

1 **A comprehensive single-cell expression atlas of human AML leukemia-initiating**
2 **cells unravels the contribution of HIF pathway and its therapeutic potential**

3 Talia Velasco-Hernandez^{*,1,2}, Juan L. Trincado^{*,1,2}, Meritxell Vinyoles^{1,2}, Adria Closa^{3,4}, Francisco
4 Gutiérrez-Agüera¹, Oscar Molina^{1,2}, Virginia C Rodríguez-Cortez^{1,2}, Paolo Petazzi^{1,2}, Sergi Beneyto-
5 Calabuig^{5,6}, Lars Velten^{5,6}, Paola Romecin^{1,2}, Raquel Casquero¹, Fernando Abollo-Jiménez⁷, Rafael Díaz
6 de la Guardia^{1,8}, Patricia Lorden⁹, Alex Bataller¹⁰, Helene Lapillonne¹¹, Ronald W Stam¹², Susana Vives^{1,13},
7 Montserrat Torrebadell¹⁴, Jose Luis Fuster¹⁵, Clara Bueno^{1,2,16}, Eduardo Eyras^{3,4,17,18}, Holger Heyn⁹ and
8 Pablo Menéndez^{1,2,16,18,19}.

9
10 1. Josep Carreras Leukemia Research Institute, Barcelona, Spain.
11 2. Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS,
12 RD21/0017/0029), Madrid, Spain.
13 3. The John Curtin School of Medical Research. The Australian National University, Canberra, Australia.
14 4. EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia.
15 5. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona,
16 Spain.
17 6. Universitat Pompeu Fabra (UPF), Barcelona, Spain.
18 7. Bioinformatics Unit, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
19 8. GENYO, Center for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de
20 Andalucía, Granada, Spain.
21 9. CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology
22 (BIST), Barcelona, Spain.
23 10. Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.
24 11. Centre de Recherche Saint-Antoine, Armand-Trousseau Childrens Hospital, Paris, Ile-de-France, France
25 12. Princess Maxima Center for Pediatric Oncology, 3584, CS, Utrecht, The Netherlands.
26 13. Hematology Department, ICO-Hospital Germans Trias i Pujol. Badalona, Barcelona, Spain.
27 14. Hematology Laboratory, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain.
28 15. Sección de Oncohematología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca and
29 Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, Murcia, Spain.
30 16. CIBER-ONC, ISCIII, Barcelona, Spain.
31 17. Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
32 18. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
33 19. Department of Biomedicine. School of Medicine, University of Barcelona, Barcelona, Spain.
34 * Equally contributed

35
36 **Running title:** HIF/hypoxia pathway in AML stem cells

37 **Key words:** AML, LSC, HIF, hypoxia, single-cell RNA sequencing, BAY87-2234, chemotherapy, relapse.

38
39 **Correspondence should be addressed to:**

40 Pablo Menéndez - pmenendez@carrerasresearch.org
41 Talia Velasco-Hernández - tvelasco@carrerasresearch.org
42 Josep Carreras Leukemia Research Institute. School of Medicine, University of Barcelona.
43 Carrer Casanova 143, 4^o floor, 08036, Barcelona, Spain.
44 Telephone: (+34) 93 5572810

45
46
47
48
49
50

51 **Abstract**

52

53 Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML), and is
54 driven by rare therapy-resistant leukemia-initiating stem cells (LSCs) that reside in specific bone marrow
55 niches. Hypoxia signaling keeps cells in a quiescent and metabolically relaxed state, desensitizing them to
56 chemotherapy. This suggests the hypothesis that hypoxia contributes to AML-LSC function and
57 chemoresistance and is a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we provide a
58 comprehensive single-cell expression atlas (119,000 cells) of AML cells and AML-LSCs in paired
59 diagnostic-relapse samples from risk-stratified patients with AML. The HIF/hypoxia pathway is attenuated
60 in AML-LSCs compared with differentiated AML cells, but is enhanced when compared with healthy
61 hematopoietic cells. Accordingly, chemical inhibition cooperates with standard-of-care chemotherapy to
62 impair leukemogenesis, substantially eliminating AML-LSCs. These findings support the HIF pathway as a
63 stem cell regulator in human AML, and reveal avenues for combinatorial targeted and chemotherapy-based
64 approaches to specifically eliminate AML-LSCs.

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79 **Introduction**

80

81 Acute Myeloid Leukemia (AML) is the most common acute leukemia in adults, and constitutes a
82 heterogeneous group of disorders characterized by the rapid expansion and accumulation of poorly
83 differentiated myeloid cells in the bone marrow (BM) and infiltrating tissues. Disease heterogeneity is well
84 documented and patients are typically stratified based on cytogenetic, molecular, and immunophenotypic
85 features. While our understanding of the molecular and phenotypic characteristics of AML has substantially
86 improved in recent years, many patients fail to respond to standard-of-care chemotherapy or show early
87 relapse (1, 2).

88 AML is a paradigm of the hierarchical cancer stem cell model (3). Robust experimental data demonstrate
89 that relapse is mediated by a rare subpopulation of cells, termed leukemia stem cells (LSCs), which are
90 chemotherapy resistant and drive disease recurrence, leading to a more genetically-heterogeneous and
91 clonally-evolved AML (4-6). AML-LSCs share unique properties with normal hematopoietic stem and
92 progenitor cells (HSPCs), including quiescence, resistance to apoptosis and elevated drug efflux, making
93 them partially refractory to chemotherapy.

94 Hypoxia represents a self-security mechanism to maintain cells in a dormant state, preventing their
95 exhaustion and proliferative damage. Recent data suggest that the rate of oxygen consumption and cell
96 metabolism, rather than oxygen perfusion, is responsible for the hypoxic nature of the BM niche where the
97 LSCs/HSPCs reside (7, 8). Cells respond to hypoxia by activating specific pathways modulated by the
98 hypoxia inducible factors (HIFs), which trigger the expression of hypoxia-regulated genes with key roles in
99 numerous biological processes such as cell proliferation, survival, apoptosis, angiogenesis, metabolism
100 and differentiation (9). At a molecular level, the HIFs constitute a family of three related heterodimeric
101 transcription factors (HIF-1, HIF-2 and HIF-3) whose regulation depends on the oxygen-dependent
102 stabilization of an associated α subunit. Above 5% oxygen, the α subunit is degraded by the proteasome,
103 whereas under hypoxic conditions, it is stabilized post-translationally, dimerizes with the constitutively
104 expressed β subunit and promotes the transcription of HIF target genes (9).

105 The HIF/hypoxia pathway is important not only for steady-state hematopoiesis, but also for the initiation,
106 progression and chemoresistance of solid tumors and leukemias. Indeed, treatment-resistant AML cells

107 preferentially locate in the hypoxic endosteal niche of the BM, which offers protection from the pro-apoptotic
108 effects of the standard-of-care chemotherapeutic agent cytarabine (AraC) (10). Several studies have shown
109 that, similar to what is observed for normal HSPCs (11), that the loss of HIF-1/2 leads to the complete
110 abrogation of LSCs in different types of human AML and in murine models of chronic myeloid leukemia (12-
111 14), whereas other studies have reported that loss of HIF-1/2 does not impact LSCs in murine models of
112 AML, or can even trigger a more severe leukemic phenotype (15-19). Despite these conflicting
113 observations, HIF-inhibiting drugs are being actively explored as therapeutic agents for AML (12, 13, 20).
114 However, little information is available regarding HIF in human primary AML-LSCs, and importantly, the
115 cytogenetic/molecular heterogeneity intrinsic to AML biology makes it plausible that the action of HIF varies
116 among risk-stratified AML patients.

117 Here, we used single-cell RNA sequencing (scRNA-seq) to survey the transcriptome of human AML-LSCs
118 in paired diagnostic (Dx) and relapse (REL) samples from risk-stratified patients with AML. Furthermore,
119 we investigated the role of HIF/hypoxia signaling in LSCs quiescence and chemoresistance using cutting-
120 edge *in vitro* and *in vivo* approaches. We found that while the HIF/hypoxia pathway is more weakly
121 expressed in LSCs than in more differentiated AML cells, its chemical inhibition cooperates with
122 chemotherapy to control leukemogenesis, substantially eliminating AML-LSCs. These findings confirm
123 HIF/hypoxia pathway as a stem cell regulator in human AML and offer new avenues for combinatorial
124 targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.

125

126

127

128

129

130

131

132

133

134

135

136 **Results**

137 **Hypoxia transcriptional signature clusters inv(16) AML subgroup**

138 To capture the contribution of hypoxia pathway in human AML-LSCs, we utilized two publicly available
139 RNA-seq transcriptomic datasets (TARGET (21), including pediatric and adolescent/young patients, and
140 Leucegene (22), including adult patients) generated from Dx samples of the following molecularly defined
141 AML subgroups: (i) inv(16) (CBF-MYH11, n=20/18 patients, TARGET/Leucegene), (ii) t(8;21) (RUNX1-
142 RUNX1T1, n=21/16 patients) and (iii) NPM1^{mut} (n=6/7 patients) as low risk AML; and (iv) MLL-rearranged
143 (MLLr, KMT2A fusions, n=13/15 patients), (v) FLT3^{ITD} (n=4/6 patients), and (vi) normal karyotype (NK,
144 neither chromosomal rearrangements nor NPM1^{mut} or FLT3^{ITD} n=14/10 patients) as intermediate-high risk
145 AML (23). AML samples mutated for *TET2*, *IDH1* or *IDH2* were excluded from analyses because such
146 mutations have been suggested to interfere with HIF signaling (24, 25). A total of 78 samples (147 runs)
147 and 72 samples (301 runs) were analyzed from TARGET and Leucegene, respectively (Table S1). For
148 initial data inspection, we used either a multidimensional scaling reduction (MDS) of the genome-wide
149 information or a specific set of 119 hypoxia target genes (Hypoxia signature) characterized by hypoxia-
150 dependent transcriptional induction and by the presence of functional hypoxia response elements (26)
151 (Table S2, Figure 1A).

152 The hypoxia signature enabled clustering of the inv(16) AML samples separately from the other cytogenetic
153 groups, in both datasets (Figure 1A). The t(8;21) AML samples also clustered partially separately in
154 TARGET and Leucegene datasets, albeit to a lesser extent, whereas MLLr AMLs did so in Leucegene but
155 not in TARGET (Figure 1A). The highest expression of *HIF1A* and *HIF2A* (*EPAS1*) was observed in inv(16)
156 and t(8;21) AML samples, both core binding factor (CBF)-rearranged AMLs, whereas MLLr AML samples
157 showed a trend for the lowest expression (Figure 1B). Consistently, and in line with data from BloodSpot
158 (27, 28), gene set enrichment analysis (GSEA) revealed a significant enrichment of the hypoxia signature
159 in inv(16), but not in t(8;21) samples, as compared with MLLr samples (Figure 1C). Subsequent analyses
160 focused on inv(16) and MLLr subgroups as HIF^{high} and HIF^{low} AML prototypes, respectively. We also
161 included t(8;21) as an additional CBF-rearranged AML, as it has been previously reported to cooperate with
162 HIF1A for leukemogenesis (29).

163

164 **Identification of human AML-LSCs using scRNA-seq**

165 To resolve the transcriptional heterogeneity of AML and to survey the expression of HIF pathway genes in
166 AML-LSCs, we performed scRNA-seq on 11 Dx BM samples from pediatric/young adult patients: inv(16)
167 (n=4), t(8;21) (n=3) and MLLr (n=4) (**Figure 2A-B and Figure S1**). Acknowledging the extremely low
168 frequency of LSCs (30, 31), we performed scRNA-seq on two fluorescence activated cell sorting (FACS)-
169 sorted AML populations: CD34+CD38- cells, enriched in LSCs (3, 30, 32) and CD34-CD38+, which are
170 differentiated cells depleted of LSCs (**Figure 2C-D and S1**). A total of 26,976, 19,731 and 24,854 cells were
171 sequenced from inv(16), t(8;21) and MLLr AML subgroups, respectively (**Table S3**). All samples within each
172 cytogenetic-molecular subgroup were computationally integrated and displayed using uniform manifold
173 approximation and projection (UMAP) visualizations (**Figure S2A**). Consistent with the immunophenotype
174 (**Figure S1**), inv(16) and t(8;21) samples expressed high CD34 levels, which was confirmed by scRNA-seq
175 on the sorted population (**Figure 2E and S2A**). By contrast, MLLr samples mainly consisted of CD34- cells,
176 in line with previous studies locating the LSC population within the CD34-CD38+ population in MLLr AML
177 samples (33).

178 As the LSC definition relies on functional assays, and CD34 and CD38 are not absolute markers to identify
179 human LSCs, we used the scRNA-seq data to phenotypically categorize *bona fide* LSCs. We performed
180 unsupervised clustering of all cells and utilized the recently published LSC6 score (34), an updated
181 signature of the LSC17 score adapted for pediatric-young AML cell annotations (35). Clusters from each
182 sample were ranked according to LSC6 score values, and only those with the highest LSC6 score were
183 considered enriched in LSCs (**Figure 2F**). When integrating individual samples from the same cytogenetic
184 subgroup, we observed that cells identified as LSCs (highest LSC6 score) clustered together in the
185 integrated UMAPs (**Figure 2G**). Notably, high LSC6-scoring cells colocalized with CD34+CD38- cells
186 across the 3 AML subgroups, including MLLr AML.

187 We next queried the normal stem/progenitor phenotypic prediction of the LSC6 signature (**Figure 2H-I**). For
188 this, we projected our scRNA-seq data onto an existing reference annotation dataset containing 15 healthy
189 hematologic cell types (36). Each AML sample was first projected individually (**Figure 2H** and
190 <https://github.com/JLTrincado/scAML>) and then all AML samples within the same cytogenetic subgroup
191 were integrated (**Figure 2I**). We observed that phenotypically identical annotated clusters colocalized

192 together in the UMAP, demonstrating a similar identity/phenotype across different patients. Total CD34+
193 cells and high LSC6-scoring cells (identified as LSCs) were enriched for hematopoietic stem cells (HSCs)
194 and progenitors (**Figure 2I**). Data projection on an additional annotated dataset (37) confirmed the
195 stemness phenotype of these cells, which overlapped with HSCs, multipotent progenitors (MPPs), lympho-
196 myeloid primed progenitors (LMPPs) and myeloblasts (**Figure S2B-C**).
197 This LSC-enriched CD34+CD38- cluster (hereinafter, LSC³⁴) was further characterized and compared with
198 the remaining CD34+CD38- cells not identified as LSCs (hereinafter, NonLSC³⁴) and with the CD34-CD38+
199 cells (hereinafter, NonLSC³⁸) (**Figure 2J**). Of note, in an individual inv(16) sample (AML10), an additional
200 LSC6^{high} cluster was identified and classified as HSC/progenitors but with high expression of *HBB* (LSC2³⁴)
201 (**Figure S2D**). When the different Dx-AML samples were integrated, we consistently observed a lower LSC6
202 score from the LSC³⁴ towards the more differentiated NonLSC³⁸ (**Figure 2K**), in accord with the observed
203 pseudotime trajectories of these populations along a continuum of differentiation from LSC³⁴ to NonLSC³⁸
204 (**Figure 2L**) irrespective of the AML cytogenetic subgroup. We further explored the relationship between
205 the *in silico* predicted cellular annotations by obtaining their latent space in each molecular subgroup,
206 finding a similar continuum of differentiation from the most undifferentiated cells to terminally differentiated
207 monocytes (**Figure S2E-F**). These analyses not only validated our predictions but also highlight the cellular
208 heterogeneity and diversity of both CD34+CD38- and CD34-CD38+ AML cells. In this line, two additional
209 widely used LSC signatures (30, 38) correlated with the LSC³⁴ clusters identified based on the LSC6
210 signature and stemness projection (**Figure 2M**).
211 Additionally, we analyzed the expression of 18 specific markers commonly used to identify LSCs in human
212 AML (39-44) and found a panel to be consistently overexpressed in the LSC³⁴ cluster identified in inv(16)
213 samples (CD99, CD82, CD52, CD47, *IL3RA*), t(8;21) samples (CD99, CD52 and CD96) and in MLLr
214 samples (CD99, CD82, CD52 and CD47), as compared with both NonLSC³⁴ and NonLSC³⁸ clusters (**Figure**
215 **S2G**). Finally, to rule out bias in the gene expression analysis due to contaminating healthy
216 HSCs/progenitors with an immunophenotype overlapping that of AML-LSCs (30, 45), the expression of
217 specific genes reported to be upregulated in AML cells was compared against healthy BM obtained from
218 the Human Cell Atlas (46). Results showed that *CLEC12A* (CLL-1) (47) and *JUND* were overexpressed in
219 AML cells across cytogenetic groups (**Figure 2SH**), whereas *SPARC*, or *RUNX1T1* and *POU4F1*, or

220 *HOXA9*, *HOXA10* and *PBX3* were specifically upregulated in inv(16), t(8;21), or MLLr AML cells,
221 respectively (**Figure S2H**).

222

223 **Transcriptional characterization identifies key molecular features of the AML-LSCs**

224 Recent studies have revealed the existence of dormant and active HSCs in mice (48-51) and humans (52),
225 while AML-LSCs are documented to be quiescent/dormant. To characterize the transcriptional
226 heterogeneity of human AML-LSCs, we first analyzed the cell cycle and quiescence/metabolic dormancy
227 of the LSC³⁴ clusters across the cytogenetic groups (**Figure 3A-B**). We took advantage of validated
228 signatures defining the G₀ cell cycle status (*Neg G0 to G1* [GO:0070317] and G₀M^{high} (49)) (**Figure 3B and**
229 **Table S2**). LSC³⁴ were consistently found in G₀/G₁ cell cycle phase (**Figure 3A**), and the *Neg G0 to G1* and
230 G₀M^{high} dormancy signatures were enriched in LSC³⁴ clusters across the distinct AML molecular subgroups
231 (**Figure 3B**), revealing homogeneous LSC³⁴ clusters based on the G₀ phase and/or quiescence status of
232 the cells.

233 We next analyzed the expression of different metabolic signatures previously related to both HSCs/LSCs
234 and to hypoxia signaling (**Table S2**). Glycolysis (42) signature was less represented in the LSC³⁴ in the
235 MLLr AML cells, similarly to oxidative phosphorylation (OXPHOS) (53) (**Figure 3C**). However, OXPHOS
236 was increased in LSC³⁴ cells respect to NonLSC³⁸ in inv(16) AML cells. Reactive oxygen species (ROS)
237 (42) and lysosome (54) signatures were less represented in the LSC³⁴ cluster across the distinct AML
238 molecular subgroups, consistent with lower ROS levels reported in HSCs/LSCs (**Figure 3C**). By contrast,
239 LSC³⁴ cells displayed an enrichment in Translation signature consistent with recent publications indicating
240 a high protein production rate in these cells (55-57). However, the ER stress signature (12) differed between
241 LSC³⁴ cells from distinct molecular subgroups, being less represented in CBF-rearranged AMLs and
242 enriched in MLLr AMLs (**Figure 3C**).

