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Abstract

During resting-state EEG recordings, alpha activity is more prominent over the posterior cortex
in eyes-closed (EC) conditions compared to eyes-open (EO). In this study, we characterized
the difference in spectra between EO and EC conditions using dynamic causal modelling.
Specifically, we investigated the role of intrinsic and extrinsic connectivity—within the visual
cortex—in generating EC-EO alpha power differences over posterior electrodes. The primary
visual cortex (V1) and the bilateral middle temporal visual areas (V5) were equipped with
bidirectional extrinsic connections using a canonical microcircuit. The states of four intrinsically
coupled subpopulations—within each occipital source—were also modelled. Using Bayesian
model selection, we tested whether modulations of the intrinsic connections in V1, V5 or
extrinsic connections (or a combination thereof) provided the best evidence for the data. In
addition, using parametric empirical Bayes (PEB), we estimated group averages under the
winning model. Bayesian model selection showed that the winning model contained both
extrinsic connectivity modulations, as well as intrinsic connectivity modulations in all sources.
The PEB analysis revealed increased extrinsic connectivity during EC. Overall, we found a
reduction in the inhibitory intrinsic connections during EC. The results suggest that the intrinsic
modulations in V5 played the most important role in producing EC-EO alpha differences,

suggesting an intrinsic disinhibition in higher order visual cortex, during EC resting state.

Keywords: Dynamic causal modelling; Visual cortex, alpha band, Resting-State EEG
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Author summary

One of the strongest signals that can be measured using EEG are so called alpha rhythms.
These are neural oscillations that fall within the 8-12Hz frequency range. Alpha rhythms are
most prominent when the eyes are closed and are seen at the electrodes placed at the back
of the head. In this study, we studied the mechanism of alpha rhythms changes when going
from eyes-open to an eyes-closed state. We used a biologically plausible model including
different neural populations. We focused on modelling connections within and between
different neural sources of the visual cortex and how they are modulated when going from
eyes-open to an eyes closed state. We found evidence that inhibitory neurons play an

important role in alpha rhythms.
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Introduction

Alpha oscillatory EEG activity (i.e., 8-12Hz) during rest—or task-free recordings—is most
pronounced during eyes-closed (EC) conditions, over the posterior cortex. During visual
stimulation (i.e. eyes-open state, EO) alpha oscillations are suppressed (but see e.g. [1], who
showed alpha suppression in a darkened room). Alpha-power modulations have also been
observed during working memory [2,3] and visual attention tasks (e.g. [4]). To date, the neural
mechanisms underlying alpha activity and modulation (at the scalp level) remain an open
question. Several studies have pointed to the role of the thalamus as driving source of cortical
alpha [5-7]. More specifically, it is thought that the pulvinar and/or the lateral geniculate
nucleus act as primary alpha-pacemaker(s). However, by using electrocorticographic
recordings, a recent study showed that alpha waves in the cortex lead alpha activity in the
thalamus [8]. Moreover, it has been suggested that cortico-cortical interactions play a
prominent role—above and beyond thalamo-cortical dynamics—in the generations of alpha

rhythms [9] and that they are associated with conscious perception [10].

There are several difficulties in providing definitive explanations for alpha power differences
between EO and EC. First, it is unclear whether we can recover signals from deep brain
structures using non-invasive electrophysiological recordings, such as electro-and
magnetoencephalography (EEG, MEG; [11,12]). In order to study dynamics in terms of
interacting brain regions from EEG and MEG signals, the so-called inverse problem needs to
be solved (i.e. source reconstruction, [13,14]). The accuracy of source localization solutions is
to date still a matter of debate [11,15,16]. On the other hand, studies using intracranial
recordings have high spatiotemporal resolution but due to the invasiveness, these studies are
rather rare and usually involve a small number of electrodes and (clinical) sample size. Another
disadvantage is that intracranial recordings do not cover the entire brain and are to some extent
also susceptible to volume conduction. Finally, many electrophysiological studies that

investigated the alpha-band—from a network perspective— have used measures such as
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93  coherence (i.e. modulus of the cross spectrum) and phase information to quantify (functional)
94  connectivity. However, it has been shown that these measures do not provide a unique or
95 complete description of the underlying data generating process that produce spectral data

96 features, such as spectral coherence [17].

