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Summary 

Changes in autonomic arousal, such as mounting sleep pressure, and changes in 

motivation, such as fluctuating environmental reward statistics, both profoundly influence 

behavior. Our experience tells us that we have some capacity to control our arousal when doing 

so is important, such as staying awake while driving a motor vehicle. However, little is known 

about how decision computations are jointly influenced by arousal and motivation, including 

whether animals, such as rodents, can adapt their arousal state to their needs. Here, we 

developed and show results from an auditory feature-based sustained-attention task with 

intermittently shifting task utility. We use pupil size to estimate arousal across a wide range of 

states and apply novel signal detection theoretic and accumulation-to-bound modeling 

approaches in a large behavioral cohort. We find that both pupil-linked arousal and task utility 

have major impacts on multiple aspects of performance. Although substantial arousal fluctuations 

persist across utility conditions, mice partially stabilize their arousal near an intermediate, and 

optimal, level when task utility is high. Behavioral analyses show that multiple elements of 

behavior improve during high task utility and that arousal influences some, but not all, of them. 

Specifically, arousal influences the likelihood and timescale of sensory evidence accumulation, 

but not the quantity of evidence accumulated per time step while attending. In sum, the results 

establish specific decision-computational signatures of arousal, motivation, and their interaction, 

in attention. So doing, we provide an experimental and analysis framework for studying arousal 

self-regulation in neurotypical brains and diseases such as attention-deficit/hyperactivity disorder. 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2022.03.04.482962doi: bioRxiv preprint 

mailto:matthew.mcginley@bcm.edu
mailto:j.w.degee@uva.nl
https://doi.org/10.1101/2022.03.04.482962
http://creativecommons.org/licenses/by/4.0/


 

 2 

Introduction 

Arousal state and motivational state both profoundly impact behavior, but how they 

interact at the level of decision computations is largely unknown. Autonomic arousal, controlled 

by neuromodulators released from the reticular activating system, fluctuates on multiple time 

scales, shaping sensory processing and decision-making behavior (Aston-Jones & Cohen, 2005; 

Harris & Thiele, 2011; Lee & Dan, 2012; McGinley, Vinck, et al., 2015). Fluctuations in pupil size 

at constant luminance track global arousal state (Joshi & Gold, 2020; McGinley, Vinck, et al., 

2015) and the activity of the underlying neuromodulatory systems, including noradrenaline 

(Breton-Provencher & Sur, 2019; de Gee et al., 2017; Joshi et al., 2016; Murphy et al., 2014; 

Reimer et al., 2016; Varazzani et al., 2015) and acetylcholine (de Gee et al., 2017; Mridha et al., 

2021; Reimer et al., 2016). Optimal behavioral and neural detection of simple sounds occurs at 

intermediate levels of spontaneously fluctuating pupil-linked arousal (Beerendonk et al., 2023; 

McGinley, David, et al., 2015; Schriver et al., 2018). Large baseline pupil size is associated with 

task disengagement, including exploratory behaviors like locomoting (Gilzenrat et al., 2010; 

Jepma & Nieuwenhuis, 2011; McGinley, David, et al., 2015) and small baseline pupil is associated 

with drowsiness or sleep (McGinley, David, et al., 2015; Yüzgeç et al., 2018). This ‘inverted-U’ 

shape of the effects of pupil-linked arousal on task exploitation, versus task disengagement as 

exploration or rest, is referred to as the Yerkes-Dodson relationship and relates closely to the 

‘adaptive gain’ theory of noradrenergic tone (Arnsten & Li, 2005; Aston-Jones & Cohen, 2005; 

Berridge & Waterhouse, 2003; Kane et al., 2017; Pfeffer et al., 2021; Usher et al., 1999; Yerkes 

& Dodson, 1908).  

Sustained and feature-based attention is an important cognitive function that is potently 

influenced by motivational state and can be effectively modeled in mice (Robbins, 2002; L. Wang 

& Krauzlis, 2018). Motivation level, for example driven by the magnitude of reward for attending 

effectively, has been shown to impact the intensity aspect of attention, also called ‘attentional 

effort’ (Ghosh & Maunsell, 2021; Sarter et al., 2006). In lay terms, motivation level can turn 

attention level up and down. We hereafter refer to this psychological construct as ‘attentional 

intensity’. Signal detection theory (SDT) analysis can capture motivated shifts in attentional 

intensity as changes in the discrimination sensitivity, or d’, in contrast to orthogonal changes in 

behavioral strategy, which are captured as changes in bias, or c (also called criterion) (Green & 

Swets, 1966). In attention tasks, as with most decision-making processes, effects on d’ and bias 

are thought to arise from changes in the underlying process of accumulating decision-relevant 

sensory evidence, implemented in a distributed network of brain areas (Shadlen & Kiani, 2013; 

Steinmetz et al., 2019; van Vugt et al., 2018). In widely used accumulation-to-bound models of 

judgments about weak time-varying sensory signals in noise, sensory cortex encodes the noise-

corrupted decision evidence, and downstream association and motor cortices accumulate this 

noisy sensory signal into a decision variable that determines the behavioral choice (Bogacz et al., 

2006; Shadlen & Kiani, 2013; Siegel et al., 2011; X.-J. Wang, 2008). Thus, SDT and 

accumulation-to-bound models can provide basic and high-resolution accounts, respectively, of 

attention-related decision-making processes. 

How motivated attention interacts with this inverted-U model of pupil-linked 

neuromodulatory system function is not known. This is an important gap in knowledge, because 

our experience tells us that motivated self-control of arousal importantly impacts attention. For 
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example, dysregulated self-control of arousal is a prominent aspect of attention-

deficit/hyperactivity disorder (ADHD) and other developmental disabilities and psychiatric 

disorders (de Lecea et al., 2012; Sander et al., 2015; Zhao et al., 2022). Thus, a central and 

unsolved question about the role of arousal in brain function is how spontaneous arousal 

fluctuations, driven by internal metabolic and/or memory consolidation demands (Squire et al., 

2015), are strategically influenced to match arousal state to task demands (Aston-Jones & Cohen, 

2005). According to the adaptive gain theory, when task utility (i.e. reward expectation) is high, 

one should regulate towards a moderate arousal state to facilitate optimal task engagement. In 

contrast, when utility is low, one should upregulate to a high arousal state to facilitate exploration 

of alternatives, or downregulate to a low arousal state to rest and consolidate. In line with this 

proposed adaptability of arousal control, the locus coeruleus receives strong projections from 

frontal regions including the orbital frontal cortex and anterior cingulate cortex (Arnsten & 

Goldman-Rakic, 1984; Aston-Jones & Cohen, 2005; de Gee et al., 2017; Joshi & Gold, 2022; 

Porrino & Goldman-Rakic, 1982) and has more complex organization than previously assumed 

(Breton-Provencher & Sur, 2019; Poe et al., 2020; Totah et al., 2018). These organizational 

features may provide a neural substrate for strategic self-regulation of arousal. 

We here sought to understand how fluctuations in arousal and shifts in task utility interact 

to influence decision computations supporting sustained feature-based attention. We developed 

a ‘sustained-attention value’ task for head-fixed mice and report behavioral and pupillary 

signatures of in a large cohort. The task manipulates coherent acoustic motion in time-frequency 

space, analogous to random-dot motion used extensively in the visual system (Newsome et al., 

1989). We develop and apply a survival analysis-based SDT approach, as well as tailored 

accumulation-to-bound models, and assess the interacting effects of task utility and pupil-linked 

arousal. We find that both arousal state and motivational state have large impacts on decision 

computations. During periods of high task utility mice exhibit multiple signatures of heightened 

attentional intensity, which are partially mediated by stabilization of arousal closer to an optimal, 

moderate levels.  

 

Results 

A feature-based sustained-attention task with nonstationary task utility 

To study how arousal and motivation interact to shape decision computations during 

sustained attention, we developed a quasi-continuous auditory detection task for head-fixed mice 

(Fig. 1). Mice were trained to detect coherent time-frequency motion (the ‘signal’; called temporal 

coherence (Shamma et al., 2011)) embedded at unpredictable times in an ongoing and otherwise 

random cloud of tones (the ‘noise’). The task required sustained, attentive listening to achieve 

high detection performance, due to the perceptual difficulty of noticing the temporally 

unpredictable emergence of a high-order acoustic feature. Mice were motivated to elicit lick 

responses by being food scheduled and by administration of sugar-water reward when they licked 

during the signal. To suppress excessive licking, mice received a 14-second timeout if they licked 

during the noise (Fig 1A). We manipulated the utility of performing the task by shifting the reward 

size back and forth between 60 trials of high (12 µl) and 60 trials of low (2 µl) values, in 7 

consecutive blocks. We recorded the timing of correct (‘Hit’) and incorrect (‘False Alarm’) 
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responses with respect to the ongoing sound stimuli (Fig 1B, top rows). We also measured the 

diameter of the pupil as readout of arousal and walking speed as an additional behavioral state 

measure (Fig 1B, bottom rows). Hereafter, we refer to the task as the sustained-attention value 

task (see Methods for additional details).  

To assess the basic patterns of how mice learned and performed the sustained-attention 

value task, we applied signal detection theory to assess perceptual sensitivity (d’, also called 

discriminability) and bias (c, also called criterion). Because the duration of the noise varied 

between trials, and because each signal was preceded by a noise stimulus on each trial, care 

was required in calculating hit and false alarm rates. Hit rate (HR) was calculated in the traditional 

manner, as the fraction of signals for which the mouse licked. Because signals only occurred if 

the mouse did not lick during the noise, this HR is implicitly a conditional probability. The 

appropriate false alarm rate (FAR) was calculated as the time-in-noise matched conditional 

probability, but without signal present, which could be estimated using the Kaplan-Meier Survival 

function (see Methods for details). Sensitivity and bias were defined as the difference or sum, 

respectively, of the z-scored HR and FAR (Green & Swets, 1966). We also measured reaction 

time, as the latency from signal start to first lick on hit trials, and reward probability, as the fraction 

of trials that ended in reward. 

Because the sustained-attention value task is, by design, demanding of attentional 

resources, we hypothesized that mice would increase their attentional intensity during blocks of 

high reward, to exploit the high utility, and reduce attentional intensity in low-reward blocks, to 

conserve cognitive resources and/or engage in other activities. To test whether mice could learn 

to adaptively adjust their attentional intensity, we measured sensitivity and bias across learning 

of the task. Training occurred in three phases. In phase 1, the signal was 6 dB louder than the 

noise, several free-reward trials (not contingent on response) were administered, and reward 

magnitude was constant (5 μL) throughout the session. During this phase, mice learned to 

respond (lick) to harvest rewards; within just three sessions their bias changed from quite 

conservative (positive bias values) to slightly liberal (negative bias values; Fig. 1C). Sensitivity 

also increased across the first few sessions (Fig. 1D). In phase 2, we introduced the block-based 

shifts in reward magnitude and trained the mice until they reached a performance threshold 

(Methods). Sensitivity gradually increased during phase 2 (Fig. 1D). 

 In phase 3, which was the main task, acoustic signal and noise stimuli were of equal 

loudness and the small number of classical conditioning trials were removed. By this time, mice 

were sufficiently experienced with the task to maintain engagement (Fig. 1E). However, since 

they could no longer rely on the small loudness difference between signal and noise sounds, their 

sensitivity dropped to near zero at the beginning of phase 3 (Fig. 1F). Re-learning the, time-

varying and now purely feature-based, signal detection was perceptually difficult, as intended, as 

indicated by the shallow learning curves for sensitivity and reward probability (Fig. 1F; Fig. 

S1G,K). Thus, mice rapidly learned the task structure, but slowly learned the feature-based 

attention and adaptive attentional intensity allocation (Fig. 1C-F; Fig. S1E-L; see Methods for 

details).  
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Figure 1. Monitoring performance and pupil-linked arousal during a sustained-attention value task. 
(A) Spectrogram of the sound during an example of three consecutive trials. Correct go responses (hits, 
green text and arrow at top) were followed by 2 or 12 μL of sugar water. Reward magnitude alternated 
between ‘low’ and ‘high’ values (2 and 12 μL, respectively) in blocks of 60 trials. Incorrect go-responses 
(false alarms, red text and arrow at top) terminated the trial and were followed by a 14 s timeout, indicated 
to the animal as pink acoustic noise. (B) Example session. From top to bottom: noise stimulus timing, signal 
stimulus timing, reward/utility context, correct responses (hits), incorrect responses (false alarms), reaction 
times (RTs) on hit trials, pupil size and walking velocity. Color (blue or orange) indicates utility/reward 
context. (C) Bias (Methods) across experimental sessions in learning phases 1 and 2 (Methods); session 
numbers are with respect to the last session in phase 2. (D) As C, but for sensitivity (Methods). (E,F) As 
C,D, but for the main task (Methods). See Fig. S1 for fitted learning curves and time constants. Panels C-
F: shading, 68% confidence interval across animals (N=88, n=4473 sessions). 

