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The Bigger Picture

Over the last 10,000 years, human activities have transformed the Earth through farming, forestry, mining and industry.
The complex results of these activities are now observed and quantified as “human impacts” on Earth’s atmosphere,
oceans, biosphere and geochemistry. While myriad studies have explored facets of human impacts on the planet, they
are necessarily technical and often tightly-focused. Thus, finding reliable quantitative information requires a significant
investment of time to assess each quantity, its methods of determination, and associated uncertainty. We present the
Human Impacts Database (www.anthroponumbers.org), which houses a diverse array of such quantities. We review a
subset of these values and how they help build intuition for understanding the Earth-human system. While collation
alone does not tell us how to best ameliorate human impacts, we contend that any future plans should be made in light
of a quantitative understanding of the interconnected ways in which humans impact the planet.

Summary

The Human Impacts Database (www.anthroponumbers.org) is a curated searchable resource housing quantitative data
relating to the diverse anthropogenic impacts on our planet, with topics ranging from sea level rise, to livestock
populations, greenhouse gas emissions, fertilizer use, and beyond. Each entry in the database relates a quantitative
value (or a time-series of values) along with clear referencing of the primary source, the method of measurement or
estimation, an assessment of uncertainty, links to the underlying data, as well as a permanent identifier called an
Human Impacts ID (“HulD”). While there are other databases that house some of these values, they are typically
focused on a single topic area like energy usage or greenhouse gas emissions. The Human Impacts Database
provides centralized access to quantitative information about the myriad ways in which humans impact the Earth,
giving links to more specialized databases for interested readers. Here, we outline the structure of the database and
describe our curation procedures. Finally, we use this database to generate a graphical summary of the current state of
human impacts on the Earth, illustrating both their numerical values and their dense interconnections.

Introduction

One of the most important scientific developments of the last two centuries is the realization that the evolution of
the Earth is deeply intertwined with the evolution of life. Perhaps the most famous example of this intimate relationship
is the large-scale oxygenation of Earth’s atmosphere following the emergence of photosynthesis'. This dramatic
change in the composition of the atmosphere is believed to have caused a massive extinction, as the organisms living
at the time were not adapted to an oxygenated atmosphere®*. Over the past 10,000 years, humans have likewise
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transformed the planet, directly affecting the rise and fall of ecosystems®", the pH and surface temperature of the
oceans' 'S, the composition of terrestrial biological and human-made mass'®", the planetary albedo and ice cover'®?",
and the chemistry of the atmosphere®-%, to name just a few examples. The breadth of human impacts on the planet is
so diverse that it touches on nearly every facet of the Earth system and every scientific discipline.

Technological advances in remote sensing, precision measurement, and computational power have made it
possible to measure these anthropogenic impacts with unprecedented depth and resolution. However, as scientists
with different training use distinct methods for measurement and analysis, report data in different units and formats,
and use nomenclature differently, these studies can be very challenging to understand and relate to one another. Even
seemingly simple questions such as “how much water do humans use?” can be difficult to answer when search
engines are not optimized for finding numeric data, and a search of the scientific literature yields an array of
complicated analyses with different units, varying definitions about what constitutes water use, and distinct approaches
to quantifying flows. This problem persists beyond the primary scientific literature as governmental, intergovernmental,
and industry datasets can be similarly cryptic and laborious to interpret.

Writing from California, as several of the authors are, where we now have a “wildfire season” and a multi-decadal
drought®®, we wanted to develop a deeper understanding of the ways in which human activities might have produced
such dramatic and consequential changes in our local and global environment. In pursuit of basic understanding, we
asked many questions like “how much water and land do humans use?” and “how much methane is emitted annually?”
In our search for answers, even when the question is well defined, as is the case for methane emissions, we often
encountered the same challenges: disparate technical studies written for expert audiences must be understood,
evaluated and synthesized just to answer simple questions. It seemed to us that a referenced compendium of “things
we already know” akin to the CRC Handbook of Chemistry and Physics would be very useful for us and others.