243 Unsupervised hierarchical clustering of the differentially expressed genes (DEGs) revealed that in CBF-
244 rearranged AMLs, the LSC³⁴ cluster is transcriptionally closer to the NonLSC³⁴ cluster than to the NonLSC³⁸
245 cluster (**Figure S3A**). Functional enrichment analysis revealed that the main altered functions between
246 LSC³⁴ and NonLSC³⁸ clusters were associated with *Translation* and other *Ribosomal-related processes*
247 (**Figure 3D**), whereas functional terms related to *Mitosis* and *Cell cycle* were the most altered between

248 NonLSC³⁴ and NonLSC³⁸ clusters (**Figure S3B**), confirming that the NonLSC³⁴ cluster is more proliferative
249 than the LSC³⁴ cluster (**Figure S3B**). In contrast, the LSC³⁴ cells in MLLr AML differed transcriptionally from
250 both NonLSC³⁴ and NonLSC³⁸ cells, which were transcriptionally closer together (**Figure S3A**), in line with
251 the pseudotime analysis (**Figure 2L**). Functional enrichment analysis of MLLr AML samples revealed that
252 the main altered functions between LSC³⁴ and both NonLSC³⁴ and NonLSC³⁸ clusters were associated to
253 *Translation* and *Ribosomal-related processes* (**Figure 3E** and **S3C**). Notably, specific transcriptional
254 features were associated with the LSC³⁴ cluster in each molecular AML subgroup. Overall, a higher number
255 of DEGs were upregulated in the NonLSC³⁴ cluster with respect to the LSC³⁴ cluster (**Figure 3E**, right plots)
256 regardless of the cytogenetic group, suggesting a greater transcriptional activity in line with the enrichment
257 of the LSC³⁴ cluster in dormancy and the G₀ signature. In total, 56, 44 and 573 genes were found
258 upregulated in the LSC³⁴ cluster in inv(16), t(8;21) and MLLr AMLs, respectively (**Figure S4A**). Of these,
259 ten genes were consistently upregulated in the LSC³⁴ cluster across all molecular subgroups (*AKR1C3*,
260 *CD34*, *CD52*, *HIST1H2AC*, *ITM2A*, *LIMS1*, *MTRNR2L8*, *PNISR*, *SEPT6*, *SERPINB1*) (**Figure S4B**).
261

262 **Low expression of the hypoxia signaling signature in human AML-LSCs**

263 Having captured the transcriptional identity of the LSC³⁴ cluster across the three AML molecular subgroups,
264 we sought to analyze the hypoxia signaling pathway in LSC³⁴ cells using the aforementioned panel of 119
265 hypoxia target genes (Hypoxia signature) (**Table S2**) to determine the hypoxia enrichment score. The LSC³⁴
266 cluster consistently showed the lowest hypoxia score across all three cytogenetic subgroups (**Figure 4A-B**), in line with the lowest expression of *HIF1A* (**Figure 4C**). To rule out potential bias in the selection of the
267 119 genes defining the hypoxia signature, we further employed five transcriptional signatures containing
268 genes upregulated under hypoxia conditions (**Figure 4D** and **Table S2**) and confirmed a uniformly lower
269 hypoxia score in the LSC³⁴ cluster with a transition towards enrichment in the hypoxia signature in
270 NonLSC³⁸ differentiated AML cells. The poor hypoxia signaling observed in human AML-LSCs was accord
271 with a weaker ROS signature in the LSC³⁴ cells (**Figure 3C**). Notably, while the hypoxia signature showed
272 the lowest enrichment score in LSC³⁴ among the distinct analyzed clusters, it was routinely enriched in both
273 total AML cells and LSC³⁴ cells as compared with both whole healthy BM cells and healthy CD34+ cells,
274 respectively, regardless of the cytogenetic subgroup (**Figure 4E**).
275

276 Most of the HIF1A targets were upregulated in the differentiated NonLSC³⁸ cluster (**Figure 4F**). However,
277 when HIF1A target genes differentially expressed among the three clusters were analyzed in more detail,
278 several HIF1A targets were significantly upregulated in the LSC³⁴ cluster: *NPM1*, *CD99*, *KRT18* and *LDHA*
279 in inv(16) samples; *NPM1*, *CD99*, *PMAIP1* and *TCF3* in t(8;21) samples; and *NPM1*, *CD99*, *ANXA1*, *LDHA*,
280 *BNIP3L* and *NR4A1* in MLLr samples (**Figure 4F-G**). Together, although AML-LSCs display a weak hypoxic
281 signature across all the AML subgroups, specific hypoxia-related genes were up-regulated in LSC³⁴ cells.
282 Notably, the hypoxia signature was overexpressed throughout different tumoral populations compared with
283 healthy hematopoietic BM cells.

284

285 **Paired Dx-REL analysis reveals patient-specific differential molecular features of the AML-LSCs**
286 Chemoresistant LSCs display biological features that differ from those of “therapy naïve” LSCs, including a
287 more diverse phenotype, gene expression changes and an increased metabolic flexibility (4, 5, 58-60). To
288 study the evolution of chemoresistant LSCs underlying AML relapse, we performed scRNA-seq in paired
289 patient-matched Dx-REL samples (**Figure 2A**). In total, 12,005, 15,909 and 19,506 cells were sequenced
290 from inv(16), t(8;21) and MLLr REL-AML patients, respectively. The LSC³⁴ cluster was identified separately
291 at Dx and REL before data integration (**Figure 5A** and **S5A**). Results showed a higher transcriptional
292 heterogeneity in REL than in Dx samples, as evidenced by numerous small clusters of cells with a lymphoid
293 or erythroid phenotype (**Figure 5A** bottom plots and **S5B**). Of note, the degree of transcriptional overlap
294 between Dx-REL pairs varied from patient to patient when the total number of cells was integrated (**Figure**
295 **5A** and **S5A**, <https://github.com/JLTrincado/scAML>), suggesting patient-specific transcriptional changes in
296 Dx-REL pairs. Similarly, analysis of the LSC6 score in paired Dx-REL samples also revealed patient-
297 specific heterogeneity with a trend towards an increased LSC6 score at REL (4/7) (**Figure 5B-C** and **S5C**).
298 In addition, analysis of the hypoxia score in paired Dx-REL samples also revealed patient-specific
299 heterogeneity, with an inverse Dx-to-REL evolution with respect to the LSC6 score (6/7) (**Figure 5B-C** and
300 **S5D**). Finally, dormancy, ER stress and ROS signatures also revealed a variable, patient-specific evolution
301 from Dx to REL in LSC³⁴ cells irrespective of the AML subgroup (**Figure 5D-E** and **S5E**). Notably, the DEGs
302 found in the Dx-LSC³⁴ cluster that were upregulated in the REL-LSC³⁴ cluster varied between inv(16),

303 t(8;21) and MLLr AMLs, highlighting molecular subgroup-specific differences (**Figure S5F**). *SERPINB1*,
304 *PNISR*, *ITM2A*, *CD34* and *AKR1C3* were the genes shared across the inv(16) and t(8;21) subgroups.
305 Specifically, several HIF1A target genes were found differentially expressed in Dx- and REL-LSC³⁴ cells
306 (**Figure 5F** and **S5G**). In LSC³⁴ from inv(16) AMLs, *HSP90B1* was consistently down-regulated between Dx
307 and REL in both patients. In LSC³⁴ cells from t(8;21) AMLs, four genes (*CD99*, *JUNB*, *CLEC12A* and
308 *PMAIP1*) showed a consistent down-regulation between Dx and REL in both patients. Finally, in LSC³⁴ cells
309 from MLLr AML samples, six genes showed a consistent change (down-regulation: *JUNB*, *MCL1* and *VIM*;
310 up-regulation: *GAPDH*, *LDHA* and *PKM*) between Dx and REL in all three patients. In addition to the hypoxia
311 pathway, we analyzed those DEGs showing a consistent change (up- or down-regulation) between Dx and
312 REL in the LSC³⁴ cluster for each molecular subgroup (**Figure 5G**), which identified *EGFL7*, *CD52* as well
313 as many ribosomal proteins consistently upregulated in REL samples. Functional enrichment analysis using
314 these genes revealed *Translation*-related terms as the main altered functions in REL-LSC³⁴ cells (**Figure**
315 **5H**).

316

317 **Inhibition of HIF pathway sensitizes AML-LSCs to chemotherapy *in vitro***

318 HIF signaling and hypoxic BM niches are reported to protect leukemic cells from chemotherapy by
319 promoting quiescence and low metabolic activity ([61-63](#)). We found that the HIF pathway signature was
320 less enriched in AML-LSCs than in more differentiated AML blasts, and the hypoxia score in paired Dx-REL
321 samples showed patient-specific heterogeneity. By contrast, the HIF signature was consistently enriched
322 in AML-LSCs as compared with healthy BM cells and HSCs, prompting us to explore its potential
323 therapeutic role. For this, we combined the chemical inhibitor BAY87-2243 (BAY87), which inhibits both
324 HIF1A and HIF2A by preventing their protein accumulation under hypoxia ([64](#)), with AraC, a standard-of-
325 care chemotherapeutic in AML ([60, 65](#)). The cell lines THP-1 (MLLr), Kasumi-1 (t(8;21)) and ME-1(inv(16))
326 were treated for 48 h in hypoxic conditions (5% O₂) with AraC, BAY87 or the combination (combo), and the
327 clonogenic capacity of the resistant cells was assessed by colony-forming unit (CFU) assays (**Figure 6A**).
328 Although response to BAY87 was cell-line dependent, we found an additive effect with AraC in ME-1 cells
329 and a dramatic inhibitory effect of BAY87 (alone or combined with AraC) in THP-1 cells (**Figure 6A**).

330 Quantitative PCR analysis confirmed a decrease in the expression of master HIF1A target genes (*HIF2A*,
331 *BNIP3*, *ALDOA1* and *CXCR4*) across the AML cells treated with BAY87 (**Figure 6B**).

332 We next performed long-term culture-initiating cells (LTC-IC) assays to assess the impact of HIF inhibition
333 on AML-LSCs. Primary cells from six AML patients representing the three cytogenetic subgroups were
334 treated for 48 h in hypoxic conditions (5% O₂) with AraC, BAY87 or the combo, and a significant decrease
335 in AML-LSC frequency was consistently observed upon treatment with the combo (**Figure 6C-E** and **S6A**).
336 We also analyzed the expression of genes from the HIF pathway identified in our scRNA-seq analysis as
337 differentially expressed in the LSC³⁴ compartment in the AML cells after 48 h treatment (**Figure 6F** and
338 **S6B**). BAY87-treated cells showed a decrease in the expression of master genes related to glycolysis
339 (*ENO1* and *PDK1*) and apoptosis (*BNIP3L* and *NR4A1*). We also found a decrease in the expression of
340 *KRT18* related to tumorigenesis and an increase in *ZEB1* expression, in line with its role as a stemness
341 and tumour repressor in AML (66). The presence of chromosomal abnormalities (inv(16), t(8;21) and MLLr)
342 was detected by FISH and/or qPCR at the end of treatments, confirming that LTC-ICs originated from the
343 original leukemic clone and not from residual healthy myeloid progenitors (**Figure S6C-D**). Of note, addition
344 of BAY87 to AraC treatment did not impact apoptosis, cell cycle status or ROS content in the therapy-
345 resistant AML cells (**Figure 6 G-I**). Overall, these data suggest that HIF inhibition may sensitize bulk AML
346 cells and, more importantly, AML-LSCs, to AraC-based standard-of-care treatment, independently of the
347 AML cytogenetic subgroup.

348

349 **Inhibition of HIF pathway sensitizes AML-LSCs to chemotherapy *in vivo***

350 We next aimed to address the impact of HIF inhibition alone or combined with AraC on AML-LSCs *in vivo*
351 (**Figure 7A**). Because low-risk CBF-rearranged (inv(16) and t(8;21)) AMLs have been extensively reported
352 to be very inefficient in engrafting immunodeficient mice (6, 67), we focused our *in vivo* studies on MLLr
353 AMLs. Immunodeficient (NSG) mice were intra-BM-transplanted with primary MLLr AML cells and mice
354 were randomized into the following treatment groups when AML graft levels were detectable in BM: (i)
355 control, (ii) AraC, (iii) BAY87 and (iv) combo (**Figure 7B**). Primografts were treated for five days and mice
356 were sacrificed and analyzed 72 h later (day 8), ensuring clearance of AraC and its metabolites, as
357 previously reported (60,68). Compared with control mice, peripheral cytopenias (leucopenia, anemia and

358 trombocytopenia) (**Figure S7A**) and a decreased percentage (**Figure S7B**) and total number (**Figure 7C**)
359 of live cells in BM were observed in AraC-treated mice, confirming the cytoreductive/cytostatic effect of the
360 treatment. Notably, BAY87 synergized with AraC to reduce the leukemic burden in peripheral blood (PB),
361 BM, spleen and liver (**Figure 7D** and **S7C**). The clonogenic and stemness potential of the treated primograft
362 cells were next assessed *ex vivo* in CFU-assays. Primograft AML cells from combo-treated mice showed
363 2-fold less clonogenic potential than counterparts from AraC-treated mice (**Figure 7E**, left panel). In
364 addition, the resulting colonies from combo-treated primograft AML cells were much smaller and with 4-fold
365 less cellularity than those from AraC-treated primograft AML cells (**Figure 7E**, middle panel). The presence
366 of the MLLr was detected by FISH in cells collected from the CFUs, confirming colonies originated from the
367 transplanted MLLr leukemic cells and not from residual healthy myeloid progenitors (**Figure 7E**, right panel).
368 Limiting BM-derived AML cell doses from treated primografts were next serially transplanted into secondary
369 recipients to further assess the impact of the AraC+BAY87 combo treatment for the long-term leukemia-
370 initiating capacity of AML-LSCs (**Figure 7F**). A significant decrease in AML-LSC frequency (1/<44,063 vs
371 1/34,722, $P=0.0272$) was observed in secondary recipients transplanted with combo-treated *versus* AraC-
372 treated primograft cells (**Figure 7G** and **S7D**), which was coupled to a 5-fold decrease in the leukemia
373 burden 22 weeks after transplantation (**Figure 7H**). We then analyzed in the remaining resistant primograft
374 cells the gene expression of HIF targets differentially expressed in the LSC³⁴ cluster by scRNA-seq analysis
375 (**Figure 7I**). Of note, we found a higher expression of *HIF1A*, *ENO1*, *PDK1*, *ALDOA1*, *NPM1*, *BNIP3* and
376 *ANXA1* in survivor BM cells from combo-treated mice than in AraC-treated counterparts, indicating an
377 increased activation of the hypoxia pathway in chemotherapy-resistant cells. Collectively, these data
378 support the *in vitro* results and indicate a synergistic effect of BAY87 with AraC treatment in debulking AML
379 and eliminating AML-LSCs *in vivo*.

380

381

382

383

384

385

386 **Discussion**

387

388 Although our understanding of the molecular and phenotypic features of AML is improving, yet many
389 patients fail to respond to current treatments or exhibit early relapse. From the first reports of LSCs,
390 leukemia ontogeny has been built upon paradigms of healthy hematopoiesis (3, 69). However, the classical
391 view that LSCs are both rare and uniform, akin to normal HSCs, has gradually been revisited based on
392 seminal studies performed in AML (69). Furthermore, studies investigating the biology of LSCs in AML use
393 mainly murine models, and do not typically distinguish between the molecular subgroups used to stratify
394 patients by risk when primary patient samples are used.

395 Here, we provide an exhaustive analysis at the single-cell level of the hypoxia/HIF signaling pathway in
396 AML-LSCs in paired Dx-REL samples from pediatric/young adult risk-stratified AML patients. Owing to the
397 great heterogeneity of AML disease and the complex functional interactions of different fusion proteins with
398 HIFs, we focused on three specific cytogenetic subgroups. We resolved the intercellular transcriptional
399 heterogeneity using scRNA-seq, which enabled us to identify and transcriptomically characterize the LSC
400 population, providing to the best of our knowledge, the largest and most comprehensive single-cell
401 expression atlas (119,000 cells) of AML cells and AML-LSCs to date.

402 We confirmed several features previously described for LSCs, including several LSC signatures, low ROS
403 content, a more quiescence state, and a high activation of the translation process. These results are in
404 accord with a recently published study analyzing 813 LSCs from 5 AML Dx-REL matched samples (70),
405 and support clinical trials combining the proteasome inhibitor bortezomib to standard chemotherapy in AML
406 (71). Strikingly, we consistently found an inverse correlation between the hypoxia signature and cell
407 stemness, manifested as a gradual enrichment in hypoxia signature from LSC³⁴ to differentiating NonLSC³⁴
408 and NonLSC³⁸ cells. This contrasts with earlier reports showing a higher activation of HIFs in the LSC
409 population (13). Also, studies in healthy HSCs have shown the preferentially expression of *Hif-1a* in the
410 more stem population (11) or in the more differentiated fraction (72) in BM cells of different mouse models.
411 This incongruity might be explained by the high heterogeneity of AML patients analyzed in previous studies
412 in absence of risk-stratification, the different phenotypic strategies to identify *bona fide* LSCs, or even by
413 the use of distinct murine-based LSC readouts/approaches.

414 A hypoxia risk signature with prognostic value has been proposed (73), linking high HIF expression to
415 shorter overall survival, similar to other studies (29, 72, 74). Comparison of paired Dx-REL samples enables
416 the analysis of both therapy naïve- and therapy-resistant LSCs, providing insights into their evolution within
417 the same patient. In this sense, our transcriptomic analysis revealed a patient-specific heterogeneity of both
418 LSC6 and hypoxia scores in the seven paired Dx-REL samples. The relatively low number of patients
419 included in the present study, however, does not allow us to draw clinico-biological conclusions.

420 Of note, and in line with other studies (29, 72), while LSC³⁴ showed the lowest hypoxia enrichment score
421 among the distinct analyzed clusters, it was nevertheless consistently enriched in both total AML cells and
422 LSC³⁴ cells when compared with both whole healthy BM cells and healthy CD34+ cells, regardless of the
423 cytogenetic subgroup. Moreover, therapy (AraC)-resistant blasts have been reported to bind pimonidazole,
424 an exogenous marker of hypoxia (65), encouraging us to explore the chemosensitizer role of HIFs inhibition
425 in human AML. Indeed, targeting HIF1A has been explored as a therapeutic strategy in different
426 malignancies (13, 19), and also its combination with AraC has also been tested in chronic lymphocytic
427 leukemia (75) and in JAK2V617F-positive myeloproliferative neoplasms (76). We found a reduction in the
428 LSC frequency *in vitro* when combining BAY87 and AraC. These results are in line with a previous report
429 that tested the LSC dose in AML cells treated with AraC comparing normoxia and hypoxia culture conditions
430 (77). We observed a similar chemoprotective effect of the low oxygen conditions when chemically
431 manipulating the oxygen sensing ability of the cells. We also found a significant effect of the BAY87 and
432 AraC combination *in vivo*, decreasing not only the presence of total AML cells but also of LSCs. We
433 observed an increment in the LSC frequency in the AraC group with respect to control, consistent with a
434 previous study describing an increment of CD34+ and progenitor cells after AraC treatment (60). This
435 synergistic effect *in vivo* was, however, less dramatic than that observed *in vitro*. We speculate that the BM
436 niche has a protective effect not present in the *in vitro* assays. Furthermore, optimization of the drug
437 posology will be needed to completely unlock the potential of BAY87 as chemosensitizer.

438 In sum, we provide the largest and most comprehensive single-cell expression atlas (119,000 cells) of AML
439 cells and AML-LSCs in paired Dx-REL samples from pediatric/young adult risk-stratified human AML
440 patients to date. Our data indicate that the HIF/hypoxia pathway is attenuated in AML-LSC³⁴ cells as

441 compared with differentiated AML cells but it is enhanced when compared with healthy BM cells and
442 HSPCs. Accordingly, chemical inhibition of the HIF pathway cooperates with standard-of-care
443 chemotherapy to impair leukemogenesis *in vitro* and *in vivo*, substantially eliminating AML-LSCs. These
444 findings support HIF pathway as a stem cell regulator in human AML and open new avenues for
445 combinatorial targeted and chemotherapy-based treatments to specifically eliminate AML-LSCs.

446

447 **Acknowledgments**

448 We thank Dr. Aleix Prat for technical help and Dr. Fernando Anjos-Afonso for technical discussions and
449 advices. We thank the Finnish Hematology Registry and clinical Biobank (FHRB), Instituto Aragonés de
450 Ciencias de la Salud (IACS) and the Blood Cancer UK Childhood Leukaemia Cell Bank for providing AML
451 samples. We thank CERCA/Generalitat de Catalunya and Fundació Josep Carreras-Obra Social la Caixa
452 for core support. Competitive financial support for this work was obtained from the Deutsche Josep Carreras
453 Leukämie-Stiftung (DJCLS15R/2021) to PM and TV-H. This research was also supported by the Spanish
454 Ministry of Economy and Competitiveness (SAF2016-80481R, PID2019-108160RB-I00), La Caixa Health
455 Research Program (LCF/PR/HR19/52160011), the Leo Messi Foundation, “Heroes hasta la médula”
456 initiative and ISCIII-RICORS within the Next Generation EU program (plan de recuperación, transformación
457 y resiliencia) to PM and the Health Institute Carlos III (ISCIII/FEDER, PI20/00822) to CB. TV-H was
458 supported by a Marie-Sklodowska Curie Fellowship (GA792923). JLT was supported by a Juan de la Cierva
459 postdoctoral fellowship (FJC2019-040868-I). O.M. was supported by an investigator fellowship from the
460 AECC (INVES211226MOLI).

