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Abstract 23 

During resting-state EEG recordings, alpha activity is more prominent over the posterior cortex 24 

in eyes-closed (EC) conditions compared to eyes-open (EO). In this study, we characterized 25 

the difference in spectra between EO and EC conditions using dynamic causal modelling. 26 

Specifically, we investigated the role of intrinsic and extrinsic connectivity—within the visual 27 

cortex—in generating EC-EO alpha power differences over posterior electrodes. The primary 28 

visual cortex (V1) and the bilateral middle temporal visual areas (V5) were equipped with 29 

bidirectional extrinsic connections using a canonical microcircuit. The states of four intrinsically 30 

coupled subpopulations—within each occipital source—were also modelled. Using Bayesian 31 

model selection, we tested whether modulations of the intrinsic connections in V1, V5 or 32 

extrinsic connections (or a combination thereof) provided the best evidence for the data. In 33 

addition, using parametric empirical Bayes (PEB), we estimated group averages under the 34 

winning model. Bayesian model selection showed that the winning model contained both 35 

extrinsic connectivity modulations, as well as intrinsic connectivity modulations in all sources. 36 

The PEB analysis revealed increased extrinsic connectivity during EC. Overall, we found a 37 

reduction in the inhibitory intrinsic connections during EC. The results suggest that the intrinsic 38 

modulations in V5 played the most important role in producing EC-EO alpha differences, 39 

suggesting an intrinsic disinhibition in higher order visual cortex, during EC resting state.  40 

Keywords: Dynamic causal modelling; Visual cortex, alpha band, Resting-State EEG 41 
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Author summary 45 

One of the strongest signals that can be measured using EEG are so called alpha rhythms. 46 

These are neural oscillations that fall within the 8-12Hz frequency range. Alpha rhythms are 47 

most prominent when the eyes are closed and are seen at the electrodes placed at the back 48 

of the head.  In this study, we studied the mechanism of alpha rhythms changes when going 49 

from eyes-open to an eyes-closed state. We used a biologically plausible model including 50 

different neural populations. We focused on modelling connections within and between 51 

different neural sources of the visual cortex and how they are modulated when going from 52 

eyes-open to an eyes closed state. We found evidence that inhibitory neurons play an 53 

important role in alpha rhythms.  54 
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Introduction 67 

Alpha oscillatory EEG activity (i.e., 8-12Hz) during rest—or task-free recordings—is most 68 

pronounced during eyes-closed (EC) conditions, over the posterior cortex. During visual 69 

stimulation (i.e. eyes-open state, EO) alpha oscillations are suppressed (but see e.g. [1], who 70 

showed alpha suppression in a darkened room). Alpha-power modulations have also been 71 

observed during working memory [2,3] and visual attention tasks (e.g. [4]). To date, the neural 72 

mechanisms underlying alpha activity and modulation (at the scalp level) remain an open 73 

question. Several studies have pointed to the role of the thalamus as driving source of cortical 74 

alpha [5–7]. More specifically, it is thought that the pulvinar and/or the lateral geniculate 75 

nucleus act as primary alpha-pacemaker(s). However, by using electrocorticographic 76 

recordings, a recent study showed that alpha waves in the cortex lead alpha activity in the 77 

thalamus [8]. Moreover, it has been suggested that cortico-cortical interactions play a 78 

prominent role—above and beyond thalamo-cortical dynamics—in the generations of alpha 79 

rhythms [9] and that they are associated with conscious perception [10].     80 

There are several difficulties in providing definitive explanations for alpha power differences 81 

between EO and EC. First, it is unclear whether we can recover signals from deep brain 82 

structures using non-invasive electrophysiological recordings, such as electro-and 83 

magnetoencephalography (EEG, MEG; [11,12]). In order to study dynamics in terms of 84 

interacting brain regions from EEG and MEG signals, the so-called inverse problem needs to 85 

be solved (i.e. source reconstruction, [13,14]). The accuracy of source localization solutions is 86 