Due to the temporal structure of the task, it is possible that mice could learn to match their 

lick times to the temporal statistics of signal occurrence to harvest at least some reward, rather 

than attend to the temporal coherence per se. To rule out such a timing-based strategy, and 

demonstrate feature-based listening, we trained a cohort of mice (N=10; n=142 sessions) in a 

psychometric variant of the task in which signal coherence was varied randomly from trial to trial, 

in addition to the block-based utility manipulation. Signal coherence was degraded by 
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manipulating the percentage of tones in each chord that moved coherently through time-

frequency space (Fig. S1M; Methods). This manipulation is analogous to reducing spatial motion 

coherence in visual random-dot motion tasks (Newsome et al., 1989). As would be expected if 

the mice were employing feature-based attention, rather than a timing-based strategy, both 

sensitivity and reward probability lawfully varied with signal coherence (Fig. S1N,O). Further 

supporting feature-based attention, rather than a temporal strategy, empirical sensitivity (Fig. 

1E,F) and reward probabilities (Fig. S1J, top) were substantially higher than those predicted with 

random licking (Fig. S2A) and signal start-time sorted survival functions for hits deviated strongly 

from the time-matched false-alarm survival functions (Fig. S2B). 

 

Upregulation of task engagement and attentional intensity during high task utility 

We next analyzed if mice strategically regulate attentional intensity across blocks. We 

interpreted block-based shifts in sensitivity as an indication of changing attentional intensity and 

block-based shifts in bias as changing task engagement. Therefore, we measured the time scales 

(both within and across blocks) on which mice changed their bias and sensitivity to shifts in task 

utility (Fig. 2A-F). We observed that mice spent most of the 1st block (termed block ‘0’; always 

low reward) becoming gradually engaged in the task (Fig. 2A,D,G,J; see also Fig. 5A). Therefore, 

we focused all analyses on the subsequent six blocks (termed blocks ‘1’ through ‘6’), for which 

the correct lick-triggered reward size alternated in blocks between 12 μL (high reward, orange 

traces) and 2 μL (low reward, blue traces; see Methods for additional details). 

Across blocks, we found that mice were more liberal (licked more, irrespective of 

correctness, quantified as a negative bias) in each of the high, compared to neighboring low-

reward blocks within an experimental session (Fig. 2A-C). This pattern represents a performance 

optimization, because bias in high utility was closer to optimal (zero) bias, but not at attention 

optimization, because bias is not related to sensory signal detection (see Fig. S2A). However, 

sensitivity was also higher in the high-reward compared to low-reward blocks, especially early in 

each session (Fig. 2D-F), indicating that feature-based attentional intensity was being adapted to 

the current task utility. Mice became more conservative and less sensitive across the session 

duration (Fig. 2A,C,D,F), probably resulting from effects of fatigue and/or satiety, both of which 

would progressively decrease the relative utility of performing the task as the session progresses. 

Mirroring the patterns in bias and sensitivity, reaction times were substantially shorter in high-

reward blocks than in low-reward blocks, and gradually increased as the experimental session 

progressed (Fig. 2G-I). In sum, increases in task utility boosted both task engagement, as 

indicated by the shift towards a liberal bias, as well as feature-based attentional intensity, as 

indicated by increased sensitivity and decreased RT in high utility. 

To understand how quickly mice could deploy attentional intensity, we next sought to 

determine the within-block time course of these block-based behavioral changes. Because the 

reward context was not cued, the first reward in a block provided a strong and unambiguous 

indication that a transition in utility had occurred. Because the only cue the animals had about 

which reward block they were in was the observed reward size, we analyzed time-dependencies 

within each block, aligned to the first hit trial after each block transition (Fig. 2A,D,G,J). After the 

first large reward in the high-reward block, bias immediately switched from conservative to liberal, 
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compared to just before the switch, and did not subsequently change during the block (Fig. 2B). 

In contrast, when switching from high to low reward, bias immediately went from neutral to 

conservative and then became even more conservative by a further 151.7% with a time constant 

of 15 trials (see Methods for details). These results show that mice could increase their 

engagement, rapidly, in high utility, but spent many trials decreasing their engagement in low 

utility.  

 

Figure 2. Rapid and adaptive changes in performance after shifts in task utility. (A) Bias across low-
reward and high-reward blocks in each experimental session, locked to first hit in block. Data from the first 
block of each session (low utility; termed block ‘0’) was excluded from all analyses, as mice spent this block 
becoming engaged in the task (see also panels D,G and J; Methods). (B) As A, but collapsed across blocks 
of same reward magnitude. The green shaded area indicates the trials used when pooling data across trials 
within a block (e.g. panel C). (C) As A, but collapsed across trials within a block. Stats, 2-way repeated 
measures ANOVA (factors task utility [high vs. low] and time-on-task [early, middle, late]); main effect task 
utility: F1,87 = 657.2, p < 0.001; main effect time-on-task: F2,174 = 124.5, p < 0.001; interaction effect: F2,174 = 
4.0, p = 0.020. (D-F) As A-C, but for sensitivity. Main effect task utility: F1,87 = 33.2, p < 0.001; main effect 
time-on-task: F2,174 = 7.8, p = 0.001; interaction effect: F2,174 = 2.6, p = 0.076. (G-I) As A-C, but for RT. Main 
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effect task utility: F1,87 = 499.3, p < 0.001; main effect time-on-task: F2,174 = 27.4, p < 0.001; interaction 
effect: F2,174 = 0.3, p = 0.741. (J-L) As A-C, but for reward probability. Main effect task utility: F1,87 = 19.7, p 
< 0.001; main effect time-on-task: F2,174 = 26.0, p < 0.001; interaction effect: F2,174 = 22.1, p < 0.001. All 
panels: shading or error bars, 68% confidence interval across animals (N=88, n=1983 sessions). 

 

After the first high reward in the high-reward block, sensitivity immediately increased by 

28.3% compared to just before the switch, and then increased by a further 2.5% with a time 

constant of 5 trials (Fig. 2E). When switching from high to low rewards, sensitivity immediately 

increased by 35.2% (likely due to residual high attention from the previous high-reward block and 

then decreased by 37.9% with a time constant of 15 trials, mirroring the trends for bias. Thus, we 

observed a hysteresis effect, similar to what has previously been observed in monkeys (Ghosh & 

Maunsell, 2021). Specifically, mice updated their behavior faster when switching from low to high 

reward, than the other way around, particularly for sensitivity. This hysteresis indicates a 

heightened urgency when task utility is detected to have increased. 

An animal or human optimally performing a task should allocate cognitive resources in a 

way that maximizes the rate of returns. We thus wondered if mice collected more rewards in the 

context of high task utility. This is not trivially so in the sustained-attention value task; unlike in 

standard go/no-go tasks, in our quasi-continuous task a noise stimulus always precedes each 

signal stimulus. Thus, a liberal bias, leading to more false alarms, lowers the probability that 

signals are presented and thus lowers reward rate (Fig. S2A). Mice did ignore the noise and 

detected the signal on a larger fraction of trials in the high-reward compared to low-reward blocks 

and thus collected more rewards (Fig. 2J-L). Mice on average sustained a stable reward 

probability of 0.278 ± 0.006 across the entire session during the high-reward blocks (odd 

numbered), while reward probability declined monotonically from 0.256 ± 0.008 in the first low-

reward block (block 2) to 0.210 ± 0.009 in the last (block 6; Fig. 2K,L). Reward probability 

exhibited similar hysteresis effects as bias and sensitivity (Fig. 2K). Thus, mice updated all 

aspects of their behavior more quickly when switching from low to high reward than when 

switching in the other direction. We verified that our results were robust to specifics regarding trial 

selection (Fig. S2H-K; Methods) and were not confounded by effects of time-on-task (Fig. S2L-

O; Methods). We ruled out the possibility that animals adjusted their behavior to the previous 

outcome (reward versus non-reward) rather than to block-wise changes in task utility. After a 

previous reward, mice were indeed more liberal, more sensitive, and faster, but task utility had 

similar effects as before even when accounting for previous trial outcome (Fig. S2P-S). 

In a parallel analysis, we split each trial into its noise and signal epochs (only noise for 

false alarms) and then performed a multiple logistic regression of response (lick versus no lick) 

on signal (noise versus signal), time-on-task (trial number), previous outcome (reward versus no 

reward) and task utility (low versus high) (Fig. 3A; Methods). While doing so, we observed the 

same behavioral patterns as in the above stratification analyses. Namely, we observed a negative 

effect of time-on-task and positive effects of previous outcome and task utility on overall 

responsiveness (closely related to bias; Fig. 3B) and a negative effect of time-on-task and positive 

effects of previous outcome and task utility on signal-selective responsiveness (closely related to 

sensitivity; Fig. 3C).  
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Finally, we asked if the block-wise changes in reward probability were predicted by 

behavioral adjustments in bias or sensitivity. An individual difference analysis favored the latter. 

In the first place, the overall (Fig. S3A) and block-based (Fig. 3D) changes in bias and sensitivity 

were not positively correlated at the per-mouse level, suggesting separate underlying processes. 

Critically, utility-driven shifts in reward probability were strongly predicted by matched shifts in 

sensitivity, but not bias (Fig. 3E). We conclude that mice increase their feature-based attentional 

intensity during periods of high task utility; when utility is high, they are more sensitive in 

discriminating signals from noise, are faster at doing so, resulting in the collection of more 

rewards.  

 

 

Figure 3. Adaptive allocation of attentional intensity is not an artifact of previous trial outcome and 
is apparent in patterns of individual difference. (A) Schematic of logistic multiple regression of choice 
on signal [present / absent], trial number, previous outcome [reward / no reward], and utility [low / high] 
(Methods). (B) Fitted coefficients from multiple logistic regression model (panel I; Methods), capturing the 
effects of time-on-task, previous hit, and utility on overall responsiveness (closely related to bias). Stats, 
Wilcoxon signed-rank test; ***, p < 0.001; error bars, 68% confidence interval across animals (N=88, 
n=1983 sessions). (C) As B, but for interaction effects between each factor and signal, capturing the effects 
of time-on-task, previous hit, and utility on signal-selective responsiveness (closely related to sensitivity). 
(D) Change in sensitivity (high vs low task utility) plotted against change in bias. Every data point is a unique 
session. (E) Left: Change in reward probability (high vs low task utility) plotted against change in sensitivity 
(high vs low task utility). Every data point is a unique session. Right: As left, but for change in bias on the 
x-axis. 

 

Mid-level pupil-linked arousal is optimal for fast and accurate attention-task performance 

We previously showed that optimal signal-detection behavior in a simple tone-in-noise 

detection task occurred at intermediate levels of spontaneously fluctuating pupil-linked arousal 

(McGinley, David, et al., 2015). Based on these results, we sought to test the hypothesis that the 
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elevated task engagement (liberal bias shift) and attentional intensity (increased d’) we observed 

during high task utility were partly mediated by stabilization of arousal near its optimal state. To 

do so, we first performance in the task depended on arousal.  

We quantified arousal as the diameter of the pupil (see Fig. 1B) measured immediately 

before each trial. On trials characterized by a mid-size pre-trial pupil size, we observed the 

smallest bias, highest sensitivity, shortest RTs and highest reward probability (Fig. 4A-D; 

Methods). We defined the optimal level of arousal as the pre-trial baseline pupil size bin with 

maximal reward probability (green vertical line in Fig. 4D), which also was the arousal-defined bin 

for which bias was minimal, sensitivity was maximal, and RTs were short (dashed green lines in 

Fig. 4A,B,C). Across animals, this optimal pre-trial baseline pupil size was on average 27.5% of 

its maximum. Hit rates and false alarm rates also peaked at this pupil size (Fig. S4D-E), and 

similar patterns were observed early and late in blocks and across learning (Fig. S4L-M). 

