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Abstract 27 

The evolutionary speed of a protein sequence is constrained by its expression level, with highly expressed 28 

proteins evolving relatively slowly. This negative correlation between expression levels and evolutionary rates 29 

(known as the E–R anticorrelation) has already been widely observed in past macroevolution between species 30 

from bacteria to animals. However, it remains unclear whether this seemingly general law also governs recent 31 

evolution, including past and de novo, within a species. However, the advent of genomic sequencing and high-32 

throughput phenotyping, particularly for bacteria, has revealed fundamental gaps between the two 33 

evolutionary processes and has provided empirical data opposing the possible underlying mechanisms which 34 

are widely believed. These conflicts raise questions about the generalization of the E–R anticorrelation and the 35 

relevance of plausible mechanisms. To explore the ubiquitous impact of expression level on molecular 36 

evolution, and to test the relevance of the possible underlying mechanisms, we analyzed the genome 37 

sequences of 99 strains of Escherichia coli for microevolution in nature. We also analyzed genomic mutations 38 

accumulated under laboratory conditions as a model of de novo microevolution. Here, we show that the E–R 39 

anticorrelation is significant in both past and de novo microevolution in E. coli. Our data also confirmed 40 

ongoing purifying selection acting on highly expressed genes. Ongoing selection included codon-level 41 

purifying selection, supporting the relevance of the underlying mechanisms. However, their contributions to 42 

the constraints in recent evolution might be smaller than previously expected from past macroevolution. 43 

 44 
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Introduction 54 

Is there any general law that governs the evolution of protein sequences on Earth? The rate of protein 55 

sequence evolution differs between genes. Many factors other than functional importance have been proposed 56 

as determinants for the rate of evolutionary diversification among a protein sequence, as reviewed by Zhang 57 

and Yang (2015). Among these factors, gene expression levels might be a general determinant (Krylov et al. 58 

2003; Rocha and Danchin 2004; Drummond and Wilke 2008). Comparative genomics of orthologous genes of 59 

closely related species revealed a pervasive negative correlation between gene expression level and the rate of 60 

evolutionary diversification in a protein sequence, namely E–R (Expression–evolutionary Rate) 61 

anticorrelation (Pál et al. 2001). The underlying mechanism of the E–R anticorrelation remains unclear 62 

(Usmanova et al. 2021) but can be explained by several purifying selections, such as the selection against 63 

mistranslation and protein misfolding (Akashi 1994; Drummond et al. 2005; Drummond and Wilke 2008; 64 

Allan Drummond and Wilke 2009; Cherry 2010a; Yang et al. 2010; Geiler-Samerotte et al. 2011), selection 65 

against incorrect and slow translation (Akashi and Gojobori 2002; Cherry 2010b; Gout et al. 2010; Park et al. 66 

2013; Yang et al. 2014), and selection against protein misinteraction (Zhang et al. 2008; Levy et al. 2012; 67 

Yang et al. 2012). These purifying selections are believed to be strong for highly expressed proteins because 68 

the defects in the quality and quantity of these proteins presumably confer more deleterious effects on the cells 69 

than poorly expressed proteins when considering the law of mass action.  70 

 71 

Contrary to the ubiquity of the E–R anticorrelation for evolution between species (macroevolution), little is 72 

known about whether the same law governs evolution within species (microevolution). Interestingly, the 73 

advent of genomic sequencing and high-throughput phenotyping has revealed several gaps between the two 74 

evolutionary processes, particularly among bacteria. Notably, bacterial phenotypic diversification in nature is 75 

biphasic, whereby phenotypic diversification (such as metabolism) occurs rapidly and instantaneously within 76 

species (microevolution), while divergence between species or genera (macroevolution) proceeds gradually 77 

(Plata et al. 2015). Consistent with this general trend in phenotypes, recent studies have also revealed an 78 

unexpectedly large genetic divergence of protein sequences attributable to weaker purifying selection within 79 

bacterial species in natural ecosystems (Garud et al. 2019; Ramiro et al. 2020). In particular, Garud et al. 80 
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(2019) reported that the purifying selection for protein sequences within species is much weaker than that 81 

between species, suggesting a cautionary note for the applicability of the E–R anticorrelation in relatively 82 

recent evolution among bacteria. In addition, recent studies have also pointed out the inconsistency between 83 

diverse empirical data across multiple organisms and the predictions from the frequently suggested possible 84 

mechanisms explaining the E–R anticorrelation (Plata et al. 2010; Plata and Vitkup 2018; Razban 2019; 85 

Usmanova et al. 2021). For instance, recent genome-scale data empirically measuring protein stability, protein 86 

aggregation, and protein stickiness do not support the considerable extent of selection against protein 87 

misfolding or protein misinteraction for highly expressed proteins in Escherichia coli (Usmanova et al. 2021). 88 

In turn, these conflicts raise questions about the generality of the E–R anticorrelation and the relevance of the 89 

plausible mechanisms governing it, which motivated us to test the applicability of the E–R anticorrelation on 90 

bacterial microevolution and the relevance of the possible underlying mechanisms. 91 

 92 

To this end, we analyzed the genome sequences of 99 strains of E. coli, whose mutations accumulated through 93 

microevolution in nature. We also explored the E–R anticorrelation of de novo evolution via an evolution 94 

experiment using E. coli. We found significant E–R anticorrelation in both past and de novo evolution in E. 95 

coli. We also found that purifying selection acting on highly expressed genes contributed to the ubiquity of the 96 

E–R anticorrelation. This study confirmed that purifying selection acting on highly expressed genes is not an 97 

evolutionary legacy but rather an active component, implying that expression level has a ubiquitous impact on 98 

the speed of evolutionary molecular diversification in bacteria. The detected selection included codon-level 99 

purifying selection, which supports the relevance of the underlying mechanisms proposed previously. 100 

