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Partial gene suppression improves identification of cancer
vulnerabilities when CRISPR-Cas9 knockout is pan-lethal
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Abstract

Hundreds of genome-wide loss-of-function screens have been performed, as part of efforts such
as The Cancer Dependency Map, to create a catalog of genetic dependencies in a diverse set
of cancer contexts. In recent years, large-scale screening efforts have shifted perturbation
technology from RNAI to CRISPR-Cas9, due to the superior efficacy and specificity of
CRISPR-Cas9-mediated approaches. However, questions remain about the extent to which
partial suppression of gene targets could result in selective dependency across cell lines,
potentially revealing a larger set of targetable cancer vulnerabilities than can be identified using
CRISPR knockout alone. Here, we use CRISPR-Cas9 and RNAI screening data for more than
400 shared cell lines to represent knockout and partial suppression genetic perturbation
modalities and evaluate the utility of each for therapeutic target discovery and the inference of
gene function. We find that CRISPR screens identify more dependencies, and yield more
accurate predictive models and co-dependency relationships overall. However, RNAI
outperforms CRISPR in identifying associations (omics, drug, co-dependencies) with genes that
are common dependencies for most cell lines (pan-dependencies). As pan-dependencies occur
frequently in the CRISPR dataset (~2,000 genes), using results from both RNAi and CRISPR
analyses facilitates the discovery of predictive models and associated co-dependencies for a
wider range of gene targets than could be detected using either dataset alone. These findings
can aid in the interpretation of contrasting results obtained from CRISPR and RNAi screens and
reinforce the importance of partial gene suppression methods in building a cancer dependency
map.
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Introduction

The Cancer Dependency Map Project (DepMap) aims to accelerate cancer precision medicine
by systematically identifying cancer vulnerabilities through genetic'™ and small molecule
perturbation screens®®. Genetic loss-of-function screens measure cell viability in response to
perturbation of individual gene function (negative selection) and can be applied at a
genome-wide scale. Understanding the differences between genetic screening technologies,
such as RNAi and CRISPR-Cas9, is important for the interpretation of analyses within the
DepMap framework.

Initially, the development of assays based on RNA interference (RNAI) enabled parallel
screening across many cell types by synthesizing large pooled reagent libraries, and led to the
identification of numerous prospective therapeutic targets®'*. Unfortunately, a limitation of RNAI
is that reagent sequences frequently overlap with miRNA's seed sequences, resulting in
modulation of unintended targets (off-target effects). This often resulted in poor data
reproducibility and was proposed as a contributing factor to low success rates in clinical trials™.
Computational modeling of off-target seed effects, performed on the DepMap RNAI datasets
using DEMETER2'®, substantially improved the on-target gene effect estimates. However, this
method may not be practical for small experiments, leaving an opportunity for new and
improved genome engineering technologies.

In recent years, cell viability screening with CRISPR-Cas systems has increased due to superior
efficacy and specificity. For example, CRISPR-Cas9 screens performed at the Broad and
Sanger Institutes identified highly concordant common and selective dependencies as well as
robust biomarkers'. However, it's unclear whether large CRISPR-Cas9 datasets should be
viewed as a replacement for RNAI datasets considering the different mechanisms by which the
technologies inhibit gene function. RNAIi reagents (shRNAs) directly bind target mMRNAs and
cause their degradation, but typically result in partial depletion of target mMRNA expression ',
CRISPR-Cas9 reagents (sgRNAs) induce DNA double-strand breaks, which have the potential
to produce a true null phenotype through frameshift mutations, but often result in a
heterozygous mixture of cells due to protein-conserving mutations or alternative splicing.
Whether the cellular viability effect of RNAi knockdown or CRISPR knockout is the most
relevant measurement could depend on the research question. For example, identifying a
comprehensive list of dependencies per cell line might benefit from one approach while
identifying potential cancer vulnerabilities by differential dependency across cell lines might
benefit from a different approach.

Previous comparisons of CRISPR-Cas9 and RNAi screens have focused on the agreement
between genetic dependencies discovered per cell line?®2", but have not investigated how the
method of gene inhibition impacts the patterns of gene dependency across cell lines. Since a
goal of DepMap is to enable researchers to investigate mechanisms of genetic dependency, it is
important to know whether CRISPR or RNAIi datasets show patterns of dependency that better
match cellular genomic features or chemical compound sensitivity. Now with 403 shared cell
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lines between the DepMap RNAi and CRISPR datasets, it is possible to perform a side-by-side
comparison of analyses that integrate large-scale genomic or drug sensitivity datasets. Here we
explore how the choice of perturbation type affects the classification of dependencies as
common or selective across cell lines and the downstream implications for cancer target
discovery and gene function inference.

Results

Selecting data to represent each perturbation type

The Cancer Dependency Map Project provides a collection of loss-of-function screens from
several sources, including two large-scale RNAi experiments (Achilles’, Project DRIVE*) and
two genome-wide CRISPR experiments (DepMap?, Project SCORE?). To help select data that
best represents each perturbation type (CRISPR, RNAI), we benchmarked the quality of each
cell line screen, using both unprocessed data (individual reagents or mean of reagents targeting
the same gene) and processed data (gene effect estimates from CERES? or DEMETER26). As
expected, the CRISPR reagent-level data had superior screen quality metrics compared to
RNAI (Supplemental Fig. 1). However, the margin of improvement was narrowed when using
processed datasets (Supplemental Fig. 2a). Data processing also improved the agreement
across perturbation types (correlation between pairs of RNAi and CRISPR datasets), which
suggests the processing methods reduced perturbation-specific artifacts (Supplemental Fig.
2b-c). Therefore, we chose to use processed data for comparison of CRISPR and RNAI, and
selected the DepMap? (CRISPR) and DEMETER2-Combined'® (RNAI) datasets to maximize
the number of shared cell lines (N=403).

Additional gene filtering was applied to CRISPR and RNAi datasets, where indicated, to
increase the likelihood that differences observed between the chosen datasets will generalize to
other datasets as well. To address questions about the landscape of dependencies observed
using an individual dataset, we included all genes (N=15,221). When testing specific
hypotheses where methods are sensitive to the number of missing values or reagents per gene,
we repeated analyses using genes included in the Project DRIVE library (6,901 genes). This
increased the average number of RNAI reagents per gene from 6 to 17 and decreased the
missing values from ~20% to ~5%. Finally, when directly comparing dependencies observed in
the CRISPR and RNAI datasets, which is sensitive to individual outliers caused by differences in
experimental design, such as screen duration or cell culture media, we restricted the analysis to
a set of high-confidence genes (N=1,703) with agreement between pairs of datasets of the
same perturbation type (Supplemental Fig. 3, Supplemental Table 1, Methods). For all
comparisons, CRISPR and RNAi datasets have matched cell lines, genes, and missing values.
This approach allows us to maintain the simplicity of pairwise comparisons between
perturbation types while reducing outliers driven by experiment-specific conditions.
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Dependencies identified using each perturbation type

Gene dependency represents a decrease in cellular viability following gene perturbation. The
phenotype is measured by a change in cell count 14-28 days after perturbation, which is
sensitive to gene perturbations that kill cells (‘cytotoxic’) as well as perturbations that inhibit cell
growth or proliferation (‘cytostatic’). This results in a continuous distribution of dependency
values for each gene, called gene effects when using processed data, where a more negative
gene effect indicates stronger dependency. We refer to a gene that is deemed a dependency in
at least 90% of cell lines, as a pan-dependency. We use the term cell essential genes to refer to
a theoretical set of genes that are required for cell survival. While the results of pan-dependency
analysis (Supplemental Fig. 4) might help identify cell essential genes, the meaning of gene
inclusion in this set is conceptually different.