Locomotor status is another widely used marker of behavioral state (McGinley, David, et 

al., 2015; Polack et al., 2013). Mice were considerably more liberal and less sensitive on trials 

associated with pre-trial walking (asterisks in Fig. 4A,B) and reward probability was at its lowest 

(Fig. 4D). These results suggest that responses during walking were quite random (not signal-

related), and thus that attentional intensity was very low during locomotion. We extended our 

logistic regression model by including three additional predictors: walking (walk versus still), pupil-

linked arousal (pre-trial pupil size) and pre-trial pupil size raised to the power of two (Fig. 4E; 

Methods). Results in the logistic regression recapitulate the stratification-based effects of pupil 

(Fig. 4F,G and Fig. S4F,G). Using the logistic regression analysis approach we also verified that 

none of our results can be explained by whether mice walked on the previous trial (Fig. S4H,I).  

In sum, on trials characterized by a mid-size pre-trial pupil size, we observed the smallest 

bias, highest sensitivity, shortest RTs and highest reward probability. We conclude that mid-level 

pupil-linked arousal is the optimal state for fast and accurate feature-based sustained attention. 
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Figure 4. Optimal performance occurs at intermediate levels of pupil-linked arousal. (A) Relationship 
between pre-trial pupil size and bias (irrespective of task utility; Methods). A 1st order (linear) fit was superior 
to a constant fit (F1,12 = 12.7, p = 0.004) and a 2nd order (quadratic) fit was superior to the 1st order fit (F1,12 
= 7.8, p = 0.016; sequential polynomial regression; Methods). Asterisk, walking trials (Methods). Dashed 
green line, optimal arousal state (maximum probability peaks; see panel D). (B) As A, but for sensitivity. 1st 
order fit: F1,12 = 16.6, p = 0.002; 2nd order fit: F1,12 = 0.7, p = 0.430. (C) As A, but for RT. 1st order fit: F1,12 = 
3.2, p = 0.101; 2nd order fit: F1,12 = 5.7, p = 0.034. (D) As A, but for reward probability. 1st order fit: F1,12 ~ 
0.0, p = 0.926; 2nd order fit: F1,12 = 7.2, p = 0.020. Green line, optimal arousal state (maximum probability 
peaks). (E) Schematic of logistic multiple regression of choice on signal [present / absent], trial number, 
previous hit [hit / no hit], utility [low / high], pre-trial walking [still / walk] and pre-trial pupil size (Methods). 
(F) Fitted coefficients from multiple logistic regression model (panel E; Methods), capturing the effects of 
pre-trial walking and pre-trial pupil size on overall responsiveness (closely related to bias). Stats, Wilcoxon 
signed-rank test; **, p < 0.01; ***, p < 0.001. (G) As F, but for interaction effects between each factor and 
signal, capturing the effects of pre-trial walking and pre-trial pupil size on signal-selective responsiveness 
(closely related to sensitivity). All panels: error bars, 68% confidence interval across animals (N=88, n=1983 
sessions). 

 

Utility-related performance improvements are partially mediated by stabilization of pupil-

linked arousal near optimality 

Having identified the optimal state for performance of the task, we next determined 

whether mice spent more time in this optimal state during periods of high task utility. The pre-trial 

pupil size was overall smaller in the high-reward compared to low-reward blocks (Fig. 5A-C and 

Fig. S5F-H). Likewise, mice walked less in the high-reward compared to low-reward blocks (Fig. 

5D-F). These results suggest an overall average reduction in arousal in high utility context. Since 

the optimal pupil-linked arousal level of 27.5% was below the average level for all block, which 

ranged from 37% to 39%, this reduction in arousal was a shift towards optimality. To capture how 

close the animals’ arousal state on each trial was to the optimal level, we computed the absolute 

difference between each pre-trial’s pupil size and the optimal size (Methods). The distance from 

optimality was lower in the high utility context (Fig. 5G-I). Furthermore, as the session progressed, 
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their arousal state became less optimal; but importantly, mice maintained their arousal closer to 

the optimal state in the high-reward compared to the low-reward blocks across the session (Fig. 

5G,I). 

We sought to determine if the changes in state in high utility context were characterized 

by uniform down-regulation of arousal, or by stabilization near the optimal level. To test this, we 

first compared the distributions of state occupancy between low and high reward contexts. 

Strikingly, mice spent less time in both the low and high arousal states, both of which are 

suboptimal (see Fig. 4A-D) and upregulated a narrow range of states around optimality (Fig. 5J 

and Fig. S5A).  

We next tested whether changes in task utility were more associated with changes in the 

average pre-trial pupil size or with deviations of the pre-trial pupil size from the optimal size. To 

do so, we first compared the effect sizes of the main effects of task utility on both pupil-linked 

arousal measures. The partial 2 was 0.33 for pre-trial pupil size and 0.55 for its distance from 

optimal, indicating a larger effect size for distance from optimal compared to raw pre-trial size. 

Secondly, we performed a logistic regression of block-wise reward magnitude (indicated as 0 or 

1) on either z-scored block-wise pre-trial pupil size or its distance from optimal. The fitted 

coefficients were negative in both cases, but significantly more so for the measure of distance 

from optimality (Fig. S5B). Thus, during heightened task utility, mice do not stereotypically 

downregulate their arousal state, but instead up- and down-regulate their arousal closer to its 

optimal level. 

Having observed and quantified that epochs of high task utility are associated with both a 

more optimal pupil-linked arousal state and increased behavioral performance, we wondered to 

what extent the arousal stabilization contributed the utility-related performance effects. We 

addressed this with two complementary approaches. In a first approach, we first computed the 

pupil-linked and walk-related arousal-predicted behavioral performance in the high-reward and 

low-reward blocks by plugging each trial’s pre-trial pupil size into the previously observed 

relationship between arousal bins and behavior (see Fig. 4A-D; Methods). We then computed 

the difference in behavioral performance between the high-reward and low-reward blocks that 

would have occurred solely as a result of the differing pupil-linked and walk-related arousal states 

between utility contexts. This result showed that a small, but highly significant, portion of the 

observed utility-based shift in performance could be accounted for solely by the shifts in pupil-

linked and walk-related state occupancy (Fig. 5K). We observed similar effects when only 

considering pupil-linked arousal and not whether mice walked or remained still (Fig. S5C).  

In a second approach, we tested for statistical mediation (Baron & Kenny, 1986) of arousal 

in the apparent effect of task utility on the different performance metrics (Fig. 5L,M). We found 

that (the indirect path of) block-wise increases in task utility predicting block-wise decreases in 

distance from the optimal pupil-linked arousal state, in turn driving block-wise increases in 

sensitivity and reward probability, partially mediate the apparent effect of task utility on behavior 

(Fig. 5M). We observed similar effects when only considering trials during which mice did not 

walk (Fig. S5D) and when using walk probability instead of distance from the optimal arousal 

state as a mediator (Fig. S5E). Finally, we observed similar effects when repeating all analyses 

without having regressed out effects of time-on-task and previous outcome from the pre-trial pupil 
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size measures (Fig. S5F-L; Methods). Taken together, we conclude that regulating pupil-linked 

arousal towards an optimal level partially implements the adaptive behavioral adjustments that 

match attentional intensity to its utility. 

 

 

Figure 5. Mice regulate their pupil-linked arousal towards optimality when task utility is high. (A) 
Walk probability (Methods) across low-reward and high-reward blocks in each experimental session, locked 
to first hit in block. Data from the first block of each session (low utility; termed block ‘0’) was excluded from 
all analyses, as mice spent this block becoming engaged in the task (see also Fig. 2A,D,G,J; Methods). (B) 
As A, but collapsed across blocks of same reward magnitude. The green shaded area indicates the trials 
used when pooling data across trials within a block (e.g. panel C). (C) As A, but collapsed across trials 
within a block. Stats, 2-way repeated measures ANOVA (factors task utility [high vs. low] and time-on-task 
[early, middle, late]); main effect task utility: F1,87 = 58.5, p < 0.001; main effect time-on-task: F2,174 = 0.3, p 
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= 0.710; interaction effect: F2,174 = 3.3, p = 0.039. (D-F) As A-C, but for pre-trial pupil size (time-on-task and 
previous hit regressed out; see Methods; see Fig. S5F-L for results based on raw pre-trial pupil size). Main 
effect task utility: F1,87 = 35.5, p < 0.001; main effect time-on-task: F2,174 = 1.7, p = 0.187; interaction effect: 
F2,174 = 1.0, p = 0.376. (G-I) As A-C, but for distance of pupil size from the optimal level. Stats, 2-way 
repeated measures ANOVA (factors task utility [high vs. low] and time-on-task [1, 2, 3]); main effect task 
utility: F1,87 = 125.6, p < 0.001; main effect time-on-task: F2,174 = 28.5, p < 0.001; interaction effect: F2,174 = 
2.7, p = 0.070. (J) Change in trial density after increases in task utility, separately for pupil-defined arousal 
states; asterisk, walking trials. (K) Percentage of the purely arousal-predicted shift in behavior compared to 
the total shift in behavior after changes in task utility (see main text). Stats, Wilcoxon signed-rank test; ***, 
p < 0.001. (L) Schematic of mediation analysis of task utility to behavior, via distance w.r.t. optimal measure 
(Methods). Arrows, regressions; coefficient a × b quantifies the ‘indirect’ (mediation) effect; coefficient c’ 
quantifies the ‘direct effect’. (M) Fitted regression coefficients of the indirect path (a × b; mediation). Stats, 
Wilcoxon signed-rank test; *, p < 0.05; ***, p < 0.001. All panels: error bars, 68% confidence interval across 
animals (N=88, n=1983 sessions). 

 

Accumulation-to-bound modeling of decision-making in the sustained attention-value task 

Because the signal stimulus in our task was a high-order spectro-temporal statistic that 

emerged at unpredictable times in ongoing noise, correct detection required accumulation across 

time of partial evidence. Consistent with this perspective, reaction times were overall long and 

variable (see Fig. 6C,D). We therefore applied accumulation-to-bound sequential sampling 

modeling, as is commonly used with similar tasks in the primate visual system (Gold & Shadlen, 

2007), or for auditory click discrimination in rodents (Brunton et al., 2013). It has been shown that 

rodents can perform acoustic evidence accumulation (Brunton et al., 2013; Hanks et al., 2015), 

but it is not known if and how evidence accumulation is shaped by task utility or arousal. 

Widely used accumulation-to-bound models describes the complete accumulation (i.e., 

without forgetting) of noisy sensory evidence as a decision variable that drifts to one of two 

decision bounds. Crossing a decision bound triggers a response, specifying a reaction time 

(Bogacz et al., 2006; Brody & Hanks, 2016; Laming, 1968; Ratcliff & McKoon, 2008). When the 

evidence is stationary (i.e. its summary statistics are constant across time), as occurs in typical 

go/no-go or two-alternative forced choice tasks, this model produces the fastest decisions for a 

fixed error rate (Bogacz et al., 2006). In our task, however, like perceptual decisions in most 

natural settings, the relevant evidence is not stationary. In this case, complete integration is 

suboptimal, because it results in an excessive number of false alarms due to integration of pre-

signal noise (Ossmy et al., 2013). We thus used a computational model of the decision process 

based on leaky (i.e. forgetful) integration to a single decision bound (Usher & McClelland, 2001); 

see Methods for details). 
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Figure 6. A leaky accumulation-to-bound model accounts for behavior in the sustained-attention 
value task. (A) Left: Schematic of bounded accumulation model accounting for the fraction of go-responses 
and their associated reaction times (RT). Right: The decision-dynamics were governed by leak (k), drift bias 
(vbias) and gaussian noise during the tone cloud and additionally signal neglect probability (n) and drift rate 
(v) during the signal stimuli. The decision terminated at bound height a. (B) We compared the Bayesian 
Information Criterion (BIC) between seven models. The BIC for the winning model was used as a baseline. 
Lower BIC values indicate a model that is better able to explain the data, taking into account the model 
complexity; a ΔBIC of 10 is generally taken as a threshold for considering one model a sufficiently better 
fit. (C) RT distribution for correct responses (hits) in the low-reward (left) and high-reward (right) blocks. 
Black line, model fit. (D) As C, but for incorrect responses (false alarms). (E) Model-predicted bias (left), 
sensitivity (middle) and reward probability (right) in the low-reward and high-reward blocks plotted against 
the empirical estimates. Dashed line, identity line. Panels C-E: pooled data across animals (N=88) and 
sessions (n=1983). 

