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Abstract 12 

The extinct Tasmanian tiger or thylacine (Thylacinus cynocephalus) was a large marsupial 13 

carnivore native to Australia. Once ranging across parts of the mainland, the species remained 14 

only on the island of Tasmania by the time of European colonization. It was driven to extinction 15 

in the early 20th century and is an emblem of native species loss in Australia. The thylacine was a 16 

striking example of convergent evolution with placental canids, with which it shared a similar 17 

skull morphology. Consequently, it has been the subject of extensive study. While the original 18 

thylacine assemblies published in 2018 enabled the first exploration of the species’ genome 19 

biology, further progress is hindered by the lack of high-quality genomic resources. Here, we 20 

present a new chromosome-scale hybrid genome assembly for the thylacine, which compares 21 

favorably with many recent de novo marsupial genomes. Additionally, we provide homology-22 

based gene annotations, characterize the repeat content of the thylacine genome and show that, 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.03.02.482690doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482690
http://creativecommons.org/licenses/by-nc-nd/4.0/


consistent with demographic decline, the species possessed a low rate of heterozygosity even 24 

compared to extant, threatened marsupials. 25 

Keywords: Thylacine; Tasmanian tiger; Thylacinus cynocephalus; genome; Dasyuromorphia  26 

Significance 27 

The lack of high-quality genomes for extinct species inhibits research into their biology. 28 

Moreover, marsupials are underrepresented among sequenced genomes. Here, we present a new, 29 

chromosome-scale thylacine genome. This high-quality assembly is a valuable new resource for 30 

studies on marsupial carnivores. 31 

Introduction 32 

The Tasmanian tiger or thylacine (Thylacinus cynocephalus; Fig. 1a) was the largest marsupial 33 

predator of the Holocene (Mitchell, et al. 2014; Prowse, et al. 2014). While it once inhabited 34 

mainland Australia, by the arrival of European colonists it was restricted to the island of 35 

Tasmania (Lambeck and Chappell 2001; Paddle 2000). The thylacine was considered an 36 

agricultural pest and targeted by an extermination campaign, incentivized by a £1 bounty (Fig. 37 

1b). The last known individual died in 1936 and the species was declared extinct in 1986 (Paddle 38 

2000). The thylacine was captured in multiple photographs and short films, contributing to its 39 

status as an emblem of Australia’s high extinction rate among native species (Sleightholme and 40 

Campbell 2018; Woinarski, et al. 2015). 41 

The relative abundance of thylacine specimens in museums has facilitated extensive study of its 42 

morphology, ecology and evolution (Newton, et al. 2018; Rovinsky, et al. 2021; White, et al. 43 

2018; Wroe, et al. 2007). Recently, it has also become a focal species for genomic research, with 44 

the first genome assemblies being published in 2018, using DNA from a >100-year-old ethanol-45 
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preserved pouch young specimen (Fig. 1c) (Feigin, et al. 2018). These assemblies were used to 46 

explore the molecular basis of thylacine-canid craniofacial convergence, confirm its 47 

phylogenetic relationships, and infer its demographic history (Feigin, et al. 2018). Subsequent 48 

studies examined enhancer evolution and characterized the thylacine’s immune gene 49 

complement (Feigin, et al. 2019; Peel, et al. 2021). However, contiguity of the original 50 

assemblies was limited by the fragmentary nature of historical DNA and the absence of high-51 

quality assemblies from related species suitable for reference-guided scaffolding (Feigin, et al. 52 

2018). This presents a substantial challenge for continued research into the thylacine’s genome 53 

biology (Garrett Vieira, et al. 2020; Peel, et al. 2021). 54 

The thylacine (family Thylacinidae) represents the closest sister lineage to the families 55 

Dasyuridae and Myrmecobiidae (Feigin, et al. 2018; Miller, et al. 2009; Mitchell, et al. 2014). 56 

These groups contain numerous species of significant interest to evolutionary, developmental 57 

and conservation biology, such as the Tasmanian devil, quolls, dunnarts and the numbat (Cook, 58 

et al. 2021; Fancourt 2016; Spencer, et al. 2020; Stahlke, et al. 2021; Wright, et al. 2020). 59 

Moreover, the thylacine’s exceptional craniofacial similarities with canids, despite their ~160 60 

million year divergence, make the species an excellent model system to study the genomic basis 61 

of morphological evolution (Bininda-Emonds, et al. 2007; Feigin, et al. 2018; Newton, et al. 62 

