

1 **Combining transgenesis with paratransgenesis to fight malaria**

2

3 Wei Huang¹, Joel Vega-Rodriguez², Christopher Kizito¹, Sung-Jae Cha¹ and Marcelo
4 Jacobs-Lorena^{1,3}

5

6

7 ¹ Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns
8 Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.

9

10 ² Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious
11 Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD
12 20852, USA.

13

14 ³ To whom correspondence may be addressed. Email: ljacob13@jhu.edu

15

16 Key words: Transgenesis, paratransgenesis, malaria transmission

17

18 **Significance**

19

20 Malaria kills hundreds of thousand persons yearly. Clearly, new approaches are needed to fight
21 this disease. Two promising approaches are based on the concept of genetically modifying the
22 mosquito to make it a poor vector for the parasite: 1) transgenesis (engineering the mosquito to
23 deliver anti-malarial compounds) and 2) paratransgenesis (engineering mosquito symbiotic
24 bacteria to deliver anti-malarial compounds). The key questions addressed by this manuscript
25 are: which of the two is the most promising approach? And because transgenesis and
26 paratransgenesis are not mutually exclusive, would the combination of both be the most effective
27 strategy? Our results argue for the combination of the two, showing the additive impact that
28 these two strategies may have in controlling malaria transmission in the field.

29 **Abstract**

30

31 Malaria is among the deadliest infectious diseases and *Plasmodium*, the causative agent, needs to
32 complete a complex development cycle in its vector mosquito for transmission to occur. Two
33 promising strategies to curb transmission are transgenesis, consisting of genetically engineering
34 mosquitoes to express anti-malarial effector molecules and paratransgenesis, consisting of
35 introducing into the mosquito, commensal bacteria engineered to express anti-malarial effector
36 molecules. Although both approaches restrict parasite development in the mosquito, it is not
37 known how their effectiveness compares. Here we provide an in-depth assessment of
38 transgenesis and paratransgenesis and evaluate the combination of the two approaches. Using the
39 Q-system to drive gene expression, we engineered mosquitoes to produce and secrete two
40 effectors – scorpine and the MP2 peptide – into the mosquito gut and salivary glands. We also
41 engineered *Serratia*, a commensal bacterium capable to spread through mosquito populations, to
42 secrete the same two effectors into the mosquito gut. Whereas both mosquito-based and bacteria-
43 based approaches strongly reduced the oocyst and sporozoite intensity, a substantially stronger
44 reduction of *P. falciparum* development was achieved when transgenesis and paratransgenesis
45 were combined. Most importantly, transmission of *P. berghei* from infected to naïve mice was
46 maximally inhibited by the combination of the two approaches. Combining these two strategies
47 promise to become a powerful approach to combat malaria.

48 **Introduction**

49

50 Over 400,000 people, mostly young African children, died of malaria in 2019 (1).

51 Whereas world malaria incidence has declined by 27% during the first 15 years of this century,
52 in the last four years it declined by less than 2%, indicating that current interventions to control
53 this deadly disease are waning.¹ The development of innovative approaches to reduce this
54 intolerable burden is sorely needed.

55 The strategy of targeting the mosquito to fight malaria is based on two premises: 1) the
56 mosquito is an obligatory vector for parasite transmission and 2) strong bottlenecks limit parasite
57 development in the mosquito and during transmission to the mammalian host.² The mosquito
58 acquires the parasite when it bites an infected individual. Of the large numbers of gametocytes
59 ($\sim 10^4$) ingested by the mosquito, only a few (single digits) ookinetes succeed in traversing the
60 mosquito gut and differentiate into oocysts, defining the first strong bottleneck.³ Each oocyst
61 produces thousands of sporozoites, a good proportion of which invade the salivary glands, where
62 they are stored. Only a small number of these sporozoites (on the order of 1% of total salivary
63 gland content) are delivered when an infected mosquito bites a new individual, defining a second
64 strong bottleneck.⁴

65 Since the early demonstration that mosquitoes can be engineered to be refractory to the
66 parasite,⁵ the effectiveness of this approach has been robustly demonstrated in the laboratory by
67 simultaneous expression of multiple effector genes (genes that stop parasite development without
68 affecting the mosquito vector).⁶⁻⁷ The major current challenge is to devise means to introduce the
69 genes that confer refractoriness into mosquito populations. This will most likely be achieved by
70 use of CRISPR/Cas9 gene drives.^{8,9} In addition to technical aspects, topics to be resolved
71 include regulatory and ethical issues related to the release of genetically modified organisms in
72 nature.

73 An independent approach to suppress the mosquito vectorial capacity is to express
74 effector genes from symbiotic bacteria rather than from the mosquito itself, an approach referred
75 to as paratransgenesis. Paratransgenesis has the advantage that the bacteria occur in the mosquito
76 gut in large numbers, in close proximity to the most vulnerable parasite forms. Since the early
77 demonstration of the effectiveness of paratransgenesis to contain the spread of *Trypanosoma*
78 *cruzi*, the causative agent of Chagas disease, by the *Rhodnius prolixus* vector,¹⁰ this approach has

79 been developed for suppressing the mosquito's ability to vector the malaria parasite.^{6, 11, 12, 13} As
80 is the case for gene drive, the mosquito symbiont *Serratia AS1* can spread through mosquito
81 populations and be engineered to secrete effector proteins.¹⁴

82 This work addresses two unanswered questions: 1) which of the two genetic approaches –
83 transgenesis and paratransgenesis – is the most effective? and 2) can the two approaches be
84 combined to enhance the effectiveness of the intervention? We use transgenic mosquitoes
85 engineered to express effector genes in the midgut and/or salivary glands and *Serratia* bacteria
86 engineered to express the same effector genes. We measured the ability of these two strategies,
87 individually and in combination, to inhibit malaria parasite transmission.

88

89

90 **Results**

91

92 **Generation of *An. stephensi* mosquitoes expressing anti-malaria effectors**

93 To constitutively and robustly express anti-malaria effector proteins in the midgut and
94 salivary glands of *An. stephensi* mosquitoes, we used the QF-QUAS binary expression system
95 previously adapted for expression in *An. gambiae*.^{15, 16} We constructed two “driver” mosquito
96 lines that express the QF transcription factor, one driven by the constitutive salivary gland-
97 specific (AAPP) promoter¹⁷ and the other driven by the constitutive midgut-specific peritrophin
98 1 (Aper1) promoter^{18, 19} (Figure 1A). We also constructed a third “effector” mosquito line that
99 encodes two parasite inhibiting factors (MP2 and scorpine) downstream of the QUAS promoter
100 and driven by the QF transcription factor (Figure 1A). Crossing this effector line with either, or
101 both, driver lines, leads to the salivary gland and/or midgut expression of parasite-inhibiting
102 factors. The MP2 (midgut peptide 2) dodecapeptide, identified from a phage display screen,
103 binds tightly to the mosquito midgut epithelium and inhibits *P. falciparum* invasion with high
104 efficiency²⁰, whereas the scorpion (*Pandinus imperator*) peptide scorpine lyses malaria parasites
105 without affecting mosquito fitness^{21, 22}. Each of the three constructs also expresses YFP (yellow
106 eyes, salivary gland QF driver), dsRed (red eyes, midgut QF driver), or CFP (blue eyes, QUAS
107 effector) fluorescent selection markers (Figure 1A).

108 Two midgut driver lines (Mg1 and Mg2), two salivary gland driver lines (Sg1 and Sg2) and
109 two effector lines (E1 and E2) were obtained. Transgenic mosquitoes were screened by

110 fluorescence microscopy (Figure 1B), and plasmid insertion was verified by PCR (Figure S1).
111 The position of genome integration was determined for each parental line by splinkerette PCR²³
112 and sequencing (Table. S1). All the parental lines, except for Sg2, have insertions in intergenic
113 regions. Two of the three Sg2 insertions are in intergenic regions, and one in the open reading
114 frame of the gamma-glutamyltranspeptidase gene (ASTE010947). Each transgenic line was
115 propagated for over 10 generations, discarding at each generation mosquitoes not displaying the
116 correct combination of fluorescent eyes, and this resulted in homozygous lines (Table S2).

117

118 **Quantification of effector mRNA and protein expression**

119 Using reverse transcription quantitative polymerase chain reaction (RT-qPCR) we
120 compared abundance of the endogenous mosquito Aper and AAPP transcripts with the
121 abundance of effector transcripts originating from the same promoters but driven by the Q-
122 system. Transcripts derived from the Q-system were substantially higher. In the midgut, the
123 scorpine transcript was between 44- ($P<0.01$) and 56-fold ($P<0.01$) higher than that of the
124 endogenous Aper mRNA and the MP2 transcript abundance was between 49- ($P<0.001$) and 36-
125 fold ($P<0.01$) higher, depending on the transgenic line (Figure 1C; Table S3). In the salivary
126 glands, scorpine transcript abundance varied between 27- ($P<0.05$) and 63-fold ($P<0.01$) higher
127 and MP2 transcript between 49- ($P<0.001$) and 140-fold ($P<0.01$) higher than that of the
128 endogenous AAPP mRNA, depending on the transgenic line (Figure 1D; Table S4). Moreover, in
129 the absence of a driver, transgene expression in 'E' effector mosquitoes (see Figure 1A) was
130 undetectable (Tables S3 and S4). These results attest to the high effectiveness of the Q-system in
131 enhancing tissue-specific transgene expression. Western blot analysis using anti-MP2 and anti-
132 scorpine antibodies confirmed the tissue specific expression of the MP2 (6.17 kDa) and scorpine
133 (8.46 kDa) proteins (Figure 1E and F).

134

135 **Mosquito fitness is not affected by effector gene expression**

136 To determine whether DNA integration or anti-malaria effector expression affects mosquito
137 fitness, we analyzed the survival of WT, parental transgenic (Mg, Sg, and E) and transgene-
138 expressing mosquitoes. No significant longevity differences were detected for any female
139 (Figure S2A) or male (Figure S2B) transgenic mosquitoes, compared to WT.
140 Next, we determined the fecundity (number of laid eggs) and fertility (percentage of hatched

141 eggs) of WT, parental, and anti-malaria transgenic lines. Mosquitoes from all parental and anti-
142 malaria-expressing transgenic lines showed no difference in fecundity when compared to WT
143 mosquitoes (Figure S2C). As for fertility, no significant differences were detected for the Mg and
144 Sg/E lines when compared to WT, while only marginal differences were detected for the Sg, E,
145 Mg/E and Mg/Sg/E lines (2.0%, 3.1%, 2.0% and 2.0% reduction, respectively) (Figure S2D).
146 To determine if transgenesis or anti-malaria gene expression in the midgut and/or in the salivary
147 glands affects blood feeding, we quantified the proportion of mosquitoes that take a blood meal
148 (feeding rate) and the amount of blood ingested per mosquito. We found no significant
149 differences (Figure S2E and S2F), suggesting that neither transgenesis nor anti-malaria gene
150 expression affects blood ingestion.

151 In summary, our data show that transgenesis and anti-malaria gene expression in the midgut
152 and/or salivary glands does not impair mosquito survival, fecundity, fertility (only minor
153 differences), and blood feeding under laboratory conditions.

154

155 **Effector-expressing *Serratia* populate the mosquito reproductive organs and are
156 transmitted vertically and horizontally**

157 Previously we reported that fluorescently labelled *Serratia* AS1 can spread through
158 mosquito populations and that the bacteria are inherited through multiple mosquito generations¹⁴.
159 Here we tested whether a *Serratia* AS1 strain (termed *Serratia* AS1-poly - for poly-effector) that
160 produces and secretes the same effector proteins (MP2 & scorpine, among others) as those
161 produced by the transgenic mosquitoes can also populate mosquitoes and be transmitted from
162 one mosquito generation to another. We fed WT and Mg/Sg/E transgenic female mosquitoes
163 with *Serratia* AS1-poly bacteria and quantified their capacity to colonize different mosquito
164 organs and to be transmitted along consecutive mosquito generations. We found that *Serratia*
165 AS1-poly equally populate WT and transgenic mosquito midguts, ovaries and accessory glands
166 and are transmitted for at least three generations (Figure 2A-D). Moreover, we found that WT
167 and transgenic male mosquitoes colonized with *Serratia* AS1-poly transferred the bacteria
168 horizontally (sexually) to virgin WT and transgenic female mosquitoes (Figure 2E). Horizontal
169 transfer did not take place when male mosquitoes were placed with mated females, showing that
170 transfer occurs during copulation (Table S5; female mosquitoes mate only once in their

171 lifetimes). These results suggest that recombinant *Serratia* AS1 can effectively populate
172 transgenic mosquitoes and be transmitted through multiple generations.

