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ABSTRACT 

Eating behavior is highly heterogeneous across individuals, and thus, it cannot be fully 

explained using only the degree of obesity. We utilized unsupervised machine learning and 

functional connectivity measures to explore the heterogeneity of eating behaviors. This study 

was conducted on 424 healthy adults. We generated low-dimensional representations of 

functional connectivity defined using the resting-state functional magnetic resonance imaging, 

and calculated latent features using the feature representation capabilities of an autoencoder by 

nonlinearly compressing the functional connectivity information. The clustering approaches 

applied to latent features identified three distinct subgroups. The subgroups exhibited different 

disinhibition and hunger traits; however, their body mass indices were comparable. The model 

interpretation technique of integrated gradients revealed that these distinctions were associated 

with the functional reorganization in higher-order associations and limbic networks and 

reward-related subcortical structures. The cognitive decoding analysis revealed that these 

systems are associated with reward- and emotion-related systems. We replicated our findings 

using an independent dataset, thereby suggesting generalizability. Our findings provide insights 

into the macroscopic brain organization of eating behavior-related subgroups independent of 

obesity. 

 

Keywords: eating behavior; subgroup; functional connectivity; autoencoder; manifold 

learning; representation learning; integrated gradient 
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INTRODUCTION 

Eating behavior is a key trait associated with an individual’s health [1,2]. Aberrant eating 

behavior can lead to a high body mass index (BMI) and cause obesity-related pathologies, such 

as diabetes, hypertension, and stroke [3,4]. To assess the link between eating behavior and 

obesity, existing studies have examined several factors that affect an individual’s eating 

behaviors, such as hormone activity, gene enrichment, and environmental factors [4–8]. Eating 

behavior is highly heterogeneous across individuals, and thus, a systematic analysis is 

necessary to assess individual variability.  

Magnetic resonance imaging (MRI) is used to investigate brain networks associated with eating 

behaviors in vivo [9–11]. In particular, resting-state functional MRI (rs-fMRI) reflects 

functional alterations in the brain via temporal fluctuations in brain signals. Our previous study 

demonstrated associations between disinhibited eating behaviors and functional connectivity 

in the frontoparietal network [10]. Other studies have proved associations of eating behaviors 

with the brain function of the prefrontal cortex, orbitofrontal cortex, and amygdala [12–15]. 

These findings suggest that eating behavior is associated with the brain function. However, no 

clear trends were observed. Some studies have shown positive associations between 

disinhibited eating and brain function in the reward network [12,13], whereas others have 

indicated opposite patterns [14,15]. This inconsistency may be owing to the heterogeneity of 

eating behavior traits. Thus, the brain function differences between individuals depending on 

the eating behavior needs to be investigated systematically.  

One approach to exploring the heterogeneity of eating behaviors is clustering, which is an 

unsupervised machine learning technique that defines distinct clusters with relatively 

homogeneous data points. Clustering techniques were widely adopted in existing neuroimaging 

studies to identify subgroups of healthy and diseased populations [16–20]. Some studies have 

classified individuals with an autism spectrum disorder into several subtypes based on cortical 

morphologies [21] and functional connectivity [16,17]. In addition, the clustering approach 

was effective in schizophrenia to assess clinical heterogeneity [19,20]. Clustering techniques 

are purely data-driven approaches, free from an a priori hypothesis. Thus, they can be used for 

identifying subgroups of a particular dataset with homogeneous characteristics. We 

hypothesized that clustering based on neuroimaging features may identify distinct subgroups 

that may exhibit different clinical or behavioral traits.  

Functional connectivity is a widely adopted measure to assess co-fluctuations of the brain 

signals, which is defined by calculating correlations of time series between brain regions. A 

recent study suggested a method for characterizing functional connectivity based on manifold 

learning techniques [22]. These techniques produce low-dimensional representations of 

functional connectivity by estimating principal components based on principal component 

analysis or scaled eigenvectors that are based on diffusion embedding in a newly defined low-

dimensional space. The generated eigenvectors exhibited smooth transitions of connectome 

organization along the cortical mantle, and the principal eigenvector consisted of a cortical 

hierarchy expanding from low-level sensory to higher-order association networks [22]. These 
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eigenvectors have been suggested as potential imaging biomarkers in studies on healthy aging 

[23,24] and neurodevelopment [25–30]. In our previous study, we illustrated strong 

associations between the BMI and low-dimensional representations of functional connectivity, 

indicating plausible links between functional gradients and eating behaviors [31]. Recent 

advances in machine learning have made strides in feature representation to learn novel features 

from an existing set of features for various downstream machine-learning tasks. In particular, 

an autoencoder creates latent features that effectively describe the original features through 

nonlinear data compression and reconstruction [32–34]. Autoencoders have been adopted in 

some studies to distinguish populations of Alzheimer’s disease [35,36], schizophrenia [37,38], 

and autism [39] from healthy individuals. The feature representation capability of the 

autoencoder led to a higher performance in solving classification problems compared with 

conventional neuroimaging features. 