 

Our winning model contained six main parameters (Fig. 6A-B; Fig. S6A-L; Methods), 

the choice of which was motivated by the design of the task and by general patterns observed in 

the behavior. The six parameters were: (i) bound height, which determines how much evidence 

needs to be accumulated before committing to a go-response; (ii) non-decision time, which 

captures the combined duration of pre-decisional evidence encoding and post-decisional 

translation of choice into motor response; (iii) leak, which controls the timescale of evidence 

accumulation; (iv) drift bias, which is an evidence independent constant that is added to the drift; 

(v) mean drift rate, which controls the efficiency of accumulation of the relevant sensory feature 

(temporal coherence in this case); and (vi) signal neglect probability, which is the fraction of 
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signal epochs for which the task-relevant sensory evidence is not accumulated. The fitted model 

accounted well for the behavior in the sustained-attention value task, making accurate 

predictions for both RTs (Fig. 6C-D), as well as utility context-based bias, sensitivity, and 

reward rate (Fig. 6E). 

We considered six plausible alternative models (see Methods), including one with 

variable bound height, which provided worse fits, both qualitatively (Fig. 6B) as well as 

quantitatively (Fig. S6). Two alternative models established the necessity including the signal 

neglect probability parameter: this was necessary to account for the observation that correct 

responses (hits) were faster than expected for their frequency of occurrence (Fig. S6E-H). 

Likewise, a drift bias was necessary to account for fast errors (false alarms), especially in the 

low reward blocks (Fig. S6I-L).  

 

Attention-based decision computations improve during high task utility 

We next sought to dissociate distinct elements of the decision-making process underlying 

the observed effects of task utility on our SDT metrics of behavior (see Fig. 2). Because there 

were prominent effects of time-on-task, previous trial outcome and block-based task utility in our 

overt behavioral measures (see Fig. 2 and Fig. 3), we first fitted the full model separately per 

block number and previous outcome; only bound height was fixed across conditions (see 

Methods). We found that the drift bias and drift rate were higher, and the leak and signal neglect 

probability were lower, in the high-reward vs. low-reward blocks (Fig. 7B-E). There was no 

significant effect of task utility on non-decision time (Fig. 7A). The leak and signal neglect 

probability increased and drift bias decreased with time-on-task (Fig. 7B,C,E). These effects were 

similar when additionally accounting for previous outcome (Fig. S7A-E). The main pattern of 

effects did not depend on the specifics of the model: for each of the alternative models, leak and 

signal neglect probability were lower in the high-reward compared to low-reward blocks, and drift 

bias and drift rate were higher (Fig. S7U-Z). 

In sum, increases in task utility resulted in a longer accumulation time constant (lower 

leak), a higher urge to respond (higher drift bias), more efficient evidence accumulation (higher 

drift rate) and more reliable evidence accumulation (lower signal neglect probability). 

 

Mid-level pupil-linked arousal exhibits low signal neglect probability, leak, and drift bias 

We next sought to understand how decision computations, as reflected in the 

accumulation-to-bound modeling, were affect by pupil-linked arousal state. We thus fitted the full 

model separately for each of the pupil-linked arousal bins. Non-decision time and leak decreased 

monotonically with arousal (Fig. 7F,G; Fig. S7F,G), suggesting faster sensory/motor processing 

and longer-lasting evidence accumulation in higher arousal states. Drift bias, drift rate and signal 

neglect probability all exhibited U- or inverted-U shaped dependencies on arousal (Fig. 7H-J; Fig. 

S7H-J) indicating that the mice more reliably accumulated evidence from, and acted upon, the 

signal at moderate arousal levels. As with the utility-related effects, we observed similar effects 
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of pupil-linked arousal when repeating the analyses without having regressed out effects of time-

on-task and previous outcome from the pre-trial pupil size measures (Fig. S7K-T; Methods). 

 Thus, attention to the relevant feature is maximal at intermediate levels of pupil-linked 

arousal, and worst during walking.  

 

 

Figure 7. Task utility and pupil-linked arousal impact intersecting aspects of the decision 
computation. (A) Fitted non-decision time estimates (kernel density estimate of 100 bootstrapped 
replicates) separately per block number. Main effect task utility (fraction of bootstrapped parameter 
estimates in the low-reward blocks higher than in the high-reward blocks): p = 0.32. Main effect time-on-
task (fraction of bootstrapped parameter estimates in the first two blocks higher than in the last two blocks): 
p = 0.41. (B) As A, but for leak. Main effect task utility: p < 0.01. Main effect time-on-task: p < 0.01 (C) As 
A, but for drift bias. Main effect task utility: p < 0.01. Main effect time-on-task: p < 0.01. (D) As A, but for 
drift rate. Main effect task utility: p < 0.01. Main effect time-on-task: p = 0.46. (E) As A, but for signal neglect 
probability. Main effect task utility: p < 0.01. Main effect time-on-task: p < 0.01. (F) Fitted non-decision 
estimates (100 bootstrapped replicates) separately per arousal state (same pupil size defined bins as in 
Fig. 4A-D; irrespective of task utility; Methods). A 1st order (linear) fit was superior to a constant fit (F1,12 = 
128.8, p < 0.001) and a 2nd order (quadratic) fit was not superior to the 1st order fit (F1,12 = 2.2, p = 0.168; 
sequential polynomial regression; Methods). Asterisk, walking trials (Methods). (G) As F, but for leak. 1st 
order fit: F1,12 = 8.9, p = 0.012; 2nd order fit: F1,12 = 5.4, p = 0.039. (H) As F, but for drift bias. 1st order fit: 
F1,12 = 8.8, p = 0.391; 2nd order fit: F1,12 = 7.7, p = 0.017. (I) As F, but for drift rate. 1st order fit: F1,12 = 0.8, p 
= 0.378; 2nd order fit: F1,12 = 3.1, p = 0.101. (J) As F, but for signal neglect probability. 1st order fit: F1,12 = 
2.2, p = 0.165; 2nd order fit: F1,12 = 7.3, p = 0.019. 

 

Discussion 

To efficiently meet their survival needs, organisms must regulate both of what Daniel 

Kahneman termed the selective and intensive (or effortful) aspects of attention (Kahneman, 

1973). Characterizing the selective aspect of attention has been a cornerstone of systems 

neuroscience (Carrasco, 2011; Fritz et al., 2007; Maunsell & Treue, 2006), but attentional intensity 

has received comparatively little scrutiny. Recent work emphasizes the importance of motivational 

factors in driving attentional intensity (also called 'attentional effort'; Brehm & Self, 1989; Ghosh 
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& Maunsell, 2021; Kurzban et al., 2013; Richter et al., 2016; Sarter et al., 2006; Shenhav et al., 

2013). This emphasis is in line with the common experience of ‘paying more attention’ when 

motivated to do so, for example in a classroom setting when the instructor indicates that 

forthcoming material will be on a final exam. In line with these ideas, heightened reward 

expectation increases perceptual sensitivity and reduces reaction times in humans and non-

human primates (Engelmann & Pessoa, 2014; Ghosh & Maunsell, 2021; Locke & Braver, 2008). 

Parallel work has focused on the effects of arousal level on task performance, typified by the 

Yerkes-Dodson inverted-U dependence of performance on arousal level (Yerkes & Dodson, 1908; 

McGinley, David, et al., 2015). 

We here developed a feature-based sustained attention task for head-fixed mice with 

nonstationary task utility and assessed the role of arousal fluctuations in regulating attentional 

intensity. By applying signal detection theoretic and accumulation-to-bound modeling to a large 

behavioral and physiological dataset we showed that in contexts of high task utility, mice: (i) collect 

more rewards, (ii) accumulate perceptual evidence more efficiently, reliably, and across longer 

timescales, iii) suppress task-irrelevant locomotor behavior, and (iv) stabilize their pupil-linked 

arousal state closer to an optimal level. 

Nonstationarity in task performance and its causes 

Growing evidence supports that neural computation and behavioral performance are not 

stationary within a session, due to ongoing fluctuations in internal state. State-dependence of 

neural activity has been observed in primary sensory cortices (Goris et al., 2014; McGinley, David, 

et al., 2015; Musall et al., 2019; Nestvogel & McCormick, 2022) and sensory-guided behavior 

(McGinley, David, et al., 2015). More recently, spontaneous shifts between engaged, biased, 

and/or disengaged states have been inferred from behavior (Ashwood et al., 2022; Hulsey et al., 

2023; Weilnhammer et al., 2023). However, the underlying causes and behavioral functions of 

these non-stationarities are not unclear.  

One known major source of non-stationarity in behavior is time-on-task, wherein fatigue 

and/or satiety result in declining task utility, and associated performance, across a behavioral 

session. In our results, mice sustained their highest level of performance – encapsulated in the 

reward probability – across the three high-reward blocks interspersed across a long-lasting and 

difficult sustained-attention task. Performance was comparably high in only the first low-reward 

block and then declined precipitously in subsequent low-reward blocks. Our accumulation to 

bound modeling added that it is mainly the leak, drift bias, and probability of signal neglect that 

are responsible for the large perceptual performance difference across time on task. A 

parsimonious interpretation of these findings is that early in the session mice were hungriest and 

least fatigued, and thus highly motivated to work for any reward. Later in the session, when more 

satiated and fatigued, only large rewards were sufficient to motivate them to increase their 

attentional intensity (Hernández-Navarro et al., 2021). An additional factor, which may have 

increased performance in the low reward and blunted an even larger effect of attentional effort 

allocation, is that in our task mice needed to keep performing in the low reward context at a 

sufficiently high level to detect the switch from low to high-reward block. Thus, their capacity to 

temporally allocate attention is probably even higher than it appeared in our results. 

Motivated shifts in attentional intensity/effort 
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Task utility-based shifts in behavior, but not attention, have been observed in rodents 

(Reinagel, 2021; A. Y. Wang et al., 2013). Other than in humans, the regulation of attentional 

intensity by utility has only been studied in monkeys (Ghosh & Maunsell, 2021). Rodents can 

match their rate of learning to the statistics of a dynamic environment (Grossman et al., 2022), 

perform cost-benefit analysis (Reinagel, 2021) and adapt their response vigor to task utility (A. Y. 

Wang et al., 2013). A recent study demonstrated that mice can consider their own information 

processing limitations to adaptively allocate the selectivity of their visual attention (Grujic et al., 

2022), although changes in overall task utility were not studied. 

Our results show that, in the presence of nonstationary overall task utility, but stable 

selectivity requirements, both task engagement (as indicated by choice bias) and attentional 

intensity (as indicated by increased d’) increased when task utility was high. In our accumulation-

to-bound modeling, the dependencies of leak, drift rate, and signal neglect probability on task 

utility all support the conclusion that attentional intensity increased in the high-reward blocks. The 

higher drift rate and lower signal neglect probability in the high, compared to low, reward blocks 

contributed to a positive effect of task utility on sensitivity and reward probability. The lower leak 

in high reward context indicates more sensory stimulus engagement, in the form of integrating 

the stimulus for a longer time, which is another logical component of attentional intensity. Low 

leak may, or may not, be optimal for reward harvesting, however, because more noise is 

accumulated with a lower leak. Too low of a leak would be an example of paying too much 

attention. Future study could use the sustained attention value task to explore this interesting 

distinction between optimal leak versus excess sensory evidence accumulation. 

The Yerkes-Dodson inverted-U model and motivated attention 

Our results add to the growing evidence for an inverted-U, three-state model for the role 

of pupil-linked arousal in behavioral performance (Beerendonk et al., 2023; Hulsey et al., 2023; 

McGinley, David, et al., 2015; McGinley, Vinck, et al., 2015; Schriver et al., 2018; Yerkes & 

Dodson, 1908). As in our previous work using a perceptually simpler detection task and stationary 

task utility (McGinley, David, et al., 2015), we here found that the optimal state for task 

performance was not at either extreme of arousal, but rather was at mid pupil-linked arousal level.  

Small pupil-size has been associated with sharp-waves in the hippocampus and slow 

oscillations in neocortex (McGinley, David, et al., 2015), which are classic signatures of low 

arousal. In our task, compared to mid pupil size, small pre-trial pupil was associated with: 

conservative SDT bias, low SDT sensitivity, long RTs, lower reward probability, high leak, 

conservative drift bias, and high probability of signal neglect; all of these are consistent with 

drowsiness or some other resting form of disengagement. Large pupil size in our task was 

associated with conservative SDT bias, low SDT sensitivity, longer RTs, decreased reward 

probability, increased walking, and a large increase in signal neglect probabiliy; all of these are 

consistent with a hyper-aroused form of task disengagement. Importantly, mice spent less time in 

both the under- and over-aroused pupil states when in the high task utility context. Furthermore, 

arousal-stabilization partially mediates the effect of reward. 

