scale from an epidemiological

253  perspective*?43, These tumours can colonise a new host by crossing the barriers of

254  histocompatibility associated with the immune system and expressing immunosuppressive

255  cytokines**. The quantification and spatial detection of both tumour and immune cells can help
256  study immune evasion and treatment in transmissible cancers, building on progress on

257  understanding T cells immune infiltration in Tasmanian devils*® and immune regulation in dog’s
258  CTVT tumour regression*’. Furthermore, a detailed study of the tumour microenvironment can
259  guide new discoveries to understand the mechanisms behind sensitivity and resistance to

260 standard treatments such as chemotherapy,*4°. By enabling precision medicine we can

261 advance towards a more personalised and integrative approach to veterinary care®.

262  Comparative oncology also brings tremendous benefits to human cancer research®%°2, Qur
263  knowledge of cancer in wild animals is limited, and computational pathology can greatly expand
264  research opportunities that compare cancer in the wild to managed populations, as well as

265  comparisons with human cancer. Cross-species cancer comparisons may help address

266 fundamental questions in cancer biology and evolution. This work revealed highly conserved
267  morphology features across many species, particularly in epithelial and round-cell tumours,

268 highlighting potential evolvability constraints for certain tumour types. The mismatch between
269  species’ evolutionary history and the conserved cellular morphological diversity raises new

270  questions on the origin of cell morphological patterns; is morphological conservation fixed early
271  in metazoan evolutionary history? Or is it the result of stabilising selection imposed by the

272  extracellular matrix to meet homeostatic conditions?°3°* Addressing the conserved features and
273  differences in tumour biology can lead to novel research, therapeutics and discoveries that one
274  day could be translated into human and non-human clinical care®’-*°,

275  Limitations of this study include the limited availability of samples and annotations. It will be
276  important to validate our findings on extended pan-species cohorts and advance our

277  understanding of intratumor heterogeneity across different species and derive more controlled
278 interspecies comparisons. With detailed multiplexing profiles, future attempts can shed more
279  light on immune compositions in the microenvironment.
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280  This work represents a step forward in incorporating machine learning in diagnostic

281 investigations of natural and emerging diseases in animals, enhancing accuracy and sensitivity
282  and complementing veterinary pathologists’ capability in the decision-making process.

283  Computational pathology can bring valuable opportunities for automated diagnosis, tumour
284  grading, scoring, and precision medicine for animal cancers.

285
286 Materials and Methods

287  Intotal, 99 H&E samples from 29 species were identified from the Zoological Society of

288 London’s (ZSL) pathological archive, derived from clinical or postmortem examinations of ZSL
289  London Zoo’s living collections (Table S1). Of these, 51 slides from 22 species passed quality
290 control for image analysis, and 18 slides representing 18 species were selected by the

291  pathologists for subsequent analyses. Exclusion criteria were the lack of tumour components
292  and the presence of high amounts of melanin/pigments in the tissue samples hindering the

293  correct identification of individual cells. Samples were either obtained through tissue biopsies
294  from surgery or routine postmortem examinations from animals that were i) examined directly
295  after euthanasia or ii) stored at 4 degrees Celsius and examined within two days of death. A
296  suspect tumour was removed, fixed in 10% buffered formalin solution and trimmed before being
297  sent to external institutions (IZVG Pathology and Finn Pathologists) for histopathological

298  processing, where they were subsequently embedded in paraffin blocks, sectioned and stained
299  with H&E for analysis. Additionally, two samples were provided by the Transmissible Cancer
300  Group, University of Cambridge, as previously reported in the following studies: Canis familiaris
301 ¢ and Sarcophilus harrisii °.

302  All slides were scanned using NanoZoomer S210 digital slide scanner (C13239-01) and
303  NanoZoomer digital pathology system v.3.1.7 (Hamamatsu) at 40X (228 nm/pixel resolution).

304  The entire deep learning-based single-cell analysis pipeline described in 32 was implemented.
305 This pipeline was designed and developed for human lung tumour specimens. Briefly, all 20
306  whole-section images were first down-scaled to X 20 and then tiled into 2000 X 2000 images
307 for subsequent three-stage analysis. Firstly, all viable H&E tissue areas are segmented.