173 A concern is the possibility of *Serratia* carried by the mosquito being incorporated into
174 the mosquito salivary glands and being delivered with the bite of a mammalian host. To address
175 this concern, mosquitoes previously fed with fluorescently labeled *Serratia* were allowed to feed
176 on blood using a membrane feeder. The remaining blood in the feeder was collected, grown
177 overnight in LB medium and plated. No bacteria were detected (Figure S3), even though the
178 presence of even a single bacterium in the blood from the feeder would have been easily
179 detected.

180

181 **Transgenic and paratransgenic expression of MP2 and scorpine inhibit *Plasmodium* 182 development in the mosquito**

183 Wild type or transgenic mosquitoes, carrying or not wild type or recombinant bacteria,
184 were fed with the same *P. falciparum* infectious blood. Infections were followed by measuring
185 the formation of midgut oocysts (Figure 3A) and salivary gland sporozoite numbers (Figure 3B).
186 Expression of effector molecules in the midgut or in the salivary glands of transgenic mosquitoes
187 significantly reduced parasite burden, whereas concomitant effector expression in both organs
188 reduced burden to the greatest extent (81% and 85% inhibition of mean oocyst and sporozoite
189 numbers, respectively). Effector-expressing recombinant bacteria also significantly reduced
190 parasite burden in WT mosquitoes (70% and 65% inhibition of oocyst and sporozoite numbers,
191 respectively). Importantly, combining mosquito transgenesis with paratransgenesis led to the
192 strongest inhibition of parasite development. Oocyst prevalence was reduced from 98% to 49%
193 for transgenic-only mosquitoes and to 48% when transgenesis and paratransgenesis were
194 combined. Sporozoite prevalence was reduced from 97% to 42% for transgenic-only mosquitoes
195 and to 24% when transgenesis and paratransgenesis were combined. These results suggest that
196 the ability of [transgenic + paratransgenic] mosquitoes to transmit the parasite may be strongly
197 impaired, a hypothesis that was tested next.

198

199 **Malaria transmission is maximally impaired by combining transgenesis and 200 paratransgenesis**

201 To investigate the ability of mosquitoes to transmit the parasite from an infected to a naïve
202 animal, we challenged naïve mice with the bite of mosquitoes that had ingested the same
203 infectious blood meal. Four mosquito groups were investigated: 1) wild type mosquitoes (WT),
204 2) WT mosquitoes carrying *Serratia* AS1-poly (paratransgenic), 3) transgenic mosquitoes that
205 express effectors in the midgut and salivary glands (transgenic) and 4) transgenic mosquitoes
206 carrying *Serratia* AS1-poly (paratransgenic + transgenic) (Figure 4A). All four mosquito groups
207 ingested the same number of parasites, as they were fed on the same *P. berghei*-infected mouse.
208 At 21-23 days post-feeding, after the mosquito salivary glands were populated by sporozoites,
209 either three (Figure 4B) or five (Figure 4D) mosquitoes were randomly selected and allowed to
210 bite naïve mice. For each experiment, salivary gland sporozoite numbers were determined
211 (Figure 4C and 4E).

212 When mice were challenged with the bite of three WT mosquitoes (three independent
213 experiments with five mice each), 100% became infected (half-infection time = 5.5 ± 0.5 d)
214 (Figure 4B) and their salivary glands had a median 8,400 sporozoites (Figure 4C). With
215 mosquitoes carrying *Serratia* AS1-poly (paratransgenic), 26.7% of the mice were protected
216 (half-infection time 7.1 ± 0.7 d), and their salivary glands had a median of 2,100 sporozoites
217 (74% lower than WT mosquitoes). With transgenic mosquitoes, 67% of the mice were protected,
218 and their salivary glands had a median of 900 sporozoites (92% lower than WT mosquitoes).
219 With [paratransgenic + transgenic] mosquitoes, 93% mice were protected, and their salivary
220 glands had a median of zero sporozoites (100% lower than WT mosquitoes).

221 When mice were challenged with the bite of five WT mosquitoes (Figure 4D and 4E), only
222 one mouse out of 15 (6.7%) did not get infected (half-infection time = 5.6 ± 0.7 d).
223 Paratransgenesis, protected 26.7% mice (half-infection time = 8.3 ± 1.0), transgenesis protected
224 47% mice (half-infection time = 10.1 ± 1.0 d) and [paratransgenesis + transgenesis] protected
225 80% mice. The salivary gland sporozoite number (Figure 4E) was similar to that observed for
226 experiments with three mosquito bites (Figure 4C).

227 In summary, our data shows that transgenic and paratransgenic expression of MP2 and
228 scorpine are both effective in impairing transmission, and that the combination of the two
229 complementary strategies is considerably more effective. An even higher protection is expected
230 from the bite of one infected mosquito, which is the most likely scenario in the field.

231

232 **Discussion**

233 In this study, we report the development of transgenic mosquitoes and paratransgenic
234 bacteria expressing anti-plasmodial effector molecules and the effect of these two technologies,
235 individually or in combination, on the transmission of *Plasmodium* parasites. The Q-binary
236 expression system was used to express effector genes in the mosquito midgut and salivary
237 glands. Notably, effector mRNA abundance was about 50-times higher than that of the
238 endogenous genes, consistent with the high effectiveness of the Q-system in *Drosophila*.¹⁵ Some
239 QF toxicity was reported when the Q-system was first used in *Drosophila*.^{15, 16} Of note,
240 expression of neither the QF transcription factor nor the anti-malaria effectors affected mosquito
241 longevity, blood meal uptake or offspring production under laboratory conditions. Additional
242 experiments are required to test the fitness of these transgenic mosquitoes under field conditions.

243 We selected two potent effectors molecules, MP2 and scorpine, to block the development
244 of *Plasmodium* in the mosquito. MP2 is a 12-amino-acid peptide that likely targets a midgut
245 receptor for ookinete traversal,²⁰ and scorpine is an antimicrobial toxin hybrid between a
246 cecropin and a defensin, that lyses *Plasmodium* ookinetes.²¹ Scorpine expressed by the
247 entomopathogenic fungus *Metarhizium* in the mosquito hemocoel strongly inhibits (~90%)
248 salivary gland sporozoite numbers.²⁴ Transgenic mosquitoes expressing this effector in the
249 salivary glands were also highly effective in reducing sporozoite numbers (this work).
250 Furthermore, expression of both effector genes in the midgut and the salivary glands led to a
251 much stronger decrease of salivary gland sporozoite numbers than the expression of the effectors
252 in either of these organs alone. A number of effectors have already been individually tested in
253 paratransgenesis experiments.¹⁴ Going forward, the combination of different effectors and the
254 use of mosquitoes and bacteria expressing different effector sets should be explored, to achieve
255 maximum blocking activity.

256 That expression of anti-malaria effectors in the salivary glands inhibited oocyst
257 development in the midgut is most likely explained by the fact that mosquitoes ingest saliva with
258 the blood meal, in this way incorporating effector proteins into the blood bolus.²⁵ Effector
259 molecules secreted in the saliva could conceivable be injected into the dermis of the host during
260 blood feeding. Scorpine has been shown to be non-toxic to insect cells,²⁶ whereas MP2 toxicity
261 has not been determined. However, their toxicity has not been tested in the presence of mosquito
262 saliva. Therefore, further studies are needed to determine if the delivery of these molecules by

263 the mosquito bite could induce physiological responses.

264 Experiments seeking evidence for possible bacteria transmission with a mosquito bite
265 yielded negative results (Figure S3), suggesting that mosquitoes cannot inoculate the bacteria
266 while feeding on a host. It was previously shown that secretion of effector proteins by
267 recombinant *Pantoea*,⁶ *Serratia*¹⁴ or *Asaia*¹² bacteria into the midgut inhibits *Plasmodium*
268 development and that *Serratia* AS1 is transmitted from one mosquito generation to the next.¹⁴
269 What was not known is whether engineering *Serratia* to produce and secrete large amounts of
270 proteins would affect their fitness and ability to be transmitted. Our experiments showed that the
271 engineered *Serratia* were efficiently transmitted from one mosquito generation to the next, a
272 result that bodes well for the implementation of the paratransgenesis strategy in the field.

273 This project was based on two basic premises: (i) transgenesis and paratransgenesis are
274 not mutually exclusive and (ii) both strategies result in impairment of parasite development in
275 the mosquito. As such, our experiments addressed the question of whether a combination of the
276 two strategies would result in enhanced transmission-blocking effectiveness. The combination
277 of transgenesis and paratransgenesis greatly reduced parasite development in the mosquito and
278 most importantly, it resulted in a high-level reduction of transmission from an infected to a naïve
279 mouse, compared to individual interventions. When mice were bitten by three [transgenic +
280 paratransgenic] mosquitoes, 93% of the mice were protected from infection as compared with
281 zero protection when mice were bitten by WT mosquitoes that acquired the parasites from the
282 same infected mouse. In the field, where the density of infected mosquitoes is low even in high-
283 transmission areas, it is unlikely that people will be consecutively bitten by more than one
284 infected mosquito, and protection from transmission is expected to be very high. For translating
285 these findings to the field, the testing of different combinations of effectors, both for transgenesis
286 and paratransgenesis, may further improve the effectiveness of the approach.

287 Whereas both transgenesis and paratransgenesis have been shown to be highly effective
288 in a lab setting, the challenge is to implement this new containment strategies in the field. In
289 addition to address regulatory and ethical issues connected with the release of recombinant
290 organisms in nature, a major technical issue to be solved is how to introduce the blocking
291 transgenes into mosquito populations in the field. In this respect, CRISPR/Cas9 technology has
292 afforded the development of promising gene drive systems^{27, 28, 29} focused on population
293 suppression or population modification strategies. Population reduction leaves an empty

294 biological niche that upon cessation of reduction pressure, will result in recolonization by the
295 same or other mosquito species. In contrast, population modification results in a more stable
296 state, with a biological niche occupied by mosquitoes that are poor transmitters. Similarly,
297 efficient spread of recombinant bacteria into mosquito populations has been demonstrated in a
298 laboratory setting (,¹⁴ this work), indicating a promising path toward the field implementation of
299 the most efficient [transgenesis + paratransgenesis] strategy. The recent finding that a naturally
300 occurring and non-modified *Serratia* can spread through mosquito populations while strongly
301 suppressing *Plasmodium* development,³⁰ significantly increases the feasibility of moving
302 paratransgenesis into the field, as it bypasses concerns relating to the release of genetically
303 modified organisms in nature. In the field, we envision the use of attractive sugar feeding stations
304 for *Serratia* introduction into mosquito populations.³¹ Female mosquitoes that acquire the
305 bacteria will seed the breeding sites when they lay eggs.¹⁴ Notably, transgenesis and
306 paratransgenesis are not envisioned to be implemented by themselves. Both are compatible with
307 current vector and malaria control measures such as insecticide-based mosquito control, mass
308 drug administration, and vaccines, and their added implementation promises to substantially
309 enhance the effectiveness of intervention of disease transmission.

310 In summary, we show that the Q-binary system to express anti-*Plasmodium* effectors in
311 the mosquito is highly efficient. We also show that in addition to inhibiting parasite development,
312 recombinant *Serratia* AS1 is horizontally and vertically transmitted across multiple mosquito
313 generations, which is a bacteria counterpart of gene drive. A major conclusion of this work is that
314 the combination of transgenesis with paratransgenesis provides maximum parasite blocking
315 activity and has high potential for fighting malaria.

316

317 **Material and Methods**

318

319 **Animal Handling and Ethics Protocol**

320 **Ethics statement**

321 This study was carried out in accordance with the guidelines of the Johns Hopkins
322 University Animal Care and Use Committee (AUCC) under protocol number: M018H18.

323

324 **Mosquitoes rearing and parasite culture**

325 *Anopheles stephensi* Nijmegen strain³² and *An. stephensi* transgenic lines were reared as
326 previously described³³. For fitness evaluation, the mosquitoes were fed on Swiss Webster mice.