Nevertheless, their effects on recent evolution may be smaller than expected. Our study emphasizes the 101 

importance of the expression level in understanding how genetic divergence emerges within a bacterial 102 

species and also provides new insight into the controversy of the dominant mechanisms underlying the E–R 103 

anticorrelation.  104 

 105 

Results 106 

The inter- and intraspecific E–R anticorrelation in past evolution. The rate of interspecific evolution 107 
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among protein sequences can be explained by the interrelationship between the number of nonsynonymous 108 

nucleotide changes per nonsynonymous site (dN) and the number of synonymous nucleotide changes per 109 

synonymous site (dS) in the orthologous genes between closely related species (Figure 1A). We refer to 110 

interspecific dN and dS as dNbtw and dSbtw, respectively. Previous studies have shown that both dNbtw and 111 

dSbtw are negatively correlated with expression levels in E. coli (Figure 1B, C) and in other organisms 112 

(Drummond and Wilke 2008). The underlying mechanisms of these relationships are explained by purifying 113 

selection at the codon level (Drummond and Wilke 2008; Yang et al. 2010; Park et al. 2013). In particular, the 114 

protein misfolding avoidance hypothesis (Yang et al. 2010) explains that optimal codons are favored in highly 115 

expressed proteins to avoid toxic misfolding and that dNbtw and dSbtw are common rather than independent 116 

targets of codon-level purifying selection to combat misfolding. Consistent with this hypothesis, we found a 117 

negative correlation between dNbtw/dSbtw and the expression level. The correlation was somewhat weaker than 118 

the E–R anticorrelation in dNbtw, most likely due to the fact that the common purifying selection acting on 119 

dNbtw and dSbtw was cancelled out (Figure 1D). Nevertheless, the negative correlation between dNbtw/dSbtw and 120 

the expression level remains substantial, suggesting that another mechanism contributes to purifying selection 121 

which acts on highly expressed genes. 122 

 123 

To test whether within-species molecular evolution also follows the E–R anticorrelation, we quantified 124 

intraspecific dN and dS, referred to as dNwth and dSwth, among 99 strains of E. coli. We found that both dNwth 125 

and dSwth were negatively correlated with gene expression relative to that of interspecific evolution (Figure 126 

1E, F). In addition, the correlation coefficient for dNwth was slightly larger than that for dSwth, which was 127 

similar to the genetic signatures of interspecific evolution in other organisms, such as yeast or flies. This 128 

difference between dNwth and dSwth also suggests that the E–R anticorrelation in dNwth reflects different 129 

purifying selections from those acting on dSwth, as in the case of the E–R anticorrelation in dNbtw. To confirm 130 

this hypothesis, we explored the relationship between dNwth/dSwth and expression levels. As with the case of 131 

interspecific evolution, dNwth/dSwth showed a substantial negative correlation with expression level, although 132 

the correlation was weaker than the E–R anticorrelation in dNwth. Therefore, the purifying selection on dSwth 133 

seems to be insufficient to explain the E–R anticorrelation in intraspecific evolution. These results suggest that 134 
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E–R anticorrelation itself might be causal to a general pattern of molecular evolution in the past, but the 135 

underlying mechanisms of purifying selection remain an open question, as stated recently in the literature 136 

(Plata and Vitkup 2018). 137 

 138 

 139 

Figure 1. The negative correlation between mRNA expression level and the rates of DNA sequence of 140 

orthologs in the course of past evolution. (A) A schematic phylogeny of E. coli and Salmonella 141 

typhimurium. Genetic changes between nodes are indicated as xS for S. typhimurium from the last common 142 

ancestor of E. coli and S. typhimurium (LCA), xE for the most recent common ancestor of E. coli (MRCA) 143 

from the LCA, xEA and xEB for E. coli strain A and B from the MRCA, respectively. Genetic changes 144 

between species, Nbtw and Sbtw included, represent the difference between xS and the sum of xE and xEA or 145 

the sum of xE and xEA. Genetic changes within E. coli species, Nwth and Swth included, represent differences 146 

between xEA and xEB. (B–D) The negative correlation of the rate of interspecific evolution of DNA 147 

sequences (E. coli and S. typhimurium). (E–G) The negative correlation of the rate of intraspecific evolution 148 

of DNA sequences (E. coli). The evolutionary rate of the DNA sequence is characterized by dN (B, E) and dS 149 

(C, F), respectively. (D, G) The dN/dS ratio of interspecific (D) and intraspecific evolution (G). The 150 

expression level was calculated from E. coli transcriptome data. Each dot corresponds to a single gene. The 151 

red-green gradient represents the 2D density (high to low). Spearman’s rank correlation coefficients and p-152 
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values are shown. 153 

 154 

E–R anticorrelation in de novo evolution. To determine whether the E–R anticorrelation is an evolutionary 155 

legacy or is currently applicable, we explored the relationship between protein evolutionary speed and gene 156 

expression levels during de novo evolution. Using a previously developed UV-irradiating cell culture device 157 

(Shibai et al. 2019), we conducted an evolution experiment to rapidly accumulate mutations (Figure 2A). 158 

Escherichia coli cells were incubated in this device and transferred to a fresh medium every four days. During 159 

incubation, the device automatically measured the optical density (OD) of the culture and irradiated UV for 160 

each unit increment of OD, where UV was utilized as a mutagen and germicidal lamp (Figure 2B). This 161 

feedback control of UV irradiation prevented the depression of mutation rates caused by the acquisition of UV 162 

resistance in the cells. We established six independent lineages from an ancestral colony and repeated the 163 

cycle of incubation and transfer for two years, corresponding to tens of thousands of generations (Figure 2C). 164 

As a result, we obtained thousands of base-pair substitutions (BPSs) of the coding region fixed in each cell 165 

population (Figure 2D). The occurrence of the same mutations over multiple lineages was exceedingly rare, 166 

ensuring that most of the accumulated BPSs contributed to the evolutionary diversification of the DNA 167 

sequence. To understand the overall evolutionary processes of diversification, we calculated whole-genome 168 

dN/dS values (Figure 2E) by considering a mutational spectrum (Figure 2F). The dN/dS of most lineages was 169 

roughly 0.9, indicating that most BPSs were fixed in the populations through neutral processes rather than by 170 

adaptive processes. Moreover, considering the large population size and high mutation rate in the culture 171 

device, many of these non-synonymous BPSs were likely to be fixed in the population by hitchhiking rather 172 

than genetic drift. 173 

 174 

To explore the expression levels of the mutated genes, we obtained transcriptome data of the ancestral and 175 

evolved samples by microarray and quantified the geometric mean of six independent lineages. We found that 176 

the expression profiles of the evolved strains were similar to that of the ancestral strain (ρ = 0.89–0.94, Figure 177 

