

1 **Title:** A chromosome-scale hybrid genome assembly of the extinct Tasmanian tiger (*Thylacinus*
2 *cynocephalus*)

3 **Authors and Affiliations:** Charles Feigin^{1,2*}, Stephen Frankenberg¹, Andrew Pask^{1,3*}

4 1. School of BioSciences, The University of Melbourne, Parkville, VIC, Australia

5 2. Department of Molecular Biology, Princeton University, Princeton, NJ, USA

6 3. Department of Sciences, Museums Victoria, Carlton, VIC, Australia

7 *Authors for Correspondence:

8 Charles Feigin, School of BioSciences, The University of Melbourne, Parkville, Victoria,

9 Australia, +1 (203) 297-3130, charles.feigin@unimelb.edu.au

10 Andrew Pask, School of BioSciences, The University of Melbourne, Parkville, Victoria,

11 Australia, + 61 3 9035 4310, ajpask@unimelb.edu.au

12 **Abstract**

13 The extinct Tasmanian tiger or thylacine (*Thylacinus cynocephalus*) was a large marsupial
14 carnivore native to Australia. Once ranging across parts of the mainland, the species remained
15 only on the island of Tasmania by the time of European colonization. It was driven to extinction
16 in the early 20th century and is an emblem of native species loss in Australia. The thylacine was a
17 striking example of convergent evolution with placental canids, with which it shared a similar
18 skull morphology. Consequently, it has been the subject of extensive study. While the original
19 thylacine assemblies published in 2018 enabled the first exploration of the species' genome
20 biology, further progress is hindered by the lack of high-quality genomic resources. Here, we
21 present a new chromosome-scale hybrid genome assembly for the thylacine, which compares
22 favorably with many recent *de novo* marsupial genomes. Additionally, we provide homology-
23 based gene annotations, characterize the repeat content of the thylacine genome and show that,

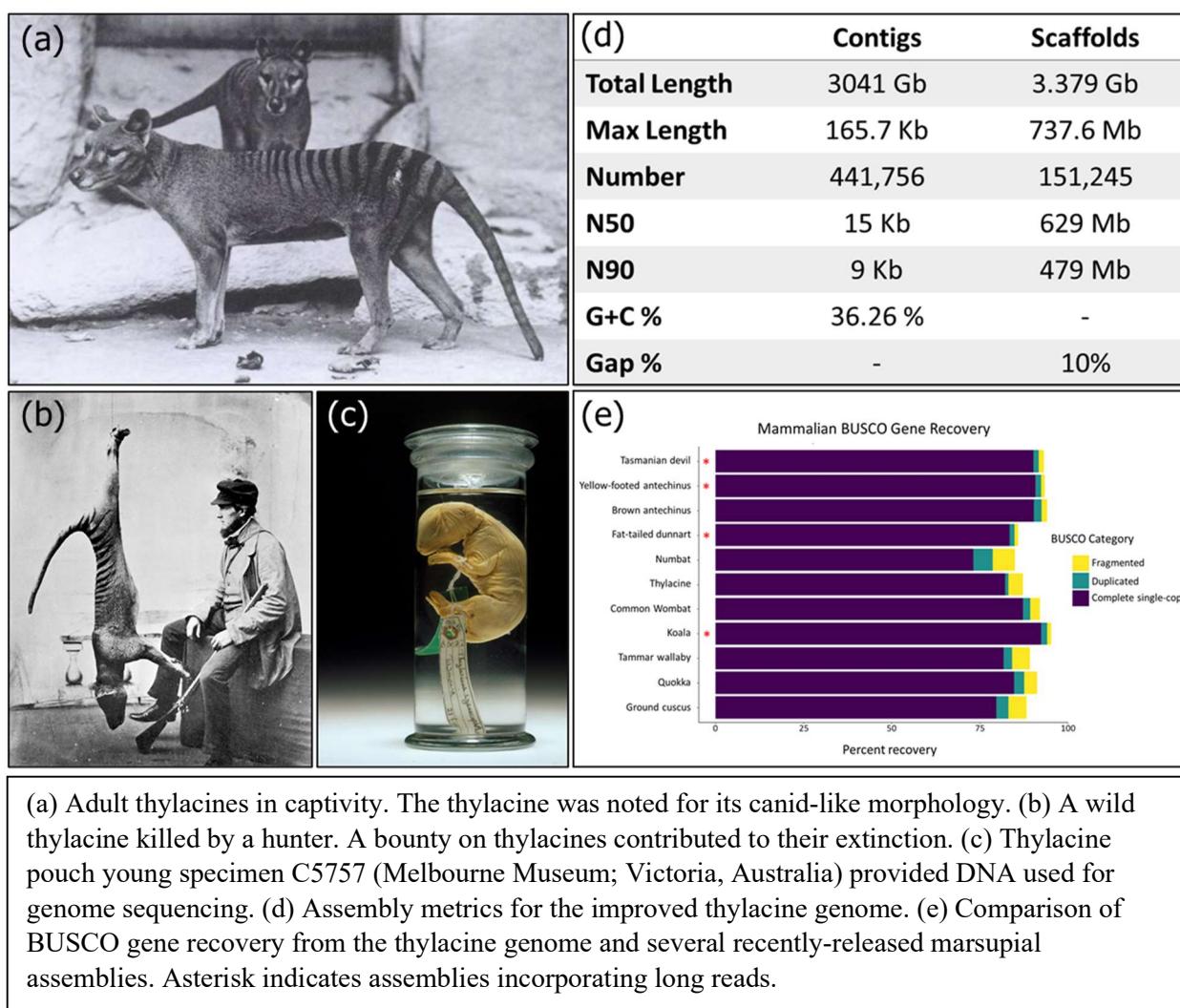
24 consistent with demographic decline, the species possessed a low rate of heterozygosity even
25 compared to extant, threatened marsupials.