to date still a matter of debate [11,15,16]. On the other hand, studies using intracranial 87 

recordings have high spatiotemporal resolution but due to the invasiveness, these studies are 88 

rather rare and usually involve a small number of electrodes and (clinical) sample size. Another 89 

disadvantage is that intracranial recordings do not cover the entire brain and are to some extent 90 

also susceptible to volume conduction. Finally, many electrophysiological studies that 91 

investigated the alpha-band—from a network perspective— have used measures such as 92 
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coherence (i.e. modulus of the cross spectrum) and phase information to quantify (functional) 93 

connectivity. However, it has been shown that these measures do not provide a unique or 94 

complete description of the underlying data generating process that produce spectral data 95 

features, such as spectral coherence [17]. 96 

One way to address some of these challenges is estimate effective connectivity with dynamic 97 

causal modelling (DCM). DCM has been validated, using intracranial and fMRI data, and has 98 

been shown to yield efficient source reconstruction [18]. DCM combines a biophysical and an 99 

observation model and provides a solution to the inverse problem by assuming biophysical 100 

constraints on the hidden source dynamics. Here, we used DCM to explain the underlying 101 

neural dynamics of observed spectral differences between EC and EO conditions, with a 102 

specific focus on alpha power. We employed DCM for cross spectral densities features, where 103 

both amplitude as well as phase information are used for inferring the underlying neural 104 

dynamics in terms of directed synaptic connections. We extended the current implementation 105 

by augmenting DCM with parameters characterizing state-dependent changes in intrinsic 106 

coupling [19,20]. Inspired by a recent study [8], we modelled 3 distinct sources, assumed to 107 

be the main sources of EO-EC alpha power difference observed using EEG. These sources 108 

were the primary visual cortex (V1 collapsed across hemispheres, due to their proximity) and 109 

the bilateral middle temporal visual areas (V5), which were modelled using an established 110 

neural mass model based upon canonical microcircuits. Our main goal was to determine 111 

whether EO and EC alpha differences can be explained in terms of changes in either extrinsic 112 

connections (i.e. between sources) or changes in intrinsic connections (i.e. within a source) or 113 

their combination. We used parametric empirical bayes (PEB) to evaluate which specific 114 

connections show modulatory (i.e. condition-specific) effects [21,22]. Finally, we examined the 115 

contribution of these modulatory parameters— to alpha power—in more detail, using a 116 

sensitivity analysis. We envision that the results here serve as a proof of principle that DCM 117 

can provide a mechanistic explanation of EO and EC differences in spectral activity. This is 118 
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important since several studies have shown that the EO to EC alpha power difference is a 119 

neural marker of cognitive health [23–25]. 120 

Materials and Methods 121 

Data and pre-processing 122 

In this study, 1-minute EEG recordings were taken from 109 subjects, during eyes open and 123 

eyes closed resting-state from the EEG Motor Movement/Imagery PhysioNet dataset [26,27]. 124 

The data was acquired using the BCI2000 system http://www.bci2000.org). The EEG channels 125 

were placed on the scalp according to the international 10-10 system [28]. The data was 126 

provided in EDF+ format, containing 64 EEG channels, each sampled at 160 Hz. Eyes open 127 

resting-state was followed by the eyes-closed condition.	128 

The data were pre-processed using EEGLAB running on MATLAB [29]. The 60Hz power line 129 

noise was first removed using the Cleanline EEGLAB plugin. Afterwards, the data were high-130 

pass filtered using default settings, with a lower-cut-off of 1Hz. Then, a low-pass filter with high-131 

cut-off of 45 Hz and default settings were applied. Periods of data contaminated with blink 132 

artefacts were repaired using independent component analysis. Bad channels were removed, 133 

based on visual inspection. Finally, the data were referenced to their average. 134 