461

462 **Author contributions**

463 TV-H conceived the study, designed and performed experiments, analyzed and interpreted data, prepared
464 figures and wrote the manuscript. JLT analyzed and interpreted scRNA-seq data, prepared figures and
465 wrote the manuscript. AC and EE analyzed and interpreted bulk RNA-seq data. MV, FG-A, OM, VRC, PP,
466 PR, RC, RDG and PL performed experiments. SB, LV and FA-J performed bioinformatic analyses. AB, HL,
467 RWS, SV, MT and JLF provided human primary samples. CB and HH supported the study technically. PM,

468 conceived the study, designed experiments, interpreted data, wrote the manuscript, and financially
469 supported the study. All authors have read and agreed to publish the manuscript.

470 **Declaration of interests**

471 PM is founder of the spin-off OneChain Immunotherapeutics which has no connection with the present
472 research. The remaining authors declare no competing interests.

473

474 **References**

475

476 1. Dohner H, Wei AH, Lowenberg B. Towards precision medicine for AML. *Nat Rev Clin Oncol.*
477 2021;18(9):577-90.

478 2. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and
479 management of AML in adults: 2017 ELN recommendations from an international expert panel. *Blood.*
480 2017;129(4):424-47.

481 3. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from
482 a primitive hematopoietic cell. *Nat Med.* 1997;3(7):730-7.

483 4. Ho TC, LaMere M, Stevens BM, Ashton JM, Myers JR, O'Dwyer KM, et al. Evolution of acute
484 myelogenous leukemia stem cell properties after treatment and progression. *Blood.* 2016;128(13):1671-8.

485 5. Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trotman-Grant A, et al. Tracing the origins of
486 relapse in acute myeloid leukaemia to stem cells. *Nature.* 2017;547(7661):104-8.

487 6. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. *Blood.*
488 2017;129(12):1577-85.

489 7. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. *Nature.*
490 2014;505(7483):327-34.

491 8. Schito L, Rey S, Konopleva M. Integration of hypoxic HIF-alpha signaling in blood cancers.
492 *Oncogene.* 2017;36(38):5331-40.

493 9. Semenza GL. Targeting HIF-1 for cancer therapy. *Nat Rev Cancer.* 2003;3(10):721-32.

494 10. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant
495 human AML stem cells home to and engraft within the bone-marrow endosteal region. *Nat Biotechnol.*
496 2007;25(11):1315-21.

497 11. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-
498 1alpha level is essential for hematopoietic stem cells. *Cell Stem Cell.* 2010;7(3):391-402.

499 12. Rouault-Pierre K, Lopez-Onieva L, Foster K, Anjos-Afonso F, Lamrissi-Garcia I, Serrano-Sanchez
500 M, et al. HIF-2alpha protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from
501 apoptosis induced by endoplasmic reticulum stress. *Cell Stem Cell.* 2013;13(5):549-63.

502 13. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1alpha eliminates cancer stem cells in
503 hematological malignancies. *Cell Stem Cell.* 2011;8(4):399-411.

504 14. Zhang H, Li H, Xi HS, Li S. HIF1alpha is required for survival maintenance of chronic myeloid
505 leukemia stem cells. *Blood.* 2012;119(11):2595-607.

506 15. Guitart AV, Subramani C, Armesilla-Diaz A, Smith G, Sepulveda C, Gezer D, et al. Hif-2alpha is
507 not essential for cell-autonomous hematopoietic stem cell maintenance. *Blood.* 2013;122(10):1741-5.

508 16. Velasco-Hernandez T, Hyrenius-Wittsten A, Rehn M, Bryder D, Cammenga J. HIF-1alpha can act
509 as a tumor suppressor gene in murine acute myeloid leukemia. *Blood.* 2014;124(24):3597-607.

510 17. Velasco-Hernandez T, Soneji S, Hidalgo I, Erlandsson E, Cammenga J, Bryder D. Hif-1alpha
511 Deletion May Lead to Adverse Treatment Effect in a Mouse Model of MLL-AF9-Driven AML. *Stem Cell*
512 *Reports.* 2019;12(1):112-21.

513 18. Velasco-Hernandez T, Tornero D, Cammenga J. Loss of HIF-1alpha accelerates murine FLT-
514 3(ITD)-induced myeloproliferative neoplasia. *Leukemia.* 2015;29(12):2366-74.

515 19. Vukovic M, Guitart AV, Sepulveda C, Villacreces A, O'Duibhir E, Panagopoulou TI, et al. Hif-1alpha
516 and Hif-2alpha synergize to suppress AML development but are dispensable for disease maintenance. *J*
517 *Exp Med.* 2015;212(13):2223-34.

518 20. Frolova O, Samudio I, Benito JM, Jacamo R, Kornblau SM, Markovic A, et al. Regulation of HIF-
519 1alpha signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone
520 marrow microenvironment. *Cancer Biol Ther.* 2012;13(10):858-70.

521 21. Bolouri H, Farrar JE, Triche T, Jr., Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of
522 pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational
523 interactions. *Nat Med.* 2018;24(1):103-12.

524 22. Lavallee VP, Gendron P, Lemieux S, D'Angelo G, Hebert J, Sauvageau G. EVI1-rearranged acute
525 myeloid leukemias are characterized by distinct molecular alterations. *Blood.* 2015;125(1):140-3.

526 23. Papaemmanuil E, Dohner H, Campbell PJ. Genomic Classification in Acute Myeloid Leukemia. *N
527 Engl J Med.* 2016;375(9):900-1.

528 24. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al. The common feature
529 of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-
530 ketoglutarate to 2-hydroxyglutarate. *Cancer Cell.* 2010;17(3):225-34.

531 25. Young RM, Simon MC. Untuning the tumor metabolic machine: HIF-alpha: pro- and
532 antitumorigenic? *Nat Med.* 2012;18(7):1024-5.

533 26. Percio S, Coltell N, Grisanti S, Bernardi R, Pattini L. A HIF-1 network reveals characteristics of
534 epithelial-mesenchymal transition in acute promyelocytic leukemia. *Genome Med.* 2014;6(12):84.

535 27. Wierenga ATJ, Cunningham A, Erdem A, Lopera NV, Brouwers-Vos AZ, Pruis M, et al. HIF1/2-
536 exerted control over glycolytic gene expression is not functionally relevant for glycolysis in human leukemic
537 stem/progenitor cells. *Cancer Metab.* 2019;7:11.

538 28. Bagger FO, Sasivarevic D, Sohi SH, Laursen LG, Pundhir S, Sonderby CK, et al. BloodSpot: a
539 database of gene expression profiles and transcriptional programs for healthy and malignant
540 hematopoiesis. *Nucleic Acids Res.* 2016;44(D1):D917-24.

541 29. Gao XN, Yan F, Lin J, Gao L, Lu XL, Wei SC, et al. AML1/ETO cooperates with HIF1alpha to
542 promote leukemogenesis through DNMT3a transactivation. *Leukemia.* 2015;29(8):1730-40.

543 30. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene
544 expression programs influence clinical outcome in human leukemia. *Nat Med.* 2011;17(9):1086-93.

545 31. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C, et al. Human acute myelogenous
546 leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice.
547 *J Clin Invest.* 2011;121(1):384-95.

548 32. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating
549 human acute myeloid leukaemia after transplantation into SCID mice. *Nature*. 1994;367(6464):645-8.

550 33. Zeisig BB, Fung TK, Zarowiecki M, Tsai CT, Luo H, Stanojevic B, et al. Functional reconstruction
551 of human AML reveals stem cell origin and vulnerability of treatment-resistant MLL-rearranged leukemia.
552 *Sci Transl Med*. 2021;13(582).

553 34. Elsayed AH, Rafiee R, Cao X, Raimondi S, Downing JR, Ribeiro R, et al. A six-gene leukemic stem
554 cell score identifies high risk pediatric acute myeloid leukemia. *Leukemia*. 2020;34(3):735-45.

555 35. Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A 17-gene stemness
556 score for rapid determination of risk in acute leukaemia. *Nature*. 2016;540(7633):433-7.

557 36. van Galen P, Hovestadt V, Wadsworth Ii MH, Hughes TK, Griffin GK, Battaglia S, et al. Single-Cell
558 RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. *Cell*.
559 2019;176(6):1265-81 e24.

560 37. Triana S, Vonficht D, Jopp-Saile L, Raffel S, Lutz R, Leonce D, et al. Single-cell proteo-genomic
561 reference maps of the hematopoietic system enable the purification and massive profiling of precisely
562 defined cell states. *Nat Immunol*. 2021;22(12):1577-89.

563 38. Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA. Association of a leukemic stem cell gene
564 expression signature with clinical outcomes in acute myeloid leukemia. *JAMA*. 2010;304(24):2706-15.

565 39. Garg S, Reyes-Palomares A, He L, Bergeron A, Lavallee VP, Lemieux S, et al. Hepatic leukemia
566 factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML. *Blood*.
567 2019;134(3):263-76.

568 40. Herrmann H, Sadovnik I, Eisenwort G, Rulicke T, Blatt K, Herndlhofer S, et al. Delineation of target
569 expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML. *Blood*
570 *Adv*. 2020;4(20):5118-32.

571 41. Ho JM, Dobson SM, Voisin V, McLeod J, Kennedy JA, Mitchell A, et al. CD200 expression marks
572 leukemia stem cells in human AML. *Blood Adv*. 2020;4(21):5402-13.

573 42. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, et al. BCL-2 inhibition
574 targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. *Cell*
575 *Stem Cell*. 2013;12(3):329-41.

576 43. Pabst C, Bergeron A, Lavallee VP, Yeh J, Gendron P, Nordahl GL, et al. GPR56 identifies primary
577 human acute myeloid leukemia cells with high repopulating potential *in vivo*. *Blood*. 2016;127(16):2018-27.

578 44. Vetrici D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical
579 prospects in CML and AML. *Nat Rev Cancer*. 2020;20(3):158-73.

580 45. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el AD, Tadmor MD, et al. Data-Driven
581 Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. *Cell*.
582 2015;162(1):184-97.

583 46. Regev A, Li B, Kowalczyk MS, Dionne D, Tickle T, Lee J, et al. The Census of Immune Cells.
584 BioStudies 2020;S-SUBS12(Retrieved from <https://www.ebi.ac.uk/biostudies/studies/S-SUBS12>).

585 47. Bakker AB, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA, et al. C-type lectin-
586 like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. *Cancer Res*.
587 2004;64(22):8443-50.

588 48. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, et al.
589 Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. *Cell*. 2017;169(5):807-
590 23 e19.

591 49. Fukushima T, Tanaka Y, Hamey FK, Chang CH, Oki T, Asada S, et al. Discrimination of Dormant
592 and Active Hematopoietic Stem Cells by G0 Marker Reveals Dormancy Regulation by Cytoplasmic
593 Calcium. *Cell Rep*. 2019;29(12):4144-58 e7.

594 50. Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, Jankovic M, et al. Clonal
595 analysis of lineage fate in native haematopoiesis. *Nature*. 2018;553(7687):212-6.

596 51. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, et al. Hematopoietic
597 stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. *Cell*.
598 2008;135(6):1118-29.

599 52. Kaufmann KB, Zeng AGX, Coyaud E, Garcia-Prat L, Papalex E, Murison A, et al. A latent subset
600 of human hematopoietic stem cells resists regenerative stress to preserve stemness. *Nat Immunol*.
601 2021;22(6):723-34.

602 53. Sriskanthadevan S, Jeyaraju DV, Chung TE, Prabha S, Xu W, Skrtic M, et al. AML cells have low
603 spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress.
604 Blood. 2015;125(13):2120-30.

605 54. Liang R, Arif T, Kalmykova S, Kasianov A, Lin M, Menon V, et al. Restraining Lysosomal Activity
606 Preserves Hematopoietic Stem Cell Quiescence and Potency. Cell Stem Cell. 2020;26(3):359-76 e7.

607 55. Bajaj J, Hamilton M, Shima Y, Chambers K, Spinler K, Van Nostrand EL, et al. An in vivo genome-
608 wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia.
609 Nat Cancer. 2020;1(4):410-22.

610 56. Stevens BM, Khan N, D'Alessandro A, Nemkov T, Winters A, Jones CL, et al. Characterization and
611 targeting of malignant stem cells in patients with advanced myelodysplastic syndromes. Nat Commun.
612 2018;9(1):3694.

613 57. Wu J, Xiao Y, Sun J, Sun H, Chen H, Zhu Y, et al. A single-cell survey of cellular hierarchy in acute
614 myeloid leukemia. J Hematol Oncol. 2020;13(1):128.

615 58. Jones CL, Inguva A, Jordan CT. Targeting Energy Metabolism in Cancer Stem Cells: Progress and
616 Challenges in Leukemia and Solid Tumors. Cell Stem Cell. 2021;28(3):378-93.

617 59. Jones CL, Stevens BM, D'Alessandro A, Reisz JA, Culp-Hill R, Nemkov T, et al. Inhibition of Amino
618 Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Cancer Cell. 2018;34(5):724-40 e4.

619 60. Boyd AL, Aslostovar L, Reid J, Ye W, Tanasijevic B, Porras DP, et al. Identification of
620 Chemotherapy-Induced Leukemic-Regenerating Cells Reveals a Transient Vulnerability of Human AML
621 Recurrence. Cancer Cell. 2018;34(3):483-98 e5.

622 61. Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, Sone A, et al. Induction of cell
623 cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol.
624 2010;28(3):275-80.

625 62. Rouault-Pierre K, Hamilton A, Bonnet D. Effect of hypoxia-inducible factors in normal and leukemic
626 stem cell regulation and their potential therapeutic impact. Expert Opin Biol Ther. 2016;16(4):463-76.

627 63. Schito L, Semenza GL. Hypoxia-Inducible Factors: Master Regulators of Cancer Progression.
628 Trends Cancer. 2016;2(12):758-70.

629 64. Ellinghaus P, Heisler I, Unterschemmann K, Haerter M, Beck H, Greschat S, et al. BAY 87-2243,
630 a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by
631 inhibition of mitochondrial complex I. *Cancer Med.* 2013;2(5):611-24.

632 65. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-Resistant Human
633 Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative
634 Metabolism. *Cancer Discov.* 2017;7(7):716-35.

635 66. Almotiri A, Alzahrani H, Menendez-Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, et al. Zeb1
636 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. *J Clin Invest.*
637 2021;131(1).

638 67. Paczulla AM, Dirnhofer S, Konantz M, Medinger M, Salih HR, Rothfelder K, et al. Long-term
639 observation reveals high-frequency engraftment of human acute myeloid leukemia in immunodeficient
640 mice. *Haematologica.* 2017;102(5):854-64.

641 68. Liliemark JO, Gahrton G, Paul CY, Peterson CO. ara-C in plasma and ara-CTP in leukemic cells
642 after subcutaneous injection and continuous intravenous infusion of ara-C in patients with acute
643 nonlymphoblastic leukemia. *Semin Oncol.* 1987;14(2 Suppl 1):167-71.

644 69. Polleyea DA, Jordan CT. Therapeutic targeting of acute myeloid leukemia stem cells. *Blood.*
645 2017;129(12):1627-35.

646 70. Stetson LC, Balasubramanian D, Ribeiro SP, Stefan T, Gupta K, Xu X, et al. Single cell RNA
647 sequencing of AML initiating cells reveals RNA-based evolution during disease progression. *Leukemia.*
648 2021;35(10):2799-812.

649 71. van Dijk AD, Hoff FW, Qiu Y, Gerbing RB, Gamis AS, Aplenc R, et al. Bortezomib is significantly
650 beneficial for de novo pediatric AML patients with low phosphorylation of the NF-kappaB subunit RelA.
651 *Proteomics Clin Appl.* 2021:e2100072.

652 72. Forristal CE, Brown AL, Helwani FM, Winkler IG, Nowlan B, Barbier V, et al. Hypoxia inducible
653 factor (HIF)-2alpha accelerates disease progression in mouse models of leukemia and lymphoma but is
654 not a poor prognosis factor in human AML. *Leukemia.* 2015;29(10):2075-85.

655 73. Jiang F, Mao Y, Lu B, Zhou G, Wang J. A hypoxia risk signature for the tumor immune
656 microenvironment evaluation and prognosis prediction in acute myeloid leukemia. *Sci Rep.*
657 2021;11(1):14657.

658 74. Deeb G, Vaughan MM, McInnis I, Ford LA, Sait SN, Starostik P, et al. Hypoxia-inducible factor-
659 1alpha protein expression is associated with poor survival in normal karyotype adult acute myeloid
660 leukemia. *Leuk Res.* 2011;35(5):579-84.

661 75. Griggio V, Vitale C, Todaro M, Riganti C, Kopecka J, Salvetti C, et al. HIF-1alpha is over-expressed
662 in leukemic cells from TP53-disrupted patients and is a promising therapeutic target in chronic lymphocytic
663 leukemia. *Haematologica.* 2020;105(4):1042-54.

664 76. Baumeister J, Chatain N, Hubrich A, Maie T, Costa IG, Denecke B, et al. Hypoxia-inducible factor
665 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms. *Leukemia.*
666 2020;34(4):1062-74.

667 77. Griessinger E, Anjos-Afonso F, Pizzitola I, Rouault-Pierre K, Vargaftig J, Taussig D, et al. A niche-
668 like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a
669 new tool to decipher their chemoresistance and self-renewal mechanisms. *Stem Cells Transl Med.*
670 2014;3(4):520-9.

671

672

673

674

675

676

677

678

679

680

681

682

683 **Figure legends**

684 **Figure 1. HIF pathway gene expression signature in different AML cytogenetic subgroups.**

685 **A.** MDS representation of AML samples from TARGET (78 patient samples and 147 runs) and Leucegene
686 (72 patient samples and 301 runs) databases analyzing the expression of all the detected genes (left
687 panels) or, specifically, the 119 HIF target genes (right panels).

688 **B.** Expression (LogCPM) of *HIF1A* and *HIF2A* (*EPAS1*) in each cytogenetic AML subgroup from TARGET
689 and Leucegene.

690 **C.** GSEA of the HIF pathway comparing inv(16) and t(8;21) with MLLr AMLs.

691 CPM: counts per million; ES: enrichment score; NES: Normalized enrichment score.

692

693 **Figure 2. Enrichment and identification of the LSC compartment in the scRNA-seq dataset.**

694 **A.** Overview of the primary AML samples used for the scRNA-seq analysis. The distinct cytogenetic
695 subgroups are color-coded. The colored area of the pie-charts depicts the percentage of blasts. Paired-
696 relapsed samples are depicted with a second pie-chart at the time of relapse. Further information of each
697 sample can be found on **Table S3**.

698 **B.** Mutational profile of the analyzed samples.

699 **C.** Scheme depicting the different steps from sample sourcing to scRNA-seq analysis.

700 **D.** Representative FACS profile depicting how the CD34+CD38- and CD34-CD38+ AML cells were FACS-
701 purified for scRNA-seq. The specific FACS profiles of each AML sample can be found in **Figure S1**.

702 **E.** UMAP plots showing the expression of CD34 and CD38 among all cells integrated from different samples
703 in each cytogenetic subgroup.

704 **F.** UMAP plot showing the random clusterization of the cells from the sample AML01 and boxplot of the
705 LSC6 score (Elsayed *et al*) of each cluster for the identification of the LSC-enriched cluster. Dotted line
706 marks the 9th decile.

707 **G.** UMAP plots depicting the LSC6 score assigned to each cell. All cells from the different samples in each
708 cytogenetic subgroup are integrated. Red square marks the LSC6-enriched area.

709 **H.** Number of cells from each predicted phenotype according to Van Galen *et al*, included in each cluster
710 identified in sample AML01.

711 **I-J.** UMAP plots showing the predicted phenotype of the cells according to Van Galen *et al* (**I**), and the
712 assigned population (LSC³⁴, NonLSC³⁴ and NonLSC³⁸) (**J**) for downstream analysis. All cells from the
713 different samples in each cytogenetic subgroup are integrated.

714 **K.** LSC6 (Elsayed *et al*) score of each of the defined populations (LSC³⁴, NonLSC³⁴ and NonLSC³⁸).

715 **L.** Trajectory/Pseudotime analysis of the defined populations from the different cytogenetic subgroups.

716 **M.** Expression of the LSC signatures described by Gentles *et al* and Eppert *et al* in each of the defined
717 populations for the different cytogenetic subgroups.