In building the Human Impacts Database, we took inspiration from our previous experience building and using the
BioNumbers Database® (bionumbers.hms.harvard.edu), a compendium of quantitative values relating to cell and
organismal biology. Over the past decade, the BioNumbers Database has become a widely-accessed resource that
serves not only as an index of biological numbers, but also as a means of finding relevant primary literature, learning
about methods of measurement, and teaching basic concepts in cell biology*’. We believe that a reference for
quantitative data about the extent of human impacts on our planet would be similarly transformative for researchers,
students and interested non-scientists. While reading an entry in the Human Impacts Database is not a replacement for
reading the primary literature, exploring the various quantities the repository houses can reveal a great deal about our
planet, the human civilizations living on it, and their collective impacts on the Earth. We do not know which approaches
to remediating these impacts are most efficient, expedient or cost-effective, but we are convinced that proposals should
be evaluated in the light of a comprehensive and quantitative understanding of the Earth-human system.

Results

Finding and compiling numbers from scientific literature, governmental and non-governmental reports, and
industrial datasets

We have established the Human Impacts Database (http://anthroponumbers.org) as a repository for the rapid
discovery of quantities describing the Earth-human system. We here provide a more complete description of the
database structure, the values it holds, and the stories it tells us about how humans impact the Earth. As of this writing,
the database holds > 300 unique manually-curated entries covering a breadth of data sources, including primary
scientific literature, governmental and non-governmental reports, and industrial communiques. Before it is added to the
database and made public, each entry is vetted extensively by the administrators (our curation procedures are fully
described in the Supplemental Information). While these = 300 entries include those we consider to be essential for a
quantitative understanding of human impacts on Earth, it is not an exhaustive list. This database will continue to grow
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and evolve as more data becomes publicly released, our understanding of the human-earth system improves, and
members of the scientific community suggest values to be added.

To illustrate the structure of a database entry, let's consider the most emblematic one: the atmospheric CO,
concentration as measured by the Mauna Loa Observatory (Figure 1). At the top of the entry we find the title and
category (Fig. 1A-B). Primary categorization falls into one of five classes: “Land”, “Water”, “Energy”, “Flora & Fauna”,
and “Atmospheric & Biogeochemical Cycles”. Of course, these categories are broad and entries can be associated
with several categories. For this reason, each entry is also assigned a narrower “subcategory”, such as “Agriculture”,
“Urbanization”, or “Carbon Dioxide.” While this categorization is not meant to be exhaustive, and many other schemes

could be implemented, we found this organization allowed us to quickly browse and identify quantities of interest.

Following the title and categorization, we report the measured atmospheric CO, concentration. This corresponds to
the most recent reported measurement, which is, as of writing, roughly 416 ppm in 2021 (parts per million, Figure 1C).
Importantly, we report an approximate CO, concentration rather than a precise one to many significant digits. While the
most recent entry in the linked dataset (Fig. 11) gives a monthly average value of 416.43 ppm for December of 2021,
this value does not account for error in the measurement, fluctuations throughout December, or seasonal oscillations in
atmospheric CO,. Therefore, we report a rounded value of 416 ppm. CO, measurements are quite accurate, but other
measurements and inferences recorded in the Human Impacts Database are less so. We therefore strive to give an
assessment of the uncertainty for all values. This can be in the form of a confidence interval, as for HulD 11827, which
reports a 90% confidence interval on the extent of sea level rise due to thermal expansion since 1900, or bounds on
the value, as in HulD 44641, which reports a lower bound on the number of animal extinctions since 1500 CE. In
addition to error assessment, we also aim to provide legible units for all entries. Though atmospheric CO,is commonly
reported in parts per million (ppm) units, we also report this value in other equivalent units, including the mole and
mass fractions of CO,, and the total mass of CO, in the atmosphere in kg CO, (Fig. 1C). Whenever possible, entries
will report values in multiple units to make quantities accessible to readers coming from diverse backgrounds.

Following the numerical value, we find the Human Impacts Database identifier (HulD, Figure 1D). The HulD is a
randomly-generated five-digit number that serves as a permanent identifier of the entry. Because the HulD is
permanent and static, it can be used for referencing. Rather than identifying a single value, we consider the HulD a
pointer to a particular entry, so that HulD 81043 can be used to reference the atmospheric CO, concentration in 2020
and 1980 (Fig. 1E). For example, to reference the present-day atmospheric CO, concentration, one could report the
value as “= 416 ppm (HulD 81043:2021)". Additionally, since each entry comes from a single source, we may have
more than one HulD reporting similar quantities, for example HulDs 69674 and 72086 report recent measurements of
the temperature of the upper ocean.

