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Abstract: 21 

Cancers occur across species. Understanding what is consistent and varies across species can 22 

provide new insights into cancer initiation and evolution, with significant implications for animal 23 

welfare and wildlife conservation. We built the pan-species cancer digital pathology atlas 24 

(PANCAD) and conducted the first pan-species study of computational comparative pathology 25 

using a supervised convolutional neural network algorithm trained on human samples. The 26 

artificial intelligence algorithm achieves high accuracy in measuring immune response through 27 

single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 28 

0.94; Tasmanian devil facial tumour disease, 0.88). Furthermore, in 18 other vertebrate species 29 

(mammalia=11, reptilia=4, aves=2, and amphibia=1), accuracy (0.57-0.94) was influenced by 30 

cell morphological similarity preserved across different taxonomic groups, tumour sites, and 31 

variations in the immune compartment. A new metric, named morphospace overlap, was 32 

developed to guide veterinary pathologists towards rational deployment of this technology on 33 

new samples. This study provides the foundation and guidelines for transferring artificial 34 

intelligence technologies to veterinary pathology based on a new understanding of 35 

morphological conservation, which could vastly accelerate new developments in veterinary 36 

medicine and comparative oncology.  37 
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Introduction 38 

Cancers occur with phenotypically similar forms across the tree of life1–4. Understanding the 39 

conserved and diverged aspects of cancer across species can help answer questions about the 40 

origin and fundamental processes of its evolution. Immediate and practical advances from pan-41 

species studies provide new tools and valuable insights into tumorigenesis and cancer 42 

resistance5–8, leading to improved cancer care for humans and non-human animals. Specifically, 43 

transmissible cancers presented in dogs and Tasmanian devils9,10 are among the few known 44 

naturally occurring clonally transmissible cancers11. How transmissible cancers escape immune 45 

surveillance remains unclear and is of central importance to understanding their biology and cell 46 

to cell interactions.  47 

Despite significant resources in companion animal care, clinical treatments options are limited 48 

for a few aggressive cancers in dogs12,13 that represent one of the best models of human 49 

cancer14. Beyond domesticated species, various studies have identified valuable models in 50 

wildlife15. For instance, the naturally-emerging urogenital carcinoma in California sea lions16 and 51 

papillomavirus triggering brain tumours in raccoons15  are remarkable examples of pathogen-52 

driven neoplasms. Animals managed in zoological institutes also exhibit occurrence of 53 

neoplastic growth according to several international studies, including, a 10-year survey in the 54 

Taipei zoo, Taiwan17,  a study of cancer development in vertebrates in French zoological 55 

parks18, a 42-years of mammals necropsy data compilation from the San Diego Zoo, United 56 

States19, and a report on renal lesions followed by neoplastic and inflammatory responses in 57 

captive wild felids in Germany20. Studies of these animals can provide unique insights into the 58 

biology and evolution of cancer across the tree of life towards improving animal welfare by early 59 

detection and helping conserve endangered species21,22.   60 

Challenges for establishing a unified comparative oncology agenda include sample collection, 61 

data management, analysis, and integration23–27. These can be tackled by incorporating artificial 62 

intelligence (AI) algorithms, which can empower veterinary pathology and help dissect the 63 

complexity of cancer across species and scales, from genes to epidemiology. Computational 64 

pathology powered by AI has revolutionised the study of human cancers and helped improve 65 

our understanding of the immune microenvironment28. In contrast to human cancer 66 

management, we lack systematic and standardised AI protocols and digital archiving and 67 

analysis of samples to study animal cancers; hence, veterinary research has not fully adopted 68 

digital pathology25 although efforts are being made to move forward internationally adopted 69 

guidelines for tumour pathology27. 70 

Hence, we propose AI has the power to fuel pan-species tumour histology and efficiently 71 

manage data-related bottlenecks. Thus far, computational pathology in the study of non-human 72 

cancers, and non-human pathology in general, is very limited24,25. Convolutional neural networks 73 

have been applied to detect mitotic activity from histological slides of canine cancers13,29. In 74 

sheep, deep learning has been employed to delineate growth phases of mammary 75 

development30. Other machine learning techniques have been used to classify a common 76 

gastrointestinal disease in cats31. Along with computational pathology, incorporating AI into the 77 

veterinary practice of imaging techniques such as CT scans, magnetic resonance imaging, and 78 
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positron emission tomography32 encourages the development of integrative clinical care. Such 79 

an integrative approach promises to direct precision medicine in veterinary oncology by tailoring 80 

strategies for individual patients. It includes classifying patients who differ in their treatment 81 

response and/or prognostic outcomes.  82 

In this work, we explore and exploit the conservatism of cell morphology in neoplasias across 83 

species by applying an AI tool trained in human lung cancer33 (Fig 1). We evaluate the accuracy 84 

of this AI tool in mapping tumour cells distribution and lymphocytic infiltration in histological 85 

tissues from transmissible cancers and its generalisability to 18 other species. To the best of our 86 