S1). Using transcriptome data, we explored the relationship between the protein evolutionary rate and gene 178 

expression levels during de novo evolution. For each gene, we quantified dN and dS in de novo evolution, 179 
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referred to as dNnovo and dSnovo, by using the sum of the number of nonsynonymous and synonymous BPSs 180 

among six independent lineages. We found a significant E–R anticorrelation even in de novo evolution, 181 

regardless of ancestral (ρ = –0.17, p < 0.05) or evolved expression levels (ρ = –0.19, p < 0.05, Figure 3A). We 182 

also confirmed that this negative correlation remained after controlling for gene dispensability (ρ = − 0.18, p < 183 

0.05, partial correlation test for maximal growth rate of deletion mutants). Notably, the mutation data of 184 

approximately half the number of total mutations (i.e., the data at one-year of evolution) exhibited a similar 185 

negative correlation (ρ = –0.16, p < 0.05). Thus, we confirmed that the observed E–R anticorrelation was 186 

relatively weak but insensitive to the progress of our evolution experiment or to changes in transcription 187 

profiles, at least during our evolution experiment. Contrary to the evolution between species, the negative 188 

correlation between dSnovo and expression levels was found to be much weaker than that of dNnovo (Figure 3B). 189 

We also confirmed a negative correlation between dNnovo/dSnovo expression levels (Figure 3C), as well as the 190 

E–R anticorrelation in dNnovo. Thus, our de novo evolution experiments revealed ongoing purifying selection 191 

acting on highly expressed genes.  192 

 193 

 194 

Figure 2. Evolution experiment for accumulating massive mutations. (A) Procedure of an evolution 195 

experiment with the UV irradiating cell culture device. The device consists of a quartz glass test tube with a 196 

resin housing that measures the cell density (OD) by an orange LED and irradiates UV light by a UV-C LED. 197 

Mutagenesis by UV irradiation (denoted as purple asterisks) was performed when OD exceeded a defined 198 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.02.482674doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482674
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

increment so that the survival fraction could be maintained within a constant range (B). After four days of 199 

repeats, an aliquot of cell culture was diluted with fresh media 100 times and transferred into a new test tube. 200 

These procedures were repeated for six independent replicates for two years. (C) The estimated number of 201 

generations after 688 days of the evolution experiments. The black bars correspond to the values calculated 202 

with the doubling time of evolved cells for each of the six replicates. The dashed line indicates the value 203 

calculated with the ancestral doubling time. (D) The number of accumulated BPSs during the evolution 204 

experiment. The gray and white fractions of a bar represent nonsynonymous and synonymous substitutions, 205 

respectively. (E) The genome-wide dN/dS values were close to 1.0 for all the six replicates, implying that the 206 

majority of the accumulated mutations had neutral effects on their fixation within the populations. (F) 207 

Mutation spectrum of synonymous substitutions. The synonymous substitutions of all lineages are summed 208 

for each substitution type. 209 

 210 

 211 

Figure 3. There was a negative correlation between the protein sequence evolution during the evolution 212 

experiment and the gene expression level. (A) dNnovo showed a negative correlation with the gene 213 

expression level. (B) On the other hand, dSnovo showed only a slight correlation with the expression level. (C) 214 

A negative correlation was also observed for dNnovo/dSnovo, where dNnovo was normalized by dSnovo by 215 

cancelling the common selection. 216 

 217 

Purifying selection on codon usage in de novo evolution was less sensitive to expression level. The 218 

expression level dependency of dS reflects the purifying selection of codon usage of highly expressed 219 

proteins, which is a frequently suggested explanation for the E–R anticorrelation in dN (Drummond and Wilke 220 

2008). Highly expressed proteins use optimal codons that enable fast and accurate translation (Akashi 2001, 221 

A B C
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2003) and protein stability (Yang et al. 2010). The use of other unfavorable codons has detrimental effects on 222 

cellular growth and is thought to be evolutionarily constrained (Zhang and Yang 2015). However, the small 223 

anticorrelation between dSnovo and expression levels obscures the expected expression dependency of the 224 

purifying selection on codon usage in de novo evolution. To clarify this, we explored the relationship between 225 

the degree of codon optimization of each protein and the evolutionary speed of synonymous BPSs. Since this 226 

relationship is expected to be weak, it is important to evaluate the evolutionary speed of a small number of 227 

synonymous BPSs. To this end, we used a normalized version of the G score, hereinafter referred to as the G 228 

score, as an alternative to dNnovo and dSnovo, as detailed in the Materials and Methods. The G score is useful 229 

for screening genes with a small number of substitutions relative to neutral expectations. First, we reconfirmed 230 

the E–R anticorrelation between expression level and G score in nonsynonymous substitutions (GN, ρ = –0.15, 231 

p < 0.05) and that there was no correlation in synonymous substitutions (GS), which was consistent with the 232 

relationship between expression level and dNnovo or dSnovo. Next, we employed the codon adaptation index 233 

(CAI) as a standard measure of the degree of codon optimization and explored the relationship between CAI 234 

and G scores. As a result, a negative correlation was found between the CAI and G score for nonsynonymous 235 

BPSs (Figure 4A) and synonymous BPSs (Figure 4B), although the correlation coefficient for synonymous 236 