In this study, we combined connectome manifolds with feature representation to identify 

subgroups of eating behavior traits. Briefly, we generated eigenvectors from the functional 

connectivity matrix and constructed an autoencoder model to identify subgroups with different 

behavioral traits. Subsequently, we compared the characteristics of eating behavior traits and 

degree of obesity among subgroups and assessed between-group differences in cortico-cortical 

and subcortico-cortical connectivity. Additionally, we assessed the reproducibility of our 

findings using an independent dataset.  

 

 

RESULT 

We studied 424 healthy adults obtained from the enhanced Nathan Kline Institute-Rockland 

Sample database (mean ± standard deviation [SD] age = 47.07±18.89 yr; 67% female; mean ± 

SD BMI = 27.82±5.77 kg/m2, range 16.26–47.93 kg/m2) [40]. Details of the participant 

selection, image processing, and analysis are described in the Methods section. Reproducibility 

of the findings was validated using an independent dataset, Leipzig Study for Mind-Body-

Emotion Interactions database, which contained 212 healthy adults (mean ± SD age = 

38.97±19.80 yr; 35% female; mean ± SD BMI = 24.17±3.67 kg/m2, range 17.93–36.65 kg/m2) 

[41]. 

 

Low-dimensional representation of functional connectivity and autoencoder-based feature 

representation 

For each individual, we built a functional connectivity matrix by calculating the Pearson’s 

correlation of the time series between different brain regions defined using the Brainnetome 

atlas [42]. Considering 210 cortical parcels, we computed a low-dimensional representation of 

the functional connectivity (henceforth, eigenvector) [22] using dimensionality reduction 
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techniques implemented in the BrainSpace toolbox (https://github.com/MICA-

MNI/BrainSpace; see Methods) [43]. Individual eigenvectors were linearly aligned to the 

template manifold and computed using the group-averaged functional connectome [43,44]. We 

selected three eigenvectors (E1, E2, E3) that explained approximately 54% of the information 

of the template affinity matrix (Figure 1A). Similar to the previous findings based on the 

Human Connectome Project dataset [22,31,43], each eigenvector exhibited different cortical 

axes; the first, second, and third eigenvectors expanded from the primary sensory to association 

cortices (E1), from visual to somatomotor (E2), and from the multiple demand network to task-

negative systems (E3), respectively. 

  

Figure 1 | Subgroup identification using the manifold learning and autoencoder-based feature 

representation. (A) Schematic of functional connectome organization (left) and group averaged functional 

connectivity matrix (middle) are reported. Template eigenvectors were generated using dimensionality reduction 
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techniques, and three dominant eigenvectors (E1, E2, E3) were selected. (B) The autoencoder model learned latent 

features of the eigenvectors after controlling for age and sex (left top), and loss values are plotted for each epoch 

(middle). We calculated linear correlations between the original (E) and reconstructed (E’) eigenvectors of the test 

dataset, and correlation coefficients across the subjects are reported with mean ± SD (right). We defined subgroups 

using the latent features of the autoencoder, where the number of clusters was determined using the consensus 

coefficient (left bottom). (C) Distribution of BMI and eating behavior scores of each subgroup is plotted. 

Significant differences in scores between subgroup pairs are indicated by asterisks. Abbreviations: BMI, body 

mass index; FDR, false discovery rate; SD, standard deviation. 

 

The three generated eigenvectors were concatenated and used as inputs for the autoencoder 

model. The autoencoder model extracts latent features of the input through compression (i.e., 

encoding) and reconstruction (i.e., decoding) procedures (see Methods). The loss graph with 

respect to epochs demonstrated that the loss values decreased in both the training and validation 

datasets, indicating the appropriateness of model fitting. We applied the trained model at 499 

epochs, which exhibited the highest performance in the validation dataset to the test data and 

found significant correlations between the original and reconstructed eigenvectors (mean±SD 

r = 0.70±0.06 across the subjects, p<0.001), indicating that the autoencoder learned the 

eigenvectors appropriately (Figure 1B).  

 

Subgroup identification using features from representation learning 

The latent features learned from the autoencoder (i.e., features from the hidden bottleneck layer 

in the middle) were subjected to an unsupervised learning framework to identify subgroups of 

the study population. In particular, we employed the k-means clustering, and the number of 

clusters was determined using the consensus clustering approach, which was set to three [45] 

(see Methods; Figure 1B). To assess differences between the obesity-related traits across the 

identified subgroups, we compared the BMI and eating behavior scores of the subgroups based 

on a three-factor eating questionnaire (TFEQ) [46]. We found significant differences (false 

discovery rate (FDR)<0.05) in the disinhibition and hunger scales in one subgroup; however, 

BMI did not exhibit considerable differences (Figure 1C). Thus, the identified subgroups may 

reflect different eating behavior traits, independent of the degree of obesity.  