Power spectral analysis 135 

Our first goal was to confirm the well-known effect on posterior alpha power during wakeful 136 

state with the eyes closed. Here, we estimated the power spectra from the last 10 seconds of 137 

the eyes-open period and the first 10 seconds of the eyes-closed condition. We choose not 138 

the use the full 1 minute resting-state recording because we had showed, in a previous study, 139 

that connectivity is non-stationary over 1 minute [30]. The power spectrum was obtained using 140 

Welch’s method (i.e., pwelch.m command in MATLAB): The signal was divided into maximum 141 

8 overlapping windows with a 50% overlap between segments. Segments are obtained with a 142 
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Hanning window and subsequently decomposed with discrete Fourier transform. This was 143 

repeated for every channel, subject and state (i.e., EO and EC). A permutation based paired 144 

t-test was conducted by randomly swapping the EO and EC conditions on a subject specific 145 

basis. 5000 permutations were performed for the entire frequency x channel data space, during 146 

which the permuted T-values were retained. P-values were obtained by calculating the 147 

proportion of permuted t-values exceeding the observed t-value (two-tailed). The multiple 148 

comparisons problem was addressed using the Benjamini-Hochberg procedure for maintaining 149 

the false discovery rate (FDR) at 5% [31]. 150 

Canonical microcircuit 151 

In this study, brain sources are modelled with a neural mass model called the ‘canonical 152 

microcircuitry’ [32,33].This model is equipped with four subpopulations per region: superficial 153 

and deep pyramidal cells (SP and DP), spiny stellate cells (SS) and inhibitory populations (II). 154 

Within each source, the subpopulations are coupled with so-called intrinsic connections, see 155 

Figure 1 for a schematic presentation. The states in each subpopulation are  156 

 157 
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Figure 1. Illustration of the Canonical Microcircuit Model (CMC) model. Each source (V1, 158 
rV5 and lV5) comprises 4 neural subpopulations: spiny stellate cells (SS), superficial pyramidal 159 
cells (SP), deep pyramidal cells (DP) and inhibitory interneurons (II). Neural populations within 160 
a source are coupled with intrinsic connections (full arrows; bottom figure), while coupling 161 
between neural populations of different sources are extrinsic connections (dotted arrows). Red 162 
and blue arrows denote inhibitory and excitatory connections, respectively. The dynamics of 163 
the hidden (neuronal) states of each population can be described with the pairs of differential 164 
equations shown. There are four extrinsic connections: from SP to SS  and DP (forward). Also, 165 
from DP to SP and II (backward). Intrinsic couplings are parametrized by G1,..,10. Three regions 166 
comprise the network that is assumed to generate observed cross-spectral densities: V1 and 167 
left and right V5. These are shown on the top right. Forward connections were specified from 168 
V1 to V5 while backward connections were specified from V5 to V1. 𝜎(𝑥!) is a sigmoidal 169 
activation function which transforms post-synaptic potential into average spiking output. 170 
Finally, the external input to a brain source is denoted with u and enters SS. 171 

described using the equations shown in Figure 1. Between source influences are mediated by 172 

extrinsic connections: Forward or backward (or both) connections, where forward connections 173 

originate from SP in one source and target SS and DP in another, while backward connections 174 

originate from DP and target SP and II. Exogenous (from other sources) inputs target SS.  175 

Dynamic causal modelling for cross spectral data features 176 

DCM is a Bayesian framework for inverting and comparing models of neural dynamics and the 177 

way these dynamics are translated into observations (in this case cross spectral data features). 178 

Therefore, it is useful to make a distinction between the neural model, which describes the 179 

hidden neural dynamics, and the observation model, which describes the mapping from neural 180 

states to observed responses. Usually, inference regarding the parameters of neural model is 181 

of interest (but see [34–38] for recent developments in multimodal fusion and applications of 182 

statistical decision theory in the context of DCM). A generative model is specified when the 183 

neural and forward model are combined and appropriately supplemented with prior constraints 184 

on the parameters. In this work, we used a specific DCM variant designed to deal with steady-185 

state response called DCM for cross-spectral densities (CSD; [17,39]). Here, the generative 186 

model specifies how neural dynamics—driven by endogenous fluctuations—map to observed 187 