knowledge, this is the first effort to apply computational pathology algorithms to transmissible 87 

cancers and pan-species pathology beyond mammals, thereby decoding the composition of 88 

cells in tumours across species. Our approach aims to pave the way for pan-species 89 

comparative pathology and contribute to understanding the emergence and prevalence of 90 

cancer in nature. 91 

 92 

Results  93 

Collection and quality control for veterinary histology samples 94 

Ten hematoxylin and eosin (H&E)-stained tumour samples from 3 individuals with Tasmanian 95 

devil facial tumour disease 1 and 2 (DFT1 and DFT2) and 6 with canine transmissible venereal 96 

tumour (CTVT) were collected and digitalised from the Transmissible Cancers Group, University 97 

of Cambridge. Of these, 7 passed visual quality control for image analysis. One representative 98 

slide was chosen by the pathologists for each species considering scanning resolution and level 99 

of immune infiltration in the tumour microenvironment. In addition, H&E samples from 18 100 

species were selected from the Zoological Society of London’s (ZSL) pathological archive and 101 

digitalised (classes Mammalia = 11 species, Reptilia = 4, Aves = 2, and Amphibia = 1). The 102 

neoplastic lesions were broadly categorised into five main tumour groups: round-cell (n = 4), 103 

epithelial (n = 9), mesenchymal (n = 4), neuroendocrine (n=2) and sex-cord stromal (n=1) 104 

tumours. A rich, pan-species digital pathology atlas was created, providing digital slide images, 105 

digitalisation and quality control protocols, and pathological annotations described below.  106 

 107 

Transferring AI technologies to non-human species 108 

A deep learning pipeline tailored for human lung cancer (predominantly lung adenocarcinoma, 109 

including lung squamous cell carcinoma33, Fig. 1A) was applied without modification to all 20 110 

H&E samples. Briefly, this pipeline identifies the precise location of individual cells in each H&E 111 

and classifies them based on nuclear morphology in one of four cell types: tumour cells, 112 

lymphocytes, stromal cells (fibroblasts and endothelial cells) and ‘other’ cells (macrophages, 113 

pneumocytes and non-identifiable cells) (Fig. 1B-C). We evaluated the accuracy of the 114 

convolutional neural network (CNN) with 14,570 cancer, lymphocyte, and stromal single-cell 115 

annotations from two board-certified specialist veterinary pathologists (CP and KH). For each 116 
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slide, we computed the algorithm’s balanced single-cell classification accuracy (BCAcc, Table 117 

1), as well as F1 score, precision, sensitivity and specificity (Figs S1-S2).  118 

For evaluating the accuracy in classifying cells by the algorithm, we compared its predictions 119 

against veterinary pathologists’ annotations. The algorithm’s average balanced accuracy across 120 

cell classes showed a diverse range of variation between and within tumour groups (Figs. 2A, 121 

S1-S2). Tumour types have the same overall accuracy for cell classification based on the 122 

balanced classification accuracy values (LR test, overall BCAcc averaged across samples = 123 

0.81; LR test, ꭓ2[3] = 0.314, p = 0.957). Moreover, despite the heterogeneous number of 124 

annotations per tumour type (Fig. 2B), the balanced accuracy was not associated with the 125 

number of annotations (Spearman’s ρ = 0.088, p = 0.71) (Fig. 2B-C). 126 

 127 

Consistent accuracy across tumour types but higher in mammals 128 

Overall, the model’s best performance was mainly in mammals (Fig. 3). In particular, the AI 129 

algorithm achieves high accuracy in measuring immune response for the two transmissible 130 

cancers (canine transmissible venereal tumour - CTVT, 0.94; Tasmanian devil facial tumour 131 

disease- DFTD, 0.88). The canine transmissible venereal tumour (in Canis l. familiaris) exhibited 132 

the best accuracy across all 20 species (overall precision = 0.98, F1 and BCAcc = 0.94, Fig. 3). 133 

Surprisingly, in the metastatic sarcoma in a snake (Gonyosoma oxycephalum), the CNN also 134 

reached a high accuracy (Fig. 4A, overall precision = 0.89, F1 = 0.89 and BCAcc = 0.91). 135 

In the 18 other vertebrate species (mammalia=11, reptilia=4, aves=2, and amphibia=1), 136 

accuracy varies (0.57-0.94). The performance of cancer cells and lymphocyte classification, 137 

measured as balanced accuracy, did not vary between tumour types (LR test, cancer cells: 138 

median = 0.825, ꭓ2[3] = 1.358, p = 0.715; lymphocytes: median = 0.915, ꭓ2[3] = 0.308, p = 139 

0.959). However, the classification accuracy of stromal cells differs between tumour types (LR 140 

test, median = 0.773,ꭓ2[3] = 10.308, p = 0.016), with p-adjusted significant only for differences 141 

between epithelial-round cell (z-test, estimate = -0.092, SE = 0.031, z = -3.073, p = 0.018) and 142 

mesenchymal-round cell tumour types (estimate = -0.121, SE = 0.039, z = -3.073, p = 0.011). 143 

