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Abstract

The evolutionary speed of a protein sequence is constrained by its expression level, with highly expressed
proteins evolving relatively slowly. This negative correlation between expression levels and evolutionary rates
(known as the E-R anticorrelation) has already been widely observed in past macroevolution between species
from bacteria to animals. However, it remains unclear whether this seemingly general law also governs recent
evolution, including past and de novo, within a species. However, the advent of genomic sequencing and high-
throughput phenotyping, particularly for bacteria, has revealed fundamental gaps between the two
evolutionary processes and has provided empirical data opposing the possible underlying mechanisms which
are widely believed. These conflicts raise questions about the generalization of the E-R anticorrelation and the
relevance of plausible mechanisms. To explore the ubiquitous impact of expression level on molecular
evolution, and to test the relevance of the possible underlying mechanisms, we analyzed the genome
sequences of 99 strains of Escherichia coli for microevolution in nature. We also analyzed genomic mutations
accumulated under laboratory conditions as a model of de novo microevolution. Here, we show that the E-R
anticorrelation is significant in both past and de novo microevolution in E. coli. Our data also confirmed
ongoing purifying selection acting on highly expressed genes. Ongoing selection included codon-level
purifying selection, supporting the relevance of the underlying mechanisms. However, their contributions to

the constraints in recent evolution might be smaller than previously expected from past macroevolution.
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Introduction

Is there any general law that governs the evolution of protein sequences on Earth? The rate of protein
sequence evolution differs between genes. Many factors other than functional importance have been proposed
as determinants for the rate of evolutionary diversification among a protein sequence, as reviewed by Zhang
and Yang (2015). Among these factors, gene expression levels might be a general determinant (Krylov et al.
2003; Rocha and Danchin 2004; Drummond and Wilke 2008). Comparative genomics of orthologous genes of
closely related species revealed a pervasive negative correlation between gene expression level and the rate of
evolutionary diversification in a protein sequence, namely E-R (Expression—evolutionary Rate)
anticorrelation (Pal et al. 2001). The underlying mechanism of the E-R anticorrelation remains unclear
(Usmanova et al. 2021) but can be explained by several purifying selections, such as the selection against
mistranslation and protein misfolding (Akashi 1994; Drummond et al. 2005; Drummond and Wilke 2008;
Allan Drummond and Wilke 2009; Cherry 2010a; Yang et al. 2010; Geiler-Samerotte et al. 2011), selection
against incorrect and slow translation (Akashi and Gojobori 2002; Cherry 2010b; Gout et al. 2010; Park et al.
2013; Yang et al. 2014), and selection against protein misinteraction (Zhang et al. 2008; Levy et al. 2012;
Yang et al. 2012). These purifying selections are believed to be strong for highly expressed proteins because
the defects in the quality and quantity of these proteins presumably confer more deleterious effects on the cells

than poorly expressed proteins when considering the law of mass action.

Contrary to the ubiquity of the E-R anticorrelation for evolution between species (macroevolution), little is
known about whether the same law governs evolution within species (microevolution). Interestingly, the
advent of genomic sequencing and high-throughput phenotyping has revealed several gaps between the two
evolutionary processes, particularly among bacteria. Notably, bacterial phenotypic diversification in nature is
biphasic, whereby phenotypic diversification (such as metabolism) occurs rapidly and instantaneously within
species (microevolution), while divergence between species or genera (macroevolution) proceeds gradually
(Plata et al. 2015). Consistent with this general trend in phenotypes, recent studies have also revealed an
unexpectedly large genetic divergence of protein sequences attributable to weaker purifying selection within

bacterial species in natural ecosystems (Garud ef al. 2019; Ramiro et al. 2020). In particular, Garud et al.
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(2019) reported that the purifying selection for protein sequences within species is much weaker than that
between species, suggesting a cautionary note for the applicability of the E-R anticorrelation in relatively
recent evolution among bacteria. In addition, recent studies have also pointed out the inconsistency between
diverse empirical data across multiple organisms and the predictions from the frequently suggested possible
mechanisms explaining the E-R anticorrelation (Plata et al. 2010; Plata and Vitkup 2018; Razban 2019;
Usmanova et al. 2021). For instance, recent genome-scale data empirically measuring protein stability, protein
aggregation, and protein stickiness do not support the considerable extent of selection against protein
misfolding or protein misinteraction for highly expressed proteins in Escherichia coli (Usmanova et al. 2021).
In turn, these conflicts raise questions about the generality of the E-R anticorrelation and the relevance of the
plausible mechanisms governing it, which motivated us to test the applicability of the E-R anticorrelation on

bacterial microevolution and the relevance of the possible underlying mechanisms.

To this end, we analyzed the genome sequences of 99 strains of E. coli, whose mutations accumulated through
microevolution in nature. We also explored the E-R anticorrelation of de novo evolution via an evolution
experiment using E. coli. We found significant E-R anticorrelation in both past and de novo evolution in E.
coli. We also found that purifying selection acting on highly expressed genes contributed to the ubiquity of the
E-R anticorrelation. This study confirmed that purifying selection acting on highly expressed genes is not an
evolutionary legacy but rather an active component, implying that expression level has a ubiquitous impact on
the speed of evolutionary molecular diversification in bacteria. The detected selection included codon-level
purifying selection, which supports the relevance of the underlying mechanisms proposed previously.
Nevertheless, their effects on recent evolution may be smaller than expected. Our study emphasizes the
importance of the expression level in understanding how genetic divergence emerges within a bacterial
species and also provides new insight into the controversy of the dominant mechanisms underlying the E-R

anticorrelation.

