

1 **Sexual deprivation induces a CRF independent stress response and decreases resistance to stressors in**
2 ***Drosophila* via a subpopulation of Neuropeptide F receptor-expressing neurons**

3
4
5

6 Julia Ryvkin¹, Anat Shmueli¹, Mali Levi¹, Avi Jacob², Tali Shalit³, Assa Bentzur¹, Bella Agranovich⁴, Ifat
7 Abramovich⁴, Eyal Gottlieb⁴, Dick R. Nässel⁵, Galit Shohat-Ophir^{1,6,7}

8
9

10
11
12
13

14 ¹The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002 Israel

15 ²The Kanbar scientific equipment center. The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan
16 University, Ramat Gan 5290002 Israel

17 ³Israel National Center for Personalized Medicine, Weizmann Institute of Science, 7610001 Rehovot, Israel

18 ⁴Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel

19 ⁵Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden

20 ⁶The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-
21 Ilan University, Ramat Gan 5290002 Israel

22 ⁷Lead contact

23

24 Correspondence should be addressed to G.S.O. (galit.ophir@biu.ac.il)

25 **Abstract**

26 Living in a changing environment composed of other behaving animals entails both opportunities and
27 challenges to obtain resources and mating partners. Actions that promote survival and reproduction are
28 reinforced by the brain reward systems, whereas coping with the challenges associated with obtaining these
29 rewards are mediated by stress response pathways. The activation of the latter can impair health and shorten
30 lifespan. Although similar responses to social opportunity and challenge exist across the animal kingdom, little
31 is known about the mechanisms that process reward and stress under different social conditions. Here, we
32 studied the interplay between deprivation of sexual reward and stress response in *Drosophila melanogaster*
33 and discovered that repeated failures to obtain sexual reward induces a frustration-like state that is
34 characterized by increased arousal, persistent sexual motivation, and impaired ability to cope with starvation
35 and oxidative stressors. We show that this increased arousal and sensitivity to starvation is mediated by
36 disinhibition of neurons that express receptors for the fly homologue of neuropeptide Y (neuropeptide F, NPF).
37 We furthermore demonstrate the existence of an anatomical overlap between stress and reward systems in the
38 fly brain in the form of neurons that co-express receptors for NPF (NPFR) and the corticotropin-releasing
39 factor (CRF)-like homologue Diuretic hormone 44 (Dh44), and that deprivation of sexual reward leads to
40 translocation of forkhead box-subgroup O (FoxO) to the cytoplasm in these neurons. Nevertheless, the activity
41 of Dh44 neurons alone does not mediate sensitivity to starvation and aroused behavior following sexual
42 deprivation, instead, these responses are mediated by disinhibition of ~12-16 NPFR-expressing neurons via a
43 dynamin-independent synaptic signaling mechanism, suggesting the existence of a NPFR mediated stress
44 pathway which is Dh44-independent. This paves the path for using simple model organisms to dissect
45 mechanisms behind anticipation of reward, and more specifically, to determine what happens when
46 expectations to obtain natural and drug rewards are not met.

47 Introduction

48 Living in a social environment involves diverse interactions between members of the same species,
49 the outcomes of which affects health, survival, and reproductive success^{1,2}. Coping with the challenges and
50 opportunities associated with this dynamic environment requires individuals to rapidly process multiple
51 sensory inputs, integrate this information with their own internal state and respond appropriately to various
52 social encounters²⁻⁸. Encounters that hold opportunities to obtain resources, mating partners, and higher social
53 status are considered rewarding and are therefore reinforced by the brain reward systems⁹, whereas the failure
54 to obtain such rewards due to high competition or lack of competence can be perceived as a frustrative
55 experience¹⁰⁻¹⁶. Deprivation or omission of expected reward (OER) occurs when organisms fail to obtain a
56 reward they expect to receive despite signals for its presentation¹⁰. This condition leads to a frustrative state,
57 characterized by increased motivation to obtain the reward^{11,13,17}, increased levels of arousal¹⁷, agitation¹²,
58 grooming^{10,18}, stress associated behaviors^{11,12}, drug consumption^{13,19}, locomotion¹², and aggression^{13-16,20}.
59 Example for a frustration-like state associated with deprivation of reward can be seen in small, submissive
60 individuals of the rainbow trout, *Oncorhynchus mykiss*, which display an increase in both aggressive behavior
61 and serotonin levels following frustrative reward omission, resulting in some cases in improved social status²⁰.

62 Although certain stress responses can increase motivation and improve chances for obtaining natural
63 rewards²¹, some types of social challenges like repeated aggressive encounters, lead to compromised health
64 and shorten lifespan²²⁻²⁸. There is considerable anatomical overlap between brain regions that process reward
65 and stress stimuli, as well as opposing functionality: exposure to natural rewards buffers the effect of stressors,
66 while stressors such as social defeat can alter sensitivity to reward and increase the rewarding value of certain
67 addictive drugs^{2,22,22-27}. Example for such opposing functions is seen in rodents where Neuropeptide Y (NPY)
68 decreases, while corticotropin-releasing factor (CRF) increases alcohol intake³⁵⁻³⁷, and binding of NPY to
69 NPY receptor Y1 that is found on CRF positive neurons within the bed nucleus of the stria terminalis (BNST)
70 function to inhibit binge alcohol drinking^{29,37,38}.

71 Similar responses to social stress and reward-seeking behaviors can be seen in a variety of animals,
72 suggesting that the central systems facilitating survival and reproduction originated early in evolution, and that
73 similar ancient basic building blocks, biological processes and genes are inherently involved in these
74 processes^{7,39}. In agreement with this concept, we and others showed that *Drosophila melanogaster* display the
75 ability to adjust their behavior and physiology to various changes in their social environment⁴⁰⁻⁵². Moreover,
76 recent studies provided evidence that the brains of mammals and fruit flies share similar principles when it
77 comes to encoding stress and reward^{40,53-55}. The homologs for NPY and CRF in *Drosophila* are Neuropeptide
78 F (NPF) and Diuretic hormone 44 (Dh44), respectively⁵⁶⁻⁵⁸. Their effects on behavior are similar to those of
79 mammals: the NPF and the NPF receptor (NPFR) system in flies mediates the response to reward and reward-
80 seeking behavior, feeding behavior, suppresses responses to aversive stimuli such as harsh physical
81 environments, decreases aggressive behaviors, and mediates courtship behavior^{40,56,59-68}. Like CRF neurons,
82 the Dh44 signaling pathway facilitates aggressive behavior in males, although whether Dh44 neurons mediate

83 social stress response is still unknown⁶⁹. Additionally, NPY\Y1 signaling is an essential link in a variety of
84 processes affecting health and lifespan in mammals⁷⁰⁻⁷⁴, and similarly, activation of NPF neurons in male flies
85 leads to decreased resistance to starvation and decreased lifespan^{75,76}.

86 We previously showed that successful mating, and more specifically, ejaculation, is rewarding for
87 male fruit flies⁷⁷. Successful mating and sexual deprivation bi-directionally regulate the level of NPF, which
88 in turn regulates the motivation to consume ethanol as a drug reward^{40,78}. We recently discovered that male
89 flies that experience repeated events of sexual deprivation respond to this social challenge by increasing their
90 competitive behaviors in the form of increased arousal when interacting with rival male flies in a group,
91 elevated aggression, and prolonged copulation time with receptive female flies (known as mate guarding)⁴⁷.
92 The latter is augmented by increased expression of certain seminal fluid genes that facilitate stronger post-
93 mating responses in female flies⁴⁷. While certain types of social challenges in mammals are considered
94 stressors, affecting health and lifespan, it is not known whether this occurs in fruit flies, and more specifically,
95 whether failure to mate in *Drosophila* male flies is an acute stressor imposing certain costs to male flies, or
96 simply a lack of reward.

