

1 **Title:** De-heterogeneity of the eukaryotic viral reference database (EVRD) improves
2 the accuracy and efficiency of viromic analysis

3 **Running Title:** A eukaryotic viral reference database

4 **Author names and affiliations:**

5 Junjie Chen¹, Xiaomin Yan¹, Yue Sun¹, Zilin Ren¹, Guangzhi Yan¹, Guoshuai Wang¹,
6 Yuhang Liu¹, Zihan Zhao¹, Yang Liu¹, Changchun Tu^{1,2*}, Biao He^{1,2*}

7 ¹Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences,
8 Changchun, Jilin Province, China

9 ²Jiangsu Co-innovation Center for Prevention and Control of Important Animal
10 Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province,
11 China

12 ***Corresponding author**

13 heb-001001@163.com (BH), changchun_tu@hotmail.com (CT);

14

15 **Abstract**

16 Widespread in public databases, the notorious contamination in virus reference
17 databases often leads to confusing even wrong conclusions in applications like viral
18 disease diagnosis and viromic analysis, highlighting the need of a high-quality
19 database. Here, we report the comprehensive scrutiny and the purification of the
20 largest viral sequence collections of GenBank and UniProt by detection and
21 characterization of heterogeneous sequences (HGSs). A total of 766 nucleotide- and
22 276 amino acid-HGSs were determined with length up to 6,605 bp, which were
23 widely distributed in 39 families, with many involving highly public health-related
24 viruses, such as hepatitis C virus, Crimea-Congo hemorrhagic fever virus and
25 filovirus. Majority of these HGSs are sequences of a wide range of hosts including
26 humans, with the rest resulting from vectors, misclassification and laboratory
27 components. However, these HGSs cannot be simply considered as exotic
28 contaminants, since part of which are resultants of natural occurrence or artificial
29 engineering of the viruses. Nevertheless, they significantly disturb the genomic
30 analysis, and hence were deleted from the database. A further augmentation was
31 implemented with addition of the risk and vaccine sequences, which finally results in
32 a high-quality eukaryotic virus reference database (EVRD). EVRD showed higher
33 accuracy and less time-consuming without coverage compromise by reducing false
34 positives than other integrated databases in viromic analysis. EVRD is freely
35 accessible with favorable application in viral disease diagnosis, taxonomic clustering,
36 viromic analysis and novel virus detection.

37 **Keywords:** Eukaryotic virome, emerging infectious disease, database

38 contamination, host contamination, heterogenous sequences.

39 **Background**

40 Emerging infectious diseases (EIDs), especially the viral ones, are a serious threat
41 to public health, significantly challenging global security, social economy and
42 human's life (1). Rapid and accurate diagnosis of EIDs is a prerequisite for timely
43 formulating and implementing prevention and control measures. High-throughput
44 sequencing (HTS)-based metagenomics is a promising approach for rapid diagnosis
45 and identification of EIDs because it does not require '*a priori*' information and is
46 capable of identifying a comprehensive spectrum of potential agents, especially those
47 new ones, by a single test (2, 3). Metagenomic diagnosis highly depends on the
48 similarity-based analyses of reads or contigs against reference database. Hence, the
49 high quality of reference database that is of complete representativeness, functional
50 robustness, and informational accuracy provides an important guarantee of diagnostic
51 reliability.

52 There are numerous resources focusing on particular viruses. The Hepatitis B virus
53 database (HBVdb) is a nucleotide (nt) and amino acid (aa) sequence collection for
54 surveillance of genetic variability and analysis of drug resistance profiling of HBV (4).
55 The HIV, HCV and HFV/Ebola databases incorporated in the Pathogen Research
56 Databases contain data on viral genetic sequences, immunological epitopes and
57 vaccine trials (<https://www.lanl.gov/collaboration.pathogen-database/index.php>). The
58 Global Initiative on Sharing All Influence Data (GISAID) initially archived genetic
59 sequences and related clinical and epidemiological data of all influenza viruses, and
60 now has expanded to include the coronavirus causing COVID-19

61 (https://www.gisaid.org). Besides, several comprehensive databases covering a broad
62 range of, even all, viruses have been established. The Virus Pathogen Databases and
63 Analysis Resource (ViPR) provides cross-referenced data of multiple types on all high
64 priority human pathogenic viruses (5). The Databases of Bat- and Rodent-associated
65 Viruses (DBatVir and DRodVir) catalog all viral sequences discovered from the two
66 most important viral natural hosts (6, 7). As the largest public biological sequence
67 database, GenBank contains the viral and phage divisions that are widely used for
68 genomic analysis (8). Similarly, the taxon Viruses of the UniProt knowledgebase
69 (UniProtKB) provides a comprehensive set of viral protein sequences (9). The
70 Reference Viral Database (RVDB) and its protein counterpart, RVDB-prot, were
71 established to include all viral, virus-related, and virus-like entries (10, 11). The
72 Integrated Microbial Genomes/Virus (IMG/VR) provides access to the largest
73 collection of viral sequences obtained from (meta)genomes, among which more than
74 90% are bacteriophage (12).

75 These specialized databases focus on a taxonomic group or type of viruses, making
76 them less representative. These comprehensive resources contain a high degree of
77 redundancy. Of particular importance is that there are notable levels of heterogenous
78 sequences (HGSs) in those databases (13). We define a sequence as heterogenous if it
79 has a real identity inconsistent with its definition or is an exotic contaminant. Based
80 on our experiences of viromic studies over the past decade, those HGSs are mainly
81 related to laboratory components and nonviral organisms or artefacts. The laboratory
82 component-derived sequences (LCDs), such as those of parvovirus-like hybrid virus

83 (14), xenotropic murine leukemia virus-related virus (15) and human endogenous
84 retrovirus H (16), are technically viral, but often carried by nucleic acid extraction
85 spin columns, biologicals or experimental performers, and are very easy to
86 contaminate samples, resulting in wrong conclusion in analyses (14-18). For example,
87 parvovirus was erroneously diagnosed in dairy cattle with fever and diarrhea, but
88 which was found to be a contaminant originating from Qiagen extraction columns
89 (17). The nonviral sequences are actual artefacts derived from vectors or other
90 organisms, but are misannotated as virus in reference databases, which are particularly
91 problematic for viromic studies, in that if a genomic fragment of nonviral organism
92 labeled as virus in a database, any samples from the organism might erroneously be
93 determined to contain the virus. These HGSs are often inserted into large DNA
94 viruses (LDVs) with most related to eukaryotic microorganisms or aquatic samples,
95 e.g., mimivirus, pandoravirus and phycodnavirus. In animal viromic studies, a large
96 number of sequences can be annotated to LDVs, even using a very stringent criterion.
97 But most of those sequences were finally proven to originate from hosts, bacteria or
98 other organisms. Some LDVs, such as herpesviruses, can integrate their genomic
99 fragments into host genomes (19, 20), and viral genomes may also be misassembled
100 to contain pieces of host sequences that are erroneously annotated as virus in database.
101 In both cases, those Trojan horse-like sequences will greatly increase false positives in
102 viromic analysis. These issues are very prone to draw a questionable even wrong
103 conclusion and pose a great obstacle in applications like EID diagnosis, taxonomic
104 classification and viromic studies, etc. (17, 18, 21-23), highlighting the need of a

105 high-quality reference database.

106 To address these issues, here we established a stringent scrutiny pipeline to
107 systematically analyze and identify HGSs concealed in the largest viral nt (GenBank)
108 and aa (UniProt) reference collections, resulting in a nonredundant and well-refined
109 eukaryotic viral reference database. To augment its function for diagnosis, we
110 incorporated risk and vaccine information into the database, which helps identify
111 possible exotic contamination and distinguish vaccine strains from field viruses. The
112 database is expected to provide a more accurate reference for EID diagnosis, new
113 virus identification, viromic analysis, and other virologic studies.

114 **Results and Discussion**

115 **Overview of heterogenous sequences**

116 The viral division (gbvrl) of GenBank is the largest resource of eukaryotic viral
117 sequences, and widely used in virologic research, even construction of specialized
118 sub-databases (5, 10), from which the Viral Genome Resources is derived to serve as
119 a set of high-quality curated viral reference genomes and their validated genomic
120 neighbors, but lacking the full-spectrum of viral diversity (24). As of March 04 2021,
121 gbvrl and the Viral Genome Resources have archived 3,316,373 and 288,226 nt
122 sequences, respectively. They overlapped 263,895 sequences, hence we added the
123 remaining 24,331 sequences of the Viral Genome Resources into gbvrl, which brought
124 to a preliminary data set (PDS) of 3,340,704 sequences. This data set was subjected to
125 a stringent heterogeneity scrutiny pipeline, which is composed of five parts, i.e.,

126 preliminary filtration, host genome scrutiny, vector sequence scrutiny, annotation
127 cross scrutiny, and cross check of viral metagenomes (Methods). Since we aimed to
128 build a refined reference database for diagnosis of viral diseases and discovery of
129 eukaryotic viruses, hence the first preliminary filtration step removed 91,549
130 sequences of viruses infecting bacteria, archaea, fungi or microorganisms, or shorter
131 than 200 bp. After four rounds of scrutiny, we further removed and trimmed 146 and
132 373 sequences, respectively, with detection of 766 HGSSs (some sequences have
133 multiple HGSSs).

134 These HGSSs came from 39 viral families and unclassified viruses at the family
135 level, with majority being *Herpesviridae* (59.9%), followed by *Flaviviridae* (14.0%)
136 (Fig. 1). They were either full-length sequences (14.5%) or just chimeric fragments
137 (85.5%) within viral genomes, and could be classified into four origins, i.e., host,
138 vector, cross-host, and cross-family (Fig. 1), which likely originated from hosts and
139 vectors, simultaneously appeared in viromic data of different hosts, and are
140 misclassified at the family level, respectively. Their submission could be traced back
141 to 1993 with 66.2% from 2015-2019 (Fig. 1). HTS-based viral metagenomics has
142 dramatically expanded the space of our known viral sequences (25), but with an
143 annoying side-effect, i.e., the chimeric viral assembly containing insertion of other
144 viral sequences even sequences of other organisms (26). Though a lot of HGSSs did not
145 provide the information of sequencing technology in GenBank, we did find a
146 substantial number of host HGSSs (n>51) submitted since 2015 are probably due to the
147 *de novo* assembly of Illumina reads. Majority (80.7%) of these HGSSs were \leq 600 bp,

148 with a few within the families of *Papillomaviridae* (n=3), *Paramyxoviridae* (n=1),
149 *Flaviviridae* (n=1) and *Herpesviridae* (n=3) exceeding 2,000 bp, even one HGS of
150 *Herpesviridae* reaching 6,605 bp, all of which were host-origin with the exception of
151 the *Paramyxoviridae* HGS that was related to vector (Fig. 1).