97  One way to address some of these challenges is estimate effective connectivity with dynamic

98 causal modelling (DCM). DCM has been validated, using intracranial and fMRI data, and has

99  been shown to yield efficient source reconstruction [18]. DCM combines a biophysical and an
100  observation model and provides a solution to the inverse problem by assuming biophysical
101  constraints on the hidden source dynamics. Here, we used DCM to explain the underlying
102 neural dynamics of observed spectral differences between EC and EO conditions, with a
103  specific focus on alpha power. We employed DCM for cross spectral densities features, where
104  both amplitude as well as phase information are used for inferring the underlying neural
105 dynamics in terms of directed synaptic connections. We extended the current implementation
106 by augmenting DCM with parameters characterizing state-dependent changes in intrinsic
107  coupling [19,20]. Inspired by a recent study [8], we modelled 3 distinct sources, assumed to
108 be the main sources of EO-EC alpha power difference observed using EEG. These sources
109  were the primary visual cortex (V1 collapsed across hemispheres, due to their proximity) and
110 the bilateral middle temporal visual areas (V5), which were modelled using an established
111 neural mass model based upon canonical microcircuits. Our main goal was to determine
112  whether EO and EC alpha differences can be explained in terms of changes in either extrinsic
113  connections (i.e. between sources) or changes in intrinsic connections (i.e. within a source) or
114  their combination. We used parametric empirical bayes (PEB) to evaluate which specific
115  connections show modulatory (i.e. condition-specific) effects [21,22]. Finally, we examined the
116  contribution of these modulatory parameters— to alpha power—in more detail, using a
117  sensitivity analysis. We envision that the results here serve as a proof of principle that DCM

118 can provide a mechanistic explanation of EO and EC differences in spectral activity. This is
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119  important since several studies have shown that the EO to EC alpha power difference is a

120  neural marker of cognitive health [23-25)].

121 Materials and Methods

122 Data and pre-processing

123 In this study, 1-minute EEG recordings were taken from 109 subjects, during eyes open and
124  eyes closed resting-state from the EEG Motor Movement/Imagery PhysioNet dataset [26,27].

125  The data was acquired using the BCI2000 system http://www.bci2000.org). The EEG channels

126  were placed on the scalp according to the international 10-10 system [28]. The data was
127  provided in EDF+ format, containing 64 EEG channels, each sampled at 160 Hz. Eyes open

128  resting-state was followed by the eyes-closed condition.

129  The data were pre-processed using EEGLAB running on MATLAB [29]. The 60Hz power line
130 noise was first removed using the Cleanline EEGLAB plugin. Afterwards, the data were high-
131 pass filtered using default settings, with a lower-cut-off of 1Hz. Then, a low-pass filter with high-
132  cut-off of 45 Hz and default settings were applied. Periods of data contaminated with blink
133  artefacts were repaired using independent component analysis. Bad channels were removed,

134  based on visual inspection. Finally, the data were referenced to their average.

135 Power spectral analysis

136  Our first goal was to confirm the well-known effect on posterior alpha power during wakeful
137  state with the eyes closed. Here, we estimated the power spectra from the last 10 seconds of
138 the eyes-open period and the first 10 seconds of the eyes-closed condition. We choose not
139  the use the full 1 minute resting-state recording because we had showed, in a previous study,
140  that connectivity is non-stationary over 1 minute [30]. The power spectrum was obtained using
141 Welch’s method (i.e., pwelch.m command in MATLAB): The signal was divided into maximum

142 8 overlapping windows with a 50% overlap between segments. Segments are obtained with a
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143  Hanning window and subsequently decomposed with discrete Fourier transform. This was
144  repeated for every channel, subject and state (i.e., EO and EC). A permutation based paired
145  t-test was conducted by randomly swapping the EO and EC conditions on a subject specific
146  basis. 5000 permutations were performed for the entire frequency x channel data space, during
147  which the permuted T-values were retained. P-values were obtained by calculating the
148  proportion of permuted t-values exceeding the observed t-value (two-tailed). The multiple
149  comparisons problem was addressed using the Benjamini-Hochberg procedure for maintaining

150 the false discovery rate (FDR) at 5% [31].