BPSs was not strong. To confirm the looseness of the purifying selection on codon-optimized proteins in de 237 

novo evolution, we classified 10% of mutated proteins with the lowest CAI as unoptimized, 10% of mutated 238 

proteins with the highest CAI as optimized, and the remaining mutated proteins as having moderate optimality 239 

in terms of codon usage for nonsynonymous and synonymous BPSs. As expected, unoptimized proteins 240 

showed higher GS than the optimized and moderately optimized proteins (Figure 4D). In contrast, there was 241 

no significant difference between optimized and moderately optimized proteins, indicating that the purifying 242 

selection on codon usage only weakly depends on expression levels in de novo evolution. This tendency 243 

remained even if the classification criteria for CAI changed from 10% to 5%. To confirm the looseness of the 244 

purifying selection on codon usage more directly, we focused on individual synonymous BPSs and explored 245 

codon bias. To this end, we calculated the C score for synonymous BPSs, whereby the C score represents the 246 

difference in preference of the mutant synonymous codon from neutral expectation, as detailed in the 247 

Materials and Methods. In short, the C score takes positive values if the mutant synonymous codons are 248 
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used more frequently in highly expressed proteins than in neutral expectations, while it takes negative values 249 

if the mutant synonymous codons are used less frequently in highly expressed proteins than in neutral 250 

expectations. Contrary to the statistics, such as G scores or CAI, characterizing each gene, C scores are 251 

assigned to each synonymous BPS, not to each gene. In other words, each gene had as many C scores as the 252 

number of synonymous BPSs in each gene. We found that unoptimized proteins allowed for more mutant 253 

synonymous codons, which are infrequently used in highly expressed proteins than moderately optimized 254 

codons (Figure 4E). In contrast to the other categories, the mutant synonymous codons of the optimized 255 

proteins were not able to obtain high C scores because the wild-type codons of the optimized proteins are 256 

likely to be the most frequent among the highly expressed proteins. Therefore, it is rational that there was no 257 

statistical significance between optimized and unoptimized proteins, even though the C score of the former 258 

was relatively larger than that of the latter. Altogether, these results support that the detected purifying 259 

selection on codon usage is active but less sensitive to expression levels. 260 

 261 

 262 

Figure 4. Relation between G scores and Codon Adaptation Index. The Codon Adaptation Index (CAI) 263 

was negatively correlated with G scores for nonsynonymous (GN, A) and synonymous BPSs (GS, B). 264 

Spearman’s rank correlation and p-values are indicated in each panel. Color represents codon optimality (U, 265 

unoptimized; M, moderate; O, optimized proteins). Comparison between codon optimality and G scores (GN, 266 

C; GS, D). Enlarged panels are shown at the bottom. (E) Comparison between codon optimality and C score. 267 

Adjusted p-values for Wilcoxon test are indicated as ns > 0.05, * < 0.05, ***< 0.001, and **** < 0.0001. 268 

 269 

Purifying selection of synonymous substitution on molecular function. The difference between dNnovo (or 270 

GN) and dSnovo (or GS) in correlation with expression levels suggests that the protein features on which 271 

A B C D E
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purifying selection acts in de novo evolution of synonymous BPSs might be somewhat different from that of 272 

nonsynonymous BPSs. To confirm this possibility, we conducted a GO enrichment analysis for the proteins 273 

ranked in the top or bottom 10% of G scores for synonymous and nonsynonymous BPSs (Figure 5). We found 274 

70 GO terms enriched in the bottom 10% of GS; in contrast, no GO terms were enriched in the bottom 10% of 275 

GN (Figure 5A). Interestingly, all of the enriched terms were classified in the molecular function category, 276 

suggesting that some enzymatic features were related to the target of purifying selection for synonymous 277 

BPSs rather than any metabolic pathways. For instance, the enriched GO terms contained ATPase activity 278 

(GO:0016887), which is required for various biochemical reactions (Figure 5D), regardless of metabolic 279 

pathways. Contrary to the bottom 10% of GS, the top 10% of GS showed no enrichment in the molecular 280 

function category; however, 17 GO terms were enriched in the biological process category, such as the 281 

lipopolysaccharide biosynthetic process (GO:0009103). Many of these were common among the GO terms 282 

enriched in the top 10% of GN (Figure 5B, C), suggesting that some proteins related to these processes were 283 

likely to be inactivated and were not targeted by purifying selection for both synonymous and nonsynonymous 284 

BPSs. These results support the hypothesis that the purifying selection acting on synonymous BPSs is not a 285 

single dominant mechanism of purifying selection on nonsynonymous BPSs, at least in de novo evolution.  286 

 287 

 288 

Figure 5. Comparison between G scores with biological features. (A) Enrichment analysis for the top and 289 

GO categories
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GO categories

48 GO terms in BP
enriched in top 10% of NSyn

17 GO terms in BP
enriched in top 10% of Syn

70 GO terms in MF
enriched in bottom 10% of Syn

Number of enriched GO terms

Nonsynonymous (NSyn) Synonymous (Syn)

Top 10%

48

0

0

0

0

0

17

0

0

Bottom 10% Top 10% Bottom 10%

Biological Process (BP)

Cellular Component (CC)

Molecular Function (MF)

0

0

70

A

B C DB C D
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bottom 10% of GN and GS. The number of GOs enriched significantly was shown in each class. (B–D) Venn 290 

diagram of the ancestral GOs at the second level (circles) of the GO tree for each of the enriched GOs (B for 291 

top 10% of GN, C for top 10% of GS and D for bottom 10% of GS). The number of enriched GOs in each 292 

parental GO is indicated in each circle.  293 

BP, Biological Process; MF, Molecular Function. 294 

 295 

Discussion 296 

The present study explored the impact of expression levels on the molecular evolution of bacteria. By 297 

employing comparative genomics and a laboratory-based evolution experiment, we elucidated the ubiquity of 298 

the impact of expression level on the evolutionary speed of sequence diversification. We found that the E–R 299 

anticorrelation governs not only sequence diversification between species but also within species. This finding 300 

of the ubiquity of the E–R anticorrelation is consistent with the recent analysis of genomic mutations 301 

accumulated in E. coli over long-term evolution experiments (Maddamsetti 2021). However, there are several 302 

disparities between the latter and the present study. First, the correlation coefficients between the expression 303 

level and the rate of nonsynonymous mutations in the long-term evolution experiments were almost negative, 304 

but their magnitudes were much smaller (ρ = –0.0486––0.0991) than those for de novo evolution in our study 305 