cross spectral densities. By linearizing the model around its fixed point, the resulting transfer 188 

functions specify how the endogenous fluctuations are mapped, through neural dynamics and 189 

the forward model, to the observed CSD. The power spectrum of the endogenous fluctuations 190 
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(innovations) is assumed to have a (parametrized) power law form: 𝑔(𝛼, 𝛽, 𝜔) = 𝛼𝜔"# with 𝛼 191 

and 𝛽 the parameters controlling the amplitude and the slope (or more precisely the rate of 192 

decay) of spectral densities of the innovations noise. These parameters are estimated for each 193 

region separately.  194 

 In order to infer condition dependent changes in intrinsic coupling, the current DCM 195 

implementation of the CMC model described above, was supplemented with parameters 196 

encoding these changes as following [19]: 197 

𝐺! = 𝐺!$ + 𝑋𝐺!% 198 

Here, X encodes the conditions so that X = 0 for EO and X = 1 for EC condition. This implies 199 

that 𝐺!$ encodes baseline intrinsic connectivity and here corresponds to the EO-state. 200 

Consequently, 𝐺!% encodes the modulation of the i-th intrinsic connection associated with the 201 

EC-state. Connectivity and other parameters of the neural model are shown in Table 1. The 202 

first 4 eigenmodes of the prior data covariance are used to project the channel data into a 203 

reduced sensor space (see [40] for more details). The cross spectral densities (CSD) that are 204 

used as data features are obtained from these 4 modes by fitting a Bayesian multivariate 205 

autoregressive model of order 12.  206 

 207 

 208 

 209 

 210 

 211 

 212 
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Table 1. Parameters of neural model (see Error! Reference 

source not found. for illustration of the neural model) 
 

 
Description Parametrisation Prior 

τi 

Postsynaptic 

time constant 

for 

subpopulation 

SS, SP, ii and 

DP 

(exp(θk)*[2 2 16 28]) 
P(θk) = N([0 0 0 

0],1/32) 

GA
1,..10 

Baseline 

intrinsic 

connectivity 

exp(θA
γ)*[4, 4, 8, 4, 4, 2, 4, 4, 2, 1]*200 P(θA

G) =  N(0,1/8) 

GB
i=1,…10 

Intrinsic 

connectivity 

modulation 

exp(θB
γ) P(θB

G) =  N(0,1/4) 

A1,2,3,4 

Extrinsic 

connectivity 
exp(θA)*[1, ½, 1, ½ ]*200 P(θA) =  N(0,1/16) 

α,β 

Amplitude and 

slope of the 

spectral 

innovations  

exp(θα,β) 
P(θα,β) =  

N(0,1/128) 

 

The forward model used here (the ‘IMG’-option), treats each source as a patch on the cortical 213 

surface [41]. Each patch consists of a mixture of 6 spatial basis functions. The basis functions 214 

are taken from the eigenvectors of the lead field matrix of all dipoles whose origin was given 215 

by the MNI coordinates [0 -88 4] for V1 and [-44 -68 0] and [42 -72 0] for left and right V5, 216 
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respectively. DCMs with bad model fit (i.e. explained variance <50%) were removed from 217 

further analysis, in total 5 subjects were removed from the group-analysis.  218 

Group level inference with parametric empirical Bayes 219 

We used parametric empirical Bayes (PEB) to make inferences about extrinsic and intrinsic 220 

connectivity differences at the group level [21]. PEB uses a hierarchical model, which, at the 221 

first level, generates data from subject specific DCM parameters, and at the second level 222 

generates DCM parameters from group means, using a general linear model. The second level 223 

model characterizes between subject variability in terms of random effects. Here, we focused 224 

on group means of connectivity parameters. Using PEB, we obtained the posterior distribution 225 

of the (group mean) connectivity parameters and their condition-specific changes. In order to 226 

score the evidence for models with either extrinsic, V1 or V5 intrinsic connectivity modulations 227 