Several factors affect the ability to detect dependencies when perturbing genes using CRISPR
or RNAI, including the strength of on-target effects (‘efficacy’), as well as the pervasiveness of
off-target effects (‘specificity’). We observed that dependencies detected using CRISPR were
nearly a superset of those detected using RNAi (Fig. 1a), confirming similar observations from
previous studies®®?"?*, To determine whether the increased number of CRISPR dependencies is
driven by improved efficacy or specificity, we compared the performance of positive and
negative control gene sets. We found that when using reagent-level datasets (Fig. 1b,
Supplemental Fig. 5a), CRISPR specificity was superior to RNAI, as indicated by the lower
variance in the fold-change values of negative controls (non-expressed or nonessential
genes®*). However, when comparing processed gene-level estimates (generated by CERES,
DEMETER?2) we found that RNAI specificity was similar to CRISPR (Fig. 1c, Supplemental Fig.
5b) while maintaining an equivalent dynamic range with respect to RNAI positive controls (core
essential genes? identified from other RNAI screens). Instead, the major difference between
processed datasets was an increase in CRISPR efficacy (Fig. 1c) across a larger set of positive
controls (unbiased essential genes derived from gene trap experiments?, embryonic lethal
mouse genes?, and studies of intolerance to germline loss-of-function in human
populations?’~*2, Methods). Therefore, the processed RNAI dataset shows similar specificity to
CRISPR, likely a testament to the efforts put into screening multiple reagents per gene and
developing computational methods to address reagent off-target effects”**, but the CRISPR
dataset shows stronger efficacy across a broader set of gene targets.

In addition to simply detecting dependencies, we would like to identify genes that show patterns
of selective dependency across cell lines. A selective pattern suggests that particular cancer
models are more sensitive than others to the inhibition of a gene, which could represent a
targetable cancer vulnerability. To evaluate how the type of perturbation impacts our ability to
identify dependency patterns, we defined dependency classes (Fig. 1d, Methods, Supplemental
Table 2) that represent three selective patterns (high-variance, strongly selective [Supplemental
Fig. 6], weakly selective) and two uniform patterns, meaning dependencies that are common to
most cell lines (pan-dependent) or no cell lines (non-dependent). Multiple classes were required
to capture selective dependencies because their gene effect distributions are often shaped quite
differently; for example, BRAF dependency is strongly selective while ADAR dependency is
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high-variance (Supplemental Fig. 7). Comparing the number of genes identified per dependency
class, we found the largest difference between perturbation types was a 3-fold increase in
pan-dependencies (1,867 total genes) identified using CRISPR compared to RNAi (Fig. 1d).
When performing hit calling per cell line (genes with greater than 50% probability of
dependency, Methods), the increase in CRISPR pan-dependencies translates to an average of
63% of dependencies detected per cell line being pan-dependencies using CRISPR as opposed
to 30% using RNAI (Fig. 1f, Supplemental Fig. 8). While these results are consistent with prior
observations that more dependencies are detected using CRISPR knockout, it was not
necessarily expected that the majority of new CRISPR-specific dependencies would be
pan-dependencies.

Given the large set of CRISPR pan-dependencies, we wanted to confirm that the
CRISPR-specific pan-dependendencies share similar agreement with essential genes identified
through alternative methodologies (gene trap®, mouse knockout lethality?®, constraint of
deleterious mutations in ExXAC?~%2) so as to suggest they are not artifacts of the CRISPR-Cas9
mechanism. We found that CRISPR and RNAi pan-dependencies were confirmed by the
alternative methodologies in similar proportions (Fig. 1g), but enriched for different functional
groups (Supplemental Fig. 9-11, Supplemental Notes). Additionally, we found that gene trap
data (knockout through mutagenesis in cell lines) was the most predictive of CRISPR
pan-dependency status (ROC AUC = 0.96, Fig. 1h), suggesting that CRISPR-specific
pan-dependencies are genes that require complete knockout to produce a consistently strong
effect on cell viability.

Since more selective dependencies were also identified using CRISPR, including a 1.88 fold
increase in strongly selective dependencies and a 1.56 fold increase in high-variance
dependencies (Fig. 1d), we questioned whether the RNAi dataset was providing any
complementary information. To answer this question, we mapped each gene between its RNAI
and CRISPR dependency class (Fig. 1f, Methods) using high-confidence dependencies
(N=1,703) to minimize experiment-specific outliers. We found that the CRISPR dataset is
sufficient for identifying pan-dependencies since 99.6% of RNAi pan-dependencies were also
CRISPR pan-dependencies (Fig. 1f, Supplemental Fig. 12a). However, each perturbation type
had more distinct than shared selective dependencies (Supplemental Fig. 12b,c), the bulk of the
misaligned genes were CRISPR pan-dependencies that were selective using RNAi or CRISPR
selective dependencies that were non-dependent using RNAi (Fig. 1f). This suggests that
stronger CRISPR efficacy results in the discovery of new selective dependencies that were
missed by RNAI, but also results in decreased selectivity among CRISPR pan-dependencies,
which typically have higher variance using RNA..

Based on these observations, we expect individual dependencies (a specified gene and cell
line) detected using RNAI to be corroborated by the higher efficacy CRISPR knockout, but we
do not necessarily expect the CRISPR dataset to reproduce the same selectivity pattern across
cell lines that is observed using RNAI. For example, only 25.6% of the genes classified as
high-variance dependencies using RNAi were also classified as high-variance using CRISPR
(Supplemental Fig. 12), but 99.2% of the cell lines called dependent on any of these distinct
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RNAI high-variance genes were supported by the dependency calls using CRISPR
(Supplemental Fig. 13). This occurs because the maijority of high-variance dependencies using
RNAI are pan-dependencies using CRISPR, likely a result of different responses to knockdown
and knockout. Whether the larger dynamic range in RNAIi gene effects for CRISPR
pan-dependencies represents a therapeutic window and/or other biologically relevant
information can be assessed through the following analyses of predictive omics markers,
drug-gene target correlations, and co-dependencies.
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Figure 1 | CRISPR knockout produces stronger viability effect than RNAi knockdown

a, Mean gene effect across 403 cell lines for 15,221 genes overlapping the CRISPR and RNAI
datasets. Each axis is divided into 100 bins (2D histogram) and the color of the dots represents
the number of data points that fall into each bin. b, Log, fold-change (LFC) values for reagents
targeting the same gene are collapsed to gene means per cell line. Boxes represent the
distribution of gene mean LFC across all cell lines for genes included in the nonessential control
set? (738 genes), non-expressed set (10 randomly sampled genes from each cell line with
RNAseq log,(TPM+1) < .2), unbiased essential gene set described in the Methods (744 genes),
or the core essential control set** (208 genes). CRISPR reagents are from the Avana library and
RNAI reagents are those used in the DEMETER2-combined'® RNAI dataset (union of Achilles
and DRIVE libraries). Whiskers are extended to 4 times the interquartile range to limit
overplotting outliers since over 1.2 million data points are represented. ¢, Unscaled gene effect
estimates from CERES (CRISPR) and DEMETER2 (RNAIi) were normalized per cell line
(Z-score) and grouped into the same control sets and plot parameters from part b. d, Each gene
(N=15,221) is included in at least one dependency class. Density plots illustrate the difference in
dependency patterns between dependency classes and represent the union of CRISPR gene
effects for all genes in each dependency class. The horizontal bars represent the number of
genes identified as members of the respective dependency classes. e, Mapping between the
disjoint CRISPR and RNAi dependency class for each high-confidence gene (N=1,703). f, Each
cell line (N=403) is a stacked bar where bar segments represent the proportion of gene
dependencies relative to the total number of genes profiled in each cell line (y axis). Labels
indicate the mean percent of dependencies per cell line that are classified as pan-dependencies
in the overall CRISPR or RNAI dataset. Colors correspond to the gene dependency
classifications as indicated in part d. g, Intersection of pan-dependencies identified using
CRISPR and RNAI datasets with essential genes identified using EXAC, mouse knockout, and
gene trap. h, Ability to separate genes classified as pan-dependencies in both CRISPR datasets
(N=1,339) from genes that were not pan-dependencies in either CRISPR dataset (N=14,702)
using ROC AUC of mean gene trap results for KBM7 and HAP1 (AUC=0.96), RNAi mean
D2-Combined gene effect (AUC=0.86), and the median of EXAC constrained loss-of-function
metrics (AUC=0.65).