Results
The inter- and intraspecific E-R anticorrelation in past evolution. The rate of interspecific evolution

4


https://doi.org/10.1101/2022.03.02.482674
http://creativecommons.org/licenses/by-nc-nd/4.0/

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.02.482674; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

among protein sequences can be explained by the interrelationship between the number of nonsynonymous
nucleotide changes per nonsynonymous site (dN) and the number of synonymous nucleotide changes per
synonymous site (dS) in the orthologous genes between closely related species (Figure 1A). We refer to
interspecific dN and dS as dNy, and dSy,, respectively. Previous studies have shown that both dNy,, and
dSy are negatively correlated with expression levels in E. coli (Figure 1B, C) and in other organisms
(Drummond and Wilke 2008). The underlying mechanisms of these relationships are explained by purifying
selection at the codon level (Drummond and Wilke 2008; Yang et al. 2010; Park et al. 2013). In particular, the
protein misfolding avoidance hypothesis (Yang et al. 2010) explains that optimal codons are favored in highly
expressed proteins to avoid toxic misfolding and that dNy, and dSy,, are common rather than independent
targets of codon-level purifying selection to combat misfolding. Consistent with this hypothesis, we found a
negative correlation between dNy,/dSy, and the expression level. The correlation was somewhat weaker than
the E-R anticorrelation in dNy, most likely due to the fact that the common purifying selection acting on
dNpw and dSy, was cancelled out (Figure 1D). Nevertheless, the negative correlation between dNpy,/dSy, and
the expression level remains substantial, suggesting that another mechanism contributes to purifying selection

which acts on highly expressed genes.

To test whether within-species molecular evolution also follows the E-R anticorrelation, we quantified
intraspecific dN and dS, referred to as dNy,, and dS,,, among 99 strains of E. coli. We found that both dN,q,
and dS,, were negatively correlated with gene expression relative to that of interspecific evolution (Figure
1E, F). In addition, the correlation coefficient for dNg was slightly larger than that for dS,,, which was
similar to the genetic signatures of interspecific evolution in other organisms, such as yeast or flies. This
difference between dNyg, and dSyq also suggests that the E—R anticorrelation in dNy, reflects different
purifying selections from those acting on dS,., as in the case of the E-R anticorrelation in dNy,. To confirm
this hypothesis, we explored the relationship between dN,u/dS,w and expression levels. As with the case of
interspecific evolution, dNy./dSy showed a substantial negative correlation with expression level, although
the correlation was weaker than the E-R anticorrelation in dNy,. Therefore, the purifying selection on dSyy,

seems to be insufficient to explain the E-R anticorrelation in intraspecific evolution. These results suggest that
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E-R anticorrelation itself might be causal to a general pattern of molecular evolution in the past, but the

underlying mechanisms of purifying selection remain an open question, as stated recently in the literature

(Plata and Vitkup 2018).
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Figure 1. The negative correlation between mRNA expression level and the rates of DNA sequence of
orthologs in the course of past evolution. (A) A schematic phylogeny of E. coli and Salmonella
typhimurium. Genetic changes between nodes are indicated as Axs for S. typhimurium from the last common
ancestor of E. coli and S. typhimurium (LCA), Axg for the most recent common ancestor of E. coli (MRCA)
from the LCA, Axga and Axgp for E. coli strain A and B from the MRCA, respectively. Genetic changes
between species, Ny and Sy, included, represent the difference between Axg and the sum of Axg and Axga or
the sum of Axg and Axgs. Genetic changes within E. coli species, Ny, and Sy, included, represent differences
between Axgs and Axgg. (B-D) The negative correlation of the rate of interspecific evolution of DNA
sequences (E. coli and S. typhimurium). (E—G) The negative correlation of the rate of intraspecific evolution
of DNA sequences (E. coli). The evolutionary rate of the DNA sequence is characterized by dN (B, E) and dS
(C, F), respectively. (D, G) The dN/dS ratio of interspecific (D) and intraspecific evolution (G). The
expression level was calculated from E. coli transcriptome data. Each dot corresponds to a single gene. The

red-green gradient represents the 2D density (high to low). Spearman’s rank correlation coefficients and p-
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values are shown.