151  Canonical microcircuit

152  In this study, brain sources are modelled with a neural mass model called the ‘canonical
153  microcircuitry’ [32,33].This model is equipped with four subpopulations per region: superficial
154  and deep pyramidal cells (SP and DP), spiny stellate cells (SS) and inhibitory populations (Il).
155  Within each source, the subpopulations are coupled with so-called intrinsic connections, see

156  Figure 1 for a schematic presentation. The states in each subpopulation are
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158  Figure 1. lllustration of the Canonical Microcircuit Model (CMC) model. Each source (V1,
159  rV5andIV5) comprises 4 neural subpopulations: spiny stellate cells (SS), superficial pyramidal
160 cells (SP), deep pyramidal cells (DP) and inhibitory interneurons (l1). Neural populations within
161  a source are coupled with intrinsic connections (full arrows; bottom figure), while coupling
162  between neural populations of different sources are extrinsic connections (dotted arrows). Red
163  and blue arrows denote inhibitory and excitatory connections, respectively. The dynamics of
164  the hidden (neuronal) states of each population can be described with the pairs of differential
165  equations shown. There are four extrinsic connections: from SP to SS and DP (forward). Also,
166  from DP to SP and Il (backward). Intrinsic couplings are parametrized by G1,_10. Three regions
167  comprise the network that is assumed to generate observed cross-spectral densities: V1 and
168 left and right V5. These are shown on the top right. Forward connections were specified from
169 V1 to V5 while backward connections were specified from V5 to V1. o(x;) is a sigmoidal
170 activation function which transforms post-synaptic potential into average spiking output.
171 Finally, the external input to a brain source is denoted with u and enters SS.

172  described using the equations shown in Figure 1. Between source influences are mediated by
173  extrinsic connections: Forward or backward (or both) connections, where forward connections
174  originate from SP in one source and target SS and DP in another, while backward connections

175  originate from DP and target SP and Il. Exogenous (from other sources) inputs target SS.

176 Dynamic causal modelling for cross spectral data features

177  DCM is a Bayesian framework for inverting and comparing models of neural dynamics and the
178  way these dynamics are translated into observations (in this case cross spectral data features).
179  Therefore, it is useful to make a distinction between the neural model, which describes the
180  hidden neural dynamics, and the observation model, which describes the mapping from neural
181  states to observed responses. Usually, inference regarding the parameters of neural model is
182  of interest (but see [34—38] for recent developments in multimodal fusion and applications of
183  statistical decision theory in the context of DCM). A generative model is specified when the
184  neural and forward model are combined and appropriately supplemented with prior constraints
185  on the parameters. In this work, we used a specific DCM variant designed to deal with steady-
186  state response called DCM for cross-spectral densities (CSD; [17,39]). Here, the generative
187  model specifies how neural dynamics—driven by endogenous fluctuations—map to observed
188  cross spectral densities. By linearizing the model around its fixed point, the resulting transfer
189  functions specify how the endogenous fluctuations are mapped, through neural dynamics and

190 the forward model, to the observed CSD. The power spectrum of the endogenous fluctuations
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191  (innovations) is assumed to have a (parametrized) power law form: g(a, 8, w) = aw™# with «
192 and B the parameters controlling the amplitude and the slope (or more precisely the rate of
193  decay) of spectral densities of the innovations noise. These parameters are estimated for each

194  region separately.

195 In order to infer condition dependent changes in intrinsic coupling, the current DCM
196  implementation of the CMC model described above, was supplemented with parameters

197  encoding these changes as following [19]:
198 G; = G + XGF

199  Here, X encodes the conditions so that X = 0 for EO and X = 1 for EC condition. This implies
200 that G/ encodes baseline intrinsic connectivity and here corresponds to the EO-state.
201  Consequently, GZ encodes the modulation of the i-" intrinsic connection associated with the
202  EC-state. Connectivity and other parameters of the neural model are shown in Table 1. The
203 first 4 eigenmodes of the prior data covariance are used to project the channel data into a
204  reduced sensor space (see [40] for more details). The cross spectral densities (CSD) that are
205 used as data features are obtained from these 4 modes by fitting a Bayesian multivariate

206  autoregressive model of order 12.
207
208
209
210
211

212
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Table 1. Parameters of neural model (see Error! Reference

source not found. for illustration of the neural model)