97 In this study we show that repeated events of sexual deprivation in males lead to a frustration-like
98 stress response, which is characterized by increased arousal, high motivational state and lower ability to endure
99 metabolic and oxidative stressors. We then demonstrate the existence of an anatomical link between stress and
100 reward systems within the fly brain in the form of receptors for NPF on Dh44 expressing neurons. Finally, we
101 provide evidence that increased arousal and sensitivity to starvation stress result from disinhibition of a small
102 subset of NPF-receptor neurons, which do not express Dh44 or NPF, and that this is mediated by a dynamin-
103 independent, possibly peptidergic signaling mechanism.

104 **Results**

105 **Sexual deprivation induces an acute stress response in male flies**

106 The negative valence associated with courting non-receptive females and the behaviors exhibited by
107 sexually deprived male flies prompted us to use courtship suppression as a tool to investigate the connection
108 between deprivation of sexual reward and stress response in *Drosophila*. To determine whether
109 deprivation/omission of sexual reward is experienced as stress, we closely observed the behavior of male flies
110 during repeated encounters with previously mated non-receptive female flies. Wild type male flies were
111 exposed to three consecutive one-hour interactions with mated females, spaced by one-hour rest (the ‘rejected’
112 cohort). The control cohort (naïve) consisted of naïve males, which were replaced at the beginning of each
113 new session, and each time were coupled with new virgin females (Fig. 1A). The behavior of both cohorts
114 during the first 10 min of the interaction was manually analyzed. In line with previous studies, the rejected
115 cohort displayed a marked courtship suppression, reflected by a reduction in the overall time spent courting in
116 all 3 sessions (Fig. 1B)^{45,79,80}. Among those that exhibited active courtship during the sessions, various aspects
117 of their courtship actions, such as wing vibration, licking and attempts to copulate were analyzed (Fig. 1B).
118 To measure males’ innate response to first encounter with mated females, we analyzed all males in the first
119 session. To discover which actions are affected by repeated encounter with mated females we analyzed the
120 males that maintained active courtship during sessions 2 and 3.

121 While the total percentage of time males spent courting was lower among rejected males compared to
122 naïve males in all three sessions (Fig. 1B), certain aspects of their courtship behavior were no less vigorous,
123 such as the overall number of licking actions and attempts to copulate (Fig. 1B). Notably, although rejected
124 males depicted longer latency to court mated females during the first encounter (consistent with innate aversion
125 to the male pheromone cVA^{79,81}), they overcame this aversion in subsequent sessions and initiated courtship
126 at the same time as males that courted virgin females (Fig. 1B). Another feature that may reflect their surprising
127 persistence was documented in the duration of copulation attempts, which was 6 times longer compared to
128 controls (Fig. 1B), suggestive of persistent motivation to obtain mating reward. To our surprise, while rejected
129 males depicted reduced courtship during the first 10 minutes of the interaction with mated females in courtship
130 arenas (Fig. 1B), in a complimentary experiment, they did exhibit persistent courtship towards females along
131 the entire training session, with no reduction in the overall number of males that exhibited courtship, during
132 two entire days of consecutive rejection sessions (Fig. S1). These results suggest that rejected males experience
133 a conflict between high motivation to mate and repeated inability to fulfil this mating drive.

134 We previously documented increased aggression, increased social avoidance and longer mating
135 duration (LMD) following repeated sexual deprivation⁴⁷. These actions can be interpreted as a result of a
136 frustration-like state caused by stressful encounters with unreceptive females. To support this hypothesis, we
137 searched for stress/frustration related actions that occur whenever animals are prevented from properly
138 expressing a goal driven behavior. In such cases, rather than suspending actions, animals perform actions that
139 are considered irrelevant to the context in which they take place (i.e. displacement behaviors) such as
140 grooming, which is typically observed in stressful social situations^{82–85}. In agreement with this, we documented

141 a significantly higher incidence of self-grooming in rejected males in all 3 sessions, suggesting that self-
142 grooming is a displacement-like action that is associated with the failure to mate (Fig. 1C).

143 In mice, acute social stress caused by aggressive encounters with a dominant male is known to shorten
144 lifespan and reduce the ability to cope with other types of stressors²⁴⁻²⁸. The appearance of displacement like
145 behavior, increased aggression, and elevated arousal prompted us to further test the hypothesis that deprivation
146 of sexual reward is perceived as a stressor to male flies, which can impair their ability to cope with additional
147 stressors. To test this, three cohorts of male flies were exposed to the following social conditions: (a) males
148 that experienced multiple events of successful mating encounters over the course of two days (mated cohort),
149 (b) males that experienced multiple events of sexual deprivation by previously mated, non-receptive females
150 (rejected cohort) and (c) males that were housed in isolation for the entire duration of the experiment (single
151 cohort) (Fig. 1D). Each cohort was then exposed to starvation (1% agarose) or oxidative stress (20mM
152 paraquat), and the rate of survival over time was documented (Fig. 1D-F). If deprivation of sexual reward is a
153 stressor, we expect the cohort of rejected male flies to be more sensitive to other stressors. Indeed, rejected
154 males exhibited higher sensitivity to both starvation and oxidative stress compared to controls. While mated
155 and single cohorts reached 50% decline in survival after 22-24h of starvation, rejected male flies exhibited a
156 faster decline in survival rates, reaching 50% survival after less than 18h (Fig. 1E). Exposure to paraquat led
157 to a 50% decline in survival after more than 17h for both the mated and single cohorts, vs. less than 14 hours
158 for rejected males (Fig. 1F). This indicates that deprivation of sexual reward promotes sensitivity to starvation
159 and oxidative stress, further suggesting that multiple rejection events are perceived as an acute stressor,
160 compromising the ability of male flies to cope with other stressors. Extending this line of experiments, we next
161 examined whether deprivation of sexual reward also affects the overall lifespan of rejected male flies, by
162 quantifying the longevity of the 3 cohorts of flies over the course of 70 days. While rejected and mated cohorts
163 exhibited shorter lifespans compared to isolated male flies, there were no significant differences between
164 rejected and mated cohorts (Fig. 1G). The prolonged lifespan of single male flies suggests that any interaction
165 with female flies is sufficient to reduce the longevity of male flies (even as little as 6h), and is in agreement
166 with previous studies showing that exposure to female pheromones shortens the lifespan of male flies^{75,86}. The
167 lack of differences between the rejected and mated cohorts suggests that deprivation of sexual reward does not
168 affect general lifespan, but rather affect the way by which male flies cope with additional acute stressors.
169

170 **Deprivation of sexual reward is represented by discrete transcriptional programs in NPFR neurons**

171 To explore mechanisms that could explain the apparent trade-off between the behavioral responses to
172 being repeatedly rejected and the sensitivity to subsequent stressors, an unbiased transcriptomic approach was
173 undertaken to highlight changes in brain transcriptional programs in response to deprivation of sexual reward.
174 For that, we isolated and sequenced the transcriptome of a selected neuronal population from brains of male
175 flies that experienced either two days of repeated rejection events, successful mating, or single housing. Cell-
176 type specific RNA isolation was achieved using the INTACT (Isolation of Nuclei Tagged in specific Cell
177 Types) method, which utilizes immunoprecipitation of genetically marked nuclei (Fig. 2A)⁸⁷. We chose to

178 isolate NPF-receptor expressing neurons based on their role in processing sexual interactions, motivational
179 drives, reward seeking behavior and aggressive and aroused behaviors^{40,62} (Fig. 2B). Analyzing the
180 transcriptome of the 3 different conditions revealed 258 differentially expressed genes (DEGs) with discrete
181 transcriptional programs for rejection, successful mating, and single housing (Fig. 2C, Table S1).