(or a combination thereof) we used Bayesian model reduction (BMR; [21]). We compared 228 

models with or without the following set of parameters: extrinsic modulations, V1 intrinsic 229 

modulations and V5 intrinsic modulations (in total, 8 models were considered). We also used 230 

a greedy search algorithm and Bayesian model reduction to prune second-level parameters 231 

from the PEB model with lowest evidence until we obtained 256 ‘best’ models. Bayesian model 232 

averaging (BMA) was subsequently applied to the reduced models to provide parameter 233 

estimates that accommodated for uncertainty over pruned or reduced models [42]. Inference 234 

on second level parameters—encoding group-mean intrinsic connectivity modulations—was 235 

based on the posterior probability (Pp) of a parameter being included in the model. The 236 

posterior means after BMA with Pp >.95 are treated as ‘significant’ in the sense that there is 237 

strong evidence for their contribution to the data. 238 
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Results 239 

Power spectral results 240 

Figure 2 displays the FDR-thresholded map of the frequency-by-channels t-values in image 241 

format. In addition, a 2-D topographical plot of the mean spectral power difference at 10.6Hz 242 

is shown and the mean power spectrum across subjects and 4 posterior electrodes (PO7, O1, 243 

O2 and PO6) are shown. The key things to note are significant differences around 10.6Hz. 244 

This difference was most pronounced over the posterior electrodes. However, a global effect 245 

can be observed in terms of statistical significance. Furthermore, positive and negative effects 246 

in higher frequency ranges were found. The positive effects were largely posteriorly localized 247 

(e.g., PO7, Oz, O2 and PO8; up to 23Hz), while the negative effects were localized to frontal 248 

electrodes (e.g., AF3, AF4, AF7, AF8; between 20 and 45Hz). 249 

 250 

Figure 2. Results of the power spectral analysis. On the right, the FDR-thresholded t-values 251 
of all Channels x Frequencies are shown in image format. Given that we focus on alpha power 252 
differences, the topographic plot of the mean power difference (∆ Power) at 10.6 Hz is shown 253 
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on top-left. The mean power spectrum and 0.95 standard error intervals about the mean over 254 
channels PO7, Oz, O2 and PO8 for EO and EC are plotted at the bottom-left. 255 

PEB model selection and parameter averaging 256 

As a first step, we created 8 alternative PEB models to test which connectivity modulations are 257 

related to the difference between EO to EC conditions. We formed models by taking all 258 

combinations of the parameters that include all extrinsic modulations, V1 intrinsic modulations 259 

and V5 intrinsic connectivity modulations. In 260 

 261 

Figure 3, the log-evidence differences of the 8 models are shown. These differences are with 262 

respect to the full PEB model. We found that the full model had the largest evidence. The 263 

second-best model contained both V1 and V5 intrinsic modulations. The log-evidence 264 

difference between the best and second-best model was 15.23. This is larger than 3, which 265 

can be considered as very strong evidence in favour of the full model. In short, we found that 266 

both extrinsic and intrinsic modulations in V1 and V5 play an important role in explaining 267 

differences between EO and EC conditions. However, an interesting pattern can be observed. 268 

We see that models without V5 intrinsic modulations had much lower evidence relative to 269 
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models including V5 intrinsic modulations. This suggest that V5 intrinsic modulations were 270 

relatively important for explaining EO vs EC differences.  271 

 272 

Figure 3. PEB model selection. The bar graph of the free energy (i.e., log evidence) 273 
differences from the full model are shown for the 8 PEB models considered. The models were 274 
formed by creating combinations of extrinsic modulations (Ext), V1 intrinsic modulations (V1) 275 
and V5 intrinsic modulations (V5). We observe that the full model has the highest 276 
(approximate) model evidence. In addition, models without V5 intrinsic modulation have 277 
smaller evidence compared to models that included V5 intrinsic modulation. 278 
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The Bayesian model average (BMA) estimates and 90% Bayesian confidence intervals of the 279 

four extrinsic modulations can be found in Figure 4. We observe that all extrinsic connections. 280 