Description  Parametrisation Prior

Ti

A
G110

B
G i=1,...10

A1234

Postsynaptic
time constant
for P6x) =N([000
(exp(6k)*[2 2 16 28])
subpopulation 0],1/32)
SS, SP, iiand
DP
Baseline
intrinsic exp(6’)4,4,8,4,4,2,4,4,2,11"200 P(8"c) = N(0,1/8)
connectivity
Intrinsic
connectivity exp(68,) P(6°c) = N(0,1/4)
modulation
Extrinsic
exp(6a)[1, 5, 1, 22 ]*200 P(64) = N(0,1/16)

connectivity

Amplitude and

slope of the P(Bqp) =
exp(6a,p)

spectral N(0,1/128)

innovations

The forward model used here (the ‘IMG’-option), treats each source as a patch on the cortical

surface [41]. Each patch consists of a mixture of 6 spatial basis functions. The basis functions

are taken from the eigenvectors of the lead field matrix of all dipoles whose origin was given

by the MNI coordinates [0 -88 4] for V1 and [-44 -68 0] and [42 -72 0] for left and right V5,

10
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217  respectively. DCMs with bad model fit (i.e. explained variance <50%) were removed from

218  further analysis, in total 5 subjects were removed from the group-analysis.

219  Group level inference with parametric empirical Bayes

220  We used parametric empirical Bayes (PEB) to make inferences about extrinsic and intrinsic
221 connectivity differences at the group level [21]. PEB uses a hierarchical model, which, at the
222  first level, generates data from subject specific DCM parameters, and at the second level
223  generates DCM parameters from group means, using a general linear model. The second level
224  model characterizes between subject variability in terms of random effects. Here, we focused
225  on group means of connectivity parameters. Using PEB, we obtained the posterior distribution
226  of the (group mean) connectivity parameters and their condition-specific changes. In order to
227  score the evidence for models with either extrinsic, V1 or V5 intrinsic connectivity modulations
228  (or a combination thereof) we used Bayesian model reduction (BMR; [21]). We compared
229 models with or without the following set of parameters: extrinsic modulations, V1 intrinsic
230  modulations and V5 intrinsic modulations (in total, 8 models were considered). We also used
231  a greedy search algorithm and Bayesian model reduction to prune second-level parameters
232  from the PEB model with lowest evidence until we obtained 256 ‘best’ models. Bayesian model
233 averaging (BMA) was subsequently applied to the reduced models to provide parameter
234  estimates that accommodated for uncertainty over pruned or reduced models [42]. Inference
235 on second level parameters—encoding group-mean intrinsic connectivity modulations—was
236 based on the posterior probability (Pp) of a parameter being included in the model. The
237  posterior means after BMA with Pp >.95 are treated as ‘significant’ in the sense that there is

238  strong evidence for their contribution to the data.

11
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Results

Power spectral results

Figure 2 displays the FDR-thresholded map of the frequency-by-channels t-values in image
format. In addition, a 2-D topographical plot of the mean spectral power difference at 10.6Hz
is shown and the mean power spectrum across subjects and 4 posterior electrodes (PO7, O1,
02 and POG6) are shown. The key things to note are significant differences around 10.6Hz.
This difference was most pronounced over the posterior electrodes. However, a global effect
can be observed in terms of statistical significance. Furthermore, positive and negative effects
in higher frequency ranges were found. The positive effects were largely posteriorly localized
(e.g., PO7, Oz, O2 and PO8; up to 23Hz), while the negative effects were localized to frontal

electrodes (e.g., AF3, AF4, AF7, AF8; between 20 and 45Hz).

APower (=10Hz)

FCS5 FC3 FC1 Fez FC2 FC4 FCB

W[ cs c3 c cz c2ca ce
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g 451 L
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Figure 2. Results of the power spectral analysis. On the right, the FDR-thresholded t-values
of all Channels x Frequencies are shown in image format. Given that we focus on alpha power
differences, the topographic plot of the mean power difference (A Power) at 10.6 Hz is shown

12
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254  on top-left. The mean power spectrum and 0.95 standard error intervals about the mean over
255  channels PO7, Oz, O2 and PO8 for EO and EC are plotted at the bottom-left.