All other comparisons have a p-value higher than 0.05. Surprisingly, in both cases where we 144 

reported significant differences, the balanced accuracy of stromal cells in round-cell tumour 145 

types was higher than mesenchymal or epithelial tumour types. In our cohort, the round-cell 146 

tumour types were present in the dog (Canis familiaris), the Tasmanian devil (Sarcophillus 147 

harrisii), the pygmy goat (Capra hircus) and the ring-tailed coati (Nasua nasua). These results 148 

show a high classification accuracy of the model consistent with expert pathologists’ annotations 149 

across tumour types for cancer cells and lymphocytes and slight variations in the case of 150 

stromal cells. 151 

 152 

Species and cancer-specific challenges 153 

The detection of cancer cells presented more challenging classifications in lymphosarcoma from 154 

the common goat (Capra hircus), the ring-tailed coati (Nasua nasua) and in lipoma from the 155 
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dwarf crocodile (Osteolaemus tetraspis), which by their cell morphology and tissue architecture 156 

may be difficult to be classified by an algorithm trained with epithelial cells from human lung 157 

adenocarcinoma (Fig. 4B). These results suggest that the accuracy of computational pathology 158 

at single-cell resolution depends on the type of target cancer and its degree of differentiation 159 

from the training cancer type. Morphologically complex cancers that drastically change their 160 

morphological features or cancers with a high degree of similarity to the normal cells (e.g. 161 

lymphosarcoma) represent significant hurdles for transfer learning.  162 

 163 

Morphological preservation across species 164 

To explore the morphological similarity between human and non-human samples, which could 165 

explain the accuracy of the AI algorithm, we visualised the morphological space of ~32K cells 166 

annotated by expert pathologists using principal component analysis (Fig 5). The PCA analysis 167 

was used for dimension reduction (Fig 5) of the 27 features extracted by the AI algorithm at the 168 

individual cell level (Table S2). The first three PCA dimensions account for 84.1% of the 169 

morphological variance (Fig S3A). The first dimension explains 49.4% of the morphological 170 

variance, and the cell features with the highest contributions to that explained variance are 171 

associated with nucleus size (area, perimeter, diameter, radius, convex area) and maximum 172 

intensity in the colour channels (Fig S3B). These variables are positively correlated with the first 173 

dimension, with high importance to explaining individual cells’ position in the morphological 174 

space (Fig S3C). The overlap of the volumes in PCA space suggests a high degree of 175 

morphological similarity between human and non-human cells (Table S3). For non-human 176 

lymphocytes, 84.55% of their morphological space intersects with the human lymphocyte 177 

morphospace. And for non-human tumour cells volume, which shows higher morphological 178 

variability, 86.49% of its volume is captured by human tumour cells’ volume.  179 

Morphospace overlap as a new guidance metric  180 

To further dissect the relationship between the AI performance and morphological similarity 181 

across species, we developed a new metric, termed morphospace overlap, as the average of 182 

overlaps of cancer cell/lymphocyte morphological space between a species and humans. We 183 

found that the AI model’s balanced accuracy is positively correlated with morphospace overlap 184 

(Pearson's correlation = 0.68, p=0.001; Fig 5B), suggesting that the AI model performed better 185 

on species sharing higher morphological similarity with human cells. Species-specific analyses 186 

revealed further understanding of the model's performance. Among the tissues with higher 187 

balanced accuracy and high morphospace overlap are dog’s CTVT (Fig 5C), Tasmanian devils’ 188 

DFTD (Fig 5D) and snake’s sarcoma (Fig 5E) (morphospace overlap (%) = 82.6, 72.2, and 83.4, 189 

balanced accuracy = 0.94, 0.88, and 0.91, respectively) and the goat’s lymphosarcoma (Fig 5F) 190 

as one of the challenging cases, with smaller morphological overlap between its tumour cells 191 

and human’s cells (morphospace overlap (%) = 47.4, balanced accuracy = 0.7). Species with 192 

>70% morphospace overlap had an average of 87.5% balanced accuracy (range 79-94%), and 193 

species with >80% morphospace overlap averaged 88% balanced accuracy (range 80-94%). 194 

Thus, this new metric may be a useful tool for pathologists to determine the usability of our AI 195 

tool.  196 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.05.482261doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.05.482261
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

 

 197 

Discussion  198 

Comparative oncology pursues the understanding of cancer as a shared phenomenon among 199 

species. Here, we have explored the potential of AI through automated pathological image 200 

analysis to study cancer morphology and immune response across the tree of life. Previous  201 

studies have often been limited to a single species, with applications mainly focused on canine 202 

and mouse models (e.g.,8,13,34). To the best of our knowledge, this is the first study of 203 

computational pathology that includes tumours from vertebrates beyond mammals, such as 204 

aves, reptiles and one amphibian. Although the algorithm was trained on human samples, it 205 

could distinguish three major cell types with remarkable accuracy in most of the species 206 