26 **Keywords:** Thylacine; Tasmanian tiger; *Thylacinus cynocephalus*; genome; Dasyuromorphia

27 **Significance**

28 The lack of high-quality genomes for extinct species inhibits research into their biology.
29 Moreover, marsupials are underrepresented among sequenced genomes. Here, we present a new,
30 chromosome-scale thylacine genome. This high-quality assembly is a valuable new resource for
31 studies on marsupial carnivores.

32 **Introduction**


33 The Tasmanian tiger or thylacine (*Thylacinus cynocephalus*; Fig. 1a) was the largest marsupial
34 predator of the Holocene (Mitchell, et al. 2014; Prowse, et al. 2014). While it once inhabited
35 mainland Australia, by the arrival of European colonists it was restricted to the island of
36 Tasmania (Lambeck and Chappell 2001; Paddle 2000). The thylacine was considered an
37 agricultural pest and targeted by an extermination campaign, incentivized by a £1 bounty (Fig.
38 1b). The last known individual died in 1936 and the species was declared extinct in 1986 (Paddle
39 2000). The thylacine was captured in multiple photographs and short films, contributing to its
40 status as an emblem of Australia's high extinction rate among native species (Sleightholme and
41 Campbell 2018; Woinarski, et al. 2015).

42 The relative abundance of thylacine specimens in museums has facilitated extensive study of its
43 morphology, ecology and evolution (Newton, et al. 2018; Rovinsky, et al. 2021; White, et al.
44 2018; Wroe, et al. 2007). Recently, it has also become a focal species for genomic research, with
45 the first genome assemblies being published in 2018, using DNA from a >100-year-old ethanol-

46 preserved pouch young specimen (Fig. 1c) (Feigin, et al. 2018). These assemblies were used to
47 explore the molecular basis of thylacine-canid craniofacial convergence, confirm its
48 phylogenetic relationships, and infer its demographic history (Feigin, et al. 2018). Subsequent
49 studies examined enhancer evolution and characterized the thylacine's immune gene
50 complement (Feigin, et al. 2019; Peel, et al. 2021). However, contiguity of the original
51 assemblies was limited by the fragmentary nature of historical DNA and the absence of high-
52 quality assemblies from related species suitable for reference-guided scaffolding (Feigin, et al.
53 2018). This presents a substantial challenge for continued research into the thylacine's genome
54 biology (Garrett Vieira, et al. 2020; Peel, et al. 2021).