152 Regarding aa sequences, we retrieved all sequences under the Taxonomy of Viruses
153 in UniProtKB (version 2021_03). UniProtKB is mainly based on the translation of
154 genome sequence submitted to the International Nucleotide Sequences Database
155 Collaboration (INSDC) source databases, and also supplemented by genomes
156 sequenced and/or annotated by other academic groups, making it as the most
157 comprehensive set of protein sequences (9). Generally, UniProt aa sequences showed
158 less heterogeneity compared to GenBank nt sequences, in that translation itself is a
159 recognized validation means of viral genomes, and furthermore, heterogenous
160 insertion often occurs as a flanking sequence in the untranslated region at the terminus
161 of nt sequence. Finally, a total of 267 HGSs were detected with most being
162 counterparts in nt scrutiny, hence which will not be discussed in details herein after.

163 **Various origins of HGSs and their causation: natural vs artificial**

164 Among the four origins of HGSs, host sequences were predominant (86.9%), and
165 were detected in 24 viral families (unclassified viruses were not counted) (Fig. 1).
166 These host HGSs were related to humans and other animals covering non-human
167 primates, bovines, canines, avians, rodents, bats and arthropod, etc., and even bacteria.
168 HGSs within different families are prone to be dominated by certain heterogeneity

169 types, e.g., almost all HGSs within *Herpesviridae* (96.3%) and *Flaviviridae* (99.1%)
170 were associated with host genomes, while those *Togaviridae* and *Filoviridae* HGSs
171 were all vector sequences (Fig. 1).

172 Heterogeneity is widespread in nonviral databases, in which human sequences were
173 usually found to contaminate the genomic databases of bacteria, plants and fish,
174 therefore those HGSs were all considered contaminants (27, 28). Merchant *et al.*
175 found microbial sequences in cow genomes, but the final verification indicated that
176 such contamination was due to that multiple sequences of *Neisseria gonorrhoeae*
177 were actually derived from the cow or sheep genomes (29). Notably, a large-scale
178 search has identified contamination of more than 2,000,000 exogenous sequences in
179 the RefSeq, GenBank, and nr databases (13). However, we found that these viral
180 HGSs cannot be simply considered contaminants, and can be classified as natural,
181 intentionally artificial (ia) and unintentionally artificial (ua) ones based on their
182 causation.

183 **Natural heterogeneity.** Some HGSs are naturally acquired by viruses in the
184 process of proliferation, which are essential for certain viruses to gain new features.
185 Bovine viral diarrhea virus (BVDV) is a worldwide distributing pathogen and can
186 cause severe consequences to cattle and sheep (30). Almost all HGSs within the
187 family *Flaviviridae* are inserts of bovine hybrid ribosomal S27a and ubiquitin
188 sequences into the BVDV genomes (Fig. 2A). The in-frame insertion of the host
189 sequence into NS3 gene is essential for the virus to gain cytopathogenicity in cell
190 culture (31). Hepatitis E virus (HEV) is hardly cultured using cell systems, the

191 integration of a short piece of human S17 ribosomal protein fragment into the
192 hypervariable region of HEV genome (accession number: JQ679013) enables some
193 variants to grow in HepG2/C3A cells (32).

194 Besides host sequences, genomic fragments of other viral families can also
195 integrate into some viral genomes, particularly during coinfection of multiple viruses.
196 For some LDVs, viral DNA replicates within the cellular nucleus or cytoplasm,
197 providing an opportunity for viral genome to be integrated by retrovirus. Thus avian
198 retrovirus was shown to be integrated into the genome of Marek's disease virus, an
199 avian herpesvirus (33). We also detected reticuloendotheliosis viral sequences of
200 various length, even near-full-length, integrated into genomes of some fowpox viruses
201 (Fig. 2B), which likely enhanced the pathogenic trait of the virus (34, 35).
202 Inter-family recombination can also occur in RNA viruses. A betacoronavirus detected
203 in bats contained a unique gene integrated into the 3'-end of its genome that most
204 likely originated from the p10 gene of a bat orthoreovirus, a gene that can induce the
205 formation of cell syncytia (36).

206 **Intentionally artificial heterogeneity.** Some viral genomes are intentionally
207 engineered to contain HGSs that might derive from nonviral artefacts or viruses of
208 different families, by which these engineered viruses were used to study viral
209 infection, deliver heterogenous proteins, even combat viral infectious diseases. We
210 found that a large part of vector- (87.2%) and a few cross-family- (n=3), but no host
211 HGSs are intentionally artificial. Among ia-vector HGSs, green fluorescent proteins
212 are very common (41.5%) (Fig. 3A), and elements like neomycin phosphotransferase,

213 mCherry and firefly luciferase can also be observed. The three ia-cross-family HGSS
214 are all associated with avian paramyxovirus within the family *Paramyxoviridae*.
215 These recombinants were generated using reverse genetics to serve as vaccine vector
216 expressing the hemagglutinin of highly pathogenic avian influenza virus to induce
217 protective immunity against influenza virus in chickens (Fig. 3B) (37).

218 **Unintentionally artificial heterogeneity.** The ua-HGSSs are technically true errors,
219 but are unintentionally annotated as viral components. They are widely distributed in
220 host-, vector-, cross-host- and cross-family-HGSSs. The ua-host HGSSs can be
221 full-length sequences, e.g., a 399 bp-long human mRNA was erroneously defined
222 hepatitis C virus (Fig. 4A). *de novo* assembly of HTS reads occasionally results in
223 chimeric ua-host HGSSs often at the termini of sequence, e.g., a 1,636 bp-long human
224 sorting nexin 10 fragment was misassembled into the 3' terminus of the segment M of
225 a Crimean-Congo hemorrhagic fever orthornairovirus (CCHFV) (Fig. 4B). As to
226 ua-vector HGSSs, we found two short stealth virus sequences that are actually vector
227 backbones. Through cross check of viral metagenomes from different hosts, we found
228 5 commonly existing HGSSs, which shared >99% nt identities with the sequences in
229 viromic data of different host species. Viruses harbored by different host species
230 usually show significant genetic distances. If a virus is found in hosts of different
231 highly-hierarchic taxon, it should be noted whether it results from cross-species
232 transmission or just contamination. Further verification showed that the five
233 references are all non-viral, but genomic fragments of bacteria. For example, a blue
234 tongue virus reference (AY397620) frequently found in our viral metagenomic

235 analyses is a *Mycoplasma bovis* chromosomal sequence.

236 Cross-family misclassification can occur between eukaryotic viral families, even
237 between eukaryotic and prokaryotic viral families. Three sequences wrapping
238 circovirus-featured *rep* and *cap* genes should be classified into the family
239 *Circoviridae*, but are defined dependoparvoviruses within the family *Parvoviridae*. A
240 558 bp-long sapovirus sequence (AB212270) defined within the family *Caliciviridae*
241 actually originated from bacterophage since it has almost all high-quality nt and aa
242 blast hits against *Salmonella* phages. If a viral sequence is highly novel with very low
243 identity to known references, it would be misclassified at the family level. A 4,047
244 bp-long sequence recovered from a bird metagenome was defined *Parvoviridae* sp.,
245 but which had very few blastn hits in nt database and several blastx hits against major
246 capsid proteins of microviruses. Profile comparison showed that, though with very
247 low identity and similarity, one of its encoding products perfectly matched to the
248 capsid protein of microvirus, a viral hallmark gene, with probability of 100%.
249 Accordingly, it should be classified as a bacteriophage than a parvovirus.

250 **Augmentation by adding warning sequences**

251 Though these natural and ia-HGSs endow viruses with some necessary functions,
252 and are not so-called contaminants. They do result in heterogeneity to viral genomes,
253 along with ua-HGSs, which are substantially problematic in virus identification,
254 viromic annotation and taxonomic assignment. To establish a neat reference database,
255 we deleted the HGSs to minimize the heterogeneity of existing reference database.

256 However, the resulted database is still redundant with high level of identical
257 sequences. Thus, a de-redundance at 99% identity and 90% coverage was conducted,
258 which downsized the nt and aa databases for ~6 and ~3 times, respectively.

259 Augmentation was implemented to the database with addition of tagged LCD
260 (n=155), viral functional cassette (n=79) and vaccine (n=40) sequences to the nt
261 reference database. The LCD sequences are technically viral, but widely carried by
262 laboratory components, prone to result in false positives (14, 18). The viral functional
263 cassettes of vectors are adopted from viruses. The inclusion of them in the reference
264 database can raise a warning that if a query shows extremely high similarity with
265 them, it should be concerned whether the sample is contaminated by exogenous false
266 positives (18). Besides, attenuated viral strains are widely used in human and animal
267 vaccinations to combat infectious diseases. It is important to distinguish them from
268 field strains in clinic diagnosis. Vaccine sequences added here cover 15 attenuated
269 viruses commonly used in humans and animals against mumps, Japanese encephalitis,
270 equine infectious anemia and porcine epidemic diarrhea, etc.. By such augmentation,
271 the database was finalized as eukaryotic viral reference database (EVRD), the nt and
272 aa sequences were respectively archived in EVRD-nt and EVRD-aa branches.
273 EVRD-nt has 558,673 sequences with average length of 2,943 bp covering 117
274 families, while EVRD-aa catalogs 1,256,089 sequences from 115 families with
275 average length of 371 aa. EVRD-nt additionally records viroid sequences within the
276 families *Avsunviroidae* and *Pospiviroidae*.