182 We documented 77 DEGs in mated vs. single male flies, 90 DEGs in mated vs. rejected male flies,
183 and 42 DEGs when comparing rejected to single males (Figure 2D, Table S2). Analyzing the statistical
184 overrepresentation of known biological processes of all DEGs using the PANTHER GO-term analysis, did not
185 reveal overrepresentation of specific GO term groups indicative of common pathway or cellular function.
186 Nevertheless, the identified DEGs can shed light on gene products that function in shaping behavioral and
187 physiological responses to changes in social conditions. Interesting examples are two circadian clock genes,
188 Clock (Clk) and period (per), in rejected males (Fig. 2E-F). Tachykinin (tk), a neuropeptide that functions to
189 regulate aggressive arousal and process anti-aphrodisiac pheromone information was upregulated in response
190 to rejection (Fig. 2E,F,H)^{41,51,88}. Another courtship-related gene identified in our dataset was Ubiquitin-
191 conjugating enzyme7 (Ubc7), which was down-regulated in response to rejection (Fig. 2E,F,H)^{60,89}. Focusing
192 on DEGs specific for the rejected cohort, we identified 15 genes (Fig. 2H) that were enriched or depleted in
193 rejected males compared to both single and mated flies. Manual annotation of these indicated a few genes
194 associated with the metabolic response to starvation and oxidative stress or related to the insulin/FoxO stress
195 response pathway, such as Insulin-like peptide 5 (Ilp5), Flavin-containing monooxygenase 2 (Fmo2) and
196 Glucose dehydrogenase (Gld) (Fig. 2H)⁹⁰⁻⁹⁵. This suggests a molecular connection between metabolic\cellular
197 stress response pathways and the experience of deprivation of sexual reward.

198

199 **Sensitivity to starvation and oxidative stress is not a result of cytoprotective activity in DH44 positive**
200 **NPFR neurons**

201 Expression differences in genes associated with metabolism and stress response following rejection
202 support two possible explanations for what appears to be a trade-off between short-term behavioral responses
203 and higher sensitivity to starvation and oxidative stress. The first is that enhancement of some courtship
204 behaviors during rejection generates a high metabolic demand, resulting in depletion of reservoirs and
205 therefore an increase in sensitivity to starvation. The second is that the challenge of repeated rejection and the
206 resulting frustration-like state induces oxidative stress or activates a neuronal stress response that impairs the
207 cytoprotective response to starvation. To test whether rejected male flies are subjected to high energetic
208 demand, we analyzed triglycerides (TAG), fly weight and body or hemolymph glucose levels in rejected,
209 mated and single male flies. No difference was documented in body TAG, glucose levels, or body weight
210 between the cohorts (Fig. 3A-D), suggesting that rejected male flies do not suffer from an energetic deficit
211 which would increase their sensitivity to starvation.

212 The brain, the central organ that controls stress response, is structurally and chemically sensitive to
213 stress, especially oxidative stress⁹⁶. We hypothesized that certain brain metabolites are produced differentially
214 in response to acute social stress, affecting starvation and oxidative stress resistance. To capture metabolic

215 changes, which could potentially affect resistance to stressors, we extracted head metabolites of males that
216 experienced courtship conditioning using polar solvents and performed liquid chromatography–mass
217 spectrometry (LC-MS) for targeted metabolite analysis. Analysis of the metabolome revealed a unique profile
218 for each cohort (Fig. 3E). Looking only at metabolites which were enriched or depleted in rejected compared
219 to both mated and single cohorts, five metabolites were enriched in rejected males: Glycine, tryptophan, 5-
220 Aminolevulinic acid (5ALA), acetyl-glutamine, and stearic acid (Fig. 3E, Table S3). Though tryptophan can
221 be converted to serotonin or tryptamine, and most of the tryptophan metabolizes to kynurenine pathway (KP)
222 metabolites, which contribute to a shorter lifespan^{97–100}, we did not document significant accumulation or
223 decline of metabolites in the KP (Fig. 3E). Additionally, we did not document a difference in the abundance
224 of serotonin (Fig. 3E). No difference was observed in oxidative agents nor in antioxidant activity and glucose
225 levels, though a decline in trehalose (the main circulating sugar in flies) levels was detected in single males
226 compared to mated and rejected males, indicating a possible change in insulin signaling^{101–104}. In summary,
227 no significant changes in the metabolome were detected that could explain the enhanced sensitivity to stressors
228 observed in rejected flies, suggesting this is not a result of metabolic effects.

229 Activation of the insulin signaling pathway can decrease lifespan and affect resistance to starvation,
230 mainly via FoxO phosphorylation^{105–111}. The connection between FoxO activity and lifespan\resistance to
231 stressors has been studied in *Drosophila*, typically in the fat body, where the activity of FoxO can prolong
232 lifespan and increase resistance to stressors^{105,112}. FoxO activity in abdominal and\or pericerebral fat bodies
233 affects insulin signaling, lipolysis, gluconeogenesis and thus the abundance of TAG and different
234 metabolites^{86,92,105,112–114}. The lack of changes in TAG, glucose, and oxidative stress related metabolites in
235 response to deprivation of sexual reward indicates that FoxO activity in fat body is not affected, and instead
236 suggests a potential role in neurons, as supported by our RNAseq results. To test this possibility, we examined
237 expression pattern of endogenous FoxO in the brain using FoxO specific antibodies. In agreement with Cao et
238 al¹¹⁵ and Okamoto, et al.⁸⁸, we identified six FoxO positive neurons in the pars intercerebralis neurons (PI)
239 (Fig. 4A). These FoxO expressing neurons were colocalized with NPFR expressing insulin-producing cells
240 (IPCs) that could be identified by Ilp2 immunolabeling (Fig. 4A, S2A,B). Based on similarity in the
241 transcriptional profile of Dh44 and NPFR neuronal populations identified in our previous study⁶⁰, we examined
242 the overlap between the two populations as well as FoxO expression. Indeed, all six PI Dh44 neurons are
243 NPFR (Fig. 4B), and five of them also express FoxO (Fig. 4C). This indicates that these are NPFR-Dh44+ and
244 FoxO expressing neurons.

