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Dynamic soaring harvests energy from a spatiotemporal wind gradient, allowing al-

batrosses to glide over vast distances. However, its use is challenging to demonstrate

empirically, and has yet to be confirmed in other seabirds. Here we investigate how

flap-gliding Manx Shearwaters optimise their flight for dynamic soaring. We do

so by deriving a new metric, the horizontal wind effectiveness, that quantifies how

effectively flight harvests energy from a shear layer. We evaluate this metric empir-

ically for fine-scale trajectories reconstructed from bird-borne video data using a

simplified flight dynamics model. We find that the birds’ undulations are phased

with their horizontal turning to optimise energy harvesting. We also assess the

opportunity for energy harvesting in long-range, GPS-logged foraging trajectories,

and find that Manx Shearwaters optimise their flight to increase the opportunity for

dynamic soaring during favourable wind conditions. Our results show how small-

scale dynamic soaring impacts large-scale Manx Shearwater distribution at sea.
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Short title Dynamic soaring in flap-gliding seabirds

Teaser Flap-gliding shearwaters harvest wind energy by fine-scale trajectory optimization and this

impacts their large-scale distribution at sea.

Introduction

Wind speed and direction influence the movement ecology of birds across a range of spatiotem-

poral scales from local flight direction (1) and timing (2–7), through route selection (6) and drift

compensation (1, 8, 9), to population distribution (10) and migration success (5). Such wind effects

have been observed in a wide range of species, but the procellariiform seabirds (10–14), comprising

the albatrosses, petrels and shearwaters, differ notably from non-pelagic species in their behavioral

responses to wind. In contrast to the tailwind preference of non-pelagic birds (2, 5–7), Procellari-

iformes typically prefer crosswind or cross-tailwind flight (11, 12, 14, 15). They are also able to

fly huge distances (10, 16–18) without having to offset their aerodynamic drag losses fully through

flapping (12, 19). Both differences may be the product of a specialised flight mode called dynamic

soaring (20), but whereas this is the only plausible explanation of how albatrosses are able to glide im-

mense distances without flapping (12), dynamic soaring is more challenging to demonstrate in species

such as shearwaters that routinely flap their wings during their characteristic rising-falling flight (19).

Soaring enables a bird to replace some or all of the aerodynamic kinetic energy that it loses to

aerodynamic drag by harvesting energy from the atmosphere (21). Static soaring offsets these drag

losses by harvesting gravitational potential energy from rising air currents, whereas dynamic soaring

harvests aerodynamic kinetic energy from a spatiotemporal wind gradient (22). This can be most

easily understood by noting that a bird flying into the wind experiences an increase in headwind speed

as it moves from slower to faster moving air. Because the bird’s flight dynamics prevent its airspeed

from equilibrating instantaneously (23), it follows that the bird will experience an immediate increase

in its airspeed, and hence aerodynamic kinetic energy. Less obviously, perhaps, a similar increase

in aerodynamic kinetic energy must also occur when a bird that is flying with the wind moves from
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Figure 1: Cyclical basis of dynamic soaring. The energetic benefits of dynamic soaring are realised
by phasing the horizontal and vertical components of flight to meet the Rayleigh conditions of flying
into a strengthening wind and with a weakening wind. In a horizontal wind field, the sequence
of headwinds (orange) and tailwinds (dark blue) that the bird experiences is determined only by
the horizontal component of its flight trajectory (left). The vertical component (middle) determines
whether the bird experiences an increasing or decreasing wind, according to whether it is ascending
(black) or descending (light grey) through the shear layer (σ). The pattern of energy harvesting (right)
depends on whether the phasing of the horizontal and vertical components of the flight trajectory
meets the Rayleigh conditions, as these are what determine whether a bird gains (light blue) or loses
(red) energy from the shear layer before taking account of drag losses. How much energy the bird
harvests depends on the degree of alignment of the wind vector (black arrow) and the air velocity
vector (grey arrow), as well as on the speed of flight and strength of wind shear. The trajectories
shown here are reconstructed relative to the air from our empirical data for a part of one flight.
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faster to slower moving air. In general, dynamic soaring therefore entails flying into a strengthening

wind and with a weakening wind (22). More specifically, because wind speed increases with height

above the sea’s surface (24), pelagic dynamic soaring entails ascending into the wind and descending

with the wind (22). We call these criteria the Rayleigh conditions (see Figure 1), after their late 19th

century discoverer (25).

Although the physical principles of dynamic soaring are well understood, showing empirically

that a bird is extracting aerodynamic kinetic energy from a spatiotemporal wind gradient—and hence

implementing dynamic soaring—is extremely challenging. Among Procellariiformes, cyclical vari-

ation in mechanical energy has been used to assess dynamic soaring for the Wandering Albatross

(Diomedea exulans) (26) and the Manx Shearwater (Puffinus puffinus) (15) using high-resolution GPS

measurements. There is a general difficulty with this approach in that cyclical variation in mechanical

energy does not necessarily imply cyclical dynamic soaring. For instance, a bird which is circling

at constant airspeed in a uniform wind field displays cyclical variation in its inertial kinetic energy,

but is not extracting energy from a spatiotemporal wind gradient. Similarly, intermittent bounding

and undulating flight shows cyclical variation in both inertial kinetic energy and gravitational poten-

tial energy in the absence of energy harvesting from a spatiotemporal wind gradient (27). The mere

occurrence of cyclical variation in mechanical energy is therefore insufficient to prove the use of dy-

namic soaring. In albatrosses, dynamic soaring has instead been inferred by analysing the distribution

of mechanical energy gain with reference to a detailed aerodynamic model (26). Proving that flap-

gliding species such as shearwaters use dynamic soaring is even more challenging, however, because

the variation in mechanical energy that dynamic soaring entails may not even appear cyclical when

changes in mechanical energy due to flapping are superimposed (15).

Here, we address these challenges by deriving a dimensionless metric describing dynamic soaring

that we call the horizontal wind effectiveness (εh). We estimate this empirically for flap-gliding Manx

Shearwaters by using a simplified flight dynamics model to reconstruct n = 9 detailed flight trajecto-

ries from video data collected using bird-borne video loggers (28) attached toN = 6 individuals. The

horizontal wind effectiveness εh quantifies how effectively flight in a given instantaneous direction
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harvests aerodynamic kinetic energy from a wind gradient, where positive values indicate that energy

is gained from the shear layer and negative values indicate that energy is lost to it. Its long-term

average (−1 ≤ ε̄h ≤ 1) can therefore be used to assess whether and how a given flight trajectory is

optimized for dynamic soaring in relation to the opportunity that the wind direction provides, which

we quantify by defining another metric that we call the wind opportunity ω̄. We find that shearwa-

ters phase their vertical sequence of ascent and descent appropriately to gain energy from the shear

layer independent of the wind speed W , but only optimize their horizontal turning cycle for dynamic

soaring under favourable conditions when the crosswind component ω̄W is high. We use GPS data

from n = 368 outbound foraging flights and n = 368 return flights, from N = 201 individuals,

to test whether this fine-scale behavior is recapitulated at larger spatiotemporal scales. We find that

shearwaters tend to fly in a crosswind direction that is favourable for dynamic soaring on their out-

bound foraging trips, particularly when the wind speed W is high. Return legs are more constrained

in their flight direction, and do not show any significant crosswind tendency. Besides conclusively

demonstrating the use of dynamic soaring by a flap-gliding seabird, the metrics of wind effectiveness,

wind opportunity, and crosswind component that we derive offer a framework for analysing dynamic

soaring more generally.

Theoretical Framework

Energetics of dynamic soaring For a bird flying in a steady horizontal wind field with vertical

wind shear σ ≥ 0, the mass-specific flow of useful mechanical energy due to dynamic soaring is

shown in the Supplementary Text to be:

de

dt
= −1

2
U2σ sin 2γ cos η (1)

where U = ‖U‖ is the bird’s airspeed, γ is the aerodynamic flight path angle defined as the elevation

of the bird’s air velocity U with respect to the horizontal, signed positive when climbing, and η is the

heading-to-wind angle defined as the angle between the wind vector W and the horizontal component

of U. The local shear gradient σ is usually unknown, but it is clear by inspection that the instantaneous
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rate of energy harvesting is always maximized by flying in an instantaneous direction that maximizes

the dimensionless quantity:

ε = − sin 2γ cos η (2)

which we call the total wind effectiveness. Because wind velocity increases with height above a

surface, σ > 0 by definition (see Supplementary Text). Energy is therefore harvested from the wind

gradient when ε > 0 and lost when ε < 0, at a rate proportional to ‖ε‖.