327 Female *An. stephensi* were infected with *P. falciparum* gametocyte cultures via membrane
328 feeding. *P. falciparum* NF54 gametocytes were produced according to Tripathi et al.,³⁴. Briefly,
329 the parasites were maintained in O+ human erythrocytes using RPMI 1640 medium
330 supplemented with 25 mM HEPES, 50 mg/L hypoxanthine, 25 mM NaHCO₃, and 10% (v/v)
331 heat-inactivated type O + human serum (Interstate Blood Bank, Inc.) at 37 °C and with a gas
332 mixture of 5% O₂, 5% CO₂, and balanced N₂. For feeding, 14–17-day-old mature gametocytes
333 were pelleted by centrifugation (5 min, 2,500 g), resuspended with O + human RBC to 0.15%–
334 0.2% gametocytemia and diluted to 40% hematocrit with human serum. All manipulations were
335 done maintaining the cultures, tubes, and feeders at 37 °C.

336

337 **Plasmid constructs**

338 The pXL-BACII-ECFP-15XQUAS-TATA-MP2-SV40-15XQUAS-TATA-scorpine-SV40
339 containing the MP2 and Scorpine expression cassette and the ECFP gene under the eye-specific
340 promoter 3xP3 was used to generate the parental QUAS-[MP2+scorpine] effector lines (Table
341 S6). The coding DNA for MP2-SV40-15XQUAS-TATA-Scorpine was synthetized by GeneScript
342 (Figure S4). The sequence was amplified using primers MP2-ScorpineF and MP2-ScorpineR
343 (Table S7), and In-Fusion-cloned into plasmid pXL-BACII-ECFP-15XQUAS-TATA-SV40¹⁵
344 previously linearized with XhoI.

345 The pXL-BACII-DsRed-AsAper-QF2-hsp70 containing the QF2 transcription factor
346 under the control of the midgut specific AsAper promoter and the DsRed marker driven by the
347 eye-specific promoter 3xP3 was used to generate the parental Mg-QF driver line. The AsAper

348 promoter (1.5 kb) (Figure S4) was PCR amplified from *An. stephensi* gDNA with primers MgPF
349 and MgPR (Table S7). The PCR product was In-Fusion-cloned into plasmid pXL-BACII-
350 DsRed-QF2-hsp70¹⁵ previously linearized with XhoI.

351 The pXL-BACII-YFP-AsAAPP-QF2-hsp70 containing the QF2 transcription factor
352 under the control of the midgut specific AsAAP promoter and the YFP marker driven by the eye-
353 specific promoter 3xP3, was used to generate the parental Sg-QF driver lines. The YFP coding
354 sequence was amplified using primers YFPF and YFPR (Table. S7) (Figure S4). The PCR
355 product was In-Fusion-cloned into plasmid pXL-BACII-DsRed-QF2-hsp70 previously digested
356 with ApaI and NotI to produce plasmid pXL-BACII-YFP-QF2-hsp70. The AsAAPP promoter
357 consisting of a 1.7 kb upstream of the start codon¹⁹ was PCR-amplified from *An. stephensi*
358 gDNA using primers SgPF and SgPR (Table. S7) (Fig. S4). The PCR product was In-Fusion-
359 cloned into plasmid pXL-BACII-YFP-QF2-hsp70 previously linearized with XhoI.

360

361 **Generation of transgenic mosquitoes**

362 The plasmid constructs were microinjected into *An. stephensi* embryos as described.³⁵
363 Briefly, transformation plasmids were purified using the EndoFree Maxi Prep Kit (Qiagen) and
364 resuspended in injection buffer (0.1 mM NaHPO4 pH 6.8 and 5 mM KCl) at a concentration of
365 250 ng/μl for the transformation plasmid and 200 ng/μl for the helper plasmid encoding the
366 transposase. The plasmid mix was injected into *An. stephensi* embryos using a FemtoJet
367 Microinjector (Eppendorf). Third instar larvae of G₀ survivors were screened for transient
368 expression of the 3xP3-dsRed marker (red eyes), 3xP3-YFP marker (yellow eyes), 3xP3-CFP
369 marker (blue eyes). Adults obtained from the fluorescent marker screening were crossed to WT
370 mosquitoes to generate independent transgenic lines. The data for these injections are
371 summarized in Table S8.

372

373 For each of the parental transgenic lines, splinkerette PCR²³ and PCR sequencing were
374 used to determine the transgene insertion site into the *An. stephensi* genome. (Two rounds of
375 amplifications were conducted with 1X Phusion High-Fidelity PCR Master Mix with HF Buffer
376 (Thermo Fisher Scientific). The primers used are shown in Table S7. The amplified PCR
377 products were resolved in a 1.5% agarose gel stained with ethidium bromide, and the amplified
378 DNA bands from the 5' and 3' ends were individually excised and purified with QIAquick® Gel

379 Extraction Kit (QIAGEN). Purified PCR products were cloned into pJET1.2/blunt plasmid
380 (Thermo Fisher Scientific) and transformed into NEB 5-alpha Competent *Escherichia coli* (High
381 Efficiency, Thermo Fisher Scientific). Plasmids were isolated from individual colonies and
382 sequenced with the universal primers pJET12F and pJET12R (Eurofins). The sequences were
383 aligned to the *An. stephensi* genome using VectorBase and NCBI BLAST to identify the location
384 of transgene insertion sites (Figure S1).

385 To obtain homozygous lines, each transgenic line was propagated for more than 10
386 generations, discarding at each generation mosquito larvae not displaying the expected
387 fluorescent eyes. To verify homozygosity of the transgenic lines, 10 females of each line were
388 mated with 10 WT male mosquitoes, fed blood, eggs were collected and reared to larvae. The
389 larvae were individually inspected for expression of the fluorescent protein marker(s). Absence
390 of the expected fluorescence would indicate that the parent female was heterozygous for this
391 dominant marker.

392 To induce midgut- or salivary gland-specific expression of MP2 and scorpine, QF driver
393 lines were crossed to QUAS-[MP2+scorpine] effector lines. The offspring of each cross was
394 selected by the specific combination of eye fluorescence reporters (Figure 1B).

395

396 **Quantitative reverse transcription polymerase chain reaction (qRT-PCR)**

397 Tissue specific expression of MP2 and scorpine mRNAs in *An. stephensi* transgenic lines
398 was evaluated by RT-PCR. Salivary glands and midguts were dissected from female mosquitoes
399 in ice-cold 200 µl TRIzol® (Thermo Fisher Scientific). Total RNA was extracted according to
400 TRIzol® manufacturer's protocol, resuspended in RNase free water, and treated with RQ1
401 RNase-Free DNase® (Promega; Madison, WI, USA). After RNA quantification using a
402 DeNovix DS-11 spectrophotometer, first-strand cDNA was synthesized for each sample using
403 Superscript III (Invitrogen) with random hexamers (Invitrogen) and 500 ng of total RNA per
404 sample. cDNA was treated with RNase H (New England Biolabs) for 10 min at 37 °C and stored
405 at -70 °C until use. The cDNA was used as template in PCR reactions containing the Taq 2X
406 Master Mix (New England Biolabs) and 5 µM of MP2- and scorpine-specific primers (Table S7).
407 Amplification of S7 ribosomal mRNA was used as reference.³⁶ PCR conditions were: 1 hot start
408 at 95 °C for 30 sec; 35 cycles of denaturation at 95 °C for 30 sec, annealing at 56 °C for 30 sec,
409 and elongation at 68 °C for 30 sec; followed by a final extension at 68 °C for 5 min; and 4 °C

410 indefinitely.

411

412 **Mice immunization**

413 Scorpine epitope (CEKHCQTSGEKGYCHGT, the N-terminus was conjugated to KLH)
414 and MP2 epitope (ACYIKTLHPPCS, the N-terminus was conjugated to KLH) were synthesized
415 by Peptide 2.0 Inc. About 6-8-week-old C57BL/6 mice were immunized with 20 µg (50 µl)
416 purified antigen in PBS using Addavax (Invivogen, San Diego, CA) as the adjuvant. A total of 50
417 µl adjuvant was mixed with 50 µl antigen, and the mixture was administered intramuscularly in
418 both anterior tibialis muscles (50 µl per leg). Mice were immunized twice at two-week intervals.
419 Serum was collected 14-21 days after administration of the last booster.³⁷

420

421 **Commercial antibodies**

422 Rabbit anti- α -tubulin was purchased from Sigma (cat# SAB3501072) and goat anti-rabbit
423 IgG HRP-conjugated and goat anti-mouse IgG HRP-conjugated were purchased from Cell
424 Signaling (cat# 7076S).

425

426 **Western blotting**

427 MP2 and scorpine protein synthesis in midgut and salivary glands of the transgenic lines
428 was evaluated by Western blot. Five midguts and ten salivary glands were dissected in PBS and
429 placed in microtubes containing RIPA Buffer® (Thermo Fisher Scientific), 1% Halt™ Protease
430 Inhibitor Cocktail (Thermo Fisher Scientific), and 0.1 mM PMSF (Sigma-Aldrich). Samples
431 were homogenized and stored at -70 °C. An equivalent of 0.25 midgut and 5 salivary glands
432 were resolved in a NuPAGE™ 10% Bis-Tris Protein Gel (Invitrogen) under reducing conditions
433 and transferred to a PVDF membrane Invitrogen™ Power Blotter Select Transfer Stacks. After
434 the transfer, the membrane was washed with TBST 1% (Sigma-Aldrich), incubated with
435 blocking buffer (5% milk powder in TBST 1%) overnight at 4 °C, and probed with mouse anti-
436 MP2 or anti-scorpine at a 1:1,000 dilution in TBST 1% overnight at 4 °C. The membrane was
437 washed and incubated with an anti-mouse HRP-linked antibody (Cell Signaling) at a 1:10,000
438 dilution in TBST 1% for 2 h at room temperature. Detection was done with the SuperSignal™
439 West Dura Extended Duration Substrate Chemiluminescent Substrate (Thermo Fisher Scientific),
440 and imaged using an Azure Imager c600® (Azure Biosystems).

441

442 **Mosquito survival, fecundity, and fertility**

443 To measure mosquito survival, two-day-old adult male and female mosquitoes (n = 100)
444 were separately placed in a cage with cotton pads soaked in 10% sucrose solution and kept in the
445 insectary. Female mosquitoes were allowed to blood feed on an anesthetized mouse for 30 min
446 and allowed to lay eggs. Mortality of female and male mosquitoes was monitored 3 times per
447 week. The differences among the survival curves (three independent replicates) were analyzed
448 with the Log-rank (Mantel-Cox) test, using the WT as controls.

449 To assess fecundity (number of laid eggs) and fertility (percentage of hatched eggs), two-
450 day-old adult females were blood-fed on anesthetized mice for 30 min. Only fully engorged
451 females were used for these experiments. Two days after blood-feeding, 20 females were
452 individually placed in 50 ml tubes containing a small cup with filter paper soaked in 2 ml of
453 distilled water as a oviposition substrate. After three days, the filter papers with eggs were
454 removed, and the number of eggs per mosquito was counted using a dissecting microscope. After
455 counting, the eggs were placed in paper cups with 50 ml of distilled water to allow hatching.
456 fertility was determined as the number of larvae divided by the total number of eggs. Fecundity
457 and fertility of the transgenic lines were compared to WT mosquitoes, and all the experiments
458 were repeated for a total of three biological replicates.

459

460 **Quantification of blood uptake**

461 The amount of blood ingested by *An. stephensi* transgenic mosquitoes was determined by
462 measuring the amount of protein-bound heme detected in the mosquito midgut after a blood
463 meal.³⁸ Transgenic and WT mosquitoes were fed with a 1:1 mixture of plasma and RBCs
464 (Interstate Blood Bank Inc.) using membrane feeders. After feeding, the midguts of ten fully
465 engorged females were dissected and homogenized individually in 1 ml of distilled water. Unfed
466 mosquitoes were used as the negative control. Protein-bound heme (410 nm) was measured for
467 each individual midgut with a Versa max microscope Reader and recorded with Softmax pro 5.3.
468 Readings were compared among the groups using Student's t test.

469

470 **Bacteria administration to *An. stephensi* mosquitoes**

471 After culturing at 28 °C overnight, bacteria were washed with sterile PBS and resuspended to a

472 final concentration of 10^9 /ml. After a 3 h starvation, mosquitoes were fed overnight on 10^7 CFU
473 bacteria (*AS1*-poly, apramycin resistance) per ml of 5% sugar. Mosquitoes were surface-
474 sterilized with cold 75% ethanol for 3 min and washed three times with sterile PBS. Midguts
475 were dissected under sterile conditions at different time points before and after a blood meal and
476 homogenized in sterile PBS. Bacterial number was determined by plating ten-fold serial dilutions
477 of the homogenates on LB agar plates containing 50 μ g/ml apramycin and ampicillin (bacteria
478 from non-infected mosquitoes cannot grow on LB agar plates containing 50 μ g/ml apramycin
479 and ampicillin) and incubating at 28 °C for 24 h.