Conceptual models of arousal in attention 

Our findings that both pupil-linked and extent of walking were higher in the low-reward 

blocks indicate that mice did not use the low-reward blocks simply to rest, but instead to engage 
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in alternative, aroused and perhaps exploratory, behaviors. This is in line with a recent 

observation that lapses in perceptual decisions reflect exploration (Pisupati et al., 2021), which is 

consistent with the broad notion of an exploration-exploitation tradeoff (Aston-Jones & Cohen, 

2005; Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 2011) contributing to the right side of the 

inverted-U. Our pupil results on the high-arousal right side of the inverted-U are partially 

consistent with results of a recent study (Grujic et al., 2022), which found that large baseline pupil 

was associated with task disengagement. However, we observed that large pupil also was 

associated with a large reduction in accumulation of signal-related sensory evidence (a high 

signal neglect probability) whereas that study did not find effects of pupil on sensory encoding 

precision. This difference may result from their use of simple (visual grating) signal detection 

versus our use of a higher-order acoustic feature (temporal coherence) tracking across time. 

Our observed role for pupil-linked arousal in mediating adaptive adjustments in attentional 

intensity, based on task utility, is in contrast with the large literature on pupil dilation as a readout 

of attentional capacity (also called effort) driven by fluctuations in task difficulty (Alnæs et al., 

2014; Hess & Polt, 1964; Kahneman et al., 1967; Kahneman & Beatty, 1966; Laeng et al., 2012), 

including the extensive work on pupil-linked listening effort (Peelle, 2018; Pichora-Fuller et al., 

2016). In this literature, the magnitude of the task-evoked pupil response is measured during the 

stimulus and compared between conditions that differ in difficulty. For example, studies employ 

multiple levels of speech degradation or memory load (Alnæs et al., 2014; Zekveld et al., 2014). 

Therein, motivational factors are customarily neglected. This neglect has been widely 

acknowledged (Pichora-Fuller et al., 2016), but not addressed. In our sustained-attention value 

task, perceptual difficulty and selectivity (the temporal coherence) were held constant across the 

session, whereas motivation (driven by task utility) was changed in blocks. Furthermore, we focus 

on the pre-stimulus, so-called ‘tonic’, pupil-linked arousal measured before each trial, rather than 

peri-stimulus, so-called ‘phasic’, stimulus-driven pupil dilation (de Gee et al., 2020). Future work 

is needed to determine the interaction of these complementary arousal functions in behavior, 

perhaps by combining non-stationarities in both task utility and perceptual difficulty or selectivity. 

The specific pattern we observed in the dependence of performance on pupil-linked 

arousal, and its relation to task utility, likely illustrates both general principles as well as task- and 

species-specific patterns. For example, in contrast to our findings, a previous human study 

reported higher pre-trial pupil size during high-reward blocks (Massar et al., 2016). This task was 

perceptually easy, while our sustained-attention value task was perceptually hard. An extensive 

literature shows that the relationship between tonic arousal and behavioral performance depends 

on task difficulty, with higher arousal being optimal for easier tasks (Sörensen et al., 2021; Yerkes 

& Dodson, 1908). The discrepancy between the findings reported by Massar et al. (2016) and 

ours might also be due to species difference; perhaps humans in laboratory conditions are on 

average in a lower arousal state than mice and thus typically sit on the opposite side of optimality. 

However, this is not the case for all individuals; moving closer to the optimal arousal state after 

increases in task utility involves either increases or decreases in arousal, depending on one’s 

starting point (de Gee et al., 2020). The adaptive function of low arousal states (such as for online 

learning and consolidation) (Pfeiffer, 2020; Squire et al., 2015) and of high arousal states (such 

as for broadly sampling the environment to observe changes and exploring for alternatives) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2022.03.04.482962doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.04.482962
http://creativecommons.org/licenses/by/4.0/


 

 21 

(Aston-Jones & Cohen, 2005), and self-regulation of sampling of these states during behavior, all 

require further study. 

Neural substrates for regulation of attention by arousal and motivation 

Our results raise the question of which neuromodulatory systems contribute to the effects 

of arousal on attentional intensity. Our finding that tonic pupil-linked arousal is lower in the low-

reward blocks is in line with the adaptive gain theory of LC function (Aston-Jones & Cohen, 2005; 

Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 2011), but see (Bari et al., 2020), implicating 

norepinephrine, which plays a major role in pupil control (Breton-Provencher & Sur, 2019; de Gee 

et al., 2017; Joshi et al., 2016; Reimer et al., 2016; Varazzani et al., 2015). On the other hand, 

our results are not in line with the idea that increased acetylcholine mediates attention (Hasselmo 

& McGaughy, 2004; Sarter et al., 2006), but see (Robert et al., 2021). The willingness to exert 

behavioral control is thought to be mediated by tonic mesolimbic dopamine (Hamid et al., 2016; 

Niv et al., 2007; A. Y. Wang et al., 2013) and/or serotonin (Gutierrez-Castellanos et al., 2022). 

However, the willingness to work is likely more related to bias, while attentional intensity is more 

related to sensitivity. Orexin/hypocretin is also involved in reward processing, and serotonin and 

orexin/hypocretin have both been implicated in pupil control (Cazettes et al., 2021; Grujic et al., 

2023). Thus, possibilities abound, and future work is needed to determine the precise roles of 

neuromodulatory systems in utility-driven and arousal-regulated allocation of attentional intensity. 

Our results suggest a cost-benefit analysis being used to adapt pupil-linked arousal and 

performance level to an evolving motivational state (Botvinick & Braver, 2015; Shenhav et al., 

2013). Neural underpinning of such top-down control of attentional intensity are yet to be 

elucidated. Orbital frontal cortex (OFC) and dorsal anterior cingulate cortex (dACC) are likely 

candidate regions since both perform value computations related to optimizing behavior (Akam 

et al., 2021; Botvinick & Braver, 2015; Shenhav et al., 2013; Tremblay & Schultz, 2000). These 

structures are strongly connected to sensory cortices and to neuromodulatory nuclei, including 

LC (Arnsten & Goldman-Rakic, 1984; Aston-Jones & Cohen, 2005; de Gee et al., 2017; Joshi & 

Gold, 2022; Porrino & Goldman-Rakic, 1982). Impaired frontal regulation of arousal is one of the 

hallmarks of ADHD (Barkley, 1997) and also plays a role in autism (Zhao et al., 2022) and a wide 

array of psychiatric disorders (de Lecea et al., 2012; Sander et al., 2015). Future work should 

determine the top-down influences of frontal cortices on arousal systems supporting attentional 

intensity, as well as dysregulation in mouse models of neurological disorders. 

We here discovered that regulating pupil-linked arousal towards an optimal level partially 

implements behavioral adjustments that adaptively increase attentional intensity when it is useful. 

These results suggest that at least a part of the large behavioral and neural variability that can be 

explained by fluctuations in pupil-linked arousal state serve an adaptive function; states conducive 

to a particular biological need (i.e. attention to a rewarded stimulus) are upregulated at appropriate 

times (i.e. when the reward is large).  

 

Methods 

Animals 
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All surgical and animal handling procedures were carried out in accordance with the ethical 

guidelines of the National Institutes of Health and were approved by the Institutional Animal Care 

and Use Committee (IACUC) of Baylor College of Medicine. A total of 114 animals were trained 

through to at least 5 sessions of the final phase of the task (see Behavioral task). We excluded 

26 animals from the analysis (Fig. S1P-R) who had less than 5 sessions worth of data per animal 

after excluding sessions with an overall reward probability (see Analysis and modeling of choice 

behavior) of less than 15%. Thus, all remaining analyses are based on 88 mice (74 male, 14 

female) aged 7-8 weeks at training onset. Wild-type mice were of C57BL/6 strain (Jackson Labs) 

(N=51; 1 female). Various heterozygous transgenic mouse lines used in this study were of Ai148 

(IMSR Cat# JAX:030328; N=6; 3 females), Ai162 (IMSR Cat# JAX:031562; N=10, 3 females), 

ChAT-Cre (IMSR Cat# JAX:006410; N=3; all male), or ChAT-Cre crossed with Ai162 (N=18; 7 

females). No differences were observed between genotypes or sexes, so results were pooled. 

This variety in genetic profile was required to target specific neural circuitries with two-photon 

imaging; the results of the imaging experiments are not reported, here. Mice received ad libitum 

water. Mice received ad libitum food on weekends but were otherwise placed on food restriction 

to maintain ~90% normal body weight. Animals were trained Monday-Friday. Mice were 

individually housed and kept on a regular light-dark cycle. All experiments were conducted during 

the light phase. 

 

Head post implantation 

The surgical station and instruments were sterilized prior to each surgical procedure. Isoflurane 

anesthetic gas (2–3% in oxygen) was used for the entire duration of all surgeries. The temperature 

of the mouse was maintained between 36.5°C and 37.5°C using a homoeothermic blanket 

system. After anesthetic induction, the mouse was placed in a stereotax (Kopf Instruments). The 

surgical site was shaved and cleaned with scrubs of betadine and alcohol. A 1.5-2 cm incision 

was made along the scalp mid-line, the scalp and overlying fascia were retracted from the skull. 

A sterile head post was then implanted using dental cement. 

 

Behavioral task 

Each ‘trial’ of the behavior consisted of three consecutive intervals (Fig. 1A): (i) the ‘noise’ or tone 

cloud interval, (ii) the ‘signal’ (temporal coherence) interval, and (iii) the inter-trial-interval (ITI). 

The duration of the noise interval was randomly drawn before each trial from an exponential 

distribution with mean of 5 seconds; this was done to ensure a flat hazard function for signal start 

time. In most sessions (82.8%), randomly drawn noise durations greater than 11 s were set to 11 

s. In the remainder of sessions (17.2%), these trials were converted to a form of catch trial, 

consisting of 14 seconds of noise. Results were not affected by whether sessions included catch 

trials or not (Fig. S2T-W), and thus results were pooled for all further analyses. The duration of 

the signal interval was 3 s. The duration of the ITI was uniformly distributed between 2 and 3 s, 

plus an additional second after the last lick during the ITI.  

The noise stimulus was a ‘tone cloud’, consisting of consecutive chords of 20 ms duration 

(gated at start and end with 0.5 ms raised cosine). Each chord consisted of 12 pure tones, 

selected randomly from a list of semitone steps from 1.5-96 kHz. For the signal stimulus, after the 

semi-random (randomly jittered by 1-2 semitones from tritone-spaced set of tones) first chord, all 

tones moved coherently upward by one semitone per chord. The ITI-stimulus was pink noise, 
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which is highly perceptually distinct from the tone cloud. Stimuli were presented free field in the 

front left, upper hemifield at an overall intensity of 55 dB SPL (root-mean square [RMS]) using an 

intermittently recalibrated Tucker Davis ES-1 electrostatic speakers and custom software system 

in LabVIEW. 

Mice were head-fixed on a wheel and learned to lick for sugar water reward to report 

detection of the signal stimulus. Correct-go responses (hits) were followed by either 2 or 12 μL of 

sugar water, depending on block number. Reward magnitude alternated between 2 and 12 μL in 

blocks of 60 trials, each. Incorrect-go responses (false alarms) terminated the trial and were 

followed by a 14 s timeout with the same pink noise ITI-stimulus. Correct no-go responses (correct 

rejecting the full 14 s of noise) in the sessions that contained catch trails were also followed by 2 

or 12 μL of sugar water in some sessions (see above). 

Training mice to perform the sustained-attention value task involved three separate 

phases. In phase 1, the signal was louder than the noise sounds (58 and 52 dB, respectively), 

‘classical conditioning’ trials (5 automatic rewards during the signal sounds for the first 5 trials) 

were included, and there were no block-based changes in reward magnitude (reward size was 5 

μL after every hit, across the session). Phase 1 was conducted for four experimental sessions 

(Fig. S1A). In phase 2, we introduced the block-based changes in reward magnitude. Once mice 

obtained a reward probability higher than 0.25, and the fraction of trials resulting in a false alarm 

was below 0.5 for two out of three sessions in a row, they were moved up to the phase 3. Phase 

2 lasted for 2 - 85 (median, 9) experimental sessions (Fig. S1B). Phase 3 was the final version of 

the task, with signal and noise stimuli of equal loudness and without any classical conditioning 

trials.  

In a subset of experiments, the signal quality was systematically degraded by reducing 

the fraction of tones that moved coherently through time-frequency space. This is similar to 

reducing motion coherence in the classic random-dot motion task (Newsome et al., 1989). In 

these experiments, signal coherence was randomly drawn beforehand from six different levels: 

easy (100% coherence; as in the main task), hard (55-85% coherence), and four levels linearly 

spaced in between. In the main behavior, coherence ranged from 90-100% on each trial. 