718 HSC: hematopoietic stem cell; Prog: progenitor; GMP: granulocyte-macrophage progenitor; ProMono:
719 promonocyte; Mono: monocyte; cDC: conventional dendritic cells; pDC: plasmacytoid dendritic cells; Ery:
720 erythroid progenitor; ProB; B cell progenitor; B: mature B cell; Plasma: plasma cell; T: naïve T cell; CTL:
721 cytotoxic T lymphocyte; NK: natural killer cell; LSC: leukemic stem cell; log2FC: log2 fold change.

722

723 **Figure 3. Cell cycle and metabolic characterization of the LSC³⁴ cluster.**

724 **A.** UMAP plots showing the cell cycle phases prediction for each cell. Cells from all the different samples
725 in each cytogenetic subgroup are integrated.

726 **B.** Quiescence status analysis of the defined populations from the different cytogenetic subgroups using
727 the GO signature *Neg G0 to G1* (GO:0070317) and the dormancy signature G_0M^{high} described in Fukushima
728 *et al.*

729 **C.** Analysis of different metabolic pathways related to stemness and hypoxia (Glycolysis, OXPHOS, ROS,
730 Lysosomes, ER stress and Translation) for the defined populations from the different cytogenetic
731 subgroups.

732 **D.** GSEA showing the enriched biological pathways in the indicated populations of cells. For inv(16) and
733 t(8;21) AMLs, LSC³⁴ cells are compared with NonLSC³⁸ cells. For MLLr AML, LSC³⁴ cells are compared
734 with NonLSC³⁴ cells. Complementary analyses are shown in **Figure S3**.

735 **E.** Volcano plots showing the DEGs between LSC³⁴ and NonLSC³⁴ cells of each cytogenetic subgroup.
736 Plots in the right show the total number of upregulated genes in each population.

737

738

739 **Figure 4. Low expression of hypoxia signaling signature in human AML-LSCs.**

740 **A.** UMAP plots showing expression of the hypoxia signature in all cells integrated from the different samples
741 in each cytogenetic subgroup.

742 **B.** Hypoxia signature score in each of the defined populations from the different cytogenetic subgroups.

743 **C.** UMAP plots showing expression of the *HIF1A* gene in all cells integrated from the different samples in
744 each cytogenetic subgroup.

745 **D.** Hypoxia signature score of each of the defined clusters comparing the hypoxia signature used in this
746 study with 5 hypoxia signatures previously reported.

747 **E.** Hypoxia expression signature comparing each AML cytogenetic subgroup with healthy total BM cells
748 (upper plot) or healthy HSCs/LSCs (bottom plot).

749 **F.** Expression of the 119 genes from the hypoxia signature in each of the defined clusters.

750 **G.** Violin plots showing the expression of the significantly overexpressed genes of the hypoxia signaling
751 pathway in the LSC³⁴ cluster in each cytogenetic AML subgroup.

752

753 **Figure 5. REL-LSC³⁴ cluster reveals patient-specific differential molecular features.**

754 **A.** UMAP plots integrating patient-matched AML cells at Dx and REL (top plots), showing the identified
755 LSC³⁴ cluster at Dx and REL (middle plots) and showing the predicted phenotype according to Van Galen
756 *et al* (bottom plots). One pair from each cytogenetic subgroup is shown. Additional paired-samples are
757 analyzed in **Figure S5A-B**.

758 **B.** LSC6 score (top plots) and hypoxia signature score (bottom plots) of the defined clusters at Dx and REL
759 for each AML cytogenetic subgroup.

760 **C-D.** Clustered representation of the variation of the LSC6 and hypoxia (**C**) and metabolic pathways (**D**)
761 signature scores in the LSC³⁴ population in the 7 Dx-REL pairs.

762 **E.** Score of indicated metabolic pathways related to stemness and hypoxia in the defined clusters at Dx
763 and REL for each AML cytogenetic subgroup.

764 **F.** HIF target genes differentially expressed in the LSC³⁴ population at Dx *versus* REL in each pair from the
765 indicated patients. Additional paired-samples are analysed in **Figure S5G**.

766 **G.** Comparison of the DEGs in the LSC³⁴ population of each paired sample in each cytogenetic subgroup.
767 For inv(16) and t(8;21) AMLs, plots compare 2 AML Dx-REL pairs (AML07 and AML10 for inv(16); AML08
768 and AML09 for t(8;21)). For MLLr AMLs, plot compares 3 AML Dx-REL pairs (AML04, AML06 and AML11).
769 Blue and red dots depict genes with similar or different, respectively, expression in paired Dx *versus* REL
770 samples.

771 **H.** Reactome showing biological pathways enriched in REL-LSC³⁴ cells compared to Dx-LSC³⁴ cells.
772 HSC: hematopoietic stem cell; Prog: progenitor; GMP: granulocyte-macrophage progenitor; ProMono:
773 promonocyte; Mono: monocyte; cDC: conventional dendritic cells; pDC: plasmacytoid dendritic cells; Ery:
774 erythroid progenitor; ProB; B cell progenitor; B: mature B cell; Plasma: plasma cell; T: naïve T cell; CTL:
775 cytotoxic T lymphocyte; NK: natural killer cell; LSC: leukemic stem cell; log2FC: log2 fold change.
776

777 **Figure 6. Inhibition of HIF pathway sensitizes AML-LSCs to chemotherapy *in vitro*.**

778 **A.** CFU-assays from AML cell lines treated during 48 h with the indicated drugs at 5% O₂. Results shown
779 from one representative experiment (n=3 technical replicates).

780 **B.** Expression by qPCR of the indicated HIF target genes after 48 h treatment with the indicated drugs at
781 5% O₂ (n=3 independent experiments). Expression is normalized respect to the BAY87 samples

782 **C.** Experimental overview for D-I. Human AML primary cells were cultured over MS5 cells for 4 days and
783 treated afterwards with the indicated drugs for 48 h at 5% O₂. At the completion of the treatment, cells were
784 used for gene expression, flow cytometry or LTC-IC assays (n=15 wells/ treatment and AML sample).

785 **D.** Estimation of the LSC frequency at the completion of the LTC-IC assay calculated using the ELDA
786 software.

787 **E.** Impact of the indicated treatment on the LSC frequency for all the analyzed samples (n=6). Statistical
788 significance was calculated using the Ratio paired Students't test. *P*-values are indicated for AraC-combo
789 groups comparison.

790 **F.** Expression of the indicated HIF target genes identified in the scRNA-seq analysis to be overexpressed
791 in the LSC cluster after 48 h treatment with the indicated drugs at 5% O₂ (n=6 samples, AML03, AML16-
792 AML20, 2 per cytogenetic group). Statistical significance was calculated using the paired Students' t test.
793 Expression is normalized respect to the BAY87 samples.

794 **G-I.** Apoptosis quantification with Annexin V staining (**G**), cell cycle analysis by FACS (**H**) and ROS content
795 measured using CellROX staining (**I**), in AML cells treated with the indicated drugs for 48 h at 5% O₂ (n=6
796 samples, AML03, AML16-AML20).

797 Data are shown as mean \pm SEM. * $P<0.1$, ** $P<0.01$.

798

799 **Figure 7. Inhibition of HIF pathway sensitizes AML-LSCs to chemotherapy *in vivo*.**

800 **A.** Scheme of the experimental design. Human AML-engrafted mice were treated with the indicated drugs
801 for 5 days. After completion of the treatment, organs were collected and analyzed by FACS. Cells from the
802 BM were used for *ex vivo* CFU assays and secondary transplantations.

803 **B.** Representative human engraftment in BM before treatment (n=6 mice/group) (n=3 independent
804 experiments).

805 **C.** Representative total live BM cells (mouse and human) in mice after each indicated treatment (n=6/group)
806 (n=3 independent experiments).

807 **D.** Representative human myeloid engraftment in the indicated organs after treatment completion
808 (n=6/group) (n=3 independent experiments).

809 **E.** *Ex vivo* clonogenic capacity of BM cells retrieved from mice treated as indicated (n=6/group). The left
810 plot shows the number of colonies per 50,000 plated cells. The right plot, shows the total number of cells
811 collected from each CFU plate. FISH analysis confirmed the leukemic MLL-AF9 identity of these cells.
812 Percentages at the top of the FISH image indicate the percentage of MLLr+ cells detected in each indicated
813 treatment (n=200 counted cells). Scale bar = 10 μ m.

814 **F.** Scheme of the experimental design for secondary transplants. BM cells from treated primary mice were
815 intratibially transplanted into secondary recipients at specific doses. Human engraftment was periodically
816 monitored by PB and BM analysis.

817 **G.** LSC estimation in secondary recipients using ELDA software. Mice were considered leukemic when
818 presenting >0.1% human cells in BM (n=3 mice/dose and group).

819 **H.** Human engraftment in BM at the end of the experiment for AraC- and combo-treated mice.

820 **I.** Expression of the indicated HIF target genes identified in the scRNA-seq analysis to be overexpressed
821 in the LSC³⁴ cluster, in BM cells of mice treated with the indicated drugs (n=5-6 mice/group).

822 WBC: white blood cells; RBC: red blood cells; BM: bone marrow; PB: peripheral blood; d: day.

823 Data are shown as mean \pm SEM. * $P < 0.05$; ** $P < 0.01$; Students' t test analysis.

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850 **Online Materials and Methods**

851

852 **Analysis of public bulk-RNA-seq data**

853 RNA-seq data from the publicly available databases TARGET (21), including a total of 78 patients in 147
854 RNA-seq runs, and Leucegene (22, 43), including a total of 72 patients in 302 RNA-seq runs, were
855 downloaded for analysis. AML samples from specific cytogenetic subgroups without mutations in *TET2*,
856 *IDH1* and *IDH2* were selected. **Table S1** summarizes the main clinico-biological features of the analyzed
857 samples and the RNA-seq ID numbers. A total of 119 HIF target genes characterized by hypoxia-dependent
858 transcriptional induction and the presence of functional hypoxia response elements were used to define the
859 hypoxia transcriptomic signature (26) (**Table S2**).

860 Pre-processing and sample alignments: All samples were processed with the same pipeline and FastQC
861 (78) was used for quality control and confirmation of the sequencing data from the FASTQ files. FASTQ
862 files SRA for TARGET samples were extracted using the SRAToolKit (v 2.9.0) (<https://github.com/ncbi/sra-tools>).

864 Gene expression quantification: Illumina paired-end RNA-seq reads were aligned to the Gencode
865 transcriptome release 27 (GRCH38.p10) (79) using Salmon (v0.7.2) (80). Quantification at gene level was
866 performed using pseudo counts from Salmon quantification and transformation to counts per gene using
867 *tximport* library function from Bioconductor (81).

868 Differential expression analysis: The following AML cytogenetic subgroups were included in the study: NK,
869 inv(16), MLLr, t(8;21), *FLT3^{ITD}* and *NPM1^{mut}*. The read counts per gene were transformed to log2 counts
870 per million (logCPM) using edgeR (82) and those genes with mean logCPM < 0 were filtered out.
871 Normalization of the data was performed using the TMM method from edgeR package. Differential
872 expression analysis was performed with LIMMA (83) using the function limma.voom adjusted by SVA (84).

873 Functional enrichment analysis: GSEA was conducted (85) based on the hypoxia transcriptomic signature
874 described above, using the pre-ranked enrichment method, sorting all the genes by $-\log_{10}(p\text{-value})$ ·
875 $\log_2 FC$ obtained from the differential expression analysis.

876

877

878 **Primary AML cells**

879 Primary AML samples were obtained from accredited Biobanks (Finnish Hematology Registry and clinical
880 Biobank (FHRB), Instituto Aragonés de Ciencias de la Salud (IACS) and the Blood Cancer UK Childhood
881 Leukaemia Cell Bank) and from collaborating hospitals (Hospital Clinic of Barcelona, Barcelona, Spain;
882 Hospital Princess Maxima, Utrecht, The Netherlands; Hospital Germans Trias i Pujol, Badalona, Spain;
883 Hospital Sant Joan de Deu, Barcelona, Spain; and Hôpital d'enfants Armand Trousseau, Paris, France).
884 Samples were obtained from routine diagnostic procedures after written consent from patients or
885 parents/guardians in case of minors. The study was approved by the Institutional Ethical Review Board of
886 Hospital Clinic of Barcelona (HCB/2018/0020). AML mononuclear cells were frozen until use in liquid
887 nitrogen using fetal bovine serum (FBS) (Sigma) with 10% dimethylsulfoxide (Sigma). The mutational state
888 of AML samples was analyzed on DNA extracted from total cells using the Maxwell RSC Blood DNA Kit
889 (Promega) and a next generation sequencing (NGS) panel of mutations using the Oncomine Myeloid
890 Research Assay (ThermoFisher). **Table S3** lists the main clinico-biological features of the AML samples
891 used in this study.

892 **Single-cell RNA sequencing**

893 Sample preparation: Frozen BM AML cells were thawed and stained (30 min at 4°C) in PBS + 2% FBS with
894 the following antibodies: anti-hCD45-BV510 (HI30), anti-hCD33-BV421 (WM53), anti-hCD34-APC (581)
895 and anti-hCD38-FITC (HIT2) (all from BD Biosciences). Cells were washed with PBS, filtered through a 40-
896 µm strainer and stained with 7AAD (1:100, BD Pharmingen) for 5 min before sorting in FACS Aria-II Fusion
897 cell sorter (BD Bioscience) using a 100-µm nozzle. A minimum of 20,000 cells of each CD34+CD38- (LSC-
898 enriched population) and CD34-CD38+ (LSC-depleted population) sample were collected in PBS + 2%
899 FBS for downstream applications.

900 Library preparation and sequencing: The cell number and viability of the CD34+CD38- and CD34-CD38+
901 samples were verified with a TC20™ Automated Cell Counter (BioRad Laboratories) and cells were
902 partitioned into Gel Bead-In-Emulsions using the Chromium Controller system (10X Genomics), with a
903 target recovery of 5,000 total cells of each population. cDNA sequencing libraries were prepared using the
904 Next GEM Single Cell 3' Reagent Kit v3.1 (10X Genomics, PN-1000268). Briefly, after GEM-RT clean up,
905 cDNA was amplified during 12 cycles and cDNA QC and quantification were performed on an Agilent

906 Bioanalyzer High Sensitivity chip (Agilent Technologies). cDNA libraries were indexed by PCR using the
907 PN-220103 Chromiumi7 Sample Index Plate. Size distribution and concentration of 3' cDNA libraries were
908 verified on an Agilent Bioanalyzer High Sensitivity chip (Agilent Technologies). Finally, sequencing of cDNA
909 libraries was done on the Illumina NovaSeq 6000 platform using the following sequencing conditions: 28
910 bp (Read 1) + 8 bp (i7 index) + 0 bp (i5 index) + 89 bp (Read 2), to obtain approximately 25-30,000 reads
911 per cell.

912 scRNA-seq data analysis: Reads were aligned to the Hg38 *Homo sapiens* reference genome and quantified
913 through CellRanger Single-Cell Software Suite (v3.1.0). Each sample was analyzed individually prior to
914 data integration. Low-quality cells were filtered out based on mitochondrial RNA percentage, number of
915 unique molecular identifiers (UMIs), and number of different genes (thresholds adjusted separately for each
916 data set). The CD34+CD38- and CD34-CD38+ libraries were merged for each sample before applying
917 usual processing following Seurat tutorials (highly variable genes calculation, log-normalization, scaling and
918 correction by number of UMIs and mitochondrial content). Seurat v4.0.1 was used (86) for R 3.6.1. Principal
919 component analysis (PCA) was performed with a number of principal components ranged between 10 and
920 20, depending on data set complexity. Dimensionality reduction was performed by applying Uniform
921 Manifold Approximation and Projection (UMAP) algorithm.

922 The selection of LSC clusters was done independently on each sample. We assigned an LSC6 score for
923 each cell using the six gene signature and weights proposed in Elsayed *et al*, 2020 (34). Due to the sparse
924 nature of the single-cell data, rather than selecting the cells with highest LSC6 score, we elected to cluster
925 the data in an unsupervised manner using the Louvain clustering algorithm with resolution values ranging
926 from 0.5 to 1, and rank the obtained partitions according to their average LSC6 score. Those clusters above
927 LSC6 decile 9 were determined as the more likely to be enriched on LSCs. If more than one cluster was
928 selected under these criteria, the proportions of *in-silico* predictions obtained from VanGalen *et al*, 2019
929 (36) and Triana *et al*, 2021 (37) were used. The cluster with the highest enrichment of HSC-like predicted
930 cells was finally determined as the most likely to be enriched on LSCs. Cell cycle phases identification was
931 performed based on previously defined markers (87). Scripts and plots generated on each sample are
932 available in Github (<https://github.com/JLTrincado/scAML>).

933 In-silico prediction of cell types: Some studies have reported phenotypic heterogeneity in human BM. We
934 leveraged these annotated datasets to predict the healthy cell type closest to our leukemic clusters. The
935 annotated healthy BM datasets from Van Galen *et al* (36) was merged and projected onto each sample
936 using FindTransferAnchors and TransferData methods from Seurat (86). Code for reference assembly and
937 projection is available at Github (<https://github.com/JLTrincado/scAML>). For projecting the data onto
938 healthy BM data from Triana *et al* (37), a workflow based on scmap (88) was used. Sample code for
939 reference atlas projection is available at https://git.embl.de/triana/hrn//tree/master/Projection_Vignette.

940 Integration by cytogenetic-molecular subgroup: Seurat canonical correlation analysis (CCA, number of
941 anchors set to 2,000) was applied to correct the patient-specific bias introduced by the pooled
942 transcriptomic information from all sequenced samples (86). Individual clusters identified in each sample to
943 be enriched in LSCs, were labeled in the integrated datasets as “LSC³⁴”. All the remaining cells non-labeled
944 as “LSC³⁴” within the CD34+CD38- population were labeled as “NonLSC³⁴”. All CD34-CD38+ cells were
945 labeled as “NonLSC³⁸”.

946 Pathway scores and pseudotime trajectories: Different gene sets reported in the literature to be associated
947 with LSC-enriched pathways (**Table S2**) were used to biologically inspect each annotated cluster.
948 AddModuleScore from Seurat suite was used to assign a score to each cell for each gene set (86). Resulting
949 values were normalized between 0 and 1. Trajectory analyses were performed with the Monocle package
950 (v2.18.0) (89). The highly variable genes obtained for the integration of the data via Seurat were used for
951 pseudotime ordering. Dimensionality reduction was applied with the DDRTree option.

952

953 **Cell lines**

954 THP-1, Kasumi-1, ME-1 and MS5 cell lines were purchased from the DSMZ German Collection of
955 Microorganisms and Cell Cultures (Braunschweig, Germany). THP-1, Kasumi-1 and ME-1 were cultured in
956 RPMI-1640 supplemented with GlutaMAX (Gibco), 10% FBS (20% for ME-1) and penicillin-streptomycin
957 (P/S) (Gibco) at 37°C with 5% CO₂. MS5 cells were cultured in αMEM (Gibco) with 10% FBS and P/S. MS5
958 cells were irradiated (50 Gy) and seeded on collagen (StemCell Technologies)-coated plates as monolayers
959 for co-culture with primary AML cells. Cells were passaged every 2-3 days and maintained in an exponential
960 growth phase. All cultures were routinely tested for mycoplasma.

961 **Xenotransplantation**

962 Eight- to twelve-week-old non-obese diabetic (NOD).Cg-*Prkdc*^{scid}/*Il2rg*^{tm1Wjl}/*SzJ* (NSG) mice (The Jackson
963 Laboratory) were bred and housed under pathogen-free conditions. The Animal Care Committee of the
964 Barcelona Biomedical Research Park approved all experimental procedures with mice (HRH-17-0014 and
965 HRH-19-0003). A total of $0.3\text{--}1 \times 10^6$ primary AML cells were intra-BM transplanted into sublethally
966 irradiated (2 Gy) NSG mice (90). AML cells were previously incubated 30 min at 4°C with OKT3 (BioXCell).
967 Human engraftment was monitored through PB and BM aspirates from week six after transplantation until
968 AML graft levels were ~20% in BM or ~2% in PB. Mice were then homogeneously divided into the following
969 treatment groups (n=5-6/group): (i) AraC (and carrier solution), (ii) BAY 87-2243 (and PBS), (iii) AraC and
970 BAY 87-2243, and (iv) control (PBS and carrier solution). Cytarabine/AraC (50 mg/Kg, Accord) was
971 administered intraperitoneally for 5 days (60, 65). BAY 87-2243 (4 mg/Kg, Selleckchem) was administered
972 for 5 days by oral gavage (64). Mice were sacrificed 48-72 h after treatment completion and PB, BM, spleen
973 and liver were collected to analyze the efficacy of each treatment. White and red blood cell and platelet
974 counts were determined with a hemocytometer (2800VET V-Sight, Menarini Diagnostics). To assess the
975 frequency of AML-LSCs, BM-derived mononuclear cells were collected from primografts (two different mice
976 with similar human engraftment per treatment group) and were intra-BM transplanted into irradiated (2 Gy)
977 secondary NSG recipients (n=5/group/cell dose) and were analyzed as above.