2021; Rovinsky, et al. 2021). Improved genomic resources for this species are thus of 63 

considerable value to the broader genomics community. Here, we leveraged improvements in 64 

short read assembly tools and newly-available marsupial reference genomes to produce a 65 

chromosome-scale hybrid genome assembly for the thylacine.  66 
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Results and Discussion 67 

Genome Assembly and Assessment 68 

The new thylacine assembly is composed of 7 large scaffolds, corresponding to each of the 6 69 

dasyuromorph autosomes and the X chromosome (Supplementary Table 1), together comprising 70 

~93.25% of the sequence content (Deakin 2018). The gap-free assembly size is ~3.04Gbp and 71 

G+C content is 36.26%, comparable to that of the Tasmanian devil (Fig. 1d, Supplementary 72 

Table 2). Scaffold N50 and N90 are high (629Mbp and 479Mbp respectively), reflecting the 73 

large size of dasyuromorph autosomes (Deakin 2018). Contig N50 was 5-fold higher than that of 74 

(a) Adult thylacines in captivity. The thylacine was noted for its canid-like morphology. (b) A wild 
thylacine killed by a hunter. A bounty on thylacines contributed to their extinction. (c) Thylacine 
pouch young specimen C5757 (Melbourne Museum; Victoria, Australia) provided DNA used for 
genome sequencing. (d) Assembly metrics for the improved thylacine genome. (e) Comparison of 
BUSCO gene recovery from the thylacine genome and several recently-released marsupial 
assemblies. Asterisk indicates assemblies incorporating long reads. 
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the original de novo draft assembly, and similar to that of several other recent marsupial 75 

assemblies (Supplementary Table 2). A tail of small scaffolds comprising approximately 76 

205Mbp remained unplaced, contributing to a relatively high gap percentage (~10%; Fig. 1d). 77 

Nonetheless, the new assembly represents a dramatic improvement in contiguity. 78 

To evaluate the completeness and integrity of the assembly, BUSCO was used to annotate 79 

benchmarking mammalian orthologs. This identified 82.3% of BUSCO genes as complete and 80 

single-copy, with little duplication (0.9%). Another 4.1% were found as partial copies (Fig. 1e). 81 

This is a drastic increase over the original thylacine de novo assembly, from which BUSCO 82 

recovery was negligible (<10%), owing to low contiguity (Supplementary Table 3). While 83 

BUSCO gene recovery compares well with several other recently released marsupial assemblies, 84 

particularly those built from short read-based contigs scaffolded with Hi-C, it lags somewhat 85 

behind a small number of assemblies built using long reads and Hi-C (Fig. 1e, Supplementary 86 

Table 4). Unfortunately, the century-long room-temperature preservation of all existing thylacine 87 

tissue samples, and corresponding DNA fragmentation, limits the potential for long read 88 

sequencing to be applied productively in this species. 89 

Repeat Classification and Genome Annotation 90 

Repetitive regions in the thylacine genome were annotated with RepeatMasker, using a custom 91 

database of species-specific and curated marsupial repeats (Fig. 2a) (Ellinghaus, et al. 2008; 92 

Flynn, et al. 2020; Hubley, et al. 2016; Tarailo-Graovac and Chen 2009). Interspersed repeats 93 

constituted ~56% of the assembly (Supplementary Table 5). Consistent with the highly 94 

conserved genome organization of dasyuromorphs, the thylacine had similar overall repeat 95 

composition to its living relatives (Tian, et al. 2022). The dominant repeat class was LINE 96 

elements (~36.5%), occurring at a frequency comparable to that of the Tasmanian devil (~39%), 97 
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though somewhat lower than that of the brown antechinus (~45%) (Tian, et al. 2022). 98 

Interestingly, we observed that LTRs were sparse in the thylacine genome (~1.51%) compared to 99 

previously studied marsupial species (which ranged from 6.53%-18.89%; Supplementary Table 100 

5) (Tian, et al. 2022). 101 

To provide gene annotations for the new thylacine assembly, we identified orthologs to 102 

Tasmanian devil genes using a homology-based annotation liftover procedure (see Methods and 103 

Methods). Ortholog recovery was high, with ~96% of gene models being successfully transferred 104 

to the thylacine genome, comparable to or exceeding that of other dasyuromorphs 105 