245 Next, we examined whether sexual deprivation inactivates FoxO by forcing its translocation to the
246 cytoplasm of neurons, thereby preventing it from inducing transcription of genes important for survival. We
247 imaged the subcellular localization of FoxO in brains of male flies that experienced sexual deprivation, mating
248 or were single housed at the end of the conditioning phase or after 20 hours of starvation. The mean
249 fluorescence intensity of FoxO within the cytoplasm (cyto) was normalized to the mean fluorescence intensity
250 of FoxO in the nucleus (cyto/nuc) and compared among rejected, mated, and single housed males. Flies which
251 were not subjected to starvation showed no significant difference in mean fluorescence intensity between the

252 cohorts (Fig. S3A-D), whereas starved cohorts exhibited significant differences between conditions. Rejected
253 males showed a higher relative cyto/nuc intensity of fluorescence compared to both mated and single males
254 (Fig. S3E-H), and both rejected and mated males displayed higher relative mean cyto/nuc intensity of
255 fluorescence than single housed males, perhaps due to exposure to female pheromones (Fig. S3E-H). This
256 suggests that sexual rejection changes FoxO translocation to the nucleus, which might affect sensitivity to
257 stressors.

258 To test whether export of FoxO from the nucleus is required for the increased sensitivity of rejected
259 males to starvation, a form of FoxO that is mutated in three phosphorylation sites such that it is retained in the
260 nucleus (UAS-dFoxO-TM)¹⁰⁵ was expressed in Dh44 neurons. Dh44> dFoxO-TM flies were exposed to
261 repeated sexual deprivation and their sensitivity to starvation stress was analyzed. While, rejected males
262 expressing nuclear FoxO exhibited similar response to starvation as their corresponding genetic controls, they
263 were more sensitive to starvation than Dh44> dFoxO-TM single housed males flies, similar to the differences
264 between rejected and single housed observed in WT males (Fig. 1E, Fig. 4D). Altogether, these results suggest
265 that repeated sexual deprivation, followed by starvation affects FoxO localization in Dh44 neurons. However,
266 FoxO activity in these neurons does not directly facilitate sensitivity to starvation in response to sexual
267 deprivation.

268

269 **Disinhibition of NPFR neurons increases sensitivity to starvation in male flies**

270 Given the bidirectional regulation of NPF levels in response to sexual deprivation and mating, where
271 deprivation reduces and mating induces its levels⁴⁰, and the inhibitory effect of NPY binding to NPY receptor
272 neurons^{29,56,116-118}, we postulated that the disinhibition of NPFR neurons in response to sexual deprivation
273 promotes sensitivity to starvation. To test this hypothesis, we knocked down NPFR in NPFR neurons and
274 compared the sensitivity of single, rejected and mated male flies to starvation stress. If sexual deprivation
275 reduces NPF signaling, that in turn disinhibits NPFR neurons, we expect mated male flies to exhibit similar
276 responses as rejected male flies. This manipulation abrogated the differences between mated and rejected
277 cohorts (Fig. 5A), implying that NPFR is necessary for this effect. Interestingly, NPFR KD in single housed
278 males showed higher resistance to starvation compared to both rejected and mated males (Fig. 5A), implying
279 that NPFR activity has no effect on single housed males. It also emphasizes that NPFR KD increased mated
280 males' sensitivity to starvation rather than reducing rejected males' sensitivity. This suggests that the activity
281 of NPFR neurons mediates the perception of non-rewarding experience in the context of a sexual experience,
282 and consequently increases sensitivity to starvation.

283 To further strengthen this finding and mimic rejection state, we optogenetically activated NPFR
284 neurons in naïve NPFR>csChrimson male flies by repeatedly exposing them to red light for two days, three
285 times each day, and tested their resistance to starvation. Experimental flies were significantly more sensitive
286 to starvation than controls (Fig. 5B), implying that activation of NPFR neurons is sufficient to mimic the effect
287 of sexual deprivation on sensitivity to starvation. To assess whether activation of these neurons also mediates
288 other behavioral phenotypes observed in rejected males, we assayed the behavior of NPFR>csChrimson flies

289 during optogenetic activation in an open field exploration arena (FlyBowl) in which flies can move and interact
290 in two dimensions. The system is coupled with a tracking and machine learning algorithms capable of
291 automatically quantifying various behavioral parameters^{60,119}. Intriguingly, we observed no difference in the
292 behavior of experimental flies compared to both genetic controls (NPFRG4⁺, UAS-csChrimson⁺) (Fig. 5C,
293 S4), suggesting that disinhibition of all NPFR neurons is sufficient to cause increased sensitivity to starvation,
294 but not to induce changes in social interaction.

295 We next examined whether synaptic signaling is required for starvation sensitivity that is triggered by
296 activation of NPFR neurons. To test this, NPFR neurons were optogenetically activated while their synaptic
297 transmission was blocked using temperature-sensitive Shibire (Shibire^{ts}). Activation of NPFR neurons and
298 simultaneous inhibition of their synaptic transmission resulted in similar levels of sensitivity to starvation as
299 that of activation of NPFR neurons alone (Fig. 5D), suggesting that sensitivity to starvation induced by sexual
300 deprivation is not mediated via a synaptic dynamin-based neurotransmitter release, but possibly via peptidergic
301 signaling. Since Insulin signaling is dynamin independent, we tested whether sexual deprivation or activation
302 of NPFR neurons induces insulin release from IPCs. Imaging of endogenous Ilp2 in brains of males that
303 experienced sexual deprivation or optogenetic activation of NPFR neurons identified no apparent difference
304 in its abundance in under all tested conditions (Fig. S5A-E).

305

306 **Activation of a small subpopulation of NPFR neurons increases sensitivity to starvation and promotes 307 social arousal**

308 So far, we demonstrated that optogenetic activation of NPFR neurons is sufficient to recapitulate the
309 increased sensitivity to starvation but does not mimic the increased arousal and frustration-like behavior
310 associated with deprivation of sexual reward. Since the NPFR neuronal population consists of about 100
311 neurons, we next investigated which subset of NPFR cells is responsible for the enhanced sensitivity to
312 starvation. Given the possibility that sensitivity to starvation is mediated via neuropeptide release, we divided
313 the NPFR expression pattern into sub-populations using genetic intersection with drivers for neuropeptides
314 that are co-expressed with NPFR such as NPF¹²⁰, Dh44 and Tachykinin (illuminated in our RNAseq dataset,
315 Fig. 2E,F,H, Table S2). Activating Dh44 neurons did not affect sensitivity to starvation and did not lead to
316 apparent behavioral responses using the FlyBowl system (Fig. 6A, S6B). In addition, knocking down the
317 expression of Dh44 in NPFR neurons did not change sensitivity to starvation (Fig. S6A), altogether suggesting
318 that Dh44 signaling pathway does not mediate the sexual reward deprivation stress response. Similarly,
319 activation of NPFR^{NPF} mutual cells (P1 and L1-l neurons) did not affect either sensitivity to starvation or
320 group behavior in the FlyBowl (Fig. 6B, S6C), suggesting that subpopulations of NPF expressing NPFR
321 neurons, which presumably have the capacity for autoinhibition are not responsible for these effects.