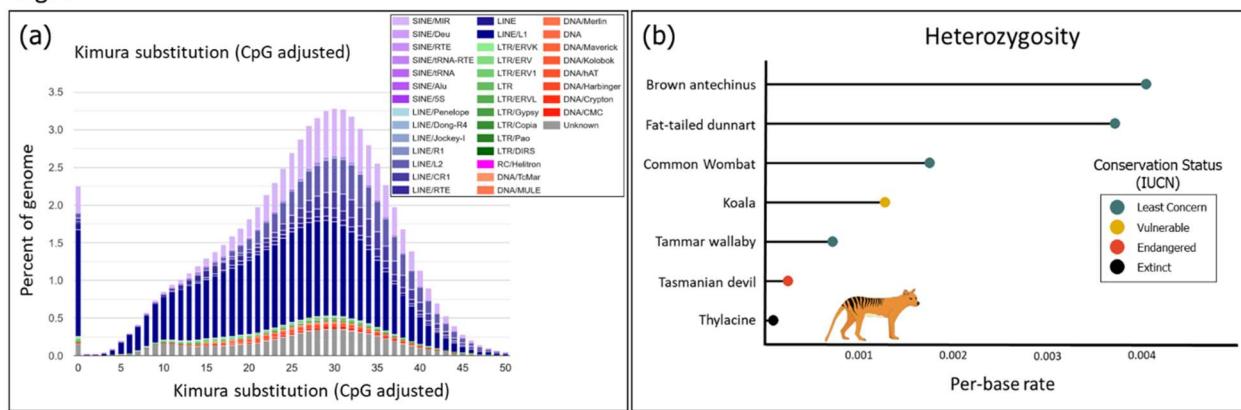
55 The thylacine (family Thylacinidae) represents the closest sister lineage to the families
56 Dasyuridae and Myrmecobiidae (Feigin, et al. 2018; Miller, et al. 2009; Mitchell, et al. 2014).
57 These groups contain numerous species of significant interest to evolutionary, developmental
58 and conservation biology, such as the Tasmanian devil, quolls, dunnarts and the numbat (Cook,
59 et al. 2021; Fancourt 2016; Spencer, et al. 2020; Stahlke, et al. 2021; Wright, et al. 2020).
60 Moreover, the thylacine's exceptional craniofacial similarities with canids, despite their ~160
61 million year divergence, make the species an excellent model system to study the genomic basis
62 of morphological evolution (Bininda-Emonds, et al. 2007; Feigin, et al. 2018; Newton, et al.
63 2021; Rovinsky, et al. 2021). Improved genomic resources for this species are thus of
64 considerable value to the broader genomics community. Here, we leveraged improvements in
65 short read assembly tools and newly-available marsupial reference genomes to produce a
66 chromosome-scale hybrid genome assembly for the thylacine.

Fig. 1

67 Results and Discussion

68 Genome Assembly and Assessment

69 The new thylacine assembly is composed of 7 large scaffolds, corresponding to each of the 6
70 dasyuromorph autosomes and the X chromosome (Supplementary Table 1), together comprising
71 ~93.25% of the sequence content (Deakin 2018). The gap-free assembly size is ~3.04Gbp and
72 G+C content is 36.26%, comparable to that of the Tasmanian devil (Fig. 1d, Supplementary
73 Table 2). Scaffold N50 and N90 are high (629Mbp and 479Mbp respectively), reflecting the
74 large size of dasyuromorph autosomes (Deakin 2018). Contig N50 was 5-fold higher than that of


75 the original *de novo* draft assembly, and similar to that of several other recent marsupial
76 assemblies (Supplementary Table 2). A tail of small scaffolds comprising approximately
77 205Mbp remained unplaced, contributing to a relatively high gap percentage (~10%; Fig. 1d).
78 Nonetheless, the new assembly represents a dramatic improvement in contiguity.
79 To evaluate the completeness and integrity of the assembly, BUSCO was used to annotate
80 benchmarking mammalian orthologs. This identified 82.3% of BUSCO genes as complete and
81 single-copy, with little duplication (0.9%). Another 4.1% were found as partial copies (Fig. 1e).
82 This is a drastic increase over the original thylacine *de novo* assembly, from which BUSCO
83 recovery was negligible (<10%), owing to low contiguity (Supplementary Table 3). While
84 BUSCO gene recovery compares well with several other recently released marsupial assemblies,
85 particularly those built from short read-based contigs scaffolded with Hi-C, it lags somewhat
86 behind a small number of assemblies built using long reads and Hi-C (Fig. 1e, Supplementary
87 Table 4). Unfortunately, the century-long room-temperature preservation of all existing thylacine
88 tissue samples, and corresponding DNA fragmentation, limits the potential for long read
89 sequencing to be applied productively in this species.