Figure 4. Extrinsic connectivity modulations. This figure shows the group-level results of 281 
the extrinsic connectivity modulations associated with EC states (relative to EO). More 282 
specifically, the mean posterior and 90% Bayesian confidence intervals (pink) after the greedy 283 
search algorithm and Bayesian model averaging are shown. Note that the estimated 284 
parameters are log-scale parameters (i.e., a positive log scale parameter means an increase). 285 
The right panel shows the posterior probabilities of the extrinsic connection.  286 

increase during EC. The posterior probabilities (Pp) are 100%, 100%, 90% and 72% for V1 → 287 

lV5, V1 → rV5, lV5 → V1 and rV5 → V1, respectively 288 

 289 
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Figure 5. Intrinsic connectivity modulations. The figure reports the group-level results of 290 
the intrinsic connectivity modulations associated with EC states (relative to EO) in the three 291 
sources of interest. More specifically, the mean posterior and 90% Bayesian confidence 292 
interval (pink error bars) after the greedy search algorithm and Bayesian model averaging are 293 
shown in the top row. The middle row shows the corresponding posterior probabilities of the 294 
intrinsic modulations, the pink dotted lines correspond to a Pp of .95. Finally, the bottom is a 295 
schematic presentation of the modulation with Pp>.95 and the direction of the effect. Inhibitory 296 
connections are shown in red and excitatory in blue.  297 

 298 

In order to characterise the contributions of the intrinsic and extrinsic connectivity modulations 299 

on the power spectrum, we performed a sensitivity analysis. Briefly, for each modulation 300 
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parameter, we examined the effect of a small parameter increment on the predicted power 301 

spectrum of the (reduced-) data of the posterior electrodes. More specifically, we added a small  302 

Figure 6. Sensitivity analysis. The results of the sensitivity analysis—averaged across 303 
subjects—are shown in image format. The group BMA results are provided in the lower part 304 

for comparison. Positive values (red) and negative values (blue) indicate that a parameter 305 
increase results in an increase and decrease, respectively of the predicted power spectrum. 306 
The arrows indicate the sensitivities for the significant intrinsic connectivity modulations that 307 
are shown in the lower part of the figure. 308 

increment (𝑒"&) to the posterior mean of a certain parameter, while keeping the posterior 309 

means of the other parameters fixed. Technically, we are numerically evaluating the Jacobian 310 

of the generative model of the extrinsic and intrinsic connectivity modulations at their posterior 311 

means. This was repeated for every subject separately and subsequently averaged over 312 

subjects. The results are reported in Figure 6 together with the posterior mean of the group-313 

BMA 314 

Positive (red) and negative (blue) values indicate that increasing or decreasing the parameter 315 

would result in increased and decreased power, respectively. Changes in intrinsic connectivity 316 

have a larger effect on the power spectrum compared to extrinsic connectivity and this is most 317 

pronounced for V5. In addition, we see clearly that the sensitivities are most pronounced within 318 

the alpha band (i.e., around 10Hz). If we consider the significant intrinsic modulation, we 319 

observe largest negative sensitivities for the inhibitory G3 (II → SS) and G1 (SS → SS) 320 
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modulations and positive sensitivities for the excitatory G9(II → DP) modulations in left and 321 

right V5. The sensitivities of the significant modulations in V1 are much less pronounced 322 

compared to the sources in V5. 323 

 In summary, we found evidence that both extrinsic modulations between V1 and V5—324 

as well as intrinsic modulations within V1 and V5—play an important role in the genesis of EO-325 

EC power spectral differences. In addition, we found that the intrinsic modulations in bilateral 326 