480

481 **Effect of bacteria on mosquito infection by *Plasmodium falciparum***

482 *Serratia* bacteria were administered overnight to female *An. stephensi* with a cotton pad
483 soaked with a 5% sucrose solution containing 10^7 bacteria/ml or no bacteria, and 2 d later,
484 allowed to feed on *P. falciparum* NF54 gametocyte-containing blood as described.²⁴ Engorged
485 mosquitoes were kept at 27 °C and 80% relative humidity. Midguts were dissected in 1× PBS at
486 7 d post-infection, stained with 0.1% mercurochrome and oocysts were counted. Salivary glands
487 from mosquitoes were dissected at 14 d post-infection and individually homogenized on ice in 30
488 μ l of PBS using a disposable pestle. The homogenate was centrifuged at 2,000 rpm for 10 min to
489 pellet tissue debris. Then, 10 μ l of the suspension was placed in a Neubauer counting chamber,
490 waiting for at least 5 min to allow sporozoites to sediment to the bottom of the chamber.
491 Sporozoites were counted using a Leica phase-contrast microscope. Parasite numbers among
492 control and experimental groups were compared using the nonparametric Mann–Whitney test
493 (GraphPad, Prism).

494

495 **Effect of bacteria on mosquito infection by *Plasmodium berghei***

496 Bacteria were cultured overnight in LB medium and washed three times with sterile PBS.
497 Two-day-old mosquitoes were fed overnight on a cotton pad soaked with a 5% sucrose solution
498 containing or not 10^7 bacteria/ml. Two days later, mosquitoes were fed on a *P. berghei*-infected
499 mouse (1-2% of parasitemia and 1 exflagellation per 10 fields). Unfed mosquitoes were
500 removed, and fully engorged mosquitoes were provided with 5% (wt/vol) sterile sucrose solution
501 and maintained at 19 °C and 80% relative humidity. Midguts were dissected on day 12 after the
502 blood meal, stained with 0.1% (wt/vol) mercurochrome for determining oocyst load. Salivary

503 glands were dissected at 21 d post-infection for sporozoite determination. Transgenic and WT
504 mosquitoes were simultaneously fed on the same *P. berghei*-infected mouse to assure that control
505 and experimental mosquitoes ingested the same number of parasites.

506

507 ***Serratia* vertical, venereal and transstadial transmission**

508 To test vertical transmission, *AS1*-poly were introduced into two-day-old adult female
509 mosquitoes by feeding them overnight on a cotton pad moistened with 5% sterile sucrose
510 containing 10^7 bacteria/ml. Two days later, mosquitoes were fed on a healthy mouse and were
511 then allowed to lay eggs on a damp filter paper in individual oviposition tubes. Eggs were
512 collected into a tube containing 300 μ l sterile 1×PBS and homogenized. The bacterial load was
513 determined by plating ten-fold serial dilutions of the egg homogenates on LB agar plates
514 containing 50 μ g/ml of apramycin and ampicillin and incubating the plates at 28 °C for 24 h for
515 colony counting. Rearing of larvae to adults followed standard protocol. A total of 10 male and
516 10 female adults were sampled and examined by plating adult midgut homogenates on LB agar
517 plates containing apramycin and ampicillin. To test the efficiency of *Serratia* transmission
518 through multiple generations, the mosquitoes were reared without providing additional *Serratia*
519 *AS1* and maintained for three consecutive generations. At each generation, 10 female and male
520 adults were sampled for examining the presence of *AS1*-poly effectors.

521

522 For male-to-female venereal transmission tests, *Serratia* were introduced into newly
523 emerged virgin male mosquitoes by feeding them overnight on a cotton pad moistened with 5%
524 sugar solution containing 10^7 bacteria/ml. Twenty *Serratia*-carrying males were then allowed to
525 mate with 20 three-day-old virgin females. Three days after mating, 10 females were sampled
526 and examined for bacteria in the female midgut, ovary and spermatheca.

527

528 **Transmission from infected to naïve mice**

529 Transgenic and WT mosquitoes were simultaneously fed on the same *P. berghei*-infected
530 mouse and unfed or partially fed mosquitoes were removed. Midguts from a small number of
531 mosquitoes were dissected at 12 d post-feeding to determine the infection status by counting
532 oocyst numbers. At ~21-23 days post-feeding, three or five mosquitoes were randomly selected
533 from the cage and allowed to feed on non-infected mice (challenge). Mosquitoes that did not take

534 a blood meal were replaced until the final number of mosquitoes for each group (three or five)
535 was reached. The salivary glands of most mosquitoes were dissected for counting sporozoites. A
536 total of five mice were used per experiment and three biological replicates were conducted for a
537 total of 15 mice per mosquito group. After mosquito challenge, mice were monitored daily for 14
538 d to determine blood-stage infection using Giemsa-stained blood smears.

539

540 **References:**

541 1. World Health, O. (2020). World malaria report 2020: 20 years of global progress and challenges
542 (World Health Organization).

543 2. Smith, R.C., Vega-Rodriguez, J., and Jacobs-Lorena, M. (2014). The *Plasmodium* bottleneck: malaria
544 parasite losses in the mosquito vector. *Mem Inst Oswaldo Cruz* *109*, 644-661.

545 3. Wang, S., and Jacobs-Lorena, M. (2013). Genetic approaches to interfere with malaria transmission
546 by vector mosquitoes. *Trends Biotechnol* *31*, 185-193. 10.1016/j.tibtech.2013.01.001.

547 4. Vanderberg, J.P. (1977). *Plasmodium berghei*: quantitation of sporozoites injected by mosquitoes
548 feeding on a rodent host. *Exp Parasitol* *42*, 169-181. 10.1016/0014-4894(77)90075-3.

549 5. Ito, J., Ghosh, A., Moreira, L.A., Wimmer, E.A., and Jacobs-Lorena, M. (2002). Transgenic
550 anopheline mosquitoes impaired in transmission of a malaria parasite. *Nature* *417*, 452-455.
551 10.1038/417452a.

552 6. Wang, S., Ghosh, A.K., Bongio, N., Stebbings, K.A., Lampe, D.J., and Jacobs-Lorena, M. (2012).
553 Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. *Proc Natl Acad Sci U S*
554 *A* *109*, 12734-12739. 10.1073/pnas.1204158109.

555 7. Dong, Y., Simoes, M.L., and Dimopoulos, G. (2020). Versatile transgenic multistage effector-gene
556 combinations for *Plasmodium falciparum* suppression in *Anopheles*. *Sci Adv* *6*, eaay5898.
557 10.1126/sciadv.aay5898.

558 8. Carballar-Lejarazu, R., Ogaugwu, C., Tushar, T., Kelsey, A., Pham, T.B., Murphy, J., Schmidt, H.,
559 Lee, Y., Lanzaro, G.C., and James, A.A. (2020). Next-generation gene drive for population
560 modification of the malaria vector mosquito, *Anopheles gambiae*. *Proc Natl Acad Sci U S A* *117*,
561 22805-22814. 10.1073/pnas.2010214117.

562 9. Quinn, C.M., and Nolan, T. (2020). Nuclease-based gene drives, an innovative tool for insect vector
563 control: advantages and challenges of the technology. *Curr Opin Insect Sci* *39*, 77-83.
564 10.1016/j.cois.2020.03.007.

565 10. Durvasula, R.V., Gumbs, A., Panackal, A., Kruglov, O., Aksoy, S., Merrifield, R.B., Richards, F.F.,
566 and Beard, C.B. (1997). Prevention of insect-borne disease: an approach using transgenic symbiotic
567 bacteria. *Proc Natl Acad Sci U S A* *94*, 3274-3278. 10.1073/pnas.94.7.3274.

568 11. Yoshida, S., Matsuoka, H., Luo, E., Iwai, K., Arai, M., Sinden, R.E., and Ishii, A. (1999). A single-
569 chain antibody fragment specific for the *Plasmodium berghei* ookinete protein Pbs21 confers
570 transmission blockade in the mosquito midgut. *Mol Biochem Parasitol* *104*, 195-204. 10.1016/s0166-
571 6851(99)00158-9.

572 12. Shane, J.L., Grogan, C.L., Cwalina, C., and Lampe, D.J. (2018). Blood meal-induced inhibition of
573 vector-borne disease by transgenic microbiota. *Nat Commun* *9*, 4127. 10.1038/s41467-018-06580-9.

574 13. Riehle, M.A., Moreira, C.K., Lampe, D., Lauzon, C., and Jacobs-Lorena, M. (2007). Using bacteria to
575 express and display anti-*Plasmodium* molecules in the mosquito midgut. *Int J Parasitol* *37*, 595-603.
576 10.1016/j.ijpara.2006.12.002.

577 14. Wang, S., Dos-Santos, A.L.A., Huang, W., Liu, K.C., Oshaghi, M.A., Wei, G., Agre, P., and Jacobs-
578 Lorena, M. (2017). Driving mosquito refractoriness to *Plasmodium falciparum* with engineered
579 symbiotic bacteria. *Science* *357*, 1399-1402. 10.1126/science.aan5478.

580 15. Potter, C.J., Tasic, B., Russler, E.V., Liang, L., and Luo, L. (2010). The Q system: a repressible
581 binary system for transgene expression, lineage tracing, and mosaic analysis. *Cell* *141*, 536-548.
582 10.1016/j.cell.2010.02.025.

583 16. Riabinina, O., Task, D., Marr, E., Lin, C.C., Alford, R., O'Brochta, D.A., and Potter, C.J. (2016).
584 Organization of olfactory centres in the malaria mosquito *Anopheles gambiae*. *Nat Commun* *7*,
585 13010. 10.1038/ncomms13010.

586 17. Shen, Z., and Jacobs-Lorena, M. (1998). A type I peritrophic matrix protein from the malaria vector
587 *Anopheles gambiae* binds to chitin. Cloning, expression, and characterization. *J Biol Chem* *273*,
588 17665-17670. 10.1074/jbc.273.28.17665.

589 18. Abraham, E.G., Donnelly-Doman, M., Fujioka, H., Ghosh, A., Moreira, L., and Jacobs-Lorena, M.
590 (2005). Driving midgut-specific expression and secretion of a foreign protein in transgenic

591 mosquitoes with AgAper1 regulatory elements. *Insect Mol Biol* 14, 271-279. 10.1111/j.1365-
592 2583.2004.00557.x.

593 19. Yoshida, S., and Watanabe, H. (2006). Robust salivary gland-specific transgene expression in
594 *Anopheles stephensi* mosquito. *Insect Mol Biol* 15, 403-410. 10.1111/j.1365-2583.2006.00645.x.

595 20. Vega-Rodriguez, J., Ghosh, A.K., Kanzok, S.M., Dinglasan, R.R., Wang, S., Bongio, N.J., Kalume,
596 D.E., Miura, K., Long, C.A., Pandey, A., and Jacobs-Lorena, M. (2014). Multiple pathways for
597 *Plasmodium ookinete* invasion of the mosquito midgut. *Proc Natl Acad Sci U S A* 111, E492-500.
598 10.1073/pnas.1315517111.

599 21. Conde, R., Zamudio, F.Z., Rodriguez, M.H., and Possani, L.D. (2000). Scorpine, an anti-malaria and
600 anti-bacterial agent purified from scorpion venom. *FEBS Lett* 471, 165-168. 10.1016/s0014-
601 5793(00)01384-3.

602 22. Gao, B., Xu, J., Rodriguez Mdel, C., Lanz-Mendoza, H., Hernandez-Rivas, R., Du, W., and Zhu, S.
603 (2010). Characterization of two linear cationic antimarial peptides in the scorpion *Mesobuthus*
604 *eupeus*. *Biochimie* 92, 350-359. 10.1016/j.biochi.2010.01.011.

605 23. Potter, C.J., and Luo, L. (2010). Splinkerette PCR for mapping transposable elements in *Drosophila*.
606 *PLoS One* 5, e10168. 10.1371/journal.pone.0010168.

607 24. Fang, W., Vega-Rodriguez, J., Ghosh, A.K., Jacobs-Lorena, M., Kang, A., and St Leger, R.J. (2011).
608 Development of transgenic fungi that kill human malaria parasites in mosquitoes. *Science* 331, 1074-
609 1077. 10.1126/science.1199115.