308 Secondly, within the segmented tissue image, a spatially-constrained convolutional neural

309 network predicts for each pixel the probability that it belongs to the centre of a nucleus; cell

310  nuclei were then detected from the probability map obtained from the deep network. Lastly,

311 each identified cell was classified using a neighbouring ensemble predictor coupled with a

312  spatially constrained convolutional neural network. There were four cell classes: cancer

313  (malignant epithelial) cells, lymphocytes (including plasma cells), noninflammatory stromal cells
314 (fibroblasts and endothelial cells) and an ‘other’ cell type that included non-identifiable cells, less
315 abundant cells such as macrophages and chondrocytes and ‘normal’ pneumocytes and

316  bronchial epithelial cells.
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317  Because the evaluation of the ‘other’ cell type class would be less mean, given the context of
318 this study, we focused on the three main classes. Two board-certified specialist veterinary
319 pathologists (CP and KH) annotated 14,570 cancer, lymphocyte and stromal single-cell

320 annotations on raw whole-section images.

321  Features extraction at the cell level was done with two steps: a pre-trained MicroNet model*” on
322  lung H&Es to segment all cells, followed by automatic extraction of morphological

323  measurements for the set of properties from each cell’'s mask. This allowed the extraction of 27
324  features for immune and tumour cells annotated by pathologists in the human and non-human
325  slides (MATLAB function ‘regionprops’ with additional modifications as defined in Table S2).

326  Annotated cells were mapped to the segmented cell centroid with a strict threshold of 4 pixels (<
327  2um, which is less than 1/3 of a lymphocyte cell), and were visually assessed to confirm correct
328 mapping. Dimension reduction was performed using principal component analysis. Then, we
329  selected the first three dimensions of the PCA, enabling us to build a morphological volume for
330 each cell class. We computed morphological space overlap using the R package ‘dynRB’, which
331 calculates overlap based on the product of overlap at each dimension, the mean overlap across
332 dimensions, or the geometrical mean across the PCA dimensions. We focus on quantifying the
333  percentage of animal cells’ morphological space that is covered by human cells’ morphological
334  space.

335  The algorithms’ performance for detecting and classifying cells across all species was evaluated
336 directly against the ground truth provided by pathologists' annotations. Individual class accuracy
337  statistics were calculated using the R function ‘confusionMatrix’ from the R package ‘caret’. To
338 analyse the variability in the classification balanced accuracy values, BCAcc, across tumour or
339  cell types, we fit a generalised linear model considering a beta distribution (logit link function) for
340  continuous values between 0 and 1 (R package betareg). We computed likelihood ratio tests (R
341  package Imtest) to evaluate if the distribution of balances accuracy between tumour types

342  comes from the same x? distribution. When the x? test was significant (p < 0.05), we applied

343  multiple comparisons correcting p-values using Tukey’s procedures (R package emmeans). All
344  the statistical tests were performed in R (version 4.0.3) and corresponding R codes are

345  available at https://github.com/simonpcastillo/PanSpeciesHistology.
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Tables

Table 1 Summary of overall balanced classification accuracy (BCAcc) by species. Balanced accuracy is computed as the average of

sensitivity and specificity, ‘overall’ refers to the average of cancer, stromal and lymphocyte cells.

Code Common name Species Diagnosis Neoplasia site Tumour type |Annotations [BCAcc
BITARI Puff adder Bitis arietans Carcinoma Pancreas Epithelial 336 0.88
Canine transmissible

CANFAM [Dog Canis familiaris venereal tumor Intra vaginal Round-cell 629 0.94
West African pygmy

CAPHIR goat Capra hircus Lymphosarcoma Forestomach Round-cell 965 0.70

CRAHEA |Panay cloudrunner Crateromys heaneyi Hepatocellular carcinoma |Liver Epithelial 730 0.89
Red-legged Sex-cord

CYACYA |honeycreeper Cyanerpes cyaneus Sertoli cell tumor Testis stromal 762 0.86