256 PEB model selection and parameter averaging

257  As afirst step, we created 8 alternative PEB models to test which connectivity modulations are
258 related to the difference between EO to EC conditions. We formed models by taking all

259  combinations of the parameters that include all extrinsic modulations, V1 intrinsic modulations

260 and V5 intrinsic connectivity modulations. In
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261 Model

262  Figure 3, the log-evidence differences of the 8 models are shown. These differences are with
263 respect to the full PEB model. We found that the full model had the largest evidence. The
264  second-best model contained both V1 and V5 intrinsic modulations. The log-evidence
265 difference between the best and second-best model was 15.23. This is larger than 3, which
266 can be considered as very strong evidence in favour of the full model. In short, we found that
267  both extrinsic and intrinsic modulations in V1 and V5 play an important role in explaining
268 differences between EO and EC conditions. However, an interesting pattern can be observed.

269 We see that models without V5 intrinsic modulations had much lower evidence relative to

13
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270  models including V5 intrinsic modulations. This suggest that V5 intrinsic modulations were

271  relatively important for explaining EO vs EC differences.
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273  Figure 3. PEB model selection. The bar graph of the free energy (i.e., log evidence)
274  differences from the full model are shown for the 8 PEB models considered. The models were
275  formed by creating combinations of extrinsic modulations (Ext), V1 intrinsic modulations (V1)
276 and V5 intrinsic modulations (V5). We observe that the full model has the highest
277  (approximate) model evidence. In addition, models without V5 intrinsic modulation have
278  smaller evidence compared to models that included V5 intrinsic modulation.
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The Bayesian model average (BMA) estimates and 90% Bayesian confidence intervals of the

four extrinsic modulations can be found in Figure 4. We observe that all extrinsic connections.
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Figure 4. Extrinsic connectivity modulations. This figure shows the group-level results of
the extrinsic connectivity modulations associated with EC states (relative to EO). More
specifically, the mean posterior and 90% Bayesian confidence intervals (pink) after the greedy
search algorithm and Bayesian model averaging are shown. Note that the estimated
parameters are log-scale parameters (i.e., a positive log scale parameter means an increase).
The right panel shows the posterior probabilities of the extrinsic connection.

increase during EC. The posterior probabilities (Pp) are 100%, 100%, 90% and 72% for V1 —

V5, V1 — V5, IV5 — V1 and rV5 — V1, respectively
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Figure 5. Intrinsic connectivity modulations. The figure reports the group-level results of
the intrinsic connectivity modulations associated with EC states (relative to EO) in the three
sources of interest. More specifically, the mean posterior and 90% Bayesian confidence
interval (pink error bars) after the greedy search algorithm and Bayesian model averaging are
shown in the top row. The middle row shows the corresponding posterior probabilities of the
intrinsic modulations, the pink dotted lines correspond to a Pp of .95. Finally, the bottom is a
schematic presentation of the modulation with Pp>.95 and the direction of the effect. Inhibitory
connections are shown in red and excitatory in blue.

In order to characterise the contributions of the intrinsic and extrinsic connectivity modulations

on the power spectrum, we performed a sensitivity analysis. Briefly, for each modulation
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301 parameter, we examined the effect of a small parameter increment on the predicted power

302  spectrum of the (reduced-) data of the posterior electrodes. More specifically, we added a small

303 Figure 6. Sensitivity analysis. The results of the sensitivity analysis—averaged across
304  subjects—are shown in image format. The group BMA results are provided in the lower part
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305 for comparison. Positive values (red) and negative values (blue) indicate that a parameter

306 increase results in an increase and decrease, respectively of the predicted power spectrum.
307  The arrows indicate the sensitivities for the significant intrinsic connectivity modulations that
308 are shown in the lower part of the figure.

309 increment (e™®) to the posterior mean of a certain parameter, while keeping the posterior
310  means of the other parameters fixed. Technically, we are numerically evaluating the Jacobian
311 of the generative model of the extrinsic and intrinsic connectivity modulations at their posterior
312 means. This was repeated for every subject separately and subsequently averaged over

313  subjects. The results are reported in Figure 6 together with the posterior mean of the group-

314 BMA

315  Positive (red) and negative (blue) values indicate that increasing or decreasing the parameter
316  would result in increased and decreased power, respectively. Changes in intrinsic connectivity
317  have a larger effect on the power spectrum compared to extrinsic connectivity and this is most
318  pronounced for V5. In addition, we see clearly that the sensitivities are most pronounced within
319  the alpha band (i.e., around 10Hz). If we consider the significant intrinsic modulation, we

320 observe largest negative sensitivities for the inhibitory Gs (Il — SS) and G1 (SS — SS)
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321  modulations and positive sensitivities for the excitatory Ge(ll — DP) modulations in left and
322  right V5. The sensitivities of the significant modulations in V1 are much less pronounced

323 compared to the sources in V5.