277 **EVRD improves the accuracy and efficiency of viromic analysis**

278 The performance of EVRD was evaluated in viromic analysis by comparison of its
279 ability to avoid false positives (accuracy), possibility to miss true viral contigs
280 (coverage), and time to complete the analysis (efficiency) with Genbank (for nt) and
281 UniProt (for aa) viral branches, and RVDB (v21.0) using nine viral metagenomic data
282 of pigs, bats and humans. The results at the read level revealed that 13,417,025 reads
283 in the nine datasets were annotated to be viruses by at least one of the databases,
284 covering 47 families with 15 exclusively invisible to EVRD-nt in some datasets (Fig.
285 5). Majority (88.1%) of these virus-like reads (VLRs) were co-annotated by them,
286 suggesting a high consistency using the three databases (Figs. 5 and 6A). Among
287 those inconsistently annotated VLRs, 60.9% were exclusively annotated by RVDB-nt
288 (subset R in Fig. 6A), followed by 38.2% being co-annotated by RVDB-nt and
289 GenBank (G \cap R in Fig. 6A).

290 The criterion used to determine whether a sequence is viral has a substantial impact
291 on the annotation of these inconsistent reads. Some of these HTS datasets were
292 generated with an insert size of 125 bp, so the requirement of alignment length \geq 120
293 is a little stringent to them and has excluded many true positives. If we loosened the
294 length cutoff to 100, such consistency was variably improved (Fig. 6B). Almost all of
295 VLRs in subsets E and E \cap R were annotated by the other database(s) using a loose
296 length cutoff (Fig. 6B). But there were still lots of reads unable to be annotated by
297 certain database(s) even using a loose length cutoff (illustrated using Ex in Fig. 6B).
298 After improvement, 5,230 VLRs in E \cap G remained unable to be annotated by
299 RVDB-nt. All of these reads were related to Osugoroshi viruses within the family

300 *Partitiviridae* that were recently released to the public by GenBank and have yet been
301 synchronized in RVRD-nt v21.0 (Fig. 6C). The Ex VLRs in subsets G and $G \cap R$, and
302 their *de novo* assemblies, were all annotated to HGSs (Fig. 6D), i.e., they were false
303 positives. The overwhelming majority (95.5%) of Ex VLRs in subsets R were related
304 to sequences that are unrelated to eukaryotic viral pathogens and exclusively recruited
305 by RVDB-nt, i.e., viral metagenomes, uncultured viruses, environmental samples,
306 host-derived endogenous viral elements and bacteriophage (Fig. 6E). The remaining
307 4.5% were related to microorganism-infecting LDVs, such as pandora viruses and
308 pithoviruses (Fig. 6E).

309 *de novo* assemblies (≥ 1000 bp) were also annotated using these databases.
310 Compared to the results revealed using reads, 22 viral families were lost including
311 *Filoviridae* that has proved to be present in samples (38). The annotation using
312 EVRD-nt excluded the false positives of *Caliciviridae*, *Reoviridae* and *Herpesviridae*
313 in certain datasets, indicating an improvement of accuracy at the contig level. Though
314 the annotation using aa references of the three databases all showed higher specificity
315 at the read and contig levels, EVRD-aa improved more significantly with exclusion of
316 the false positives from *Reoviridae*, *Parvoviridae* and *Mitoviridae*, etc. These results
317 indicated that the de-heterogeneity of our EVRD does not sacrifice the detection
318 spectrum of eukaryotic viruses, rather significantly improves the specificity and
319 accuracy of viromic annotation via reduction of erroneous annotation.

320 We did not find any viromic annotations tagged with ‘LCD’ or ‘Vector’, indicating
321 no contamination of laboratory component- and vector-derived sequences in these

322 datasets. But of special note is that, besides 622 reads in dataset AH annotated to
323 porcine reproductive and respiratory syndrome virus (PRRSV) field strains, there
324 were another 1,193 reads annotated to PRRSV vaccine strain in the dataset (Fig. 6F),
325 indicating co-circulation of field viruses and vaccine strains in the farm, which should
326 be especially concerning, since new viruses could be generated through
327 recombination between field viruses and vaccine strains, resulting in vaccine failure
328 (16). Viromic annotation is quite time- and computing resource-consuming. A
329 small-scale reference database can shorten the analytic time and minimize the
330 computing resource. With an entry-level platform, analyses of reads or contigs at nt or
331 aa levels using EVRD were 1.8-3.3 and 1.9-3.2 times faster than using
332 GenBank/UniProt and RVDB, respectively, indicating that EVRD is more efficient.

333 EVRD can be typically applied to, but not limited to, the virologic scenarios below.
334 Accurate determination of causative agents is a priority in clinical diagnosis of viral
335 diseases. However, the heterogeneity of reference database often produces confusing
336 even wrong conclusion. Our previous viromic analyses often found sequences of
337 CCHFV, HEV and BVDV, etc., but which were finally verified to be false positives.
338 This phenomenon also occurred widely in other viromic studies (17, 18, 39, 40). For
339 example, African swine fever virus was surprisingly found in a bat virome (40), which
340 was highly unconvincing and most likely due to misannotation of host sequence, since
341 African swine fever virus is particularly host-specific and only infects swine (41).
342 EVRD has deleted the disturbing HGSs in reference sequences, thus reduces such
343 confusion by preventing misannotation at source. EVRD can also improve the

344 taxonomic classification of viral sequences in assessment of virus diversity (26). In
345 such analysis, viral contigs need to be clustered with reference sequences, but the
346 HGSs, especially the cross-family misclassified ones, will disturb the boundary of
347 virus clusters, even result in incorrect taxonomic classification. In addition, multiple
348 sequence alignment (MSA) is prone to be corrupted by HGSs, the refined EVRD
349 sequences can help build high-quality MSAs that are basis of profiles of clustered
350 sequences (not included in this study), thus favoring the exploration of remote viruses.

351 Critical is to correctly annotate sequences in viral disease diagnosis and viromic
352 analysis. Besides utilizing a high-quality reference database, other measures can be
353 taken into account. First, reasonable bioinformatic pipelines should be implemented
354 for different purposes. Annotation using reads provides richer information than using
355 contigs, especially for ultra-low abundant viruses (38, 42), hence could be considered
356 in viral disease diagnosis. But sequence completeness is a priority in viral ecology,
357 thus assembly is preferentially performed before annotation (26). Second, criterion to
358 determine a viral sequence has non-ignorable impact on annotation. As to reads,
359 criterion is mainly based on evalue, but the alignment length is also an important
360 factor to help increase the confidence level of annotation. Besides evalue and length,
361 the requirement of a minimum of gene number has been widely considered in contig
362 annotation (26). Third, the quality of assemblies should be seriously considered in
363 contig annotation. There are many means to improve assembly quality, such as
364 choosing a suitable software (43), employing a rational sample treatment protocol
365 (44), reducing the bias induced by random amplification (45). A classification of host

366 and other microorganism reads prior to *de novo* assembly could help reduce chimeric
367 contigs. Fourth, of special note is the annotation of remote viruses. Due to lack of
368 enough known references, it is often difficult to precisely annotate these contigs based
369 on similarity search. A combination of multiple advanced annotations, such as
370 profile-based classification and deep learning-based recognition, is permissive and
371 necessary (46-48). Last but not least, a final check provides an additional guarantee
372 for high-quality annotation (49). Host contamination should be eliminated as much as
373 possible. Prokaryotic contamination can be determined using CheckV, but a different
374 strategy is needed to deal with eukaryotic contamination (49, 50). Contigs with
375 extraordinary genomic structure and/or organization, e.g., excessive length and long
376 noncoding region, might be resultants of misassembly or insertion of exotic sequences,
377 and should be further verified. In conclusion, in order to control contamination at
378 source, sequences with their annotations should be carefully inspected by submitter
379 before submitting to public databases.

380 When using EVRD, users need to take note of several aspects. We excluded LDVs
381 infecting eukaryotic microorganisms, due to their extraordinarily large and
382 complicated genomes and lacking evidence to cause diseases in vertebrates (51-53).
383 Though we have deleted hundreds of HGSs of vertebrate LDVs from families like
384 *Herpesviridae*, *Poxviridae*, there are still some ambiguous sequences that can be
385 treated as host HGSs if using loose criteria. Those viruses, along with retroviruses,
386 can exchange genomic fragments with hosts, and have undergone long-term
387 co-evolution with host, which would smooth the distinctive trait of those sequences

388 between viruses and hosts (19, 20, 54). Thus, annotations to these viruses using
389 EVRD should still be verified with caution. Additionally, these tagged warning
390 sequences in EVRD are very useful, but they are just partial and only represent the
391 sequences we have searched so far. We will keep the database updated with new
392 advances in this regard.

393 **Conclusion**

394 A high-quality virus reference database is critical to accurate analysis of viral
395 sequences. In this study an improved reference database of eukaryotic viruses has
396 been built from existing public GenBank/UniProt databases based on a stringent
397 scrutiny pipeline to remove hundreds of confusing HGSSs. It showed better accuracy
398 and efficiency in annotation of eukaryotic viromes compared to its parent databases
399 and the extensive RVDB. With functional augmentation using tagged risk and vaccine
400 viruses, EVRD significantly facilitates the genomic analyses in applications like viral
401 disease diagnosis, taxonomic classification, and new virus detection and
402 identification.

403 **Methods**

404 **Heterogeneity scrutiny pipeline for nucleotide sequences**

405 I) **Preliminary filtration.** We first generated the taxonomic lineages of all sequences,
406 then removed those lineages infecting bacteria, archaea, fungi and eukaryotic
407 microorganisms using the relationship of virus and host recorded in ViralZone
408 database (55). In addition, there are a large number of sequences that cannot be

409 assigned to a complete lineage, we searched their definition using keywords and
410 removed the sequences related to prokaryotic and environmental viruses and
411 metagenomes, such as bacteriophage/phage, environment, uncultured and ameba.
412 Division gbvrl also deposits numerous sequences ≤ 200 bp, which are highly
413 similar to these longer sequences, and contribute a little to diagnosis and virus
414 identification, hence were also removed.

415 **II) Host genome scrutiny.** In this part, fragments of host genomes in the remaining
416 sequences of PDS were scrutinized. Genomic assemblies of human (n=1), pig
417 (n=1), bats (n=7), rodents (n=2), arthropods (n=11), cattle (n=1), dog (n=1), cat
418 (n=1), sheep (n=1), chicken (n=1) and mallard (n=1) were used to BLASTn search
419 against these sequences with a maximum of 1000 subjects to show alignments
420 (length ≥ 150 and identity $\geq 85\%$). Retroviruses can infect almost all vertebrates,
421 resulting in thousands of loci of retroviral sequences in vertebrate genomes (54).
422 Here we did not challenge the known ambiguity of retroviruses, hence hits to
423 retroviruses were not considered. The aligned sequences of subject were extracted
424 and subjected to blastn search against nt database to further validate their identities.
425 The top 100 hits of each sequences were kept and, within which, if $\geq 80\%$ hits were
426 annotated to nonviral, the aligned sequence was considered heterogenous. The
427 original sequence was removed from PDS if its heterogenous part comprises $\geq 80\%$
428 of its length, or trimmed by deleting the heterogenous parts, such threshold was
429 also applied to the following treatments. The rest of PDS was subjected to a next
430 round of scrutiny until no host genomic fragments were found.