Biomarker identification for therapeutic target discovery

One of the critical steps of current target discovery efforts is identifying molecular features
(‘biomarkers’) that could provide insights into the mechanism underlying the cellular
dependency. Using biomarkers to guide preclinical target discovery is motivated by the
increased success of phase Il and Il clinical trials for drugs with genetic evidence linking the
mechanism of action to disease biology*. Therefore, we wanted to know if the analysis of RNAI
or CRISPR datasets leads to the identification of more or better biomarkers. Here we determine
which dependencies have accurate predictive models and then evaluate the individual
predictive features of each model to characterize the different types of potential biomarkers.

We trained multivariate regression models (random forest) to predict RNAi or CRISPR gene
effects for each gene using multi-omics features, most notably RNA-seq-derived gene
expression, gene-level copy number, and mutation calls (Methods, Supplemental Table 3). Cell
lines and missing values were matched between dependency datasets to remove sample bias.
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To benchmark the predictive modeling performance, we evaluated the accuracy (correlation
between measured and predicted gene effect profiles) for a set of clinically actionable oncology
targets®. We found that actionable targets are among the best-predicted gene dependencies
(median > 97th percentile) for both perturbation types, with similar performance for KRAS,
NRAS, BRAF, ESR1, PIK3CA, and EGFR (Supplemental Fig. 14a,b). Although there is one
actionable target, MET, that is better predicted using CRISPR data, these results indicate that
our approach to predictive modeling is applicable to both perturbation types.

Evaluating the accuracy of CRISPR and RNAI predictive models for each gene dependency
profile (N=15,221), we found there were more accurate predictive models (r > 0.5) for CRISPR
dependencies than RNAI, unless the target gene was a CRISPR pan-dependency (Fig. 2a).
More specifically, the mean accuracy of RNAI predictive models surpassed CRISPR models
when over ~75% of cell lines were dependent using CRISPR (Fig. 2b). To assess the biological
relevance of the features used in the accurate predictive models, we determined the most
important individual predictive feature (Gini importance) of each multivariate model and labelled
it a ‘related gene’ if it is an omics measurement of an individual gene with prior evidence to
support its associated with the target gene (Methods). We found that related genes were used
as top features for 51% of CRISPR models and 29% of RNAi models, though this increased to
45% of RNAi models when focusing on the subset of genes included in Project DRIVE that were
targeted with more reagents per gene (Supplemental Fig. 14c). We also found that RNAI
predictive models for CRISPR pan-dependencies were more likely to use related genes as top
features compared to RNAi models for all other dependencies (Supplemental Fig. 14c). This
means that on average, CRISPR dependency profiles are better explained by related omics
features, but also suggests that RNAi dependency profiles for CRISPR pan-dependencies could
be therapeutically relevant since there are often biologically relevant markers that predict
increased sensitivity to knockdown by RNA..

Deeper investigation of the relationship between features used to predict a gene dependency
can aid in generating hypotheses about the mechanism of the dependency. Several types of
relationships between genetic dependencies and predictive features (‘biomarker classes’) have
been commonly observed, including genetic driver, expression addiction, paralog, and
CYCLOPS'#3€_ We evaluated the features used by each predictive model and, based on our
definitions for the biomarker classes (Methods), assigned 80 CRISPR models and 76 RNAI
models to at least one class (Supplemental Fig. 15a). We found that more CRISPR models
were classified as expression addiction (dependency predicted by expression of the target
gene) or paralog (dependency predicted by omics features of the target gene’s paralogs), and a
greater number models were classified as CYCLOPS models (stronger dependency associated
with lower copy number of the target gene) using RNAI (Supplemental Fig. 15a).

Since CYCLOPS dependencies represent essential genes that are relatively more sensitive to
inhibition due to copy number loss, we questioned whether all of the accurate RNAi models for
CRISPR pan-dependencies would be considered CYCLOPS. We found that approximately 35%
of accurate RNAiI models were CYCLOPS (Fig. 2c, Supplemental Fig. 15b), which leaves
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potential for RNAi models to identify other types of synthetic lethal or novel
dependency-biomarker relationships. For example, PRMT5 and RBBP4 are CRISPR
pan-dependencies that are better predicted by their respective biomarkers, MTAP
copy-number™ (Fig. 2d) and RBBP7 expression (Fig. 2e), using RNAI. For other CRISPR
pan-dependencies, such as RAB6A, the CRISPR signal is not completely saturated and
association of the dependency with low expression of its paralog RAB6B can be detected using
either perturbation type (Fig. 2f).
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Figure 2 | Predictive models for dependency

a, Multivariate regression of each CRISPR or RNAI gene effect profile (N=15,221) using
predictive features derived from omics datasets and cell line annotations. The accuracy of each
predictive model is the correlation coefficient of measured and predicted values across cell
lines. The number of accurate predictive models (r > 0.5) is split according to whether the gene
target is also a CRISPR pan-dependency. b, Mean predictive accuracy for high-confidence
dependencies (N=1,703) as a function of the fraction of cell lines identified as dependencies
using CRISPR (probability of dependency > 0.5). ¢, CYCLOPS genes have a positive
correlation (r > 0.5) between RNAI gene effects and copy number and account for ~35% of the
accurate RNAi models for CRISPR pan-dependencies (N=1,719) after removing 148 RNAI
models driven by confounding factors. d, Genetic perturbation of PRMT5 using RNAI results in
larger effect size between cell lines with MTAP copy-number loss and MTAP wild-type compared
to CRISPR knockout. e, RNAIi gene effect of RBBP4 is more correlated with expression of
paralog gene RBBP7. Density (2D) contours represent 402 cell lines for each genetic
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dependency dataset (RNAi, CRISPR). f, CRISPR knockout of RAB6A has a more negative
viability effect on cells lacking expression of paralog gene RAB6B.

Associations between genetic and chemical screens

Similarity in cell line response to genetic perturbation and targeted small-molecule drug
treatment can be used to generate hypotheses about drug targets or mechanism of action.
However, we don’t expect all drug sensitivity profiles to be highly correlated with the
dependency profiles of their annotated targets due to drug polypharmacology and incomplete
target annotations. Therefore, we used three large drug screening datasets with different
experimental designs (GDSC?*'38, CTD2%*, PRISM®) to help identify subtle but consistent
effects, and only included drugs that were strongly correlated to an annotated target using at
least one genetic perturbation type. In order to repeat analyses across drug datasets, we
applied the same normalization method to each (Methods), but only required matched cell lines
and perturbations between RNAi and CRISPR as this is the primary comparison.

First, we questioned whether the CRISPR and RNAI dependency profiles of drug targets
correlated better to different drug doses. Using genes included in the DRIVE RNAI library and
drugs with annotated protein targets*’, we found that intermediate doses (9-10) of the 16
concentrations tested for each drug in the CTD2 dataset were most likely to have an annotated
target as a top dependency correlate regardless of genetic perturbation type (Fig. 3a). For each
drug target, the CRISPR and RNAIi dependency profiles typically correlate best to the same
drug dose (Fig. 3b). We found similar results for the 8 concentrations tested for drugs included
in the GDSC and PRISM datasets (Supplemental Fig. 16). This suggests that the differences
between drug doses are usually larger than the differences between RNAi and CRISPR
dependency data for annotated targets.