610 25. Luo, E., Matsuoka, H., Yoshida, S., Iwai, K., Arai, M., and Ishii, A. (2000). Changes in salivary
611 proteins during feeding and detection of salivary proteins in the midgut after feeding in a malaria
612 vector mosquito, *Anopheles stephensi* (Diptera : Culicidae). *Medical Entomology and Zoology* 51,
613 13-20. 10.7601/mez.51.13.

614 26. Carballar-Lejarazu, R., Rodriguez, M.H., de la Cruz Hernandez-Hernandez, F., Ramos-Castaneda, J.,
615 Possani, L.D., Zurita-Ortega, M., Reynaud-Garza, E., Hernandez-Rivas, R., Loukeris, T., Lycett, G.,
616 and Lanz-Mendoza, H. (2008). Recombinant scorpine: a multifunctional antimicrobial peptide with
617 activity against different pathogens. *Cell Mol Life Sci* 65, 3081-3092. 10.1007/s00018-008-8250-8.

618 27. Nolan, T. (2021). Control of malaria-transmitting mosquitoes using gene drives. *Philos Trans R Soc
619 Lond B Biol Sci* 376, 20190803. 10.1098/rstb.2019.0803.

620 28. Simoni, A., Hammond, A.M., Beaghton, A.K., Galizi, R., Taxiarchi, C., Kyrou, K., Meacci, D.,
621 Gribble, M., Morselli, G., Burt, A., et al. (2020). A male-biased sex-distorter gene drive for the
622 human malaria vector *Anopheles gambiae*. *Nat Biotechnol* 38, 1054-1060. 10.1038/s41587-020-0508-
623 1.

624 29. Adolfi, A., Gantz, V.M., Jasinskiene, N., Lee, H.F., Hwang, K., Terradas, G., Bulger, E.A., Ramaiah,
625 A., Bennett, J.B., Emerson, J.J., et al. (2020). Efficient population modification gene-drive rescue
626 system in the malaria mosquito *Anopheles stephensi*. *Nat Commun* 11, 5553. 10.1038/s41467-020-
627 19426-0.

628 30. Gao, H., Bai, L., Jiang, Y., Huang, W., Wang, L., Li, S., Zhu, G., Wang, D., Huang, Z., Li, X., et al.
629 (2021). A natural symbiotic bacterium drives mosquito refractoriness to *Plasmodium* infection via
630 secretion of an antimalarial lipase. *Nat Microbiol* 6, 806-817. 10.1038/s41564-021-00899-8.

631 31. Bilgo, E., Vantaux, A., Sanon, A., Ilboudo, S., Dabire, R.K., Jacobs-Lorena, M., and Diabate, A.
632 (2018). Field assessment of potential sugar feeding stations for disseminating bacteria in a
633 paratransgenic approach to control malaria. *Malar J* 17, 367. 10.1186/s12936-018-2516-x.

634 32. Feldmann, A.M., and Ponnudurai, T. (1989). Selection of *Anopheles stephensi* for refractoriness and
635 susceptibility to *Plasmodium falciparum*. *Med Vet Entomol* 3, 41-52. 10.1111/j.1365-
636 2915.1989.tb00473.x.

637 33. Huang, W., Wang, S., and Jacobs-Lorena, M. (2020). Self-limiting paratransgenesis. *PLoS Negl Trop
638 Dis* 14, e0008542. 10.1371/journal.pntd.0008542.

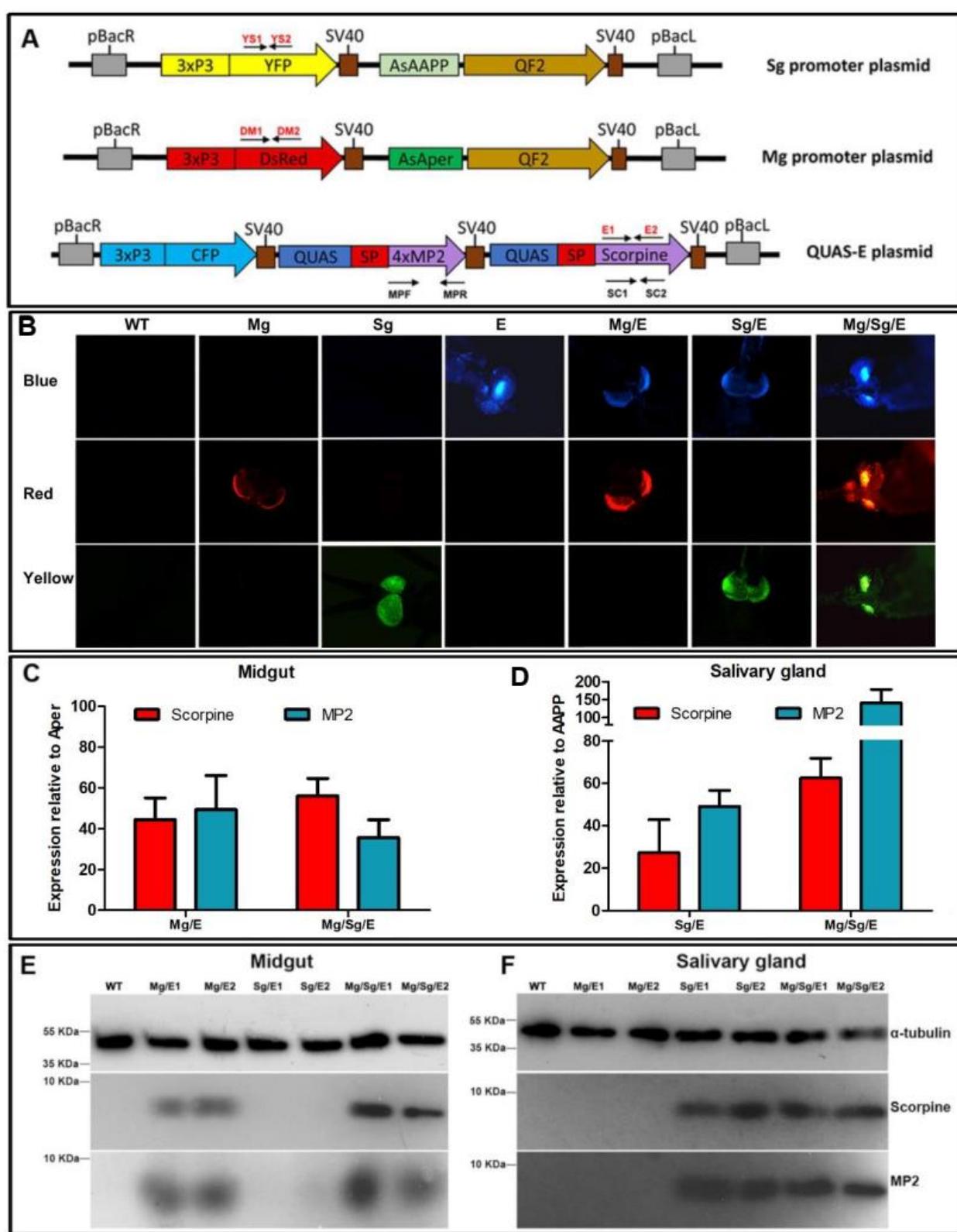
639 34. Tripathi, A.K., Mlambo, G., Kanatani, S., Sinnis, P., and Dimopoulos, G. (2020). *Plasmodium*
640 *falciparum* Gametocyte Culture and Mosquito Infection Through Artificial Membrane Feeding. *J Vis
641 Exp*. 10.3791/61426.

642 35. Volohonsky, G., Terenzi, O., Soichot, J., Naujoks, D.A., Nolan, T., Windbichler, N., Kapps, D.,
643 Smidler, A.L., Vittu, A., Costa, G., et al. (2015). Tools for *Anopheles gambiae* Transgenesis. G3
644 (Bethesda) 5, 1151-1163. 10.1534/g3.115.016808.

645 36. Zhang, J., Huang, F.S., Xu, W.Y., Wang, Y., Zhou, T.L., and Duan, J.H. (2011). *Plasmodium yoelii*:
646 correlation of TEP1 with mosquito melanization induced by nitroquine. Exp Parasitol 127, 52-57.
647 10.1016/j.exppara.2010.06.032.

648 37. Cha, S.J., McLean, K.J., and Jacobs-Lorena, M. (2018). Identification of *Plasmodium* GAPDH
649 epitopes for generation of antibodies that inhibit malaria infection. Life Sci Alliance 1, e201800111.
650 10.26508/lsa.201800111.

651 Alves, E.S.T.L., Radtke, A., Balaban, A., Pascini, T.V., Pala, Z.R., Roth, A., Alvarenga, P.H., Jeong, Y.J.,
652 Olivas, J., Ghosh, A.K., et al. (2021). The fibrinolytic system enables the onset of *Plasmodium* infection in
653 the mosquito vector and the mammalian host. Sci Adv 7. 10.1126/sciadv.abe3362.

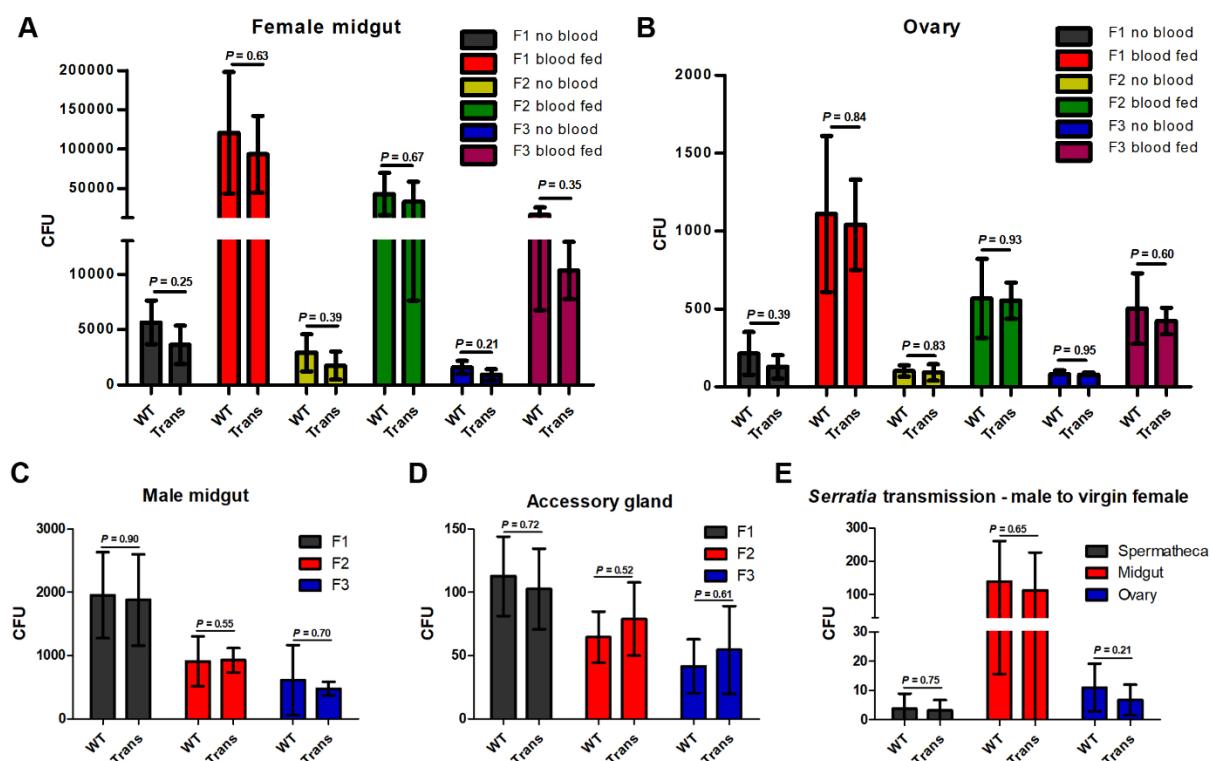

654 **Acknowledgments**

655

656 We thank the Insectary and Parasite Core Facilities of the Johns Hopkins Malaria Research
657 Institute. This work was supported by a grant R01AI031478 from the National Institutes of
658 Health, by the NIH Distinguished Scholars Program, and the Intramural Research Program of the
659 Division of Intramural Research AI001250-01, National Institutes of Allergy and Infectious
660 Diseases, National Institutes of Health and by the Bloomberg Philanthropies. Supply of human
661 blood was supported by the National Institutes of Health grant RR00052. We thank Dr. Yuemei
662 Dong from the Johns Hopkins Malaria Research Institute for providing the helper plasmid and
663 Dr. Christopher Potter from Johns Hopkins School of Medicine for providing pXL-BACII-ECFP-
664 15XQUAS-TATA-PAI-SV40 and pXL-BACII-DsRed-AAPP-QF2-hsp70 plasmids.