322 Finally, the activation of a subpopulation of 22-26 NPFR neurons that co-express the neuropeptide
323 Tachykinin (NPFR^{TK}) (Fig. 6C) induced starvation sensitivity that was similar in its extent to activation of the
324 entire NPFR population (Fig. 6D). Knock down of Tachykinin in NPFR did not affect sensitivity to starvation
325 (Fig. S7A,B), suggesting that the activity of NPFR^{TK} neurons and not Tachykinin neuropeptide mediate

326 activation induced sensitivity to starvation. Next, we tested the behavioral responses associated with the
327 activation of NPFR^{TK} neurons in the FlyBowl system. NPFR-TK>csChrimson males exhibited increased social
328 arousal, characterized by higher levels of active approach behavior, increased duration of chase behavior, an
329 increase in unilateral wing vibration (song), and in many cases, formed long chains containing 4-8 flies (Fig.
330 6E). Moreover, experimental flies depicted a significant reduction in features that reflect changes in angle and
331 speed between two close individuals (absanglefrom1to2, absphidiff, absthetadiff, and angleonclosestfly; see
332 Fig. S4 for more details). This may signify an increase in coordination between pairs of flies and suggest that
333 NPFR-TK>cs-Chrimson flies engage more persistently with others when interacting (Fig. 6E). Lastly,
334 experimental flies exhibited reduced social clustering (Fig. 6E), altogether suggesting that activation of
335 NPFR^{TK} neurons mimics some of the activity-related behavioral effects induced by sexual deprivation: reduced
336 social clustering and overall arousal. Taken together, this implies that although expression of tk transcript in
337 NPFR neurons does not affect sensitivity to starvation, disinhibition of NPFR^{TK} neurons does affect sensitivity
338 to starvation and produces a behavioral phenotype which resembles a frustration\stress-like behavior.
339 Analyzing the expression pattern of NPFR^{TK} neurons, we noticed that part of this neuronal population co-
340 expresses Dh44 and NPF (Fig. 6F, S7C,D), suggesting that only about 12-16 NPFR^{TK} neurons that do not
341 express Dh44 and NPF regulates both sensitivity to starvation and tunes arousal levels. This further indicates
342 that stress-like response to reward deprivation is mediated by NPF/NPFR rather than a Dh44 circuit.

343

344

345 **Discussion**

346 Reward-seeking behaviors are evolutionary adaptations designed to increase motivation to perform
347 actions that in turn will increase fitness. When the expectation of reward is not met, individuals exhibit
348 frustration and change their behavior towards other animals¹⁰⁻¹⁶. Here we utilized courtship suppression to
349 deprive male flies of the inherent expectation of sexual reward as a model for frustration-like stress response
350 in *Drosophila*. While courtship suppression is associated with reduced courtship and presumably a defeat-like
351 state, we discovered that rejected males are rather persistent in their attempts to obtain sexual reward. This
352 finding is not completely surprising considering the innate nature of mating motivation and the presence of
353 female aphrodisiac pheromones. It can also be attributed to measuring various courtship actions rather than
354 overall percentage of time spent courting, which is the usual indicator used to quantify courtship.

355 In response to repeated failures to mate, rejected males exhibit features characteristic of a frustration-
356 like state, such as persistent mating actions (some of which are elongated), increased arousal, increased
357 aggression, as well as long mating duration upon successful mating encounters, all of which are reminiscent
358 of high motivational state⁴⁷. While this motivational state may serve to increase their fitness, it is perceived as
359 a stressful experience manifested by the appearance of displacement-like behavior and accompanied by
360 temporal costs in the form of sensitivity to acute stressors. This is the first example in flies of a situation in
361 which deprivation of sexual reward is not simply a lack of reward but is perceived as a stressful experience.

362 In search for mechanisms that could explain the behavioral and physiological responses to deprivation
363 of sexual reward we examined four possible directions: (1) changes in gene expression within discrete neuronal
364 populations (2) energetic costs or modulation of metabolic pathways (3) activation of cytoprotective stress
365 response (4) disinhibition of NPF target neurons. Although Gendron et al. (2014⁷⁵) showed that exposure to
366 female, as opposed to male, pheromones lowers the levels of TAG in males, we did not detect metabolic
367 changes that could explain sensitivity to starvation or oxidative stress, and therefore ruled out energetic cost
368 as the cause for sensitivity to starvation stress. Still, the metabolome highlighted some interesting metabolites,
369 such as 5-Aminolevulinic acid, which is enriched in rejected flies. This may indicate a reduction in Hem
370 synthesis and consequently an elevation in protoporphyrin, and a possible reduction in heme oxygenase (HO).
371 Although there is some evidence that protoporphyrin can act as an antioxidant^{121,122} it mainly functions as a
372 pro-oxidative^{123,124}. HO is a rate-limiting enzyme that degrades heme into biliverdin, carbon monoxide (CO),
373 and iron¹²⁵. In *Drosophila*, *ho* gene is expressed in different brain tissues including the optic lobe, the central
374 brain, and glial cells, and plays an important role in cell survival and protection against paraquat-induced
375 oxidative stress¹²⁶. This is consistent with rejected males experiencing oxidative stress and are thus more
376 sensitive to paraquat. However, this does not clarify why in addition, rejected males were more sensitive to
377 starvation.

378 We previously generated a transcriptomic map of the fly brain, demonstrating that different neuronal
379 populations possess distinct transcriptional programs⁶⁰, and extended this approach to identify changes in gene
380 expression within selected neuronal populations following social and sexual experience. An example of the
381 strength of the approach is the downregulation of Ubiquitin conjugating enzyme (UBC7) in NPFR neurons in

382 response to rejection. Though a null mutation of UBC7 that eliminates its expression in all tissue disrupts the
383 ability of male flies to court⁸⁹, its knockdown in NPFR neurons leads to the opposite phenotype, including
384 enhanced motivation to court and increased social arousal⁶⁰, providing a functional explanation for its
385 downregulation in response to rejection.

386 Though the INTACT technology provides valuable information that broadens our understanding of
387 the molecular signature of neurons under different conditions, it is challenging to bridge the gap between DEGs
388 and their functional relevance. While imaging NPFR^{TK} neurons, we noticed that their expression did not match
389 the known tk expression^{41,51,91,127,128}. This could be attributed to the high resolution of INTACT, which enabled
390 us to identify a minor but significant elevation of tk transcript in NPFR cells whereas protein/peptide could
391 not be identified by immunolabeling. Alternatively, this could result from a tk promoter activity at a very
392 specific period in fly development, facilitating the expression of LexAop-FlpL in these cells. Another
393 explanation is that only tk transcript is upregulated, but no TK peptides are generated.

394 One of the limitations of the INTACT method that makes it difficult to interpret the genomic results,
395 is that it uses genetic drivers to mark certain neuronal populations. The drivers are based on the expression
396 pattern of marker genes such as NPF or NPFR, resulting in the isolation of cells that express this marker and
397 are composed of smaller subsets of neurons with composite molecular signatures. By tagging neurons using
398 this approach, we extract all the cells that express a certain marker gene, inevitably pooling together very
399 different cells in terms of function and location inside the brain. A good example for this is the NPFR driver,
400 which marks a population of 100 neurons, some of which also express NPF¹²⁰, while others express Dh44, TK
401 or are dopaminergic⁵⁹. A way to overcome this limitation is profiling smaller numbers of neurons using an
402 improved version of the INTACT called TAPIN¹²⁹ and new technologies that allow mapping of the expression
403 of single RNA molecules in intact brain tissue, such as expansion sequencing¹³⁰.

404 We revealed an anatomical association between reward and stress systems in the form of receptors for
405 NPF on Dh44 neurons, resembling the known interplay between NPY and CRF neurons in mammals²⁹. In
406 addition, we documented a translocation of FoxO to the cytoplasm of Dh44 neurons in response to deprivation
407 of sexual reward followed by starvation. Although this could represent the activation of a cellular stress
408 response that could limit the ability of flies to resist other types of stressors, as has been shown in *C.elegans*¹⁰⁹,
409 we did not find a functional connection between rejection, FoxO translocation in Dh44 neurons and increased
410 sensitivity to starvation.