 

Interpretation of the latent features from representation learning 

We utilized the integrated gradient interpretation model to explain the autoencoder-derived 

latent features [47]. The integrated gradient method computes the attribution of each element 

(i.e., the brain region) of the input to predict the output (i.e., latent features of the bottleneck) 

by progressively increasing the intensity of input values from a zero-information baseline to a 

particular intact input level and averaging attributions (Figure 2A) [47]. We used the integrated 

gradient technique to identify the brain regions that contributed to the latent features in the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482759doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482759
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

hidden layer that contained important information to reconstruct the original data (Figure 2B). 

We considered the three integrated gradient maps of eigenvectors and found that most higher-

order networks, including limbic, dorsal attention, frontoparietal, and default mode networks, 

exhibited high contributions (Figure 2C). The results indicate that higher-order association and 

limbic regions greatly contributed to the reconstruction of the original eigenvectors. 

 

Figure 2 | Characteristics of latent features using the integrated gradient technique. (A) Integrated gradient 

technique estimates the attribution of input towards predicting the output by averaging contributions while 

changing input intensities. (B) Spatial maps of each eigenvector and results of the integrated gradient technique 

are plotted on the brain surfaces. (C) Effects of integrated gradient are summarized according to functional 

communities. Abbreviation: IG, integrated gradient. 
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Cortico-cortical and subcortico-cortical connectivity of subgroups 

In addition to cortical alterations among subgroups, we hypothesized that connectivity in the 

reward circuit, which is known to be highly associated with the eating behavior may exhibit 

distinct profiles among subgroups. To prove our hypothesis, we investigated differences in the 

cortico-cortical connectivity based on integrated gradient maps among the three subgroups 

using the multivariate analysis of variance (MANOVA) [48]. We found significant differences 

in the precuneus, with the strongest and moderate effects in the frontoparietal and sensory 

regions (FDR<0.05; Figure 3A). Stratifying the effects according to the seven functional 

communities [49], somatomotor, ventral attention, frontoparietal, and default mode networks 

revealed strong between-group differences (Figure 3A). Additionally, we assessed between-

group differences in the subcortico-cortical connectivity based on nodal degree centrality using 

ANOVA (see Methods). All subcortical structures exhibited considerable effects (FDR<0.05; 

Figure 3B), and stronger effects were observed in the accumbens, amygdala, and caudate 

(Figure 3B), which are involved in the reward system. 

  

Figure 3 | Between-group differences in the cortico-cortical and subcortico-cortical connectivity. (A) 

Between-group differences in the cortico-cortical connectivity based on the integrated gradients maps among the 

subgroups are visualized on the cortical surfaces, where the findings were multiple comparisons corrected using 
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FDR<0.05. Effects were stratified according to seven intrinsic functional communities. (B) We visualized 

between-group differences in subcortico-cortical nodal connectivity strengths and stratified the effects according 

to each subcortical structure. Abbreviation: FDR, false-positive discovery rate. 

 

Cognitive associations 

To provide the underlying cognitive associations of between-group differences in the cortico-

cortical and subcortico-cortical connectivity, we utilized the Neurosynth meta-analysis 

cognitive decoding platform [50,51]. Associating the between-group differences in cortical and 

subcortical maps (Figure 3), we found high correlations with the reward-related terms, such as 

“anticipation,” “reward,” “incentive,” “monetary,” and “gain” (Figure 4A). Additionally, we 

associated the between-group difference maps with 24 cognitive state maps, as defined in [22], 

and observed strong correlations with “reward” (r = 0.40, FDR<0.05), and high associations 

with “emotion” (r = 0.24, FDR<0.05) and “affective” (r = 0.21; FDR<0.05; Figure 4B). 

Consequently, differences in the cortico-cortical and subcortico-cortical connectivity across the 

subgroups are associated with the reward-related cognitive functioning.  

 

Figure 4 | Cognitive associations. (A) We conducted cognitive decoding using the F-statistic map of cortico-

cortical and subcortico-cortical connectivity differences across the subgroups using Neurosynth. (B) Correlation 

coefficients between the between-group difference maps and 24 different cognitive state maps are shown with bar 

plots.  

 

Replication of eating behavior traits 

We performed the entire subgrouping analysis and compared the obesity and eating behavior 

traits across subgroups by using an independent dataset with different acquisition parameters 

(see Methods). One subgroup exhibited significant differences (FDR<0.05) in the hunger scale 

(Figure 5A), which particularly confirms the robustness of the hunger scale results. Notably, 

the subgroups defined from the two datasets exhibited comparable profiles (Figure 5B), with 

no statistical differences.  
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Figure 5 | Reproducibility analyses. (A) Distribution of the BMI and eating behavior scores of each subgroup 

using the replication dataset are shown. Significant differences between the scores of subgroups are indicated by 

asterisks. (B) We compared profiles of the BMI and eating behavior scores of two different datasets. Abbreviation: 

BMI, body mass index; FDR, false discovery rate. 