DASBYR |Kowari Dasyuroides byrnie Squamous cell carcinoma |Mouth Epithelial 462 0.74

GALMOH  |Greater bushbaby Galago moholi Squamous cell carcinoma |Skin Epithelial 684 0.79

Gonyosoma Metastatic anaplastic

GONOXY [Redetailed ratsnake oxycephala sarcoma Multiple Mesenchymal [526 0.91

LEMCAT |Ring-tailed lemur Lemur catta Haemangiosarcoma Kidney Mesenchymal |1049 0.79
Golden-headed Lion Leontopithecus

LEOCHR [Tamarin chrysomelas Adenoma Pituitary Epithelial 601 0.94

LEPFAL Mountain chicken frog |Leptodactylus fallax Adenocarcinoma Celomic cavity Epithelial 740 0.81

Melursus ursinus
MELURS [Sri Lankan sloth bear  |inornatus Pheochromocytoma Adrenal Neuroendocrine (959 0.88
MUSPUT |[Domestic polecat Mustela putorius furo  [Sebaceous epithelioma Skin Epithelial 702 0.88
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NASNAS |Brown-nosed coati Nasua nasua Lymphosarcoma Multiple Round-cell 520 0.57
West African dwarf Osteolaemus tetraspis
OSTTET  |crocodile tetraspis Lipoma Liver Neuroendocrine |1142 0.77
PANTRO [Chimpanzee Pan troglodytes Spindle cell tumor Palate Mesenchymal (866 0.75
SARHAR |Tasmanian devil Sarcophilus harrisii Devil facial tumor 1 (DFT1) |Hard palate near left side |Round-cell 484 0.88
SPHHUM  |Humbolt penguin Spheniscus humboldti |Renal cell adenoma Kidney Epithelial 452 0.72
SUSBAR [Bearded Pig Sus barbatus Adenocarcinoma Uterus Epithelial 1595 0.80
VARPRA |Emerald monitor VVaranus prasinus Spindle cell sarcoma Multiple Mesenchymal (366 0.80
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Figure 1 Pan-species computational pathology. (A) Transfer learning of cell identification
from human lung to pan-species tumour pathology. (B) Overview of the H&E single-cell analysis
pipeline illustrated from a Tasmanian devil's (SARHAR) facial tumour. This Al pipeline * first
segments the viable tissue area, then detects and classifies all cells into cancer, stromal,
lymphocyte and others. For more details, see Methods. (C) The same pipeline is implemented
to spatially profile the immune microenvironment in a dog’s (CANFAM) transmissible venereal
tumour. Scale bar, 250 um. Cell colours are denoted as four training classes, green: cancer
(malignant epithelial) cells; blue: lymphocytes (including plasma cells); yellow: noninflammatory
stromal cells (fibroblasts and endothelial cells); white: ‘other’ cell class that included
nonidentifiable cells, less abundant cells such as macrophages and chondrocytes and ‘normal’
pneumocytes.
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Figure 2 Al single-cell prediction comparison across tumour types. Balanced accuracy is
computed as the average of sensitivity and specificity, ‘overall’ refers to the average of cancer,
stromal and lymphocyte cells. (A) Pan-species overall balanced accuracy grouped by tumour
type. (B) Distribution of the number of annotations by tumour type (colours correspond to
tumour type in A). (C) Relationship between the number of annotations and the overall balanced
accuracy for each species using Spearman’s correlation. Species in (A) and (C) are labelled
with their codes, for more species information, see Table 1.
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Figure 3 Al prediction variability for inter and intra- species tumour microenvironment
cells. For each species, four metrics were evaluated including F1, precision, sensitivity and
specificity (as labelled on the bottom x-axis) for the prediction accuracy of cancer, lymphocyte
and stromal cells as well as their average shown as ‘overall’ (as denoted with colours on the top
x-axis). For species codes, see Table 1.
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Figure 4 Strengths and pitfalls of current methods. Each H&E example is shown as a raw
image with expert pathology annotations on some cells (left) and Al cell identification (right).
Scale bar, 100 um. Cell colours are denoted as four training classes, green: cancer (malignant
epithelial) cells; blue: lymphocytes (including plasma cells); yellow: noninflammatory stromal
cells (fibroblasts and endothelial cells); white: ‘other’ cell class that included nonidentifiable
cells, less abundant cells such as macrophages and chondrocytes and ‘normal’ pneumocytes.
(A) Correct identification of cancer cells from a mesenchymal tumour (metastatic anaplastic
sarcoma) in a snake (GONOXY). (B) A challenging brown-nosed coati (NASNAS) case was
diagnosed with a round-cell tumour (lymphosarcoma) where the cancer cell morphology is
difficult to be recognised by an algorithm trained with epithelial cells from human lung cancer.
(C) A malignant spindle cell tumour from a ring-tailed lemur (LEMCAT) with a
haemangiosarcoma disease, as shown, the neoplastic endothelial cells have large rounded
nuclei, which may appear morphologically similar to epithelial cancer cells, as opposed to the Al
model's own normal -stromal- endothelial cells. However, the model successfully distinguished
the majority of neoplastic from stromal cells. Further complexity is in the occurrence of
epithelioid haemangiosarcoma where the cells of origin are endothelial cells but they actually
become epithelial-like. (D) In the case of a chimpanzee (PANTRO) with a spindle cell sarcoma,
the neoplastic fibroblasts are harder to differentiate from reactive fibroblasts.
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Figure 5 Overlap across the morphological space. (A) Overall high overlap between human
and non-human cell morphologies across two dimensions of the principal component analysis,
and their explained variances, of the morphological space made by ~31K cells annotated by
pathologists. (B) the mean morphospace overlap across animal tumour cells and lymphocytes
correlates with the model’s balanced accuracy. (C-F) Species-specific morphological space
overlap with human morphospace; (C) Canis |. familiaris (CANFAM), (D) Sarcophilus harrisii
(SARHAR), (E) Gonyosoma oxycephala (GONOXY) and (F) Capra hircus (CAPHIR). Ellipses
denote 95% of the distribution.
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Data and materials availability:

The deep-learning pipeline for digital pathology image analysis is previously available for non-
commercial research purposes at https://github.com/galid7/compath. All code used for statistical
analyses of image data and morphospace overlap test tool was developed in R (v.4.0.3) and it
is available at https://qgithub.com/simonpcastillo/PanSpeciesHistology. A rich, pan-species digital
pathology atlas will be made publicly available upon publication, providing pan-species digital
slide images, slide digitalisation and quality control protocols, and pathological annotations of
14,570 single-cell annotations across 20 species.
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Supplementary Figure 1 Extended Al single-cell prediction comparison across tumour
types. Balanced accuracy is computed as the average of sensitivity and specificity for (A)
cancer, (B) stromal and (C) lymphocyte cells for all species. Species are grouped according to
their tumour type and are labelled with their codes, for more species information, see Table 1.
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Supplementary Figure 2 Extended Al prediction variability for inter and intra- species
tumour microenvironment cells. For each species, four metrics were evaluated including F1,
precision, sensitivity and specificity (rows) for the prediction accuracy of cancer, lymphocyte and
stromal cells as well as their average shown as ‘overall’ (columns). Species are grouped
according to their tumour type and are labelled with their codes, for more species information,
see Table 1.
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Supplementary Figure 3 Analysis of the morphological space. (A) Dimensions of the
principal component analysis (PCA) and their explained variances. (B) The highest 20
contributions to PCA dimensions’ explained variances. Darker bars are features above the
mean contribution (red line). (C) From left to right, correlation, importance and contribution of
the single-cell morphological features to PCA dimension.
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Supplementary Table 1 Summary of sample preparation methods as provided from the
Zoological Society of London’s pathological archive.