Next, we wanted to know whether correlating drug sensitivity profiles to RNAi or CRISPR
datasets recovered more annotated targets. Using the best correlated dose to represent each
drug, we found RNAi and CRISPR data had similar mean drug correlation for annotated targets
(Fig. 3c). Among the strongest overall correlations were drugs targeting BRAF, EGFR, IGF1R,
and ERBB2, which had similar performance using RNAi or CRISPR data (Fig. 3d). However,
there were several drugs that correlated better with target dependency using RNAi (FLT3,
BCL2L1, FGFR2, CHEK1, WEE1, CDK2, and AURKA) and others using CRISPR (MAPK14,
JAK2, ABL1, RARA, PI4KB, NAE1) (Fig. 3d). Evaluating the targets better correlated using
RNAI, we observed that the majority (BCL2L1, CHEK1, WEE1, CDK2, and AURKA) were
CRISPR pan-dependencies and had greater variance using RNAi (Fig. 3e). To determine if this
is a general trend across CTD2, GDSC, and PRISM drug datasets, we separated drug targets
that are CRISPR pan-dependencies and found that the target dependency profiles were more
often top drug correlates using RNAI (Fig. 3f). With the exception of CRISPR
pan-dependencies, all other targets were more often top drug correlates using CRISPR (Fig. 3f).
This suggests that RNAi and CRISPR datasets can be used to identify complementary sets of
drug targets. It also indicates that the selectivity observed when using RNAi to knockdown
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CRISPR pan-dependencies can be recapitulated by small molecule inhibitors and could
potentially be used to identify therapeutically relevant targets.
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Figure 3 | Associations between drug sensitivity and drug target dependency
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a, Number of CTD2 drug sensitivity profiles that have an annotated target within the top 5
correlated gene dependencies per drug dose. There are 165 drugs included that use the
standard 16-point concentration range. b, Maximum correlated drug dose for each annotated
drug-gene target pair (N=86) using CRISPR compared to RNAi. Drug-gene target pairs are
included if the target is among the drug’s top 5 gene correlates using either CRISPR or RNA.. ¢,
Pearson correlation of drugs and annotated targets (N=88) as in part b except without removing
pairs for non-standard concentration ranges. d, Correlation of each CTD2 drug with its
annotated gene targets in the CRISPR and RNAI datasets (167 drugs, 375 gene targets). e,
Relationship between gene effect and CTD2 drug sensitivity for 4 drugs and their annotated
gene targets (BCL2L1, CHEK1, CDK2, WEE1) which are CRISPR pan-dependencies. Density
(2D) represents over 300 cell lines for each genetic dependency dataset (RNAi, CRISPR) per
drug. Data is smoothed using linear models with 95% confidence intervals. f, Fraction of
annotated drug-target pairs where the target gene is among the drug’s top 5 most correlated
gene dependencies. Fractions are calculated per drug dataset (CTD2, GDSC, PRISM) since
each dataset includes different drugs and different totals of drug-gene target pairs. Pairs are
faceted by whether the target gene is a pan-dependency using CRISPR.

Functional relationships identified by co-dependency network

Large-scale genetic perturbation screens have been used to construct functional similarity
networks and reveal novel gene-gene relationships*'~3. A common method of constructing
similarity networks from CRISPR or RNAI screens is to draw edges between pairs of genes that
share a pattern of dependency across cell lines (co-dependencies). Using this approach,
co-dependency results could differ between networks for a gene if the selectivity of its
dependency profile differs greatly between datasets.

Based on our observations that CRISPR pan-dependencies often have stronger associations
with omics markers and drug sensitivity using RNAI, we hypothesized that functionally related
co-dependencies of CRISPR pan-dependencies would also be better resolved using RNAI. To
test this hypothesis, we created a functional similarity network for each CRISPR and RNAI
dataset and measured enrichment of previously established gene-gene relationships (CORUM,
InWeb PPI, KEGG, Ensembl Paralog) among the top co-dependencies of each gene
(Supplemental Fig. 17a). We found that for CRISPR pan-dependencies, the co-dependencies
were more enriched for established related genes using the RNAI network, but all other
co-dependencies were more enriched for related genes using the CRISPR network (Fig. 4a,b).
This is consistent with previous observations that RNAi screens better identify functional
relationships within essential protein complexes*?. We also observed variation in the
performance of CRISPR pan-dependencies between networks created from datasets of the
same perturbation type, but to a lesser extent than the variation observed between RNAi and
CRISPR networks (Supplemental Notes, Supplemental Fig. 18). This suggests it could be
beneficial to use both CRISPR and RNAIi networks to identify functionally related genes.

Ideally, we would like to integrate the gene-gene networks from different perturbation types into
a single network that could be used to study co-dependency relationships between all genes. As
a preliminary estimate of whether CRISPR and RNAi networks can be integrated in a way that
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captures both shared and complementary information, we used a nonlinear integration method,
Similarity Network Fusion**, to create a CRISPR-RNAI fusion network (Supplemental Fig. 17b).
Evaluating the co-dependencies of the fusion network, we found that it improved the enrichment
of related genes for CRISPR pan-dependencies as compared to the CRISPR network alone
(Fig. 4a). For example, ribosomal protein S21 (RPS21) is a CRISPR pan-dependency that has
several other related ribosomal proteins as co-dependencies using RNAi (RPS27A, RPS16,
RPS15A, RPL7, RPS18, RPL14) that are retained in the fusion network, but not observed using
the CRISPR network (Fig. 4c). Among the other genes, where the CRISPR network tends to
have better performance (Fig. 4a), we also observed cases where the fused network was an
improvement to RNAI alone (Fig. 4a). For example, mediator complex subunit 16 (MED16) is
more tightly connected to other mediator complex subunits using the fusion network compared
to RNAI (Fig. 4c). Overall, the fusion network was less likely to have a related gene as the top
ranked co-dependency when comparing to RNAi or CRISPR networks in their dominant gene
classes (pan-dependency and other, respectively), but the fusion network was as likely as any
other network to have a related gene in the top 10 co-dependencies across all dependency
classes (Fig. 4b). This suggests that integrating networks derived from multiple experiments or
perturbation types could help improve the consistency with which functional relationships are
identified by co-dependencies.
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Figure 4 | Co-dependencies in RNAI, CRISPR, and integrated datasets

a, Co-dependencies of each query gene (high-confidence dependencies with at least 3
dependent cell lines in either CRISPR or RNAI dataset) were tested for enrichment of previously
established related genes (CORUM, PPI, KEGG, paralogs). Query genes that were classified as
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CRISPR pan-dependencies are separated from the others. b, Number of query genes for which
one of the gene’s related priors is among the query gene’s top 1, 5, 10, or 100 ranked
co-dependencies. Query genes are separated by CRISPR pan-dependency status as in part
(b). ¢, Examples of local co-dependency networks for query genes, RPS21 (pan-dependency)
and MED16 (selective dependency), constructed from CRISPR, RNAI, and integrated
CRISPR-RNAI gene similarity networks. Only the top 10 co-dependencies of the query gene are
included as vertices, but a directional link is shown between any two vertices if the target is a
top 10 co-dependency of the source. Size of a vertex corresponds to the number of connections
between the vertex and other gene vertices in the network. Edge weights are scaled respective
to the full similarity matrix for each dataset.

Discussion

The transition from RNAI to CRISPR-Cas9 screening has improved reagent performance and
enabled the discovery of many new cancer dependencies. RNAIi datasets required more
reagents per gene and substantial processing, including correction for off-target effects using
DEMETERZ2, to approach the specificity of unprocessed CRISPR screens. Additionally, the
CRISPR efficacy was substantially higher, which is likely a result of a stronger biological
response to complete knockout. Although mechanisms for cellular compensation to CRISPR
gene knockout have been reported®, we did not observe any widespread effects. We found that
dependencies detected with RNAIi were typically a subset of CRISPR dependencies, with a few
rare exceptions, including 3 genes involved in ubiquitination processes (RBX1, USP39, UBA52)
that showed stronger gene effects using RNAi (Supplemental Fig. 19). Therefore, CRISPR
datasets produced more comprehensive lists of dependencies for each cancer cell line.