90 Repeat Classification and Genome Annotation

91 Repetitive regions in the thylacine genome were annotated with RepeatMasker, using a custom
92 database of species-specific and curated marsupial repeats (Fig. 2a) (Ellinghaus, et al. 2008;
93 Flynn, et al. 2020; Hubley, et al. 2016; Tarailo-Graovac and Chen 2009). Interspersed repeats
94 constituted ~56% of the assembly (Supplementary Table 5). Consistent with the highly
95 conserved genome organization of dasyuromorphs, the thylacine had similar overall repeat
96 composition to its living relatives (Tian, et al. 2022). The dominant repeat class was LINE
97 elements (~36.5%), occurring at a frequency comparable to that of the Tasmanian devil (~39%),

98 though somewhat lower than that of the brown antechinus (~45%) (Tian, et al. 2022).
99 Interestingly, we observed that LTRs were sparse in the thylacine genome (~1.51%) compared to
100 previously studied marsupial species (which ranged from 6.53%-18.89%; Supplementary Table
101 5) (Tian, et al. 2022).

Fig. 2

(a) Interspersed repeat landscape of thylacine genome. The percentage of total genome size and sequence divergence (based on CpG-adjusted Kimura substitution level) are shown for each repeat subclass. (b) Comparison of the per-base rate of heterozygosity in the thylacine and several extant marsupials. The thylacine showed the lowest heterozygosity of examined marsupial species.

102 To provide gene annotations for the new thylacine assembly, we identified orthologs to
103 Tasmanian devil genes using a homology-based annotation liftover procedure (see Methods and
104 Methods). Ortholog recovery was high, with ~96% of gene models being successfully transferred
105 to the thylacine genome, comparable to or exceeding that of other dasyuromorphs
106 (Supplementary Table 6). Interestingly, we observed disparities in the detection of different short
107 RNA classes. In particular, micro-RNAs (miRNAs) showed nearly complete recovery from the
108 thylacine genome (~98%), compared with ~71% of small nucleolar RNAs and just ~37% of
109 small nuclear RNAs (snoRNAs and snRNAs respectively; Supplementary Table 6). A similar
110 pattern was observed among other dasyuromorphs, which showed lower snoRNA and snRNA
111 recovery (particularly in species more distantly-related to the Tasmanian devil), while generally
112 retaining high miRNA recovery (Supplementary Table 6). Taken together, this suggests that

113 while many miRNAs are ancestral to Dasyuromorphia (hence having orthologs across species)
114 and have remained conserved over time, the evolution of snRNAs and snoRNAs in this lineage
115 has potentially been more dynamic, with accelerated sequence divergence and/or more rapid
116 turnover of individual elements among species.

117 **Genetic Diversity**

118 We next sought to gain insights into the thylacine's genetic diversity prior to its extinction.
119 Previously, multiple sequentially Markovian coalescent (MSMC) analysis was used to infer the
120 demographic history of the thylacine. This uncovered evidence of an extended period of genetic
121 decline predating the arrival of humans in Australia and the thylacine's isolation on Tasmania
122 (Feigin, et al. 2018; Schiffels and Durbin 2014). A decrease in genetic diversity concomitant
123 with such demographic decline may have left the thylacine vulnerable to inbreeding depression,
124 reducing its fitness on the backdrop of pressures imposed by humans. To further explore this
125 possibility, heterozygosity was calculated in non-repetitive regions of the thylacine genome and
126 compared to that of extant marsupials with varying conservation statuses. Consistent with
127 reduced genetic diversity preceding its extinction, the thylacine had the lowest rate of
128 heterozygosity among the marsupials examined, including vulnerable or endangered species
129 (Fig. 2b, Supplementary Table 7).

130 **Conclusions**

131 The quality of the first draft thylacine assemblies limited their utility in genomic research. Gene
132 recovery was severely impaired by low contiguity, and repetitive regions were not adequately
133 represented (Feigin, et al. 2018). By contrast, our new thylacine genome has a ~5-fold larger
134 contig N50, comparable to that of many recent marsupial assemblies. Moreover, we have
135 produced chromosome-scale scaffolds that enable the recovery of numerous genetic elements

136 with orthologs in related species. This assembly has also permitted the first examination of the
137 repeat composition and heterozygosity of the thylacine genome. Future whole-genome
138 resequencing studies, empowered by this assembly, have the potential to provide population-
139 level insights into the thylacine's demography and level of genetic load prior to its extinction.