V5, in particular the inhibitory connections, seem to play the greatest role. This speaks to the 327 

importance of local [dis]inhibition, within higher order visual cortex.  328 

Discussion 329 

In this work, we investigated the role of intrinsic and extrinsic connections within the occipital 330 

cortex in the generation of EO and EC alpha power differences. Using a publicly available data 331 

set, we first replicated previous findings that alpha-power is most pronounced during EC 332 

condition at posterior channels. Then, using DCM followed by PEB, our analysis showed that 333 

the model with the largest evidence contained both extrinsic and intrinsic connectivity 334 

modulations. Interestingly, our results showed that the intrinsic connections in V5 play a 335 

relatively larger role compared to the extrinsic connections and V1 intrinsic connections. Most 336 

inhibitory connections to SS-cells—the target population for endogenous neuronal 337 

fluctuations—decreased during EC. Overall, we found that decreased inhibitory connections 338 

within the higher order visual cortex seem to play an important role in underwriting EO-EC 339 

alpha power differences.  340 

Several studies using biologically inspired models, fitted to EEG data, have been conducted in 341 

the context of EO-EC alpha power differences. In two recent studies by [43] and [43] the 342 

authors used a neural mass model of the same data set used in our study. In the first study, 343 

the authors investigated parameter identifiability of a 22-parameter neural mass model based 344 

on the EC data alone. They found that, using sampling-based inversion scheme a single 345 

parameter controlling inhibitory synaptic activity is directly identifiable. In a follow up paper, the 346 
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authors extended the model by incorporating modulatory parameters used for explaining EO-347 

EC power differences. Their main finding was that a single modulatory parameter seems to 348 

explain best the alpha power difference; namely, a parameter controlling the tonic excitatory 349 

input to inhibitory populations. The authors argue in light of previous findings, that this external 350 

input is likely to be of thalamic origin. In relation to our modelling approach, several differences 351 

are important to consider. First, we used a neural mass model of multiple spatially defined and 352 

coupled occipital sources. This is to be contrasted with earlier studies, where no reference to 353 

coupled regions was made. Second, DCM combines a neural model of how different 354 

subpopulations within and between cortical sources interact, with a forward model of how post-355 

synaptic potentials are mapped to observed data (here channel cross spectral densities). In 356 

comparison, the earlier studies mentioned above did not include an observation model. Thus, 357 

neural activity was not decoupled from volume conduction and observation noise (channel 358 

noise). Third, our approach used a variational Bayesian inversion scheme, which provides a 359 

lower bound on the log-model evidence, necessary for Bayesian model comparison. In other 360 

words, we identified the most plausible model, where both model fit and complexity were 361 

considered in scoring alternative models. Hartoyo et al. (2020) used particle swarm 362 

optimization and constrained half of the model parameters to be the same between the EO 363 

and EC conditions. They found that only 1 modulatory parameter provided the best explanation 364 

for generating EC-EO alpha differences. On the other hand, here we found that several 365 

modulatory parameters were identified for explaining spectral differences between EO and EC. 366 

Using BMC, we showed that both intrinsic and extrinsic connectivity parameters are necessary 367 

to explain the data. Fourth, Hartoyo et al. (2020) and Hartoyo et al. (2019), only used data from 368 

Cz to estimate the parameters of the model, while in the current work we used data from all 369 

EEG channels (projected to a reduced space). 370 

In another related study, using empirical EO-EC EEG data for estimating the parameters of a 371 

neurophysiological model, the authors found multiple parameters that explained the difference 372 

between EO and EC [45]. Similarly, to the model by (Hartoyo et al., 2020) these authors used 373 
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data from a single electrode and did not include an observation model. They considered a 374 

thalamo-cortical model including intracortical and thalamocortical pathways and four type of 375 

neurons: cortical pyramidal (excitatory) and inhibitory neurons, thalamic reticular and thalamo-376 

cortical relay neurons. They found that strong positive (excitatory) cortico-thalamic feedback 377 

and longer time constants underlie EC alpha power. One of the major strengths of this study 378 

is the incorporation of thalamocortical interactions, which is lacking in the current study. In 379 

principle, it is possible to incorporate the thalamus as a hidden source in DCM (i.e., the states 380 

of the hidden node do not contribute directly to the observed responses) to investigate 381 

bidirectional effect of thalamo-cortical dynamics (David, Maess, Eckstein, & Friederici, 2011). 382 