665
666

FIGURES AND TABLES

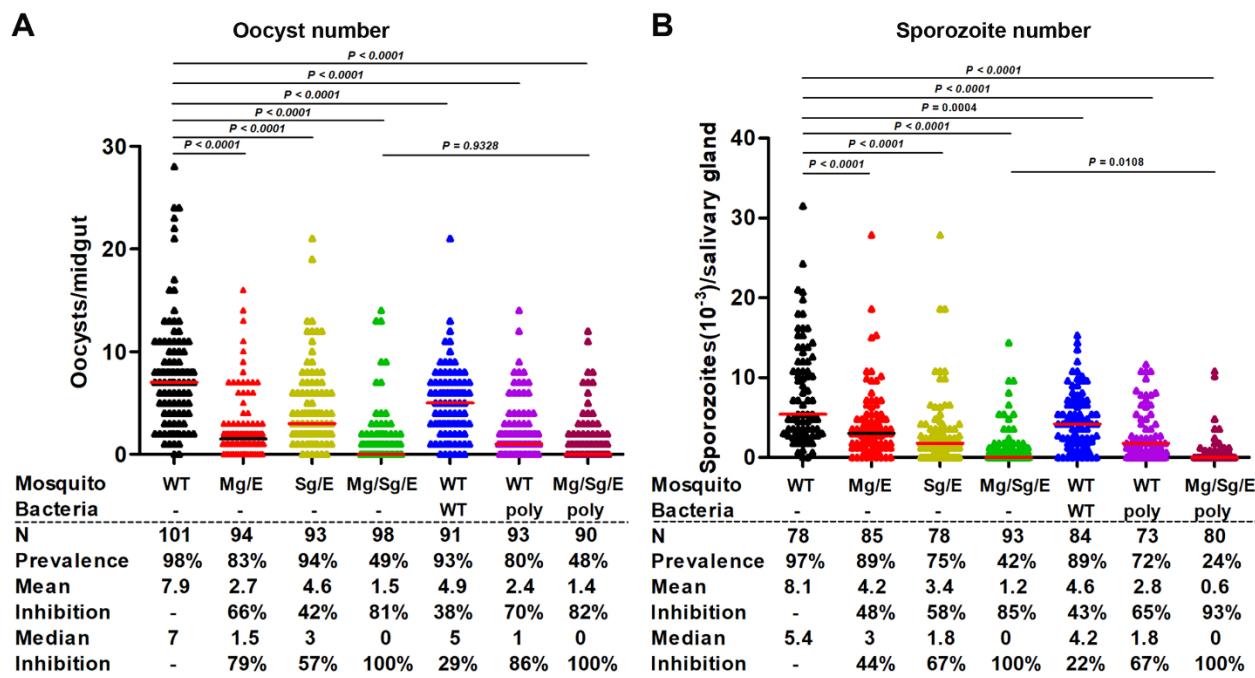


667
668

Figure 1 Tissue-specific expression of effector genes in *An. stephensi* transgenic mosquitoes.

669 [A]: Diagram of the salivary gland (Sg) and midgut (Mg) driver constructs expressing the QF2
670 transcription factor and of the effector (E) constructs expressing the MP2 and scorpine effector
671 proteins under control of the QUAS promoter. Each construct also includes sequences encoding a
672 yellow (YFP), red (DsRed) or blue (CFP) fluorescent protein under the control of the 3xP3 eye
673 promoter. pBac: piggyBac inverted terminal repeats; SV40: transcription terminator sequence;
674 SP: *An. stephensi* carboxypeptidase signal peptide. Primers used for validation of insertion into
675 mosquito lines (Figure S1 and Table S7) are indicated in red font. Primers used for qRT-PCR are
676 indicated in black font (Table S7). [B] Detection of fluorescent eye markers in wild type (WT)
677 and transgenic mosquitoes carrying different combinations of midgut driver (Mg), salivary gland
678 driver (Sg) and effector (E) sequences. Tissue-specific expression of MP2 and scorpine mRNA
679 in transgenic mosquitoes quantified by qRT-PCR in the midgut relative to the endogenous Aper
680 mRNA [C], and in the salivary glands relative to the endogenous AAPP mRNA [D]. Mosquito
681 rpS7 was used as a reference. Data pooled from three independent biological replicates.
682 Statistical analysis was determined by the Student's t test. [E] and [F] Immunoblotting showing
683 MP2 (6.17 kDa) and scorpine peptide (8.46 kDa) protein expression in midgut and salivary gland
684 lysates from wild type and transgenic lines. α -tubulin was used as a loading control. E1 and E2
685 refer to independent mosquito transgenic lines. Antibodies used are shown to the right of [F].

686

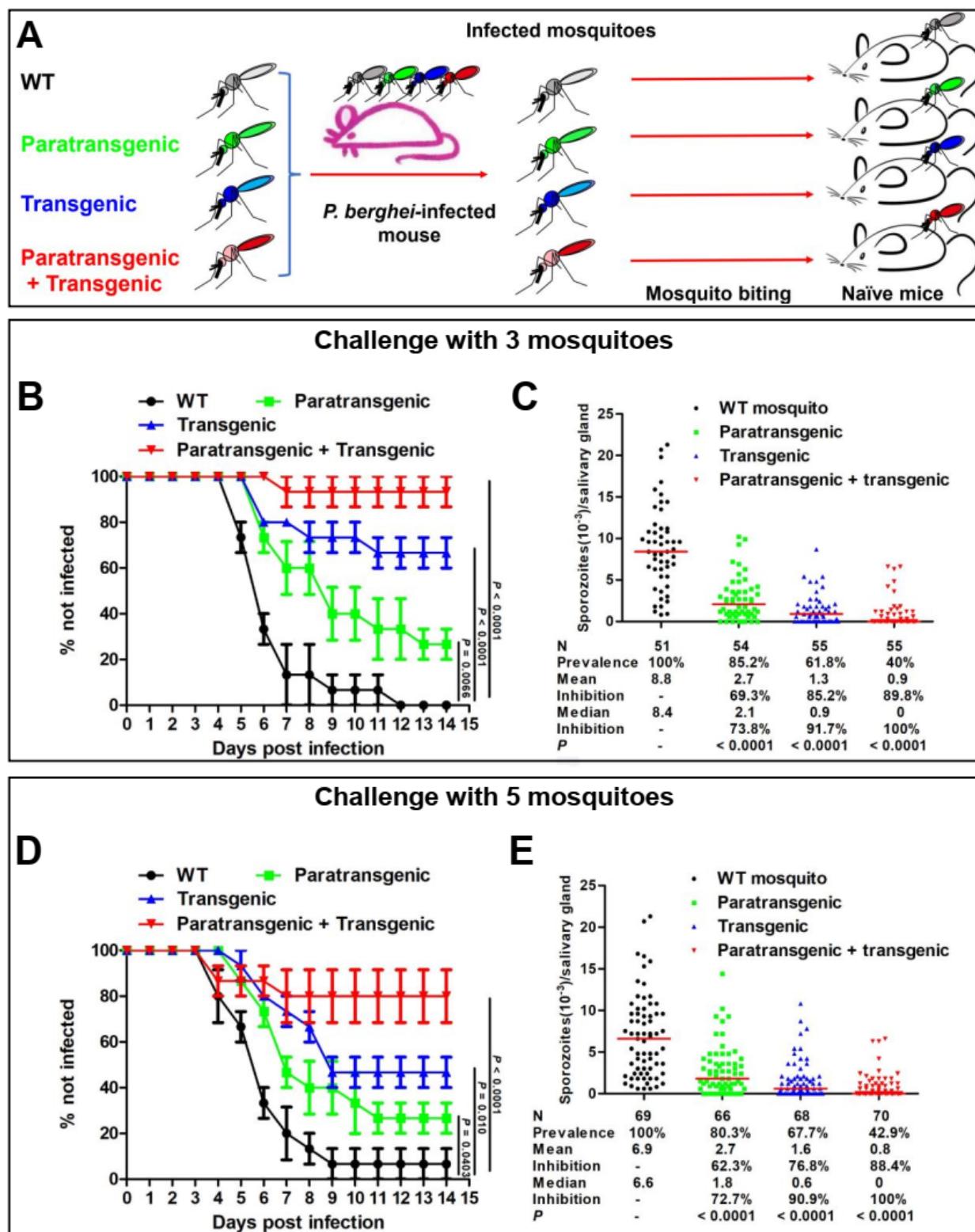


687

688 Figure 2 *Serratia AS1*-poly-effector bacteria persist through multiple mosquito generations.

689 A total of 100 WT or transgenic (Trans) virgin females that had been fed with *AS1*-poly-effector
690 bacteria were placed in a cage with 100 WT or transgenic virgin males (not fed with bacteria)
691 and allowed to mate. Mosquitoes were then fed blood and allowed to lay eggs. These eggs were
692 allowed to hatch and reared to adults following standard protocol (F1). The F1 mosquitoes were
693 propagated through two additional generations (F2 & F3) without providing additional
694 genetically modified bacteria. At each generation, 10 mosquitoes were dissected, and bacterial
695 load was determined by plating serial dilutions of tissue homogenates on apramycin and
696 ampicillin agar plates and counting colonies. [A] Colony-forming units (CFUs) per female
697 midgut fed or not on blood. [B] CFUs per female ovary fed or not on blood. [C] CFUs per male
698 midgut. [D] CFUs per male accessory gland. Data pooled from 3 independent experiments. [E]
699 *Serratia* horizontal (sexual) transmission. Newly emerged virgin male adult mosquitoes were fed
700 on 5% sugar solution containing 10^7 /ml *AS1*-poly-effector bacteria/ml and then allowed to mate
701 with virgin females. Three days later, 10 females were assayed for the presence of *Serratia AS1*
702 by plating spermatheca, midgut and ovary homogenates on apramycin and ampicillin agar plates
703 and counting colonies. Trans: Mg/Sg/E transgenic mosquitoes. Error bars indicate standard
704 deviation of the mean. Data pooled from 3 independent biological experiments. Statistical
705 analysis was determined by the Student's t test. $P>0.05$: not significant.

706



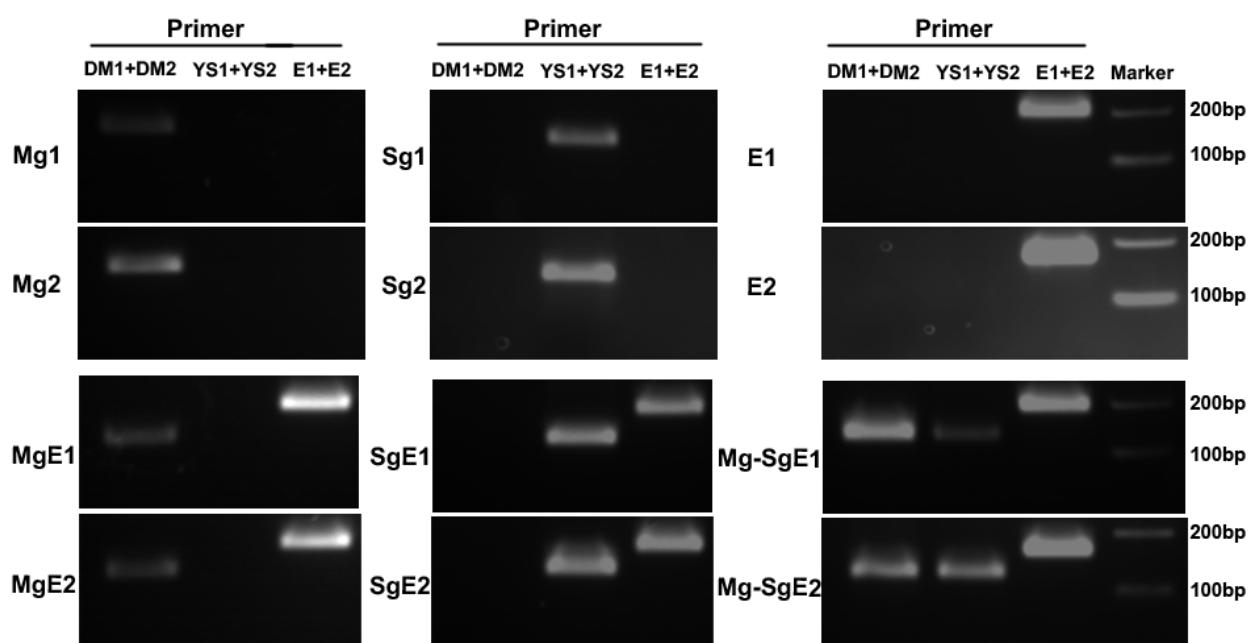
708

709 **Figure 3 Transgenesis and paratransgenesis strongly impair *Plasmodium* development.**

710 Two-day-old *An. stephensi* mosquitoes were fed (or not) overnight with wild type or recombinant
 711 *Serratia* AS1 (poly) bacteria, as indicated. After 48 h, all mosquito groups were fed on the same
 712 *P. falciparum* gametocyte culture and midgut oocyst number was determined on day 7 [A] and
 713 salivary gland sporozoite number was determined on day 14 [B] post-feeding. Horizontal red
 714 lines represent median oocyst or sporozoite number. Data pooled from three independent
 715 biological experiments. Statistical analysis by Mann–Whitney U test. $P > 0.05$: not significant;
 716 ‘poly’: *Serratia AS1*-poly bacteria; N: number of mosquitoes assayed; Prevalence: proportion of
 717 mosquitoes carrying one or more parasites.