The aerodynamic flight path angle γ is difficult to measure in an unknown wind field. However,

because −90◦ ≤ γ ≤ 90◦ by definition, it follows that sin 2γ is positive when γ > 0, and negative

when γ < 0. The instantaneous rate of energy harvesting is therefore maximized by flying in an

instantaneous direction that maximizes the simpler quantity:

εh = − sgn(γ) cos η (3)

where sgn denotes the sign function. We call εh the horizontal wind effectiveness, because its magni-

tude depends only on the bird’s horizontal flight direction with respect to the wind η(t), whereas its

sign depends on how the bird’s vertical motion γ(t) is phased with respect to its horizontal motion.

Energy is harvested from the wind gradient when εh > 0 and lost when εh < 0, at a rate which is

proportional to ‖εh‖. The Rayleigh conditions of ascending into a headwind (i.e. flying with γ > 0

and cos η < 0) or descending with a tailwind (i.e. flying with γ < 0 and cos η > 0) are met when-

ever εh > 0, but are implemented most effectively as εh → 1. Eq. 3 therefore emphasises that both

the shape of the horizontal flight track and the phasing of its ascent-descent sequence are critical to

determining how effectively energy is harvested through dynamic soaring.

Flight dynamics model Computing the horizontal wind effectiveness εh requires knowledge of

the sign of the aerodynamic flight path angle γ, and measurement of the heading-to-wind angle

η (see Eq. 3). Identifying the sign of γ is straightforward if the wind field is horizontal, because
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then sgn(γ) is positive when ascending and negative when descending. We will further assume that

sgn(γ) = sgn(θ) where θ is the bird’s pitch angle (see Materials and Methods). Measuring η is much

harder because whereas a bird’s flight trajectory is most readily obtained in an Earth-fixed coordi-

nate system using a GPS logger, the heading-to-wind angle η is necessarily measured with respect

to the air. Relating these two frames of reference requires knowledge of the local wind velocity,

which is problematic in a shear layer. To avoid this difficulty, we instead use a simplified flight dy-

namics model to predict the turning associated with the bird’s pitching and banking motion that we

measure by observing the horizon in bird-borne video from a body-fixed camera (Figure 2A,B; see

also (29)). For this, we specify the bird’s orientation using a set of intrinsic Euler angles where ψ is

the bird’s yaw angle, θ is the bird’s pitch angle, and φ is the bird’s bank angle, defined in that order

(see Supplementary Text and Figure 2C–E).

We assume that the heading-to-wind angle η is equivalent to the angular difference between the

bird’s yaw angle ψ and the wind’s bearing ζ , such that η = ψ − ζ (Figure 2C). This amounts to

assuming that the bird’s air velocity vector U is aligned with its longitudinal body axis at all times.

We estimate ψ by integrating the following approximate model of unsteady banked turning (see Sup-

plementary Text) on a per-frame basis using trapezoidal integration:

ψ̇ ≈ g sinφ

U0 cos θ
(4)

where g = 9.81 ms-2 is gravitational acceleration and U0 = 11.1 ms-1 is the bird’s equilibrium

airspeed, as estimated in an earlier study of cruising Manx Shearwaters (19). Here, the angles θ and φ

are the bird’s pitch and bank angles (Figure 2D,E), estimated from the apparent motion of the horizon

(Figure 2A,B).

The unsteady banked turn model in Eq. 4 is an approximation, insofar as it assumes that the

product of the bird’s wing area S and lift coefficient CL remains approximately constant, and assumes

that any variation in the airspeed U is small in comparison with the equilibrium airspeed U0. This

is equivalent to assuming approximately constant airspeed U ≈ U0, and approximately constant lift

L equal to body weight, L ≈ mg where m is mass. Eq. 4 also neglects the aerodynamic effects
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of wind shear on the bird’s turning, which is reasonable if the bird flies directly with or against the

wind as it descends or ascends through the shear layer, as is most efficient for dynamic soaring (see

Supplementary Text for detailed discussion). For the purposes of the subsequent statistical analysis,

we define dynamic soaring cycles as beginning and ending at peaks in the estimated time history of

the bird’s yaw angle ψ (Figure 2F).

Optimization of dynamic soaring Whilst it is possible in principle to find cyclical trajectories

whose wind effectiveness is always non-negative, the optimization of a dynamic soaring trajectory is

complicated in practice by the need to progress in a useful direction. The benefits of harvesting energy

through dynamic soaring are therefore expected to trade off against the costs of deviating from the

desired direction of progress, such that flights can typically be expected to involve alternating periods

of negative as well as positive wind effectiveness. Because the rate of return from dynamic soaring

is proportional to the wind shear strength σ (see Eq. 1), we should not necessarily expect birds to fly

trajectories that maximize the energy they harvest on days with little wind. On such days, there is

no prior reason to expect the mean wind effectiveness to be significantly different from zero, which

is the null expectation if the bird phases the ascent-descent sequence described by γ(t) at random

with respect to the pattern of horizontal turning described by η(t) (see Eq. 3). Conversely, under

extremely windy conditions like those exploited by albatrosses flying in the Southern Ocean, it may

be possible to harvest more energy than is lost to drag. Hence, whilst we should certainly expect the

mean wind effectiveness to be positive under such favourable conditions, we should not necessarily

expect it to be maximized outright, given that there is no way of storing any excess kinetic energy

that may be harvested when flying close to the surface. In fact, energy harvesting is most likely to be

maximized under marginally favourable conditions, when the returns available from dynamic soaring

are sufficient to merit deviating from the desired direction of progress, but insufficient to enable flight

to be sustained without flapping. These are precisely the conditions that we hypothesise will hold for

Manx Shearwaters using flap-gliding flight on windy days.
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Figure 2: Reconstruction of cyclical turning behavior using bird-borne video. (A,B) Video from
a camera mounted on the back of a Manx Shearwater demonstrates alternating left (A) and right (B)
banked turns, coupled with cyclical pitching. The camera bank angle (φc) is measured as the angle of
the horizon line, which we detect automatically (yellow line); the camera pitch angle (θc) is measured
as the angular distance of the detected horizon line from the image centre (crosshairs); see Materials
and Methods. (C-E) Angle definitions, shown in three orthogonal views. Overhead view (C): the
bird’s heading-to-wind angle (η) is defined as the angle between the horizontal wind vector (W) and
the bird’s air velocity vector (U) in horizontal projection; this angle η is assumed to equal the angular
difference between the bird’s yaw angle (ψ) and the wind’s azimuth (ζ). Lateral view (D): the bird’s
flight path angle (γ) is defined as the elevation of U with respect to the horizontal; this angle is
assumed to equal the bird’s pitch angle (θ), which defines the inclination of the lift vector L in the
bird’s symmetry plane. Caudal view (E): the bird’s bank angle (φ) defines the inclination of L in the
bird’s transverse plane. (F) Sample time histories of the estimated bank (φ), pitch (θ) and yaw (ψ)
angles for flight b117ii-753. Red crosses denote peaks in ψ, corresponding to points where the sign
of φ changes; these points are used to define the beginning and end of each turning cycle.
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Results

Our bird-borne video data (Figure 2) show the weaving, undulatory, flap-gliding flight behavior that is

characteristic of shearwaters (19). This is evidenced by the cyclical rolling and pitching of the visible

horizon (Figure 2A,B), upon which are superimposed occasional faster oscillations due to flapping.

The weaving component of this behavior is clearly visible in the n = 9 horizontal flight trajectories

that we reconstructed at a fine scale by using Eq. 4 to model the turning associated with the birds’

observed rolling and pitching motion (Figure 3). Likewise, the coupling of the weaving and undu-

latory components of this behavior is apparent in the three-dimensional reconstructions (Figure 1).