431 **III) Vector sequence scrutiny.** To detect HGSs derived from backbones or functional
432 cassettes of vectors, UniVec database and sequences \geq 1,000 bp under the GenBank
433 taxonomy of vectors (uid: 29278) were downloaded. As vectors have many
434 functional cassettes originated from viruses, such as SV40 and CMV promoters,
435 retroviral *gag* and *pol* elements, these vector-originating HGSs in PDS were
436 carefully detected and examined using the following procedure to prevent any
437 erroneous deletions of genuine viral sequences. First, we generated a non-viral
438 protein core (NVPC) that consists of nonviral expression elements (n=13,287) born
439 in vectors. To achieve that, those protein sequences \geq 100 aa encoded by vectors
440 were de-replicated using cd-hit v4.8.1 with 99% similarity at 90% coverage for the
441 shorter sequences (56). The resulting representatives (n=17,236) were blastp
442 searched against the nr database using Diamond with maximum number of 100
443 target sequences to report alignments (57). The representatives classified as viruses
444 using a majority-rules approach were discarded, while the rest (n=15,220) were
445 further queried against the UniProt viruses branch. These unaligned sequences
446 (n=12,603) were technically nonviral and classified into NVPC, while these
447 aligned (n=2,617) were manually inspected by online blastx search against nr
448 database with these (n=684) annotated to nonviral products being classified into
449 NVPC. Sequences in PDS were blastx searched against NVPC using Diamond
450 with these showing \geq 99% similarity over alignment \geq 60 aa with subjects being
451 pruned. In addition, UniVec was used to identify adapters, linkers, and primers
452 often used to clone sequences. The remaining sequences in PDS were further

453 scrutinized using procedure introduced in part II with the same criteria. Briefly,
454 these vector sequences were used as query to search possible subjects in PDS using
455 blastn. Hits in PDS were further validated by blastn search against nt database.
456 After removal of those vector-originated sequences, the rest of PDS were examined
457 by another round of scrutiny until no vector sequences exist.

458 **IV) Annotation cross scrutiny.** Erroneously taxonomic annotation of viral sequences
459 was detected by all-against-all blastn search with a maximum of 1000 subjects to
460 show alignments. We found that there are a large number of sequences with correct
461 taxonomic annotation showing intra-family cross-species/genus blastn hits, such as
462 *Betacoronavirus/Gammacoronavirus* within the family *Coronaviridae*,
463 *Tetraparvovirus/Protoparvovirus* of the family *Parvoviridae*, and
464 *Circovirus/Cyclovirus* within the family *Circoviridae*, which were likely ascribed
465 to high similarity between species/genus. Hence, we inspected annotation at the
466 family level. Here we defined that a blastn hit is significant if its e-value is $\leq 1e-50$
467 and length ≥ 500 . If the proportion of alignments that were generated by a query
468 against subjects of different family to all alignments of the query is $\geq 80\%$, the
469 query was considered being possibly misclassified, which was further subjected to
470 genomic organization identification, in which if the genomic organization of the
471 query is not of typical feature its defined taxonomic lineage should have, the query
472 was truly misclassified and removed from PDS. During treatment, we noted that
473 some sequences had a few alignments (usually ≤ 10) that show $\leq 80\%$ similarities
474 with subjects of different family, we kept their original annotations since lack of

475 enough references in GenBank to determine their true taxonomic lineages.

476 **V) Cross check of viral metagenomes.** Previous study showed that some
477 contaminant viral sequences are highly prevalent in cross-host HTS-based viromic
478 data, which might be linked to biological or synthetic products (18). To examine
479 whether cross-host sequences exist in database, the remaining sequences in PDS
480 were subjected to cross check of viral metagenomes. A total of 15 viromic raw data
481 sets covering human, bat, tick, rodent, bovine, pig and avian were downloaded
482 from SRA and respectively *de novo* assembled. Contigs \geq 1000 bp were subjected
483 to blastn search against PDS with a maximum of 1000 subjects to show alignments.
484 If a subject was matched by contigs from viromic data sets of \geq two different hosts
485 with alignment \geq 150 bp and identity \geq 80%, it was classified as suspicious
486 sequence and further validated by blastn search against nt database. If a suspicious
487 sequence was annotated to non-viral species by blastn search against nt database, it
488 was considered as a truly exogenous contaminating sequence and removed from
489 PDS. However, if a suspicious sequence was still annotated to virus and shared 99%
490 nt identities with viromic contigs of \geq two different hosts, it was considered as a
491 truly viral sequence but probably originated from laboratory-component derived
492 viral sequence contamination, hence was retained in PDS but was tagged as LCD.
493 The remaining suspicious sequences were passed and kept in PDS.

494 **Heterogeneity scrutiny pipeline for viral protein sequences**

495 The protein sequences retrieved from UniProt virus division were subjected to
496 scrutiny as described above with minor modification. We first checked their

497 representativeness. In case there are any coding regions not annotated by the original
498 submitters, all proteins of PDS nt sequences prior to filtration were *de novo* predicted
499 using prodigal v2.6.3 with meta mode. Proteins \geq 50 aa were blastp searched against
500 UniProt viral division (evalue \leq 1e-10 and pident \geq 90), and results revealed that
501 UniProt viral division has high representativeness with 99.6% consistency to the
502 prediction of GenBank viruses. In the step of preliminary filtration, we removed those
503 non-eukaryotic viral sequences and those \leq 30 aa. The remaining sequences were used
504 to blastp search against the genomic protein sequences of the hosts to detect any
505 potential host contaminants (length \geq 100 and identity \geq 90%), these host
506 contaminants if detected were further subjected to blastp search against nr database to
507 finally identify whether they are host protein sequences with the same criterion used
508 in nt identification. The scrutiny was iteratively performed until no host contaminants
509 were found. In the vector sequence scrutiny, a blastp search of PDS against NVPC
510 was conducted to find any vector contaminants. The queries with identity \geq 90% over
511 alignment \geq 100 with NVPC were further validated and treated as described in host
512 protein scrutiny. The annotation cross scrutiny of viral protein sequences was nearly
513 the same as that in nt scrutiny but only that the all-against-all blastp hits were
514 considered significant if their e-values were \leq 1e-50 and length \geq 100. In cross check
515 of the viral metagenomes, contigs \geq 1000 bp were subjected to blastx search against
516 viral protein sequences. The viral protein sequences were considered suspicious if
517 they matched to contigs of viral metagenomes from \geq two host species, and subjected
518 to further validated by blastp search against nr database as described in cross check of

519 the viral metagenomes.

520 **EVRD finalization**

521 After above scrutiny, the sequences in PDS are still very redundant, hence a
522 de-redundance procedure is applied to downsize PDS. Clustering of viral nt and aa
523 sequences was performed using MMseq2 (58) with sequence similarity threshold of
524 0.99 and 90% coverage of the short sequence. Viral sequences if identified as LCD
525 with real virus origin (14, 18) are tagged by ‘LCD’ as risk sequences before adding
526 into PDS. To better distinguish viral functional cassettes from true virus sequences,
527 the sequences corresponding to the regulatory classes of promoter, terminator and
528 enhancer, and/or the notes containing the word of ‘virus’ were extracted from vectors,
529 and subjected to blastn search against the non-redundant PDS, the sequences verified
530 to be viral were de-replicated and also added to PDS with the tag ‘Vector’. In addition,
531 we collected vaccine strains commonly used in humans and animals such as pigs,
532 chickens and dogs, via searching in publications or by personal communication.
533 These vaccine nt sequences were also added in PDS with the tag ‘Vaccine’.

534 **Performance evaluation of EVRD**

535 Nine viral metagenomic data sets were first subjected to host genome removal
536 using Bowtie2 (v2.4.1) with sensitive mode, and then taxonomically classified using
537 Kraken2 (v2.0.9-beta) to remove bacterial, archaeal and fungal reads. The unassigned
538 reads were firstly blastn (evalue \leq 10e-5 and length \geq 120) and blastx (evalue \leq 10e-5
539 and length \geq 40) searched against these databases. Then they were *de novo* assembled

540 using megahit (v1.2.9). Contigs \geq 1000 bp were retained for blastn (v2.10.0) and
541 diamond blastx (v0.9.35) search against nt and aa reference databases, respectively.
542 The blastn hit of a contig to a subject with one alignment of evalue \leq 10e-10 and
543 length \geq 450 or \geq two alignments of evalue \leq 10e-5 and length \geq 150 was considered
544 positive, and the blastx hit to a subject was recognized positive if it had one alignment
545 of evalue \leq 10e-10 and length \geq 150 or \geq two alignments of evalue \leq 10e-5 and length
546 \geq 50. The positive reads and contigs were further verified by blastn/x search against
547 nt/nr databases (16). All blast searches were performed using 12 x86_64 CPUs of an
548 Inter® Xeon® Gold 2.660 GHz processor. To detect waring sequences tagged by
549 “LCD”, “Vector” and “Vaccine” in the viromic annotation using EVRD, we defined a
550 rigorous cutoff, i.e., a sequence with positive blastn hit to a tagged subject with
551 identity \geq 99% and coverage of the query \geq 90% was considered risk and vaccine
552 sequence.

553 **Availability of data and materials**

554 All data used here were downloaded from relevant databases. The key intermediate
555 data (NVPC) and essential codes are available from <http://github.com/BH-Lab/EVRD>.
556 EVRD reported here (the first release: 2021.03) is based on the viral branches
557 (version 2021.03) of Genbank and UniProt, and is scheduled to annual update, which
558 is freely accessible at <http://cvri.caas.cn/kxyj/yjfx/bfdb/EVRD.index.htm>.

559 **Competing interests**

560 The authors declare that they have no conflict of interest

561 **References**

562 1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. 2008.
563 Global trends in emerging infectious diseases. *Nature* 451:990-993.