 

Sensitivity analyses 

Robustness of the findings was confirmed using the conducted analyses. 

a) Subgroup identification without autoencoder. We applied k-means clustering to the 

concatenated eigenvectors and not to the latent features from the autoencoder. No significant 

differences were found between the BMI or eating behavior scores (Figure S1), indicating the 

necessity of applying the autoencoder model. 

b) Bootstrapping analysis. We randomly selected 90% of participants with replacements and 

performed the same analyses of feature representation learning, clustering, and profiling of the 

obesity and eating behavior scores. We obtained consistent results that indicated the robustness 

of the findings (Figure S2). 

c) Different densities of connectivity matrix. As in previous studies [22,26,43], our main 

findings were based on the functional connectivity with a density of 10%. Additionally, we 

performed the analyses based on the matrix with a density of 20 and 30% to evaluate the 
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robustness and found consistent results (Figure S3A).  

d) Different clustering methods. Instead of k-means clustering, we used the Gaussian mixture 

model clustering method, which is a probability distribution-based clustering approach (Figure 

S3B) and found that the obesity and eating behavior scores of each subgroup exhibited 

comparable profiles. 

e) Different model architectures. We slightly changed the architecture of the autoencoder model 

and generated latent features. (i) We removed dropout layers; (ii) added one more layer; and 

(iii) removed one layer during the encoding and decoding processes (see Methods). The obesity 

and eating behavior scores were not considerably different and exhibited similar trends (Figure 

S4). 

f) Manifold eccentricity. Rather than utilizing an autoencoder model to compress three 

eigenvectors into a single latent feature, we adopted the manifold eccentricity analysis, which 

depicts the distance of each brain region from the center of the template manifold [23,29] 

(Figure S5A). We defined subgroups based on the manifold eccentricity. Here, the BMI and 

eating behavior scores did not exhibit considerable differences, indicating that the latent 

features, which were defined using the autoencoder model were more useful for identifying 

behavioral differences across the identified subgroups (Figure S5B).  

 

 

DISCUSSION 

Eating behavior is highly associated with the brain function [10,31]; however, owing to the 

heterogeneity of eating behavior traits, no conclusions have been made to relate eating 

behaviors with the brain. In this study, an advanced technique combining the dimensionality 

reduction (i.e., connectome manifolds) with representation learning of the autoencoder was 

used to identify three subgroups with different eating behavioral traits independent of BMI. 

The latent features learned from the autoencoder were used to subdivide the groups, which 

yielded three distinct subgroups with different eating behaviors on the disinhibition and hunger 

scales. Furthermore, differences in the cortico-cortical connectivity from integrated gradients 

and subcortico-cortical nodal strengths among the identified subgroups were associated with 

reward-related cognitive terms, indicating that alterations in the association and reward systems 

may be related to the eating behavior heterogeneity. We demonstrated the reliability and 

generalizability of our findings using an independent dataset with different acquisition 

parameters and demographic characteristics. 

Machine learning is a powerful tool for analyzing neuroimaging data, and manifold learning 

techniques are increasingly being used to describe macroscale functional connectome 

organization along the cortex [27–29,52]. We generated a series of low-dimensional 

eigenvectors, and the spatial patterns agreed with those of existing studies based on the Human 
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Connectome Project data [22,31,52]. We extended previous studies by analyzing these 

eigenvectors using an autoencoder model consisting of encoding and decoding processes to 

generate latent features that contain highly compressed information of the input data. Using the 

latent features, we obtained three distinct subgroups, which exhibited considerable differences 

in eating behaviors. Indeed, our previous studies based on the conventional graph-theoretical 

approaches found that the functional connectivity of frontoparietal and executive control 

networks is associated with disinhibited eating behaviors and eating concerns [10,53]. In 

addition, we revealed that external stimulation of the dorsolateral prefrontal cortex affected the 

brain function in the frontoparietal network, which in turn yielded a reduced appetite [54]. Our 

current findings complemented previous studies in that eating behaviors are related to the 

function of higher-order brain regions. Additionally, we extended these studies by defining 

subgroups of study participants to investigate the heterogeneity of eating behavior traits. 

Interestingly, eating behaviors on the disinhibition and hunger scales exhibited significant 

between-group differences at a similar BMI. Therefore, although eating behavior is highly 

associated with obesity, the neurological underpinnings of eating behaviors may be different 

from those related to obesity. Further comprehensive investigations are needed to assess the 

convergence and divergence between obesity and eating behavior traits with respect to the brain 

function to explore the underlying neurological mechanisms of their relationships.  