(ρ = –0.19, Figure 3A). Second, the correlation coefficients between the expression level and the rate of 306 

synonymous mutations in the long-term evolution experiments were positive (0.0458–0.094), contrary to the 307 

negative values in our de novo evolution experiment (ρ = –0.06, Figure 3B) and natural microevolution (ρ = –308 

0.36, Figure 1F). We speculate that these differences arose not only from the difference in conditions between 309 

the two evolution experiments, but also from the difference in the analytical method used to calculate the 310 

evolutionary speeds of DNA sequences. Contrary to our study, for example, the previous study included 311 

mutations unfixed in the populations to calculate the evolutionary speeds. Accounting for unfixed mutations 312 

tends to obscure the signatures of natural selection and is likely to underestimate purifying selection. In 313 

addition, the previous study did not use dN or dS but rather employed the number of nonsynonymous or 314 

synonymous mutations per length as a measure of the rate of evolution. Accordingly, neither biased mutational 315 

spectrum nor the differences in probability of synonymous/nonsynonymous sites among genes were 316 
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considered properly, which could interfere with the calculation of the evolutionary speeds for each gene. On 317 

the other hand, our method carefully treats these key factors when measuring the evolutionary speeds of DNA 318 

sequences, as detailed in the Materials and Methods. Thus, our data support the reliability of the E–R 319 

anticorrelations. We also found that the purifying selection acting on highly expressed genes is not a legacy 320 

but actively constrains the sequence diversification of these genes, even along a relatively short evolutionary 321 

timescale. The detected selection included purifying selection at the codon level, supporting the relevance of 322 

the possible underlying mechanisms such as selection against protein misfolding or protein misinteraction, 323 

since these frequently suggested mechanisms assert codon-level purifying selection acting on highly 324 

expressed proteins (Yang et al. 2010, 2012). Nevertheless, our data also suggest that the impacts of these 325 

frequently suggested possible mechanisms on recent evolution might be weaker than previously expected. 326 

These findings are consistent with recent studies indicating that empirical data measuring protein stability, 327 

protein aggregation, and protein stickiness do not support the considerable impact of these frequently 328 

suggested mechanisms on the E–R anticorrelation for macroevolution (Plata et al. 2010; Plata and Vitkup 329 

2018; Razban 2019; Usmanova et al. 2021). Therefore, the unexpected weak impacts of the frequently 330 

suggested mechanisms might be common between macro-and microevolution. In conclusion, this study 331 

suggests the importance of the expression level when attempting to understand how genetic divergence 332 

emerges within a bacterial species, and also provides a new insight into the controversy of the dominant 333 

mechanisms underlying the E–R anticorrelation (Zhang and Yang 2015). 334 

 335 

In this study, the E–R anticorrelation was observed in both past and de novo microevolution. However, the 336 

negative correlation of the former is stronger than that of the latter. What does this difference mean? We 337 

speculated that the magnitude of purifying selection against protein sequences could explain this difference, 338 

since the E–R anticorrelation mainly reflects the purifying selection. We found this to be true. In our 339 

experiment, the average dN/dS of past evolution was smaller than that of de novo evolution. That is, purifying 340 

selection against protein sequences in past evolution is stronger than that of de novo evolution. Why is the 341 

purifying selection in de novo evolution relatively small, even in the presence of selection for growth/survival 342 

in our evolution experiment? There are at least two plausible explanations for this finding. The first possible 343 
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and trivial explanation is that natural environments are more severe than those experienced in test tubes. 344 

Under our laboratory conditions, the nutrients required for growth were supplied constantly and at sufficient 345 

levels. In addition, the stress factor was limited to that from the UV alone. On the other hand, the quality and 346 

quantity of both nutrients and stressors must be different from the laboratory conditions and must change 347 

unpredictably. These severe conditions enable us to speculate that the essentiality of each gene is strong even 348 

for nonessential genes, which are characterized in relatively milder laboratory conditions. In other words, the 349 

detrimental effects of a given mutation are strong under natural conditions. Therefore, it is not difficult to 350 

imagine that a strong purifying selection governs evolution in nature. The second explanation is plausible if 351 

we consider a high mutation rate in our evolution experiment. The rate of mutation in our experimental setup 352 

was hundreds of times higher than the spontaneous mutation rate that would be experienced in nature. 353 

Therefore, neutral-to-deleterious mutations are relatively frequent. The population bottleneck in our 354 

experiment was large enough to fix these frequent deleterious mutations in a population by hitchhiking driver 355 

beneficial mutations. Therefore, the deleterious effects of a given passenger mutation are alleviated by the 356 

beneficial effects of driver mutations. As a result, purifying selection cannot purge such alleviated detrimental 357 

mutations, which yields nearly neutral values for dN/dS. These mechanisms are non-mutually exclusive. 358 

Interestingly, a high mutation rate and neutrality driven by hitchhiking are not only applicable to our artificial 359 

condition, but are also seen in more natural situations (Ramiro et al. 2020). Therefore, the relaxation of 360 

purifying selection due to high mutation rates may partially contribute to past divergent evolution within 361 

species. 362 

 363 

Why is the E–R anticorrelation regarded as being general? The mechanical origins of the E–R anticorrelation 364 

have been extensively proposed, such as the protein misfolding avoidance hypothesis or the misinteraction 365 

avoidance hypothesis. However, most of the proposed mechanisms cannot fully explain the generality of the 366 

E–R anticorrelation. Previous studies have focused on identifying the type of fundamental biological 367 

processes for a mutated gene that has deleterious effects on any organism. In contrast, our results suggest the 368 

importance of robustness or conservativeness of the entire transcriptional expression pattern during evolution 369 

to explain the generality of the E–R anticorrelation. If expression levels evolve without any constraints or are 370 
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highly dynamic, the E–R anticorrelation would lose its generality. The expression level of a gene is expected 371 

to change dynamically during evolution, for example, by the mutation of a corresponding transcription factor 372 

or intergenic region. In fact, an enrichment analysis detected those nonsynonymous mutations significantly 373 

accumulated transcription factors in our evolution experiment. Interestingly, however, the entire transcription 374 

level exhibited only slight changes from the ancestor even after the accumulation of thousands of mutations. 375 