The “Summary” field (Figure 1F) gives a succinct description of the quantity and its relationship to “human impacts”
broadly-construed, along with other pertinent information. This could include a more detailed definition of terms used in
the quantity, such as the entry for “sea ice extent loss in March” which defines the term sea ice extent, or useful
historical information about the measurement. In our example of atmospheric CO, concentration, the summary explains
that the measurement is made at the Mauna Loa observatory and points out the seasonal oscillations that are
observed. The following “Method” field describes the method by which the quantity was measured, inferred, or
estimated (Figure 1G). This field also provides an assessment of the uncertainty in the value, which may include a
description of how confidence intervals were computed or a list of critical assumptions that were made to estimate
missing data.

All fields through “Method” (Fig 1A-G) depend on manual curation and interpretation by database. The following
two fields, “Source” and “Dataset” (Figure 1H-I) provide direct links to the primary source reference and the relevant
data. Both of these fields are direct links (shown as insets in Figure 1). The “Source” can point either to the published
scientific literature or the resource page of a governmental, industrial, or non-governmental organization data
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deposition URL. The “Dataset” field links directly to a CSV version of the datafile in our GitHub repository. As discussed
in the Supplement, these data files have been converted into a “tidy-data” format® by database administrators, which
maximizes programmatic readability.

When possible, a graphical time-series of the data is also presented as an interactive plot (Fig. 1J). These plots
enable users to quickly apprehend time-dependent trends in the data without downloading or processing the dataset.
While not available for every entry, the majority of quantities we have curated in the Human Impacts Database contain
measurements over time. The last field gives the username of the administrator who generated this entry (Figure 1K).
Their affiliation and contact information is available on the database’s “About” page. We invite the reader to contact the
administrators collectively - through our “Contact” page or directly through our personal emails as provided on the

“About” page for questions, concerns, or suggestions.

While Figure 1 is a representative example, each quantity in the Human Impacts Database tells a different story.
Easy centralized access to different entries allows users to learn about the magnitude of human impacts, and also
study the interactions between different human activities, which, as we discuss in the next section, are deeply
intertwined.

Global Magnitudes

In Figure 2, we provide an array of quantities that we believe to be key in developing a “feeling for the numbers”
associated with human impacts on the Earth system. All of the quantities in Figure 2 are drawn from entries in the
database and grouped into the same categories used in the database: land, water, flora and fauna, atmosphere and
biogeochemical cycles, and energy (see color scheme at the top of Fig. 2). Though the impacts considered necessarily
constitute an incomplete description of human interaction with the planet, these numbers encompass many which are
critically important, such as the volume of liquid water resulting from ice melt (Fig. 2B), the extent of urban and
agricultural land use (Fig. 2H), global power consumption (Fig. 2N), and the heat uptake and subsequent warming of
the ocean surface (Fig. 2S). In many cases, the raw numbers are astoundingly large and can therefore be difficult to
fathom. Rather than reporting only bare “scientific’ units, we present each quantity (when possible) in units that are
relatable to a broad audience. For example, to give context for the annual global mass of CO, emissions in kilograms,
we note that this mass is equivalent to 2.5 two-tonne pickup trucks per person on the planet per year.

Exploring these numbers reveals a number of intriguing quantities and relationships. For example, agriculture
repeatedly appears as a major contributor to many human impacts. Agriculture dominates both global land (Fig. 2H)
and water use (Fig. 2L), and accounts for approximately a third of global tree cover area loss (Fig. 20). In addition, an
enormous amount of nitrogen is synthetically fixed through the Haber-Bosch process to produce fertilizer (Fig. 2F),
which is a major cause of emission of N,O (Fig. 2 K), which is a potent greenhouse gas. About 30 billion livestock are
raised on agricultural lands (Fig. 2E), which, together with rice paddies, produce a majority of anthropogenic methane
emissions (i.e. the greenhouse gas CH,, Fig. 2 K). On the other hand, urban land area accounts for a very small
fraction of land area use (= 1%, Fig. 2H), and the expansion of cities and suburbs accounts for only = 1% of global tree
cover area loss (Fig. 20). This is not to say, however, that urban centers are negligible in their global impacts. As urban
and suburban areas currently house more than half of the global human population (Fig. 2J), many human impacts are
linked to industries that directly or indirectly support urban populations’ demand for food, housing, travel, electronics
and other goods. For example, the pursuit of urbanization is the dominating factor in the mass of earth moved on an
annual basis (Fig. 2W).