E-R anticorrelation in de novo evolution. To determine whether the E-R anticorrelation is an evolutionary
legacy or is currently applicable, we explored the relationship between protein evolutionary speed and gene
expression levels during de novo evolution. Using a previously developed UV-irradiating cell culture device
(Shibai et al. 2019), we conducted an evolution experiment to rapidly accumulate mutations (Figure 2A).
Escherichia coli cells were incubated in this device and transferred to a fresh medium every four days. During
incubation, the device automatically measured the optical density (OD) of the culture and irradiated UV for
each unit increment of OD, where UV was utilized as a mutagen and germicidal lamp (Figure 2B). This
feedback control of UV irradiation prevented the depression of mutation rates caused by the acquisition of UV
resistance in the cells. We established six independent lineages from an ancestral colony and repeated the
cycle of incubation and transfer for two years, corresponding to tens of thousands of generations (Figure 2C).
As a result, we obtained thousands of base-pair substitutions (BPSs) of the coding region fixed in each cell
population (Figure 2D). The occurrence of the same mutations over multiple lineages was exceedingly rare,
ensuring that most of the accumulated BPSs contributed to the evolutionary diversification of the DNA
sequence. To understand the overall evolutionary processes of diversification, we calculated whole-genome
dN/dS values (Figure 2E) by considering a mutational spectrum (Figure 2F). The dN/dS of most lineages was
roughly 0.9, indicating that most BPSs were fixed in the populations through neutral processes rather than by
adaptive processes. Moreover, considering the large population size and high mutation rate in the culture
device, many of these non-synonymous BPSs were likely to be fixed in the population by hitchhiking rather

than genetic drift.

To explore the expression levels of the mutated genes, we obtained transcriptome data of the ancestral and
evolved samples by microarray and quantified the geometric mean of six independent lineages. We found that
the expression profiles of the evolved strains were similar to that of the ancestral strain (p = 0.89-0.94, Figure
S1). Using transcriptome data, we explored the relationship between the protein evolutionary rate and gene

expression levels during de novo evolution. For each gene, we quantified dN and dS in de novo evolution,
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referred to as dNyov, and dS,ov., by using the sum of the number of nonsynonymous and synonymous BPSs
among six independent lineages. We found a significant E-R anticorrelation even in de novo evolution,
regardless of ancestral (p =—0.17, p < 0.05) or evolved expression levels (p =—0.19, p < 0.05, Figure 3A). We
also confirmed that this negative correlation remained after controlling for gene dispensability (p =—0.18, p <
0.05, partial correlation test for maximal growth rate of deletion mutants). Notably, the mutation data of
approximately half the number of total mutations (i.e., the data at one-year of evolution) exhibited a similar
negative correlation (p = —0.16, p < 0.05). Thus, we confirmed that the observed E-R anticorrelation was
relatively weak but insensitive to the progress of our evolution experiment or to changes in transcription
profiles, at least during our evolution experiment. Contrary to the evolution between species, the negative
correlation between dS,,oy, and expression levels was found to be much weaker than that of dN,, (Figure 3B).
We also confirmed a negative correlation between dNy,vo/dSueve €Xxpression levels (Figure 3C), as well as the
E—R anticorrelation in dN,.,. Thus, our de novo evolution experiments revealed ongoing purifying selection

acting on highly expressed genes.
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Figure 2. Evolution experiment for accumulating massive mutations. (A) Procedure of an evolution
experiment with the UV irradiating cell culture device. The device consists of a quartz glass test tube with a
resin housing that measures the cell density (OD) by an orange LED and irradiates UV light by a UV-C LED.

Mutagenesis by UV irradiation (denoted as purple asterisks) was performed when OD exceeded a defined
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increment so that the survival fraction could be maintained within a constant range (B). After four days of
repeats, an aliquot of cell culture was diluted with fresh media 100 times and transferred into a new test tube.
These procedures were repeated for six independent replicates for two years. (C) The estimated number of
generations after 688 days of the evolution experiments. The black bars correspond to the values calculated
with the doubling time of evolved cells for each of the six replicates. The dashed line indicates the value
calculated with the ancestral doubling time. (D) The number of accumulated BPSs during the evolution
experiment. The gray and white fractions of a bar represent nonsynonymous and synonymous substitutions,
respectively. (E) The genome-wide dN/dS values were close to 1.0 for all the six replicates, implying that the
majority of the accumulated mutations had neutral effects on their fixation within the populations. (F)
Mutation spectrum of synonymous substitutions. The synonymous substitutions of all lineages are summed

for each substitution type.

A B C
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Figure 3. There was a negative correlation between the protein sequence evolution during the evolution
experiment and the gene expression level. (A) dN,., showed a negative correlation with the gene
expression level. (B) On the other hand, dS,,., showed only a slight correlation with the expression level. (C)
A negative correlation was also observed for dN;ovo/dShove, Where dN,o, Was normalized by dS,.., by

cancelling the common selection.