This turning behavior occurs on comparatively short timescales (median of mean turning cycle period

per flight: 7.0 s), and produces an indirect flight path that must presumably offer some functional

benefit to the bird. The reconstructed flight trajectories qualitatively resemble the cyclical trajectories

attributed to dynamic soaring in albatrosses (26), and we analyse their suitability for harvesting en-

ergy from the shear layer quantitatively below. Nevertheless, as the shearwaters usually flapped their

wings as they transitioned from ascending to descending flight, and as they were sometimes observed

flapping at other points in the cycle, such energy as they harvested from the shear layer cannot have

been sufficient to offset their drag losses completely. This fine-scale flight behavior is not directly

observable in the coarse trajectories that we sampled at 5-minute intervals using GPS loggers, but it

is reasonable to assume that the birds would have behaved similarly on these n = 368 flights, so we

analyse the opportunity that these flights would have provided for dynamic soaring below.

The weaving flight of shearwaters implements dynamic soaring The sample mean horizontal

wind effectiveness ˆ̄εh was positive on all n = 9 fine-scale flight trajectories that we collected from

N = 6 individuals (sign test: p = 0.004, n = 9; median ˆ̄εh = 0.167; bootstrapped 95% CI: 0.042,

0.272). These data comprise a total of 17,457 video frames corresponding to approximately 873 s

of flight data, with each recording lasting between 89 s and 114 s. This positive mean horizontal

wind effectiveness indicates that the shearwaters flew in a manner expected to harvest energy from

the shear layer, but how effectively were their trajectories optimized for dynamic soaring?
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Figure 3: Weaving flight of Manx Shearwaters. All n = 6 individual Manx Shearwaters that we
sampled at fine-scale consistently undertook weaving flight. We reconstructed their n = 9 trajectories
shown here by using our estimates of the bird’s pitch, bank and assumed airspeed to estimate the bird’s
air relative flight velocity vector U, which we integrated numerically using trapezoidal integration for
the purposes of visualisation. Here, these air-relative trajectories are expressed in a coordinate system
aligned with the experienced wind direction, such that the overall direction of each flight on the graph
indicates the extent to which the bird heads with, against, or across the wind. The angle between
the average air velocity vector Ui of cycle i and the wind velocity unit vector Ŵ we call λi, and
we use this for computing the mean wind opportunity metric ω̄ in section . Each trajectory has been
projected into the horizontal plane and sections of ascent are shown in black, while sections of descent
are shown in grey.

To answer this question, it will prove convenient to decompose the mean horizontal wind effec-

tiveness ε̄h as:

ε̄h = fR‖ cos η‖R − fR′‖ cos η‖R′ (5)

where fR represents the frequency with which the Rayleigh conditions are met (i.e. the proportion of

frames on which εh > 0) and fR′ = 1 − fR represents the frequency with which they are not met

(i.e. the proportion of frames on which εh ≤ 0). Implicitly, ‖ cos η‖R and ‖ cos η‖R′ denote the mean

magnitude of cos η over the corresponding portions of flight. This decomposition emphasises: (i) that
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the mean horizontal wind effectiveness ε̄h of a given pattern of turning behavior becomes maximal

as fR → 1, which entails phasing the ascent-descent sequence to meet the Rayleigh conditions; and

(ii) that the maximal value of the mean horizontal wind effectiveness is further constrained by the

time history of the bird’s horizontal flight direction with respect to the wind, because ε̄h → | cos η|R

as fR → 1. We will examine these two influences separately, first by assessing the optimality of the

observed ascent-descent sequence conditional upon the observed horizontal trajectory, before then as-

sessing the optimality of the observed horizontal trajectory in relation to the observed wind direction.

Shearwaters phase their vertical and horizontal trajectories for dynamic soaring We first com-

pare the sample mean horizontal wind effectiveness ˆ̄εh on each trajectory with the distribution of pos-

sible values of ε̄h given counterfactual phasing of the same ascent-descent sequence. In other words,

we compute the distribution of ε̄h(τ) by holding the time history of the observed heading-to-wind

angle η(t) fixed, while time-shifting the aerodynamic flight path angle γ(t) by an amount τ such that:

fR =
1

T

T∑
t=0

H
[
− sgn

(
γ(t− τ)

)
sgn

(
cos η(t)

)]
(6)

where H is the Heaviside function, which returns H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0.

Likewise, we have:

‖ cos η‖R =
1

fRT

T∑
t=0

H
[
− sgn

(
γ(t− τ)

)
sgn

(
cos η(t)

)]
‖ cos η(t)‖ (7)

‖ cos η‖R′ =
1

fR′T

T∑
t=0

(
1−H

[
− sgn

(
γ(t− τ)

)
sgn

(
cos η(t)

)])
‖ cos η(t)‖ (8)

with fR′ = 1− fR. Evaluating fR, fR′ , ‖ cos η‖R and ‖ cos η‖R′ for different time shifts τ and substi-

tuting these into Eq. 5 generates the desired distribution of ε̄h(τ), and recovers the observed value ˆ̄εh

when τ = 0. Note that we wrap the time history of each flight when computing these quantities, such

that the number of time points that we evaluate is the same for all values of τ . If the birds’ ascent-

descent sequences were appropriately synchronised with their horizontal flight trajectories, then we
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would naturally expect ε̄h(τ) to peak at τ ≈ 0. This was true of the ascent-descent sequences that

we observed on all 9 flights (Figure 4), each of which was timed to within ±0.4 s of the optimum,

with a median phase shift of −7◦ relative to the period of a complete turning cycle (1st, 3rd quartiles:

−8◦, 11◦). Moreover, the sample mean horizontal wind effectiveness ˆ̄εh was usually close to the peak

value of ε̄h(τ), at a median value of 98.4% of the maximum (1st, 3rd quartiles: 94.6, 99.1%). These

results demonstrate that the birds synchronised their ascent-descent sequences with their horizontal

flight trajectories so as to harvest energy from the shear layer.

This conclusion is based on holding the ascent-descent sequence fixed while varying its timing

with respect to the observed horizontal flight trajectory. This is analogous to finding that a piano score

harmonizes most closely when its bass and treble clef lines are correctly aligned, which provides

evidence that they were jointly optimized in their composition, but says nothing about whether either

is globally optimal. We therefore evaluate the maximum possible value that ε̄h could have taken for

each horizontal flight trajectory, by finding the optimal permutation of the observed ascent-descent

sequence. That is, we find the global optimum ε̄h∗ , by permuting the observations of sgn(γ)(t) so

as to: (i) maximize fR at fR = fR∗; and (ii) maximize ‖ cos η‖R given fR = fR∗ . This analysis

showed that the sample mean horizontal wind effectiveness ˆ̄εh was considerably lower than the global

optimum, at a median value of 40.5% of ε̄h∗ (1st, 3rd quartiles: 16.2, 59.2%)). We therefore find no

evidence that the observed ascent-descent sequence was itself optimal, although it is worth noting that

the strength of this conclusion depends on the fidelity of the modelled flight trajectory and assumed

wind, and that there is no guarantee that any globally-optimal sequence of ascent and descent would

have been physically achievable.

In principle, any sub-optimality of the observed ascent-descent sequence reflects the possibility

of reordering it so as to: (i) meet the Rayleigh conditions more frequently; or (ii) meet the Rayleigh

conditions at times when the horizontal flight direction was more effective for energy harvesting.