411 After ruling out metabolic changes and brain cytoprotective stress response as possible explanations
412 for the responses of male flies to deprivation of sexual responses, we demonstrated that sensitivity to starvation
413 stress is caused by disinhibition of NPF target neurons, mimicked in our experiments by optogenetic activation
414 of NPFR neurons as well as KD of *npfr* transcript in NPFR neurons. This response is mediated through a
415 dynamin independent signaling mechanism, possibly bulk endocytosis or neuropeptide release, which does
416 not involve synaptic vesicle reuptake. Interestingly, single males were not affected by NPFR KD. This can be
417 attributed to their lack of sexual and social interaction. This can be also seen in their distinct internal state
418 reflected by a unique transcriptome and metabolome expression. Furthermore, the activation of only ~22-26

419 NPFR^{TK} neurons proved sufficient to induce both increased sensitivity to starvation and some of the behavioral
420 phenotypes observed in rejected males. The identified NPFR sub-population can be divided into smaller known
421 subpopulations: six of these neurons express Dh44, and two pairs of NPFR^{TK} neurons, L1-1 and P1, colocalize
422 with NPF expressing neurons (Fig. 6F). Both of these NPFR-NPF neuron pairs were previously indicated as
423 not related to wakefulness promotion, and presumably not involved in reward-seeking behavior^{76,120}. Thus, it
424 is likely that L1-1, P1 NPFR-NPF neurons do not facilitate increased arousal and might not be affected by
425 sexual reward deprivation. Indeed, we showed that the activation of these neurons did not affect either
426 resistance to starvation or group behavior in the flybowl. While CRF neurons in mammals mediate reward
427 seeking behaviors and responses to social stress^{21,35-37,131-136} and the fly Dh44 neurons are known to facilitate
428 aggressive behaviors⁶⁹, we did not find evidence to support their role in regulating responses to social stress.
429 Therefore, the activity of NPF\NPFR circuit alone is sufficient to facilitate a stress-like response caused by
430 deprivation of a reward and increase subsequent sensitivity to acute stressors (Fig. 6G). Further dissection of
431 the NPFR and NPFR^{TK} neuronal subpopulations is needed to better understand the role of each cell type in
432 response to sexual reward deprivation.

433 This is the first documentation of a frustration-like stress response in *Drosophila*, which is caused by
434 innate expectation of a natural reward that is not achieved. Sexual deprivation, therefore, can be used as a tool
435 to study the interplay between natural reward omission, reward seeking behaviors such as ethanol
436 consumption, stress, and addiction. Further investigation of cell type-specific mechanisms that facilitate
437 frustration-like response to reward omission will shed more light on the complex mechanism by which the
438 brain processes motivation and reward.

439 **Methods:**

440 **Fly lines and culture:** *Drosophila melanogaster* WT Canton S flies were kept at 25C°, ~50% humidity,
441 light/dark of 12:12 hours, and maintained on cornmeal, yeast, molasses, and agar medium. Most fly lines were
442 back-crossed to a Canton S background. UAS UAS.*unc84*-2XGFP and UAS mCD8 GFP were obtained from
443 HHMI Janelia Research Campus. For INTACT, UAS.*unc84*-2XGFP transgenic flies were crossed with NPFR-
444 GAL4 flies. NPFR-Gal4, UAS-NPFR RNAi, NPF-GAL4 flies were a gift from the Truman lab (HHMI Janelia
445 Campus). UAS<dsFRT>cs-Chrimson-mVenus in attp2, and LexAop-FLPL flies were a gift from the Heberlein
446 lab (HHMI Janelia Campus). UAS-dFoxO-TM flies were a kind gift from the Tatar lab (Brown University).
447 The following lines were ordered from the indicated fly centers: TK-LexA (Bloomington #54080), UAS-tk-
448 HA (ORF F000997), UAS-tk RNAi (VDRC #103662), Dh44-Gal4 (VDRC #207474).

449

450 **RNA extractions from different neuronal cell types (INTACT):** Cell type specific labeled nuclei were isolated
451 using the INTACT method (Isolation of Nuclei Tagged in A specific Cell Type technique) as previously
452 described⁸⁷. This method was slightly modified as follows: about 100 adult male flies collected from 3-4 days
453 F1 generation of NPFR GAL4_driver X UAS.*unc84*_2XGFP_reporter were subjected to a courtship assay,
454 at the end of which they were anesthetized by CO₂ and their heads were separated on ice using a scalpel. 9ml
455 of homogenization buffer (20mM β-Glycerophosphate pH7, 200mM NaCl, 2mM EDTA, 0.5% NP40
456 supplemented with RNAase inhibitor, 10mg/ml t-RNA, 50mg/ml ultrapure BSA, 0.5mM Spermidine, 0.15mM
457 Spermine and 140ul of carboxyl Dynabeads -270 (Invitrogen: 14305D) was added to each sample. The heads
458 were filtered on ice by a series of mechanical grinding steps followed by filtering the homogenate using a
459 10um Partek filter assembly (Partek: 0400422314). After removing the carboxyl-coated Dynabeads using a
460 magnet, the homogenate was filtered using a 1um pluriSelect filter (pluriSelect: 435000103). The liquid phase
461 was carefully placed on a 40% optiprep cushion layer and centrifuged in a 4°C centrifuge for 30min at
462 ~2300Xg. The homogenate/Optiprep interface was incubated with anti-GFP antibody (Invitrogen: G10362)
463 and protein G Dynabeads (Invitrogen: 100-03D) for 40 minutes at 4°C. Beads were then washed once in NUN
464 buffer (20mM β-Glycerophosphate pH7, 300mM NaCl, 1M Urea, 0.5% NP40, 2mM EDTA, 0.5mM
465 Spermidine, 0.15mM Spermine, 1mM DTT, 1X Complete protease inhibitor, 0.075mg/ml Yeast torula RNA,
466 0.05Units/μl Superasin). Bead-bound nuclei were separated using a magnet stand and resuspended in 100μl of
467 RNA extraction buffer (Picopure kit, Invitrogen # KIT0204), and RNA was extracted using the standard
468 protocol.

469

470 **RNA-seq library preparation and sequencing:** The NuGEN RNAseq v2 (7102-32) kit was used to prepare
471 cDNA from the INTACT purified RNA, followed by library preparation using the SPIA - NuGEN Encore
472 Rapid DR prep kit. Samples were sequenced on an Illumina HiSeq using single-end 60 base pair reads.

473

474 **Determining gene expression levels from RNA-seq:** Reads were trimmed using cutadapt¹³⁷ and mapped to
475 *Drosophila melanogaster* (BDGP6) genome using STAR¹³⁸ v2.4.2a (with EndToEnd option and

476 outFilterMismatchNoverLmax was set to 0.04). Counting proceeded over genes annotated in Ensembl release
477 31, using htseq-count¹³⁹ (intersection-strict mode). Reads overlapping exons in each gene were counted using
478 featureCounts¹⁴⁰, and these counts were used as input into DESeq2¹⁴¹. DeSeq2 function rlog(blind=FALSE)
479 was used to calculate normalized counts with a regularized log transformation. The DESeq() and results()
480 functions were used to calculate gene expression differences between pairs of cell types.