One drawback of generating completely null phenotypes using CRISPR was that it reduced the
dynamic range of pan-dependencies. CRISPR knockout of any of these ~2,000 genes
consistently reduced cell viability across the entire pan-cancer collection of cell lines, whereas
RNAIi knockdown showed variation in dependency that could be predicted by omics features
and better correlated to drug sensitivities or other functionally related co-dependencies. From a
target discovery perspective, there is a risk that CRISPR pan-dependencies might not be
considered viable targets if RNAIi data was not available to reveal a potential therapeutic
window. Based on clinical trials and FDA approvals, there is precedent to suggest these genes
could indeed be used as targets for precision cancer therapies. For example, BRD4 (targeted by
bromodomain inhibitors), CDC7 (TAK-931), HDAC3 (vorinostat), PRMT5 (GSK-3326595),
NEDDS8 (MLN4924), and ATR (VX-970), as well as XPO1 (selinexor), which is approved for
advanced diffuse large B cell ymphoma and multiple myeloma®*, are pan-dependencies using
CRISPR knockout and selective dependencies using RNAIi suppression. Given the downstream
complexity of developing cancer therapeutics, it could be beneficial to cast a wider net at the
target identification stage and include pan-dependencies that have mechanistic biomarkers for
sensitivity to RNAIi suppression, with an understanding that these targets might require
chemotherapy-like treatment paradigms for successful clinical trial progression*®.
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Moving forward, there could be advantages to genetic loss-of-function screening with multiple
perturbation types. Here we have shown that dependency profiles are the most useful for
downstream analyses of each gene when they are strongly selective, even if those profiles were
generated using different technologies. Alternative CRISPR modalities, such as CRISPRi¥,
could provide more control over the level of partial gene suppression while also maintaining the
improved specificity of CRISPR reagents. However, using a wider variety of perturbation types
could also make the integration of datasets or results more challenging.

While others have created an integrated RNAi and CRISPR dataset*®, we have only integrated
datasets of the same perturbation type'®*°. This is because we expect screens of the same
perturbation type, say CRISPR knockout, to produce concordant phenotypes for a cell line
included in multiple experiments. In this case, data integration can help to reduce experimental
noise and increase the sample size. On the other hand, different perturbation types (CRISPR,
RNAI) provide complementary information that is more challenging to retain in an integrated
format. Therefore, we chose to combine the results of analyses for biomarker identification and
drug mechanism of action, instead of integrating the underlying CRISPR and RNAI datasets. In
the case of co-dependency networks, it could be beneficial to have a single network that
captures the functional relationships between as many genes as possible so we integrate the
CRISPR and RNAIi gene-gene networks. By including the appropriate combination of
perturbation types in each analysis, it could be possible to take advantage of the improved
precision of CRISPR-Cas gene editing, while also using partial gene suppression to capture
selective patterns of dependency across a broader range of genes.

Supplemental Tables
Supplementary Table 1

High-confidence dependencies
Supplementary Table 2

Gene dependency classes (pan-dependency, strongly selective dependency, etc.) and the
related metrics

Supplementary Table 3

Predictive models of dependency: Accuracy and top features used to predict CRISPR and RNAi
gene effects
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Methods

Separation of positive/negative controls using CRISPR and RNAi reagent datasets

Unscaled reagent log, fold-change (LFC) for RNAi (Achilles*®, DRIVE®) and CRISPR (Avana?,
KY?®") datasets were filtered for shared cell lines (N=62) and gene targets (N=7,595). Achilles
RNAI data includes 55k and 98Kk libraries so the genes in the smaller 55k set were used in the
overlap to ensure each cell line has measurements for all reported genes. The filtered
reagent-level LFC datasets, remapped to use consistent DepMap cell line identifiers and Entrez
gene identifiers, are included in the extended data. We calculated the separation between core
essential genes? (positive control) and nonessential genes? (negative control) by strictly
standardized mean difference (SSMD) for each cell line per reagent dataset. Each dataset has a
differing number of reagents per gene so for each reagent dataset, all reagents targeting any of
the genes in the positive or negative control set were used to compute SSMD.

Correlation of reagents targeting the same gene

Reagent LFC datasets filtered for shared cell lines and genes were centered and scaled per cell
line to reduce batch effects. For each gene, the Pearson correlation between all pairs of
reagents targeting the gene were computed and collapsed to the median correlation coefficient
per gene. Correlation is not expected between reagents targeting nonessential genes due to low
variance. Therefore, we calculated the variance across cell lines for each gene by taking the
max variance of reagents targeting each gene and converting it to a percentile per dataset. This
allowed us to evaluate correlation between reagents per gene with respect to the variance in the
reagents.

Constructing an unbiased essential gene set for a positive control

A measure of viability screening performance is the separation between positive and negative
control genes. However, the essential genes commonly used as positive controls are often
derived from either RNAI or CRISPR screens, making them potentially biased towards gene
dependencies that are best detected with one of those methods. For the purpose of comparing
the performance of RNAIi to CRISPR, we require a set of positive controls derived from
alternative methods (‘unbiased essential genes’).

The alternative methods contributing to the unbiased essential genes include gene trap
experiments using two human cell lines, KBM7 and HAP1, from Blomen et al.?*, embryonic
lethal mouse genes identified by Dickinson et al.?, and studies of human population-level
exome and genome sequencing that suggest scores to quantify gene loss-of-function tolerance
2132 Since most of these studies provide a continuous metric for essentiality, creating a discrete
gene set required cut-offs. For the human cell line data, we used genes that are overlapping hits
in both cell lines (selected = ‘YES’ in Supplemental Tables 1 and 2). For the human population
studies, we convert the RVIS, pLl, Phi, missense Z-score, LoFtool and s, metrics to percentiles
and take genes with median percentile greater than 85, which Bartha et al.®? suggest is similar
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to the commonly used cut-off of pLI >0.9. For the mouse embryonic lethals, we use the genes
that are indicated as lethal by MGl or IMPC (MGI_lethal ="Y", IMPC = "Lethal", or IMPC =
"Subviable") in their Supplementary table 8%. Since the CRISPR and RNAi experiments are
conducted in vitro using cancer cell lines, we put more weight on the gene trap experiments
since they also use human cell lines. For a gene to be included in the unbiased essential gene
set, the gene must be included in the gene trap essential set, and be supported by one other
source, either the mouse lethal or the human population lethal sets. This results in 801 genes. A
summary of all metrics used in the classification scheme is included in the extended data.

Classification accuracy (ROC AUC) of positive/negative controls using processed data

The unscaled reagent LFC datasets were collapsed to gene-level LFC values per cell line by
simple average of all reagents targeting each gene. For comparison, the datasets processed
using DEMETER2 (Achilles®, DRIVE®) or CERES (Avana®, KY*") are also unscaled.
Processed and unprocessed mean LFC datasets were filtered to the 5,226 genes and 62 cell
lines that are shared between all datasets after mapping to DepMap cell line identifiers and
Entrez gene IDs (provided in the extended data). To calculate the ROC AUC for each cell line,
the unbiased essential gene set was used as the positive class and non-expressed genes
(loga(TPM+1) < .2 using the DepMap 19Q1 RNAseq expression for protein coding genes)
calculated per cell line were used as the negative class. The R package pROC (version 1.13.0)
is used to build the ROC curves and compute the confidence interval of the curve.