To test between these alternatives, we compute a constrained global optimum ε̄h∗′ , by permuting the

observed sequence of sgn(γ(t)) so as to: (i) hold fR fixed at fR = f̂R, where f̂R is the observed value

of fR; and (ii) maximize ‖ cos η‖R given that fR = f̂R. This analysis showed that the sample mean
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Figure 4: Optimization of the phasing of the vertical and horizontal components of each flight.
Each panel plots the distribution of mean horizontal wind effectiveness ε̄h(τ) computed by holding the
horizontal component of one of the n = 9 fine-scale flight trajectories fixed whilst varying the phasing
of its vertical component by applying a time shift τ . Here −0.5 ≤ τ ≤ 0.5, where τ is expressed
relative to the mean period of one turning cycle. Positive values of ε̄h(τ) are shown in blue; negative
values in red. The vertical blue line denotes the maximum value of ε̄h(τ) for each distribution and
its associated value of τ , from which it is clear that the sample mean horizontal wind effectiveness
ˆ̄εh = ε̄h(0) is close to the maximum ε̄h(τ) for each trajectory. The horizontal blue line plots the
global optimum ε̄h∗ obtained by permuting the sequence of ascent and descent to maximize ε̄, which
is always substantially higher than the maximum ε̄h(τ) obtained by phase-shifting the ascent-descent
sequence. See text for discussion.
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horizontal wind effectiveness ˆ̄εh was considerably lower even than the constrained global optimum, at

a median value of 56.6% of ε̄h∗′ (1st, 3rd quartiles: 41.2, 74.9%), despite the Rayleigh conditions still

being met with the same frequency fR = f̂R. This result demonstrates that the sub-optimality of the

observed ascent-descent sequences was primarily attributable to the Rayleigh conditions not being

met at the most opportune points in the flight, and only secondarily to the frequency with which they

were met. This is consistent with our earlier conclusion that the observed ascent-descent sequences

were synchronised with the horizontal flight trajectories so as to harvest energy from the shear layer,

but suggests that there might have been some room for improvement, subject to the earlier caveats on

the fidelity of the modelled flight trajectory, assumed wind, and physical achievability.

Shearwaters optimize their flight trajectories for dynamic soaring in a strong crosswind The

analysis so far has explored the optimization of the observed vertical sequence of ascent and descent

conditional upon the observed horizontal flight trajectory, which is in turn constrained by the need to

make useful progress over the sea’s surface. Theory predicts that a bird will maximize the energy it

can harvest from the shear layer by heading in a net crosswind direction (20,30–32). This is a natural

consequence of the Rayleigh conditions, which state that energy is gained by ascending into the wind

and descending with the wind, but lost if this phasing is reversed. Hence, because a bird must on

average lose as much height as it gains to remain within the shear layer, any net progress parallel to

the wind introduces an asymmetry that reduces the opportunity for energy harvesting. A bird may

therefore increase the energy that it can harvest from the shear layer by biasing its flight direction to

head across the wind on each cycle. We quantify this by defining the wind opportunity for the ith

cycle as ωi = ‖ sinλi‖ where λi is the angle between the bird’s mean air velocity vector over that

cycle Ui and the wind velocity unit vector Ŵ (Figure 3). In principle, a flight trajectory that heads

across the wind on every cycle has a mean wind opportunity of ω̄ = 1, whereas a trajectory that heads

into or against the wind on every cycle has a mean wind opportunity of ω̄ = 0. In practice, a value

0 < ω̄ < 1 is expected if the bird changes its net heading across cycles.

To assess how the horizontal flight trajectories were optimized in relation to the observed wind

direction, we compare the sample mean horizontal wind effectiveness ˆ̄εh for each trajectory with the
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corresponding distribution of possible values of ε̄h given counterfactual wind directions ζ . Specifi-

cally, we compute ε̄h(ζ) for each flight by holding the time history of the bird’s observed yaw angle

ψ(t) fixed, whilst varying ζ in 1◦ steps around the compass. This operation implicitly varies the mean

wind opportunity ω̄ for each flight, which we use to assess the joint distribution of ε̄h(ζ) and ω̄(ζ).

The resulting plots of ε̄h(ζ) against ω̄(ζ) typically have a symmetric, scissor-like form comprising

two looped arms (Figure 5). The symmetry of these plots reflects the fact that reversing the wind

direction reverses the flow of energy, whereas the looped shape of each arm reflects the asymmetry of

the birds’ turning cycles (Figure 3). In most cases, the maximum value of the wind opportunity ω̄(ζ)

for any wind direction ζ was close to, but less than, one. This reflects the fact that the birds’ cyclical

turning behavior was superimposed on a longer-term change in overall flight direction. Neverthe-

less, as we now show, the scissor-plots in Figure 5 provide clear evidence that the birds optimized

their horizontal turning cycle for dynamic soaring on flights with higher crosswind components ˆ̄ωW .

Conversely, on days when the crosswind component ˆ̄ωW was lower, there is no clear evidence that

the horizontal turning cycle was optimized for dynamic soaring—albeit that the vertical sequence of

ascent and descent was still timed appropriately to gain rather than lose energy from the shear layer.

The proper phasing of the vertical sequence of ascent and descent to meet the Rayleigh conditions

is evident from the fact that the observed point
(
ˆ̄ω, ˆ̄εh

)
always lies on the upper arm of the scissor-

plot, for which ˆ̄εh > 0 (Figure 5). Flights for which there is evidence that the detailed horizontal

flight trajectory is itself optimized for dynamic soaring are those in which both of the following two

conditions are satisfied. First, the maximum value of ε̄h(ζ) should coincide with a maximum of ω̄(ζ).

This implies that the turning cycle is tuned to harvest energy most effectively when the overall flight

direction relative to the wind offers the most opportunity for energy harvesting. Second, the observed

point
(
ˆ̄ω, ˆ̄εh

)
should be located at or close to the joint maximum of ε̄h(ζ) and ω̄(ζ). This implies

that the observed flight trajectory has the greatest potential for harvesting energy when the wind

direction is the same as was observed. These conditions hold for the 5 flights falling in the upper 50th

percentile for the crosswind component ˆ̄ωW , which are those offering the greatest potential returns

from dynamic soaring. Conversely, these conditions do not hold on the 4 flights with crosswind
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Figure 5: Optimization of horizontal flight trajectories with respect to the wind. Each panel plots
the distribution of mean horizontal wind effectiveness ε̄h(ζ) computed by holding the horizontal and
vertical components of one of the n = 9 fine-scale flight trajectories fixed whilst varying the assumed
wind direction ζ . Both the mean horizontal wind effectiveness ε̄h and the mean wind opportunity ω̄
vary as the wind direction ζ varies, and plots of ε̄h against ω̄ which have a scissor-like form in most
cases. Positive values of ε̄h are shown in blue; negative values in red. The grey points mark the
observed mean horizontal wind effectiveness ˆ̄εh and observed mean wind opportunity ˆ̄ωW . See text
for discussion.
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components below the 50th percentile. In summary, the birds only turned in a manner that was tuned

to capitalize on the opportunity for dynamic soaring on days when the potential return was high, albeit

that they always phased their vertical sequence of ascent and descent to gain rather than lose energy

from the shear layer.

Shearwaters bias outbound flight in a crosswind direction favouring dynamic soaring Given

the strong association observed between mean horizontal wind effectiveness ε̄h and mean crosswind

component ω̄W at fine spatiotemporal scales (Figure 6C), it is reasonable to expect that Manx Shear-

waters might benefit from biasing the heading of their foraging flights across the wind, with possible

implications for their large-scale distribution at sea. Depending on the locations of available foraging

grounds, crosswind flight may not be possible in all winds on the outbound leg of a flight, and will

be even more tightly constrained on the return leg by the unique direction to home. Indeed, pure

crosswind flight is impossible to achieve on both the outbound and return legs of a flight, because

directing the air velocity vector U perpendicular to the wind W on the outbound leg will generate a

downwind drift requiring correction on the return leg. We might, therefore, expect to see a preference

for crosswind flight directions on the outbound legs of foraging trips, which we test here against data

from n = 368 outbound and n = 368 return tracks collected using GPS loggers attached to N = 201

individuals from 2016-2019 (Figure 7). Note that of the n = 368 tracks that we analyse for each

direction of flight, 349 comprise the outbound and return legs of the same flights; the remaining 19

outbound and 19 return flights are not from matched samples.

We calculated the overall heading-to-wind angle λ for each flight leg as the angle between the

bird’s mean air velocity vector U over the flight leg and the wind velocity vector W (Figure 8A).