481

482 **Behavioral assays: 1. Courtship suppression recording:** WT males and females were collected on CO₂ 3-4 days
483 before the recording. Males were kept in groups of 25 per vial. To generate mated females for the experiment,
484 virgin females were introduced to males ~16 hours before the experiment. All flies were kept in the incubator
485 at 25°C, ~50% humidity, and light/dark of 12:12 hours. Prior to the conditioning, the mated females were
486 separated from the males on CO₂ on the morning of the recording. During the recording, the temperature was
487 kept at ~25°C, and humidity ~55%. Since the extent of courtship display is shaped by circadian rhythmicity,
488 where male flies depict the highest courtship activity closest to the onset of light, and their general activity
489 declines towards noon, the first session started right after the onset of light, and the other two sessions took
490 place in the afternoon. Virgin male flies were exposed to either mated or virgin female for three one-hour
491 sessions, and their behavior was recorded using a Point Grey Firefly camera and analyzed in detail during the
492 first 10 minutes of each interaction. At the end of each session, female flies were removed, and the males that
493 experienced rejection were kept isolated in narrow glass vials for one hour. At the end of the rest hour, males
494 were returned to their original location in the courtship arena for the recording. In order to compare the
495 courtship behavior of rejected and naive males, virgin males from the naive cohort were replaced at the
496 beginning of each session. Different aspects of courtship behavior were analyzed manually using “Lifesong”
497 software.

498 **2. Courtship conditioning for INTACT:** Males and females were collected within 2 h of eclosion on CO₂, 3-4
499 days before courtship conditioning. Males were collected into narrow glass vials (VWR culture glass tubes
500 10X75mm) containing food and kept single housed until the conditioning. To generate mated females for the
501 experiment, mature males were added to the females ~16 h before the experiment. All flies were kept in the
502 incubator at 25°C, ~50% humidity, and light/dark of 12:12 hours. The mated females were separated from the
503 males on the morning of the conditioning. During the conditioning, the temperature was kept at about 25°C,
504 and humidity ~55%.

505 **Generation of rejected males:** Individual males were placed with mated females for 3 one-h conditioning
506 trials (separated by 1-h rests) a day for two consecutive days. Females were removed after each trial.

507 **Generating mated males:** To generate the “mated-grouped” cohort, individual males were housed with virgin
508 females for 3 one-h conditioning trials (separated by 1-h rests) a day for two consecutive days. Females were
509 removed after each trial. **Single males:** Virgin males were collected within 2 h of eclosion and kept separately
510 in small food vials during the entire trial. Gentle handling was performed parallel to rejected and mated males’
511 conditioning sessions.

512

513 3.FlyBowl: FlyBowl experiments were conducted as described in Bentzur et. al¹¹⁹. In brief: groups of 10 male
514 flies, which were socially raised in groups of 10 for 3-4 days, were placed in FlyBowl arenas, and their behavior
515 was recorded at 30 fps for 15 min and tracked using Ctrax¹⁴². Automatic behavior classifiers and Per-frame
516 features were computed by JABBA¹⁴³ tracking system. Data of all behavioral features were normalized to
517 percentage of difference from the average of each experiment for visualization. Details about the different
518 features are found in Figure S4.

519

520 Optogenetics Activation of NPFR, Dh44, and NPFR^{TK} neurons: Light-induced activation of red-shifted
521 Channel Rhodopsin UAS-CsCrimson was achieved by placing glass fly vials containing one fly each over red
522 LEDs (40 Hz, 650nm, 0.6 lm @20mA). Activation protocol consisted of 3x5 min-long activation periods
523 spaced by 1 h and 55 min resting intervals for 2 consecutive days.

524

525 Neuronal activation combined with inhibition of synaptic vesicle release: Flies expressing Cs-Chrimson and
526 UAS-Shibire^{ts} in NPFR neurons were subjected to one of four conditions for two days: (1) Three 5-min-long
527 optogenetic activations spaced by 1 h and 55 min resting intervals (under constant dark) at constant 18-20°C
528 served as a positive control. (2) Three 10-min-long sessions at 28-29°C under constant dark followed by 5 min
529 long optogenetic activations spaced by 1 h and 45 min resting intervals at 18-20°C, also under constant dark.
530 (3) Three 15-min-long sessions at 28-29°C under constant dark, spaced by 1 h and 45 min at 18-20°C, also
531 under constant dark, served as synaptic release block control. (4) Flies kept at constant 18-20°C and constant
532 dark served as a negative control. After the last activation, flies were transferred into glass vials containing 1%
533 agarose.

534

535 Immunostaining: Whole-mount brains were fixed for 20 min in 4% paraformaldehyde (PFA) or over-night in
536 1.7% PFA. Preparations were blocked for 1h at 4°C with gentle agitation in 0.5% BSA, 0.3% Triton in PBS.
537 The following primary antibodies were used: Rabbit anti GFP (LifeTech 1:500), the neuropile-specific
538 antibody NC82, (1:50, The Jackson Laboratory), mouse anti GFP (1:100, Roche), Rabbit anti Dh44 (0.6:100),
539 rabbit anti dILp2 (1:100, a kind gift from Takashi Nishimura lab), rabbit anti FoxO (1:100. A kind gift from
540 Pierre Leopold lab), rabbit anti tk (1:1000 a Kind gift from Wei Song) were incubated overnight at 4°C.
541 Secondary antibodies, goat anti mouse-Alexa488 (1:200-1:100), goat anti rabbit-Alexa568 (1:200-1:100), goat
542 anti mouse-Alexa568 (1:1000) and goat anti rabbit-Alexa488 (1:1000) were incubated for 2hr at 4°C. DAPI
543 (1:20). The stained samples were mounted with SlowFadeTM Gold antifade reagent (Thermo Fisher Scientific)
544 and visualized using a Leica SP8 confocal microscope.

545

546 Stress tests: Survival was measured during: (i) Starvation: After the last bout of conditioning, males were
547 transferred to glass vials containing 1% agarose. Males were kept in isolation, and the number of living flies
548 was recorded every 2-3 h.

549

550 (ii) Oxidative stress: To induce oxidative stress, male flies were single-housed in glass vials containing
551 standard food supplemented with 20mM paraquat (856177, Sigma-Aldrich).

552

553 Longevity: After the last bout of conditioning, males were transferred to vials containing food. Males were
554 kept in isolation and the number of living flies was recorded every day. Flies were transferred to new vials
555 twice a week. Log rank or Renyi-type test (REF) with FDR correction were performed.

556

557 TAG, Glucose levels evaluation: TAG levels were assessed as described⁷⁵ with modifications: After courtship
558 conditioning, experimental males were divided into groups of 5 and were homogenized together in 100 µl
559 NP40 substitute assay reagent from Triglyceride colorimetric assay kit 10010303 (Cayman JM-K622-100).
560 Homogenate was centrifuged at 10,000 x g for 10 min at 4°C, and the supernatant was collected. Triglyceride
561 enzyme mixture (10010511) was used to hydrolyze the triglycerides and subsequently measure glycerol by a
562 coupled enzymatic reaction. TAG concentrations were determined by the absorbance at 540nm and estimated
563 by a known triglyceride standard. The absorbance was measured using SynergyH1 Hybrid Multi-Mode
564 microplate Reader.