Correlation of matching genes across datasets of different perturbation types

Unprocessed (mean LFC) and processed (CERES and DEMETER2 gene effects) datasets are
centered by the median of the nonessential genes and scaled by core essential genes®. For
each pair of datasets where one is CRISPR and the other is RNAI, we calculated the Pearson
correlation between matching genes (N=5,226). This was done for the 4 cross-perturbation pairs
(Achilles RNAI-KY CRISPR, Achilles RNAi-Avana CRISPR, DRIVE RNAi-Avana CRISPR,
DRIVE RNAI-KY CRISPR) of unprocessed datasets as well as processed datasets. Since genes
with very little variance in dependency are not expected to correlate between datasets, we
binned the genes by the mean variance in the pair of datasets being evaluated.

Additionally, to determine the strength of each correlation relative to other correlations between
the same pair of datasets, we compute the correlation between a gene and all other genes
(5,226) and then determine the rank of the correlation coefficient for the matching gene.
Therefore, if a gene is given a rank of 1, it means that the most positively correlated gene in the
opposite dataset is the matching gene.

Pan-dependency analysis

Genes are ranked by gene effect within each cell line and divided by the total number of genes
screened in each sample (varies due to missing values in some RNAI datasets). This produces
a normalized rank between 0 and 1 where 0 is the most essential gene and 1 is the least

essential (usually enriched). Then for each gene, the 90th percentile of the normalized ranks is
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calculated across cell lines, which represents the rank of the most dependent cell line among
the 10% of least dependent cell lines. The distribution of 90th percentile ranks is bimodal,
indicating there is a subset of genes that are a dependency in 90% of the cell lines, while the
majority of genes are not. The minimum of the 90th percentile ranks distribution between the
two peaks is used as the cut-off to separate the more essential mode, which defines the
pan-dependency gene set. Varying the choice of percentile between the 80th, 90th, and 95th
produces relatively stable pan-dependency lists*.

Dependency probabilities

To estimate the likelihood that a CERES or DEMETER2 gene effect value represents a true
decrease in cell viability, we use a Bayesian inference method designed for Project Achilles and
described as part of the Project Achilles data processing pipeline®. While others have
developed similar methods® for identifying dependencies using log fold-change values, we
wanted to calculate the probability of dependency for each gene effect value from CERES and
DEMETERZ2, which is the primary use case for the Project Achilles inference method. For each
cell line, the distribution of gene effects is decomposed into a null (non-expressed genes per cell
line) and a positive control distribution (pan-dependent genes per dataset) and we calculate the
probability that each gene effect comes from the positive control distribution. All other
parameters are Project Achilles defaults. In places where a discrete number of dependencies is
provided per cell line, it is calculated by the number of genes with probability of dependency
greater than 0.5. A non-dependency is a gene for which all cell lines have a probability of
dependency less than 0.5.

Non-dependency analysis

Genes are labeled nonessential if the probability of dependency is less than 0.5 for all cell lines
in the dataset.

Defining a high confidence dependency gene set across perturbation types

To reduce outliers in dataset comparisons that are caused by experiment-specific details, such
as reagent library design, timepoints, or cell line media, we defined a gene set for which
datasets of the same perturbation type are in agreement, taking into consideration that the
definition of agreement might be different for pan-dependencies, selective dependencies, or
non-dependencies.

We used correlation as one measure of agreement between datasets. More specifically, we
computed the Pearson correlation between all pairwise combinations of gene effect profiles
between datasets, and then ranked the correlation between matching pairs of genes relative to
all other non-matching pairwise combinations. However, correlation does not work well for
pan-dependencies or non-dependencies that have little or no variance in CERES or
DEMETERZ2 gene effects. Therefore, we also defined agreement as shared pan-dependencies
or non-dependencies between datasets.
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For the CRISPR datasets, 1,339 genes were shared pan-dependencies, 6,303 genes are not
dependencies for any cell lines using either library, and 2,324 genes are top correlates between
libraries, resulting in a union of 9,303 multi-library agreement genes out of the 17,001 genes
that are shared targets in both Avana and KY libraries (54.5%). The RNA. libraries (DRIVE,
Achilles) have 246 shared pan-dependencies, 725 top correlates, and 2,327 shared
non-dependencies, for which the union (N=3,067) represents 44.5% of the 6,894 shared targets
between Achilles and DRIVE datasets since the DRIVE library is not genome-wide. We refer to
the intersection of CRISPR dataset agreement and RNAI dataset agreement as the high
confidence dependency set (N=1,718) and restrict comparisons to these genes when looking to
highlight consistent differences between perturbation types. Genome-wide agreement metrics
as well as the annotation for inclusion in the set, are provided in Supplementary Table 1.

Identifying strongly selective dependencies by likelihood ratio test

Strongly selective dependencies are defined by a “Likelihood Ratio Test”, as described in
McDonald et al*. For each gene, the log-likelihood of the fit of CERES or DEMETER2 gene
effect to a normal distribution and a skew-t distribution is computed using the R packages MASS
and sn, respectively. In the event that the default fit to the skew-t distribution fails, a two-step
fitting process is invoked. This involves keeping the degrees of freedom parameter (nu) fixed
during an initial fit and then using the parameter estimates as starting values for a second fit
without any fixed values. This process repeats up to 9 times using nu values in the list (2, 5, 10,
25, 50, 100, 250, 500, 1000) sequentially until a solution is reached. The numerical optimization
methods used for the estimates do not guarantee the maximum of the objective function is
reached. The reported LRT score is calculated as follows:

LRT = 2*[In(likelihood for Skewed-t) - In(likelihood for Gaussian)]

A gene labeled as a strongly selective dependency (SSD) has an LRT greater than or equal to
100.

High-variance dependencies

Variance in the probability of dependency across cell lines is calculated for each gene using
RNAi and CRISPR data with matched cell lines (N=403) and gene targets (N=15,221). The use
of dependency probabilities, as opposed to gene effects, ensures that genes with higher
variance have cell counts that are more depleted, indicating a loss of cell fitness. High gene
effect variance could indicate a cell proliferation phenotype.

A negative control set of non-expressed genes is constructed by calculating the density of the
total distribution of RNAseq TPM (log2) for the 403 cell lines and 14,517 genes that overlap the
dependency datasets. The density is bimodal with a minimum value between non-expressed
and expressed modes that corresponds to a TPM (log2) value of 1.385. This value is used as a
threshold for expression and genes that are below the threshold for all 403 cell lines are
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considered non-expressed (N=643). We then use the 99th percentile of the variance distribution
for non-expressed genes as the cutoff for high-variance (0.038 for CRISPR, 0.0442 for RNAI).

ISG signature

RNAseq TPM (log2) expression data is transformed into an ISG score per cell line using
ssGSEA method implemented in the R package ‘gsva’ version 1.30.0. Cell lines with
haematopoietic and lymphoid tissue primary site are excluded. The gene set consists of the 38
genes provided by Liu et al.*®

Mapping dependency classes between RNAi and CRISPR

Using the shared cell lines and genes between the RNAi (D2-Combined) and CRISPR (Avana),
each high confidence dependency gene is mapped between the dependency classification
using RNAI and classification using CRISPR dataset. The dependency class definitions are not
mutually exclusive, e.g. high-variance dependencies can also be strongly selective, so to
visualizing the mapping where each gene can only have one class we do the classification in
the following order:

1. Non-dependency: Probability of dependency less than 0.5 for all cell lines
2. Weakly selective: At least one dependent cell line
3. Strongly selective dependency (SSD): LRT score greater than 100

4. Pan-dependency: rank in 90th percentile least dependent cell line below threshold
(defined per dataset)

5. High-variance: Variance in probability of dependency greater than threshold (defined per
dataset)

6. Strongly selective dependency (SSD): LRT > 100 and a negative skew (outlier cell lines
have more negative gene effect)
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CRISPR and RNAi pan-dependencies supported by alternative methodologies

The three alternative methods of identifying essential genes used for comparison to CRISPR
and RNAI are constraint of loss-of-function mutations in ExAC human population sequencing
data, gene trap experiments on human cell lines, and mouse knockout lethality studies.
Essential genes from ExAC were determined by ranking the median of RVIS, mis_z, pLlI, phi,
LofTool, and s_het scores? - after converting to percentiles and taking the top 15%. Similarly,
we also took the top 15% of genes ranked by the mean of gene trap percentiles for KBM7 and
HAP1 cell lines?®. Mouse knockout lethality is defined by Supplementary table 8 from Dickinson
et al.?® where the “MGI_lethal” column has a value of “Y” or “IMPC” column has a value of
“Lethal” or “Subviable”. The two sets of CRISPR or RNAi pan-dependencies are the result of the
pan-dependency analyses performed on the matched CRISPR or RNAIi gene effect datasets
and filtered for high confidence dependencies. The Venn diagrams are area-proportional Euler
diagrams fit with the R package “eulerr” version 6.1.1.