As a result, an equivalent level of the E–R anticorrelation was observed in both the ancestral transcriptional 376 

data and in the evolved transcriptional data (rho = –0.21~–0.23). Such conservativeness among expression 377 

levels was also detected in other evolutionary experiments equipped with growth selection. For example, Ho 378 

and Zhang (2018) revealed that genetic changes more frequently reverse rather than reinforce transcriptional 379 

plastic changes in adaptation to a new environment, generally because an original transcriptional state is 380 

favored during growth selection. Transcriptome level conservation has also been observed in bacterial 381 

evolution in nature (Zarrineh et al. 2014; Payne and Wagner 2015; Junier and Rivoire 2016). Likewise, any 382 

compensatory mutations might restore expression levels that were altered by other harmful mutations to their 383 

original levels in our evolution experiment. Therefore, some mutations among transcriptional factors may play 384 

a role in compensatory mutations to retain their expression levels. In addition to the genetic mechanism, there 385 

are cases in which an alternative mechanism without any mutations underlies conservativeness at the 386 

expression level. For instance, Briat et al. (Briat et al. 2016) proposed a network motif conferring homeostasis 387 

or the perfect adaptation of expression levels to intrinsic and extrinsic disturbances. Such mechanisms are also 388 

applicable to mutational disturbances in the expression levels. In addition, it has been pointed out that ORFs 389 

can somehow determine their own expression levels (Isalan et al. 2008). To understand the generality of the 390 

E–R anticorrelation, the present study sheds light on the importance of understanding the quantitative 391 

relationship between protein sequence evolution and expression evolution. 392 

 393 

Materials and Methods 394 

Database analysis of mRNA expression levels. A total of 218 microarray datasets of E. coli K-12 substrain 395 

MG1655 with the GPL3154 platform were used in this study (Table S1). They were included in 27 396 

experiments and downloaded from the Gene Expression Omnibus (Barrett et al. 2013). After quantile 397 
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normalization (Bolstad et al. 2003), the average and variance of the expression levels were calculated for each 398 

gene. 399 

 400 

Interspecific analysis of protein evolution. The protein evolutionary rates of E. coli were obtained from the 401 

literature, which compared the genomes of Escherichia coli K-12 MG1655 and Salmonella typhimurium LT2 402 

(“Supplementary information S2” in Zhang and Yang 2015). The dN and dS values were calculated from the 403 

genomic sequences of E. coli str. K-12 substr. MG1655, and Salmonella enterica subsp. enterica serovar 404 

Typhimurium str. LT2 (accession no. NC_000913.3 and NC_003197.2). A total of 3145 paired sets of 405 

orthologous genes were detected by the bidirectional best hits (Overbeek et al. 1999) method, comparing all 406 

combinations of two coding features from the genomes. For each orthologous gene set, Clustal Omega 407 

(McWilliam et al. 2013) was used to generate an alignment, and PAML was used to calculate the dN and dS 408 

values from the alignment (Yang 1997). 409 

 410 

Intraspecific dN/dS analysis. The coding DNA sequences for 99 E. coli genomes were downloaded from 411 

Ensembl Genomes (Zerbino et al. 2018) in the multi-fasta format (Table S2). Each coding feature of the 412 

genomes was annotated by the bidirectional best hits (Overbeek et al. 1999) method compared with the E. coli 413 

K-12 substrain MG1655, generating groups of orthologous genes. Clustal Omega and Clustal W2 (McWilliam 414 

et al. 2013) aligned the sequences and generated phylogenetic trees for each orthologous group. PAML (Yang 415 

1997) calculated the dN and dS values for each tree. 416 

 417 

Strain and culture conditions. We used the E. coli K12 substrain MDS42 (Pósfai et al. 2006) as the ancestor 418 

of the evolution experiment. We used a chemically defined medium, mM63, which comprised 62 mM 419 

K2HPO4, 39 mM KH2PO4, 15 mM (NH4)2SO4, 2 µM FeSO4·7H2O, 15 µM thiamine hydrochloride, 203 µM 420 

MgSO4·7 H2O, and 22 mM glucose (Kashiwagi et al. 2009). The cells were inoculated into 8 mL of the mM63 421 

medium and incubated with shaking at 37 °C. 422 

 423 

Evolution experiment. The evolution experiment procedure consisted of a 4-day cycle of a serial transfer 424 
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cycle. We used an automated UV-irradiating cell culture system that was previously reported (Shibai et al. 425 

2019). First, the OD value of the cell culture was measured automatically. When the OD value exceeded the 426 

stipulated threshold (ODTHR), the cells were exposed to a dose of UV light which killed the cells, resulting in a 427 

survival rate of the ancestral cell of 10-2 to 10-3. Then, the threshold, ODTHR, was renewed as ODTHR+ODSTEP, 428 

so that the next UV irradiation was conducted when the living cell population recovered to the amount 429 

corresponding to ODSTEP. The ODSTEP and initial ODTHR values were set at OD600 = 0.0015. The cells were 430 

glycerol-stocked at the end of each round.  431 

 432 

Whole-genome resequencing. Cells were grown in a mM63 medium at 37 °C with shaking at 200 rpm 433 

overnight for 2 days, which were then pelleted by centrifugation. Genomic DNA was extracted from the cells 434 

using a Wizard Genomic DNA Purification Kit (Promega). DNA libraries were prepared using a Nextera XT 435 

kit (Illumina) for paired-end sequencing (2× 300 bp), according to the manufacturer’s instructions. Illumina 436 

MiSeq sequenced the DNA libraries using the MiSeq Reagent Kit v3 for 600 cycles. Mutation detection was 437 

performed by mapping the resulting read data to the reference genome sequence (accession no. AP012306.1) 438 

using the Burrows-Wheeler Aligner software (Li and Durbin 2009) and SAMtools (Li et al. 2009). For quality 439 

control, the called mutations were filtered using the Phred quality score (Ewing and Green 1998; Cock et al. 440 

