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Abstract

The extinct Tasmanian tiger or thylacine (Thylacinus cynocephalus) was a large marsupial
carnivore native to Australia. Once ranging across parts of the mainland, the species remained
only on the island of Tasmania by the time of European colonization. It was driven to extinction
in the early 20" century and is an emblem of native species loss in Australia. The thylacine was a
striking example of convergent evolution with placental canids, with which it shared a similar
skull morphology. Consequently, it has been the subject of extensive study. While the original
thylacine assemblies published in 2018 enabled the first exploration of the species’ genome
biology, further progress is hindered by the lack of high-quality genomic resources. Here, we
present a new chromosome-scale hybrid genome assembly for the thylacine, which compares
favorably with many recent de novo marsupial genomes. Additionally, we provide homology-

based gene annotations, characterize the repeat content of the thylacine genome and show that,
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consistent with demographic decline, the species possessed a low rate of heterozygosity even

compared to extant, threatened marsupials.

Keywords: Thylacine; Tasmanian tiger; Thylacinus cynocephalus; genome; Dasyuromorphia

Significance

The lack of high-quality genomes for extinct species inhibits research into their biology.
Moreover, marsupials are underrepresented among sequenced genomes. Here, we present a new,
chromosome-scale thylacine genome. This high-quality assembly is a valuable new resource for

studies on marsupial carnivores.

Introduction

The Tasmanian tiger or thylacine (7hylacinus cynocephalus; Fig. 1a) was the largest marsupial
predator of the Holocene (Mitchell, et al. 2014; Prowse, et al. 2014). While it once inhabited
mainland Australia, by the arrival of European colonists it was restricted to the island of
Tasmania (Lambeck and Chappell 2001; Paddle 2000). The thylacine was considered an
agricultural pest and targeted by an extermination campaign, incentivized by a £1 bounty (Fig.
1b). The last known individual died in 1936 and the species was declared extinct in 1986 (Paddle
2000). The thylacine was captured in multiple photographs and short films, contributing to its
status as an emblem of Australia’s high extinction rate among native species (Sleightholme and

Campbell 2018; Woinarski, et al. 2015).

The relative abundance of thylacine specimens in museums has facilitated extensive study of its
morphology, ecology and evolution (Newton, et al. 2018; Rovinsky, et al. 2021; White, et al.
2018; Wroe, et al. 2007). Recently, it has also become a focal species for genomic research, with

the first genome assemblies being published in 2018, using DNA from a >100-year-old ethanol-
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preserved pouch young specimen (Fig. 1¢) (Feigin, et al. 2018). These assemblies were used to
explore the molecular basis of thylacine-canid craniofacial convergence, confirm its
phylogenetic relationships, and infer its demographic history (Feigin, et al. 2018). Subsequent
studies examined enhancer evolution and characterized the thylacine’s immune gene
complement (Feigin, et al. 2019; Peel, et al. 2021). However, contiguity of the original
assemblies was limited by the fragmentary nature of historical DNA and the absence of high-
quality assemblies from related species suitable for reference-guided scaffolding (Feigin, et al.
2018). This presents a substantial challenge for continued research into the thylacine’s genome

biology (Garrett Vieira, et al. 2020; Peel, et al. 2021).

The thylacine (family Thylacinidae) represents the closest sister lineage to the families
Dasyuridae and Myrmecobiidae (Feigin, et al. 2018; Miller, et al. 2009; Mitchell, et al. 2014).
These groups contain numerous species of significant interest to evolutionary, developmental
and conservation biology, such as the Tasmanian devil, quolls, dunnarts and the numbat (Cook,
et al. 2021; Fancourt 2016; Spencer, et al. 2020; Stahlke, et al. 2021; Wright, et al. 2020).
Moreover, the thylacine’s exceptional craniofacial similarities with canids, despite their ~160
million year divergence, make the species an excellent model system to study the genomic basis
of morphological evolution (Bininda-Emonds, et al. 2007; Feigin, et al. 2018; Newton, et al.
2021; Rovinsky, et al. 2021). Improved genomic resources for this species are thus of
considerable value to the broader genomics community. Here, we leveraged improvements in
short read assembly tools and newly-available marsupial reference genomes to produce a

chromosome-scale hybrid genome assembly for the thylacine.
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(a) Adult thylacines in captivity. The thylacine was noted for its canid-like morphology. (b) A wild
thylacine killed by a hunter. A bounty on thylacines contributed to their extinction. (c) Thylacine
pouch young specimen C5757 (Melbourne Museum; Victoria, Australia) provided DNA used for
genome sequencing. (d) Assembly metrics for the improved thylacine genome. (¢) Comparison of
BUSCO gene recovery from the thylacine genome and several recently-released marsupial
assemblies. Asterisk indicates assemblies incorporating long reads.