140 **Materials and Methods**

141 Genome Assembly

142 Thylacine reads were accessed from NCBI Sequence Read Archive (SRA; Supplementary Table
143 8). These data originated from individual C5757, which we previously used to produce the
144 original contig-level *de novo* assembly and a read-mapping-based, reference-guided assembly of
145 non-repetitive regions (Feigin, et al. 2018).

146 *De novo* contigs were assembled using MEGAHIT v1.2.9 (Li, et al. 2015) with multiple k-mer
147 lengths (kmers = 21, 29, 39, 59, 79, 99, 119, 141). Purging of redundant haplotypes and short
148 read scaffolding were performed using Redundans v0.14a (parameters: identity = 0.8, overlap =
149 0.8, minLength = 200bp, joins = 5, limit = 1.0, iterations = 2) (Prysycz and Gabaldón 2016).
150 Purging removed ~178.5Mbp of sequence.

151 Dasyuromorphs possess an exceptionally-conserved karyotype (2n = 14), with nearly identical
152 chromosome sizes and g-banding patterns (Deakin 2018; Rofe and Hayman 1985). Moreover,
153 sequence mapability between thylacine and Tasmanian devil is high (Feigin, et al. 2018).

154 Therefore, chromosome-scale thylacine scaffolds were produced by ordering thylacine *de novo*
155 scaffolds and inferring gap sizes through alignment against the recently-available Tasmanian
156 devil reference genome (GCF_902635505.1/mSarHar1.11; (O'Leary, et al. 2016)) using RagTag
157 v2.1.0 (RagTag parameters: scaffold, -f 200, -r, -g 100 -m 10000000; minimap2 v2.22-r1101
158 parameters: -x asm 10) (Alonge, et al. 2021; Alonge, et al. 2019; Li 2018).

159 Genome Annotation

160 Repeat elements were annotated using RepeatMasker v4.1.2 (Flynn, et al. 2020; Tarailo-Graovac
161 and Chen 2009). Custom thylacine repeat libraries were produced with RepeatModeler v2.0.2a
162 and LTRharvest v1.6.2, and were combined with marsupial repeats contained with the Dfam3.2
163 database (Ellinghaus, et al. 2008; Flynn, et al. 2020; Hubley, et al. 2016). RepeatMasker was
164 then run on each chromosome using this library (Supplementary Table 5). The repeat landscape
165 of the thylacine genome was visualized using the calcDivergenceFromAlign.pl and
166 createRepeatLandscape.pl scripts provided with RepeatMasker. This displays the genome
167 percentage of each repeat subclass, organized by CpG-adjusted kimura substitution level (a
168 distance-based proxy for repeat copy age) (Flynn, et al. 2020; Kimura 1980).

169 Given the thylacine's extinction, RNA cannot be recovered. However, annotations are essential
170 for many genomic analyses. We therefore employed a homology-based approach implemented in
171 the program liftoff v1.6.1 to predict thylacine orthologs of Tasmanian devil genes (Shumate and
172 Salzberg 2021). Exons from the Tasmanian devil RefSeq annotation were mapped to the
173 thylacine genome assembly with minimap2 (Li 2018; O'Leary, et al. 2016). Thylacine gene
174 models were then produced by linking mapped exons of a common parent feature, retaining only
175 those which preserved the structure of their corresponding Tasmanian devil reference annotation
176 (allowing a distance factor of 4X; parameter -d 4, Supplementary Table 6).

177 Assembly Evaluation and Comparisons

178 Assembly completeness and integrity were assessed using Benchmarking Universal Single-Copy
179 Orthologs annotated by BUSCO (v5.2.2) with the mammalian_odb10 ortholog database. These
180 results were compared with several recent *de novo* marsupial genome assemblies (Fig. 1e,
181 Supplementary Tables 3 and 4) (Brandies, et al. 2020; Dudchenko, et al. 2017; Johnson, et al.

182 2018; Peel, et al. 2022; Seppey, et al. 2019; Tian, et al. 2022). Comparison genomes were chosen
183 to represent a variety of marsupial lineages and assembly approaches released within the past 4
184 years. Genome assembly metrics (Fig. 1d, Supplementary Table 2) were calculated using the
185 stats.sh script in the BBmap package (v37.93) (Bushnell 2014).