As the benefits of heading in a crosswind direction are independent of whether the wind comes from

the left or right, we quantified the variation in the overall heading-to-wind angle by computing the

sample standard deviation of ‖λ‖ where λ is defined on the interval [−180◦, 180◦]. We then compared

this to the population distribution of the same statistic obtained by randomising 100,000 times the

pairings of the sample values of U and W that we used to calculate λ (Figure 8B). In this analysis

we used all recorded outbound and return trajectories, meaning we included n = 368 outbound and
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Figure 6: Influence of the wind on the effectiveness of dynamic soaring. Each datapoint represents
one of the n = 9 fine-scale flight trajectories, and plots how the observed mean horizontal wind
effectiveness ε̄h varies as a function of the wind and its interaction with the bird’s overall direction of
flight. Wind speed W is treated as constant within a trajectory. The mean wind opportunity ω̄ is the
average of ‖ sinλi‖ over a trajectory where λi is the angle between W and the bird’s average heading
over the ith cycle. The crosswind component ω̄W is the product of the wind speed W and mean wind
opportunity ω̄. Vertical and horizontal dashed lines plot the median values of each variable. See text
for discussion.
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Colonies

S. Wales

N. Ireland

Figure 7: At-sea distribution of Manx Shearwaters. Coarse GPS trajectories show n = 368
flight tracks from colonies in Northern Ireland (Copeland; red) and southwest Wales (Skomer and
Skokholm; blue) recorded from 2016-19. Feeding sites are highlighted with translucent points; sec-
tions of the track spent in directed flight are shown as connecting lines.
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n = 368 return trajectories (see Methods). We found that the overall heading-to-wind angle was no

more conserved than expected by chance on the return legs of the flights (n = 368; p = 0.26), but was

significantly conserved on the outbound legs (n = 368; p < 0.0001), albeit that the effect size was

quite small (s.d. 50.1◦ on return legs versus 48.2◦ on outbound legs). The mean absolute heading-

to-wind angle on the outbound legs was 81.3◦ (±3.13◦ 95% CI; Figure 8A), which is close to the

crosswind tendency predicted to maximize the opportunity for dynamic soaring, but with a tailwind

bias of 7◦ appropriate to provide wind assistance on the outbound leg.

To test how the observed crosswind tendency impacted the potential returns from dynamic soaring,

we compared the mean wind opportunity ω̄ = ‖ sinλ‖ between the outbound and return legs of the

flights. As expected, the mean wind opportunity ω̄ was significantly higher on the outbound journey

for flights on which both legs were represented (n = 349; paired Mann-Whitney test; p = 0.0149),

confirming that the birds’ tendency to fly across the wind on their outbound flights increased their

potential returns from dynamic soaring (Figure 9). Furthermore, ω̄ increased significantly with wind

speed W on the outbound legs of the flights (Spearman’s ρ = 0.292; p < 0.0001; n = 368), but was

not significantly associated with wind speed on their return legs (Spearman’s ρ = 0.0508; p = 0.331;

n = 368). It follows that the birds’ tendency to fly across the wind on their outbound flights was

stronger on windier days, when the potential returns from dynamic soaring were highest (Figure 9).

This result could in principle have arisen as an artefact of the prevailing wind coming from a direction

promoting crosswind flight. However, we found no evidence that the strongest winds came from a

constrained direction when comparing the Rayleigh statistic for the wind directions associated with

the top 10% of wind speeds with the population distribution of this statistic after randomising the

pairings of wind speed and wind direction (p = 0.34). We conclude that the shearwaters’ tendency to

forage in a more crosswind direction on windier days increases their potential returns from dynamic

soaring when conditions are most conducive for harvesting energy from the shear layer.
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Figure 8: Association of wind direction and flight direction in Manx Shearwaters. (A) Circular
histograms comparing the overall heading-to-wind angle (λ) experienced by shearwaters on outbound
(top) and return (bottom) flight. (B) Distribution of standard deviation of absolute overall heading-
to-wind angle ‖λ‖ computed by randomising the pairings of the sample flight directions and sample
wind speeds on outbound (top) and return (bottom) flights; red dashed lines mark sample standard
deviations.
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Figure 9: Association of wind speed and flight direction in Manx Shearwaters. (A) Density curves
of mean wind opportunity ω̄ plotted for integer wind speed bins (m s-1). The higher the curve, the
greater the density, and hence the more frequently that birds experience that wind opportunity when
flying in winds of that speed. (B) Mean wind opportunity ω̄ plotted with bootstrapped 95% confidence
interval in integer wind speed bins (m s-1)
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Discussion

Here we use bird-borne video loggers to record the fine-scale flight trajectories of flap-gliding Manx

Shearwaters, and use GPS loggers to record their coarse-scale movements and distribution at sea.

Our data cover spatial scales ranging from less than a metre to hundreds of kilometres, and time

scales ranging from less than a second to several days. We find that the shearwaters flew trajectories

optimized for dynamic soaring, and that they harvested energy from the shear layer more effectively

with increasing wind speed. Furthermore, we find that on outbound flights when their destination was

less constrained, Manx Shearwaters increased the crosswind component of their flight trajectory to

maximize the opportunity for energy harvesting, and did so to a greater extent when the wind speed

was higher. We discuss below why such a strategy might be adaptive for these birds, and consider

how small-scale flight decisions might influence large-scale feeding distribution at sea.

Optimization of dynamic soaring in Manx Shearwaters Pelagic birds harvesting kinetic energy

from the shear layer incur an opposing cost because of the weaving and undulating flight trajectory

needed to extract energy by dynamic soaring. This increases the path length relative to direct flight,

and induces drag through the use of lift to turn (23). Dynamic soaring behavior therefore represents

a trade-off between maximizing the potential for energy harvesting and minimizing the energy losses

due to drag. Assessing both sides of this trade-off is challenging in flap-gliding species because of

the difficulty of measuring flight efficiency in a bird using intermittent flapping. We have therefore

focused on quantifying how effectively energy is harvested from the shear layer through the mean

horizontal wind effectiveness and mean wind opportunity metrics that we have defined. We represent

the associated trade-off diagrammatically in the form of a performance space (33) plotting mean

horizontal wind effectiveness ε̄h against mean crosswind component ω̄W (Figure 10).

The lower half of this performance space (i.e. ε̄h < 0) is unambiguously maladaptive, because

flight in this region of the graph actively loses energy to the wind gradient (pink shaded region in

Figure 10). Indeed, the shearwaters avoided this region of the graph on all n = 9 trajectories that

we recorded at a fine scale (blue points in Figure 10). This region of the performance space repre-
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Figure 10: Performance space of dynamic soaring. Birds implementing dynamic soaring should
fly such that they occupy the white region of the performance space. The red-shaded area is the
region of performance space in which energy is lost to the wind gradient, which is maladaptive in the
sense that it is always possible to find alternative ascent-descent sequences that avoid this. Within the
upper half of the performance space, trajectories occupying the cross-hatched regions are sub-optimal
in the sense that they represent either wasted effort or wasted opportunity. The wasted opportunity
region lies to the right hand side of the performance space, as the energy accessible in the wind
gradient scales increases with the mean crosswind component ω̄W . How this bears on our studied
shearwaters is illustrated by the histogram at the top of the figure which shows the distribution of
mean crosswind component ω̄W over the n = 368 recorded outbound flights. The blue-filled circles
plotted in the performance space are the data from Figure (6C) where those shaded darker correspond
to trajectories showing clear evidence of optimization of their horizontal trajectories in relation to the
wind (see text for discussion). Note that the range of mean crosswind components over which there is
clear evidence of detailed trajectory optimization for dynamic soaring (dark blue) matches the range
experienced on the majority of flights (see histogram).
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sents a hazard for any bird ascending or descending through a shear layer, and we call this outcome

maladaptive because it should always be possible to avoid. Specifically, for any horizontal trajectory,

there will always exist corresponding ascent-descent sequences for which ε̄h ≥ 0. Unless there is

some countervailing reason to ascend or descend, these should always be adopted in favour of ascent-

descent sequences for which ε̄h < 0. The reality of this hazard is demonstrated by the pink-shaded

portions of Figures 4 and 5, which show how the same horizontal trajectory can be maladaptive given

counterfactual phasing of its ascent-descent sequence or a counterfactual wind direction. Conversely,

even the four flight trajectories experiencing the lowest mean crosswind component ˆ̄ωW , and hence

the least opportunity for energy harvesting achieved ε̄h > 0 (Figure 10). The birds therefore avoided

the small energy losses to the wind gradient that they would have experienced had they adopted poorly

phased counterfactual ascent-descent sequences.