(Supplementary Table 6). Interestingly, we observed disparities in the detection of different short 106 

RNA classes. In particular, micro-RNAs (miRNAs) showed nearly complete recovery from the 107 

thylacine genome (~98%), compared with ~71% of small nucleolar RNAs and just ~37% of 108 

small nuclear RNAs (snoRNAs and snRNAs respectively; Supplementary Table 6). A similar 109 

pattern was observed among other dasyuromorphs, which showed lower snoRNA and snRNA 110 

recovery (particularly in species more distantly-related to the Tasmanian devil), while generally 111 

retaining high miRNA recovery (Supplementary Table 6). Taken together, this suggests that 112 

(a) Interspersed repeat landscape of thylacine genome. The percentage of total genome size and 
sequence divergence (based on CpG-adjusted Kimura substitution level) are shown for each repeat 
subclass. (b) Comparison of the per-base rate of heterozygosity in the thylacine and several extant 
marsupials. The thylacine showed the lowest heterozygosity of examined marsupial species. 
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while many miRNAs are ancestral to Dasyuromorphia (hence having orthologs across species) 113 

and have remained conserved over time, the evolution of snRNAs and snoRNAs in this lineage 114 

has potentially been more dynamic, with accelerated sequence divergence and/or more rapid 115 

turnover of individual elements among species. 116 

Genetic Diversity 117 

We next sought to gain insights into the thylacine’s genetic diversity prior to its extinction. 118 

Previously, multiple sequentially Markovian coalescent (MSMC) analysis was used to infer the 119 

demographic history of the thylacine. This uncovered evidence of an extended period of genetic 120 

decline predating the arrival of humans in Australia and the thylacine’s isolation on Tasmania 121 

(Feigin, et al. 2018; Schiffels and Durbin 2014). A decrease in genetic diversity concomitant 122 

with such demographic decline may have left the thylacine vulnerable to inbreeding depression, 123 

reducing its fitness on the backdrop of pressures imposed by humans. To further explore this 124 

possibility, heterozygosity was calculated in non-repetitive regions of the thylacine genome and 125 

compared to that of extant marsupials with varying conservation statuses. Consistent with 126 

reduced genetic diversity preceding its extinction, the thylacine had the lowest rate of 127 

heterozygosity among the marsupials examined, including vulnerable or endangered species 128 

(Fig. 2b, Supplementary Table 7). 129 

Conclusions 130 

The quality of the first draft thylacine assemblies limited their utility in genomic research. Gene 131 

recovery was severely impaired by low contiguity, and repetitive regions were not adequately 132 

represented (Feigin, et al. 2018). By contrast, our new thylacine genome has a ~5-fold larger 133 

contig N50, comparable to that of many recent marsupial assemblies. Moreover, we have 134 

produced chromosome-scale scaffolds that enable the recovery of numerous genetic elements 135 
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with orthologs in related species. This assembly has also permitted the first examination of the 136 

repeat composition and heterozygosity of the thylacine genome. Future whole-genome 137 

resequencing studies, empowered by this assembly, have the potential to provide population-138 

level insights into the thylacine’s demography and level of genetic load prior to its extinction. 139 

Materials and Methods 140 

Genome Assembly 141 

Thylacine reads were accessed from NCBI Sequence Read Archive (SRA; Supplementary Table 142 

8). These data originated from individual C5757, which we previously used to produce the 143 

original contig-level de novo assembly and a read-mapping-based, reference-guided assembly of 144 

non-repetitive regions (Feigin, et al. 2018). 145 

De novo contigs were assembled using MEGAHIT v1.2.9 (Li, et al. 2015) with multiple k-mer 146 

lengths (kmers = 21, 29, 39, 59, 79, 99, 119, 141). Purging of redundant haplotypes and short 147 

read scaffolding were performed using Redundans v0.14a (parameters: identity = 0.8, overlap = 148 

0.8, minLength = 200bp, joins = 5, limit = 1.0, iterations = 2) (Pryszcz and Gabaldón 2016). 149 

Purging removed ~178.5Mbp of sequence. 150 

Dasyuromorphs possess an exceptionally-conserved karyotype (2n = 14), with nearly identical 151 

chromosome sizes and g-banding patterns (Deakin 2018; Rofe and Hayman 1985). Moreover, 152 

sequence mapability between thylacine and Tasmanian devil is high (Feigin, et al. 2018). 153 