The interpretation of neural network models is important for accurate disease diagnosis and 

precise decision-making processes [57–59], which is uncertain because of the complex 

combinations of nonlinearities of the model [55,56]. Several attempts have been increasingly 

made [57,60–67]. Representative techniques include the layer-wise relevance propagation 

(LRP) and class activation map (CAM). LRP redistributes the relevance of each node from a 

particular layer to the previous layer using a top-down process [68], and CAM calculates the 

weighted sum of feature maps at the last convolutional layer, where the weights are calculated 

at a fully connected layer connected to the last convolutional layer using global average pooling 

[69]. These techniques have been used for the diagnosis of multiple sclerosis and Alzheimer’s 

disease [65,67]. However, LRP is sensitive to the choice of network architecture [47], and CAM 

requires global average pooling. To overcome this limitation, a recent study introduced 

gradient-weighted CAM (Grad-CAM) using gradients contributing to specific outputs as 

weights to provide an explanation [70]. Integrated gradients expanded the prior methods, 

enforcing a few axiomatic properties that have a invariance toward different neural network 

implementations [47]. In this study, we used the integrated gradients approach and observed 

that limbic, dorsal attention, frontoparietal, and default mode networks exhibited strong 

attributions, indicating that subgroups might present distinct functional organization in large-

scale networks of higher-order association and limbic regions. 

Additional cortico-cortical and subcortico-cortical connectivity analyses and cognitive 

decoding approved that association and reward networks exhibited significant between-group 

differences among the identified subgroups. These systems are related to eating behaviors 

[4,10,14,71–74], and thus, features attributed to these networks may provide benefits in 

identifying subgroups related to eating behaviors. In particular, reward systems are highly 
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associated with eating behaviors, where an imbalance between food-related reward circuits and 

inhibitory control systems yields an increased sensitivity to food, leading to overeating and 

weight gain [12,75–87]. In addition, reward circuits are regulated by dopamine-related 

neurotransmitters, where the atypical organization of dopaminergic circuits in mesolimbic and 

association cortices was observed in individuals with obesity [4,88–94]. Similarly, serotonin-

related neurotransmitters control eating behaviors by inhibiting the hanger-stimulating system 

[95,96]. These studies collectively suggest that reward-related cognitive systems could be 

target regions for regulating eating behaviors independent of the degree of obesity. However, 

expanded validation is required to explore the biological mechanisms associated with these 

macroscopic brain alterations.  

In this study, we identified subgroups showing different eating behavior traits, regardless of the 

degree of obesity by using connectome manifolds and feature representation learning. The 

findings were robust for independent datasets, thus suggesting generalizability. Although we 

interpreted latent features derived from the autoencoder model based on an integrated gradient 

approach, this technique measures indirect contributions of the input data. More advanced 

techniques for the direct inference of the contribution of latent features need to be considered 

in future studies. Our results provide a new evidence for eating behavior-related macroscopic 

imaging signatures, independent of obesity.  
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METHOD 

Participants 

Imaging and phenotypic data were obtained from the enhanced Nathan Kline Institute-

Rockland Sample database (NKI-RS) [40]. We excluded participants who did not provide 

complete demographic information, BMI, or TFEQ scores. Of the 650 participants, 424 were 

selected for this study. The proportion of individuals with healthy weight (18.5≤BMI<25 

kg/m2), overweight (25≤BMI<30), and obese (BMI≥30 kg/m2) was 144:151:121. In addition, 

we obtained independent data from the Leipzig Study for Mind-Body-Emotion Interactions 

(LEMON) database [41]. Participants without complete demographic information or obesity-

related scores were excluded. In this study, we used 212 out of 229 participants. Details are 

presented in Table 1. 

Table 1. Demographic information of study participants 

Categories NKI-RS LEMON p value1 

Subject number 424 212  

Sex 

(Female:Male) 
282:142 75:137 <0.0012 

Age 
47.07±18.89 

(18.15–85.62) 

38.97±19.80 

(23–78) 
<0.001 

BMI 
27.82±5.77 

(16.26–47.93) 

24.17±3.67 

(17.93–36.65) 
<0.001 

TFEQ 

Cognitive restraint 

(Factor 1) 

8.67±4.94 

(0 – 20) 

6.36±4.65 

(0–18) 
<0.001 

Disinhibition 

(Factor 2) 

5.03±3.45 

(0–15) 

4.82±2.61 

(0–15) 
0.39 

Hunger 

(Factor 3) 

4.26±3.36 

(0–15) 

4.61±2.94 

(0–12) 
0.17 

Mean±SD with range (minimum–maximum) are reported.  
1The p values are calculated based on two sample t-tests between the discovery and replication datasets. 
2Chi-squared test. 