The upper half of the performance space (i.e. ε̄h > 0) represents the region of the graph in which

energy is actively harvested from the shear layer. However, because of the trade-off that exists be-

tween harvesting energy from the shear layer and losing energy to drag in the process, it is not equally

beneficial to occupy all regions of this upper half of the performance space (Figure 10). Specifically,

when the mean crosswind component of the trajectory ˆ̄ωW is low— whether because of low wind

speed W , an unfavourable flight direction resulting in a low mean wind opportunity ω̄, or both—there

will be little energy accessible to harvest in the wind gradient. Increasing path tortuosity to maximize

the effectiveness with which this little energy is harvested (i.e. maximizing ε̄h) will not then yield ap-

preciable increases in energy harvesting but will incur appreciable costs. The corresponding portion

of the graph is therefore labelled ‘wasted effort’, referring to the crosshatched region in the top left of

the performance space (Figure 10). The portion of the performance space labelled ‘wasted opportu-

nity’ on the right hand side of the graph also represents a sub-optimal execution of the trade-off. In

this region of the graph, the mean crosswind component ω̄W is high, so there is significant energy

accessible to harvest in the wind gradient. Trajectories that do not effectively harvest this significant

energy, as indicated by their low mean horizontal wind effectiveness ε̄h, are therefore expected to be

sub-optimal.
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It is clear from Figure 10 that the shearwaters broadly conform to these expectations, avoiding

the maladaptive region of the performance space altogether, and showing evidence of avoiding those

regions of the performance space in which the most opportunity or effort is wasted. This implies

that they synchronise their vertical motion appropriately with their horizontal motion so as to meet

the Rayleigh conditions of ascending into the wind and descending with it. Nevertheless, using the

fine-scale trajectory data that we derive from our bird-borne video footage, we only find evidence that

the birds optimized their detailed horizontal trajectories in relation to the wind during flights on which

the mean crosswind component ω̄W was high (Figure 5). These flights, marked as dark blue points

in Figure 10, are those for which the evidence of dynamic soaring is strongest, so it is noteworthy

that their mean crosswind components are in the same range as those recorded on the majority of the

outbound flights that we sampled at a coarse scale using GPS (see histogram at top of Figure 10). In

summary the GPS data show that for most of their outbound flights, the birds flew with a crosswind

component that the video data show was associated with detailed trajectory optimisation for dynamic

soaring.

While the value of the mean crosswind component ω̄W is obviously limited by the wind speed

W served on the day, birds can maximize their mean crosswind component subject to this constraint

by heading in a direction that maximizes the mean wind opportunity ω̄. It follows that birds can

move around the performance space in Figure 10 by making fine adjustments to their fine-scale flight

trajectories to optimize their wind effectiveness ε̄h, and by making coarse adjustments to their large-

scale flight trajectories to optimize their mean crosswind component ω̄W which implicitly alters ε̄h.

The performance space in Figure 10 thereby captures the effects of both fine and large-scale flight

behavior.

Using the very large data set of n = 368 outbound flights and n = 368 return flights that we

obtained using bird-borne GPS loggers, we find evidence that Manx Shearwaters tune their flights at

this larger scale, by increasing the mean wind opportunity ω̄ that they experience as wind speed W

increases. In other words, shearwaters have a stronger tendency to fly in a crosswind direction on days

when the wind is strongest (Figures 8), although we only observe this tendency during their outbound
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flights (Figure 9). This likely reflects a higher-level trade-off between adopting flight directions that

are better for dynamic soaring and those that are better for other ecological reasons. In particular,

flight direction is tightly constrained during homing flight because of the necessity to return to the

breeding site to provision offspring. In contrast, constraints on flight direction are more relaxed

during outbound flight for which the foraging destination is flexible within reason. It is important to

note that the birds’ stronger tendency to fly across the wind on windier days could reflect headwind

avoidance rather than crosswind selection. Nevertheless, as the effect of this large-scale behavior will

be to promote dynamic soaring regardless, and as the birds’ fine-scale flight trajectories confirm their

use of dynamic soaring, it seems reasonable to view the observed crosswind tendency as an adaptation

for dynamic soaring on outbound flights.

How might the optimization of atmospheric energy harvesting impact the foraging distributions

at-sea? Manx Shearwaters are known to utilise a dual foraging strategy when rearing (34), alternat-

ing between short chick-provisioning trips and longer self-provisioning trips to predictable oceanic

resources (35). It is therefore possible that, within these constraints, decisions relating to choice of

foraging site account for flight directions that increase energy extraction from the prevailing wind.

Furthermore, given that the wind observed in the Irish Sea has a strong south-westerly bias, it is pos-

sible that the overall feeding distribution of shearwaters is contingent on these prevailing winds as a

consequence of their use of dynamic soaring.

We have shown soft boundaries to the sub-optimal regions of the performance space to reflect un-

certainty over their actual extent in relation to the performance that we observed in Manx Shearwaters

(Figure 10). It is reasonable to assume that the performance spaces of other Procellariiformes will

look broadly similar, but the upper half of the performance space might differ in detail for albatrosses,

whose higher aspect ratio wings enable them to glide continuously over the windier open oceans. For

example, for birds like the Wandering Albatross, we might expect the ‘wasted effort’ region to be

narrower with respect to the mean crosswind component ω̄W . This is because the minimum mean

crosswind component ω̄W needed to fly energy-neutral dynamic soaring cycles is lower at the higher

lift-to-drag ratios that higher aspect ratio wings enable (36). Moreover, at very high mean crosswind
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components, it is plausible that albatrosses might benefit from flying trajectories with reduced mean

horizontal wind effectiveness ε̄h to avoid the very high aerodynamic loads associated with building

up surplus kinetic energy.

Implications for sensory physiology and behavior Our finding that shearwaters optimise their

fine-scale flight behavior for dynamic soaring might be thought to suggest that they require some

sense of wind direction to determine when to transition between ascent and descent. In fact, for flight

through a thick shear layer, it has been shown theoretically that optimal dynamic soaring trajectories

approach a chain of alternating semi-circular turns (23). Under these conditions, a simple behavioral

rule may suffice for the optimal control of dynamic soaring, because for a bird that spends as much

time ascending as descending, transitioning between the two at the extremes of each cycle maximizes

the energy gain (or loss) for any wind direction. All that is needed, therefore, is to select the binary

phasing of ascent versus descent that makes the mean wind effectiveness positive, which only depends

on knowing whether the wind is coming from the left or right of the average heading. The optimal

transition points themselves are reached when the bird is heading in the same direction as its average

heading, so could be sensed with the aid of any compass or other heading indicator, including a

magnetic compass, the sun and its attendant cues, or distant landmarks and clouds (37). A detailed

sense of wind direction would of course allow for more precise optimization of any trajectory, and

might be possible using ventral optic flow cues under some conditions (38). In particular, if the bird’s

longitudinal axis were aligned with its heading vector as assumed here, then any lateral optic flow

must be a consequence of wind drift. Vision may therefore be at least as important for wind sensing

in Procellariiformes as their tubular nostrils, which have been suggested to function as pitot tubes

sensing airspeed during dynamic soaring (39).

Our camera-based method of reconstructing dynamic soaring trajectories also points to the fact

that vision may be useful in controlling the turning flight behavior that we observe. When visible, the

horizon offers a reliable means of identifying the vertical direction. This could be particularly useful

in the control of pitching and banking during dynamic soaring, given that sensing gravitational accel-

eration is unreliable when aerodynamic accelerations are superimposed during unsteady manoeuvres.
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In fact, our horizon sensing algorithm calls to mind the specializations of the visual field in Procel-

lariiformes, which possess a horizontal streak where the retinal ganglion density is higher thereby

improving resolving power around the horizon (40). Whilst this has traditionally been explained by

the ‘terrain hypothesis’, which invokes the need for detection of objects against a horizon in open

terrain (41) (42), it may also have a function in flight control (43). Specifically, by stabilising their

head with respect to the fixed horizon, our shearwaters would have had an external reference for roll

stabilisation from which, via proprioception, the angle of the body relative to the head could be in-

ferred to obtain estimates of bank and pitch. This head stabilisation behavior is clearly visible in the

videos. These sensing implications are also of interest for marine unmanned air vehicles (UAVs),

given the potential to increase their flight time, range, and efficiency by dynamic soaring.