Results and Discussion

Genome Assembly and Assessment

The new thylacine assembly is composed of 7 large scaffolds, corresponding to each of the 6
dasyuromorph autosomes and the X chromosome (Supplementary Table 1), together comprising
~93.25% of the sequence content (Deakin 2018). The gap-free assembly size is ~3.04Gbp and
G+C content is 36.26%, comparable to that of the Tasmanian devil (Fig. 1d, Supplementary
Table 2). Scaffold N50 and N90 are high (629Mbp and 479Mbp respectively), reflecting the

large size of dasyuromorph autosomes (Deakin 2018). Contig N50 was 5-fold higher than that of


https://doi.org/10.1101/2022.03.02.482690
http://creativecommons.org/licenses/by-nc-nd/4.0/

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.02.482690; this version posted March 3, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

the original de novo draft assembly, and similar to that of several other recent marsupial
assemblies (Supplementary Table 2). A tail of small scaffolds comprising approximately
205Mbp remained unplaced, contributing to a relatively high gap percentage (~10%; Fig. 1d).

Nonetheless, the new assembly represents a dramatic improvement in contiguity.

To evaluate the completeness and integrity of the assembly, BUSCO was used to annotate
benchmarking mammalian orthologs. This identified 82.3% of BUSCO genes as complete and
single-copy, with little duplication (0.9%). Another 4.1% were found as partial copies (Fig. 1e).
This is a drastic increase over the original thylacine de novo assembly, from which BUSCO
recovery was negligible (<10%), owing to low contiguity (Supplementary Table 3). While
BUSCO gene recovery compares well with several other recently released marsupial assemblies,
particularly those built from short read-based contigs scaffolded with Hi-C, it lags somewhat
behind a small number of assemblies built using long reads and Hi-C (Fig. 1e, Supplementary
Table 4). Unfortunately, the century-long room-temperature preservation of all existing thylacine
tissue samples, and corresponding DNA fragmentation, limits the potential for long read

sequencing to be applied productively in this species.

Repeat Classification and Genome Annotation

Repetitive regions in the thylacine genome were annotated with RepeatMasker, using a custom
database of species-specific and curated marsupial repeats (Fig. 2a) (Ellinghaus, et al. 2008;
Flynn, et al. 2020; Hubley, et al. 2016; Tarailo-Graovac and Chen 2009). Interspersed repeats
constituted ~56% of the assembly (Supplementary Table 5). Consistent with the highly
conserved genome organization of dasyuromorphs, the thylacine had similar overall repeat
composition to its living relatives (Tian, et al. 2022). The dominant repeat class was LINE

elements (~36.5%), occurring at a frequency comparable to that of the Tasmanian devil (~39%),
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98  though somewhat lower than that of the brown antechinus (~45%) (Tian, et al. 2022).
99 Interestingly, we observed that LTRs were sparse in the thylacine genome (~1.51%) compared to
100  previously studied marsupial species (which ranged from 6.53%-18.89%; Supplementary Table

101 5) (Tian, et al. 2022).

Fig. 2
a b Heterozygosit
( ) Kimura substitution (CpG adjusted) ( ) Ve y

35 Brown antechinus .

30 Fat-tailed dunnart -0
o
£ .5 " Common Wombat p——————9 Conservation Status
9]
2 ||| |I (IuCN)
('I)
B 20 I.!|I = - Koala @ LeastConcem
o 1 I!! i [] Vulnerable
g == H Tammar wallaby jp——=g @ Endangered
o @ Extinct
9 1.0 Tasmanian devil [—® =

05 III "_. _____ Thylacine 1@ (\ L

00 1 I ‘ 0.001 0.002 0.003 0.004

15 40 45 50
Klmura substltut«on (CpG adjusted) Per-base rate

(a) Interspersed repeat landscape of thylacine genome. The percentage of total genome size and
sequence divergence (based on CpG-adjusted Kimura substitution level) are shown for each repeat
subclass. (b) Comparison of the per-base rate of heterozygosity in the thylacine and several extant
marsupials. The thylacine showed the lowest heterozygosity of examined marsupial species.