Therefore, chromosome-scale thylacine scaffolds were produced by ordering thylacine de novo 154 

scaffolds and inferring gap sizes through alignment against the recently-available Tasmanian 155 

devil reference genome (GCF_902635505.1/mSarHar1.11; (O'Leary, et al. 2016)) using RagTag 156 

v2.1.0 (RagTag parameters: scaffold, -f 200, -r, -g 100 -m 10000000; minimap2 v2.22-r1101 157 

parameters: -x asm 10) (Alonge, et al. 2021; Alonge, et al. 2019; Li 2018).  158 
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Genome Annotation 159 

Repeat elements were annotated using RepeatMasker v4.1.2 (Flynn, et al. 2020; Tarailo-Graovac 160 

and Chen 2009). Custom thylacine repeat libraries were produced with RepeatModeler v2.0.2a 161 

and LTRharvest v1.6.2, and were combined with marsupial repeats contained with the Dfam3.2 162 

database (Ellinghaus, et al. 2008; Flynn, et al. 2020; Hubley, et al. 2016). RepeatMasker was 163 

then run on each chromosome using this library (Supplementary Table 5). The repeat landscape 164 

of the thylacine genome was visualized using the calcDivergenceFromAlign.pl and 165 

createRepeatLandscape.pl scripts provided with RepeatMasker. This displays the genome 166 

percentage of each repeat subclass, organized by CpG-adjusted kimura substitution level (a 167 

distance-based proxy for repeat copy age) (Flynn, et al. 2020; Kimura 1980). 168 

Given the thylacine’s extinction, RNA cannot be recovered. However, annotations are essential 169 

for many genomic analyses. We therefore employed a homology-based approach implemented in 170 

the program liftoff v1.6.1 to predict thylacine orthologs of Tasmanian devil genes (Shumate and 171 

Salzberg 2021). Exons from the Tasmanian devil RefSeq annotation were mapped to the 172 

thylacine genome assembly with minimap2 (Li 2018; O'Leary, et al. 2016). Thylacine gene 173 

models were then produced by linking mapped exons of a common parent feature, retaining only 174 

those which preserved the structure of their corresponding Tasmanian devil reference annotation 175 

(allowing a distance factor of 4X; parameter -d 4, Supplementary Table 6). 176 

Assembly Evaluation and Comparisons 177 

Assembly completeness and integrity were assessed using Benchmarking Universal Single-Copy 178 

Orthologs annotated by BUSCO (v5.2.2) with the mammalian_odb10 ortholog database. These 179 

results were compared with several recent de novo marsupial genome assemblies (Fig. 1e, 180 

Supplementary Tables 3 and 4) (Brandies, et al. 2020; Dudchenko, et al. 2017; Johnson, et al. 181 
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2018; Peel, et al. 2022; Seppey, et al. 2019; Tian, et al. 2022). Comparison genomes were chosen 182 

to represent a variety of marsupial lineages and assembly approaches released within the past 4 183 

years. Genome assembly metrics (Fig. 1d, Supplementary Table 2) were calculated using the 184 

stats.sh script in the BBmap package (v37.93) (Bushnell 2014). 185 

Heterozygosity 186 

To calculate heterozygosity across species, short reads were aligned to each genome assembly 187 

with bwa-mem2 (-M flag; Supplementary Table 4) (Vasimuddin, et al. 2019). Samtools v1.11 188 

was used to filter alignments (view -F 3340 -f 3) and remove duplicates (fixmate -m, markdup -r 189 

-S) (Li, et al. 2009). Pileups and variant filtering were performed using bcftools v1.11 mpileup (-190 

q 20 -Q 20 -C 50) call (-m) and view (QUAL > 20, && DP>N && DP<M, where N and M 191 

represented 0.5x and 2x the average alignment coverage post-filtering) (Danecek, et al. 2021). 192 

Variants within repeats were identified with Red v2.0 and excluded using bedtools v2.27.1, due 193 

to low accuracy of read mapping within such regions (Girgis 2015; Quinlan and Hall 2010). This 194 

approach was applied to all genomes for this analysis rather than RepeatMasker alone, as Red 195 

has similar masking sensitivity to RepeatMasker with orders-of-magnitude lower computational 196 

overhead (Girgis 2015). Per-base heterozygosity was taken as the quotient of heterozygous 197 

positions and total callable genomic positions (Fig. 2b). 198 
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