Abbreviations: NKI-RS, enhanced Nathan Kline Institute-Rockland Sample; LEMON, Leipzig Study for Mind-

Body-Emotion Interactions; BMI, body mass index; TFEQ, three-factor eating questionnaire. 

 

MRI acquisition 

a) NKI-RS: All imaging data were obtained using a 3-T Siemens Magnetom Trio Tim scanner. 

The acquisition parameters of T1-weighted data were as follows: repetition time (TR), 1900 

ms; echo time (TE) = 2.52 ms, flip angle, 9°; field of view (FOV), 250 mm × 250 mm; voxel 

resolution = 1 mm3 isotropic, and number of slices, 176. The rs-fMRI data were as follows: TR 

= 645 ms, TE = 30 ms, flip angle = 60°, FOV = 222 mm × 222 mm, voxel resolution = 3 mm3 
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isotropic, number of slices = 40, and number of volumes = 900. 

b) LEMON: LEMON imaging data were acquired using a Siemens 3 Tesla scanner equipped 

with a 32-channel head coil. Scanning parameters of the T1-weighted data were as follows: TR 

= 5000 ms, TE = 2.92 ms, inversion time 1 (TI1) = 700 ms, TI2 = 2,500 ms, flip angle 1 (FA1) 

= 4°, FA2 = 5°, echo spacing = 6.9 ms, bandwidth = 240 Hz/pixel, FOV = 256 mm, voxel 

resolution = 1 mm3 isotropic, acceleration factor = 3, and number of slices = 176. The 

parameters of the rs-fMRI data were as follows: TR = 1400 ms, TE = 30 ms, flip angle = 69°, 

FOV = 202 mm, voxel resolution = 2.3 mm3 isotropic, number of slices = 64 slices, number of 

volumes = 657, and multiband acceleration factor = 4. 

 

Data preprocessing 

a) NKI-RS: The T1-weighted and rs-fMRI data were preprocessed using the fusion of 

neuroimaging preprocessing (FuNP) volume-based pipeline, which combines the AFNI, FSL, 

and ANTs software [97–100]. The magnetic field inhomogeneity of the T1-weighted data was 

corrected, and nonbrain tissues were eliminated. The rs-fMRI data were preprocessed as 

follows: the first 10 s of the volume were discarded, and head movements were corrected. The 

FIX software was used to eliminate nuisance variables, such as the cerebrospinal fluid, white 

matter, head motion, and cardiac- and large-vein-related abnormalities [101]. The artifact-free 

rs-fMRI data were registered onto the preprocessed T1-weighted data and subsequently onto 

the MNI152 standard space. Spatial smoothing with a full-width-at-half-maximum of 5 mm 

was applied. 

b) LEMON: The T1-weighted data preprocessing was performed based on Nipype; the details 

are described in (https://github.com/NeuroanatomyAndConnectivity/pipelines/tree/master/src/

lsd_lemon) [102]. In brief, CBS Tools [103] were used to remove the background from the T1-

weighted image, and masked images were used to reconstruct cortical surfaces using 

FreeSurfer [104,105]. The T1-weighted data were registered onto the MNI152 standard space 

based on the diffeomorphic nonlinear registration using ANTs [100]. The de-identification 

process was performed using CBS Tools [103] by applying a brain mask to all anatomical scans. 

The rs-fMRI data were preprocessed using Nipype [102]. The pipeline included the following 

steps: the first five volumes were discarded to allow for signal equilibration and steady-state 

conditions [106]. Head motion and MRI-induced distortions were corrected [99]. The rigid-

body transformation was applied to co-register the rs-fMRI data with the anatomical 

image [107]. Denoising was based on Nipype rapidart and aCompCor [108], and band-pass 

filtering in the frequency range of 0.01–0.1 Hz was applied. Standardization of mean centering 

and variance normalization was performed [109], and the preprocessed data were registered 

onto the MNI152 standard space [100]. 
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Eigenvector generation 

We constructed a functional connectivity matrix from the preprocessed rs-fMRI data (Figure 

1A) by calculating Pearson’s correlation of the time series between two different regions. Brain 

regions were defined using the Brainnetome atlas [42] and a cortico-cortical functional 

connectivity matrix with a size of 210 × 210. The correlation coefficient was Fisher’s r-to-z 

transformation [110]. We generated principal eigenvectors of functional connectivity using the 

BrainSpace toolbox (https://github.com/MICA-MNI/BrainSpace) [43]. The diffusion map 

embedding algorithm [111], which is robust to noise and computationally efficient was used to 

estimate eigenvectors from the functional connectivity matrix, leaving only the top 10% 

elements per row. Eigenvectors of each individual were aligned to group-level template 

eigenvectors defined based on a group-averaged functional connectome via Procrustes 

alignment (Figure 1A) [43,44]. The age and sex were controlled using eigenvectors.  