In essence, this approach would be the same as extending the current neural mass model to 383 

include additional subpopulations representing the thalamus. This approach was undertaken 384 

in the recent model by Min et al. (2020) by including excitatory and inhibitory neural populations 385 

in the thalamus. Their temporal dynamics are given by the well-known model of Lopes da Silva, 386 

Hoeks, Smits, & Zetterberg (1974) that describes thalamic oscillations [48,49]. The model 387 

includes thalamocortical relay (TC) and thalamic reticular nucleus (TRN) neurons. TC neurons 388 

project to the cortex, while TRN neurons surround the thalamus and regulate TC neuron 389 

activity by sending inhibitory signals. This model could be used in DCM to explain multimodal 390 

data (EEG and fMRI) from the thalamus and reveal differences in laminar dynamics (Friston et 391 

al., 2017; Pinotsis, 2020). Alternatively, it would be interesting to apply DCM to intracranial 392 

recordings where both thalamic and cortical areas are recorded simultaneously.  393 

Given the role of inhibitory intrinsic connections found here, it is worth noting that cortical 394 

inhibition is largely mediated by GABAergic connections, while excitation is mediated by 395 

glutamatergic connections [50]. In a recent review paper by Lozano-Soldevilla (2018), the 396 

author discusses studies that used pharmacological modulation to study physiological 397 

mechanism underlying alpha rhythms. In their review, several findings are discussed in light of 398 

the so-called alpha power as inhibition principle [52]. Briefly, this principle states that alpha 399 

oscillations serve a functional inhibitory role which is implemented through physiological 400 
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inhibition (generated by GABAergic interneurons). Following this principle, one would expect 401 

increased alpha in case of increased physiological inhibition. However, Lozano-Soldevilla 402 

(2018) reviewed several lines of evidence showing pharmacologically enhanced inhibition 403 

results in decreased rather than increased alpha. In addition, some studies have found that 404 

sub-anaesthetic doses of ketamine (i.e. a glutamatergic excitatory NMDA receptor blocker) 405 

resulted in decrease posterior alpha power in resting-state [53,54]. According to Wang (2010), 406 

inhibition plays an important role in rhythmogenesis, either in an interneural network or via 407 

excitatory-inhibitory loops. In sum, these studies are in line with our findings regarding the 408 

importance of local inhibition in the generation of alpha rhythms during rest.  409 

Functionally, two different brain configurations have been associated with EO and EC resting-410 

state condition: an exteroceptive state associated with attention, vigilance and ocular motor 411 

activity and an interoceptive state associated with mental imagery and multisensory activity 412 

[56–58]. Considering our results, one could suggest that inhibition in higher order visual areas 413 

are the local manifestations of an interoceptive state that is triggered by eye closure.  414 

Differences in power in a given band could be explained by changes in slope/aperiodic part 415 

apart from modulations in pure oscillations [59]. In DCM, the shape of the observed spectra is 416 

determined by the parametrized 1/f neural fluctuations (a.k.a., innovations) and importantly the 417 

transfer functions that govern ‘spectral bumps’ in the output (Friston et al., 2012; Moran et al., 418 

2009). In this study, we assumed that during both EC and EO, the spectral shape of the 419 

innovations remains the same and that differences are due to changes in connectivity. A 420 

possible avenue for future research concerns the shape of the neural innovations driving V1 421 

and V5. The current model could be augmented by allowing condition specific changes in either 422 

the height, slope or both of the 1/f form of the neural innovations. In addition, condition specific 423 

changes in the synaptic time-constants of the different neural populations could be examined.  424 

Considering the aforementioned evidence, we suggest that dynamic causal modelling of 425 

resting-state EO and EC conditions might provide a mechanistic insight into intrinsic 426 
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physiological mechanisms. This could be relevant for quantitative insights in clinical studies 427 

but also studies that use pharmacologically altered states of consciousness.  428 
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