978

979 **Immunophenotyping and cell cycle, apoptosis and CellROX analyses**

980 Immunophenotyping: AML engraftment in mice was monitored by FACS analysis, biweekly in PB and at
981 sacrifice in PB, BM, spleen and liver. PB was collected into EDTA tubes (Sarstedt). Mononuclear cells were
982 stained (30 min at 4°C) with the following monoclonal antibodies: anti-hHLA-ABC-FITC (G46-2.6), anti-
983 hCD45-APC (HI30), anti-hCD33-PE (WM53), anti-hCD34-PECy7 (8G12) and anti-hCD19-BV421 (HIB19)
984 (all from BD Biosciences). Cells were then lysed and fixed with the BD FACST™ Lysing solution (BD
985 Biosciences). Fluorescence Minus One (FMO) controls were used to set the FACS gates. A FACSCanto™-
986 II flow cytometer and equipped with FACSDiva™ software was used for analysis (BD Biosciences).

987

988 Cell cycle analysis: Cells were stained with anti-hCD45-BV510 and anti-hCD33-BV421 for 30 min at 4°C.
989 After washing, cells were fixed with 0.4% paraformaldehyde (Alfa Aesar) for 30 min at room temperature
990 (RT), then lysed with 0.2% TritonX (Sigma) for 1 h at 4°C, washed, stained with anti-Ki67-PE (1:20, BD
991 Biosciences) for 2 h at 4°C and finally stained with 7AAD (BD Bioscience) for an additional one hour. Cells
992 were analyzed using a FACSCanto™-II flow cytometer and equipped with FACSDiva™ software.

993

994 Apoptosis: Cells were washed with Binding Buffer 1X (BD Pharmingen) and stained with anti-hCD33-
995 BV421, anti-hCD45-BV510, anti-hCD34-APC and anti-hCD38-FITC for 30 min at 4°C. Cells were then
996 washed with Binding Buffer 1X and stained with AnnexinV-PE (BD Biosciences) and 7AAD for 15 min at
997 RT. Cells were analyzed within an hour using a FACSCanto™-II flow cytometer and equipped with
998 FACSDiva™ software.

999

1000 CellROX: For ROS content analysis, cells were stained with anti-hCD33-BV421, anti-hCD45-BV510, anti-
1001 hCD34-PE (581), anti-hCD38-FITC and with CellROX Deep Red Reagent (1:500, ThermoFisher) for 30
1002 min at 37°C. Cells were washed 3 times with PBS and analyzed using a FACSCanto™-II flow cytometer
1003 and equipped with FACSDiva™ software.

1004

1005 **Clonogenicity and LTC-IC assays**

1006 The clonogenic capacity of leukemic progenitors was evaluated in CFU assays. AML cells (500-50,000
1007 cells/well) were seeded in semisolid methylcellulose media (MethoCult #H4434; StemCell Technologies)
1008 according to manufacturer's instructions. Triplicates of each sample/primograft were seeded. CFU numbers
1009 from primograft AML cells were normalized to the total human engraftment of each particular donor mouse.

1010 LTC-ICs assays were conducted to evaluate the LSC frequency after *in vitro* treatment with drugs (33, 77).

1011 In brief, primary AML BM samples were thawed and seeded on confluent MS5 monolayers on MyeloCult
1012 H5100 (StemCell Technologies) supplemented with human IL3 (Miltenyi Biotec), human G-CSF (Amgen)
1013 and human TPO (PeproTech) at 20 ng/mL each and 1X P/S (Gibco). Cells were allowed to recover for 48
1014 h and were then treated with the corresponding drugs and maintained for 48 h at 5% O₂ (hypoxic
1015 conditions). After drug treatment, AML-MS5 co-cultures were harvested and MS5 cells and T cells were

1016 magnetically depleted by AutoMACs (Miltenyi Biotec) using anti-murine Sca1 and anti-human CD3
1017 magnetic beads (Miltenyi Biotec). Recovered cells were counted and different doses (2,000, 1,000, 500
1018 and 250 cells) were seeded each in 15 wells of a 96-well plate pre-coated with MS5 cells in supplemented
1019 MyeloCult media and allowed to expand in 20% O₂ (normoxic conditions) with media changes twice weekly.
1020 After 5 weeks, wells were score as positive if massive growth of cells were observed in the well (33). LSC
1021 dose was determined using ELDA software (91). The identity of the AML cells was confirmed by detection
1022 of the molecular alteration by FISH or qPCR in some of the positive wells.

1023 **Fluorescence *in situ* hybridization (FISH)**

1024 Cells were resuspended in hypotonic solution (0.075 mM KCl) for 20 min at 37°C and fixed in cold
1025 methanol:acetic acid (3:1). Samples were spread onto methanol-cleaned slides and kept at -20°C until
1026 processing. Two-color FISH experiments were performed using either XL CBFB, XL t(8;21) (both from
1027 MetaSystems) or LSI MLL Break-Apart (Abbott Molecular) probes to detect inv(16), t(8;21) or MLL
1028 rearrangements, respectively. FISH was performed following standard procedures (90, 92, 93). Briefly, cells
1029 were denatured at 73°C in 70% formamide in 2×SSC for 2 min. Hybridization was carried out by adding 5
1030 µl of the DNA probe mixture to preparations and incubating the slides in a humid chamber at 37°C for 16
1031 h. Post-hybridization washes were performed in 0.4×SSC with 0.3% NP-40 at 73°C followed by 2×SSC
1032 with 0.1% NP-40 at RT, for 1 min each. Slides were mounted with DAPI II solution (Abbott Molecular).
1033 Analyses were performed using a Nikon Ci-S/Ci-L epifluorescence microscope equipped with specific filters
1034 for DAPI, FITC, Cy3 and a dual-band pass filter for FITC and Cy3. A minimum of 200 informative nuclei
1035 were analyzed per experiment.

1036

1037 **RNA purification and gene expression profiling**

1038 RNA was extracted from a pellet of 0.5-1 x 10⁶ cells using a Maxwell RSC simply RNA Cells Kit (Promega)
1039 on a Maxwell RSC system (Promega). Between 0.2-2 µg of RNA were reverse-transcribed into cDNA using
1040 the SuperScript III Reverse Transcriptase (Invitrogen) following manufacturer's instructions. cDNA samples
1041 were used as templates for real-time PCR analysis using SYBR Green Mastermix (Invitrogen) on a BIORAD
1042 CFXTM Real-Time system (Bio-Rad). Oligonucleotides used are detailed in **Table S4**. Gene expression
1043 was normalized with respect to the expression to the housekeeping gene *GUSB*.

1044 **Drugs**

1045 AraC and BAY 87-2243 were purchased from Accord and Selleckchem, respectively. AraC was used at 3
1046 μM *in vitro* and at 50 mg/kg/body weight *in vivo*, administered intraperitoneally daily for 5 days, as described
1047 (65). Control animals were treated with the same volume of PBS. BAY 87-2243 was used at a final
1048 concentration of 10 mM *in vitro*, previously dissolved in ethanol (Scharlau). Control cells were treated with
1049 same amount of ethanol. For *in vivo* experiments, BAY 87-2243 was dissolved in carrier solution (10%
1050 ethanol, 40% solutol HS15 (Sigma), 50% sterile distilled water) and administered orally by gavage (4
1051 mg/kg/body weight) daily for 5 days, as previously described (64). Control animals were treated with the
1052 carrier solution.

1053

1054 **Statistical analysis**

1055 Data are represented as mean \pm standard error (SEM). Statistical comparisons between groups were
1056 assessed using two-tailed unpaired Student's t-tests, or paired Student's t-tests (when analysing data from
1057 same AML samples subjected to different treatments), unless otherwise stated. Data distribution was
1058 assumed to normal but this was not formally tested. All analyses were performed with Prism software,
1059 version 8.0 (GraphPad software Inc., San Diego, CA) and $P<0.05$ was considered statistically significant
1060 ($*P<0.05$ and $**P<0.01$).

1061

1062 **Data and code availability**

1063 Newly generated scRNA-seq data have been deposited on the European Genome-Phenome Archive
1064 (EGA) and are accessible through accession no. EGAS00001005980. All analyses and code used along
1065 this study are available at <https://github.com/JLTrincado/scAML>. All other supporting data/reagents are
1066 available upon reasonable request.

1067

1068

1069

1070

1071

1072

1073 **Supplemental References**

1074

1075 78. Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham
1076 Bioinformatics, Babraham Institute, Cambridge, United Kingdom; 2010.

1077 79. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE
1078 reference annotation for the human and mouse genomes. *Nucleic Acids Res.* 2019;47(D1):D766-D73.

1079 80. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware
1080 quantification of transcript expression. *Nat Methods.* 2017;14(4):417-9.

1081 81. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates
1082 improve gene-level inferences. *F1000Res.* 2015;4:1521.

1083 82. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression
1084 analysis of digital gene expression data. *Bioinformatics.* 2010;26(1):139-40.

1085 83. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression
1086 analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.* 2015;43(7):e47.

1087 84. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects
1088 and other unwanted variation in high-throughput experiments. *Bioinformatics.* 2012;28(6):882-3.

1089 85. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
1090 enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc
1091 Natl Acad Sci U S A.* 2005;102(43):15545-50.

1092 86. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al. Comprehensive
1093 Integration of Single-Cell Data. *Cell.* 2019;177(7):1888-902 e21.

1094 87. Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A, Haas BJ, et al. Single-cell RNA-seq reveals
1095 changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. *Genome Res.*
1096 2015;25(12):1860-72.

1097 88. Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data sets.
1098 *Nat Methods.* 2018;15(5):359-62.

1099 89. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and
1100 regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. *Nat Biotechnol.*
1101 2014;32(4):381-6.

1102 90. Diaz de la Guardia R, Velasco-Hernandez T, Gutierrez-Aguera F, Roca-Ho H, Molina O, Nombela-
1103 Arrieta C, et al. Engraftment characterization of risk-stratified AML patients in NSGS mice. *Blood Adv.* 2021.

1104 91. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched
1105 populations in stem cell and other assays. *J Immunol Methods.* 2009;347(1-2):70-8.

1106 92. Molina O, Vinyoles M, Granada I, Roca-Ho H, Gutierrez-Aguera F, Valledor L, et al. Impaired
1107 condensin complex and Aurora B kinase underlie mitotic and chromosomal defects in hyperdiploid B-cell
1108 ALL. *Blood.* 2020;136(3):313-27.

1109 93. Molina O, Anton E, Vidal F, Blanco J. Sperm rates of 7q11.23, 15q11q13 and 22q11.2 deletions
1110 and duplications: a FISH approach. *Hum Genet.* 2011;129(1):35-44.

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127 **Supplemental Figures.**

1128

1129 **Figure S1. FACS analysis and sorting strategy for each AML sample used in this study (related to**
1130 **Figure 2).**

1131 **A.** FACS plots showing the expression of CD45, CD33, CD34 and CD38 of each Dx and REL AML samples.
1132 **B.** Stepwise gating strategy used for FACS sorting of the CD34+CD38- and CD34-CD38+ AML
1133 subpopulations.

1134

1135 **Figure S2. Single cell transcriptomic characterization of the sequenced AML cells (related to Figure**
1136 **3).**

1137 **A.** UMAP plots showing from which sorted population (CD34+CD38- or CD34-CD38+) each cell belongs
1138 integrating the samples from each cytogenetic subgroup.

1139 **B.** UMAP plots showing the predicted phenotype of the cells according to Triana *et al* for all the cells
1140 integrated from the different samples in each cytogenetic subgroup.

1141 **C.** Number of cells from each predicted phenotype according to Triana *et al* included in each cluster of
1142 sample AML01.

1143 **D.** UMAP plot showing the expression of *HBB* in the integrated inv(16) AMLs.

1144 **E-F.** Trajectory/Pseudotime analysis of the cells included in each of the defined phenotypes according to
1145 Van Galen *et al* (**E**) and Triana *et al* (**F**).

1146 **G.** Comparative relative expression of established stem cell markers in the different defined populations of
1147 AML cells.

1148 **H.** Expression of the AML markers *CLEC12A* and *JUND* in the different AML cytogenetic subgroups
1149 compared with healthy BM cells.

1150 **I.** Expression of the indicated genes in the different AML cytogenetic subgroups compared with healthy BM
1151 cells. Overexpression of *SPARC*; *RUNX1T1* and *POU4F1*; and *HOXA9*, *HOXA10* and *PBX3* is well-
1152 reported for inv(16), t(8;21) and MLLr AMLs, respectively.

1153 LSC: leukemic stem cell; HSC: hematopoietic stem cell; Prog: progenitor; GMP: granulocyte-macrophage
1154 progenitor; ProMono: promonocyte; Mono: monocyte; cDC: conventional dendritic cells; pDC: plasmacytoid

1155 dendritic cells; Ery: erythroid progenitor; ProB; B cell progenitor; B: mature B cell; Plasma: plasma cell; T:
1156 naïve T cell; CTL: cytotoxic T lymphocyte; NK: natural killer cell; Mk: megakaryocyte ; LMPPs: lymphoid
1157 primed multipotent progenitor; MPPs: multipotent progenitor; Eo-Ba-Ma Prog: eosinophil-basophil-mast cell
1158 progenitor.

1159

1160 **Figure S3. Differential gene expression analysis in the defined AML clusters (related to Figure 3).**

1161 **A.** Heatmaps of the DEGs of each of the defined clusters in the 3 cytogenetic groups.
1162 **B.** GSEA showing the enriched pathways in the different defined clusters of AML cells. For inv(16) and
1163 t(8;21) AMLs comparison is shown between NonLSC³⁴ and NonLSC³⁸ clusters. For MLLr AMLs,
1164 comparison is made between LSC³⁴ and NonLSC³⁸ clusters.

1165

1166 **Figure S4. Upregulated genes in the LSC³⁴ cluster (related to Figure 3).**

1167 **A.** Venn diagram showing the number of significantly upregulated genes in the LSC³⁴ cluster in the different
1168 cytogenetic AML subgroups. The number of upregulated genes shared by LSC³⁴ cluster of distinct
1169 cytogenetic subgroups is also shown.
1170 **B.** Expression of the shared 10 genes specifically upregulated in the LSC³⁴ clusters of the 3 distinct
1171 cytogenetic subgroups.

1172

1173 **Figure S5. Single cell transcriptomics on paired Dx-REL samples (related to Figure 5).**

1174 **A.** UMAP plots integrating Dx and REL AML cells from the indicated patients (top plots) and showing the
1175 identified LSC³⁴ cluster at Dx and REL (bottom plots).
1176 **B.** UMAP plots showing the predicted phenotype according to Van Galen *et al* in the Dx and REL integrated
1177 AML cells from the indicated patients.
1178 **C-D.** LSC6 (**C**) and hypoxia (**D**) signature scores of the defined clusters in Dx and REL AML cells from the
1179 indicated patients/cytogenetic subgroups.
1180 **E.** Analysis of different metabolic pathways related to stemness and hypoxia in the defined clusters in Dx
1181 and REL AML cells from the indicated patients/cytogenetic subgroups.

1182 **F.** Genes commonly upregulated in the LSC³⁴ clusters at both Dx and REL. In purple, genes included in the
1183 LSC6 score; in green, hypoxia target genes.

1184 **G.** Hypoxia target genes differentially expressed between Dx and REL in the indicated paired samples.

1185 HSC: hematopoietic stem cell; Prog: progenitor; GMP: granulocyte-macrophage progenitor; ProMono:
1186 promonocyte; Mono: monocyte; cDC: conventional dendritic cells; pDC: plasmacytoid dendritic cells; Ery:
1187 erytroid progenitor; ProB; B cell progenitor; B: mature B cell; Plasma: plasma cell; T: naïve T cell; CTL:
1188 cytotoxic T lymphocyte; NK: natural killer cell; LSC: leukemic stem cell; log2FC: log2 fold change.

1189

1190 **Figure S6. Inhibition of HIF pathway sensitizes AML-LSCs to chemotherapy (related to Figure 6).**

1191 **A.** Detailed estimation of the LSC frequency at the completion of the LTC-IC assay with the ELDA software
1192 showing the complete results and differences among the AraC- and combo-treated cultures.

1193 **B.** Expression of the indicated HIF target genes (identified in the scRNA-seq analysis to be overexpressed
1194 in the LSC³⁴ cluster) after 48 h of the indicated treatments at 5% O₂ (n=6 samples, AML03, AML16-AML21).
1195 Statistical significance was calculated using the paired Students' t test. Expression is normalized respect
1196 to the BAY87 samples.

1197 **C.** FISH analysis of the AML cells after 48 h treatment at 5% O₂. Data indicate the percentage of cells
1198 harboring the AML-specific rearrangements inv(16), t(8;21) and MLLr. n=200 counted cells. Scale bar =
1199 10μm.

1200 **D.** qPCR analysis of the treated AML cells, confirming the expression of the gene rearrangement transcript.

1201

1202 **Figure S7. Inhibition of HIF pathway sensitizes AML-LSCs to chemotherapy *in vivo* (related to Figure
1203 7).**

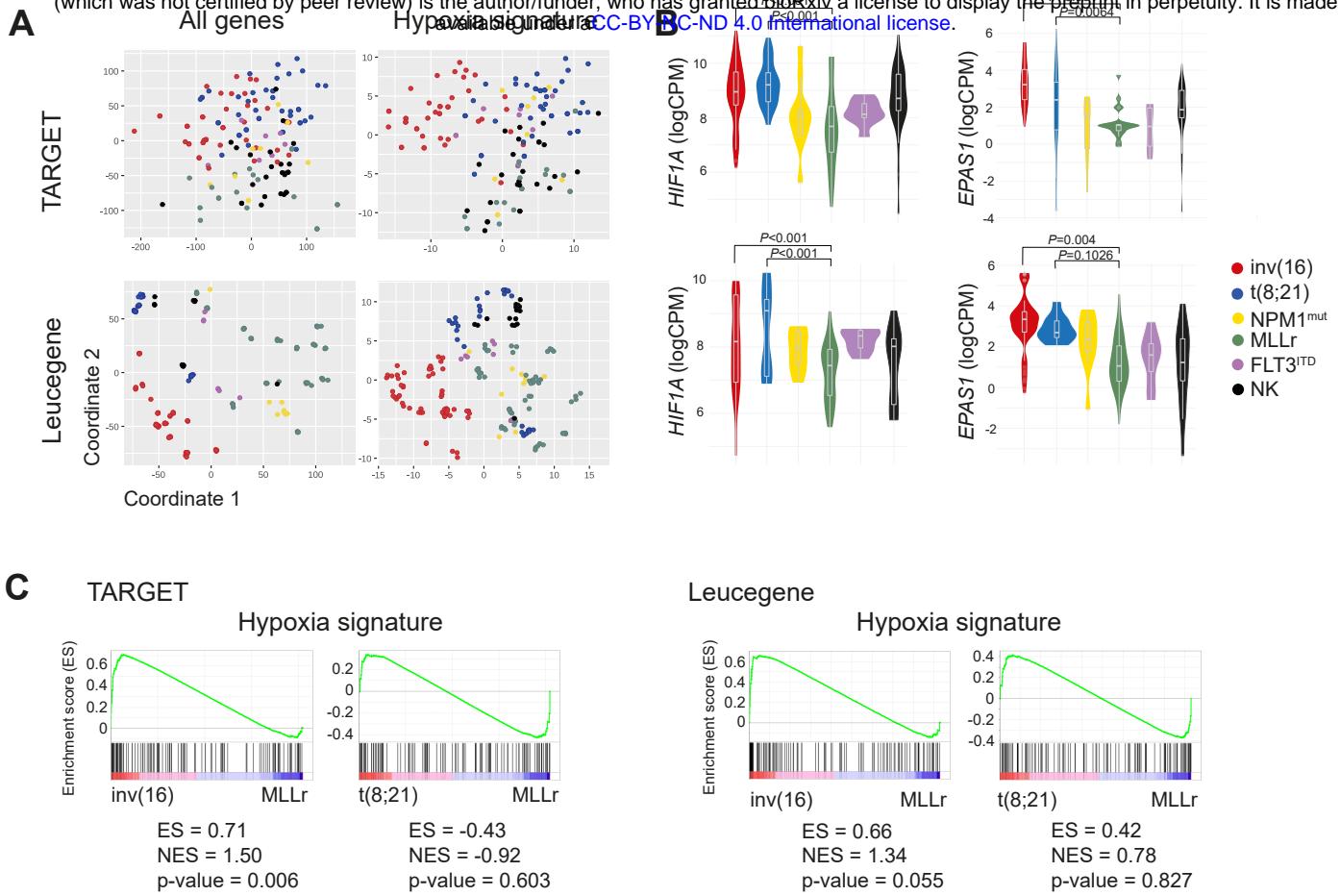
1204 **A.** WBC, RBC and PLT counts in PB of mice treated as indicated (n=6/group). Representative data from
1205 one experiment (n=3).