Purifying selection on codon usage in de novo evolution was less sensitive to expression level. The
expression level dependency of dS reflects the purifying selection of codon usage of highly expressed
proteins, which is a frequently suggested explanation for the E-R anticorrelation in dN (Drummond and Wilke

2008). Highly expressed proteins use optimal codons that enable fast and accurate translation (Akashi 2001,
9
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2003) and protein stability (Yang et al. 2010). The use of other unfavorable codons has detrimental effects on
cellular growth and is thought to be evolutionarily constrained (Zhang and Yang 2015). However, the small
anticorrelation between dS,.., and expression levels obscures the expected expression dependency of the
purifying selection on codon usage in de novo evolution. To clarify this, we explored the relationship between
the degree of codon optimization of each protein and the evolutionary speed of synonymous BPSs. Since this
relationship is expected to be weak, it is important to evaluate the evolutionary speed of a small number of
synonymous BPSs. To this end, we used a normalized version of the G score, hereinafter referred to as the G
score, as an alternative to dN,q, and dS,..., as detailed in the Materials and Methods. The G score is useful
for screening genes with a small number of substitutions relative to neutral expectations. First, we reconfirmed
the E-R anticorrelation between expression level and G score in nonsynonymous substitutions (Gy, p = —0.15,
p < 0.05) and that there was no correlation in synonymous substitutions (Gs), which was consistent with the
relationship between expression level and dN,y, or dS,... Next, we employed the codon adaptation index
(CAI) as a standard measure of the degree of codon optimization and explored the relationship between CAI
and G scores. As a result, a negative correlation was found between the CAI and G score for nonsynonymous
BPSs (Figure 4A) and synonymous BPSs (Figure 4B), although the correlation coefficient for synonymous
BPSs was not strong. To confirm the looseness of the purifying selection on codon-optimized proteins in de
novo evolution, we classified 10% of mutated proteins with the lowest CAI as unoptimized, 10% of mutated
proteins with the highest CAI as optimized, and the remaining mutated proteins as having moderate optimality
in terms of codon usage for nonsynonymous and synonymous BPSs. As expected, unoptimized proteins
showed higher Gg than the optimized and moderately optimized proteins (Figure 4D). In contrast, there was
no significant difference between optimized and moderately optimized proteins, indicating that the purifying
selection on codon usage only weakly depends on expression levels in de novo evolution. This tendency
remained even if the classification criteria for CAI changed from 10% to 5%. To confirm the looseness of the
purifying selection on codon usage more directly, we focused on individual synonymous BPSs and explored
codon bias. To this end, we calculated the C score for synonymous BPSs, whereby the C score represents the
difference in preference of the mutant synonymous codon from neutral expectation, as detailed in the

Materials and Methods. In short, the C score takes positive values if the mutant synonymous codons are

10
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used more frequently in highly expressed proteins than in neutral expectations, while it takes negative values
if the mutant synonymous codons are used less frequently in highly expressed proteins than in neutral
expectations. Contrary to the statistics, such as G scores or CAl, characterizing each gene, C scores are
assigned to each synonymous BPS, not to each gene. In other words, each gene had as many C scores as the
number of synonymous BPSs in each gene. We found that unoptimized proteins allowed for more mutant
synonymous codons, which are infrequently used in highly expressed proteins than moderately optimized
codons (Figure 4E). In contrast to the other categories, the mutant synonymous codons of the optimized
proteins were not able to obtain high C scores because the wild-type codons of the optimized proteins are
likely to be the most frequent among the highly expressed proteins. Therefore, it is rational that there was no
statistical significance between optimized and unoptimized proteins, even though the C score of the former
was relatively larger than that of the latter. Altogether, these results support that the detected purifying

selection on codon usage is active but less sensitive to expression levels.
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Figure 4. Relation between G scores and Codon Adaptation Index. The Codon Adaptation Index (CAI)
was negatively correlated with G scores for nonsynonymous (Gy, A) and synonymous BPSs (Gs, B).
Spearman’s rank correlation and p-values are indicated in each panel. Color represents codon optimality (U,
unoptimized; M, moderate; O, optimized proteins). Comparison between codon optimality and G scores (Gy,
C; Gs, D). Enlarged panels are shown at the bottom. (E) Comparison between codon optimality and C score.

Adjusted p-values for Wilcoxon test are indicated as ns > 0.05, * <0.05, ***<0.001, and **** < (0.0001.

Purifying selection of synonymous substitution on molecular function. The difference between dN,,, (or

Gy) and dS;ov. (or Gs) in correlation with expression levels suggests that the protein features on which
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purifying selection acts in de novo evolution of synonymous BPSs might be somewhat different from that of
nonsynonymous BPSs. To confirm this possibility, we conducted a GO enrichment analysis for the proteins
ranked in the top or bottom 10% of G scores for synonymous and nonsynonymous BPSs (Figure 5). We found
70 GO terms enriched in the bottom 10% of Gg; in contrast, no GO terms were enriched in the bottom 10% of
Gy (Figure 5A). Interestingly, all of the enriched terms were classified in the molecular function category,
suggesting that some enzymatic features were related to the target of purifying selection for synonymous
BPSs rather than any metabolic pathways. For instance, the enriched GO terms contained ATPase activity
(GO:0016887), which is required for various biochemical reactions (Figure 5D), regardless of metabolic
pathways. Contrary to the bottom 10% of Gs, the top 10% of Gs showed no enrichment in the molecular
function category; however, 17 GO terms were enriched in the biological process category, such as the
lipopolysaccharide biosynthetic process (GO:0009103). Many of these were common among the GO terms
enriched in the top 10% of Gy (Figure 5B, C), suggesting that some proteins related to these processes were
likely to be inactivated and were not targeted by purifying selection for both synonymous and nonsynonymous
BPSs. These results support the hypothesis that the purifying selection acting on synonymous BPSs is not a

single dominant mechanism of purifying selection on nonsynonymous BPSs, at least in de novo evolution.