564 2. Wilson MR, Sample HA, Zorn KC, Arevalo S, Yu G, Neuhaus J, Federman S, Stryke
565 D, Briggs B, Langelier C, Berger A, Douglas V, Josephson SA, Chow FC, Fulton BD,
566 DeRisi JL, Gelfand JM, Naccache SN, Bender J, Dien Bard J, Murkey J, Carlson M,
567 Vespa PM, Vijayan T, Allyn PR, Campeau S, Humphries RM, Klausner JD, Ganzon
568 CD, Memar F, Ocampo NA, Zimmermann LL, Cohen SH, Polage CR, DeBiasi RL,
569 Haller B, Dallas R, Maron G, Hayden R, Messacar K, Dominguez SR, Miller S, Chiu
570 CY. 2019. Clinical metagenomic sequencing for diagnosis of meningitis and
571 encephalitis. *New Engl J Med* 380:2327-2340.

572 3. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang
573 C-L, Chen H-D, Chen J, Luo Y, Guo H, Jiang R-D, Liu M-Q, Chen Y, Shen X-R,
574 Wang X, Zheng X-S, Zhao K, Chen Q-J, Deng F, Liu L-L, Yan B, Zhan F-X, Wang
575 Y-Y, Xiao G-F, Shi Z-L. 2020. A pneumonia outbreak associated with a new
576 coronavirus of probable bat origin. *Nature* 579:270-273.

577 4. Hayer J, Jadeau F, Deléage G, Kay A, Zoulim F, Combet C. 2012. HBVdb: a
578 knowledge database for Hepatitis B Virus. *Nucleic Acids Res* 41:D566-D570.

579 5. Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, Liu M, Kumar S,
580 Zaremba S, Gu Z, Zhou L, Larson CN, Dietrich J, Klem EB, Scheuermann RH. 2011.
581 ViPR: an open bioinformatics database and analysis resource for virology research.
582 *Nucleic Acids Res* 40:D593-D598.

583 6. Chen L, Liu B, Yang J, Jin Q. 2014. DBatVir: the database of bat-associated viruses.
584 Database 2014:bau021.

585 7. Chen L, Liu B, Wu Z, Jin Q, Yang J. 2017. DRodVir: A resource for exploring the
586 virome diversity in rodents. *J Genet Genomics* 44:259-264.

587 8. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, Sayers
588 EW. 2017. GenBank. *Nucleic Acids Res* 46:D41-D47.

589 9. The UniProt C. 2021. UniProt: the universal protein knowledgebase in 2021. *Nucleic
590 Acids Res* 49:D480-D489.

591 10. Goodacre N, Aljanahi A, Nandakumar S, Mikailov M, Khan AS. 2018. A reference
592 viral database (RVDB) to enhance bioinformatics analysis of high-throughput
593 sequencing for novel virus detection. *mSphere* 3:e00069-18.

594 11. Bigot T, Temmam S, Pérot P, Eloit M. 2020. RVDB-prot, a reference viral protein
595 database and its HMM profile. *F1000Res* 8:530.

596 12. Roux S, Páez-Espino D, Chen IMA, Palaniappan K, Ratner A, Chu K, Reddy TBK,
597 Nayfach S, Schulz F, Call L, Neches RY, Woyke T, Ivanova NN, Eloe-Fadrosh EA,
598 Kyrpides NC. 2021. IMG/VR v3: an integrated ecological and evolutionary
599 framework for interrogating genomes of uncultivated viruses. *Nucleic Acids Res*
600 49:D764-D775.

601 13. Steinegger M, Salzberg SL. 2020. Terminating contamination: large-scale search
602 identifies more than 2,000,000 contaminated entries in GenBank. *Genome Biol*
603 21:115.

604 14. Naccache SN, Greninger AL, Lee D, Coffey LL, Phan T, Rein-Weston A, Aronsohn A,

605 Hackett J, Delwart EL, Chiu CY. 2013. The perils of pathogen discovery: origin of a
606 novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns. *J*
607 *Virol* 87:11966.

608 15. Knox K, Carrigan D, Simmons G, Teque F, Zhou Y, Hackett J, Qiu X, Luk K,
609 Schochetman G, Knox A, Kogelnik A, Levy J. 2011. No evidence of murine-like
610 gammaretroviruses in CFS patients previously identified as XMRV-infected. *Science*
611 333:94-97.

612 16. He B, Gong W, Yan X, Zhao Z, Yang Le, Tan Z, Xu L, Zhu A, Zhang J, Rao J, Yu X,
613 Jiang J, Lu Z, Zhang Y, Wu J, Li Y, Shi Y, Jiang Q, Chen X, Tu C. 2021. Viral
614 metagenome-based precision surveillance of pig population at large scale reveals
615 viromic signatures of sample types and influence of farming management on pig
616 virome. *mSystems* 6:e00420-21.

617 17. Rosseel T, Pardon B, De Clercq K, Ozhelvaci O, Van Borm S. 2014. False-positive
618 results in metagenomic virus discovery: a strong case for follow-up diagnosis.
619 *Transbound Emerg Dis* 61:293-299.

620 18. Asplund M, Kjartansdóttir KR, Mollerup S, Vinner L, Fridholm H, Herrera JAR,
621 Friis-Nielsen J, Hansen TA, Jensen RH, Nielsen IB, Richter SR, Rey-Iglesia A,
622 Matey-Hernandez ML, Alquezar-Planas DE, Olsen PVS, Sicheritz-Pontén T,
623 Willerslev E, Lund O, Brunak S, Mourier T, Nielsen LP, Izarzugaza JMG, Hansen AJ.
624 2019. Contaminating viral sequences in high-throughput sequencing viromics: a
625 linkage study of 700 sequencing libraries. *Clin Microbiol Infec* 25:1277-1285.

626 19. Zapatka M, Borozan I, Brewer DS, Iskar M, Grundhoff A, Alawi M, Desai N,

627 Sültmann H, Moch H, Alawi M, Cooper CS, Eils R, Ferretti V, Lichter P, Borozan I,
628 Brewer DS, Cooper CS, Desai N, Eils R, Ferretti V, Grundhoff A, Iskar M,
629 Kleinheinz K, Lichter P, Nakagawa H, Ojesina AI, Pedamallu CS, Schlesner M, Su X,
630 Zapatka M, Pathogens P, Consortium P. 2020. The landscape of viral associations in
631 human cancers. *Nat Genet* 52:320-330.
632 20. Morissette G, Flamand L. 2010. Herpesviruses and chromosomal integration. *J Virol*
633 84:12100-12109.
634 21. Strong MJ, Xu G, Morici L, Splinter Bon-Durant S, Baddoo M, Lin Z, Fewell C,
635 Taylor CM, Flemington EK. 2014. Microbial contamination in next generation
636 sequencing: implications for sequence-based analysis of clinical samples. *PLOS*
637 *Pathog* 10:e1004437.
638 22. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P,
639 Parkhill J, Loman NJ, Walker AW. 2014. Reagent and laboratory contamination can
640 critically impact sequence-based microbiome analyses. *BMC Biol* 12:87.
641 23. Cressey D. 2014. Contamination threatens microbiome science. *Nature*
642 doi:10.1038/nature.2014.16327.
643 24. Brister JR, Ako-adjei D, Bao Y, Blinkova O. 2015. NCBI viral genomes resource.
644 *Nucleic Acids Res* 43:D571-D577.
645 25. Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR, Carstens EB, Davison AJ,
646 Delwart E, Gorbatenya AE, Harrach B, Hull R, King AMQ, Koonin EV, Krupovic M,
647 Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S,
648 Sullivan MB, Suttle CA, Tesh RB, van der Vlugt RA, Varsani A, Zerbini FM. 2017.

649 Virus taxonomy in the age of metagenomics. *Nat Rev Microbiol* 15:161-168.

650 26. Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M,

651 Kuhn JH, Lavigne R, Brister JR, Varsani A, Amid C, Aziz RK, Bordenstein SR, Bork

652 P, Breitbart M, Cochrane GR, Daly RA, Desnues C, Duhaime MB, Emerson JB,

653 Enault F, Fuhrman JA, Hingamp P, Hugenholtz P, Hurwitz BL, Ivanova NN, Labonté

654 JM, Lee K-B, Malmstrom RR, Martinez-Garcia M, Mizrachi IK, Ogata H,

655 Páez-Espino D, Petit M-A, Putonti C, Rattei T, Reyes A, Rodriguez-Valera F, Rosario

656 K, Schriml L, Schulz F, Steward GF, Sullivan MB, Sunagawa S, Suttle CA,

657 Temperton B, Tringe SG, Thurber RV, Webster NS, Whiteson KL, et al. 2019. Minimum Information about an Uncultivated Virus Genome (MIUViG). *Nat Biotechnol* 37:29-37.

660 27. Longo MS, O'Neill MJ, O'Neill RJ. 2011. Abundant human DNA contamination

661 identified in non-primate genome databases. *PLOS ONE* 6:e16410.

662 28. Breitwieser FP, Pertea M, Zimin AV, Salzberg SL. 2019. Human contamination in

663 bacterial genomes has created thousands of spurious proteins. *Genome Res*

664 29. Merchant S, Wood DE, Salzberg SL. 2014. Unexpected cross-species contamination

665 in genome sequencing projects. *PeerJ* 2:e675.

666 30. Lanyon SR, Hill FI, Reichel MP, Brownlie J. 2014. Bovine viral diarrhoea:

667 pathogenesis and diagnosis. *Vet J* 199:201-209.

668 31. Becher P, Orlich M, Thiel H-J. 1998. Ribosomal S27a coding sequences upstream of

669 ubiquitin coding sequences in the genome of a pestivirus. *J Virol* 72:8697-8704.

670

671 32. Shukla P, Nguyen HT, Faulk K, Mather K, Torian U, Engle RE, Emerson SU. 2012.
672 Adaptation of a genotype 3 hepatitis E virus to efficient growth in cell culture
673 depends on an inserted human gene segment acquired by recombination. *J Virol*
674 86:5697-5707.

675 33. Isfort RJ, Qian Z, Jones D, Silva RF, Witter R, Kung H-J. 1994. Integration of
676 multiple chicken retroviruses into multiple chicken herpesviruses: herpesviral gD as a
677 common target of integration. *Virology* 203:125-133.