1206 **B.** Total (mouse and human) BM live cells evaluated by trypan blue exclusion, in mice treated as indicated
1207 (n=6/group).

1208 **C.** Representative FACS plots of BM cells after completion of the treatment. Human myeloid (AML)
1209 engraftment was identified as hHLA-ABC+ hCD45+ hCD33+ hCD19-.

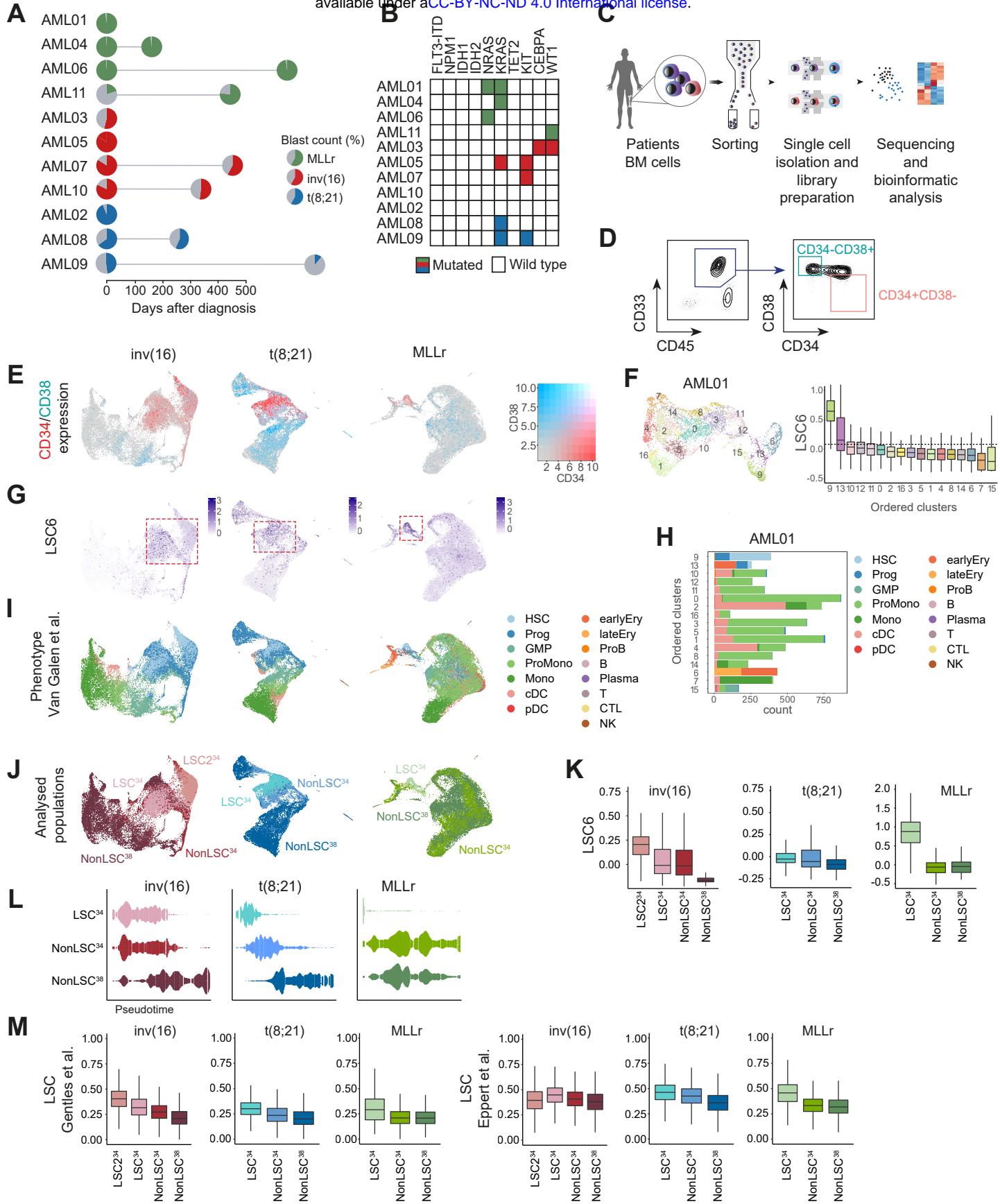
1210 **D. Detailed estimation using the ELDA software of the LSC frequency (sample AML21) at the completion**
1211 **of the secondary transplants, reflecting the decrease of LSC dose in combo-treated AML xenografts.**

1212

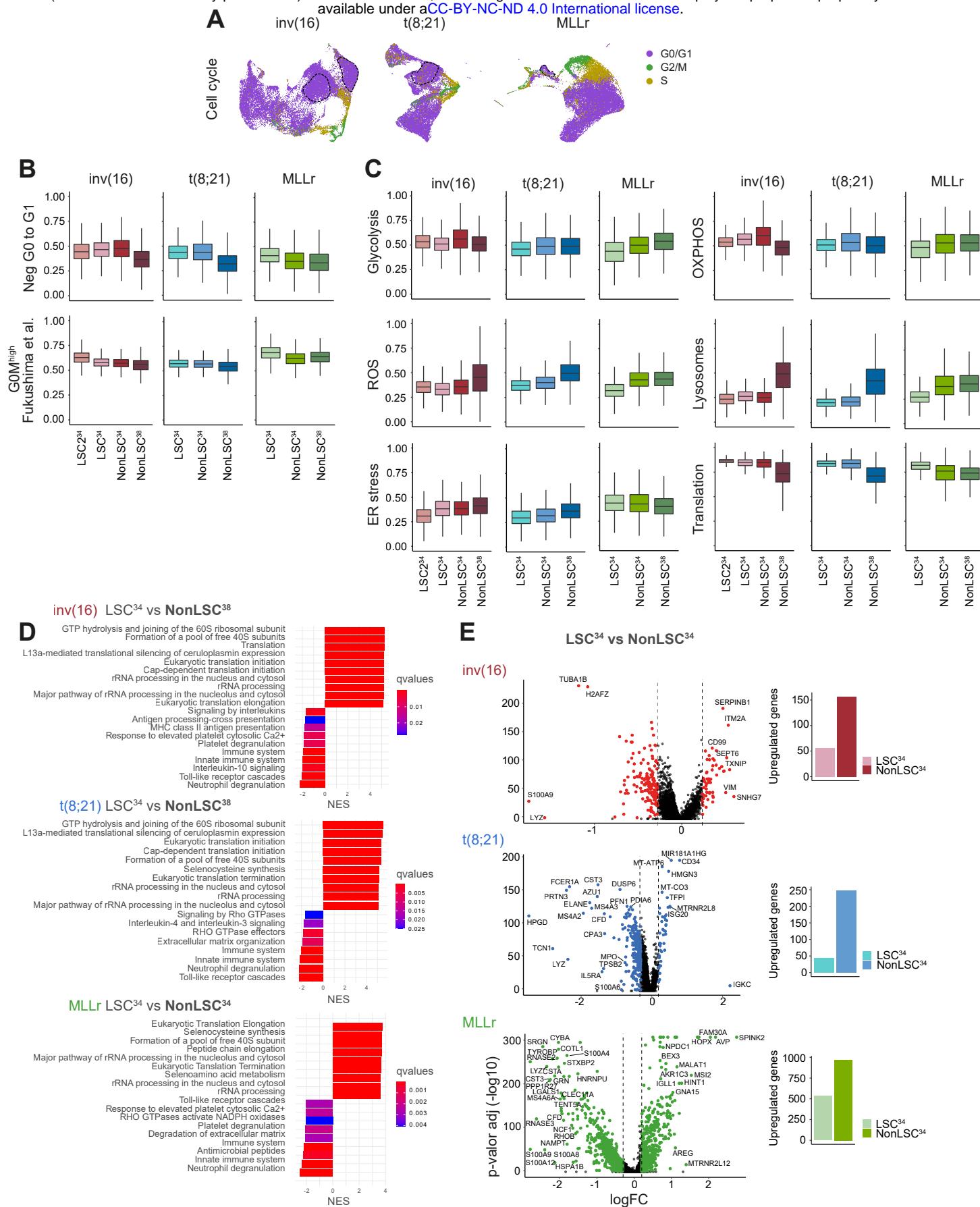

1213 **Table S1. TARGET and Leucegene samples analyzed by bulk RNA-seq (related to Figure 1).**

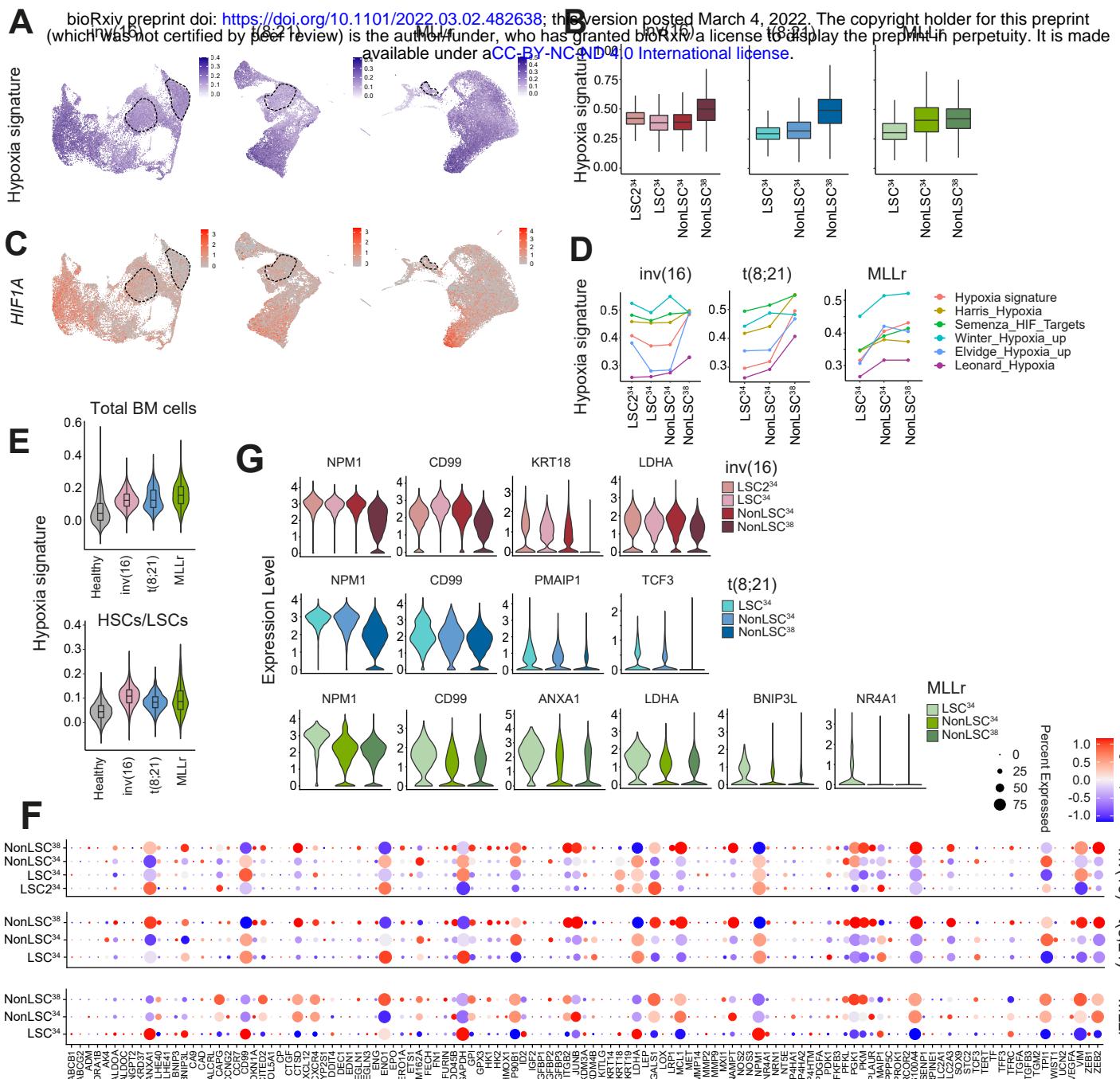
1214 **Table S2. Gene signatures (related to Figures 1-5).**

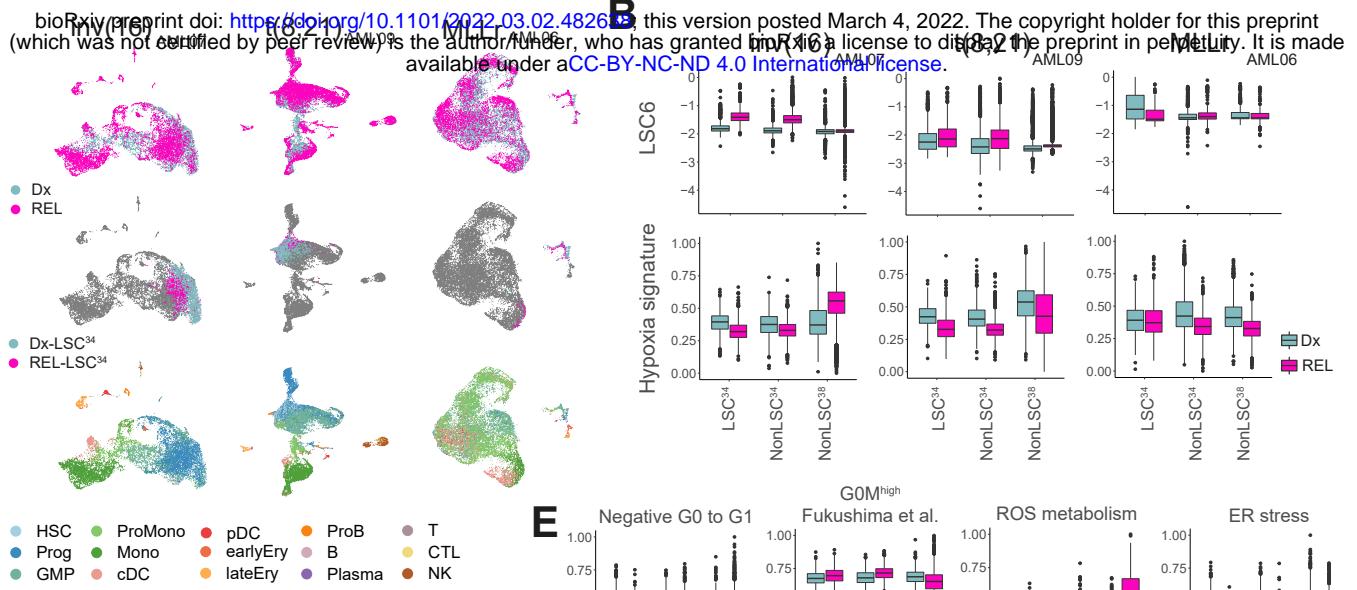
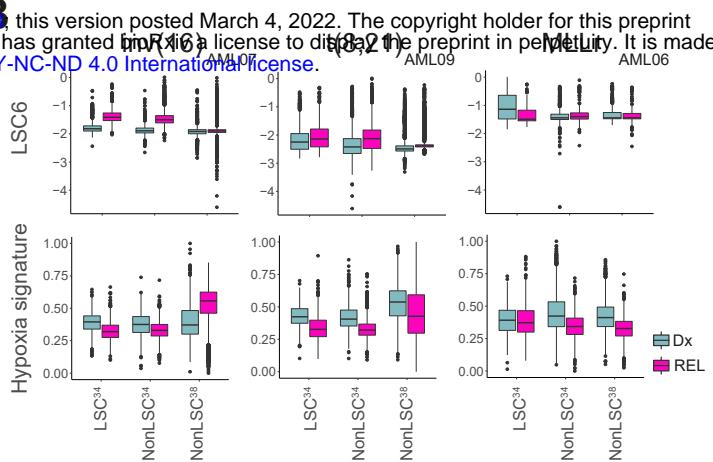
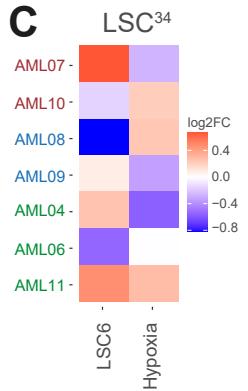
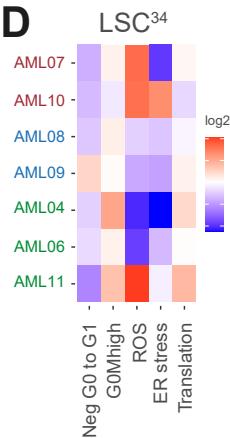
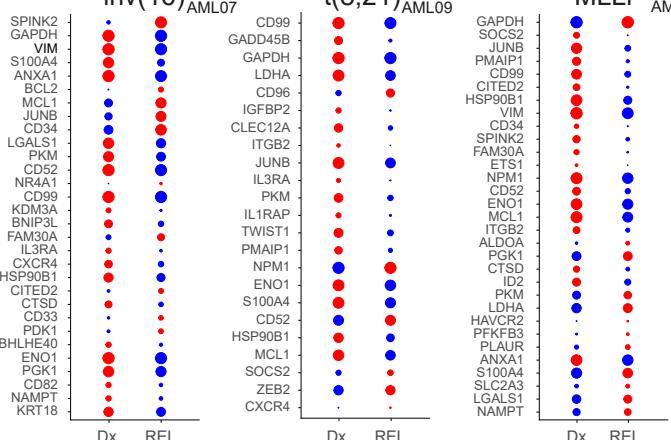
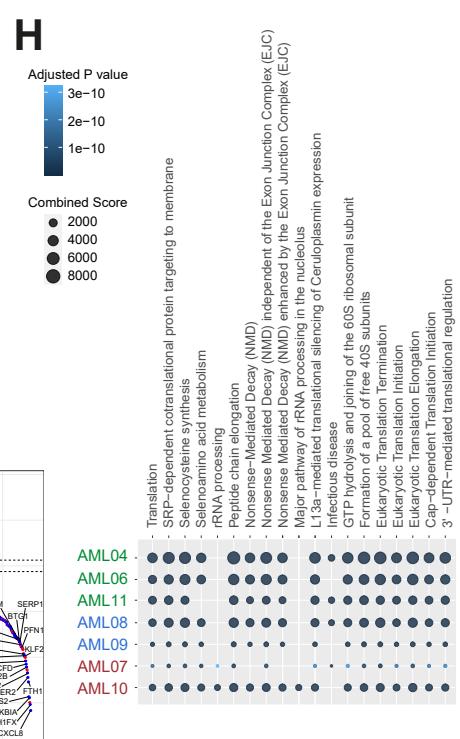
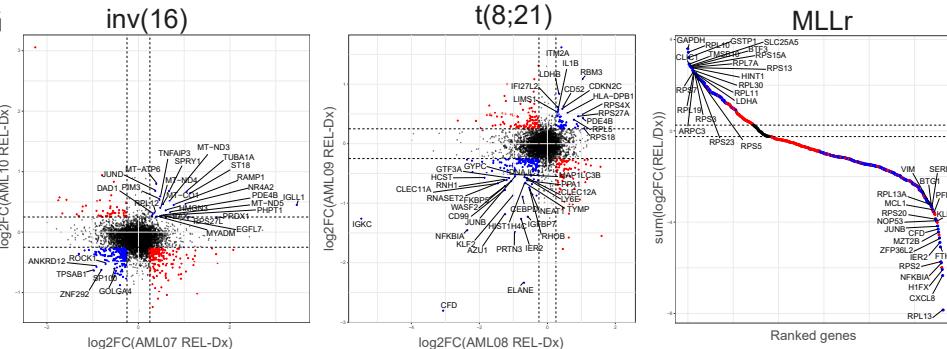
1215 **Table S3. Primary AML samples used in this study (related to Figures 2-7).**