(19/20 species reached an accuracy ≥ 70% and 12/20 species ≥ 80%). Broadly, our 207 

comparative analysis revealed that regardless of species, morphological conservation across 208 

species dictates that cells can be detected and correctly classified by a human specimen-209 

trained AI, fostering our endeavour to develop pan-species computational pathology. 210 

Since the model was trained with human epithelial tumour samples, the specimens for testing 211 

include other tumour types such as mesenchymal, round cell and neuroendocrine that can have 212 

a greater variety of cell morphology, and such diversity of species, and tumour types and sites, 213 

likely underpins the wide range of accuracy (0.57-0.94) achieved. For example, in the case of 214 

the malignant spindle cell tumour (haemangiosarcoma in a lemur), the neoplastic endothelial 215 

cells have large, rounded nuclei, which may appear morphologically similar to that of epithelial 216 

cancer cells, as opposed to the elongated nuclei of normal endothelial cells (Fig. 4C). Similarly, 217 

for the chimpanzee (Pan troglodytes) with a spindle cell sarcoma, the neoplastic fibroblasts are 218 

hard to differentiate from reactive fibroblasts with a spindle shape (Fig. 4D). This is a challenge 219 

both for the automated analysis and manually by pathologists. Another challenging aspect is the 220 

immune compartment, which is highly variable among mammals, birds and reptiles35, imposing 221 

difficulties that seem complicated to pass with a generic algorithm. Moreover, this is amplified 222 

when evaluating cancer affecting the lymphatic tissue, such as lymphosarcoma in the coati (N. 223 

nasua) and pygmy goat (C. hircus), where the white blood cell morphology is altered. 224 

Lymphosarcoma cells generally appear similar to normal lymphoid cells, resulting in narrow 225 

discriminability chances. In those cases, it may be appropriate to take alternative strategies 226 

such as re-train the model, test available models for lymphosarcoma (e.g., 36), or develop a new 227 

model incorporating other tissue characteristics. To address this issue, we developed a new 228 

metric, named morphospace overlap, to guide pathologists who wish to apply the AI tools to 229 

their samples based on morphological similarity. 230 

Based on our data, the transferability of existing AI technologies developed for humans to the 231 

veterinary domain may be significantly higher than previously thought. Medical treatment for 232 

animals has dramatically improved in veterinary clinics, zoological institutions and even wildlife 233 

veterinarians37, leading to better options for diagnosing and treating cancer in animal patients23. 234 

Despite these significant advances in veterinary oncology38, there are significant constraints and 235 

limited availability of veterinary specialists39, and consequently, digital tools are not widely 236 

used24,25. Thus, computational pathology for different species and tumour types will bring 237 
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tremendous advances for clinical veterinary care and comparative oncology research24,40. Many 238 

of the advantages are similar to those for human pathology, with the greatest benefits being 239 

accessibility to veterinary pathologists, time saved and increased diagnostic accuracy. 240 

Significant challenges remain. For instance, our study's low rate of samples passing quality 241 

control highlights a marked difference in sample management between veterinary and human 242 

cancer care. Therefore, the pan-species digital pathology atlas, protocols and guidelines for 243 

veterinary pathologists provided in this study represent a big step towards rational and efficient 244 

transfer of AI technologies to veterinary medicine.   245 

Another potential impact of this study is to empower precision medicine for treating animal 246 

cancers. Accurate diagnosis and timely treatment could be critical in preserving endangered 247 

and threatened species that represent important breeding populations41. We demonstrated how 248 

the AI tool can be used to study lymphocytic infiltration in canine transmissible venereal tumours 249 

and Tasmanian devil facial tumours with high accuracy and spatial resolution (Fig. 1B-C). As a 250 

transmissible disease, the immune response at the organismal level may offer new alternatives 251 

to understand the spread of the disease at a population scale from an epidemiological 252 

perspective42,43. These tumours can colonise a new host by crossing the barriers of 253 

histocompatibility associated with the immune system and expressing immunosuppressive 254 

cytokines44,45. The quantification and spatial detection of both tumour and immune cells can help 255 

study immune evasion and treatment in transmissible cancers, building on progress on 256 

understanding T cells immune infiltration in Tasmanian devils46 and immune regulation in dog’s 257 

CTVT tumour regression47. Furthermore, a detailed study of the tumour microenvironment can 258 

guide new discoveries to understand the mechanisms behind sensitivity and resistance to 259 

standard treatments such as chemotherapy,4849. By enabling precision medicine we can 260 

advance towards a more personalised and integrative approach to veterinary care50.  261 