Number of enriched GO terms
A G, score Gg score
N S
GO categories Top 10% Bottom 10% Top 10% Bottom 10%
Biological Process (BP) 48 0 17 0
Cellular Component (CC) 0 0 0 0
Molecular Function (MF) 0 0 0 70
B 48 GO terms in BP C 17 GO terms in BP D 70 GO terms in MF
enriched in the top 10% of G,  enriched in the top 10% of Gg  enriched in the bottom 10% of Gg
cellular process cellular

4 11 biological adhesion process

intraspecies interaction
8 10 ‘ between organisms 5 6 2 22

ﬁ multi-organism process

biological regulation
biological regulation

4
18
20 30

Figure 5. Comparison between G scores with biological features. (A) Enrichment analysis for the top and
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bottom 10% of Gy and Gs. The number of GOs enriched significantly was shown in each class. (B—D) Venn
diagram of the ancestral GOs at the second level (circles) of the GO tree for each of the enriched GOs (B for
top 10% of Gy, C for top 10% of Gs and D for bottom 10% of Gg). The number of enriched GOs in each
parental GO is indicated in each circle.

BP, Biological Process; MF, Molecular Function.

Discussion

The present study explored the impact of expression levels on the molecular evolution of bacteria. By
employing comparative genomics and a laboratory-based evolution experiment, we elucidated the ubiquity of
the impact of expression level on the evolutionary speed of sequence diversification. We found that the E-R
anticorrelation governs not only sequence diversification between species but also within species. This finding
of the ubiquity of the E-R anticorrelation is consistent with the recent analysis of genomic mutations
accumulated in E. coli over long-term evolution experiments (Maddamsetti 2021). However, there are several
disparities between the latter and the present study. First, the correlation coefficients between the expression
level and the rate of nonsynonymous mutations in the long-term evolution experiments were almost negative,
but their magnitudes were much smaller (p = —0.0486—0.0991) than those for de novo evolution in our study
(p = —0.19, Figure 3A). Second, the correlation coefficients between the expression level and the rate of
synonymous mutations in the long-term evolution experiments were positive (0.0458—0.094), contrary to the
negative values in our de novo evolution experiment (p = —0.06, Figure 3B) and natural microevolution (p = —
0.36, Figure 1F). We speculate that these differences arose not only from the difference in conditions between
the two evolution experiments, but also from the difference in the analytical method used to calculate the
evolutionary speeds of DNA sequences. Contrary to our study, for example, the previous study included
mutations unfixed in the populations to calculate the evolutionary speeds. Accounting for unfixed mutations
tends to obscure the signatures of natural selection and is likely to underestimate purifying selection. In
addition, the previous study did not use dN or dS but rather employed the number of nonsynonymous or
synonymous mutations per length as a measure of the rate of evolution. Accordingly, neither biased mutational

spectrum nor the differences in probability of synonymous/nonsynonymous sites among genes were
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considered properly, which could interfere with the calculation of the evolutionary speeds for each gene. On
the other hand, our method carefully treats these key factors when measuring the evolutionary speeds of DNA
sequences, as detailed in the Materials and Methods. Thus, our data support the reliability of the E-R
anticorrelations. We also found that the purifying selection acting on highly expressed genes is not a legacy
but actively constrains the sequence diversification of these genes, even along a relatively short evolutionary
timescale. The detected selection included purifying selection at the codon level, supporting the relevance of
the possible underlying mechanisms such as selection against protein misfolding or protein misinteraction,
since these frequently suggested mechanisms assert codon-level purifying selection acting on highly
expressed proteins (Yang et al. 2010, 2012). Nevertheless, our data also suggest that the impacts of these
frequently suggested possible mechanisms on recent evolution might be weaker than previously expected.
These findings are consistent with recent studies indicating that empirical data measuring protein stability,
protein aggregation, and protein stickiness do not support the considerable impact of these frequently
suggested mechanisms on the E-R anticorrelation for macroevolution (Plata et al. 2010; Plata and Vitkup
2018; Razban 2019; Usmanova et al. 2021). Therefore, the unexpected weak impacts of the frequently
suggested mechanisms might be common between macro-and microevolution. In conclusion, this study
suggests the importance of the expression level when attempting to understand how genetic divergence
emerges within a bacterial species, and also provides a new insight into the controversy of the dominant

mechanisms underlying the E-R anticorrelation (Zhang and Yang 2015).