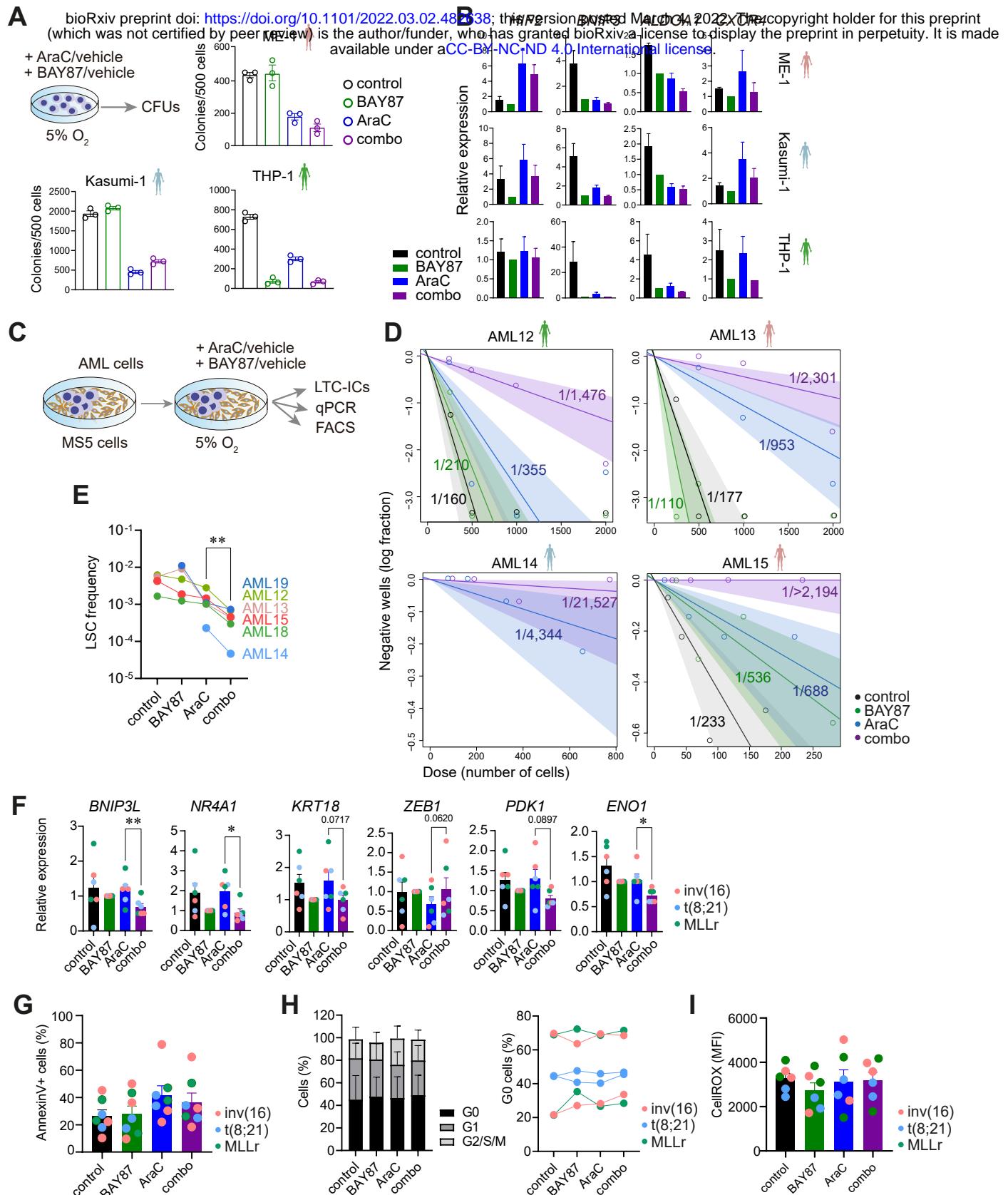

1216 **Table S4. Primers used for qPCR (related to Figures 6-7).**

bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.02.482638>; this version posted March 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

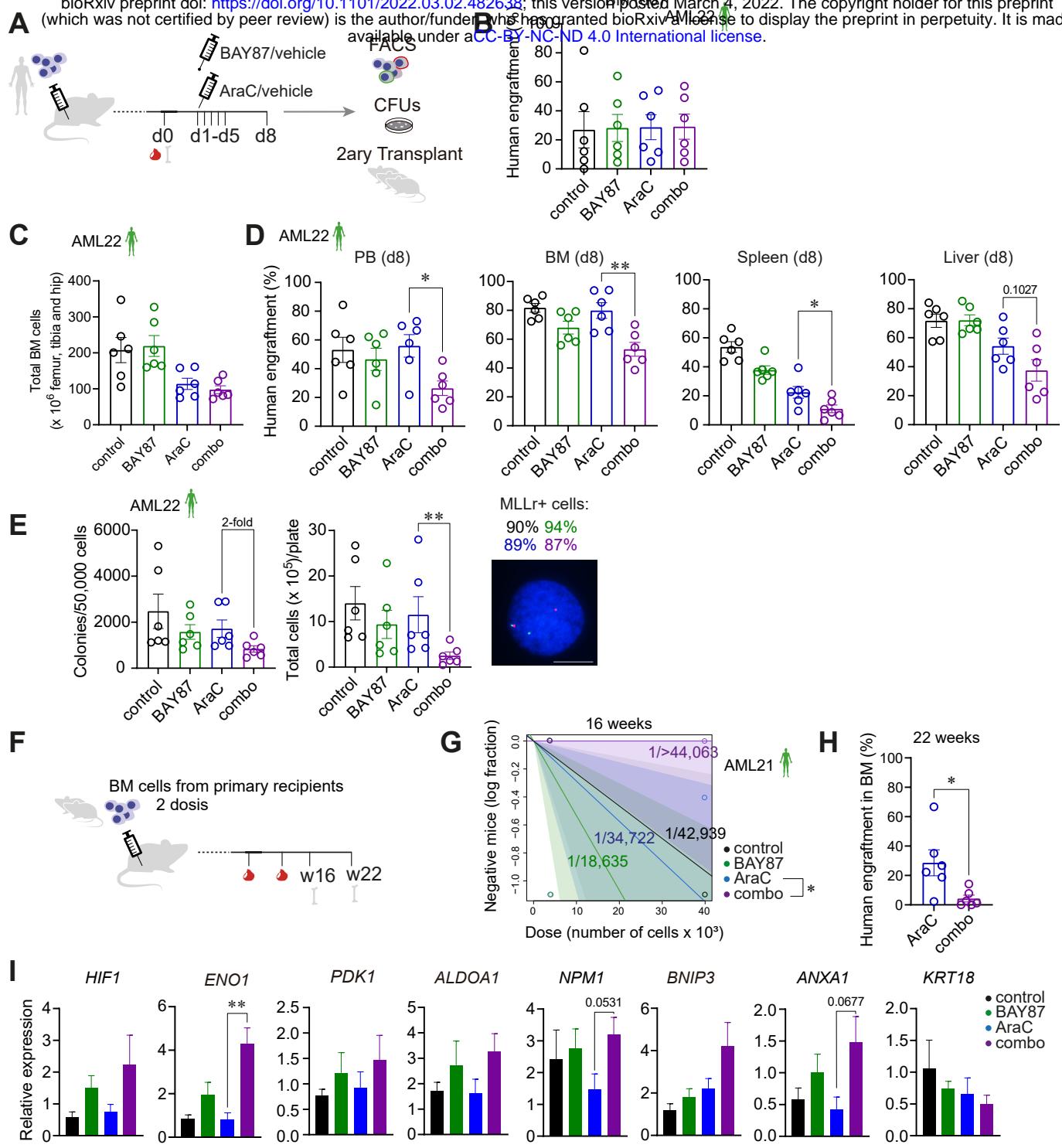

Velasco-Hernandez et al. Figure 2

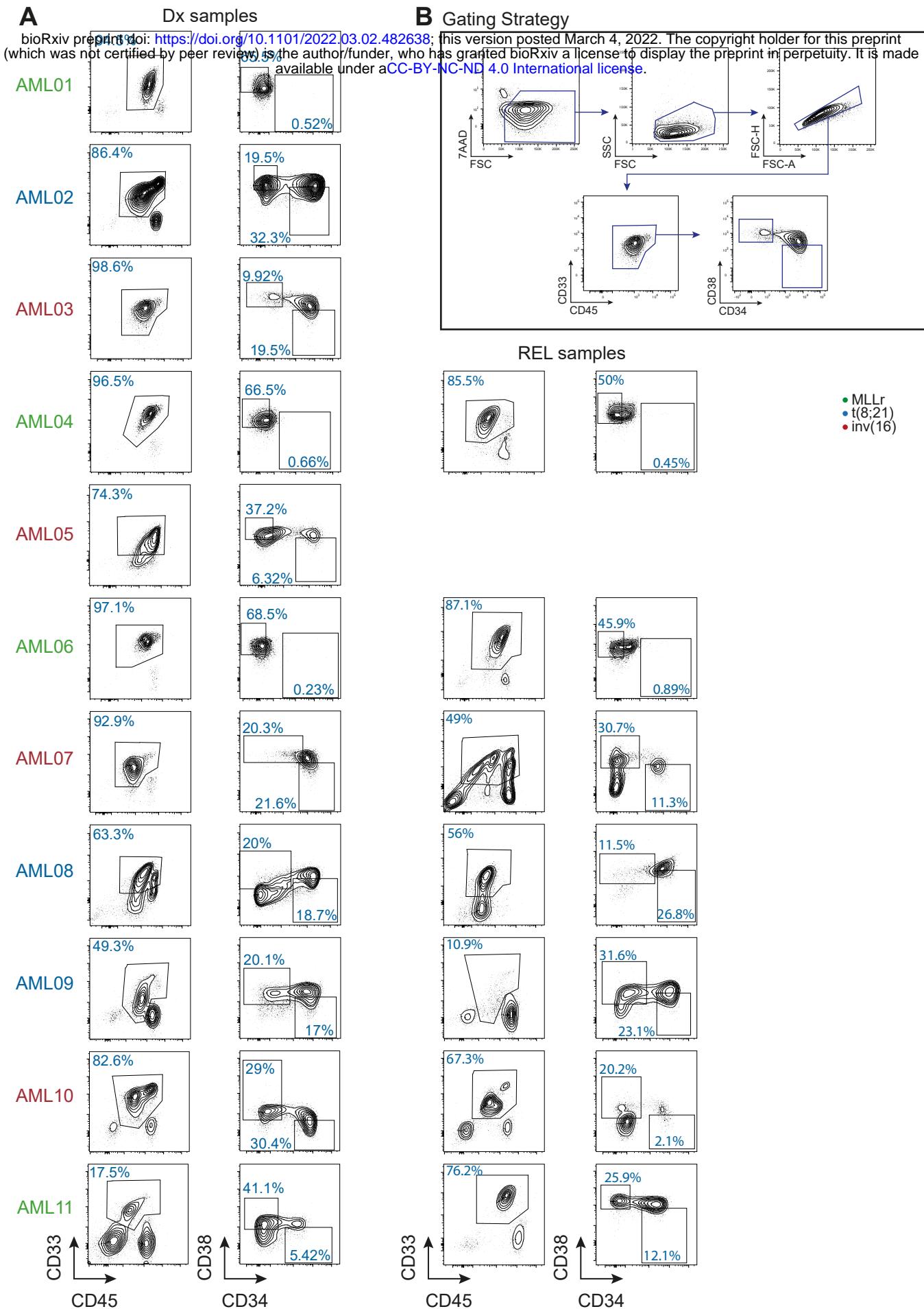

bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.02.482638>; this version posted March 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

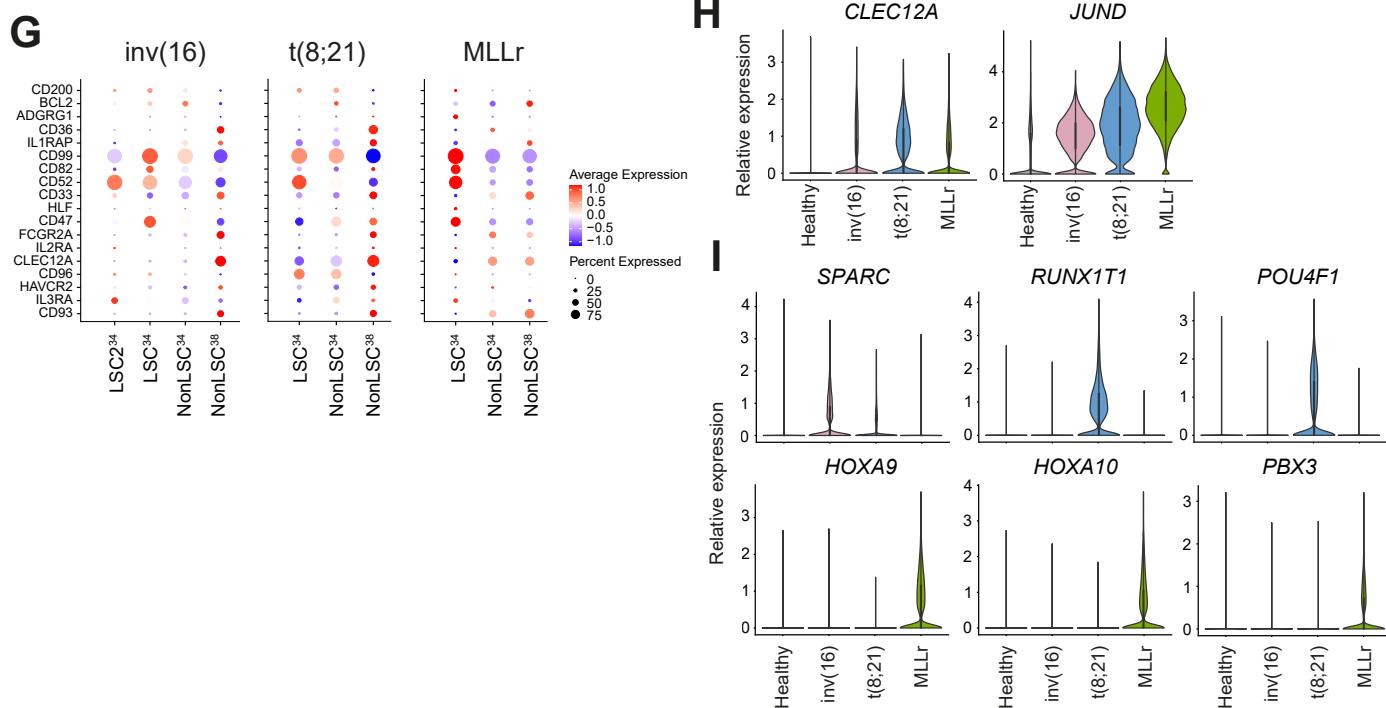
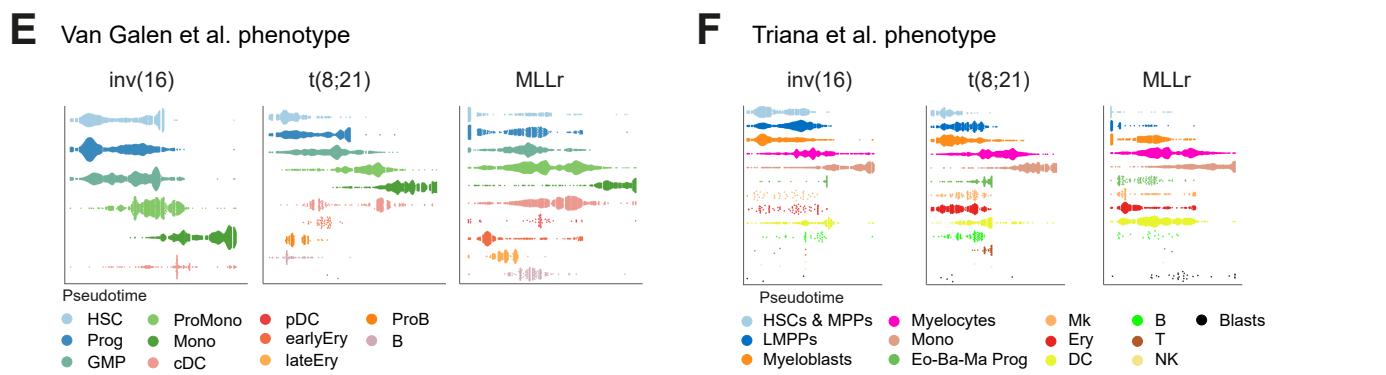
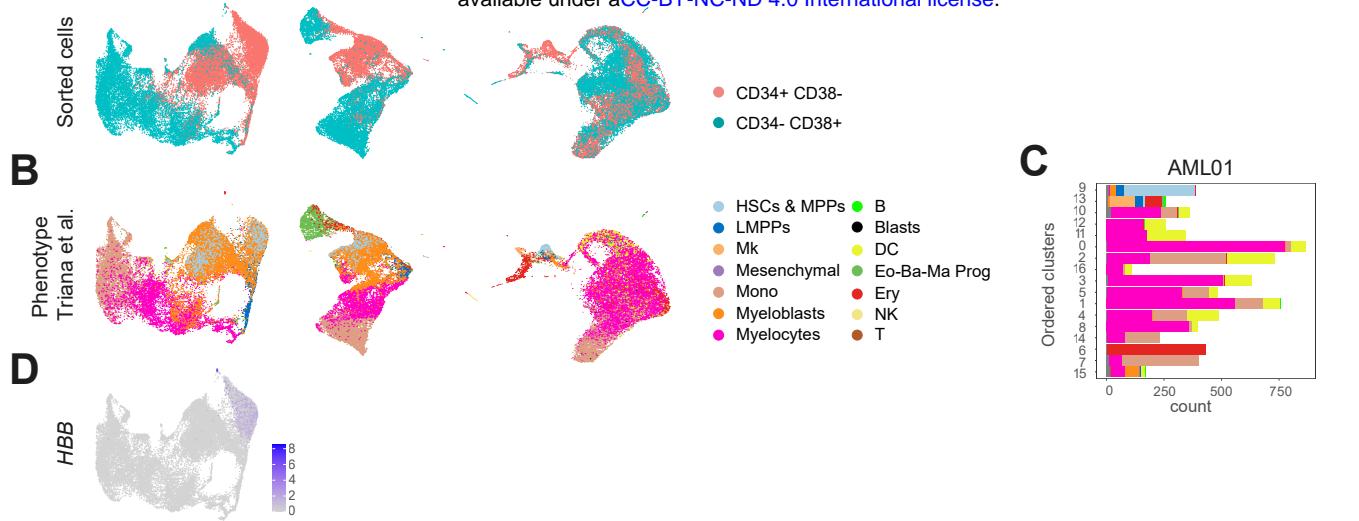

Velasco-Hernandez et al. Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.02.482638>; this version posted March 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