 

Architecture of the autoencoder model 

An autoencoder was used to generate latent features from concatenated eigenvectors. The 

autoencoder model is defined as follows:  

ℎ = 𝑒𝑛(𝑈) = 𝑡𝑎𝑛 ℎ(𝑊 𝑈 + 𝑏 ), 

𝑈′ = 𝑑𝑛(ℎ) = 𝑡𝑎𝑛 ℎ(𝑊ℎ + 𝑏), 

𝐿 = ∑
|𝑈 − 𝑈′| 

2

𝑛
, 

where n is the size of the input vector and 𝑒𝑛 is the encoder, which transforms the input 

vector 𝑈  into a feature representation (or hidden representation bottleneck) layer ℎ . 

Furthermore, ℎ is used to reconstruct the input data and generate 𝑈’ using the decoder 𝑑𝑛. 

The model was trained by minimizing the sum of mean square errors 𝐿 between the input (𝑈) 

and output (𝑈’). The autoencoder model consists of two encoder layers, two decoder layers, 

and one feature representation layer. The feature representation layer had 210 latent variables, 

and each encoder and decoder layer had 630 and 420 units, respectively (Figure 1B). We used 

a hypertangent activation function in all layers, and a dropout rate of 0.3 was applied in the 

input layer [112]. The model was optimized using the Adam optimizer [113] with a learning 

rate of 1e-4, batch size of 10, and weight decay (i.e., L2-regularization) of 0.1. We concatenated 

three eigenvectors that provided sufficient information on the total functional connectivity data 

and entered it into the autoencoder model. We divided the dataset into training, validation, and 

test datasets with the ratios of 60, 20, and 20%, respectively. We trained the model using the 

training data and validated its performance using the validation data. We selected the model 

that exhibited the highest performance in the validation dataset for a total of 500 epochs. The 
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selected model was applied to the test dataset, and its performance was assessed by calculating 

linear correlations between 𝑈 and 𝑈’. 

 

Subgroup identification 

Latent features in the hidden representation layer ℎ  were used to define the participant 

subgroups. We applied k-means clustering, which is based on the Euclidean distance. The 

optimal number of subgroups was determined using the consensus clustering, which robustly 

assesses how a pair of data is assigned to the same cluster (i.e., consensus coefficient) [45]. We 

determined the optimal number of subgroups, in which the largest consensus coefficient 

occurred, while varying the number of clusters. To assess the clinical and behavioral traits of 

subgroups, we compared the measured BMI and eating behavior scores using the TFEQ. The 

TFEQ consists of 51 questions [46], and each element is assigned to one of the three domains: 

(i) cognitive restraint, (ii) disinhibition, and (iii) hunger. We applied a two-sample t-test to 

compare each score between the subgroup pairs (Figure 1C). Significance was assessed using 

1,000 permutation tests by randomly shuffling participants. A null distribution was constructed, 

and the real t-statistic value was deemed significant if it did not belong to 95% of the 

distribution (two-tailed p<0.05). Multiple comparisons were corrected using FDR [114].  

 

Integrated gradient for model explanation 

To interpret latent features in the hidden representation layer, we assessed the attribution of 

each brain region to generate latent features using an integrated gradient approach (Figure 2A) 

[47]. The integrated gradient provides information on the extent to which a specific element 

(i.e., the brain region) in the input data contributes to predicting the output data (i.e., latent 

features). In particular, the integrated gradient (𝐼𝐺) from the 𝑖th neuron is defined as follows: 

𝐼𝐺𝑖(𝑥) = (𝑥𝑖 − 𝑧𝑖) ∗ ∫
𝛿𝑓(𝑧 + 𝛼 ∗ (𝑥 − 𝑧 ))

𝛿𝑥𝑖
𝑑𝛼

1

𝛼=0

, 

where 𝑥 is the input data, 𝑧 denotes the baseline, and 𝛼 is the interpolation constant. The path 

integral can be approximated as follows: 

𝐼𝐺𝑖(𝑥) = (𝑥𝑖 − 𝑧𝑖) ∗
1

𝑀
∑

𝛿𝑓 (𝑧 +
𝑚
𝑀 ∗ (𝑥 − 𝑧 ))

𝛿𝑥𝑖

𝑀

𝑚=1

, 

where 𝑚  and 𝑀  are the number of steps in the scaled feature perturbation constant and 

Riemann sum approximation of the integral, respectively. If the output has significantly 

changed, we assume that the attribution of the input data is high and vice versa. Thus, we can 

assess which brain regions of the input data considerably contributed during the compression 
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and reconstruction processes. After calculating integrated gradients of each eigenvector, we 

stratified the effects according to the functional networks [49] to assess the networks that 

contributed the most to the reconstruction of the original data (Figures 2B and C). 