Collectively, the = 8 billion humans on Earth (Fig. 2J) consume nearly 20 TW of power, equivalent to 23 one
hundred Watt light bulbs per person (Figure 2N). Around 80% of this energy derives from the combustion of fossil fuels
(Fig. 2P). This results in a tremendous mass of CO, being emitted annually (Fig. 2 K) of which only = %2 remains in the
atmosphere (HulD 70632). A sizable portion of the emissions are absorbed by the oceans (HulD 99089), leading to a
steady increase in ocean acidity (Fig. 2G) and posing risks to marine ecosystems*’. Furthermore, increasing average
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global temperatures primarily caused by greenhouse gas emissions contribute to sea level rise not only in the form of
added water from melting ice (Fig. 2B and M) but also due to thermal expansion of ocean water (Fig. 2M), which
accounts for = 30% of observed sea level rise*'. These are just a few ways in which one can traverse the impacts
illustrated in Figure 2, revealing the remarkable extent to which these impacts are interconnected. We encourage the
reader to explore this figure in a similar manner, blazing their own trail through the values.

Regional Distribution

While Figure 2 presents the magnitude of human impacts at a global scale, it is important to recognize that these
impacts — both their origins and repercussions — are variable across the globe. That is, different societies vary in their
preferences for food (e.g. Americans consume relatively little fish) and modes of living (e.g. apartments vs houses),
have different levels of economic development (e.g. Canada as compared to Malaysia), rely on different natural
resources to build infrastructure (e.g. wood vs concrete) and generate power (e.g. nuclear vs coal), and promote
different extractive or polluting industries (e.g. lithium mining vs palm oil farming). Some of these regional differences
are evident in Figure 3, which summarizes regional breakdowns of several drivers of global human impacts, e.g.
livestock populations and greenhouse gas emissions.

Just as impactful human activities like coal power generation and swine farming are more common in some regions
than others (Fig 2.), likewise the impacts of human activities affect some regions more than others*. Figure 3 displays
a coarse regional breakdown of the numbers from Figure 2 for which regional distributions could be determined from
the literature. The region definitions used in Figure 3 are similar to the definitions set forth by the Food and Agricultural
Organization (FAO) of the United Nations, assigning the semi-continental regions of North America, South America,
Africa, Europe, Asia, and Oceania.Here, we specify both the total contribution of each region and the per capita value
given the population of that region as of the year(s) in which the quantity was measured.

Much as in the case of our Figure 2, interesting details emerge naturally from Figure 3. For example, Asia dominates
global agricultural water withdrawal (excluding natural watering via rainfall), using about 62% of the total, while North
America takes the lead in industrial water withdrawal. Interestingly, on a per-capita basis North America withdraws the
most water for all uses: agricultural, industrial, and domestic.

North America also emits more CO, per capita than any other region, with Oceania and Europe coming second and
third, respectively. This disparity can be partially understood by considering the regional distribution of fossil fuel
consumption, the dominant source of CO, emissions (Fig. 3J). While Asia consumes more than half of total fossil fuel
energy, per capita consumption is markedly lower than in North America, Europe, and Oceania (Fig. 3J). Interestingly,
the story is different when it comes to methane. Oceania and South America are the largest emitters of anthropogenic
CH,4, mainly due to a standing population of cattle that rivals that of humans in those regions (Fig. 3D) and produces
this potent greenhouse gas through enteric fermentation®. Regional disparities are also apparent in the means of
energy production. While consuming only 4% of total power, South America generates about 14% of renewable
energy. Nuclear power generation, on the other hand, is dominated by North America and Europe, while Oceania,
which has a single research-grade nuclear reactor, generates nearly zero nuclear energy.

Investigating the causes of forest loss by geographic region likewise highlights interesting differences. At a global level,
all drivers of forest loss are comparable in magnitude except for urbanization, which accounts for = 1% of total annual
tree cover area loss (Fig. 20). Despite comparable magnitudes, different drivers of forest loss have different long-term
consequences™. Forest loss due to wildfires and forestry often result in regrowth, while commodity-driven harvesting
and urbanization tend to be drivers of long-lasting deforestation****. Central and South America account for about 65%
of commodity-driven deforestation (meaning, clearcutting and human-induced fires with no substantial regrowth of tree
cover), whereas a majority of forest loss due to shifting agriculture occurs in Africa (where regrowth does occur).
Together, wildfires in North America, Russia, China, and South Asia make up nearly 90% of losses due to fire*>. While
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urbanization is the smallest driver of tree cover loss globally, it can still have strong impacts at the regional level,
perturbing local ecosystems and biodiversity*®47.