Performance in the main behavior did not change with coherence level, so results were pooled 

across coherence levels. 

After exclusion criteria (Fig. S1P-R), a total of 88 mice performed between 5 and 60 

sessions (2100–24,960 trials per subject) of the final version of the sustained-attention value task 

(phase 3), yielding a total of 1983 sessions and 823,019 trials. A total of 10 mice performed the 

experiment with psychometrically degraded signals; they performed between 5 and 28 sessions 

(2083–11,607 trials per subject), yielding a total of 142 sessions and 58,826 trials. 

 

Data acquisition 

Custom LabVIEW software was written to execute the experiments, and synchronized all 

sounds, licks, pupil videography, and wheel motion. Licks were detected using a custom-made 

infrared beam-break sensor. 

 

Pupil size. We continuously recorded images of the right eye with a Basler GigE camera (acA780-

75gm), coupled with a fixed focal length lens (55 mm EFL, f/2.8, for 2/3”; Computar) and infrared 

filter (780 nm long pass; Midopt, BN810-43), positioned approximately 8 inches from the mouse. 
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An off-axis infrared light source (two infrared LEDs; 850 nm, Digikey; adjustable in intensity and 

position) was used to yield high-quality images of the surface of the eye and a dark pupil. Images 

(504 × 500 pixels) were collected at 15 Hz, using a National Instruments PCIe-8233 GigE vision 

frame grabber and custom LabVIEW code. To achieve a wide dynamic range of pupil fluctuations, 

an additional near-ultraviolet LED (405-410 nm) was positioned above the animal and provided 

low intensity illumination that was adjusted such that the animal’s pupil was approximately mid-

range in diameter following placement of the animal in the set-up and did not saturate the eye 

when the animal walked.  

 

Walking speed. We continuously measured treadmill motion using a rotary optical encoder (Accu, 

SL# 2204490) with a resolution of 8,000 counts/revolution. 

 

Analysis and modeling of choice behavior 

All analyses were performed using custom-made Python scripts, unless stated otherwise. 

 

Trial exclusion criteria 

We excluded the first (low reward) block of each session, as mice spent this block (termed 

block ‘0’; low reward) becoming engaged in the task (see Fig. 2A,D,G,J and Fig. S5A). We found 

that a small fraction of trials began during a lick bout that had already started during the preceding 

ITI. These trials were immediately terminated. These rare ‘false start trials’ (2.5±0.2 % s.e.m. of 

trials across mice), were removed from further analyses. When pooling data across trials within a 

block, we always excluded the first 14 trials after the first hit in each block (in both high and low-

reward blocks; see also Time course of behavioral adjustments, below). 

 

Model-free behavioral metrics 

 Reward probability was defined as the fraction of trials that ended in a hit (a lick during the 

signal). Reaction time on hit trials was defined as the time from signal onset until the response 

(first lick). 

 

 

 

Signal-detection theoretic modeling 

We applied signal detection theory (SDT; Green & Swets, 1966) to compute sensitivity 

(d’, also called discriminability) and choice bias (c, also called criterion) in the quasi-continuous 

task. Due to the variable duration of the ‘noise’ stimulus epochs, and the yoking of ‘signal’ and 

‘noise’ epochs, care was required in calculating the hit rate (HR) and false alarm rate (FAR) to 

be used for calculating the SDT measures.  

On each trial, if a signal epoch occurred, it was of fixed duration. Therefore, a hit rate 

could be calculated using the conventional definition: 

𝐻𝑅 = ℎ (ℎ + 𝑚)⁄       Eq. 1 

where ‘ℎ’ is the total number of ‘hits’ (signals with a lick response), and ‘𝑚’ is the total number of 

misses (signals without a lick response).  
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 Because the signal on each trial started at a random time (drawn from an exponential 

distribution), this HR may depend on the time of the signal start. Therefore, we defined a signal-

start time-dependent HR: 

𝐻𝑅(𝑡𝑠) = ℎ(𝑡𝑠) (ℎ(𝑡𝑠) + 𝑚(𝑡𝑠))⁄      Eq. 2 

where ‘ℎ(𝑡𝑠)’ is the number of ‘hits’ that occurred for signals with a start time of ‘𝑡𝑠 ’, and ‘𝑚(𝑡𝑠)’ 

is the number of misses for signals with a start time of ‘𝑡𝑠 ’. Because 𝑡𝑠 was drawn from a 

continuous distribution, rather than a discrete list of values, 𝐻𝑅(𝑡𝑠) could be empirically 

estimated in bins of signal start time.  

Because licks during the ‘noise’ epoch aborted the trial, resulting in a subsequent signal 

not being played, the observed signal start-time dependent hit rate corresponds to the following 

conditional probability: 

𝐻𝑅(𝑡𝑠)  = 𝑝(𝑡𝑠 < 𝑡𝑙 < (𝑡𝑠 + 𝑑𝑠) / 𝑡𝑙 > 𝑡𝑠)     Eq. 3 

where ‘𝑡𝑙 ’ is the time of the first response (lick) and ‘𝑑𝑠’ is the duration of the signal. In words, 

𝐻𝑅(𝑡𝑠) is the probability of licking during the signal, for a signal that starts at time ‘𝑡𝑠 ’ given that 

the mouse did not lick during the preceding noise. 

Mirroring the above conditional probability definition of 𝐻𝑅(𝑡𝑠), the corresponding conditional 

probability for time-varying false alarm rate is: 

𝐹𝐴𝑅(𝑡𝑠∗) = 𝑝(𝑡𝑠∗ < 𝑡𝑙 < (𝑡𝑠∗ + 𝑑𝑠) / 𝑡𝑙 > 𝑡𝑠∗)     Eq. 4 

where ‘𝑡𝑠∗’ refers to the corresponding signal start time in the ‘𝐻𝑅(𝑡𝑠)’ calculation. The ‘*’ is used 

to indicate that signal had not started yet. In words, ‘𝐹𝐴𝑅(𝑡𝑠∗)’ is the time-varying FAR in the 

appropriate time windows matched to the ‘𝐻𝑅(𝑡𝑠)’ function.  

Applying Bayes’ rule to 𝐹𝐴𝑅(𝑡𝑠∗), and noting that 𝑝(𝑡𝑙 > 𝑡𝑠∗ / 𝑡𝑠∗ < 𝑡𝑙 < (𝑡𝑠∗ + 𝑑𝑠) ) = 1, yields: 

𝐹𝐴𝑅(𝑡𝑠∗) =  𝑝(𝑡𝑠∗ < 𝑡𝑙 < (𝑡𝑠∗ + 𝑑𝑠) / 𝑡𝑙 > 𝑡𝑠∗) =  𝑝(𝑡𝑠∗ < 𝑡𝑙 < (𝑡𝑠∗ + 𝑑𝑠)) / 𝑝( 𝑡𝑙 > 𝑡𝑠∗)  Eq. 5 

And therefore that: 

𝐹𝐴𝑅(𝑡𝑠∗) = ( 𝑆(𝑡𝑠∗) − 𝑆(𝑡𝑠∗ + 𝑑𝑠) )/𝑆(𝑡𝑠∗)     Eq. 6 

where 𝑆(𝑡) is the survival function for licking during noise. 𝑆(𝑡) could be empirically measured 

using the Kaplan-Meier estimate, with signal starts treated as right censored false alarm events 

(Kalbfleisch and Prentice, 2011). Using these time-varying HR and FAR estimates, time-varying 

SDT measures could be calculated as: 

𝑑′(𝑡𝑠) = 𝐻𝑅(𝑡𝑠) − 𝐹𝐴𝑅(𝑡𝑠)      Eq. 7 

𝑐(𝑡𝑠) = −0.5 ∗ (𝐻𝑅(𝑡𝑠) + 𝐹𝐴𝑅(𝑡𝑠))      Eq. 8 

These time-varying SDT estimates can be sampled from the empirical signal start-time 

distribution and averaged to yield single summary estimates (Macmillan and Kaplan, 1985). All 

SDT estimates were adjusted by adding 0.5 to each outcome type (hit, miss, correct reject, false 

alarm) in order to prevent infinite values resulting ‘0’ or ‘1’ for HR or FAR (Hautus, 1995). For 

FAR estimates, this corresponded to an adjustment based on size of the risk set at the start of 

the analysis window (‘𝑡𝑠 ’) (Kalbfleisch and Prentice, 2011). 
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Simulations (Fig. S2A) and a lack of positive correlation between bias and sensitivity 

differences between blocks or sessions (see Figs. 3 and S3) support that our approach to SDT 

successfully encapsulates and orthogonalizes d’ and c. 

 

Accumulation-to-bound modeling 

We fitted the choice and reaction time data, pooled from all animals, with accumulation-

to-bound models of the decision variable. Modles (Fig. 6A-B) were fitted based on continuous 

maximum likelihood using the Python-package PyDDM (Shinn et al., 2020). The combination of 

model parameters determines the fraction of correct responses and their associated RT 

distributions (Fig. 6C-E). We employed a single accumulator model that describes the 

accumulation of noisy sensory evidence toward a single choice boundary for a go-response.  

In the model, the decision dynamics were governed by leak, drift bias and gaussian noise 

during ‘noise’ (tone cloud) stimuli, and additionally by the drift rate and signal neglect probability 

during the ‘signal’ (temporal coherence) stimuli, based on the following equation: 

 

𝛥𝑦 = (− 𝑦 ∙ 𝑘 +  𝑣𝑏𝑖𝑎𝑠 + 𝑠 ∙ 𝑛 ∙ 𝑣) ∙ 𝛥𝑡 +  𝑐𝑑𝑊    Eq. 9 

 

where 𝑦 is the decision variable (black example trace in Fig. 6A, right), 𝑘 is the leak and controls 

the effective time constant (1/𝑘) for which accumulated evidence decays, 𝑣𝑏𝑖𝑎𝑠 is an evidence-

independent constant that is added as a drift in the diffusion process, 𝑠 is the stimulus category 

(0 during ‘noise’; 1 during ‘signal’), 𝑛, equal to (1 − 𝑝), is a Bernoulli variable (‘0’ or ‘1’), determined 

with probability 𝑝 as the fraction of signal presentations on which the relevant sensory evidence 

𝑠 was neglected (not accumulated), 𝑣 is the drift rate and controls the overall efficiency of 

accumulation of relevant evidence (coherence), and 𝑐𝑑𝑊 is Gaussian distributed white noise with 

mean 0 and variance 𝑐2𝛥𝑡. Evidence accumulation terminated at the bound height (go response) 

or at the end of the trial (no-go response), whichever came first. The starting point of evidence 

accumulation was fixed to ‘0’. 

 Changes in bound height, leak and drift predict similar enough changes in the fraction of 

go-responses and fits that it proved to be unstable when letting all of these parameters vary freely 

with task utility. Therefore, we initially compared three different models: in model 0 all parameters 

could vary with task utility except bound height, in model 1 all parameters could vary except leak, 

and in model 2 all parameters could vary except drift bias. Model 0 produced the best fits, both 

quantitatively (Fig. 6B) as well as qualitatively (compare Fig. 6C-E to Fig S6A-D). 

 We fitted two additional alternative models to verify that the signal neglect probability was 

an essential parameter. Model 3 did not include signal neglect probability at all, and in model 4 

signal neglect probability was fitted but could not vary with task utility. Both alternative models 

produced worse fits, both quantitatively (Fig. 6B) and qualitatively (Fig S6E-H).  

We fitted two additional alternative models to verify that drift bias was an essential 

parameter. Model 5 did not include drift bias at all, and in model 6 drift bias was fitted but could 

not vary with task utility. Both alternative models produced worse fits quantitatively (Fig. 6B) and 

qualitatively (Fig S6I-L). 

For the winning model (model ‘0’ we let all parameters except bound height vary with block 

number (Fig. 7A-E). In a separate analysis, all parameters except bound height could vary with 

the different arousal states and for the low-reward and high-reward blocks (Fig. S7F-J). For 
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simplicity of illustration and to pinpoint the effects of arousal on decision-making that are 

independent of task utility we then averaged the fits across task utility (Fig. 7F-J). 

 

Time course of learning 

To characterize animal’s learning, we fitted the following function: 

 

𝐵(𝑠) = 𝑎 ∙ 𝑒−𝑏 ∙ 𝑠 + 𝑐                 Eq. 10 

 

where 𝐵 is a behavioral metric of interest, 𝑠 is session number with respect to start of phase 3, 

and 𝑎, 𝑏 and 𝑐 the free parameters of the fit. 