186 **Heterozygosity**

187 To calculate heterozygosity across species, short reads were aligned to each genome assembly
188 with bwa-mem2 (-M flag; Supplementary Table 4) (Vasimuddin, et al. 2019). Samtools v1.11
189 was used to filter alignments (view -F 3340 -f 3) and remove duplicates (fixmate -m, markdup -r
190 -S) (Li, et al. 2009). Pileups and variant filtering were performed using bcftools v1.11 mpileup (-
191 q 20 -Q 20 -C 50) call (-m) and view (QUAL > 20, && DP>N && DP<M, where N and M
192 represented 0.5x and 2x the average alignment coverage post-filtering) (Danecek, et al. 2021).
193 Variants within repeats were identified with Red v2.0 and excluded using bedtools v2.27.1, due
194 to low accuracy of read mapping within such regions (Girgis 2015; Quinlan and Hall 2010). This
195 approach was applied to all genomes for this analysis rather than RepeatMasker alone, as Red
196 has similar masking sensitivity to RepeatMasker with orders-of-magnitude lower computational
197 overhead (Girgis 2015). Per-base heterozygosity was taken as the quotient of heterozygous
198 positions and total callable genomic positions (Fig. 2b).

199 **Acknowledgements**

200 We thank the Tasmanian Museum and Art Gallery and Museums Victoria for the use of the
201 images in Fig. 1b & c respectively. This work is supported by Discovery Projects DP210102645
202 and DP210100505 from the Australian Research Council to AJP and SRF. CYF is supported on
203 Ruth L. Kirschstein National Research Service Award 1F32GM139240-01 by the National
204 Institute of General Medicinal Sciences of the National Institutes of Health. CYF performed all

205 genomic analyses. AJP and SRF collected and sequenced fat-tailed dunnart samples used in
206 heterozygosity analyses. CYF wrote the manuscript with input from all authors. We thank Elise
207 Ireland for proofreading.

208 **Data Availability**

209 Thylacine assembly, reads and inferred transcripts are submitted under NCBI BioProject
210 PRJNA354646. Dunnart reads have been submitted to NCBI under SUB11101552.

211 **Literature Cited**

212 Alonge M, et al. 2021. Automated assembly scaffolding elevates a new tomato system for high-
213 throughput genome editing. *bioRxiv*: 2021.2011.2018.469135. doi: 10.1101/2021.11.18.469135
214 Alonge M, et al. 2019. RaGOO: fast and accurate reference-guided scaffolding of draft genomes.
215 *Genome Biol* 20: 224. doi: 10.1186/s13059-019-1829-6
216 Bininda-Emonds OR, et al. 2007. The delayed rise of present-day mammals. *Nature* 446: 507-
217 512. doi: 10.1038/nature05634
218 Brandies PA, Tang S, Johnson RSP, Hogg CJ, Belov K 2020. The first Antechinus reference
219 genome provides a resource for investigating the genetic basis of semelparity and age-related
220 neuropathologies. *Gigabyte* 2020: 0. doi: 10.46471/gigabyte.7
221 Bushnell B. 2014. BBMap: a fast, accurate, splice-aware aligner. In: Lawrence Berkeley
222 National Lab.(LBNL), Berkeley, CA (United States).
223 Cook LE, Newton AH, Hipsley CA, Pask AJ 2021. Postnatal development in a marsupial model,
224 the fat-tailed dunnart (*Sminthopsis crassicaudata*; Dasyuromorphia: Dasyuridae).
225 *Communications Biology* 4: 1028. doi: 10.1038/s42003-021-02506-2
226 Danecek P, et al. 2021. Twelve years of SAMtools and BCFtools. *GigaScience* 10. doi:
227 10.1093/gigascience/giab008

228 Deakin JE 2018. Chromosome Evolution in Marsupials. *Genes* 9: 72. doi:
229 10.3390/genes9020072

230 Dudchenko O, et al. 2017. De novo assembly of the *Aedes aegypti* genome using Hi-C yields
231 chromosome-length scaffolds. *Science*. doi: 10.1126/science.aal3327

232 Ellinghaus D, Kurtz S, Willhœft U 2008. LTRharvest, an efficient and flexible software for de
233 novo detection of LTR retrotransposons. *BMC Bioinformatics* 9: 18. doi: 10.1186/1471-2105-9-
234 18

235 Fancourt BA 2016. Diagnosing species decline: a contextual review of threats, causes and future
236 directions for management and conservation of the eastern quoll. *Wildlife Research* 43: 197-211.
237 doi: <https://doi.org/10.1071/WR15188>

238 Feigin CY, et al. 2018. Genome of the Tasmanian tiger provides insights into the evolution and
239 demography of an extinct marsupial carnivore. *Nat Ecol Evol* 2: 182-192. doi: 10.1038/s41559-
240 017-0417-y

241 Feigin CY, Newton AH, Pask AJ 2019. Widespread cis-regulatory convergence between the
242 extinct Tasmanian tiger and gray wolf. *Genome Research* 29: 1648-1658.