Timeseries

When available, the Human Impacts Database includes time series data for each quantity. Just as the regional
distributions in impactful human activities help us understand differences between societies and regions, studying the
history of these activities highlights recent technological and economic developments that intensify or reduce their
impacts. When considering the history of human impacts on the Earth, it is natural to start by considering the growth of
the human population over time. As shown in Figure 4, the global human population grew nearly continually over the
past 80 years, with the current population nearing 8 billion. Historically, most of the global human population lived in
rural areas (about 70% as of 1950, HulD 93995). Recent decades have been marked by a substantial shift in how
humans live globally, with around half of the human population now living in urban or suburban settings (= 55%, HulD
93995).

Given the growth of the human population, it's reasonable to consider that human population may be the most
natural scale to measure human impacts*®. To assess this possibility, we plot per-capita impacts over several decades
(Figure 4). If impacts are growing in direct proportion with the human population, per capita impacts would be constant
over time. Indeed, this is roughly true for per-capita water withdrawals over the last 40 years (Fig. 4B). Deviations from
proportionality may indicate important changes in human activities. For example, in recent decades per-capita chicken
populations grew by nearly two-fold while per-capita cattle populations shrunk by roughly 25%, reflecting a modest
transition away from beef and towards chicken as a source of animal meat in global diets (HulDs 40696 and 79776).

One very visible impact accompanying the shift of the human population to urban environments is the increase in
production of anthropogenic mass -- materials such as concrete, steel, lumber, and plastics used to build roads,
buildings, machines, packaging and other useful human-made items. Since these materials are degraded very slowly,
anthropogenic mass has been accumulating over time. In addition, the mass of concrete, aggregates like asphalt, and
bricks per capita has been increasing since the 1950s (Fig. 4D). Concrete, in particular, has increased from less than
10 tons per person in the 1950s to almost 30 tons per person in the 2010s. This increase in per capita anthropogenic
mass means that the increase in production of these materials is outpacing the growth of the human population.

These material production trends have been enabled, in part, by a sustained increase in power generation. As
evident from Figure 4, total power consumption has been increasing roughly proportionally with the human population.
Per capita consumption has also increased across all generation types, including fossil fuels, hydropower, nuclear, and
renewables. The growth among nuclear and renewables has been especially dramatic, and nuclear power now roughly
equals hydropower production. Production of crops, aquaculture, and populations of livestock are all likewise
correlated with growth in the human population (Fig. 4C and E). The total number of livestock has increased with the
human population, primarily due to increasing chicken populations as discussed above. The dominant means of
aquatic food production has also shifted over this time: until roughly 1980, nearly all seafood was captured wild, but
since then aquaculture has grown to account for roughly %2 of aquatic food production (HulD 61233, Fig. 4E).

Turning our focus to greenhouse gases, we see that annual anthropogenic CO, emissions have been increasing
with the population (Fig. 4G). Burning of fossil fuels is the dominant contributor to anthropogenic emissions, and has
increased slightly on a per capita basis over the past 60 years. In contrast, as the pace of global deforestation has
slowed**®® emissions of CO, due to land-use change have decreased per capita. These two trends roughly neutralize
each other, leading to little overall change in CO, emissions per capita since the 1960s. Akin to CO, emissions due to
land-use change, CH, emissions show a sublinear trend with human population, partially due to a decline in ruminant
livestock per capita (Fig. 4C, H).

Discussion
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Quantitative literacy is necessary for understanding in nearly all branches of science. As our collective knowledge
of anthropogenic impacts expands, it has become challenging to sift through the literature to collect specific numbers
useful for both calculation and communication. We have attempted to reduce this barrier to entry on several fronts. We
have canvassed the scientific literature, governmental and international reports to assemble a broad, quantitative
picture of how human activities have impacted Earth's atmosphere, oceans, rivers, lands, biota, chemistry, and
geology. In doing so, we have created an online, searchable database housing an array of quantities and data that
describe different facets of the human-Earth interface. Beyond the database, we have assembled these data into a
comprehensive snapshot, released alongside this writing as a standalone graphical document (Supplemental File 1),
with all underlying data, associated uncertainties and referencing housed in the Human Impacts Database. While
necessarily incomplete, these resources provide a broad view of the ways in which human activities are impacting the
Earth on multiple fronts.