 

Time course of behavioral adjustments. To calculate the speed of within-block behavioral 

adjustments to changes in task utility, we fitted the following function: 

 

 

𝐵(𝑡) = 𝑎 ∙ ln(𝑡) + 𝑏 ∙ 𝑡 + 𝑐          Eq. 11 

 

where 𝐵 is a behavioral metric of interest, 𝑡 is trial number since first correct response (hit) in a 

block, and 𝑎, 𝑏 and 𝑐 the free parameters of the fit. We then calculated the difference between 

the maximum and minimum of the fitted function and calculated the trial number for which 95% of 

this difference was reached. For bias, sensitivity, RT and reward probability, this occurred on 

average at 15 trials after the first correct response in a low-reward block (Fig. 2B,E,H,K). 

Therefore, when pooling data across trials within a block, we always excluded the first 14 trials 

after the first hit in each block (in both high-reward and low-reward blocks). We verified that our 

conclusions were not affected by specifics of this trial-selection procedure (Fig. S2H-K). 

 

Simulation of optimal signal-independent response rate 

To characterize the theoretical relationship between an overall (signal-independent) 

Poisson response rate and our behavioral metrics we generated a simulated data set (Fig. S2A). 

Specifically, we generated synthetic trials that matched the statistics of the empirical trials (noise 

duration was drawn from an exponential distribution with mean = 5 s; truncated at 11 s, the signal 

duration was 3 s). We then systematically varied the overall response rate by drawing random 

response times from exponential distributions with various means (1 / rate) and randomly 

assigned those response times to the synthetic trials. We varied the overall response rate from 

0.05 to 1 responses/s, in 20 evenly spaced steps. For each response rate, the decision agent 

performed 500 thousand simulated trials. For each iteration we then calculated the resulting bias, 

sensitivity, RT, and reward probability. 

 

Logistic regression 

We split each trial into a noise and signal epoch (for false alarm trials only a noise epoch), 

and then fitted three different logistic regression models. First: 

 

𝑅 =  
1

1+𝑒−(𝛽0+𝛽1𝑺+𝛽2𝑻+𝛽3𝑶−𝟏+𝛽4𝑼     Eq. 12 
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where R was a binary vector describing whether the animal responded (licked) during a given 

noise or signal epoch (0, no response; 1, response); S was a binary vector describing signal 

identity (0, noise; 1, signal); T was a vector describing trial number; O-1 was a binary vector 

describing whether the previous trial was rewarded (0, no previous reward; 1, previous reward); 

U was binary a vector describing the current task utility (0, low; 1, high); the β’s were the 

parameters (coefficients) of the fit. We next extended the model as follows: 

 

𝑅 =  
1

1+𝑒−(𝛽0+𝛽1𝑺+𝛽2𝑻+𝛽3𝑶−𝟏+𝛽4𝑼+𝛽5𝑾+𝛽6𝑷+𝛽7𝑷2    Eq. 13 

 

where W was binary a vector describing whether the animal walked (0, still; 1, walk); P was a 

vector describing the pre-trial pupil size (note that we included both a linear and quadratic term). 

We finally extended the model as follows: 

 

𝑅 =  
1

1+𝑒−(𝛽0+𝛽1𝑺+𝛽2𝑻+𝛽3𝑶−𝟏+𝛽4𝑼+𝛽5𝑾+𝛽6𝑷+𝛽7𝑷2+𝛽8𝑾−𝟏
    Eq. 14 

 

where W-1 was binary a vector describing whether the animal walked on the previous trial (0, still; 

1, walk). 

 

Mediation analysis 

We used mediation analysis (Baron & Kenny, 1986) to characterize the interaction between 

task utility, arousal, and behavioral performance (Fig. 5I,J). We fitted the following linear 

regression models based on standard mediation path analysis: 

 

𝐘 =  𝑖01 + 𝑐𝐗       Eq. 15 

 

𝐌 =  𝑖11 + 𝑎𝐗       Eq. 16 

 

𝐘 =  𝑖21 +  𝑐′𝐗 +  𝑏𝐌            Eq. 17 

 

where Y was a vector of the block-wise behavioral metric (e.g., sensitivity), X was binary a 

vector describing the block-wise task utility (0, low; 1, high), M was a vector of block-wise distance 

with respect to the optimal measures (see Analysis of pupil data), and 𝑐, 𝑐′, 𝑎, 𝑏, 𝑖0, 𝑖1 and 𝑖2 𝑤ere 

the free parameters of the fit. The parameters were fit using freely available Python software 

(Vallat, 2018). 

 

Analysis of pupil data 

All analyses were performed using custom-made Python scripts, unless stated otherwise. 

 

Preprocessing. We measured pupil size and exposed eye area from the videos of the animal’s 

eye using DeepLabCut (Mathis et al., 2018; Mridha et al., 2021). In approximately 1000 training 

frames randomly sampled across all sessions, we manually identified 8 points spaced 

approximately evenly along the edge of the pupil, and 8 points along the edge of the eyelids. The 

network (resnet 110) was trained with default parameters. To increase the network’s speed and 
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accuracy when labeling (unseen) frames of all videos, we specified video-wise cropping values in 

the DeepLabCut configuration file that corresponded to a square around the eye. The pupil size 

(or exposed eye area) was computed as the area of an ellipse fitted to the detected pupil (exposed 

eye) points. If two or more points were labeled with a likelihood smaller than 0.1 (e.g., during 

blinks), we did not fit an ellipse, but flagged the frame as missing data. We then applied the 

following signal processing to the pupil (exposed eye) time series of each measurement session: 

(i) resampling to 10 Hz; (ii) blinks were detected by a custom algorithm that marked outliers in the 

z-scored temporal derivative of the pupil size time series; (iii) linear interpolation of missing or 

poor data due to blinks (interpolation time window, from 150 ms before until 150 ms after missing 

data); (iv) low-pass filtering (third-order Butterworth, cut-off: 3 Hz); and (v) conversion to 

percentage of the 99.9 percentile of the time series. See (McGinley, David, et al., 2015; Mridha 

et al., 2021) for additional details. 

 

Quantification of pre-trial pupil size and distance w.r.t optimal. We quantified pre-trial pupil size 

as the mean pupil size during the 0.25 s before trial onset. Pre-trial pupil size was highest after 

previous hits (Fig. S4A), likely because the phasic lick-related pupil response did not have enough 

time to return to baseline. Pre-trial pupil size also generally increased with time-on-task (Fig. 

S5G). We thus removed (via linear regression) components explained by previous outcome 

(reward vs. no reward) and trial number. We obtained qualitatively similar results without doing 

so (Fig. S4K, Fig. S5G-M, and Fig. S7K-T). To capture how close the animal’s arousal state on 

each trial was to the optimal level, we computed the absolute difference between each pre-trial’s 

pupil size and the optimal size. Here, optimal size (which was found to be 27.5% of max) was 

defined as the pre-trial baseline pupil size for which reward probability was maximal (green 

vertical line in Fig. 4D). 

 

Utility context-based pupil resampling simulations. Per animal and block type (high-reward and 

low-reward) we counted the number of trials in each arousal-defined bin (same as bins as in Fig. 

5J); we then used these counts to compute the arousal-predicted behavioral performance (e.g., 

sensitivity), using the previously observed relationship between arousal states and behavioral 

performance (irrespective of task utility; Fig. 4A-D); per animal, we then computed the difference 

between the arousal-predicted behavioral performance in the high-reward and low-reward blocks. 

Finally, we divided the average (across animals) arousal-predicted difference by the average 

(across animals) total actually observed difference (Fig. 2). To estimate uncertainty, we 

bootstrapped trials within animals and blocks (5K bootstraps). We then computed the fraction 

between the purely arousal-predicted change in behavior and the total change in behavior after 

changes in task utility (see Fig. 5K).  

 

Analysis of walking data 

The instantaneous walking speed data was resampled to 10 Hz. We quantified pre-trial walking 

speed as the mean walking velocity during the 2 s before trial onset. We defined walking 

probability as the fraction of trials for which the absolute walking speed exceeded 1.25 cm/s (Fig. 

S4B). 

 

Statistical comparisons 
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We used a 3 × 2 repeated measures ANOVA to test for the main effects of task utility and 

time-on-task (block number of a given reward magnitude), and their interaction (Fig. 2C,F,I,L and 

Fig. 5C,F). We used the non-parametric Wilcoxon signed rank test to test coefficients against 0 

(Fig. 4B,C and Fig. 5H,J).  

We used sequential polynomial regression analysis (Draper & Smith, 1998), to quantify 

whether the relationships between pre-trial pupil size and behavioral measures were better 

described by a 1st order (linear) or 2nd order model (Fig. 4A-D and Fig. 7F-J): 

 

𝐘 = 𝛽01 + 𝛽1𝐗 + 𝛽2𝐗2            Eq. 18 

 

where Y was a vector of the dependent variable (e.g., bin-wise sensitivity), X was a vector of 

the independent variable (e.g. bin-wise pre-trial pupil size), and β as polynomial coefficients. To 

assess the amount of variance that each predictor accounted for independently, we 

orthogonalized the regressors prior to model fitting using QR-decomposition. Starting with the 

zero-order (constant) model and based on F-statistics (Draper & Smith, 1998), we tested whether 

incrementally adding higher-order predictors improves the model significantly (explains 

significantly more variance). We tested 1st up to 5th order models.  

We used Bayesian information criterion (BIC) for model selection and verified whether the 

complexity of the different variants of the accumulation-to-bound model was justified to account 

for the data (Fig. 6B). A difference in BIC of 10 is generally taken as a threshold for considering 

one model a sufficiently better fit than another (Spiegelhalter et al., 2002). We directly compared 

bootstrapped distributions of the model parameter estimates to test for the main effects of task 

utility and time-on-task (Fig. 7A-E) and for the effects pupil-linked and walk-related arousal (Fig. 

7F-J). 

All tests were performed two-tailed. All error bars are 68% bootstrapped confidence intervals 

of the mean, unless stated otherwise. 

 

Data availability 

Data will be made publicly available upon publication. 

 

Code availability  

Analysis scripts will be made publicly available upon publication. 
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Figure S1.  

 

(A) Histogram of experimental session number in learning phase 1.  

 

(B) Histogram of experimental session number in learning phase 2 (with respect to last session number in 

phase 2).  

 

(C) Histogram of experimental session number in phase 3.  

 

(D) Histogram of the maximum session number per animal.  

 

(E) Bias across experimental sessions in learning phase 3, collapsed across reward context.  

 

(F) As E, but for the difference between high-reward and low-reward blocks. Dashed lines, exponential fit 

(Methods).  

 

(G-H) As E-F, but for sensitivity (Methods).  

 

(I) From top to bottom: reward probability, reaction time (RT), hit rate and false alarm rate (Methods) across 

experimental sessions in learning phases 1 and 2 (Methods); session numbers are with respect to the last 

session in phase 2.  

 

(J) As I, but for the main task (Methods).  

 

(K) As I, but collapsed across reward context.  

 

(L) As I, but for the difference between high-reward and low-reward blocks. Dashed lines, exponential fit 

(Methods).  

 

(M) Example spectrograms of strong (left) and weak (right) signals (Methods).  

 

(N) Sensitivity across three difficulty bins and separately for high-reward and low-reward blocks. Stats, 2-

way repeated measures ANOVA (factors task utility [high vs. low] and signal strength (coherence) bin 

[weak, medium, strong]); main effect task utility: F1,9 = 4.8, p = 0.056; main effect signal strength: F2,18 = 

29.7, p < 0.001; interaction effect: F2,18 = 1.7, p = 0.201. Error bars, 68% confidence interval across animals 

(N=10, n=142 sessions).  

 

(O) As N, but for reward probability. Main effect task utility: F1,9 = 17.8, p = 0.002; main effect signal strength: 

F2,18 = 8.0, p = 0.003; interaction effect: F2,18 = 2.0, p = 0.162.  

 

(P) Fraction of trials containing a signal plotted against reward probability. Every data point is a unique 

session. We excluded 455 sessions with a reward probability smaller than 0.15, thereby excluding 4 

animals.  

 

(Q) As P, but for fraction of trials on which the animal licked (responded) on the y-axis.  

 

(R) Histogram of number of sessions per animal (after excluding sessions in panel Q,R). We excluded 22 

additional animals with fewer than 5 remaining sessions. 
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Figure S2.  

 

(A) From left to right: simulation of bias, sensitivity, RT and reward probability as a function of Poisson lick 

rate (Methods). Vertical green line indicates the optimal lick rate (maximum reward probability) when lick 

rate during noise and signal are the same. Note: the optimal average rate may differ in conditions when the 

signal is discriminated from the noise. 