719

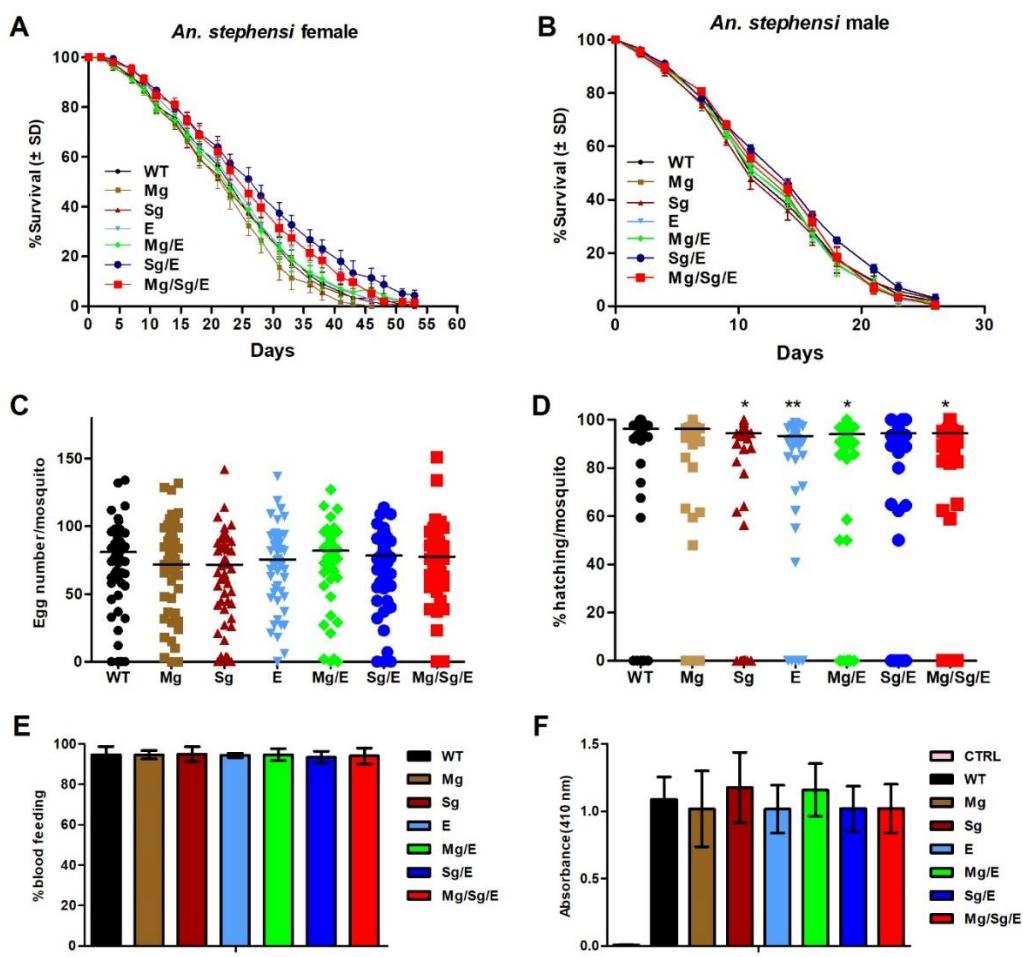
720


721 **Figure 4 Transgenesis and paratransgenesis inhibit *P. berghei* transmission by mosquitoes**
 722 from infected to naïve mice. [A] Experimental design. Wild type (WT), paratransgenic,

723 transgenic and [paratransgenic + transgenic] mosquitoes were fed on the same *P. berghei*-
724 infected mouse, assuring that all mosquitoes ingested the same number of parasites. After 21~23
725 days, when sporozoites had reached the salivary glands [**C, E**], three [**B**] or five [**D**] mosquitoes
726 were randomly selected and allowed to bite naïve mice. The parasitemia of these mice was
727 followed for 14 days. Data pooled from three independent experiments, each using five mice per
728 challenged group for a total of 15 mice. Transgenic mosquitoes express effectors in both midgut
729 and salivary glands. Data pooled from three independent biological experiments. Statistical
730 analysis (B and D) was determined by the Log-rank (Mantel-Cox) test; Statistical analysis (C and
731 E) was determined by the Mann–Whitney U test.

732

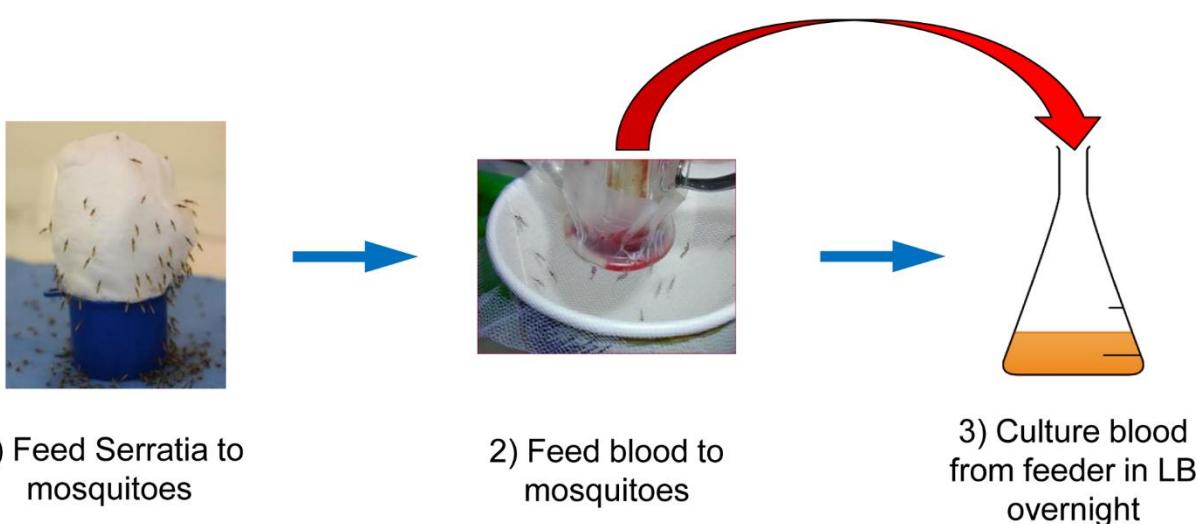
733


SUPPLEMENTARY FIGURES

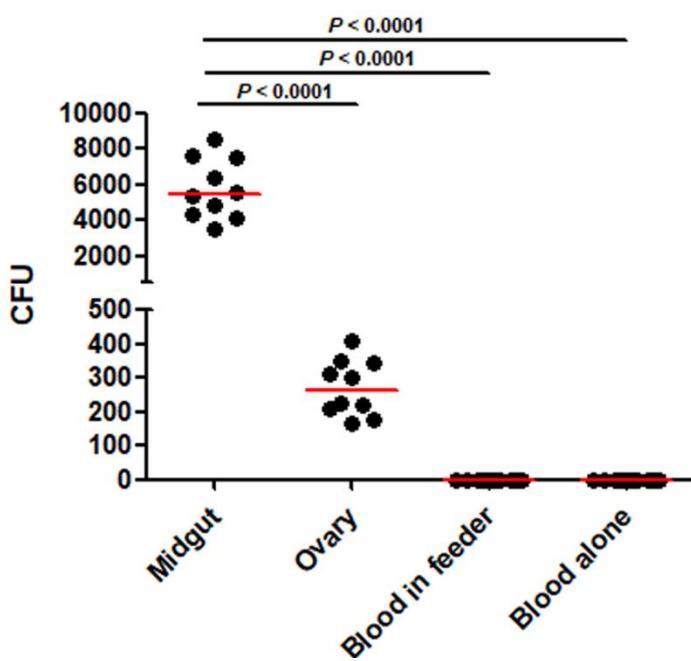
734
735

736 **Figure S1 PCR validation of plasmid insertion site in mosquito lines.** Primer pairs used for
737 PCR reactions are indicated on top of each lane (sequences provided in Table S7; position of
738 primers indicated in Figure 1A with red font). The DM1+DM2 primer pair was used to verify the
739 MG QF2 driver plasmid insertion; the YS1+YS2 primer pair was used to verify the SG QF2
740 driver plasmid insertion; and the E1+E2 primer pair was used to verify the QUAS-MP2-QUAS-
741 scorpine effector plasmid insertion. The transgenic lines are identified to the left of each panel.

742



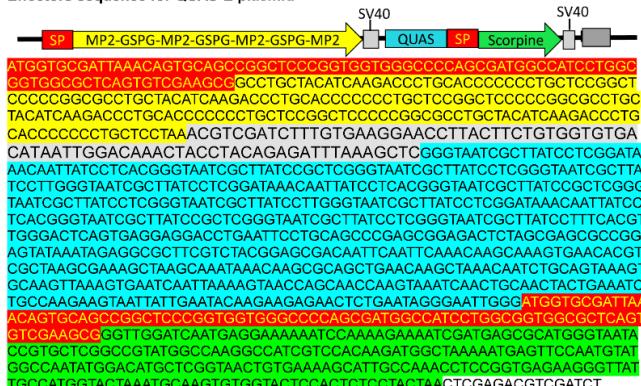
743
744 **Figure S2 Fitness analysis of *An. stephensi* transgenic lines.** [A and B]: Survival curves for
745 WT and transgenic (see Figure 1A) females that received one blood meal on day two [A] and
746 males [B], all maintained on sugar meal. No significant differences in survival rate were detected
747 as calculated by Kaplan-Meier survival curves, and multiple comparisons by Log-rank test with
748 Bonferroni correction for parental expressing lines. For [A] WT & Mg: $P = 0.99$; WT & Sg: $P =$
749 0.65; WT & E: $P = 0.46$; WT & Mg/E: $P = 0.64$; WT & Sg/E: $P = 0.32$; WT & Mg/Sg/E: $P =$
750 0.37 and for [B] WT & Mg: $P = 0.66$; WT & Sg: $P = 0.53$; WT & E: $P = 0.99$; WT & Mg/E: $P =$
751 0.97; WT & Sg/E: $P = 0.075$; WT & Mg/Sg/E: $P = 0.34$. Combined from three biological
752 replicates (N: 300 mosquitoes). [C]: Comparison of fecundity (number of laid eggs) between
753 WT and transgenic mosquitoes. No significant differences were found using the Log-rank
754 (Mantel-Cox) test. WT & Mg: $P = 0.74$; WT & Sg: $P = 0.24$; WT & E: $P = 0.77$; WT & Mg/E: $P =$
755 0.70; WT & Sg/E: $P = 0.80$; WT & Mg/Sg/E: $P = 0.97$ [D]: Comparison of fertility (proportion
756 of laid eggs that hatched) between WT and transgenic lines. Statistical analysis used the Mann-
757 Whitney U test. WT & Mg: $P = 0.93$; *WT & Sg: $P = 0.021$; **WT & E: $P = 0.0089$; *WT &
758 Mg/E: $P = 0.032$; WT & Sg/E: $P = 0.050$; *WT & Mg/Sg/E: $P = 0.032$. [C and D]: data
759 combined from three biological replicates (N: 60 mosquitoes); horizontal lines are median
760 values. [E] The percentage of mosquitoes that take a blood meal is not affected. Two-day-old


761 female mosquitoes were allowed to feed on mice, and the percentage of mosquitoes that fed was
762 determined after 30 min feeding. WT & Mg: $P = 1.00$; WT & Sg: $P = 0.92$; WT & E: $P = 0.90$;
763 WT & Mg/E: $P = 1.00$; WT & Sg/E: $P = 0.68$; WT & Mg/Sg/E: $P = 0.85$. [F] The amount blood
764 uptake is not affected. Quantification of protein-bound heme at 410 nm from midguts of WT and
765 transgenic mosquitoes before (CTRL) and after a blood meal. WT & Mg: $P = 0.73$; WT & Sg: P
766 = 0.65; WT & E: $P = 0.63$; WT & Mg/E: $P = 0.66$; WT & Sg/E: $P = 0.64$; WT & Mg/Sg/E: $P =$
767 0.76. [E and F]: error bars represent SD of the mean; data pooled from three independent
768 experiments; no significant differences were found using the Student's t test.