Comparative oncology also brings tremendous benefits to human cancer research5,51,52. Our 262 

knowledge of cancer in wild animals is limited, and computational pathology can greatly expand 263 

research opportunities that compare cancer in the wild to managed populations, as well as 264 

comparisons with human cancer. Cross-species cancer comparisons may help address 265 

fundamental questions in cancer biology and evolution. This work revealed highly conserved 266 

morphology features across many species, particularly in epithelial and round-cell tumours, 267 

highlighting potential evolvability constraints for certain tumour types. The mismatch between 268 

species’ evolutionary history and the conserved cellular morphological diversity raises new 269 

questions on the origin of cell morphological patterns; is morphological conservation fixed early 270 

in metazoan evolutionary history? Or is it the result of stabilising selection imposed by the 271 

extracellular matrix to meet homeostatic conditions?53,54 Addressing the conserved features and 272 

differences in tumour biology can lead to novel research, therapeutics and discoveries that one 273 

day could be translated into human and non-human clinical care37,55.  274 

Limitations of this study include the limited availability of samples and annotations. It will be 275 

important to validate our findings on extended pan-species cohorts and advance our 276 

understanding of intratumor heterogeneity across different species and derive more controlled 277 

interspecies comparisons. With detailed multiplexing profiles, future attempts can shed more 278 

light on immune compositions in the microenvironment.  279 
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This work represents a step forward in incorporating machine learning in diagnostic 280 

investigations of natural and emerging diseases in animals, enhancing accuracy and sensitivity 281 

and complementing veterinary pathologists’ capability in the decision-making process. 282 

Computational pathology can bring valuable opportunities for automated diagnosis, tumour 283 

grading, scoring, and precision medicine for animal cancers. 284 

 285 

Materials and Methods 286 

In total, 99 H&E samples from 29 species were identified from the Zoological Society of 287 

London’s (ZSL) pathological archive, derived from clinical or postmortem examinations of ZSL 288 

London Zoo’s living collections (Table S1). Of these, 51 slides from 22 species passed quality 289 

control for image analysis, and 18 slides representing 18 species were selected by the 290 

pathologists for subsequent analyses. Exclusion criteria were the lack of tumour components 291 

and the presence of high amounts of melanin/pigments in the tissue samples hindering the 292 

correct identification of individual cells. Samples were either obtained through tissue biopsies 293 

from surgery or routine postmortem examinations from animals that were i) examined directly 294 

after euthanasia or ii) stored at 4 degrees Celsius and examined within two days of death. A 295 

suspect tumour was removed, fixed in 10% buffered formalin solution and trimmed before being 296 

sent to external institutions (IZVG Pathology and Finn Pathologists) for histopathological 297 

processing, where they were subsequently embedded in paraffin blocks, sectioned and stained 298 

with H&E for analysis. Additionally, two samples were provided by the Transmissible Cancer 299 

Group, University of Cambridge, as previously reported in the following studies: Canis familiaris 300 
56 and Sarcophilus harrisii 9. 301 

All slides were scanned using NanoZoomer S210 digital slide scanner (C13239-01) and 302 

NanoZoomer digital pathology system v.3.1.7 (Hamamatsu) at 40X (228 nm/pixel resolution). 303 

The entire deep learning-based single-cell analysis pipeline described in 33 was implemented. 304 

This pipeline was designed and developed for human lung tumour specimens. Briefly, all 20 305 

whole-section images were first down-scaled to ✕20 and then tiled into 2000✕2000 images 306 

for subsequent three-stage analysis. Firstly, all viable H&E tissue areas are segmented. 307 

Secondly, within the segmented tissue image, a spatially-constrained convolutional neural 308 

network predicts for each pixel the probability that it belongs to the centre of a nucleus; cell 309 

nuclei were then detected from the probability map obtained from the deep network. Lastly, 310 

each identified cell was classified using a neighbouring ensemble predictor coupled with a 311 

spatially constrained convolutional neural network. There were four cell classes: cancer 312 

(malignant epithelial) cells, lymphocytes (including plasma cells), noninflammatory stromal cells 313 

(fibroblasts and endothelial cells) and an ‘other’ cell type that included non-identifiable cells, less 314 

abundant cells such as macrophages and chondrocytes and ‘normal’ pneumocytes and 315 

bronchial epithelial cells. 316 
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Because the evaluation of the ‘other’ cell type class would be less mean, given the context of 317 

this study, we focused on the three main classes. Two board-certified specialist veterinary 318 

pathologists (CP and KH) annotated 14,570 cancer, lymphocyte and stromal single-cell 319 

annotations on raw whole-section images.  320 

Features extraction at the cell level was done with two steps: a pre-trained MicroNet model57 on 321 

lung H&Es to segment all cells, followed by automatic extraction of morphological 322 

measurements for the set of properties from each cell’s mask. This allowed the extraction of 27 323 

features for immune and tumour cells annotated by pathologists in the human and non-human 324 

slides (MATLAB function ‘regionprops’ with additional modifications as defined in Table S2). 325 

Annotated cells were mapped to the segmented cell centroid with a strict threshold of 4 pixels (< 326 