678 34. Hertig C, Coupar BEH, Gould AR, Boyle DB. 1997. Field and vaccine strains of
679 fowlpox virus carry integrated sequences from the avian retrovirus,
680 reticuloendotheliosis virus. *Virology* 235:367-376.

681 35. Zhao K, He W, Xie S, Song D, Lu H, Pan W, Zhou P, Liu W, Lu R, Zhou J, Gao F.
682 2014. Highly pathogenic fowlpox virus in cutaneously infected chickens, China.
683 *Emerg Infect Dis* 20:1200.

684 36. Huang C, Liu WJ, Xu W, Jin T, Zhao Y, Song J, Shi Y, Ji W, Jia H, Zhou Y, Wen H,
685 Zhao H, Liu H, Li H, Wang Q, Wu Y, Wang L, Liu D, Liu G, Yu H, Holmes EC, Lu L,
686 Gao GF. 2016. A bat-derived putative cross-family recombinant coronavirus with a
687 reovirus gene. *PLOS Pathog* 12:e1005883.

688 37. Ryota T, Hirokazu H, Taichiro T, Riho K, Takaaki N, Takehiko S. 2017. Recombinant
689 avian paramyxovirus serotypes 2, 6, and 10 as vaccine vectors for highly pathogenic
690 avian influenza in chickens with antibodies against Newcastle disease virus. *Avian*
691 *Dis* 61:296-306.

692 38. Zhang C, Wang Z, Cai J, Yan X, Zhang F, Wu J, Xu L, Zhao Z, Hu T, Tu C, He B.

693 2020. Seroreactive profiling of filoviruses in Chinese bats reveals extensive infection

694 of diverse viruses. *J Virol* 94:e02042-19.

695 39. Campbell SJ, Ashley W, Gil-Fernandez M, Newsome TM, Di Giallonardo F,

696 Ortiz-Baez AS, Mahar JE, Towerton AL, Gillings M, Holmes EC, Carthey AJR,

697 Geoghegan JL. 2020. Red fox viromes in urban and rural landscapes. *Virus Evol*

698 6:veaa065.

699 40. Šimić I, Zorec TM, Lojkić I, Krešić N, Poljak M, Cliquet F, Picard-Meyer E,

700 Wasniewski M, Zrnčić V, Ćukušić A, Bedeković T. 2020. Viral metagenomic

701 profiling of Croatian bat population reveals sample and habitat dependent diversity.

702 *Viruses* 12:891.

703 41. Galindo I, Alonso C. 2017. African swine fever virus: a review. *Viruses* 10:103.

704 42. Wu Z, Han Y, Liu B, Li H, Zhu G, Latinne A, Dong J, Sun L, Su H, Liu L, Du J,

705 Zhou S, Chen M, Kritiyakan A, Jittapalapong S, Chaisiri K, Buchy P, Duong V, Yang

706 J, Jiang J, Xu X, Zhou H, Yang F, Irwin DM, Morand S, Daszak P, Wang J, Jin Q.

707 2021. Decoding the RNA viromes in rodent lungs provides new insight into the origin

708 and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia.

709 *Microbiome* 9:18.

710 43. Sutton TDS, Clooney AG, Ryan FJ, Ross RP, Hill C. 2019. Choice of assembly

711 software has a critical impact on virome characterisation. *Microbiome* 7:12.

712 44. Shkoporov AN, Ryan FJ, Draper LA, Forde A, Stockdale SR, Daly KM, McDonnell

713 SA, Nolan JA, Sutton TDS, Dalmasso M, McCann A, Ross RP, Hill C. 2018.

714 Reproducible protocols for metagenomic analysis of human faecal phageomes.

715 Microbiome 6:68.

716 45. Parras-Moltó M, Rodríguez-Galet A, Suárez-Rodríguez P, López-Bueno A. 2018.

717 Evaluation of bias induced by viral enrichment and random amplification protocols in

718 metagenomic surveys of saliva DNA viruses. Microbiome 6:119.

719 46. Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, Xie X, Poplin R, Sun F.

720 2020. Identifying viruses from metagenomic data using deep learning. Quant Biol

721 8:64-77.

722 47. Kieft K, Zhou Z, Anantharaman K. 2020. VIBRANT: automated recovery, annotation

723 and curation of microbial viruses, and evaluation of viral community function from

724 genomic sequences. Microbiome 8:90.

725 48. Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama

726 AA, Gazitúa MC, Vik D, Sullivan MB, Roux S. 2021. VirSorter2: a multi-classifier,

727 expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9:37.

728 49. Nayfach S, Camargo AP, Schulz F, Eloé-Fadrosch E, Roux S, Kyrpides NC. 2020.

729 CheckV assesses the quality and completeness of metagenome-assembled viral

730 genomes. Nat Biotechnol 39:578-585.

731 50. Zolfo M, Pinto F, Asnicar F, Manghi P, Tett A, Bushman FD, Segata N. 2019.

732 Detecting contamination in viromes using ViromeQC. Nat Biotechnol 37:1408-1412.

733 51. Sun T-W, Yang C-L, Kao T-T, Wang T-H, Lai M-W, Ku C. 2020. Host range and

734 coding potential of eukaryotic giant viruses. Viruses 12:1337.

735 52. Abergel C, Legendre M, Claverie J-M. 2015. The rapidly expanding universe of giant

736 viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiol Rev

737 39:779-796.

738 53. Sahmi-Bounsiar D, Rolland C, Aherfi S, Boudjemaa H, Levasseur A, La Scola B,

739 Colson P. 2021. Marseilleviruses: An Update in 2021. *Front Microbiol* 12:648731.

740 54. Johnson WE. 2019. Origins and evolutionary consequences of ancient endogenous

741 retroviruses. *Nat Rev Microbiol* 17:355-370.

742 55. Hulo C, De Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, Le Mercier P.

743 2011. ViralZone: A knowledge resource to understand virus diversity. *Nucleic Acids*

744 *Res* 39:D576-D582.

745 56. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the

746 next-generation sequencing data. *Bioinformatics* 28:3150-3152.

747 57. Buchfink B, Xie C, Huson DH. 2014. Fast and sensitive protein alignment using

748 DIAMOND. *Nat Methods* 12:59-60.

749 58. Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching

750 for the analysis of massive data sets. *Nat Biotechnol* 35:1026-1028.

751

752

753 **Figure legends**

754 **Fig 1.** Summary of the 766 HGSs. Representing 39 viral families, they were classified
755 into heterogeneity origins (Hetero. origin) of cross-family, vector, cross-host and host,
756 with submission years to GenBank of 1993-2021 and length up to 6,605 bp.

757 **Fig 2.** Identification of the naturally occurred HGSs of BVDV (A) and fowlpox virus
758 (B) using blastn search. The blastn hits with close definition to the query are
759 highlighted in red.

760 **Fig 3.** Identification of the ia-HGSs of human enterovirus 71 (A) and avain
761 metaavulavirus (B) using blastn search. The blastn hits with close definition to the
762 query are highlighted in red.

763 **Fig 4.** Identification of the ua-HGSs of hepatitis C virus (A) and CCHFV (B) using
764 blastn search. The blastn hits with close definition to the query are highlighted in red.

765 **Fig 5.** Comparison of the VLR numbers in nine viromic data sets annotated using
766 blastn search against EVRD-nt (highlighted in orange), GenBank and RVDB-nt. Viral
767 families are divided into parts of ‘Shared’, ‘EVRD’ and ‘Other’, corresponding to
768 families that are co-annotated by the three reference databases, not annotated by
769 EVRD in certain data sets, and annotated by one or two reference databases in certain
770 data sets, respectively.

771 **Fig 6.** Identification of VLRs. A) VLRs were annotated using different databases with
772 read numbers shown in each subset; B) The annotations of VLRs in the six subsets

773 were improved using length cutoff 100 (orange bars), some VLRs can be annotated
774 using the other databases with length < 100 (yellow bars), but there were still some
775 VLRs (gray bars, labeled using Ex) unable to be annotated by the other databases
776 even length was loosened to < 100; C) The Ex VLRs in subset E \cap G were all related
777 to Osugoroshi viruses within the family *Partitiviridae*; D) The Ex VLRs in subsets G
778 and G \cap R were all associated to HGSs; E) The Ex VLRs in subset R were
779 predominantly annotated by RVDB-exclusive viral metagenomes; F) The PRRSV
780 VLRs in data set AH belonged to vaccine and field strains based on the annotation
781 using EVRD-nt.