In this study, the E-R anticorrelation was observed in both past and de novo microevolution. However, the
negative correlation of the former is stronger than that of the latter. What does this difference mean? We
speculated that the magnitude of purifying selection against protein sequences could explain this difference,
since the E-R anticorrelation mainly reflects the purifying selection. We found this to be true. In our
experiment, the average dN/dS of past evolution was smaller than that of de novo evolution. That is, purifying
selection against protein sequences in past evolution is stronger than that of de novo evolution. Why is the
purifying selection in de novo evolution relatively small, even in the presence of selection for growth/survival

in our evolution experiment? There are at least two plausible explanations for this finding. The first possible
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and trivial explanation is that natural environments are more severe than those experienced in test tubes.
Under our laboratory conditions, the nutrients required for growth were supplied constantly and at sufficient
levels. In addition, the stress factor was limited to that from the UV alone. On the other hand, the quality and
quantity of both nutrients and stressors must be different from the laboratory conditions and must change
unpredictably. These severe conditions enable us to speculate that the essentiality of each gene is strong even
for nonessential genes, which are characterized in relatively milder laboratory conditions. In other words, the
detrimental effects of a given mutation are strong under natural conditions. Therefore, it is not difficult to
imagine that a strong purifying selection governs evolution in nature. The second explanation is plausible if
we consider a high mutation rate in our evolution experiment. The rate of mutation in our experimental setup
was hundreds of times higher than the spontaneous mutation rate that would be experienced in nature.
Therefore, neutral-to-deleterious mutations are relatively frequent. The population bottleneck in our
experiment was large enough to fix these frequent deleterious mutations in a population by hitchhiking driver
beneficial mutations. Therefore, the deleterious effects of a given passenger mutation are alleviated by the
beneficial effects of driver mutations. As a result, purifying selection cannot purge such alleviated detrimental
mutations, which yields nearly neutral values for dN/dS. These mechanisms are non-mutually exclusive.
Interestingly, a high mutation rate and neutrality driven by hitchhiking are not only applicable to our artificial
condition, but are also seen in more natural situations (Ramiro et al. 2020). Therefore, the relaxation of
purifying selection due to high mutation rates may partially contribute to past divergent evolution within

species.

Why is the E-R anticorrelation regarded as being general? The mechanical origins of the E-R anticorrelation
have been extensively proposed, such as the protein misfolding avoidance hypothesis or the misinteraction
avoidance hypothesis. However, most of the proposed mechanisms cannot fully explain the generality of the
E-R anticorrelation. Previous studies have focused on identifying the type of fundamental biological
processes for a mutated gene that has deleterious effects on any organism. In contrast, our results suggest the
importance of robustness or conservativeness of the entire transcriptional expression pattern during evolution

to explain the generality of the E-R anticorrelation. If expression levels evolve without any constraints or are
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highly dynamic, the E-R anticorrelation would lose its generality. The expression level of a gene is expected
to change dynamically during evolution, for example, by the mutation of a corresponding transcription factor
or intergenic region. In fact, an enrichment analysis detected those nonsynonymous mutations significantly
accumulated transcription factors in our evolution experiment. Interestingly, however, the entire transcription
level exhibited only slight changes from the ancestor even after the accumulation of thousands of mutations.
As a result, an equivalent level of the E-R anticorrelation was observed in both the ancestral transcriptional
data and in the evolved transcriptional data (tho = —0.21~-0.23). Such conservativeness among expression
levels was also detected in other evolutionary experiments equipped with growth selection. For example, Ho
and Zhang (2018) revealed that genetic changes more frequently reverse rather than reinforce transcriptional
plastic changes in adaptation to a new environment, generally because an original transcriptional state is
favored during growth selection. Transcriptome level conservation has also been observed in bacterial
evolution in nature (Zarrineh et al. 2014; Payne and Wagner 2015; Junier and Rivoire 2016). Likewise, any
compensatory mutations might restore expression levels that were altered by other harmful mutations to their
original levels in our evolution experiment. Therefore, some mutations among transcriptional factors may play
a role in compensatory mutations to retain their expression levels. In addition to the genetic mechanism, there
are cases in which an alternative mechanism without any mutations underlies conservativeness at the
expression level. For instance, Briat et al. (Briat ef al. 2016) proposed a network motif conferring homeostasis
or the perfect adaptation of expression levels to intrinsic and extrinsic disturbances. Such mechanisms are also
applicable to mutational disturbances in the expression levels. In addition, it has been pointed out that ORFs
can somehow determine their own expression levels (Isalan et al. 2008). To understand the generality of the
E-R anticorrelation, the present study sheds light on the importance of understanding the quantitative

relationship between protein sequence evolution and expression evolution.

Materials and Methods

Database analysis of mRNA expression levels. A total of 218 microarray datasets of E. coli K-12 substrain
MG1655 with the GPL3154 platform were used in this study (Table S1). They were included in 27

experiments and downloaded from the Gene Expression Omnibus (Barrett et al. 2013). After quantile
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normalization (Bolstad et al. 2003), the average and variance of the expression levels were calculated for each

gene.

Interspecific analysis of protein evolution. The protein evolutionary rates of E. coli were obtained from the
literature, which compared the genomes of Escherichia coli K-12 MG1655 and Salmonella typhimurium LT2
(“Supplementary information S2” in Zhang and Yang 2015). The dN and dS values were calculated from the
genomic sequences of E. coli str. K-12 substr. MG1655, and Salmonella enterica subsp. enterica serovar
Typhimurium str. LT2 (accession no. NC 000913.3 and NC 003197.2). A total of 3145 paired sets of
orthologous genes were detected by the bidirectional best hits (Overbeek ef al. 1999) method, comparing all
combinations of two coding features from the genomes. For each orthologous gene set, Clustal Omega
(McWilliam ef al. 2013) was used to generate an alignment, and PAML was used to calculate the dN and dS

values from the alignment (Yang 1997).