769

A

B



770

771

772 **Figure S3 Schematic assay of bacteria transmitted from mosquitoes to the host using a**
773 **membrane feeding assay. [A]** Two-day-old mosquitoes were fed overnight on 10^7 *Serratia*-
774 GFP/ml of 5% sugar with food dye. Mosquitoes carrying the food dye marker were fed on
775 sterile 5% sugar for two days. At this point, 100 female mosquitoes were starved for 3 h and fed
776 blood for 30 min using a membrane feeder. To estimate the number of *Serratia*-GFP bacteria in
777 the midgut and ovary, an additional 10 female mosquitoes were dissected prior to blood feeding,
778 and dilutions of the homogenates were plated on LB/kanamycin plates. After blood feeding, 50
779 μ l of blood from the feeder (out of 300 μ l initial volume) was added to 5 ml LB/kanamycin,
780 grown overnight, and then plated on LB/kanamycin plates to detect presence (or not) of *Serratia*-
781 GFP in the blood. [B] Bacteria numbers in midguts, ovaries and blood from the feeder. No
782 bacteria were detected from the blood samples. Data pooled from 10 independent biological
783 experiments. Statistical analysis by the Mann-Whitney U test.

Effectors sequence for QUAS-E plasmid

YFP
ATGGTGAGCAAGGGCAGGGAGCTGTTACCGGGGTGGTGCACCTCCTGGTCGAGCTGGACGG
CGACGCTAAAGGCCCAAGCTTACGGCTGGCGGGAGGGCAGGGCAGTCACCTGGACCG
AGCTTCTCGCTGGTAGTAGGACCTCTGAGGTTACCTGCAACCCACCGCAAGCTGCCCTGCCC
TGGCCCACCCCTGTCGACCCCTCGCTACGGCTGAGTGTCTCGCCGCTACCCGACCA
ATGGCCGAGCAGCAGCTTCTCAAGCTGGCCATGGCCGAAGCTACGGCTCAGGAGGCCACCATC
TTCTCAAGGACGAGGCCAACTCAAAAGCAGGGCCAGGGTAGAAGTCTGGAGGGCAGCACCT
GGTGAACCGCATCAGCTGAAGGGCATCGACTTAAGGAGGAGCAGCAACATCTGGGGCACA
GCTGGAGTAACTACAACAAAGCCCAACAGCTTATCATGCGGCCAACAGGAAACGCCGATC
AAAGTGTAACTCAAGATCGGCCAACACATCGAGGAGCAGGGCAGCTGCACTGGCCGACCA
CAGCAGAACACCCCCATCGGCAGGGCCCCGTGCTGTCGCCCCGACAACCAACTACCTGAGCTA
CAGTGGCTGGCATGAGCAACAGGCTGGCTGAGCAGCTGCACTGGAGCTGCTGGAGTC
AGCGCCGGCATGAGCATCTGGCATGAGCAACAGGCTGGCTGAGCAGCTGCACTGGAGTC
CAGTGGCTGGCATGAGCAACAGGCTGGCTGAGCAGCTGCACTGGAGCTGCTGGAGTC

AsAAPP (anopheline antiplatelet protein gene) promoter

AsAper1 (adult peritrophic matrix protein 1 gene) promoter

784

785

786

Figure S4. Sequences of the synthetic transgenes on the plasmid constructs for the transformation of *Anopheles* mosquito embryos.

787
788

Table S1. Transgene integration sites

LINE	INTEGRATION SITE	INTEGRATION IN GENE
Mg1	AsteS1:KB664810:1:1229869:1	NO
Mg2	AsteS1:KB664721:1:1159608:1	NO
Sg1	AsteS1:KB664422.1	NO
Sg2	AsteS1:KB664506.1	NO
	AsteS1: KB664514.1	Gamma-glutamyltranspeptidase (ASTE010947)
	AsteS1: KB664921.1	NO
E1	AsteS1:KB664810:1:1229869:1	NO
E2	AsteS1:KB664810:1:1229869:1	NO
	AsteS1:KB664538:1:382792:1	NO

789
790 Integration site: AsteS1: contig number: precision site

791
792

Table S2. Verification of transgene homozygosity

MOSQUITO LINE	LARVA NUMBERS	RED	YELLOW	BLUE
Mg1	412	412		
Mg2	276	276		
Sg1	178		178	
Sg2	329		329	
E1	206		206	
E2	378		378	
Mg/E1	262	262		262
Mg/E2	198	198		198
Sg/E1	307		307	307
Sg/E2	345		345	345
Mg/Sg/E1	228	228	228	228
Mg/Sg/E2	361	361	361	361

793
794 A total of 20 transgenic female mosquitoes from each line were mated with wild type males and
795 the progeny larvae assayed for expression of the dominant eye fluorescence marker. No non-
796 fluorescent larvae were found, indicating that the females were homozygous for the transgenes.
797

798 **Table S3. Expression of MP2 and scorpine mRNAs relative to the endogenous AsAper**
799 **mRNA, quantified by qRT-PCR in the midgut of transgenic mosquitoes.**
800

Mosquito lines	Relative expression in midgut		
	AsAper	Scorpine	MP2
E	1.0± 0.1	N	N
Mg/E	1.0± 0.3	44.3±10.7	49.3±16.7
Mg/Sg/E	1.0± 0.2	56.1±8.7	35.6±8.9

801
802 The rpS7 gene was used as reference, and WT mosquitoes were used as negative controls.
803 Identification of mosquito lines provided in Figure 1A. N: transcript not detected. Data pooled
804 from three independent biological experiments. Mean±SD.

805 **Table S4. Relative expression of MP2 and scorpine mRNAs relative to the endogenous**
806 **AsAAPP mRNA quantified by qRT-PCR in the salivary glands of transgenic mosquitoes.**
807

Mosquito lines	Relative expression in salivary gland		
	AsAAPP	Scorpine	MP2
E	1.0 ± 0.2	N	N
Sg/E	1.0± 0.1	27.3±15.6	49.1±7.6
Mg/Sg/E	1.0± 0.3	62.5±9.3	140.2±38.3

808
809 The rpS7 gene was used as reference, and WT mosquitoes were used as negative controls.
810 Identification of mosquito lines provided in Figure 1A. N: transcript not detected. Data pooled
811 from 3 independent experiments. Mean±SD.
812

813
814

Table S5. *Serratia* is horizontally (sexually) transmitted.

Males carrying AS1-poly	Females (mated/virgin)	Female CFUs		
		Spermatheca	Midgut	Ovary
WT	WT mated	0	0	0
Transgenic	Transgenic mated	0	0	0
WT	WT virgin	3.9±4.7	115±118	11±7.7
Transgenic	Transgenic virgin	2.9±4.7	104±111	8.7±7.8

815
816
817
818
819
820
821

Newly emerged virgin male adult mosquitoes were fed overnight on 5% sugar solution containing 10^7 AS1-poly bacteria/ml and placed with females. Three days later, 10 females were assayed for the presence of *Serratia AS1* by plating midgut, ovary and spermatheca homogenates on apramycin/ampicillin agar plates and colonies were counted. Transgenic mosquito: Mg/Sg/E. Female mosquitoes mate only once in their lifetimes; mated females were used as controls. Data pooled from 3 independent experiments. Mean±SD.

822

Table S6. Vectors used in this research.

823

Vectors	Reference/notes
phsp-pBac	33
pXL-BACII-DsRed-AAPP-QF2-hsp70	15
pXL-BACIIECFP-15XQUAS-TATA-PAI-SV40	15
pXL-BACII- DsRed-Aper-QF2-Hsp70	Mg QF2 driver plasmid
pXL-BAC-YFP-AAPP promoter-QF2-Hsp70	Sg QF2 driver plasmid
pXL-BACIIECFP-15XQUAS-TATA-MP2-SV40-15XQUAS-TATA-Scorpine-SV40	QUAS-MP2-Scorpine effector plasmid
pBAM2-YFP	DNA template for YFP

824

825
826

Table S7. Oligonucleotide primers used in this study.

Primer	Sequence (5'- 3')	Notes
MgPF	ATCAATGTATCTGAGTACCGGCAATACTGGTTGTTGAGG	MgPF and MgPR to amplify midgut promoter which was insert to construct MG QF2 driver plasmid, restriction site XhoI
MgPR	GTTGGCCGGCCTCGAGGATGAGAATGTTAGATGCCCGAGTTG	
YFPF	GGGCCGGGATCCACCGGCGCCACCATGGTGAGCAAGGGCGAGGA	YFPF and YFPR to amplify YFP which was inserted to ApaI and NotI sites, then, SgPF and SgPR to amplify salivary gland promoter which was inserted to construct SG QF2 driver plasmid at site XhoI
YFPR	GCGGCCGCTACTTGTACAGCTCGTCCA	
SgPF	ATCAATGTATCTGAGGGACTTCGCGTCGGTAGTAG	
SgPR	GTTGGCCGGCCTCGAGCGTTATTCACCTGTGAGCTATGG	
MP2-ScopineF	GCGGCCGCGGCTCGAGATGGTGCATTAAACAGTGCA	MP2-ScopineF and MP2-ScopineR to amplify effectors genes which were inserted to construct QUAS-E plasmid, restriction site XhoI
MP2-ScopineR	AGATCGACGTCTCGAGTTAGTAGGAGAGTGGAGTAC	
AAPPF	GTACGAAGAGTGCAGCAAGG	For RT-PCR: AsAAPP gene
AAPPR	TCGATGAGTCCCTCGTCAAG	
PorF	AATGACTCCCAGAACAGCAGTG	For RT-PCR: AsAper1 gene
PorR	ACTTCACTCTCACACTGCG	
SC1	GCGGGTTGGATCAATGAG	For RT-PCR: scorpine gene
SC2	AGTTAGTAGGAGAGTGGAA	
MPF	GTCGAAGCGGCCTGCTAC	For RT-PCR: MP2 gene
MPR	AGATCGACGTTAGGAGC	
S7F	CTAACGACACGAAGACCACAAGA	For RT-PCR: S7 gene
S7R	CAACCTGCAACGAAGCAAAA	

YS1	AGGACCCTGAAGTTCATCTG	For verification of SG QF2 driver plasmid insertion
YS2	CTTCGGGCATGGCGGACTTG	
DM1	GTGAACCTCCCCTCCGACG	For verification of MG QF2 driver plasmid insertion
DM2	TCAGCTTCAGGGCCTTGTG	
E1	AAAATCCAAAAGAAAATCGATGAGC	For verification of QUAS-MP2-QUAS scorpine effector plasmid insertion
E2	GAGTGGAGTACCACTTGCAT	
SPLNK#1	CGAAGAGTAACCGTTGCTAGGAGAGACG	
SPLNK#2	GTGGCTGAATGAGACTGGTGTGAC	
pBacRE#1	CGATATACAGACCGATAAAACACATGCGTC	Primers for Splinkerette PCR
pBacLE #2	GCGACTGAGATGTCCTAAATGCAC	

827
828

829
830

Table S8. Plasmid injection and screening for transformants

Donor plasmid	Helper	# embryos injected	# G0 (number of survivors)	Pools	Pools with positive progeny
MG QF2 driver plasmid	phsp-pBac	440	35	17	P1 and P2
SG QF2 driver plasmid	phsp-pBac	500	19	8	P1 and P5
QUAS-MP2-Scorpine effector plasmid	phsp-pBac	547	43	22	P1 and P2

831