782

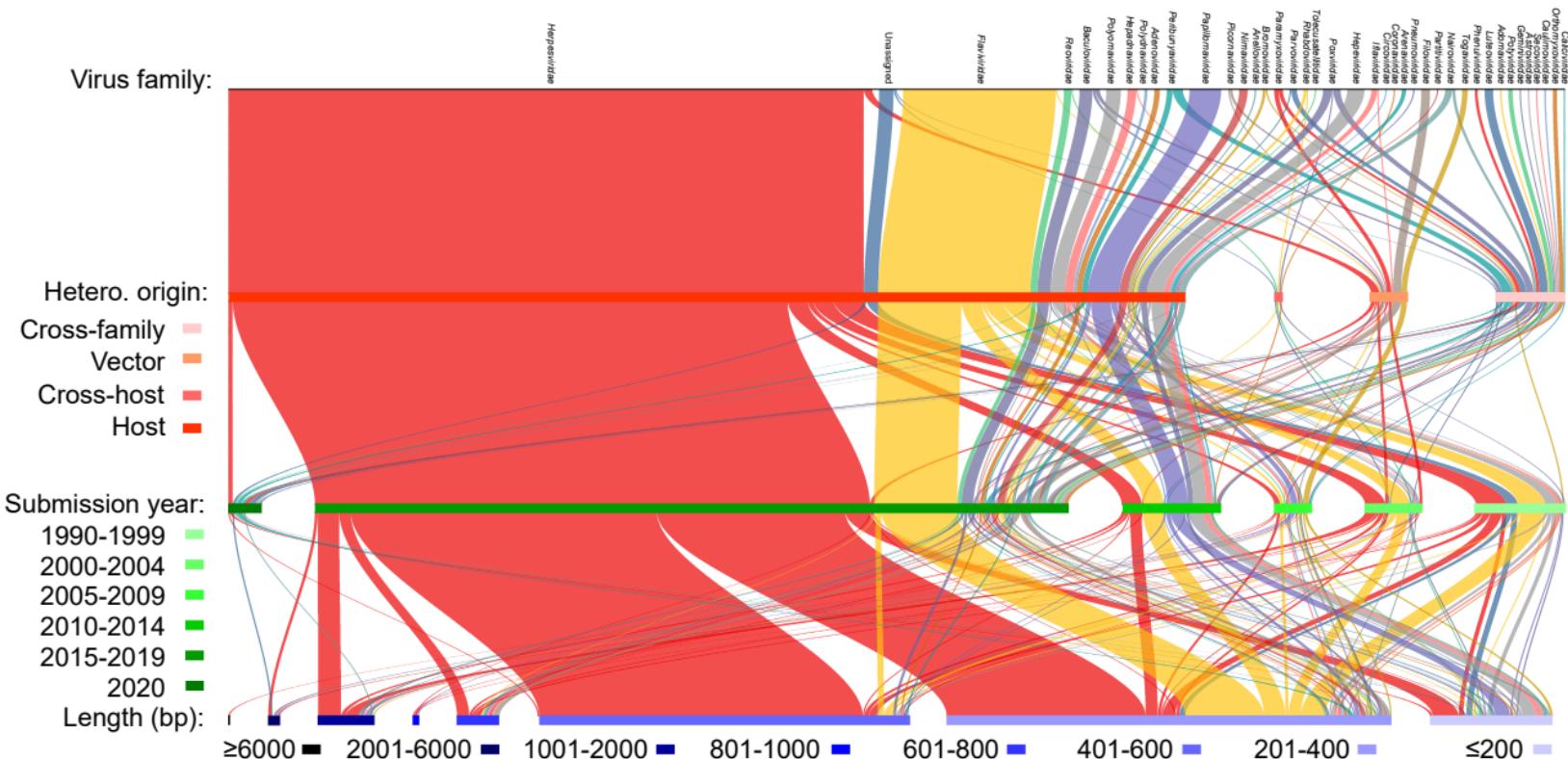


Fig 1. Summary of the 766 HGSs. Representing 39 viral families, they were classified into heterogeneity origins (Hetero. origin) of cross-family, vector, cross-host and host, with submission years to GenBank of 1993-2021 and length up to 6,605 bp.

A

B

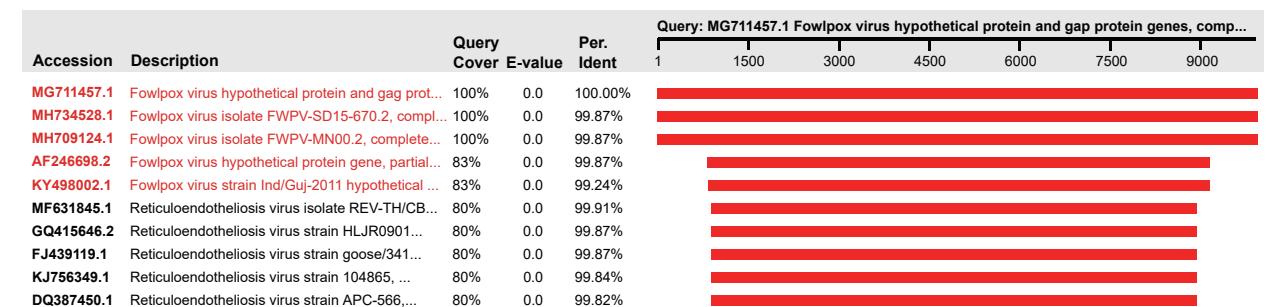
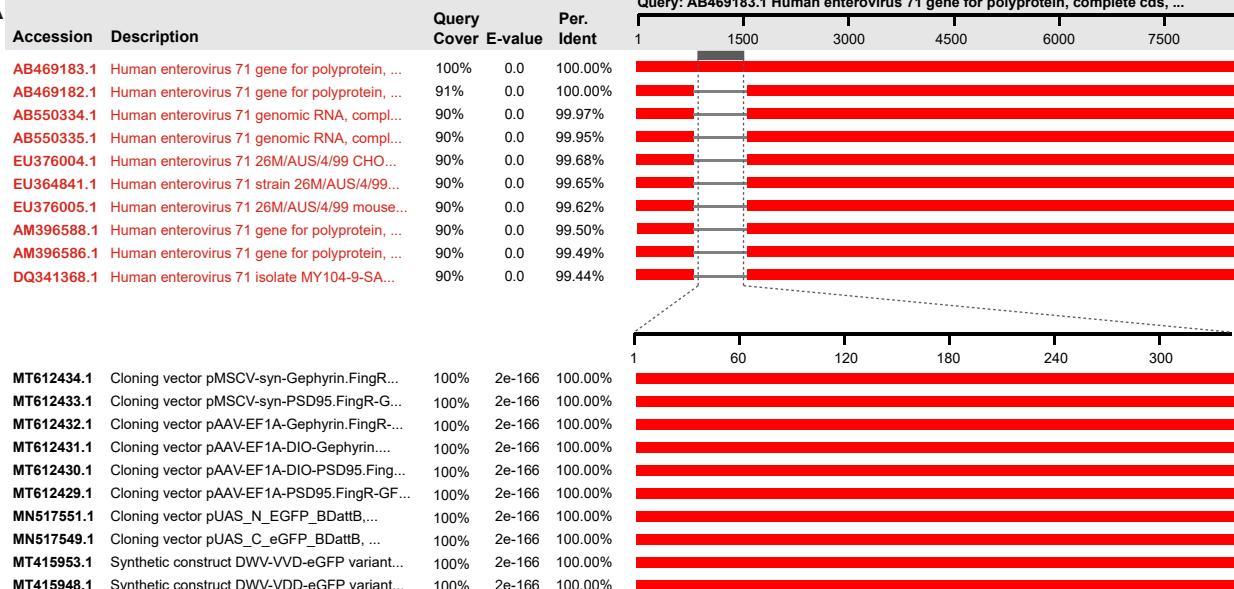



Fig 2. Identification of the naturally occurred HGSSs of BVDV (A) and fowlpox virus (B) using blastn search. The blastn hits with close definition to the query are highlighted in red

A

B

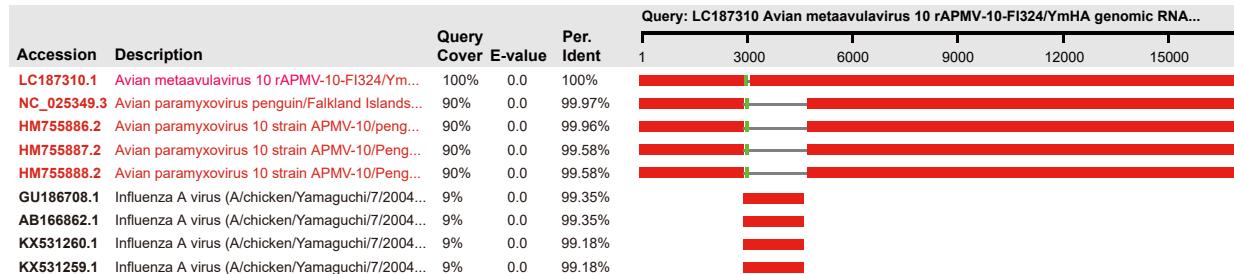


Fig 3. Identification of the ia-HGSs of human enterovirus 71 (A) and avain metaavulavirus (B) using blastn search. The blastn hits with close definition to the query are highlighted in red.

A

B

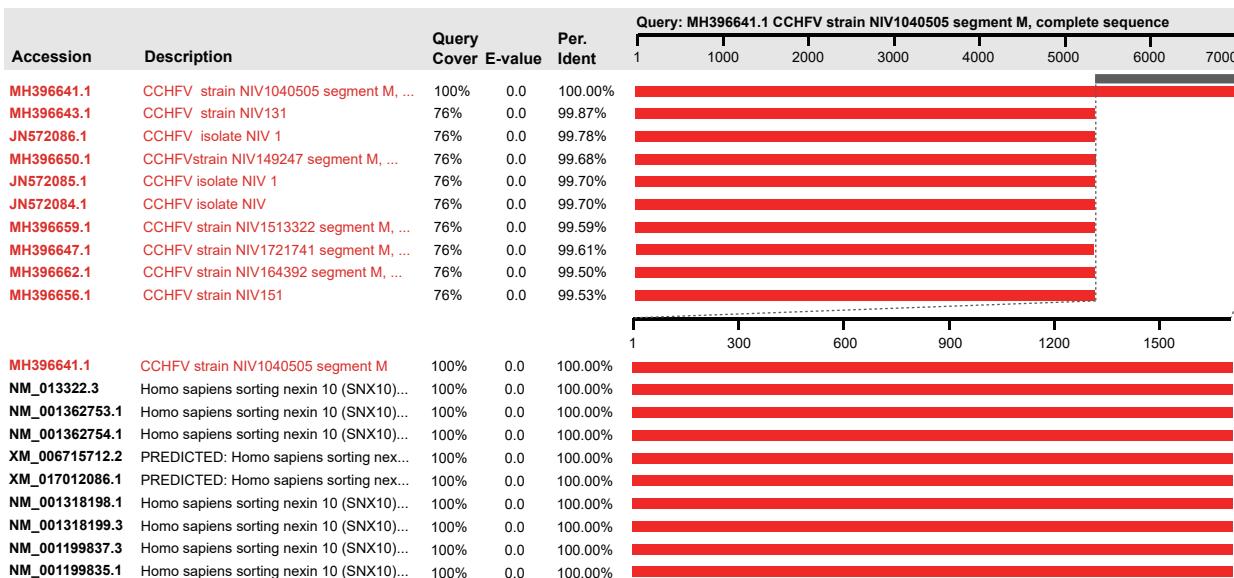


Fig 4. Identification of the ua-HGSs of hepatitis C virus (A) and CCHFV (B) using blastn search. The blastn hits with close definition to the query are highlighted in red.