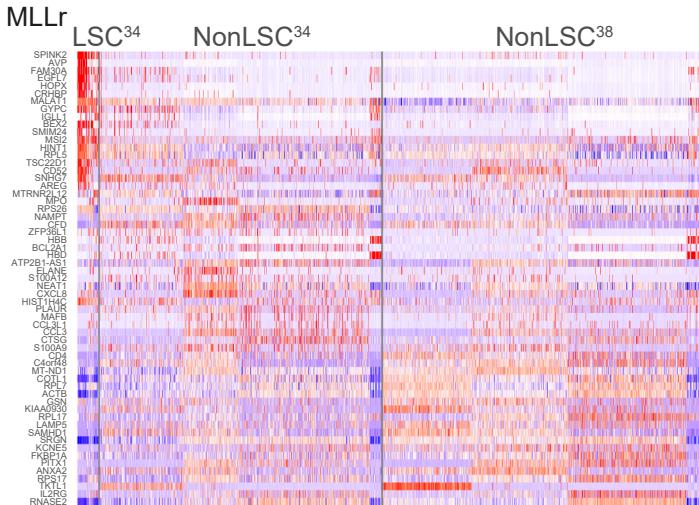
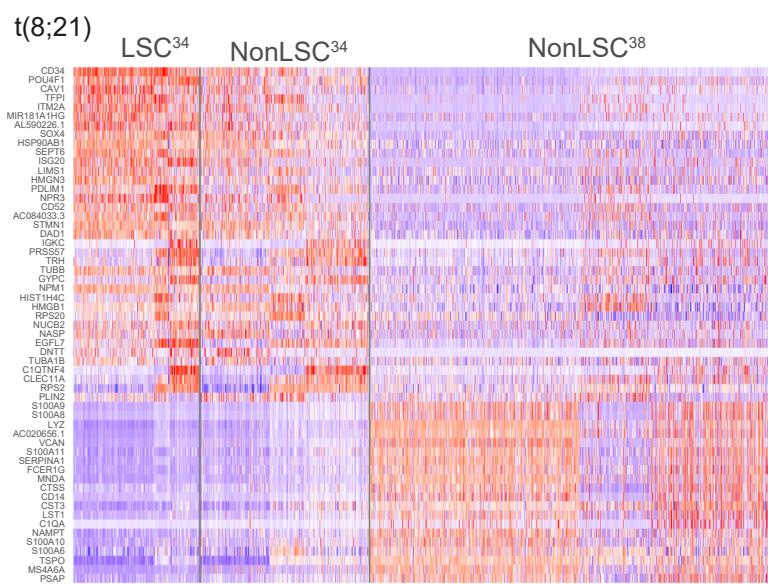
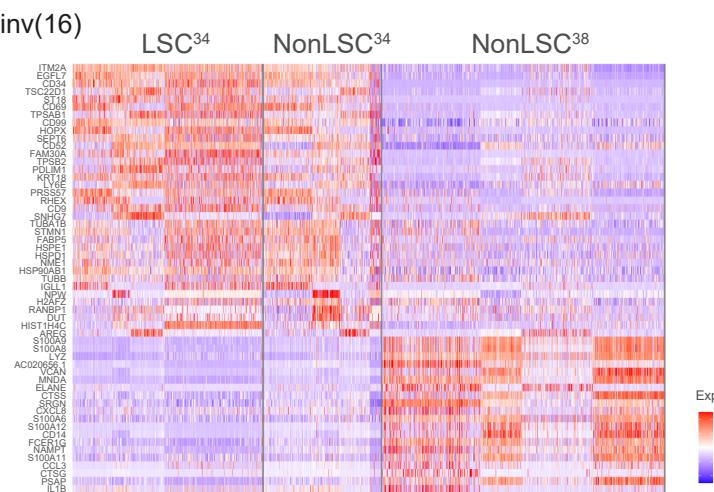




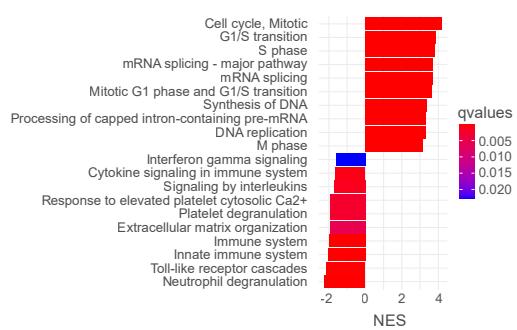
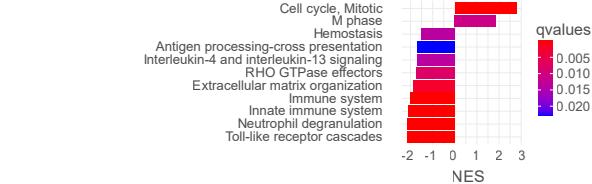
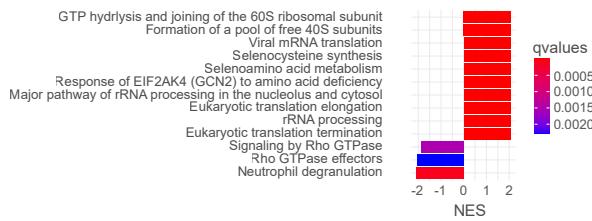
A**B****C****D****F****H****G**

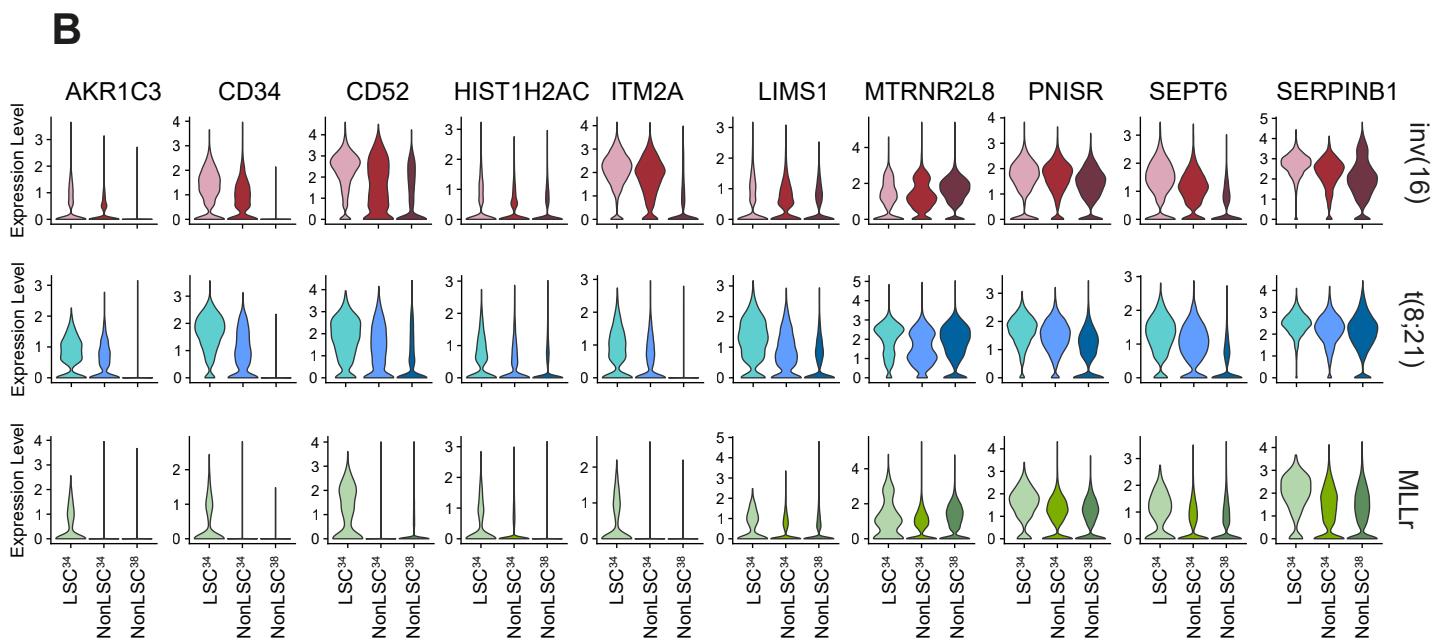
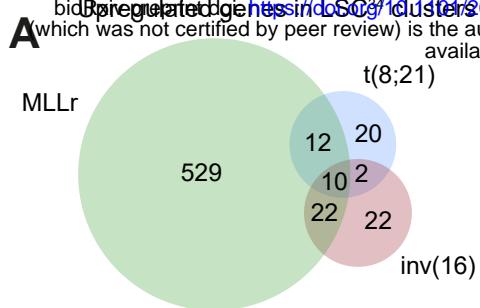
bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.02.482638>; this version posted March 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

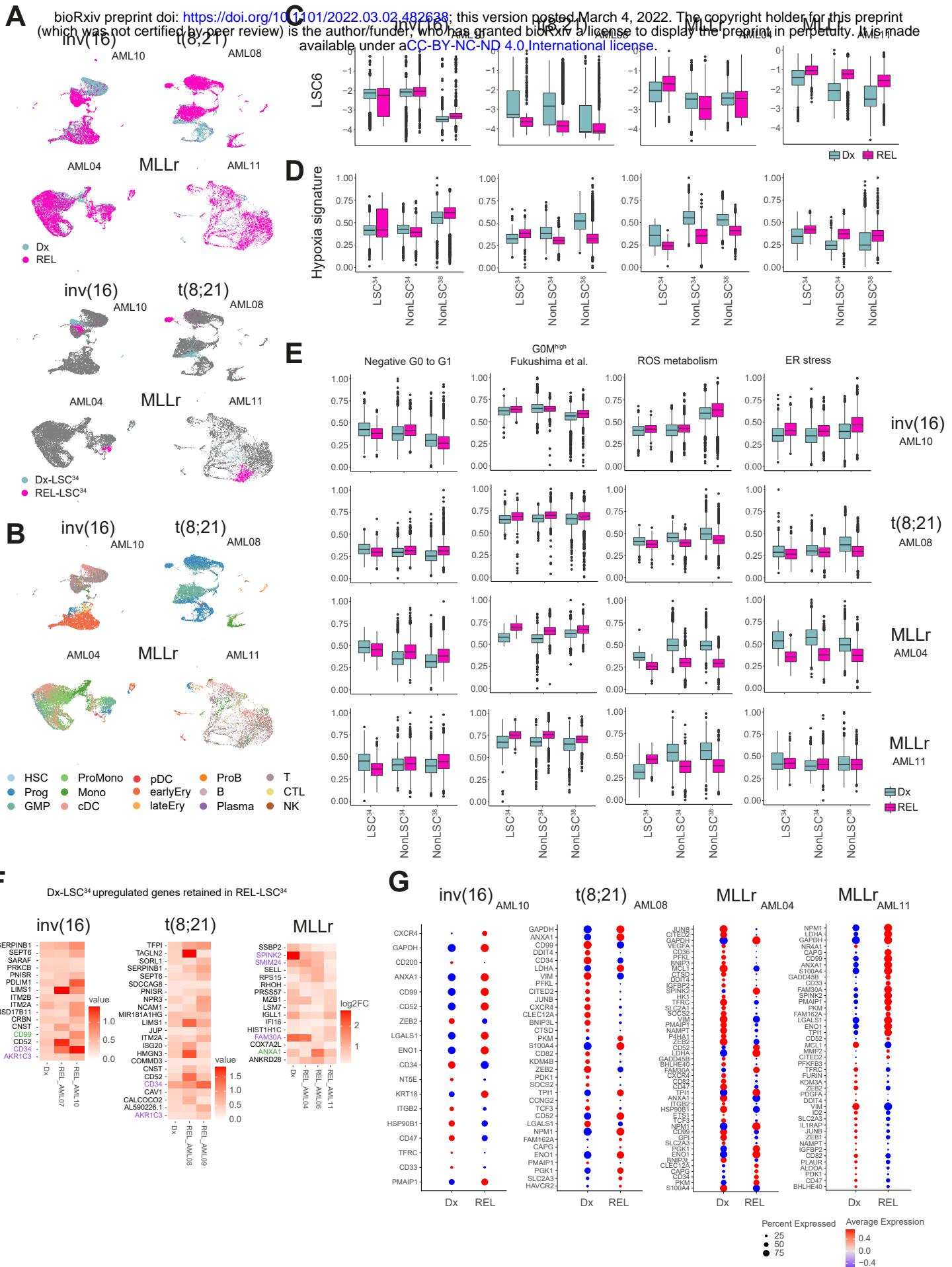




bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.02.482638>; this version posted March 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.02.482638>; this version posted March 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

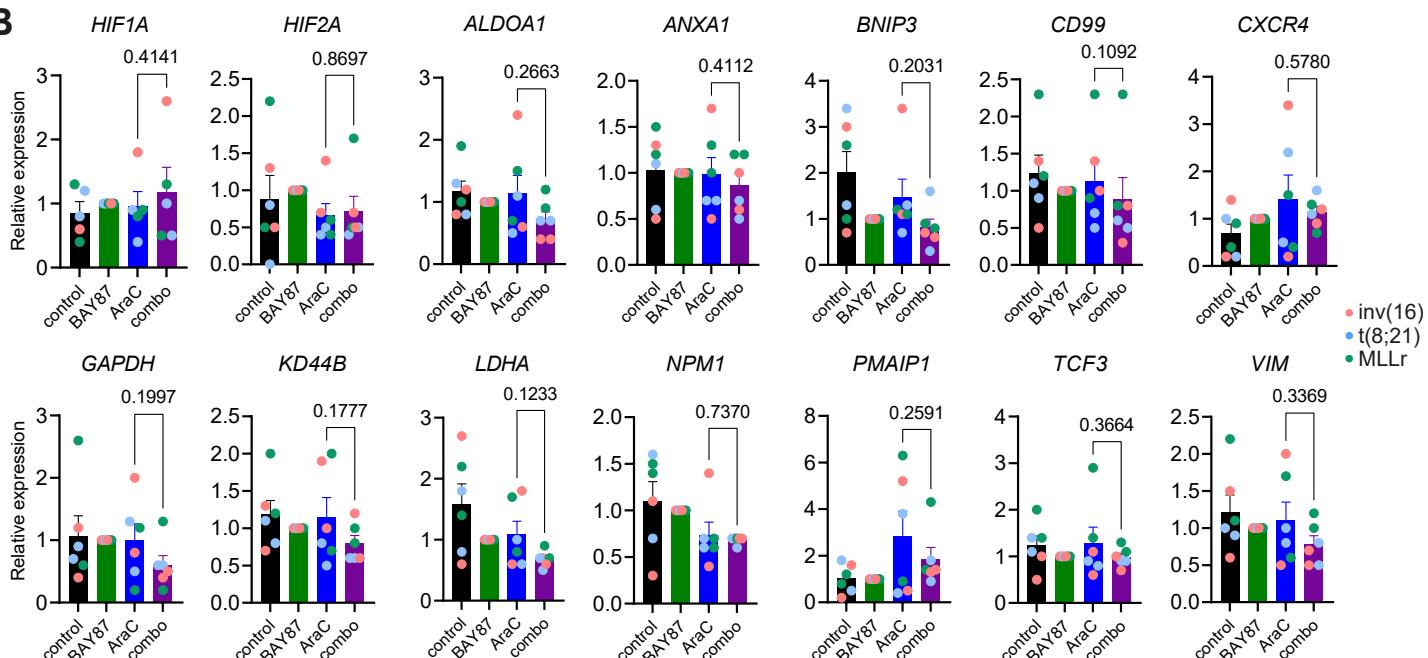
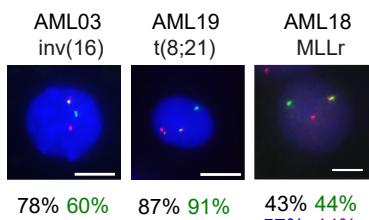


A

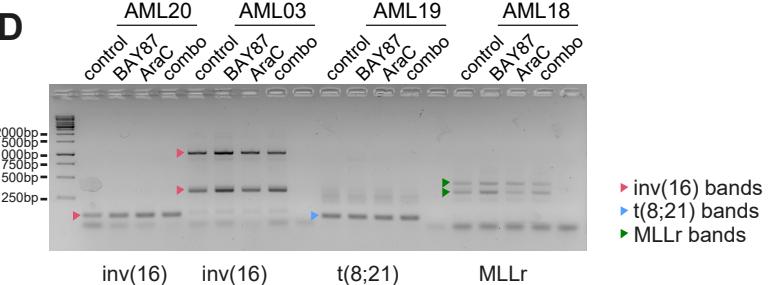


B

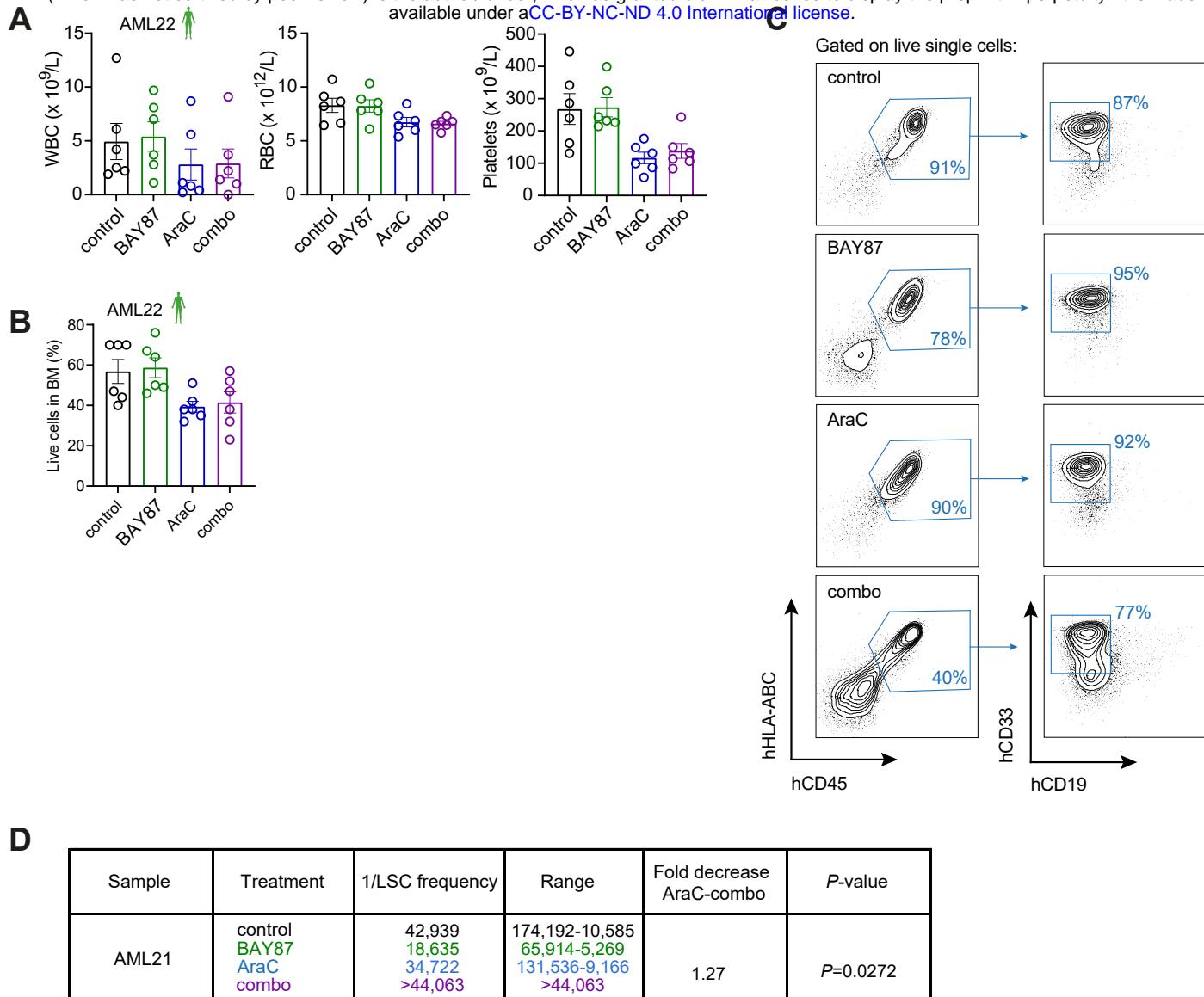
inv(16) NonLSC³⁴ vs NonLSC³⁸t(8;21) NonLSC³⁴ vs NonLSC³⁸MLLr LSC³⁴ vs NonLSC³⁸

A bidirectional edge <https://doi.org/10.1101/2022.03.02.482638>; this version posted March 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


A

bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.02.482638>; this version posted March 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


Sample	Treatment	Available sequencing depth	Fold decrease AraC-combo	P-value
AML12	control BAY87 AraC combo	160 210 355 1476	259-98.6 321-136.7 525-240.6 2376-916.3	4.16 <i>P</i> <0.0001
AML13	control BAY87 AraC combo	177 110 953 2301	290-107.9 192-63.1 1420-639.5 3873-1367.3	2.41 <i>P</i> =0.00856
AML14	AraC combo	4344 21527	11506-1640 153395-3022	4.95 <i>P</i> =0.105
AML15	control BAY87 AraC combo	233 536 688 >2194	379-143 947-304 1383-342 >2194	>3.19 <i>P</i> =0.00039
AML18	control BAY87 AraC combo	599 806 989 3363	862-416 1164-559 1570-623 5732-1973	3.4 <i>P</i> =0.000305
AML19	BAY87 AraC combo	89 910 1361	169-47 1320-628 2027-914	1.49 <i>P</i> =0.177

B**C**

- Control
- BAY87
- AraC
- Combo

D

bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.02.482638>; this version posted March 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