One insight that emerges from considering these diverse human activities together is that they are deeply
intertwined and driven by a small number of pivotal factors: the size of the human population, the composition of our
diets, and our demand for materials and energy to build and power our increasingly complex and mechanized
societies. Understanding the scale of human agriculture, water and power usage provides a framework for
understanding most of the numerical gallery presented in Figure 2. Perhaps unsurprisingly, we find that feeding the
growing human population is a major driver of a large swath of human impacts on earth, dominating global land (Figure
2H, HulD: 29582) and water use (Figure 2L, HulDs: 84545, 43593, 95345), as well as significantly contributing to tree
cover loss (Figure 20, HulD: 24388), earth moving (Figure 2W, HulD: 19415, 41496), and anthropogenic nitrogen
fixation (Figure 2F, HulD: 60580, 61614), to name a few such examples.

It is common in this setting to argue that the bewildering breadth and scale of human impacts should motivate
some specific remediation at the global or local scale. We, instead, take a more modest "just the facts" approach. The
numbers presented here show that human activities affect our planet to a large degree in many different and
incommensurate ways, but they do not provide a roadmap for the future. Rather, we contend that any plans for the
future should be made in the light of a comprehensive and quantitative understanding of the interconnected ways in
which human activities impact the Earth system globally (Figure 2), locally (Figure 3), and temporally (Figure 4).
Achieving such an understanding will require synthesis of broad literature across many disciplines. While the quantities
we have chosen to explore are certainly not exhaustive, they represent some of the key axes which frequently drive
scientific and public discourse and shape policy across the globe.

Earth is the only habitable planet we know of, so it is crucial to understand how we got here and where we are
going. That is, how (and why) have human impacts changed over time? How are they expected to change in the
future? For every aspect of human entanglement with the Earth system — from water use to land use, greenhouse gas
emissions, mining of precious minerals, and so on — there are excellent studies measuring impacts and predicting their
future trajectories. Of particular note are the data-rich and explanatory reports from the Intergovernmental Panel on
Climate Change®'%? and the efforts towards defining “Planetary Boundaries™®. We hope that the Human Impacts
Database and the associated resources with this work will aim another lens on the human-Earth system, one that
engages the scientific community ultimately helping humanity coexist stably with the only planet we have.
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monthly variability. The Mauna Loa data are being obtained at an altitude of 3400 m in the northern
G Method: subtropics, and may not be the same as the globally averaged CO2 concentration at the surface. The
mass of CO, is obtained from the concentration using the molar mass of CO,, 44 g mol™%; the molar
mass of air, 29 g mol'}; and the mass of the atmosphere, 5.15 x 1018 kg.
H Source: Scripps CO2 Program Primary Mauna Loa COZ2 Record. (2021)
I Dataset: ©) Monthly atmospheric CO2 measurements from Mauna Loa Observatory (monthly_co2_data p d.csv)
Vv
420 year,month,date (decimal),Reported value,Concentration (ppm)
1958, 3,1958.203,monthly mean,315.7
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1958,5,1958.37,monthly mean,317.51
1958,6,1958.455,monthly mean,
%1 1958,7,1958.537,monthly mean,315.86
g 1958,8,1958.622,monthly mean,314.93
J Trend & 360-| 1958,9,1958.707,monthly mean,313.21
) 1958,10,1958.789,monthly mean,
a40 1958,11,1958.874,monthly mean,313.33
1958,12,1958.956,monthly mean,314.67
1959,1,1959.041,monthly mean,315.58
3204 1959,2,1959.126,monthly mean,316.49
1959, 3,1959.203,monthly mean,316.65
300 I I I | | I I I I I I 1959,4,1959.288,monthly mean,317.72
Jan 1965 Jan 1970 Jan 1975 Jan 1980 Jan 1985 Jan 1990 Jan 1995 Jan2000 Jan2005 Jan2010 Jan2015 Jan 2020 1959 ) 5 , 1959 . 37 , monthly mean, 318 . 29
date 1959,6,1959.455, monthly mean,318.15
1959,7,1959.537,monthly mean,316.54
1959, 8,1959.622,monthly mean,314.8
K o 1959,9,1959.707,monthly mean,313.84
Added by: ilopezgo 1959,10,1959.789,monthly mean,313.33