Limitations The horizontal wind effectiveness metric εh (Eq. 3) does not account for the quanti-

tative effect of the bird’s flight path angle (γ) on the rate of energy harvesting. This is captured by

the total wind effectiveness metric ε (Eq. 2), which differs from εh by a factor of sin 2γ. We have

chosen to evaluate εh rather than ε here on the pragmatic grounds that whereas it is usually possible

to distinguish unambiguously whether a bird is ascending or descending, accurate quantitative esti-

mates of the flight path angle γ relative to the air are difficult to obtain. Furthermore, the sign of the

horizontal wind effectiveness εh is always the same as the total wind effectiveness ε, and evaluating

the horizontal wind effectiveness metric εh partitions out the effects of the horizontal components of

the flight trajectory, which are what combine to determine the overall flight direction that we analyse

on larger spatiotemporal scales.

The mean horizontal wind effectiveness metric ε̄h is calculated as the unweighted mean of the

horizontal wind effectiveness εh across a flight trajectory. This is appropriate if a given flight direction

is equally good at harvesting energy everywhere in the wind field, but this only strictly holds for a

linear wind profile in which the vertical wind gradient is constant. In contrast, theoretical studies of

dynamic soaring have variously assumed linear (44), exponential (30) (31) (45) (46), or logarithmic

(30) (31) (45) models of wind shear. Under the nonlinear wind shear models, the wind gradient σ

varies with altitude. For example, a logarithmic wind gradient is steepest just above the sea surface,
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and becomes shallower with height. In this case, the same flight direction and hence same value of εh

would harvest more energy closer to the sea’s surface.

The suitability of the mean horizontal wind effectiveness metric ε̄h as a measure of how effectively

a given flight trajectory harvests energy from the wind gradient therefore depends on the nature of the

wind gradient, which is usually unknown. If necessary, the calculation of the mean horizontal wind

effectiveness ε̄h could be adjusted to account for the local wind gradient by taking a weighted mean

of the horizontal wind effectiveness εh with weights that vary as a function of height. This operation

requires precise knowledge of vertical position, however, which is difficult to achieve, even with GPS

loggers. Hence, even in the presence of a nonlinear wind profile, there is utility calculating the mean

horizontal wind effectiveness ε̄h as we have done here, which only requires a binary assessment of

whether the bird is ascending or descending.

Although the mean horizontal wind effectiveness ε̄h is itself a robust metric for assessing the

effectiveness of a flight trajectory at harvesting energy from a vertical wind gradient, evaluating ε̄h

empirically requires accurate estimates of the flight path angle γ and yaw angle ψ. Clearly, the

estimates that we have made of the bird’s pitch angle θ and bank angle φ are subject to measurement

error, and although we have attempted to calibrate out any systematic bias in these estimates, our

method for doing so is itself subject to model error (see Materials and Methods). Specifically, we

derive the following exact expression for the yaw angle rate induced by an unsteady banked turn in a

steady horizontal wind field of uniform direction with vertical wind shear σ:

ψ̇ =
L sinφ

mU cos θ
+ σ sinψ tan θ. (9)

This expression is exact, subject to the simplifying assumption that the bird’s air velocity vector

is always aligned with its longitudinal body axis (see Supplementary Text), which implies either

that the bird is perfectly stable in pitch and yaw or that it coordinates its turning to achieve the

same weathercock effect. For the purposes of estimating the bird’s yaw angle ψ, we have used the

approximate model given in Eq. 4, which drops the term σ sinψ tan θ describing the weathercock

effect of wind shear. This is done on the basis that we know neither the vertical wind shear strength
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σ, nor the detailed stability properties of the bird that give rise to this term, but is expected to lead to

model error (33) if the assumptions of Eq. 9 are satisfied.

Dropping this term is equivalent to assuming that the aerodynamic effect of wind shear on the

birds’ turning is negligible, which is true when the vertical wind shear σ is weak, when the bird

is flying with or against the wind such that sinψ is small, or when the bird flies a shallow flight

path such that tan θ is small. These conditions will not always prevail, resulting in a time-varying

error in the estimation of ψ̇. This will modify the shape of the weaving trajectories predicted under

the model (Figure 3), but any changes in curvature will have a second-order effect on our estimates

of mean horizontal wind effectiveness εh compared to any first-order integration error, which we

remove by calibrating our estimates of ψ against the position of the sun’s disc in the video. In making

this correction, we correct for camera bank offset, and we correct separately for camera pitch offset

impacting our estimates of the flight path angle γ. Eq. 4 further assumes near-constant airspeed

U ≈ U0, and near-constant lift equal to body weight L ≈ mg. Our constant airspeed assumption was

necessary because we were unable to deploy airspeed sensors simultaneously with bird-borne video

cameras given the constraints on carried load (47), but we do not expect this to have much effect on

our results because airspeed tends to fall in a narrow range. We also find that any statistical tests

reported to be significant at U0 = 11.1 m s-1 were also significant for alternative assumed airspeed

values from 7.5 to 14.0 m s-1.

To evaluate the scope for behavioral sampling biases that could affect the generality of our find-

ings, we used the STRANGE framework for animal behavior research (48). We used breeding birds

for both GPS and video analysis so that loggers could be retrieved (49). Since both male and fe-

male shearwaters provide the same level of chick-rearing effort (50), it is unlikely our results are

sex-biased. However, as breeding birds tends to be older than non-breeding birds, our samples will be

age-biased. Given that flight behavior optimisation in relation to wind has been suggested to develop

through learning (e.g. (9), it is therefore possible that our results might not generalize to younger,

inexperienced shearwaters.
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A quantitative framework for identifying dynamic soaring Although it is widely accepted that

Procellariiformes use dynamic soaring (14, 51), and whilst the theory of dynamic soaring is well

understood, rigorous empirical demonstrations of its utilisation are few and far between. Indeed,

dynamic soaring has only previously been demonstrated conclusively in Wandering albatross (26),

having been inferred somewhat indirectly in Manx Shearwaters (15). Demonstrating that a bird is

implementing dynamic soaring demands showing that the bird is extracting energy actively from a

wind gradient. One characteristic of such behavior is its cyclical variation in mechanical energy (see

Introduction), but this is neither necessary nor sufficient to demonstrate dynamic soaring. It is not

sufficient as mechanical energy may vary cyclically during other flight modes, such as the undulating

intermittent flight of European Starlings (Sturnus vulgaris) (27). It is not necessary as mechanical

energy variation due to drag losses, static soaring, and flapping (see Supplementary Text) may obscure

the energetic signature of dynamic soaring altogether, and this is especially problematic in flap-gliding

species such as Manx Shearwater (15). The metric of mean horizontal wind effectiveness ε̄h that we

have derived here overcomes these limitations by assessing directly whether a given flight behavior

is expected to harvest energy from the shear layer or to lose energy to it. Most importantly, this

assessment is independent of other energy flows, such that it is not prone to masking in the way that

an assessment of the changes in total mechanical energy would be.

Other observational studies have found no difference between large and small Procellariiformes

in the frequency of flights that contain soaring (51), so our demonstration that Manx Shearwaters fly

in a manner adapted to harvest energy from the shear layer suggests that dynamic soaring may be

important across a broader range of species and environments than has been demonstrated to date.

Demonstrating that the mean horizontal wind effectiveness ε̄h is consistently positive across flights,

as we have shown here for Manx Shearwaters, therefore offers a reliable method for diagnosing

dynamic soaring in other candidate flap-gliding Procellariiformes such as the Northern Fulmar (Ful-

marus glacialis). When studied in combination with the other metrics of mean wind opportunity

ω̄ and mean crosswind component ω̄W that we have derived here, the quantification of horizontal

wind effectiveness also permits a fuller consideration of the optimization of dynamic soaring in these
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species. Furthermore, it could be applied to groups traditionally unassociated with dynamic soaring

but known to glide in regions with strong spatiotemporal wind gradients such as Lesser Black-backed

Gulls (Larus fuscus) flying in cityscapes (52), or Jackdaws (Corvus monedula) flying around ridge-

lines. Finally, our demonstration of dynamic soaring in coastal environments by a flap-gliding bird

will be of interest to those working on marine unmanned aerial vehicles (UAVs). Our results illustrate

the possibility of marine UAVs using dynamic soaring to decrease power consumption and thereby

increase flight range, time and sustainability during facultatively powered flight in the socially impor-

tant coastal zone.