Gene set enrichment of distinct CRISPR and shared CRISPR-RNAI pan-dependencies

We separately tested enrichment of the distinct CRISPR pan-dependencies (N=208) or the
shared CRISPR-RNAIi pan-dependencies (N=234) for over representation of gene sets from the
KEGG (N=186), Biocarta (N=289), Reactome (N=1,499), and GO (N=9,996) collections in
MsigDB version 7.0. P-values and odds ratios were assigned by one sided Fisher’s Exact test in
the R package ‘stats’ version 3.5.1 where the in-group is either shared or distinct
pan-dependencies and the out-group is all other high confidence dependencies. The P-values
were adjusted for multiple hypothesis testing across all collections of gene sets using the
Benjamini and Hochberg method implemented by the ‘p.adjust’ function from the same
package. All genes in the analysis are restricted to the high confidence dependency set
(N=1,703).

Predicting CRISPR pan-dependency status using results from gene trap, RNAi, and ExAC

The target vector we are predicting is genes classified as pan-dependencies in both CRISPR
datasets (Avana, KY) independently (positive class, N=1,247) and genes not classified as
pan-dependencies in either CRISPR dataset (negative class, N=12,845). We evaluate the
accuracy of classifying the target vector by ROC AUC using a single predictive feature for each
of the three methodologies (RNAI, gene trap, and ExXAC). The mean D2-Combined gene effect
across cell lines is used as the predictive feature representing RNAi (N=14,092). The predictive
feature for EXAC represents the constraint against loss-of-function in human population
sequencing and is calculated by converting the RVIS, mis_z, pLI, phi, LofTool, and s_het scores
to percentiles and taking the median for genes with values in at least 3 of the EXAC metrics. The
P value of gene trap experiments for KBM7 and HAP1 are converted to percentiles and the
average percentile of each gene is used as the predictive feature (N=13,141). The specificities,
sensitivities, and ROC AUC are computed using the R package pROC version 1.13.0.
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Modeling pan-dependency status using mRNA and protein expression levels

A binary target vector is defined such that 194 pan-dependencies unique to CRISPR are the
positive class and the 225 pan-dependencies that are shared using RNAi or CRISPR are the
negative class. A random forest classification model (R package ‘randomForest’ version 4.6-14
with default parameters, including 500 trees and minimum terminal node size of 1) is fit to the
two-class target vector where the predictive features included for each sample (perturbed target
gene) are RNAseq or proteomic characterizations®’ of the target gene itself. Specifically, for
each gene we summarize the RNAseq expression (log2 TPM) and normalized protein
abundance® distributions across 221 shared cell lines using the following metrics: mean,
variance, 0.1 quantile, 0.9 quantile, fraction of cell lines where the gene is not detected, and a
binary indicator of whether there were multiple isoforms of a gene detected. For proteins with
multiple isoforms per gene, we use the descriptive statistics from the isoform that is most
commonly detected. We also include the Pearson correlation between each gene’s RNAseq
expression and normalized protein abundance profile as a predictive feature.

To compare the utility of mRNA expression and protein features for predicting pan-dependency
status, we trained three different models using 1) only protein features, 2) only mRNA features,
or 3) all features (protein features, mMRNA features, and the correlation feature). Predicted class
probabilities are calculated using 5-fold stratified cross validation and the accuracy is
determined by the area under the receiver operating characteristic curve (ROC AUC). For each
predictive feature, the R package ‘randomForestExplainer’ version 0.10.1 was used to calculate
the minimal depth of the variable across trees. The top 5 predictive features, according to lowest
mean minimal depth, were used to fit a simplified tree to all pan-dependency classifications with
the R package ‘rpart’ version 4.1-15 to visualize an example of the interaction between features.

Predicting each gene effect profile using molecular and cellular features

Molecular and cell line annotation features were assembled into a large matrix of all predictive
features, including datasets released by Cancer Dependency Map (RNAseq, relative copy
number, damaging mutation, missense mutation, hotspot mutation, fusion, cell line
tissue/disease type) and published CCLE datasets®”*° (RPPA, total proteomics, metabolomics,
RRBS). Continuous features (RNAseq, relative copy number, RPPA, total proteomics,
metabolomics, RRBS) were individually z-scored per feature and joined with one-hot encodings
of categorical features (damaging mutation, missense mutation, hotspot mutation, fusion, cell
line tissue/disease type). Cell lines without RNAseq data were dropped and any remaining
missing values were assigned a zero. A confounder variable of the CRISPR or RNAi screens
(SSMD - represents the separation between positive and negative controls) is also included as
a predictive feature to control for technical aspects of screen quality.

Each gene effect profile from the CRISPR or RNAi datasets is modeled using two sets of
predictive features. The first is the Related model where features are only selected if there is a
prior known relationship between the perturbation target and the measured molecular feature
suggested by InWeb protein-protein interaction network, CORUM, or paralogs based on DNA
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sequence similarity from Ensembl Compara (exception of confounders and tissue/disease
annotations that are always included). The second model is the Unbiased model where the top
1,000 features according to Pearson correlation between feature and perturbation target are
included without use of any other prior information. Random forest regression models (100
trees, max-depth of 8, and a minimum of 5 cell lines per leaf) from the Python scikit-learn
package were trained using stratified 5-fold cross-validation. Once predictions were made for
each held-out set, the correlation between predicted and observed gene effects was used as the
accuracy per model. When a single predictive accuracy is presented for a gene, it represents
the maximum of the accuracies for the Related and Unbiased models for the gene. Predictive
feature importances are calculated for each model and are based on mean decrease in impurity
(Gini Importance).

Predictive marker classes

The top predictive features used by each accurate (r > 0.5) random forest model were
annotated based on the relationship between the predictive features and the target gene.
Dependencies are classified as genetic driver, expression addiction, synthetic lethal (paralog),
CYCLOPS, oncogene addiction, or synthetic lethal (oncogene/tumor suppressor) if they meet

any of the following criteria:

Predictive | Predictive | Feature Feature Feature Dep.- Dep.
marker Accuracy | relation importance | type Feature Skewness
class >0.5 to target Correlation
direction
Genetic Any model | Self normalized | Hotspot or | Negative Negative
driver feature missense | (CN),
importance | mutation, Positive
>0.05 fusion, (Mut.)
copy
number
Expression | Model Self Top feature | RNAseq Negative
Addiction using self of model
exp. feat.
Synthetic Model Other Top feature | Any Any
Lethal using (Paralog)
(Paralog) paralog as
top feature
CYCLOPS | Model Self Top feature | Copy Positive cor. | Negative
using self on same Number to top
exp. feat. chr. arm OR feature AND
and self RNAseq positive cor.
feature has to self CN
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normalized
feature
importance
>0.05
Oncogene [ Any model | Self Top 10 of Any Any Negative
Addiction (oncogen | unbiased or
e from related
oncoKB.o | model
rg)
Synthetic Model Other Normalized | Any Any Negative
Lethal using (oncogen | feature
(Oncogene | oncogene | eor TSG | importance
ITSG) or TSG from >0.05
feature oncoKB.o
rg)

Chemical and genetic screen correlation

Several large chemical screening datasets (GDSC*"*8, CTD25%, and PRISM>#° secondary
screen) were chosen based on cell line overlap with the genetic perturbation screens and
availability of dose-level viability measurements. PRISM values represent log fold-change
relative to DMSO, measured over an 8-point concentration range after 5 days, corrected for
experimental confounders using ComBat. While PRISM uses consistent media across cell lines
and consistent concentrations across compounds, the CTD2 dataset (16-point concentration
range with viability measured by CellTiter-Glo at 3 day endpoint) and GDSC dataset (9,7,0r 5
point concentration range with viability measured by Syto60, Resazurin, or CellTiter-Glo at 3 day
endpoint) use provider-recommended media for each cell line and a range of concentrations
selected specifically for each compound. GDSC2 data was selected over GDSC1 data when
available.