102  To provide gene annotations for the new thylacine assembly, we identified orthologs to

103  Tasmanian devil genes using a homology-based annotation liftover procedure (see Methods and
104  Methods). Ortholog recovery was high, with ~96% of gene models being successfully transferred
105  to the thylacine genome, comparable to or exceeding that of other dasyuromorphs

106  (Supplementary Table 6). Interestingly, we observed disparities in the detection of different short
107  RNA classes. In particular, micro-RNAs (miRNAs) showed nearly complete recovery from the
108  thylacine genome (~98%), compared with ~71% of small nucleolar RNAs and just ~37% of

109  small nuclear RNAs (snoRNAs and snRNAs respectively; Supplementary Table 6). A similar
110  pattern was observed among other dasyuromorphs, which showed lower snoRNA and snRNA
111 recovery (particularly in species more distantly-related to the Tasmanian devil), while generally

112 retaining high miRNA recovery (Supplementary Table 6). Taken together, this suggests that
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113 while many miRNAs are ancestral to Dasyuromorphia (hence having orthologs across species)
114  and have remained conserved over time, the evolution of snRNAs and snoRNAs in this lineage
115  has potentially been more dynamic, with accelerated sequence divergence and/or more rapid

116  turnover of individual elements among species.

117  Genetic Diversity

118  We next sought to gain insights into the thylacine’s genetic diversity prior to its extinction.

119  Previously, multiple sequentially Markovian coalescent (MSMC) analysis was used to infer the
120  demographic history of the thylacine. This uncovered evidence of an extended period of genetic
121 decline predating the arrival of humans in Australia and the thylacine’s isolation on Tasmania
122 (Feigin, et al. 2018; Schiffels and Durbin 2014). A decrease in genetic diversity concomitant
123 with such demographic decline may have left the thylacine vulnerable to inbreeding depression,
124  reducing its fitness on the backdrop of pressures imposed by humans. To further explore this
125  possibility, heterozygosity was calculated in non-repetitive regions of the thylacine genome and
126  compared to that of extant marsupials with varying conservation statuses. Consistent with

127  reduced genetic diversity preceding its extinction, the thylacine had the lowest rate of

128  heterozygosity among the marsupials examined, including vulnerable or endangered species

129  (Fig. 2b, Supplementary Table 7).

130  Conclusions

131 The quality of the first draft thylacine assemblies limited their utility in genomic research. Gene
132 recovery was severely impaired by low contiguity, and repetitive regions were not adequately
133 represented (Feigin, et al. 2018). By contrast, our new thylacine genome has a ~5-fold larger
134  contig N50, comparable to that of many recent marsupial assemblies. Moreover, we have

135  produced chromosome-scale scaffolds that enable the recovery of numerous genetic elements
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136  with orthologs in related species. This assembly has also permitted the first examination of the
137  repeat composition and heterozygosity of the thylacine genome. Future whole-genome
138  resequencing studies, empowered by this assembly, have the potential to provide population-

139  level insights into the thylacine’s demography and level of genetic load prior to its extinction.

140 Materials and Methods

141  Genome Assembly

142 Thylacine reads were accessed from NCBI Sequence Read Archive (SRA; Supplementary Table
143 8). These data originated from individual C5757, which we previously used to produce the
144  original contig-level de novo assembly and a read-mapping-based, reference-guided assembly of

145  non-repetitive regions (Feigin, et al. 2018).

146 De novo contigs were assembled using MEGAHIT v1.2.9 (Li, et al. 2015) with multiple k-mer
147  lengths (kmers = 21, 29, 39, 59, 79, 99, 119, 141). Purging of redundant haplotypes and short
148  read scaffolding were performed using Redundans v0.14a (parameters: identity = 0.8, overlap =
149 0.8, minLength = 200bp, joins = 5, limit = 1.0, iterations = 2) (Pryszcz and Gabaldon 2016).

150  Purging removed ~178.5Mbp of sequence.

151  Dasyuromorphs possess an exceptionally-conserved karyotype (2n = 14), with nearly identical
152  chromosome sizes and g-banding patterns (Deakin 2018; Rofe and Hayman 1985). Moreover,
153  sequence mapability between thylacine and Tasmanian devil is high (Feigin, et al. 2018).