| 1959,11,1959.874,monthly mean,314.81

Figure 1: A representative entry in the Human Impacts Database. The entry page for HulD 81043 - “Atmospheric CO, concentra-
tion” is diagrammed with important features highlighted. Each entry in the Human Impacts Database has a (A) name, (B) primary and
secondary categorization, (C) the numerical value with other units when appropriate, (D) a 5-digit permanent numeric identifier, (E)
years for which the measurement was determined, (F) a brief summary of the quantity, (G) the method of determination, (H) a link to
the source data, and () a link to a processed version of the data saved as a .csv file. When possible, a time series of the data is
presented. (K) Finally, each entry lists the username of the administrator who curated the quantity. Their contact information is avail-
able on the anthroponumbers.org “About” page.
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Figure 2: Human impacts on the planet and their relevant magnitudes. Relative units and the broad organizational
categories are shown in the top-left panels. Source information and contextual comments for each subpanel are presented
in the Supplemental Information.
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THE GEOGRAPHY OF HUMAN IMPACTS

Page 1 represents the impact humans have on the Earth at a
global scale. While these numbers are handy, it is important
to acknowledge that they vary from country-to-country and
continent-to-continent. Furthermore, the consequences of
these anthropogenic impacts are also unequally distributed,

meaning some reBiORXixpRrRpENtfets

geographic distribution of several values presented on page
1, broken down by continental region as shown below.

f‘
@ THE LIVESTOCK POPULATION

The global population of terrestrial livestock is around 30
billion individuals, most of which are chickens. Asia houses
most of the global livestock population, though South

America and Europe harbor more animals on a per-capita
basis.
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(C) NITROGENOUS FERTILIZER USE & PRODUCTION
Modern agriculture requires nitrogen in amounts beyond
what is produced naturally. Asia synthesizes and consumes
a large majority of fixed nitrogen. However, Europe and
North America dominate per capita synthesis whereas
Oceania consumes more fertilizer per capita than any other
region.
GLOBAL FRACTION
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Source: Food and Agricultural Organization (FAO) of the United Nations.
Notes: Values account for reactive nitrogen production/consumption in context of
fertilizer only and does not account for plastics, explosives, or other uses

From heating water, to powering lights, to moving
our vehicles, nearly every facet of modern human
life requires the consumption of power, culminating
in nearly 20 TW of power use in recent years. Asia
consumes over half of the power derived from
combustion of fossil fuels, with Europe and North
America each consuming around 20% of the global
total. Asia also produces the plurality of power from
renewable technologies, such as hydroelectric,
wind, and solar, however, North America, South
America, and Europe each produce more on a per
capita basis. Nuclear energy, however, is primarly
produced in Europe, with North America and Asia
coming in second and third place, respectively. On
a per-capita basis, North America consumes or
produces more energy than all other regions
considered here, yielding a total power consump-
tion of nearly 10,000 W per person.

Source: Energy Information Administration of the United States (2017)
Notes: “Renewables” includes hydroelectric, biofuels, biomass (wood), geothermal
wind, and solar. “Fossil fuels” includes coal, oil, and natural gas
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THE HUMAN POPULATION

There are ~ 8 billion humans on the planet, with approxi-
mately 50% living in ‘urban’ environments. The majority of
the worlds population (as well as the majority of both
urban and rural dwellers) live in Asia.

C)

LAND USE

Though humans are nearly evenly split between urban
and rural environments, agricultural land is the far more
common use of land area. Together, Asia and Africa
contain more than half of global agricultural land. Asia
alone accomodates more than half of the global urban
land area.
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WATER WITHDRAWAL

While Asia withdraws the most water for agricultural and
municipal needs, North America withdraws the plurality of
water for industrial purposes. North America also
withdraws more water per capita than any other region.

GLOBAL FRACTION WITHDRAWAL PER CAPITA
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Notes: Values are reported directly from member countries and represent average of

2013-2017 period. Per capita values are computed given population of reporting countries.

GREENHOUSE GAS EMISSIONS

CO, and CH, are two potent greenhouse gases which are
routinely emitted by anthropogenic processes such as
burning fuel and rearing livestock. While Asia emits
roughly half of all CO, and CH,, North America and Oceania
produce the most on‘a per capita basis, respectively.
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Sources: CO, data collated by: Friedlingstein, P. et al. (2019). doi
10.5194/essd-11-1783-2019. See Panel K on Pg. 4 for complete list of sources. CH,data
from Saunois et al, 2020 doi: 10.5194/essd-12-1561-2020 Notes: Values report decadal
averages in kg CO, or CH, per year over time period 2008-2017

POWER GENERATION AND CONSUMPTION
CONSUMPTION PER CAPITA
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(F) TREE COVERAGE AREA LOSS

Most drivers of tree coverage area loss are comparable in
their effect at a global scale. However, there are drastic
regional differences in the relative magnitudes.