243 Flynn JM, et al. 2020. RepeatModeler2 for automated genomic discovery of transposable
244 element families. *Proceedings of the National Academy of Sciences* 117: 9451-9457. doi:
245 10.1073/pnas.1921046117

246 Garrett Vieira F, Samaniego Castruita JA, Gilbert MTP 2020. Using *in silico* predicted ancestral
247 genomes to improve the efficiency of paleogenome reconstruction. *Ecology and Evolution* 10:
248 12700-12709. doi: 10.1002/ece3.6925

249 Girgis HZ 2015. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the
250 genomic scale. *BMC Bioinformatics* 16: 227. doi: 10.1186/s12859-015-0654-5

251 Hubley R, et al. 2016. The Dfam database of repetitive DNA families. *Nucleic Acids Research*
252 44: D81-D89. doi: 10.1093/nar/gkv1272

253 Johnson RN, et al. 2018. Adaptation and conservation insights from the koala genome. *Nature*
254 *Genetics* 50: 1102-1111. doi: 10.1038/s41588-018-0153-5

255 Kimura M 1980. A simple method for estimating evolutionary rates of base substitutions through
256 comparative studies of nucleotide sequences. *J Mol Evol* 16: 111-120. doi: 10.1007/bf01731581

257 Lambeck K, Chappell J 2001. Sea Level Change Through the Last Glacial Cycle. *Science* 292:
258 679-686. doi: doi:10.1126/science.1059549

259 Li D, Liu C-M, Luo R, Sadakane K, Lam T-W 2015. MEGAHIT: an ultra-fast single-node
260 solution for large and complex metagenomics assembly via succinct de Bruijn graph.
261 *Bioinformatics* 31: 1674-1676. doi: 10.1093/bioinformatics/btv033

262 Li H 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34: 3094-
263 3100. doi: 10.1093/bioinformatics/bty191

264 Li H, et al. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25: 2078-
265 2079. doi: 10.1093/bioinformatics/btp352

266 Miller W, et al. 2009. The mitochondrial genome sequence of the Tasmanian tiger (*Thylacinus*
267 *cynocephalus*). *Genome Research* 19: 213-220. doi: 10.1101/gr.082628.108

268 Mitchell KJ, et al. 2014. Molecular Phylogeny, Biogeography, and Habitat Preference Evolution
269 of Marsupials. *Molecular Biology And Evolution* 31: 2322-2330. doi: 10.1093/molbev/msu176

270 Newton AH, et al. 2018. Letting the ‘cat’ out of the bag: pouch young development of the extinct
271 Tasmanian tiger revealed by X-ray computed tomography. *Royal Society Open Science* 5. doi:
272 10.1098/rsos.171914

273 Newton AH, Weisbecker V, Pask AJ, Hipsley CA 2021. Ontogenetic origins of cranial
274 convergence between the extinct marsupial thylacine and placental gray wolf. Communications
275 Biology 4: 51. doi: 10.1038/s42003-020-01569-x

276 O'Leary NA, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status,
277 taxonomic expansion, and functional annotation. Nucleic Acids Res 44: D733-745. doi:
278 10.1093/nar/gkv1189

279 Paddle RN. 2000. The last Tasmanian tiger : the history, extinction and myth of the thylacine:
280 Oakleigh, Vic. : Cambridge University Press, 2000.