2µm, which is less than 1/3 of a lymphocyte cell), and were visually assessed to confirm correct 327 

mapping. Dimension reduction was performed using principal component analysis. Then, we 328 

selected the first three dimensions of the PCA, enabling us to build a morphological volume for 329 

each cell class. We computed morphological space overlap using the R package ‘dynRB’, which 330 

calculates overlap based on the product of overlap at each dimension, the mean overlap across 331 

dimensions, or the geometrical mean across the PCA dimensions. We focus on quantifying the 332 

percentage of animal cells’ morphological space that is covered by human cells’ morphological 333 

space. 334 

The algorithms’ performance for detecting and classifying cells across all species was evaluated 335 

directly against the ground truth provided by pathologists' annotations. Individual class accuracy 336 

statistics were calculated using the R function ‘confusionMatrix’ from the R package ‘caret’. To 337 

analyse the variability in the classification balanced accuracy values, BCAcc, across tumour or 338 

cell types, we fit a generalised linear model considering a beta distribution (logit link function) for 339 

continuous values between 0 and 1 (R package betareg). We computed likelihood ratio tests (R 340 

package lmtest) to evaluate if the distribution of balances accuracy between tumour types 341 

comes from the same ꭓ2 distribution. When the ꭓ2 test was significant (p < 0.05), we applied 342 

multiple comparisons correcting p-values using Tukey’s procedures (R package emmeans). All 343 

the statistical tests were performed in R (version 4.0.3) and corresponding R codes are 344 

available at https://github.com/simonpcastillo/PanSpeciesHistology. 345 

 346 

 347 
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Tables 

Table 1 Summary of overall balanced classification accuracy (BCAcc) by species. Balanced accuracy is computed as the average of 

sensitivity and specificity, ‘overall’ refers to the average of cancer, stromal and lymphocyte cells. 

Code Common name Species Diagnosis Neoplasia site Tumour type Annotations BCAcc 

BITARI Puff adder Bitis arietans Carcinoma Pancreas Epithelial 336 0.88 

CANFAM Dog Canis familiaris 
Canine transmissible 
venereal tumor Intra vaginal Round-cell 629 0.94 

CAPHIR 
West African pygmy 
goat Capra hircus Lymphosarcoma Forestomach Round-cell 965 0.70 

CRAHEA Panay cloudrunner Crateromys heaneyi Hepatocellular carcinoma Liver Epithelial 730 0.89 

CYACYA 
Red-legged 
honeycreeper Cyanerpes cyaneus Sertoli cell tumor Testis 

Sex-cord 
stromal 762 0.86 

DASBYR Kowari Dasyuroides byrnie Squamous cell carcinoma Mouth Epithelial 462 0.74 

GALMOH Greater bushbaby Galago moholi Squamous cell carcinoma Skin Epithelial 684 0.79 

GONOXY Redtailed ratsnake 
Gonyosoma 
oxycephala 

Metastatic anaplastic 
sarcoma Multiple Mesenchymal 526 0.91 

LEMCAT Ring-tailed lemur Lemur catta Haemangiosarcoma Kidney Mesenchymal 1049 0.79 

LEOCHR 
Golden-headed Lion 
Tamarin 

Leontopithecus 
chrysomelas Adenoma Pituitary Epithelial 601 0.94 

LEPFAL Mountain chicken frog Leptodactylus fallax Adenocarcinoma Celomic cavity Epithelial 740 0.81 

MELURS Sri Lankan sloth bear 
Melursus ursinus 
inornatus Pheochromocytoma Adrenal Neuroendocrine 959 0.88 

MUSPUT Domestic polecat Mustela putorius furo Sebaceous epithelioma Skin Epithelial 702 0.88 
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NASNAS Brown-nosed coati Nasua nasua Lymphosarcoma Multiple Round-cell 520 0.57 

OSTTET 
West African dwarf 
crocodile 

Osteolaemus tetraspis 
tetraspis Lipoma Liver Neuroendocrine 1142 0.77 

PANTRO Chimpanzee Pan troglodytes Spindle cell tumor Palate Mesenchymal 866 0.75 

SARHAR Tasmanian  devil Sarcophilus harrisii Devil facial tumor 1 (DFT1) Hard palate near left side Round-cell 484 0.88 

SPHHUM Humbolt penguin Spheniscus humboldti Renal cell adenoma Kidney Epithelial 452 0.72 

SUSBAR Bearded Pig Sus barbatus Adenocarcinoma Uterus Epithelial 1595 0.80 

VARPRA Emerald monitor Varanus prasinus Spindle cell sarcoma Multiple Mesenchymal 366 0.80 
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Figures 

 

Figure 1 Pan-species computational pathology. (A) Transfer learning of cell identification 

from human lung to pan-species tumour pathology. (B) Overview of the H&E single-cell analysis 

pipeline illustrated from a Tasmanian devil’s (SARHAR) facial tumour. This AI pipeline 33 first 

segments the viable tissue area, then detects and classifies all cells into cancer, stromal, 

lymphocyte and others. For more details, see Methods. (C) The same pipeline is implemented 

to spatially profile the immune microenvironment in a dog’s (CANFAM) transmissible venereal 

tumour. Scale bar, 250 µm. Cell colours are denoted as four training classes, green: cancer 