 

Between-group differences in cortico-cortical and subcortico-cortical connectivity 

We compared the cortico-cortical connectivity computed from the three integrated gradient 

maps across subgroups using MANOVA (Figure 3A), where multiple comparisons were 

corrected using FDR [114]. The effects were stratified according to seven intrinsic functional 

networks [49]. In addition, we compared the subcortico-cortical connectivity across the 

subgroups using ANOVA (Figure 3B). The subcortico-cortical connectivity was quantified 

using the nodal degree centrality, a widely used graph-theoretical measure calculated by 

summing the connectivity strength of a particular brain area [115–117]. The nodal degree was 

estimated from the functional connectivity matrix, leaving only the top 10% elements per row. 

Multiple comparisons were corrected using FDR.  

 

Associations with cognitive states 

Additionally, we assessed the relationships among the between-group differences in the 

cortico-cortical and subcortico-cortical connectivity across subgroups with cognitive terms 

using Neurosynth [50,51]. Neurosynth decodes the input data based on a meta-analytical 

method and provides correlation coefficients, whose cognitive terms are related to the data 

(Figure 4A). To systematically assess hierarchically organized cognitive maps, we performed 

spatial correlations between the between-group difference map in eigenvectors and 24 

cognitive state maps, as defined in [22] (Figure 4B). 

 

Reproducibility experiments 

We performed comparing eating behavior traits among subgroups to validate the 

generalizability of our results using the LEMON dataset [41]. We transferred the autoencoder 

model trained using the NKI-RS dataset into the LEMON dataset and applied the k-means 

clustering to identify subgroups. The obesity and eating behavior scores were profiled across 

the subgroups (Figure 5A), and the profiles were compared between the two datasets (Figure 

5B). 

 

Sensitivity analyses 

a) Subgroup identification without autoencoder. We applied the k-means clustering to the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482759doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482759
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

concatenated eigenvectors and not to latent features from the autoencoder in order to evaluate 

the effect of latent features on profiling clinical and behavioral traits (Figure S1).  

b) Bootstrapping analysis. We performed 1,000 bootstraps with 90% resampled data to 

demonstrate the robustness of our results (Figure S2). 

c) Different densities of connectivity matrix. We computed eigenvectors using different 

connectivity matrix densities of 20 to 30% and repeated the analyses (Figure S3A). 

d) Different clustering methods. Instead of the k-means clustering, we used the Gaussian 

mixture model clustering approach, which creates clusters based on a probability distribution 

in order to assess the consistency of subgroup profiles (Figure S3B). 

e) Different model architectures. We generated latent features by (i) removing the dropout layer 

(Figure S4A) and (ii) adding or (iii) subtracting one layer at the encoder and decoder (Figures 

S4B, S4C). 

f) Manifold eccentricity. The same analyses were performed using the manifold eccentricity 

analysis [23,29], which computes the Euclidean distance between the center of the template 

manifold and all data points (i.e., brain regions) in the manifold space (Figure S5).  
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Mind-Body-Emotion Interactions database are publicly available at 

(https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/). 

 

CODE AVAILABILITY 

Codes for eigenvector generation are available in the BrainSpace toolbox 
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Supplementary Information 

 

Figure S1 | Subgroup identification without the autoencoder model. (A) Three eigenvectors (E1, E2, E3) 

controlled for age and sex are shown on brain surfaces. (B) Distribution of BMI and eating behavior scores of 

each subgroup are plotted. Abbreviation: BMI, body mass index. 
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Figure S2 | Bootstrapping analysis. We performed bootstrapping analysis by selecting 90% of participants with 

replacement and reported the obesity and eating behavior scores. Three representative results are presented. 

Abbreviations: BMI, body mass index; FDR, false discovery rate. 
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Figure S3 | Different functional connectivity matrix densities and clustering method. We plotted BMI and 

eating behavior scores by changing the (A) matrix density with 20% (top) and 30% (bottom) and (B) 

clustering method to the Gaussian mixture model. Abbreviations: BMI, body mass index; FDR, false discovery 

rate. 
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Figure S4 | Different autoencoder models. (A) Distribution of the BMI and eating behavior scores without 

dropout layers. (B) Score distribution with one extra encoder and one extra decoder layers. The feature 

representation layer had 120 latent variables. (C) Score distribution with one less encoder and one less decoder 

layers. The feature representation layer had 420 latent variables. Abbreviation: BMI, body mass index. 
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Figure S5 | Subgroup analysis using the manifold eccentricity. (A) Dots in the scatter plot represents each brain 

region projected onto the three-dimensional manifold space, and colors are mapped onto the brain surface for 

visualization. (B) Distribution of the BMI and eating behavior scores are plotted. Abbreviation: BMI, body mass 

index. 
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