2009) with a cut-off value of > 100. In addition, base-pair substitutions (BPSs) with a frequency of “mutant” 441 

reads < 90% were removed. The resulting mutations were annotated using an in-house program written in 442 

C++.  443 

 444 

Calculation of dN and dS in de novo evolution. Genome-wide dN/dS values were calculated from the 445 

numbers of both synonymous and nonsynonymous BPSs using a previously reported method (Shibai et al. 446 

2017). dN and dS values in de novo evolution for each gene, referred to as dNnovo and dSnovo, were calculated 447 

similarly, assuming each gene sequence as a full-length sequence. 448 

 449 

Calculation of G scores. The G score was defined as the actual number of mutations (M) multiplied by the 450 

logarithm of the ratio of the actual number of mutations to the expected number of mutations (log(M/E)) 451 
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(Tenaillon et al. 2016). Therefore, the G score was supposed to show positive values with mutationally 452 

accelerated genes, negative values with suppressed genes, and zero values with non-biased genes. In this 453 

study, we normalized the G score by the number of mutational sites in each gene for more precise bias 454 

analyses. Specifically, the G score of each gene for synonymous (subscripted with S) and nonsynonymous 455 

(subscripted with N) substitutions were calculated according to the following formulas: 456 

Normalized G score of synonymous and nonsynonymous substitutions of gene 𝑖: 457 

 458 

𝐺𝑆,𝑖 =
𝑀𝑆,𝑖

𝐿𝑖𝑃𝑆,𝑖
ln [

𝑀𝑆,𝑖

𝐸𝑆,𝑖
] 

𝐺𝑁,𝑖 =
𝑀𝑁,𝑖

𝐿𝑖(1 − 𝑃𝑆,𝑖)
ln [

𝑀𝑁,𝑖

𝐸𝑁,𝑖
] 

 459 

Expected number of synonymous and nonsynonymous substitutions of gene 𝑖: 460 

 461 

𝐸𝑆,𝑖 =
𝐿𝑖𝑃𝑆,𝑖

〈𝑃𝑆〉

∑ 𝑀𝑆,𝑖
𝐾
𝑖

∑ 𝐿𝑖
𝐾
𝑖

 

𝐸𝑁,𝑖 =
1 − 𝑃𝑆,𝑖

𝑃𝑆,𝑖
𝐸𝑆,𝑖 

 462 

𝑀𝑆,𝑖: observed number of synonymous substitutions in gene 𝑖  463 

𝑀𝑁,𝑖: observed number of nonsynonymous substitutions in gene 𝑖 464 

𝐾: number of genes in the genome 465 

𝐿𝑖: length of the coding DNA sequence of gene 𝑖  466 

𝑃𝑆,𝑖: the probability that the substitution is synonymous substitution when a substitution occurs in gene 𝑖 as 467 

detailed below. 〈𝑃𝑆〉 represents the mean of 𝑃𝑆,𝑖 for all the genes. 468 

 469 

The probability that the substitution occurred on a given codon when a substitution occurred in gene 𝑖 was 470 

calculated using the following equation: 471 
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 472 

𝑃(𝑐𝑜𝑑𝑘,𝑖|𝑠𝑢𝑏𝑗) =
𝑃(𝑐𝑜𝑑𝑘,𝑖)𝑛(𝑠𝑢𝑏𝑗|𝑐𝑜𝑑𝑘,𝑖)

∑ 𝑃(𝑐𝑜𝑑𝑥,𝑖)𝑛(𝑠𝑢𝑏𝑗|𝑐𝑜𝑑𝑥,𝑖)64
𝑥=1

. 

 473 

Here, each substitution of all six possible substitutions is denoted by 𝑠𝑢𝑏𝑗 , where 𝑗 takes 1–6, using the 474 

following array:  475 

 476 

𝑠𝑢𝑏 = (𝐴𝑇 → 𝑇𝐴, 𝐺𝐶 → 𝐶𝐺, 𝐴𝑇 → 𝐺𝐶, 𝐴𝑇 → 𝐶𝐺, 𝐺𝐶 → 𝐴𝑇, 𝐺𝐶 → 𝑇𝐴). 

 477 

In addition, each codon of all 64 possible codons in a given gene 𝑖 is denoted by 𝑐𝑜𝑑𝑘,𝑖, where 𝑘 takes 1–64, 478 

using the following array:  479 

 480 

𝑐𝑜𝑑 = (𝐴𝐴𝐴, 𝐴𝐴𝑇, 𝐴𝐴𝐺, … , 𝐶𝐶𝐶). 

 481 

The codon usage of codon 𝑘  in gene 𝑖  is then represented by 𝑃(𝑐𝑜𝑑𝑘,𝑖), which was calculated from the 482 

genome sequence of the ancestral strain. In addition, the number of possible mutant triplets when the 𝑗 th 483 

substitution occurs in a given 𝑐𝑜𝑑𝑘  in gene 𝑖  is denoted by  𝑛(𝑠𝑢𝑏𝑗|𝑐𝑜𝑑𝑘,𝑖). Therefore, the probability of 484 

synonymous change for a given codon in gene 𝑖  with a given 𝑗 th substitution is given by the following 485 

equation: 486 

 487 

𝑃(𝑆|𝑠𝑢𝑏𝑗 ∩ 𝑐𝑜𝑑𝑘,𝑖) =
𝑛(𝑆|𝑠𝑢𝑏𝑗 ∩ 𝑐𝑜𝑑𝑘,𝑖)

𝑛(𝑠𝑢𝑏𝑗|𝑐𝑜𝑑𝑘,𝑖)
. 