(malignant epithelial) cells; blue: lymphocytes (including plasma cells); yellow: noninflammatory 

stromal cells (fibroblasts and endothelial cells); white: ‘other’ cell class that included 

nonidentifiable cells, less abundant cells such as macrophages and chondrocytes and ‘normal’ 

pneumocytes. 
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Figure 2 AI single-cell prediction comparison across tumour types. Balanced accuracy is 

computed as the average of sensitivity and specificity, ‘overall’ refers to the average of cancer, 

stromal and lymphocyte cells. (A) Pan-species overall balanced accuracy grouped by tumour 

type. (B) Distribution of the number of annotations by tumour type (colours correspond to 

tumour type in A). (C) Relationship between the number of annotations and the overall balanced 

accuracy for each species using Spearman’s correlation. Species in (A) and (C) are labelled 

with their codes, for more species information, see Table 1.  
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Figure 3 AI prediction variability for inter and intra- species tumour microenvironment 

cells. For each species, four metrics were evaluated including F1, precision, sensitivity and 

specificity (as labelled on the bottom x-axis) for the prediction accuracy of cancer, lymphocyte 

and stromal cells as well as their average shown as ‘overall’ (as denoted with colours on the top 

x-axis). For species codes, see Table 1.  
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Figure 4 Strengths and pitfalls of current methods. Each H&E example is shown as a raw 

image with expert pathology annotations on some cells (left) and AI cell identification (right). 

Scale bar, 100 µm. Cell colours are denoted as four training classes, green: cancer (malignant 

epithelial) cells; blue: lymphocytes (including plasma cells); yellow: noninflammatory stromal 

cells (fibroblasts and endothelial cells); white: ‘other’ cell class that included nonidentifiable 

cells, less abundant cells such as macrophages and chondrocytes and ‘normal’ pneumocytes. 

(A) Correct identification of cancer cells from a mesenchymal tumour (metastatic anaplastic 

sarcoma) in a snake (GONOXY).  (B) A challenging brown-nosed coati (NASNAS) case was 

diagnosed with a round-cell tumour (lymphosarcoma) where the cancer cell morphology is 

difficult to be recognised by an algorithm trained with epithelial cells from human lung cancer. 

(C) A malignant spindle cell tumour from a ring-tailed lemur (LEMCAT) with a 

haemangiosarcoma disease, as shown, the neoplastic endothelial cells have large rounded 

nuclei, which may appear morphologically similar to epithelial cancer cells, as opposed to the AI 

model’s own normal -stromal- endothelial cells. However, the model successfully distinguished 

the majority of neoplastic from stromal cells. Further complexity is in the occurrence of 

epithelioid haemangiosarcoma where the cells of origin are endothelial cells but they actually 

become epithelial-like. (D) In the case of a chimpanzee (PANTRO) with a spindle cell sarcoma, 

the neoplastic fibroblasts are harder to differentiate from reactive fibroblasts.  
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Figure 5 Overlap across the morphological space.  (A) Overall high overlap between human 

and non-human cell morphologies across two dimensions of the principal component analysis, 

and their explained variances, of the morphological space made by ~31K cells annotated by 

pathologists. (B) the mean morphospace overlap across animal tumour cells and lymphocytes 

correlates with the model’s balanced accuracy. (C-F) Species-specific morphological space 

overlap with human morphospace; (C) Canis l. familiaris (CANFAM), (D) Sarcophilus harrisii 

(SARHAR), (E) Gonyosoma oxycephala (GONOXY) and (F) Capra hircus (CAPHIR). Ellipses 

denote 95% of the distribution.
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Supplementary 

 

Supplementary Figure 1 Extended AI single-cell prediction comparison across tumour 

types. Balanced accuracy is computed as the average of sensitivity and specificity for (A) 

cancer, (B) stromal and (C) lymphocyte cells for all species. Species are grouped according to 

their tumour type and are labelled with their codes, for more species information, see Table 1. 
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Supplementary Figure 2 Extended AI prediction variability for inter and intra- species 

tumour microenvironment cells. For each species, four metrics were evaluated including F1, 

precision, sensitivity and specificity (rows) for the prediction accuracy of cancer, lymphocyte and 

stromal cells as well as their average shown as ‘overall’ (columns). Species are grouped 

according to their tumour type and are labelled with their codes, for more species information, 

see Table 1.
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Supplementary Figure 3 Analysis of the morphological space. (A) Dimensions of the 

principal component analysis (PCA) and their explained variances. (B) The highest 20 

contributions to PCA dimensions’ explained variances. Darker bars are features above the 

mean contribution (red line). (C) From left to right, correlation, importance and contribution of 

the single-cell morphological features to PCA dimension. 
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Supplementary Table 1 Summary of sample preparation methods as provided from the 

Zoological Society of London’s pathological archive.  