All drug datasets were processed using DepMap identifiers for cell lines and Broad Institute IDs
for compounds according to the mapping from The Drug Repurposing Hub (RepHub)*. Any
remaining replicates were averaged and datasets were filtered to contain only compounds that
have RepHub annotated gene targets included in the genetic perturbation datasets (including
the Project DRIVE sub-genome library) and cell lines included in DepMap. Since the first
principal component (PC1) has been previously reported® to be a correlate of growth rate using
the GDSC datasets, we removed PC1 from each of the dose-level datasets using the
removePrincipalComponents function from the R package ‘WGCNA’ which returns the residuals
after linear regression on PC1. Missing values were replaced with the median per drug-dose
prior to removing PC1 from the data, but these imputed values were removed for downstream
analysis.
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To compare drug-gene target correlation between CRISPR and RNAI datasets, we computed all
pairwise Pearson correlations between dose-level drug perturbations (CTD2: [344 cell lines, 182
drugs, 16 doses], GDSC: [261 cell lines, 238 drugs, ~8 doses], PRISM: [251 cell lines, 978
drugs, 8 doses]) and the CRISPR or RNAI gene effect profiles for 3,197 genes that were a
dependency (probability of dependency > 0.5) for at least 3 cell lines using either CRISPR or
RNAI. For each drug, we labeled its best correlated annotated target gene. For each annotated
drug-gene target pair, we labeled the best correlated dose. For each comparison between
CRISPR, RNAI, and an individual drug dataset, the cell lines, genes, and compounds are all
matched. However, each drug dataset contains a different selection of compounds, cell lines,
and doses, so these comparisons are not intended to identify meaningful differences between
drug datasets.

Co-dependency networks

RNAIi and CRISPR datasets (matched for cell lines, genes, and missing values) were filtered for
genes in the high-confidence dependency set which also have at least 3 dependent cell lines
using CRISPR or RNAIi (N=758). For each genetic dependency dataset (CRISPR, RNAI), all
pairwise gene-gene Pearson correlations were calculated to create a symmetric 758 gene by
758 gene matrix where higher values represent greater co-dependency. This simple method of
generating a weighted adjacency matrix (‘similarity network’) is used as a baseline for individual
CRISPR and RNAi co-dependency networks. To create an integrated CRISPR and RNAI
similarity network, we used the algorithm (Supplemental Fig. 17b) for Similarity Network
Fusion* (SNF) with and a few adjustments, most notably using Pearson correlation as the
similarity metric instead of converting euclidean distance to similarity (default). Sparse matrices
were created using k nearest neighbors (k=7) with the value of k determined by the log(number
of columns) as suggested by the SNF authors. After 20 iterations, the nearly converged
CRISPR and RNAIi weight matrices were averaged and the resulting CRISPR-RNAI fusion
similarity matrix was used for comparisons to the baseline CRISPR and RNAi similarity
matrices.

To compare the CRISPR-RNAI fusion network to the individual CRISPR and RNAI
co-dependency networks, we evaluated each network based on the recovery of gene-gene
relationships that are supported by prior evidence (PPIl, CORUM, paralog, KEGG) that we refer
to as ‘known related’ genes. For each of the 758 genes included in the co-dependency
networks, we performed a one-sided Kolmogorov-Smirnov test on the absolute values of the
gene’s similarity scores to all other genes in order to determine if its known related genes had
higher scores than other genes. For each gene, we also determined its best ranking known
related gene when sorted by absolute value of similarity score. When visualizing the local graph
structure of an example query gene within the larger co-dependency network, we included
edges between the query gene and its top 10 co-dependencies based on the absolute value of
the similarity score. The weight of the edges correspond to the z-score of the gene-gene
similarity score where the mean and standard deviation of the entire similarity matrix is used to
calculate the z-score.
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Data availability

All data required or produced by the analyses presented here are deposited as a figshare
collection (https://doi.org/10.6084/m9.figshare.c.5775152.v1). The ‘Raw data’ archive
(https://doi.org/10.6084/m9.figshare.16735132.v1) includes multi-omics data, drug and genetic
perturbation data, and gene sets (essentiality controls?*°?*° oncogenes/tumor suppressors from
oncoKB.org, MSigDB version 7.0, InWeb PPI network, CORUM 3.0 human core complexes,
DNA sequence paralogs from Ensembl Compara). These datasets have all been pre-processed
to use consistent cell line, gene, and compound identifiers, for which the mappings and aliases
have also been included. The provided multi-omics datasets are derived from published sources
(metabolomics®®, RPPA>, RRBS®°, proteomics®’), produced for the Cancer Dependency Map
18Q4-20Q1 releases (RNAseq expression, relative copy number, and mutation), or computed
directly (ssGSEA, EMT state, MSI) from one of the previously described omics datasets. The
provided drug screening datasets are from published sources (PRISM Repurposing secondary
screen®, GDSC**, CTD2%%) and include compound metadata from the Drug Repurposing Hub
(https://clue.io/repurposing). The provided genetic perturbation data is available as reagent
log-fold change as well as unscaled or scaled DEMETERZ2 (RNAIi) or CERES (CRISPR) gene
effects. RNAI data originates from the figshare (https://doi.org/10.6084/m9.figshare.6025238.v4)
for DEMETERZ2, which includes Project Achilles and Project DRIVE datasets. CRISPR data
originates from the Cancer Dependency Map (Avana) 19Q1-20Q2 releases and the CERES
processing of Project SCORE?® (KY) data (https://doi.org/10.6084/m9.figshare.9116732.v2).

The results of each analysis are available from the ‘Processed data’ archive
(https://doi.org/10.6084/m9.figshare.17948639.v1). For genetic dependencies, this includes
pan-dependency and selectivity (LRT) scores, probability of dependency, and detailed predictive
modeling results (predicted gene effects and feature importance) for each dataset. For drug
sensitivity, the viability datasets used to evaluate drug-gene target associations, which have
PC1 removed, are included along with the correlation between all drugs and annotated targets.
Co-dependency networks are provided in the form of weighted adjacency matrices. Other
processed data files are described in more detail via Figshare.

Code availability

Data analysis was performed using R and Python scripts that are available from GitHub
(https://github.com/broadinstitute/depmap-crispr-vs-rnai/tree/bioRxiv). This includes all the code
required to reproduce each analysis as well as generate all of the presented figures and tables.
The full collection of scripts can be run as a Snakemake pipeline using raw data from figshare
as input, or individual scripts can be used to explore specific results. For the purpose of
experimenting with individual scripts, we provide the option to download all intermediate pipeline
products from figshare as some products can be computationally expensive to generate. The
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code base for this project also includes several functions, such as the skewed-t likelihood ratio
test (LRT), that could be reused in the analyses of other large datasets.
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