 

(B) Probability of survival (Kaplan-Meier estimator), separately for low-reward and high-reward blocks, 

separately for noise and signal epochs, and separately for different noise durations.  

 

(C) Reward rate (Methods) collapsed across trials within each block. Stats, 2-way repeated measures 

ANOVA (factors task utility [high vs. low] and time-on-task [1, 2, 3]); main effect task utility: F1,87 = 1519.3, 

p < 0.001; main effect time-on-task: F2,174 = 1.9, p = 0.155; interaction effect: F2,174 = 0.7, p = 0.519.  

 

(D) As C but for miss probability (Methods). Main effect task utility: F1,87 = 985.2, p < 0.001; main effect 

time-on-task: F2,174 = 177.1, p < 0.001; interaction effect: F2,174 = 1.5, p = 0.228. 

 

(E) As C but for false alarm probability (Methods). Main effect task utility: F1,87 = 714.5, p < 0.001; main 

effect time-on-task: F2,174 = 188.2, p < 0.001; interaction effect: F2,174 = 4.2, p = 0.016. 

 

(F) As C but for false alarm rate (Methods). Main effect task utility: F1,87 = 439.0, p < 0.001; main effect 

time-on-task: F2,174 = 86.6, p < 0.001; interaction effect: F2,174 = 17.9, p < 0.001. 

 

(G) As C but for hit rate (Methods). Main effect task utility: F1,87 = 538.1, p < 0.001; main effect time-on-

task: F2,174 = 139.4, p < 0.001; interaction effect: F2,174 = 0.7, p = 0.512. 

 

(H-K) As C and main Fig. 2C,F,I,L, but when using all trials within a block (Methods). Main effects task 

utility are as follows: Panel H: F1,87 = 747.0, p < 0.001. Panel I: F1, 87 = 17.7, p < 0.001. Panel J: F1, 87 = 

612.9, p < 0.001. Panel K: F1, 87 = 12.5, p = 0.001. 

 

(L-O) As C and main Fig. 2C,F,I,L, but when controlling for time-on-task. The white circles are the average 

of the two adjacent blocks of the same task utility. Main effects task utility are as follows: Panel L: F1,87 = 

498.5, p < 0.001. Panel M: F1, 87 = 26.8, p < 0.001. Panel N: F1, 87 = 365.1, p < 0.001. Panel O: F1, 87 = 15.3, 

p < 0.001. 

 

(P-S) As C and main Fig. 2C,F,I,L, but when additionally stratifying on previous hit (Methods). Main effects 

previous hit are as follows: Panel P: F1,87 = 733.7, p < 0.001. Panel Q: F1, 87 = 34.0, p < 0.001. Panel R: F1, 

87 = 184.2, p < 0.001. Panel S: F1, 87 = 55.1, p < 0.001. Main effects task utility are as follows: Panel P: F1,87 

= 770.2, p < 0.001. Panel Q: F1, 87 = 21.9, p < 0.001. Panel R: F1, 87 = 667.0, p < 0.001. Panel S: F1, 87 = 1.8, 

p = 0.179. 

 

(T,U) As main Fig. 2F,L, but only for 82.8% of sessions without catch trials (Methods). Main effects task 

utility are as follows: Panel S: F1,69 = 31.9, p < 0.001. Panel T: F1, 69 = 6.2, p = 0.015. (V,W) As main Fig. 

2F,L, but only for 17.2% of sessions with catch trials (Methods). Main effects task utility are as follows: 

Panel V: F1,43 = 6.6, p = 0.013. Panel W: F1, 43 = 29.0, p < 0.001.  

 

All panels: shading or error bars, 68% confidence interval across animals (N=88; n=1983 sessions). 
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Figure S3.  

(A) Overall sensitivity (collapsed across task utility) plotted against overall bias (collapsed across task 

utility). Every data point is a unique session. 

(B) Change in sensitivity between reward blocks plotted against overall sensitivity (collapsed across task 

utility). Every data point is a unique session. 
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Figure S4.  

 

(A) Left: Pupil size across time on hit trials, separately for high-reward and low-reward blocks. Left, locked 

to licks; right, locked to next trial’s onset. Middle, as left, but on false alarm trials. Right: As left, but for miss 

trials. Left, locked to trial offset (end of 3-s signal sound).  

 

(B) Histogram of pre-trial walking velocity (across all animals and experimental sessions; Methods). Red 

line, cutoff for defining walking.  

 

(C) Histogram of pre-trial pupil size (across all animals and experimental sessions), separately for still and 

walking trials.  

 

(D) Relationship between pre-trial pupil size and hit rate (irrespective of task utility; Methods). A 1st order 

(linear) fit was not superior to a constant fit (F1,12 = 0.1, p = 0.717) and a 2nd order (quadratic) fit was superior 

to the 1st order fit (F1,12 = 6.5, p = 0.026; sequential polynomial regression; Methods). Asterisk, walking trials 

(Methods). 

 

(E) As D, but for false alarm rate. 1st order fit: F1,12 = 0.2, p = 0.690; 2nd order fit: F1,12 = 7.9, p = 0.016. 

 

(F) Remaining fitted coefficients from multiple logistic regression model (Fig. 4E; Methods), capturing the 

effects of time-on-task, previous outcome, and utility on overall responsiveness (closely related to bias). 

Stats, Wilcoxon signed-rank test; **, p < 0.01; ***, p < 0.001.  

 

(G) As F, but for interaction effects between each factor and signal, capturing the effects of time-on-task, 

previous hit, and utility on signal-selective responsiveness (closely related to sensitivity). 

 

(H,I) As F,G, but for model with one additional predictor: previous walk. 

 

(J) As Fig. 4A-D, but separately for low-reward and high-reward blocks. 

 

(K) As Fig. 4A-D, but for pre-trial pupil size measures without having regressed out effects of time-on-task 

and previous hit (Methods). Stats (sequential polynomial regression; Methods) are as follows. Bias: 1st order 

fit: F1,12 = 13.2, p = 0.003; 2nd order fit: F1,12 = 8.0, p = 0.016. Sensitivity: 1st order fit: F1,12 = 4.4, p = 0.058; 

2nd order fit: F1,12 = 3.0, p = 0.111. RT: 1st order fit: F1,12 = 5.1, p = 0.043; 2nd order fit: F1,12 = 7.5, p = 0.018. 

Reward probability: 1st order fit: F1,12 = 1.3, p = 0.268; 2nd order fit: F1,12 = 7.3, p = 0.019. 

 

(L) As Fig. 4A-D, but separately for fewer or more than 25 trials after the first hit in each block.  

 

(M) As Fig. 4A-D, but separately for the first 20 sessions of the main task, or for session numbers greater 

than 30. In this analysis, we only considered the first 50 sessions of 34 animals with at least 50 sessions 

worth of data in the main task. 

 

All panels: shading or error bars, 68% confidence interval across animals (N=88, n=1983 sessions). 
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Figure S5 
 
(A) Probability density function of pupil-linked arousal states, and walk probability, separately for low-reward 
and high-reward blocks. The difference between is reported in main Fig. 5G. 
 
(B) Coefficients from logistic regression of block-wise task utility [high vs. low] on pre-trial pupil size or on 
absolute distance from optimal pre-trial pupil size (Methods). 
 
(C) As main Fig. 5H, but without modeling walking trials in a separate state bin. 
 
(D) As main Fig. 5J, but only for trials mice did not walk. 
 
(E) As main Fig. 5J, but with walk probability as mediator (pupil-linked arousal not considered). 
 
(F) Pre-trial pupil size (without having regressed out time-on-task and previous hit; Methods) across low-
reward and high-reward blocks in each experimental session, locked to first hit in block. Data from the first 
block of each session (low utility; termed block ‘0’) was excluded from all analyses, as mice spent this block 
becoming engaged in the task (see also Fig. 2A,D,G,J; Methods).  
 
(G) As G, but collapsed across blocks of same reward magnitude. The green shaded area indicates the 
trials used when pooling data across trials within a block (e.g. panel C).  
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(H) As G, but collapsed across trials within a block. Stats, 2-way repeated measures ANOVA (factors task 
utility [high vs. low] and time-on-task [early, middle, late]); main effect task utility: F1,87 = 43.4, p < 0.001; 
main effect time-on-task: F2,174 = 37.1, p < 0.001; interaction effect: F2,174 = 3.3, p = 0.282. 
 
(I) As C, but for pre-trial pupil size without having regressed out time-on-task and previous hit (Methods). 
 
(J) Change in trial density after increases in task utility, separately for pupil-defined arousal states; asterisk, 
walking trials, without having regressed out time-on-task and previous hit (Methods). 
 
(K) As main Fig. 5H, but for pre-trial pupil size without having regressed out time-on-task and previous hit 
(Methods). 
 
(L) As main Fig. 5J, but for pre-trial pupil size without having regressed out time-on-task and previous hit 
(Methods). 
 
All panels: shading or error bars, 68% confidence interval across animals (N=88, n=1983 sessions). Panels 
C-E,K,L: stats, Wilcoxon signed-rank test; *, p < 0.05; **, p < 0.01***, p < 0.001. 
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Figure S6.  

 

(A) RT distribution for correct responses (hits; left) and incorrect responses (false alarms; right) in the low-

reward and high-reward blocks. Black line, fit of Model 1 (with varying bound height and fixed leak; 

Methods).  

 

(B) Model-predicted bias (left), sensitivity (middle) and reward probability (right) in the low-reward and high-

reward blocks plotted against the empirical estimates. Dashed line, identity line. 

 

(C,D) As A,B, but for Model 2 (with varying bound height and fixed drift bias; Methods). 

 

(E,F) As A,B, but for Model 3 (without signal neglect probability; Methods). 

 

(G,H) As A,B, but for Model 4 (with fixed signal neglect probability; Methods). 

 

(I,J) As A,B, but for Model 5 (without drift bias; Methods). 

 

(K,L) As A,B, but for Model 6 (with fixed drift bias; Methods). 

 

All panels: pooled data across animals (N=88) and sessions (n=1983). 
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Figure S7.  

 

(A) Fitted non-decision time estimates (kernel density estimate of 100 bootstrapped replicates) separately 

per block number. Main effect task utility (fraction of bootstrapped parameter estimates in the low-reward 

blocks higher than in the high-reward blocks): p = 0.32. Main effect time-on-task (fraction of bootstrapped 

parameter estimates in the first two blocks higher than in the last two blocks): p = 0.41.  

 

(B) As A, but for leak. Main effect task utility: p < 0.01. Main effect time-on-task: p < 0.01  

 

(C) As A, but for drift bias. Main effect task utility: p < 0.01. Main effect time-on-task: p < 0.01.  

 

(D) As A, but for drift rate. Main effect task utility: p < 0.01. Main effect time-on-task: p = 0.46.  

 

(E) As A, but for signal neglect probability. Main effect task utility: p < 0.01. Main effect time-on-task: p < 

0.01.  

 

(F-J) As main Fig. 7F-J, but separately for low-reward and high-reward blocks. 

 

(K) Fitted non-decision estimates (100 bootstrapped replicates) separately per arousal state (same pupil 

size defined bins as in Fig. 4A-D, but without having regressed out effects of time-on-task and previous hit; 

irrespective of task utility; Methods). A 1st order (linear) fit was superior to a constant fit (F1,12 = 118.8, p < 

0.001) and a 2nd order (quadratic) fit was not superior to the 1st order fit (F1,12 = 2.3, p = 0.154; sequential 

polynomial regression; Methods). Asterisk, walking trials (Methods).  

 

(L) As K, but for leak. 1st order fit: F1,12 = 5.9, p = 0.032; 2nd order fit: F1,12 = 3.3, p = 0.093.  

 

(M) As K, but for drift bias. 1st order fit: F1,12 ~ 0.0, p = 0.870; 2nd order fit: F1,12 = 1.3, p = 0.269.  

 

(N) As K, but for drift rate. 1st order fit: F1,12 = 0.6, p = 0.469; 2nd order fit: F1,12 = 3.8, p = 0.076.  

 

(O) As K, but for signal neglect probability. 1st order fit: F1,12 = 1.2, p = 0.290; 2nd order fit: F1,12 = 7.9, p = 

0.016. 

 

(P-T) As 7F-J, but separately for low-reward and high-reward blocks.  

 

(U-Z) Parameter estimates from alternative models (Methods), separately for low-reward and high-reward 

blocks. 

 

All panels: pooled data across animals (N=88) and sessions (n=1983). 
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