Species

Case ID Pathologists Method
code

BO1/17 MUSPUT IZVG/RVC- DD | Biopsy: removed during surgery and formalin-fixed

B02/18 GALMOH IZVG/RVC- DD | Biopsy: removed during surgery and formalin-fixed

BO4/17 LEMCAT IZVG/RVC- MS | Biopsy: removed during surgery and formalin-fixed

B07-8/04 |PANTRO ZSL- AP Biopsy - removed during surgery and formalin-fixed

B09/04 DASBYR ZSL- AP Biopsy - removed during surgery and formalin-fixed

W17MO035 IMELURS IZVG/RVC- MS Euthanasia: Carcass fresh — PM examination one day after
death

W17R187 |OSTTET IZVG/RVC- DD | Natural death: Carcass fresh - PM on day of death

7A1360/15 ILEPFAL IZVG/RVC- MS Natural death: Carcass slightly autolysed — PM on day of
death

7BO17/18 ICYACYA IZVG/RVC- MS Euthanasia: Carcass fresh — PM examination one day after
death

7B485/19  |SPHHUM IZVG/RVC- CS Euthanasia: No comment.on carcass condition - PM carried
out 2 days after euthanasia

ZM134/17 |CAPHIR IZVG/RVC- CS | Carcass fresh — euthanised and PM’d on day of death

ZM138/17 |SUSBAR IZVG/RVC- MS | Carcass fresh - PM on day of death

ZM203/17 |LEOCHR IZVG/RVC- MS | Carcass fresh - PM on day of death

ZM633/18 ICRAHEA IZVG/RVC- DD Euthanasia: Carcass fresh — PM examination one day after
death

ZM748/18 INASNAS IZVG/RVC- CS Euthanasia: Carcass fresh — PM examination one day after
death

ZR1145/15 [GONOXY IZVG/RVC- MS Euthanasia: Carcass fresh - kept in fridge two days before

examination
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ZR1148/18

VARPRA

IZVG/RVC- DD

Euthanasia: Carcass fresh — PM examination one day after
death

ZR474/19

BITARI

IZVG/RVC- CS

Euthanasia: Carcass fresh — PM examination one day after
death

27



https://doi.org/10.1101/2022.03.05.482261
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.05.482261; this version posted March 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Table 2 The 27 single-cell features extracted to compute the morphological
space.

Feature Description

Area Two-dimensional extension of a shape

MajorAxisLength Longest diameter

MinorAxisLength Shortest diameter

Eccentricity Magnitude inversely related to shape curvature

ConvexArea Area resulting from connecting the external points of the shape

FilledArea Area of a corresponding image with holes filled in

EquivDiameter Diameter of a circle with the same area as the region

Solidity Extent to which the shape fills the convex area

Extent Ratio of pixels in the region to pixels in the total bounding box

Perimeter Length of the shape boundary

ConvexHullMean Smallest convex polygon that can contain the region

FilledimageMean Average of pixels corresponding to the segmented mask, with all holes filled
ConveximageMean Average of pixels corresponding to a segmented mask which specifies the convex hull of the region
Diameters Cell diameter using major and minor axes

Radii Cell radius

Meanlntensity R Mean pixel intensity in the red channel

Minintensity_R Minimum pixel intensity in the red channel

MaxIntensity_R Maximum pixel intensity in the red channel
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Meanlintensity_G Mean pixel intensity in the green channel
MinIntensity_G Minimum pixel intensity in the green channel
MaxIntensity_G Maximum pixel intensity in the green channel
Meanlntensity_B Mean pixel intensity in the blue channel
Minintensity_B Minimum pixel intensity in the blue channel
MaxIntensity_B Maximum pixel intensity in the blue channel

RGBMeanintensity Mean pixel intensity in the composed image

RGBMinlIntensity Minimum pixel intensity in the composed image

RGBMaxIntensity Maximum pixel intensity in the composed image
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Supplementary table 3 Morphological volumes overlap of human cells on non-human cells’
morphological space calculated by the three methods. The highest overlap values for non-
human lymphocytes and tumour cells are bold-faced.

Morphological Covered by the % Overlap % Overlap % Overlap
volume of volume of (product) (mean) (geom. mean)

Non-human Human 63.47 84.55 81.25
lymphocytes lymphocytes
Non-human Human tumour 40.41 67.6 59 84
lymphocytes cells
Non-human Human
tumour cells lymphocytes 16.56 54.82 50.24
Non-human Human tumour 67.97 86.49 86.14
tumour cells cells
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