154  Therefore, chromosome-scale thylacine scaffolds were produced by ordering thylacine de novo
155  scaffolds and inferring gap sizes through alignment against the recently-available Tasmanian
156  devil reference genome (GCF 902635505.1/mSarHarl.11; (O'Leary, et al. 2016)) using RagTag
157  v2.1.0 (RagTag parameters: scaffold, -f 200, -r, -g 100 -m 10000000; minimap2 v2.22-r1101

158  parameters: -x asm 10) (Alonge, et al. 2021; Alonge, et al. 2019; Li 2018).


https://doi.org/10.1101/2022.03.02.482690
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.02.482690; this version posted March 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

159 Genome Annotation

160  Repeat elements were annotated using RepeatMasker v4.1.2 (Flynn, et al. 2020; Tarailo-Graovac
161  and Chen 2009). Custom thylacine repeat libraries were produced with RepeatModeler v2.0.2a
162  and LTRharvest v1.6.2, and were combined with marsupial repeats contained with the Dfam3.2
163  database (Ellinghaus, et al. 2008; Flynn, et al. 2020; Hubley, et al. 2016). RepeatMasker was

164  then run on each chromosome using this library (Supplementary Table 5). The repeat landscape
165  of the thylacine genome was visualized using the calcDivergenceFromAlign.pl and

166  createRepeatLandscape.pl scripts provided with RepeatMasker. This displays the genome

167  percentage of each repeat subclass, organized by CpG-adjusted kimura substitution level (a

168  distance-based proxy for repeat copy age) (Flynn, et al. 2020; Kimura 1980).

169  Given the thylacine’s extinction, RNA cannot be recovered. However, annotations are essential
170  for many genomic analyses. We therefore employed a homology-based approach implemented in
171  the program liftoff v1.6.1 to predict thylacine orthologs of Tasmanian devil genes (Shumate and
172 Salzberg 2021). Exons from the Tasmanian devil RefSeq annotation were mapped to the

173  thylacine genome assembly with minimap2 (Li 2018; O'Leary, et al. 2016). Thylacine gene

174  models were then produced by linking mapped exons of a common parent feature, retaining only
175  those which preserved the structure of their corresponding Tasmanian devil reference annotation

176  (allowing a distance factor of 4X; parameter -d 4, Supplementary Table 6).

177  Assembly Evaluation and Comparisons

178  Assembly completeness and integrity were assessed using Benchmarking Universal Single-Copy
179  Orthologs annotated by BUSCO (v5.2.2) with the mammalian_odb10 ortholog database. These
180  results were compared with several recent de novo marsupial genome assemblies (Fig. le,

181  Supplementary Tables 3 and 4) (Brandies, et al. 2020; Dudchenko, et al. 2017; Johnson, et al.
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182  2018; Peel, et al. 2022; Seppey, et al. 2019; Tian, et al. 2022). Comparison genomes were chosen
183  to represent a variety of marsupial lineages and assembly approaches released within the past 4
184  years. Genome assembly metrics (Fig. 1d, Supplementary Table 2) were calculated using the

185  stats.sh script in the BBmap package (v37.93) (Bushnell 2014).

186  Heterozygosity

187  To calculate heterozygosity across species, short reads were aligned to each genome assembly
188  with bwa-mem?2 (-M flag; Supplementary Table 4) (Vasimuddin, et al. 2019). Samtools v1.11
189  was used to filter alignments (view -F 3340 -f 3) and remove duplicates (fixmate -m, markdup -r
190  -S) (Li, et al. 2009). Pileups and variant filtering were performed using bcftools v1.11 mpileup (-
191 q20-Q 20 -C 50) call (-m) and view (QUAL > 20, && DP>N && DP<M, where N and M

192  represented 0.5x and 2x the average alignment coverage post-filtering) (Danecek, et al. 2021).
193  Variants within repeats were identified with Red v2.0 and excluded using bedtools v2.27.1, due
194  to low accuracy of read mapping within such regions (Girgis 2015; Quinlan and Hall 2010). This
195  approach was applied to all genomes for this analysis rather than RepeatMasker alone, as Red
196  has similar masking sensitivity to RepeatMasker with orders-of-magnitude lower computational
197  overhead (Girgis 2015). Per-base heterozygosity was taken as the quotient of heterozygous

198  positions and total callable genomic positions (Fig. 2b).
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