REGION DEFINITION

Central & South America |Russia, China, & South Asia
Europe (- Russia)

shifting

deforestation X
agriculture

wildfire

m==

Source: Curtis et al. 2018 doi: 10.1126/science.aau3445.

Notes: Regions are as reported in Curtis et al. 2018. “Deforestation” here denotes
permanent removal of tree cover for commodity production. “Shifting agriculture” here
denotes forest/shrub land converted to agriculture and later abandoned. All values
correspond to breakdown of cumulative tree cover area loss from 2001 - 2015

(1) MATERIAL PRODUCTION

Humans excavate an enormous amount of material from
the Earth’s crust and transform it to build our structures.
Two of these materials, concrete and steel, are produced
primarily in Asia on both a global and per capita basis.
Asia’s per capita production of steel is only outpaced by
Europe.
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Figure 3: Regional distribution of anthropogenic effects. Several quantities from Figure 2 were selected and
the relative magnitudes were broken down by subcontinental area (A). Donut charts in all sections show the rela-
tive contributions of each quantity by region. Ball-and-stick plots show the per capita breakdown of each quantity
across geographic regions. All data for global and per-capita breakdowns correspond to the latest year for which
data were available. The regional breakdown for deforestation uses the regional convention as reported in the

source data*.
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(A) THE HUMAN POPULATION (B) WATER WITHDRAWAL (C) THE LIVESTOCK POPULATION
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in urban areas has increased so that today
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® CO2 EMISSIONS (H) CH4 EMISSIONS

Annual anthropogenic CO, emissions have been increasing with the population, driven
by an increase in fossil fuel combustion. The amount of CO, emissions from fossil fuels
has increased slightly per capita, while the per capita emissions from land use change
have decreased.

While total anthropogenic methane (CH,) emissions have been increasing with the human
population, per capita emissions have been decreasing each decade since the 1970s.
This per capita reduction reflects a shift in global diets away from methane-intenesive
beef products, as well as better waste management policies in developed countries.
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Figure 4: Temporal dynamics of key human impacts. Several quantities from Figure 2 were selected and
the magnitudes were plotted either as a function of time (for cumulative quantities such as anthropomass) or
human population (A). Ball-and-stick plots show the per capita breakdown as decadal averages to give a
more reflective view of cultural and technological shifts than year-to-year variation.
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Figure Captions

Figure 1: A representative entry in the Human Impacts Database. The entry page for HulD 81043 - “Atmospheric
CO, concentration” is diagrammed with important features highlighted. Each entry in the Human Impacts Database has
a (A) name, (B) primary and secondary categorization, (C) the numerical value with other units when appropriate, (D) a
5-digit permanent numeric identifier, (E) years for which the measurement was determined, (F) a brief summary of the
quantity, (G) the method of determination, (H) a link to the source data, and (I) a link to a processed version of the data
saved as a .csv file. When possible, a time series of the data is presented. (K) Finally, each entry lists the username of
the administrator who curated the quantity. Their contact information is available on the anthroponumbers.org “About”

page.

Figure 2: Human impacts on the planet and their relevant magnitudes. Relative units and the broad organizational
categories are shown in the top-left panels. Source information and contextual comments for each subpanel are
presented in the Supplemental Information.

Figure 3: Regional distribution of anthropogenic effects. Several quantities from Figure 2 were selected and the
relative magnitudes were broken down by subcontinental area (A). Donut charts in all sections show the relative
contributions of each quantity by region. Ball-and-stick plots show the per capita breakdown of each quantity across
geographic regions. All data for global and per-capita breakdowns correspond to the latest year for which data were
available. The regional breakdown for deforestation uses the regional convention as reported in the source data*®.

Figure 4: Temporal dynamics of key human impacts. Several quantities from Figure 2 were selected and the
magnitudes were plotted either as a function of time (for cumulative quantities such as anthropomass) or human

population (A). Ball-and-stick plots show the per capita breakdown as decadal averages to give a more reflective view
of cultural and technological shifts than year-to-year variation.
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