 488 

Here, the number of synonymous triplets when a 𝑠𝑢𝑏𝑗  occurs in a given 𝑐𝑜𝑑𝑘,𝑖  is denoted by 𝑛(𝑆|𝑠𝑢𝑏𝑗 ∩489 

𝑐𝑜𝑑𝑘,𝑖). Using the mutational spectrum for synonymous substitutions, 𝑃(𝑠𝑢𝑏𝑗), these two probabilities give 490 

𝑃𝑆,𝑖 using the following equation: 491 

 492 
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𝑃𝑆,𝑖 = ∑ {𝑃(𝑠𝑢𝑏𝑗) ∑ [𝑃(𝑐𝑜𝑑𝑘,𝑖|𝑠𝑢𝑏𝑗)𝑃(𝑆|𝑠𝑢𝑏𝑗 ∩ 𝑐𝑜𝑑𝑘,𝑖)]
64

𝑘=1
}

6

𝑗=1
. 

 493 

Calculation of the Codon Adaptation Index. The codon adaptation index (CAI) indicates the abundance of 494 

optimal codons in a gene sequence, where an optimal codon is defined as the most frequent codon in each of 495 

the synonymous codon groups used in the most abundant proteins (Sharp and Li 1987). The CAI of a given 496 

gene with an amino acid length 𝐿𝑎 was calculated as follows: 497 

 498 

CAI = (∏
𝑓𝑗

max[𝑓𝑘]

𝐿𝑎

𝑗
)

1
𝐿𝑎

   𝑗, 𝑘 ∈ [synonymous codons for amino acid] 

 499 

where 𝑓𝑗 is the frequency of the codon coding for 𝑗th amino acid of the given gene and max [𝑓𝑘] represents 500 

the frequency of the most frequent synonymous codon 𝑓𝑘 for that amino acid. We calculated the frequency of 501 

each codon by considering the 40 most abundant genes based on the transcriptome of the ancestral strain.  502 

 503 

Calculation of C score. The C score is an indicator of bias in codon weight change caused by a synonymous 504 

substitution. Note that the C score was calculated for each mutation, not for each gene, as in the other 505 

indicators used in this study. The C score in which an ancestral codon (𝑎) changes to a mutated codon (𝑚), 506 

referred to as 𝐶𝑎→𝑚, is defined as follows:  507 

 508 

𝐶𝑎→𝑚 = ln[𝑤𝑚] − 𝑊𝑎 

 509 

where 𝑤𝑚 is the codon weight of codon 𝑚 calculated by the following formula: 510 

 511 

𝑤𝑚 =
𝑓𝑚

max[𝑓𝑘]
 

 512 

where 𝑓𝑚 is the frequency of codon 𝑚 of the focal amino acid and max [𝑓𝑘] represents the frequency of the 513 
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most frequent synonymous codon 𝑓𝑘 for that amino acid. In addition, 𝑊𝑎 is the average of the logarithms of 514 

the codon weights with a single synonymous substitution of codon 𝑎, and corresponds to the expected value of 515 

the mutated codon weights as follows: 516 

 517 

𝑊𝑎 =
1

∑ 𝑃𝑎→𝑛𝑛∈𝑺𝑎

∑ 𝑃𝑎→𝑛 ln[𝑤𝑛]

𝑛∈𝑺𝑎

. 

 518 

𝑺𝑎: set of all possible synonymous codons from a given ancestral codon 𝑎 by a single BPS. 𝑚 ∈ 𝑺𝑎. 519 

𝑃𝑎→𝑛: frequency of a BPS that enables synonymous mutation from codon 𝑎 to codon 𝑛, which was calculated 520 

by the mutational spectrum of synonymous substitutions. 521 

 522 

Gene ontology analysis. Gene ontology (GO) enrichment analysis was performed using GOstats (v.2.48.0, R 523 

Bioconductor) (Falcon and Gentleman 2007). We used all three categories: biological process (BP), molecular 524 

functions (MF), and cellular components (CC). The resulting GO terms were filtered with cutoffs of 0.01 and 525 

0.05 for their respective p-value and q-value (Storey et al. 2021). Genes within the top and bottom 10% of the 526 

normalized G score were analyzed as gene sets. For visualization, the detected GO terms were converted to 527 

their ancestral GO terms in the second level of the gene ontology tree, that is, the layers directly under BP, 528 

MF, or CC. 529 

 530 

mRNA expression profiling of genes using microarray technology. The cells were cultured for 16–19 h and 531 

then sampled at the time of the logarithmic growth phase (OD600 values were 0.072–0.135). Aliquots of the 532 

cells were immediately added to the same volume of ice-cold ethanol containing 10% (w/v) phenol. RNA 533 

extraction was performed using a RNeasy mini kit with on-column DNase digestion (Qiagen), following the 534 

manufacturer’s protocol. The purified RNA was quality-controlled using an Agilent 2100 Bioanalyzer and an 535 

RNA 6000 Nano kit (Agilent Technologies). A microarray experiment was performed using an Agilent 8× 60 536 

K array, which was designed for the E. coli W3110 strain so that 12 probes were contained for each gene. 537 

Purified total RNA (100 ng) was labelled with Cyanine3 (Cy3) using a Low Input Quick Amp WT labelling 538 

kit (One-color; Agilent Technologies). The Cy3-labelled cRNA was checked for its amount (> 5 µg) and 539 
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specific activity (> 25 pmol/µg) using NanoDrop ND-2000. Then, the cRNA of 600 ng was fragmented and 540 

hybridized to a microarray for 17 h at 65 °C, rotating at 10 rpm in a hybridization oven (Agilent 541 

Technologies). The microarray was then washed and scanned according to the manufacturer’s instructions. 542 

Microarray image analysis was performed using Feature Extraction version 10.7.3.1 (Agilent Technologies). 543 

The resulting gene expression levels were normalized using quantile normalization.  544 

 545 

Data Availability 546 

The raw sequence data of genome sequence analyses the ancestral and evolved samples in this article are 547 

available in NCBI's Sequence Read Archive (SRA) under the accession numbers SRR16961197 to 548 

SRR16961208. The microarray data of the ancestral and evolved samples in this article are available in 549 

NCBI's Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number 550 

GSE189008. All relevant data and materials in this article are available from the corresponding authors upon 551 

reasonable request.  552 
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