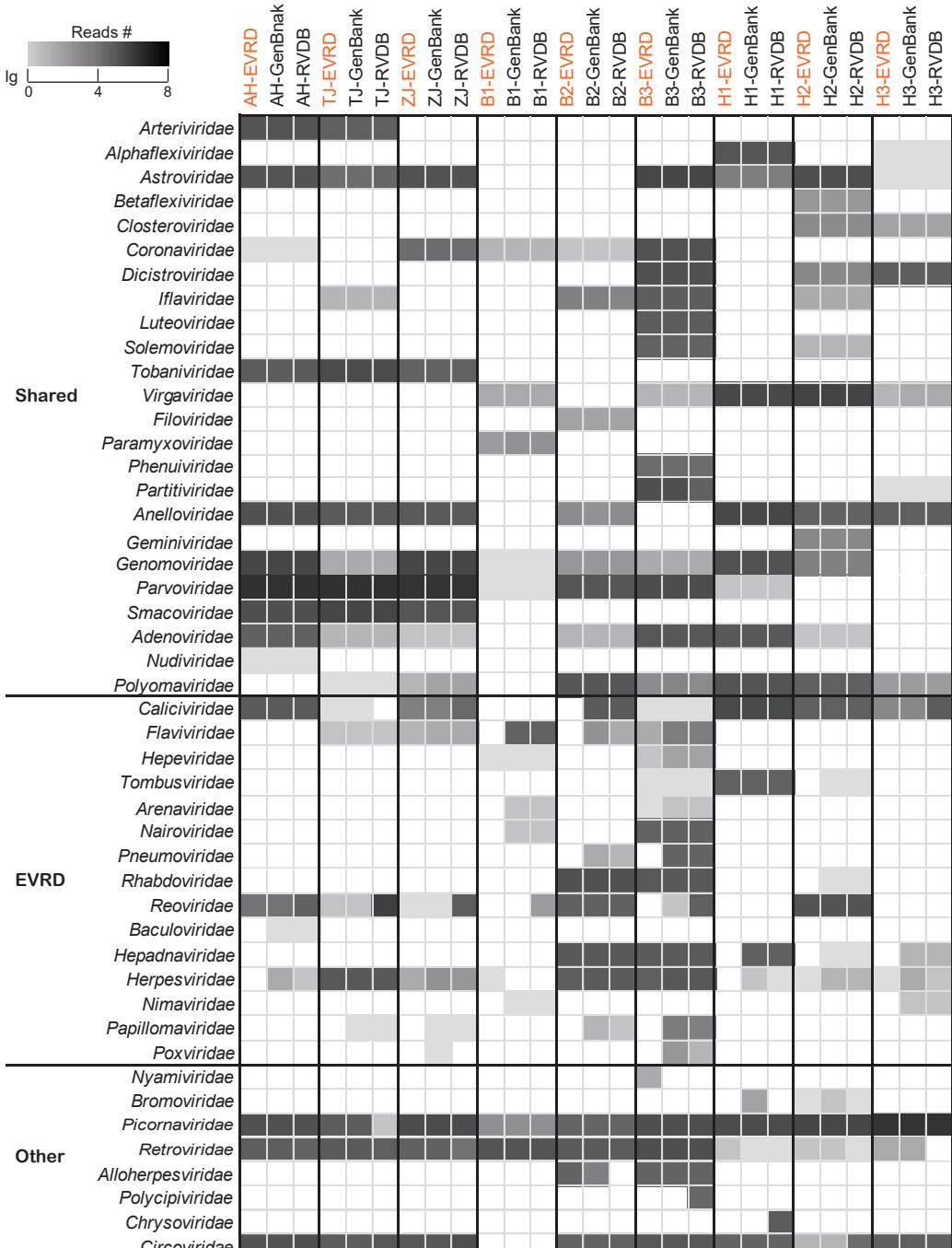
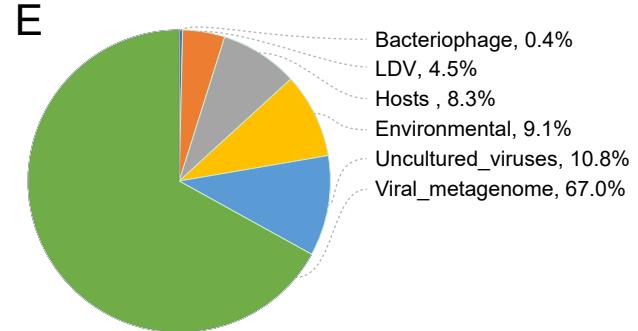
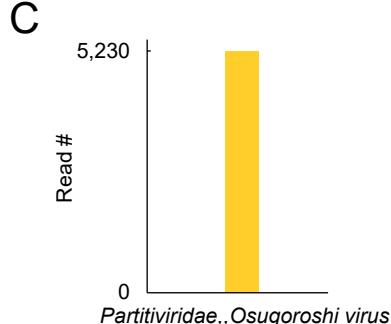
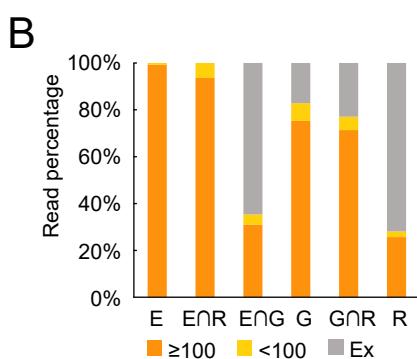
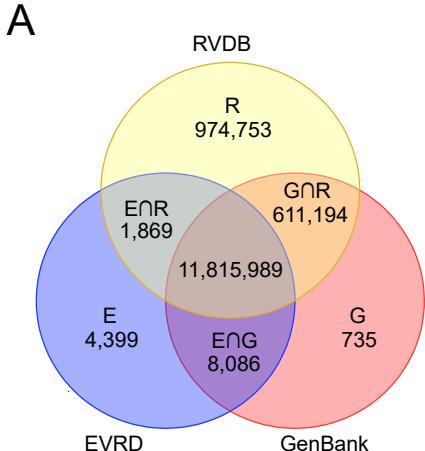






Fig 5. Comparison of the VLR numbers in nine viromic data sets annotated using blastn search against EVRD-nt (highlighted in orange), GenBank and RVDB-nt. Viral families are divided into parts of ‘Shared’ , ‘EVRD’ and ‘Other’ , corresponding to families that are co-annotated by the three reference databases, not annotated by EVRD in certain data sets, and annotated by one or two reference databases in certain data sets, respectively.

D

Group	Read #	Annotation using Genbank and RVDB	Cor. anno.
G: Ex	18	<i>Herpesviridae, Cytomegalovirus, Cercopithecine betaherpesvirus 5</i>	Host
	5	<i>Herpesviridae, Cytomegalovirus, Cercopithecine betaherpesvirus 6</i>	Host
	4	<i>Herpesviridae, Cytomegalovirus, Cercopithecine betaherpesvirus 7</i>	Host
	23	<i>Herpesviridae, Cytomegalovirus, Cercopithecine betaherpesvirus 8</i>	Host
	26	<i>Herpesviridae, Lymphocryptovirus, Human gammaherpesvirus 4</i>	Host
	3	<i>Herpesviridae, Mardivirus, Gallid alphaherpesvirus 2</i>	Host
	23	<i>Herpesviridae, Roseolovirus, Human betaherpesvirus 7</i>	Host
	10	<i>Herpesviridae, Roseolovirus, Human betaherpesvirus 6</i>	Host
	4	<i>Herpesviridae, Roseolovirus, Human betaherpesvirus 6B</i>	Host
	4	„Stealth virus 4	Host
	6	<i>Pneumoviridae, Orthopneumovirus, Human orthopneumovirus</i>	Host
	795	„Non-A, non-B hepatitis virus"	Inoviridae
	456	<i>Arenaviridae, Mammarenavirus, Guanarito mammarenavirus</i>	Host
	24	<i>Baculoviridae, Alphabaculovirus, Autographa californica multiple...</i>	Host
	6395	<i>Caliciviridae, Sapovirus, Sapporo virus</i>	Siphoviridae
	36	<i>Flaviviridae, Flavivirus, Aroa virus</i>	Host
	765	<i>Flaviviridae, Hepacivirus, Hepacivirus C</i>	Host
	57674	<i>Flaviviridae, Pestivirus, Pestivirus A</i>	Host
	241	<i>Hepadnaviridae, Orthohepadnavirus, Hepatitis B virus</i>	Host
	97	<i>Hepeviridae, Orthohepevirus, Orthohepevirus A</i>	Host
	698	<i>Herpesviridae, Cytomegalovirus, Cercopithecine betaherpesvirus 5</i>	Host
	35974	<i>Herpesviridae, Lymphocryptovirus, Human gammaherpesvirus 4</i>	Host
	6841	<i>Herpesviridae, Mardivirus, Columbid alphaherpesvirus 1</i>	Host
	23695	<i>Herpesviridae, Roseolovirus, Human betaherpesvirus 6</i>	Host
	867	<i>Nairoviridae, Orthonairovirus, CCHFV</i>	Host
	156	<i>Nimaviridae, Whispovirus, White spot syndrome virus</i>	Host
	1524	<i>Papillomaviridae, Alphapapillomavirus, Alphapapillomavirus 9</i>	Host
	456	<i>Papillomaviridae, Betapapillomavirus, Betapapillomavirus 1</i>	Host
	2458	<i>Pneumoviridae, Orthopneumovirus, Human orthopneumovirus</i>	Host
	457	<i>Polyomaviridae, Betapolyomavirus, Macaca mulatta polyomavirus 1</i>	Host
	78	<i>Poxviridae, BeAn 58058 virus</i>	Host
	45	<i>Reoviridae, Rotavirus, Rotavirus C</i>	Host
	545	<i>Retroviridae, LNras*SN acutely transforming retrovirus</i>	Vector
	56	<i>Rhabdoviridae, Vesiculovirus, Guampa vesiculovirus</i>	Bacteria

Fig 6. Identification of VLRs. A) VLRs were annotated using different databases with read numbers shown in each subset; B) The annotations of VLRs in the six subsets were improved using length cutoff 100 (orange bars), some VLRs can be annotated using the other databases with length < 100 (yellow bars), but there were still some VLRs (gray bars, labeled using Ex) unable to be annotated by the other databases even length was loosened to < 100; C) The Ex VLRs in subset E ∩ G were all related to Osugoroshi viruses within the family Partitiviridae; D) The Ex VLRs in subsets G and G ∩ R were all associated to HGSs; E) The Ex VLRs in subset R were predominantly annotated by RVDB-exclusive viral metagenomes; F) The PRRSV VLRs in data set AH belonged to vaccine and field strains based on the annotation using EVRD-nt.