Intraspecific dN/dS analysis. The coding DNA sequences for 99 E. coli genomes were downloaded from
Ensembl Genomes (Zerbino et al. 2018) in the multi-fasta format (Table S2). Each coding feature of the
genomes was annotated by the bidirectional best hits (Overbeek ef al. 1999) method compared with the E. coli
K-12 substrain MG1655, generating groups of orthologous genes. Clustal Omega and Clustal W2 (McWilliam
et al. 2013) aligned the sequences and generated phylogenetic trees for each orthologous group. PAML (Yang

1997) calculated the dN and dS values for each tree.

Strain and culture conditions. We used the E. coli K12 substrain MDS42 (Pésfai et al. 2006) as the ancestor
of the evolution experiment. We used a chemically defined medium, mM63, which comprised 62 mM
K,HPO,, 39 mM KH,PO,, 15 mM (NH,4),SO4, 2 uM FeSO4-7H,0, 15 uM thiamine hydrochloride, 203 pM
MgSO, 7 H,0, and 22 mM glucose (Kashiwagi et al. 2009). The cells were inoculated into 8 mL of the mM63

medium and incubated with shaking at 37 °C.

Evolution experiment. The evolution experiment procedure consisted of a 4-day cycle of a serial transfer
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cycle. We used an automated UV-irradiating cell culture system that was previously reported (Shibai et al.
2019). First, the OD value of the cell culture was measured automatically. When the OD value exceeded the
stipulated threshold (ODyr), the cells were exposed to a dose of UV light which killed the cells, resulting in a
survival rate of the ancestral cell of 107 to 107, Then, the threshold, ODtyr, was renewed as OD1urtODsrEp,
so that the next UV irradiation was conducted when the living cell population recovered to the amount
corresponding to ODgrgp. The ODgrgp and initial ODtyr values were set at ODggo = 0.0015. The cells were

glycerol-stocked at the end of each round.

Whole-genome resequencing. Cells were grown in a mM63 medium at 37 °C with shaking at 200 rpm
overnight for 2 days, which were then pelleted by centrifugation. Genomic DNA was extracted from the cells
using a Wizard Genomic DNA Purification Kit (Promega). DNA libraries were prepared using a Nextera XT
kit (Illumina) for paired-end sequencing (2% 300 bp), according to the manufacturer’s instructions. Illumina
MiSeq sequenced the DNA libraries using the MiSeq Reagent Kit v3 for 600 cycles. Mutation detection was
performed by mapping the resulting read data to the reference genome sequence (accession no. AP012306.1)
using the Burrows-Wheeler Aligner software (Li and Durbin 2009) and SAMtools (Li et al. 2009). For quality
control, the called mutations were filtered using the Phred quality score (Ewing and Green 1998; Cock et al.
2009) with a cut-off value of > 100. In addition, base-pair substitutions (BPSs) with a frequency of “mutant”
reads < 90% were removed. The resulting mutations were annotated using an in-house program written in

CH++.

Calculation of dN and dS in de novo evolution. Genome-wide dN/dS values were calculated from the
numbers of both synonymous and nonsynonymous BPSs using a previously reported method (Shibai et al.
2017). dN and dS values in de novo evolution for each gene, referred to as dN,,, and dS,.., were calculated

similarly, assuming each gene sequence as a full-length sequence.

Calculation of G scores. The G score was defined as the actual number of mutations (M) multiplied by the

logarithm of the ratio of the actual number of mutations to the expected number of mutations (log(M/E))
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(Tenaillon et al. 2016). Therefore, the G score was supposed to show positive values with mutationally
accelerated genes, negative values with suppressed genes, and zero values with non-biased genes. In this
study, we normalized the G score by the number of mutational sites in each gene for more precise bias
analyses. Specifically, the G score of each gene for synonymous (subscripted with S) and nonsynonymous
(subscripted with N) substitutions were calculated according to the following formulas:

Normalized G score of synonymous and nonsynonymous substitutions of gene i:

Ms; = [Ms;
Ge: = — n|=22
SET L n[Es,i

My ; My ;
GN,L' N,i N,l]

= In
Li(1 - Psy;) [EN.i
Expected number of synonymous and nonsynonymous substitutions of gene i:

E — L;iPs; YK Mg,
St (Ps) ZfLi

_1-P;

En,; P
S0

Es;

Mg ;: observed number of synonymous substitutions in gene i

My, ;: observed number of nonsynonymous substitutions in gene i

K: number of genes in the genome

L;: length of the coding DNA sequence of gene i

Pg ;: the probability that the substitution is synonymous substitution when a substitution occurs in gene i as

detailed below. {(Ps) represents the mean of Ps ; for all the genes.

The probability that the substitution occurred on a given codon when a substitution occurred in gene i was

calculated using the following equation:
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P(codk,i)n(subﬂcodk,i)

P(cod,, ;|sub;) = '
( kil 1) Z;‘ci1P(Cde,i)n(Subi|Cde'i)

Here, each substitution of all six possible substitutions is denoted by sub;, where j takes 1-6, using the

following array:

sub = (AT - TA,GC - CG,AT - GC,AT - CG,GC - AT,GC - TA).