324 In summary, we found evidence that both extrinsic modulations between V1 and V5—
325 as well as intrinsic modulations within V1 and V5—play an important role in the genesis of EO-
326  EC power spectral differences. In addition, we found that the intrinsic modulations in bilateral
327 V5, in particular the inhibitory connections, seem to play the greatest role. This speaks to the

328 importance of local [dis]inhibition, within higher order visual cortex.

329 Discussion

330 In this work, we investigated the role of intrinsic and extrinsic connections within the occipital
331  cortex in the generation of EO and EC alpha power differences. Using a publicly available data
332  set, we first replicated previous findings that alpha-power is most pronounced during EC
333  condition at posterior channels. Then, using DCM followed by PEB, our analysis showed that
334 the model with the largest evidence contained both extrinsic and intrinsic connectivity
335 modulations. Interestingly, our results showed that the intrinsic connections in V5 play a
336 relatively larger role compared to the extrinsic connections and V1 intrinsic connections. Most
337 inhibitory connections to SS-cells—the target population for endogenous neuronal
338 fluctuations—decreased during EC. Overall, we found that decreased inhibitory connections
339  within the higher order visual cortex seem to play an important role in underwriting EO-EC

340 alpha power differences.

341  Several studies using biologically inspired models, fitted to EEG data, have been conducted in
342  the context of EO-EC alpha power differences. In two recent studies by [43] and [43] the
343  authors used a neural mass model of the same data set used in our study. In the first study,
344  the authors investigated parameter identifiability of a 22-parameter neural mass model based
345 on the EC data alone. They found that, using sampling-based inversion scheme a single
346  parameter controlling inhibitory synaptic activity is directly identifiable. In a follow up paper, the
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347  authors extended the model by incorporating modulatory parameters used for explaining EO-
348 EC power differences. Their main finding was that a single modulatory parameter seems to
349  explain best the alpha power difference; namely, a parameter controlling the tonic excitatory
350 input to inhibitory populations. The authors argue in light of previous findings, that this external
351 inputis likely to be of thalamic origin. In relation to our modelling approach, several differences
352  are important to consider. First, we used a neural mass model of multiple spatially defined and
353  coupled occipital sources. This is to be contrasted with earlier studies, where no reference to
354  coupled regions was made. Second, DCM combines a neural model of how different
355  subpopulations within and between cortical sources interact, with a forward model of how post-
356  synaptic potentials are mapped to observed data (here channel cross spectral densities). In
357 comparison, the earlier studies mentioned above did not include an observation model. Thus,
358  neural activity was not decoupled from volume conduction and observation noise (channel
359 noise). Third, our approach used a variational Bayesian inversion scheme, which provides a
360 lower bound on the log-model evidence, necessary for Bayesian model comparison. In other
361 words, we identified the most plausible model, where both model fit and complexity were
362 considered in scoring alternative models. Hartoyo et al. (2020) used particle swarm
363  optimization and constrained half of the model parameters to be the same between the EO
364 and EC conditions. They found that only 1 modulatory parameter provided the best explanation
365 for generating EC-EO alpha differences. On the other hand, here we found that several
366  modulatory parameters were identified for explaining spectral differences between EO and EC.
367 Using BMC, we showed that both intrinsic and extrinsic connectivity parameters are necessary
368 to explain the data. Fourth, Hartoyo et al. (2020) and Hartoyo et al. (2019), only used data from
369 Cz to estimate the parameters of the model, while in the current work we used data from all

370 EEG channels (projected to a reduced space).

371 In another related study, using empirical EO-EC EEG data for estimating the parameters of a
372  neurophysiological model, the authors found multiple parameters that explained the difference