281 Peel E, Frankenberg S, Hogg CJ, Pask A, Belov K 2021. Annotation of immune genes in the
282 extinct thylacine (*Thylacinus cynocephalus*). Immunogenetics 73: 263-275. doi:
283 10.1007/s00251-020-01197-z

284 Peel E, et al. 2022. Genome assembly of the numbat (*Myrmecobius fasciatus*), the only
285 termitivorous marsupial. bioRxiv: 2022.2002.2013.480287. doi: 10.1101/2022.02.13.480287

286 Prowse TA, Johnson CN, Bradshaw CJ, Brook BW 2014. An ecological regime shift resulting
287 from disrupted predator-prey interactions in Holocene Australia. Ecology 95: 693-702. doi:
288 10.1890/13-0746.1

289 Pryszzcz LP, Gabaldón T 2016. Redundans: an assembly pipeline for highly heterozygous
290 genomes. Nucleic Acids Research 44: e113-e113. doi: 10.1093/nar/gkw294

291 Quinlan AR, Hall IM 2010. BEDTools: a flexible suite of utilities for comparing genomic
292 features. Bioinformatics 26: 841-842. doi: 10.1093/bioinformatics/btq033

293 Rofe R, Hayman D 1985. G-banding evidence for a conserved complement in the Marsupialia.
294 Cytogenet Cell Genet 39: 40-50. doi: 10.1159/000132101

295 Rovinsky DS, Evans AR, Adams JW 2021. Functional ecological convergence between the
296 thylacine and small prey-focused canids. *BMC Ecology and Evolution* 21: 58. doi:
297 10.1186/s12862-021-01788-8

298 Schiffels S, Durbin R 2014. Inferring human population size and separation history from
299 multiple genome sequences. *Nature Genetics* 46: 919-925. doi: 10.1038/ng.3015

300 Seppey M, Manni M, Zdobnov EM 2019. BUSCO: Assessing Genome Assembly and
301 Annotation Completeness. *Methods Mol Biol* 1962: 227-245. doi: 10.1007/978-1-4939-9173-
302 0_14

303 Shumate A, Salzberg SL 2021. Liftoff: accurate mapping of gene annotations. *Bioinformatics*.
304 doi: 10.1093/bioinformatics/btaa1016

305 Sleightholme SR, Campbell CR 2018. The International Thylacine Specimen Database (6th
306 Revision-Project Summary & Final Report). *Australian Zoologist* 39: 480-512.

307 Spencer PBS, McConnell S, Prada D, Friend JA 2020. Parentage assignment using microsatellite
308 DNA typing for the endangered numbat (*Myrmecobius fasciatus*). *Australian Mammalogy* 42:
309 240-243. doi: <https://doi.org/10.1071/AM19046>

310 Stahlke AR, et al. 2021. Contemporary and historical selection in Tasmanian devils (*Sarcophilus*
311 *harrisii*) support novel, polygenic response to transmissible cancer. *Proc Biol Sci* 288: 20210577.
312 doi: 10.1098/rspb.2021.0577

313 Tarailo-Graovac M, Chen N 2009. Using RepeatMasker to identify repetitive elements in
314 genomic sequences. *Curr Protoc Bioinformatics Chapter 4: Unit 4.10.* doi:
315 10.1002/0471250953.bi0410s25

316 Tian R, et al. 2022. A chromosome-level genome of *Antechinus flavipes* provides a reference for
317 an Australian marsupial genus with male death after mating. *Mol Ecol Resour* 22: 740-754. doi:
318 10.1111/1755-0998.13501

319 Vasimuddin M, Misra S, Li H, Aluru S editors. 2019 IEEE International Parallel and Distributed
320 Processing Symposium (IPDPS). 2019 20-24 May 2019.

321 White LC, Saltré F, Bradshaw CJA, Austin JJ 2018. High-quality fossil dates support a
322 synchronous, Late Holocene extinction of devils and thylacines in mainland Australia. *Biology*
323 *Letters* 14: 20170642. doi: doi:10.1098/rsbl.2017.0642

324 Woinarski JCZ, Burbidge AA, Harrison PL 2015. Ongoing unraveling of a continental fauna:
325 Decline and extinction of Australian mammals since European settlement. *Proceedings of the*
326 *National Academy of Sciences* 112: 4531-4540. doi: 10.1073/pnas.1417301112

327 Wright BR, et al. 2020. A demonstration of conservation genomics for threatened species
328 management. *Mol Ecol Resour* 20: 1526-1541. doi: 10.1111/1755-0998.13211

329 Wroe S, Clausen P, McHenry C, Moreno K, Cunningham E 2007. Computer simulation of
330 feeding behaviour in the thylacine and dingo as a novel test for convergence and niche overlap.
331 *Proceedings. Biological Sciences* 274: 2819-2828.