 

Case ID 
Species 

code 
Pathologists Method 

B01/17 MUSPUT IZVG/RVC- DD Biopsy: removed during surgery and formalin-fixed 

B02/18 GALMOH IZVG/RVC- DD Biopsy: removed during surgery and formalin-fixed 

B04/17 LEMCAT IZVG/RVC- MS Biopsy: removed during surgery and formalin-fixed 

B07-8/04 PANTRO ZSL- AP Biopsy - removed during surgery and formalin-fixed 

B09/04 DASBYR ZSL- AP Biopsy - removed during surgery and formalin-fixed 

W17M035 MELURS IZVG/RVC- MS 
Euthanasia: Carcass fresh – PM examination one day after 

death 

W17R187 OSTTET IZVG/RVC- DD Natural death: Carcass fresh - PM on day of death 

ZA1360/15 LEPFAL IZVG/RVC- MS 
Natural death: Carcass slightly autolysed – PM on day of 

death 

ZB017/18 CYACYA IZVG/RVC- MS 
Euthanasia: Carcass fresh – PM examination one day after 

death 

ZB485/19 SPHHUM IZVG/RVC- CS 
Euthanasia: No comment on carcass condition - PM carried 

out 2 days after euthanasia 

ZM134/17 CAPHIR IZVG/RVC- CS Carcass fresh – euthanised and PM’d on day of death 

ZM138/17 SUSBAR IZVG/RVC- MS Carcass fresh - PM on day of death 

ZM203/17 LEOCHR IZVG/RVC- MS Carcass fresh - PM on day of death 

ZM633/18 CRAHEA IZVG/RVC- DD 
Euthanasia: Carcass fresh – PM examination one day after 

death 

ZM748/18 NASNAS IZVG/RVC- CS 
Euthanasia: Carcass fresh – PM examination one day after 

death 

ZR1145/15 GONOXY IZVG/RVC- MS 
Euthanasia: Carcass fresh - kept in fridge two days before 

examination 
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ZR1148/18 VARPRA IZVG/RVC- DD 
Euthanasia: Carcass fresh – PM examination one day after 

death 

ZR474/19 BITARI IZVG/RVC- CS 
Euthanasia: Carcass fresh – PM examination one day after 

death 
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Supplementary Table 2 The 27 single-cell features extracted to compute the morphological 

space. 

Feature Description 

Area Two-dimensional extension of a shape 

MajorAxisLength Longest diameter 

MinorAxisLength Shortest diameter 

Eccentricity Magnitude inversely related to shape curvature 

ConvexArea Area resulting from connecting the external points of the shape 

FilledArea Area of a corresponding image with holes filled in 

EquivDiameter Diameter of a circle with the same area as the region 

Solidity Extent to which the shape fills the convex area 

Extent Ratio of pixels in the region to pixels in the total bounding box  

Perimeter Length of the shape boundary 

ConvexHullMean Smallest convex polygon that can contain the region 

FilledImageMean Average of pixels corresponding to the segmented mask, with all holes filled 

ConvexImageMean Average of pixels corresponding to a segmented mask which specifies the convex hull of the region 

Diameters Cell diameter using major and minor axes 

Radii Cell radius 

MeanIntensity_R Mean pixel intensity in the red channel 

MinIntensity_R Minimum pixel intensity in the red channel 

MaxIntensity_R Maximum pixel intensity in the red channel 
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MeanIntensity_G Mean pixel intensity in the green channel 

MinIntensity_G Minimum pixel intensity in the green channel 

MaxIntensity_G Maximum pixel intensity in the green channel 

MeanIntensity_B Mean pixel intensity in the blue channel 

MinIntensity_B Minimum pixel intensity in the blue channel 

MaxIntensity_B Maximum pixel intensity in the blue channel 

RGBMeanIntensity Mean pixel intensity in the composed image 

RGBMinIntensity Minimum pixel intensity in the composed image 

RGBMaxIntensity Maximum pixel intensity in the composed image 
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Supplementary table 3 Morphological volumes overlap of human cells on non-human cells’ 

morphological space calculated by the three methods.  The highest overlap values for non-

human lymphocytes and tumour cells are bold-faced. 

 

Morphological 
volume of 

Covered by the 
volume of 

% Overlap 
(product) 

% Overlap 
(mean) 

% Overlap 
(geom. mean) 

Non-human 
lymphocytes 

Human 
lymphocytes 

63.47   84.55  81.25 

Non-human 
lymphocytes 

Human tumour 
cells 

40.41 67.6 59.84 

Non-human 
tumour cells 

Human 
lymphocytes 

16.56   54.82  50.24 

Non-human 
tumour cells 

Human tumour 
cells 

67.97   86.49 86.14 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.05.482261doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.05.482261
http://creativecommons.org/licenses/by-nc-nd/4.0/