373  between EO and EC [45]. Similarly, to the model by (Hartoyo et al., 2020) these authors used
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374  data from a single electrode and did not include an observation model. They considered a
375  thalamo-cortical model including intracortical and thalamocortical pathways and four type of
376  neurons: cortical pyramidal (excitatory) and inhibitory neurons, thalamic reticular and thalamo-
377  cortical relay neurons. They found that strong positive (excitatory) cortico-thalamic feedback
378 and longer time constants underlie EC alpha power. One of the major strengths of this study
379 is the incorporation of thalamocortical interactions, which is lacking in the current study. In
380  principle, it is possible to incorporate the thalamus as a hidden source in DCM (i.e., the states
381  of the hidden node do not contribute directly to the observed responses) to investigate
382  bidirectional effect of thalamo-cortical dynamics (David, Maess, Eckstein, & Friederici, 2011).
383 In essence, this approach would be the same as extending the current neural mass model to
384  include additional subpopulations representing the thalamus. This approach was undertaken
385 inthe recent model by Min et al. (2020) by including excitatory and inhibitory neural populations
386  inthe thalamus. Their temporal dynamics are given by the well-known model of Lopes da Silva,
387  Hoeks, Smits, & Zetterberg (1974) that describes thalamic oscillations [48,49]. The model
388 includes thalamocortical relay (TC) and thalamic reticular nucleus (TRN) neurons. TC neurons
389  project to the cortex, while TRN neurons surround the thalamus and regulate TC neuron
390 activity by sending inhibitory signals. This model could be used in DCM to explain multimodal
391 data (EEG and fMRI) from the thalamus and reveal differences in laminar dynamics (Friston et
392  al., 2017; Pinotsis, 2020). Alternatively, it would be interesting to apply DCM to intracranial

393 recordings where both thalamic and cortical areas are recorded simultaneously.

394  Given the role of inhibitory intrinsic connections found here, it is worth noting that cortical
395 inhibition is largely mediated by GABAergic connections, while excitation is mediated by
396 glutamatergic connections [50]. In a recent review paper by Lozano-Soldevilla (2018), the
397  author discusses studies that used pharmacological modulation to study physiological
398  mechanism underlying alpha rhythms. In their review, several findings are discussed in light of
399 the so-called alpha power as inhibition principle [52]. Briefly, this principle states that alpha

400 oscillations serve a functional inhibitory role which is implemented through physiological

20


https://doi.org/10.1101/2022.03.03.482940
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.03.482940; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

401 inhibition (generated by GABAergic interneurons). Following this principle, one would expect
402 increased alpha in case of increased physiological inhibition. However, Lozano-Soldevilla
403 (2018) reviewed several lines of evidence showing pharmacologically enhanced inhibition
404  results in decreased rather than increased alpha. In addition, some studies have found that
405 sub-anaesthetic doses of ketamine (i.e. a glutamatergic excitatory NMDA receptor blocker)
406 resulted in decrease posterior alpha power in resting-state [53,54]. According to Wang (2010),
407 inhibition plays an important role in rhythmogenesis, either in an interneural network or via
408 excitatory-inhibitory loops. In sum, these studies are in line with our findings regarding the

409 importance of local inhibition in the generation of alpha rhythms during rest.

410  Functionally, two different brain configurations have been associated with EO and EC resting-
411 state condition: an exteroceptive state associated with attention, vigilance and ocular motor
412  activity and an interoceptive state associated with mental imagery and multisensory activity
413  [56-58]. Considering our results, one could suggest that inhibition in higher order visual areas

414  are the local manifestations of an interoceptive state that is triggered by eye closure.

415 Differences in power in a given band could be explained by changes in slope/aperiodic part
416  apart from modulations in pure oscillations [59]. In DCM, the shape of the observed spectra is
417  determined by the parametrized 1/f neural fluctuations (a.k.a., innovations) and importantly the
418 transfer functions that govern ‘spectral bumps’ in the output (Friston et al., 2012; Moran et al.,
419  2009). In this study, we assumed that during both EC and EO, the spectral shape of the
420 innovations remains the same and that differences are due to changes in connectivity. A
421 possible avenue for future research concerns the shape of the neural innovations driving V1
422  and V5. The current model could be augmented by allowing condition specific changes in either
423  the height, slope or both of the 1/f form of the neural innovations. In addition, condition specific

424  changes in the synaptic time-constants of the different neural populations could be examined.

425 Considering the aforementioned evidence, we suggest that dynamic causal modelling of

426 resting-state EO and EC conditions might provide a mechanistic insight into intrinsic
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427  physiological mechanisms. This could be relevant for quantitative insights in clinical studies

428  but also studies that use pharmacologically altered states of consciousness.
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