Materials and Methods

The theoretical framework that underpins the analysis described in the main text is derived in the

Supplementary Text. The following sections describes the empirical methods used to collect and

analyse the field data.

Field observations All work was done under ethical approval from the Animal Welfare and Eth-

ical Review Board of the Department of Zoology, Oxford University, under endorsements from the

British Trust for Ornithology Unconventional Methods Panel (BTO permit numbers C/5311 (Tim

Guilford) and C/6128 (Oliver Padget)), and following approval by the Islands Conservation Advisory

Committee.

We captured 146 bird-borne video recordings from Manx Shearwaters Puffinus puffinus during

fieldwork undertaken 15–28 August 2014 on Skomer Island, Pembrokeshire (51.74◦N , 5.30◦W ).

However, as the behavior of interest for this study was cruising flight, we excluded videos containing

take-off, landing, and sea-sitting behavior. Likewise, as the sun was needed to calibrate flight direction

(see below), we excluded videos in which the sun’s disc was not visible, leaving a sample of n = 9

videos from N = 6 individuals across 6 different days.

Each video was captured using a miniature video logger (VEHO VCC-003 MUVITM Micro DV

Camcorders) (28) attached to the bird’s back using water soluble adhesive and TESA(4651) marine
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tape (49). A custom-designed, microprocessor-controlled timer was used to record two-minute sec-

tions of video once every hour (640× 480 pixels; RGB24 AVI format; 20 frames per second). Video

loggers were inserted into waterproof heat-shrink plastic tubing (49), in which a small incision was

made to enable the head of the camera to be positioned upright pointing forwards. The camera head

was inserted into a purpose-built Perspex turret, which was waterproofed and held in place by hot-

melt glue. The video loggers weighed 17-18 g including battery, which is approximately 4% of body

mass (19, 47, 49).

Shearwaters were also (not simultaneously) tracked at a coarse-scale using iGotU (Mobile Action,

Taiwan) GPS devices (mass = 15g (47)) from colonies on Lighthouse Island (Copeland Archipelago;

n = 164; 54.70oN, 5.52oW), Skomer island (n = 211; 51.74oN, 5.30oW) and Skokholm Island (2016

only; n = 10; 51.70oN, 5.30oW) from 2016 to 2019. These n = 368 tracks were taken from N = 201

birds in total. GPS loggers were set to record speed and position at 5-minute intervals, and were

interpolated using a cubic spline function to ensure that the position estimates fell at precise 5-minute

intervals (53). Tracks up to and including those gathered in 2016 were also analysed and published

in (54).

Video analysis We estimated the camera pitch angle (θc) and camera bank angle (φc) directly from

the video footage by writing an automatic horizon detection algorithm in MATLAB (The Mathworks

Inc, Natick, MA). The algorithm squares the intensity of the blue channel to obtain a high-contrast

grayscale image, to which it applies a Gaussian smoothing kernel with σ = 8. The algorithm then

uses Roberts edge detection to find and mask the outline of the bird, and uses the Hough Transform

to detect straight lines outside of this mask. The longest straight line is then taken as the putative

horizon. We checked all putative horizon lines manually and edited these where necessary to correct

any errors. The frame was skipped if no horizon line was visible.

We estimated the camera bank angle as φc = − arctan (∆y/∆x), where ∆x and ∆y denote the

differences in the image coordinates of the horizon endpoints. Likewise, we estimated the camera

pitch angle as θc = s × 72/640, where s is the signed distance in pixels between the horizon line

and the midpoint of the image, assuming an equiangular projection model over the measured 72◦ field

35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482753doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482753
http://creativecommons.org/licenses/by/4.0/


of view. We interpolated φc and θc for skipped frames using a piecewise cubic Hermite interpolating

polynomial, and forwards-backwards filtered the signals using a fifth order low-pass Butterworth filter

at a cut-off frequency of 0.5 Hz to remove high frequency noise due to measurement error, flapping

perturbations, and other camera motion.

The measured pitch angle θc and measured bank angle φc of the camera differ from the true

pitch angle θ and true bank angle φ of the bird because of camera offset and measurement error.

We therefore estimate the bird’s pitch angle as θ̂ = θc − δθ, having calibrated the pitch offset δθ by

enforcing the constraint that θ̂ should average zero over the entire flight. This is justified on the basis

that the vertical component of the bird’s motion U sin θ must average zero for it to remain close to

the surface in a horizontal wind field, such that sin θ must also average zero if the airspeed U remains

approximately constant as assumed.

We estimate the bird’s bank angle as φ̂ = φc − δφ, and calibrate out any bank offset δφ by inte-

grating Eq. 4 numerically, having replaced θ and φ with their estimates θ̂ = θc − δθ and φ̂ = φc − δφ.

We estimated the bank offset δφ in piecewise fashion over a flight, by using the sun’s disc or a dis-

tant cloud as a reference for estimating the change in the camera’s azimuth ∆ψc between calibration

frames at times t1 and t2, and finding the offset δφ that would satisfy the integral equation:

∫ t2

t1

g sin(φc − δφ)

U0 cos(θc − δθ)
dt = ∆ψc. (10)

We measured the apparent azimuthal position of the sun in each calibration frame by measuring the

signed distance d in pixels between lines dropped perpendicular to the horizon from the centre of

the image and the sun’s disc or distant cloud. We then calculated the apparent change in azimuth

∆ψc between calibration frames at times t1 and t2 as ∆ψc = (d2 − d1) × 72/640 assuming the

same equiangular projection model as before. This use of the sun as a compass serves to remove

integration drift on each calibration interval, and also provides an external reference for relating the

bird’s estimated yaw angle ψ to the wind direction ζ via the solar ephemeris. Specifically, we used the

NOAA Solar Calculator to find the sun’s azimuth at the known date, time and approximate location

of each video recording, from which we were able to calibrate the bird’s yaw angle relative to true
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north.

GPS analysis At-sea behavior was identified using a threshold model (35) combining information

on the bird’s flight speed and the standard deviation of its heading recorded over a rolling window of

6 consecutive points. GPS fixes with a recorded ground speed of > 7ms−1 were classified as flight;

those with a ground speed of < 7ms−1 and a rolling standard deviation in heading of < 18◦ were

classified as rafting; the remainder of points were classified as feeding. GPS fixes were only included

in the analysis if they were classified as flight behavior.

The return sections of the GPS tracks were identified by moving backward along the track from

the colony until the distance from the colony stopped increasing monotonically with respect to the

length of the backward path (55). Conversely, the outbound section of the track was identified as

the continuous section of the track over which the bird’s distance from the colony monotonically in-

creased with total path length. To prevent pseudoreplication in the statistical analyses, the outbound

and return sections of each track were summarised as single datapoints, with arithmetic mean values

taken for wind speed and crosswind component, and with circular mean values taken for wind di-

rection and heading in the air reference frame (see below). In total we included n = 348 flights for

which both legs were tracked, and n = 38 where either the outbound or the return leg was recorded.

As such, we include with each result presented in the main text a sample size that relates to the result

in question.

Wind measurements Wind velocity was obtained from the NOAA/NCEP Global Forecast System

(GFS). GFS data were sampled at a temporal resolution of 3 hours and a spatial resolution of 0.5◦ ×

0.5◦. Each GPS fix was assigned the nearest wind measurement in time and space, which was used

to determine the bird’s velocity with respect to the air as well as the ground. For the video-based

analyses, the exact location of the shearwaters was unknown, but the wind velocity was found to be

quite homogeneous within the known range of incubating shearwaters from Skomer (56) over the

period for which the video footage was recorded. Given their known departure and arrival times, we

estimate that the birds foraged within a 50 km radius of Skomer. We therefore averaged wind velocity
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estimates from the Met Office Wavewatch III wave model (one hourly temporal precision, 8km spatial

precision, referenced to 10 m altitude) over this radius for the purposes of analysing the bird-borne

video data.
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