In addition, each codon of all 64 possible codons in a given gene i is denoted by cody ;, where k takes 1-64,

using the following array:

cod = (AAA, AAT, AAG, ...,CCC).

The codon usage of codon k in gene i is then represented by P(codk,l-), which was calculated from the
genome sequence of the ancestral strain. In addition, the number of possible mutant triplets when the j th
substitution occurs in a given cody in gene i is denoted by n(subj|cody ;). Therefore, the probability of
synonymous change for a given codon in gene i with a given j th substitution is given by the following

equation:

n(S|sub; N cody ;)

P(S|sub] n COdk,i) = n(subjlcodki)

Here, the number of synonymous triplets when a sub; occurs in a given cody; is denoted by n(S|sub; N
cody, ;). Using the mutational spectrum for synonymous substitutions, P(subj), these two probabilities give

Pg ; using the following equation:
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6 64
Ps; = Z {P(subj) Z [P(codk,i|subj)P(S|subj N codk_i)]}.
j=1 k=1

Calculation of the Codon Adaptation Index. The codon adaptation index (CAl) indicates the abundance of
optimal codons in a gene sequence, where an optimal codon is defined as the most frequent codon in each of
the synonymous codon groups used in the most abundant proteins (Sharp and Li 1987). The CAI of a given

gene with an amino acid length La was calculated as follows:

1

/I Dy f ]
CAl = _— i, k € [synonymous codons for amino acid
j max[f]) DT EYROW

where f; is the frequency of the codon coding for jth amino acid of the given gene and max [fj] represents

the frequency of the most frequent synonymous codon f;, for that amino acid. We calculated the frequency of

each codon by considering the 40 most abundant genes based on the transcriptome of the ancestral strain.
Calculation of C score. The C score is an indicator of bias in codon weight change caused by a synonymous
substitution. Note that the C score was calculated for each mutation, not for each gene, as in the other
indicators used in this study. The C score in which an ancestral codon (a) changes to a mutated codon (m),
referred to as C,_,,, is defined as follows:

Caom = In[wy,] — W,

where wy, is the codon weight of codon m calculated by the following formula:

o
™= max[fi]

where f;, is the frequency of codon m of the focal amino acid and max [fj] represents the frequency of the
21
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most frequent synonymous codon fj, for that amino acid. In addition, W, is the average of the logarithms of
the codon weights with a single synonymous substitution of codon a, and corresponds to the expected value of

the mutated codon weights as follows:

1
Wa z Paosp Infwy,].

ZnESa Pa—)n nes
a

S, set of all possible synonymous codons from a given ancestral codon a by a single BPS. m € §,,.
P,_,: frequency of a BPS that enables synonymous mutation from codon a to codon n, which was calculated

by the mutational spectrum of synonymous substitutions.

Gene ontology analysis. Gene ontology (GO) enrichment analysis was performed using GOstats (v.2.48.0, R
Bioconductor) (Falcon and Gentleman 2007). We used all three categories: biological process (BP), molecular
functions (MF), and cellular components (CC). The resulting GO terms were filtered with cutoffs of 0.01 and
0.05 for their respective p-value and g-value (Storey et al. 2021). Genes within the top and bottom 10% of the
normalized G score were analyzed as gene sets. For visualization, the detected GO terms were converted to
their ancestral GO terms in the second level of the gene ontology tree, that is, the layers directly under BP,

ME, or CC.

mRNA expression profiling of genes using microarray technology. The cells were cultured for 16—-19 h and
then sampled at the time of the logarithmic growth phase (ODggo values were 0.072—0.135). Aliquots of the
cells were immediately added to the same volume of ice-cold ethanol containing 10% (w/v) phenol. RNA
extraction was performed using a RNeasy mini kit with on-column DNase digestion (Qiagen), following the
manufacturer’s protocol. The purified RNA was quality-controlled using an Agilent 2100 Bioanalyzer and an
RNA 6000 Nano kit (Agilent Technologies). A microarray experiment was performed using an Agilent 8% 60
K array, which was designed for the E. coli W3110 strain so that 12 probes were contained for each gene.
Purified total RNA (100 ng) was labelled with Cyanine3 (Cy3) using a Low Input Quick Amp WT labelling

kit (One-color; Agilent Technologies). The Cy3-labelled cRNA was checked for its amount (> 5 pug) and
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specific activity (> 25 pmol/ug) using NanoDrop ND-2000. Then, the cRNA of 600 ng was fragmented and
hybridized to a microarray for 17h at 65 °C, rotating at 10 rpm in a hybridization oven (Agilent
Technologies). The microarray was then washed and scanned according to the manufacturer’s instructions.
Microarray image analysis was performed using Feature Extraction version 10.7.3.1 (Agilent Technologies).

The resulting gene expression levels were normalized using quantile normalization.

Data Availability

The raw sequence data of genome sequence analyses the ancestral and evolved samples in this article are
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NCBI's Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number
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