565 Body and hemolymph glucose were extracted as described¹⁴⁴. Briefly (with modifications):

566 **Whole bodies:** After courtship conditioning, 5 males were placed in each sample tube and were weighed using
567 Fisher scientific ALF104 analytical balance scale. Then, flies were homogenized in 100 ml cold PBS on ice.
568 Supernatant was heated for 10 min at 70°C, then centrifuged for 3 min at maximum speed at 4°C. Supernatant
569 was collected and transferred to a new 1.5 ml tube. **Hemolymph:** After courtship conditioning, males were
570 sedated on ice and carefully punctured in the thorax using sharpen stainless steel tweezers. 40 punctured flies
571 were placed in each 0.5 ml microfuge tube with a hole at the bottom made by a 25G needle. The 0.5 microfuge
572 tube was then placed in a 1.5 ml tube and centrifuged at 5000rpm for 10 min at 4°C. Hemolymph was collected,
573 and samples were heated for 5 min at 70°C. Glucose was measured using High sensitivity Glucose Assay kit
574 (MAK181 Sigma-Aldrich). Glucose concentration is determined by coupled enzyme assay, which results in
575 fluorometric ($\lambda_{ex} = 535/\lambda_{em} = 587\text{nm}$) products and was assessed using SynergyH1.

576

577 Metabolites extraction: After courtship conditioning, males were flash-frozen and decapitated using a
578 microscalpel. For each samples, 5 heads were transferred into soft tissue homogenizing CK 14 tubes containing
579 1.4 mm ceramic beads (Bertin corp.) prefilled with 600 ul of cold (-20 °C) metabolite extraction solvent
580 containing interanl standards (Methanol:Acetonitrile:H2O::50:30:20) and kept on ice. Samples were
581 homogenized using Precellys 24 tissue homogenizer (Bertin Technologies) cooled to 4 °C (3 × 30 s at
582 6000 rpm, with a 30 s gap between each cycle). Homogenized extracts were centrifuged in the Precellys tubes
583 at 18,000 g for 10 min at 4 °C. The supernatants were transferred to glass HPLC vials and kept at -75 °C prior
584 to LC-MS analysis.

585

586 LC-MS metabolomic analysis: LC-MS analysis was conducted as described¹⁴⁵. Briefly, Dionex Ultimate ultra-
587 high-performance liquid chromatography (UPLC) system coupled to Orbitrap Q-Exactive Mass Spectrometer
588 (Thermo Fisher Scientific) was used. Resolution was set to 35,000 at 200 mass/charge ratio (m/z) with
589 electrospray ionization and polarity switching mode to enable both positive and negative ions across a mass
590 range of 67–1000 m/z. UPLC setup consisted ZIC-pHILIC column (SeQuant; 150 mm × 2.1 mm, 5 µm;
591 Merck). 5 µl of cells extracts were injected and the compounds were separated using a mobile phase gradient
592 of 15 min, starting at 20% aqueous (20 mM ammonium carbonate adjusted to pH 9.2 with 0.1% of 25%
593 ammonium hydroxide):80% organic (acetonitrile) and terminated with 20% acetonitrile. Flow rate and column
594 temperature were maintained at 0.2 ml/min and 45 °C, respectively, for a total run time of 27 min. All
595 metabolites were detected using mass accuracy below 5 ppm. Thermo Xcalibur 4.1 was used for data
596 acquisition. The peak areas of different metabolites were determined using Thermo TraceFinder™ 4.1
597 software, where metabolites were identified by the exact mass of the singly charged ion and by known retention
598 time, using an in-house MS library built by running commercial standards for all detected metabolites. Each
599 identified metabolite intensity was normalized to ug protein. Metabolite-Auto Plotter¹⁴⁶ was used for data
600 visualization during data processing.

601
602 FoxO in cyto\nuc: Dissected stained samples of male's brains were visualized using a Leica SP8 confocal
603 microscope, with an X60 lens. Images of cells containing both immunostaining to FoxO and DAPI were
604 analyzed using CellProfiles 3.1.9. Images were acquired with different acquisition settings because of the very
605 large dynamic range difference among the samples. Cell cytoplasm intensity was calculated as (whole-cell
606 intensity) – (nucleus intensity). To quantify the differences among samples, intensity was measured in each
607 cell in the nucleus (nuc) and cytoplasm (cyto), and the ratio was then calculated as the relation between the
608 cytoplasm and nucleus in order to normalize. This ratio was compared among samples. The cyto\nuc portion
609 of rejected, mated, and single males was compared and analyzed using Kruskal-Wallis and post-hoc Dunn's
610 test.

611
612 Statistical analysis: Data of each behavioral feature per experiment were tested for normality, and
613 consequently, normally distributed data were tested by student's t-test, one-way ANOVA followed by Tukey's
614 post-hoc. Non-parametric data were tested by Mann-Whitney or Kruskal-Wallis tests followed by Dunn's or
615 Friedman's post-hoc tests. FDR correction for multiple comparisons was performed for all Flybowl
616 experiments features. Statistical overrepresentation was generated using PANTHER^{147,148}
617 (<http://pantherdb.org/citePanther.jsp>). Kmeans clustering method was performed (k= 3) to generate a heatmap
618 of differentially expressed genes in NPFR neurons. Starvation resistance and longevity experiments were
619 tested by Log-rank or Renyi-type test¹⁴⁹ using R package version 3.2-11. FDR correction for multiple
620 comparisons was performed for experiments with more than two experimental groups.

621
622

623 **Acknowledgments**

624 We thank all members of the Shohat-Ophir lab for fruitful discussions and technical support. We would also
625 like to thank Jennifer I. C. Benichou for statistical consultation. This work was supported by the Israel Science
626 Foundation Grant 384/14 and Israel Science Foundation Grant 174/19.

627 References

- 628 1. O'Connell, L. A. & Hofmann, H. A. The Vertebrate mesolimbic reward system and social behavior
629 network: A comparative synthesis. *Journal of Comparative Neurology* vol. 519 3599–3639 (2011).
- 630 2. Kim, S. M., Su, C.-Y. & Wang, J. W. Neuromodulation of Innate Behaviors in *Drosophila*. *Annu. Rev.*
631 *Neurosci.* **40**, 327–348 (2017).
- 632 3. Shemesh, Y., Sztainberg, Y., Forkosh, O., Shlapobersky, T., Chen, A. & Schneidman, E. High-order
633 social interactions in groups of mice. *Elife* **2013**, (2013).
- 634 4. Aureli, F. & Schino, G. Social complexity from within: how individuals experience the structure and
635 organization of their groups. *Behav. Ecol. Sociobiol.* **2019** *73* 1–13 (2019).
- 636 5. Forkosh, O., Karamihalev, S., Roeh, S., Alon, U., Anpilov, S., Touma, C., Nussbaumer, M.,
637 Flachskamm, C., Kaplick, P. M., Shemesh, Y. & Chen, A. Identity domains capture individual
638 differences from across the behavioral repertoire. *Nat. Neurosci.* **2019** *2212* **22**, 2023–2028 (2019).
- 639 6. Hobson, E. A., Ferdinand, V., Kolchinsky, A. & Garland, J. Rethinking animal social complexity
640 measures with the help of complex systems concepts. *Anim. Behav.* **155**, 287–296 (2019).
- 641 7. Kravitz, E. A. & Huber, R. Aggression in invertebrates. *Current Opinion in Neurobiology* vol. 13 736–
642 743 (2003).
- 643 8. Anderson, D. J. Circuit modules linking internal states and social behaviour in flies and mice. *Nat. Rev.*
644 *Neurosci.* **17**, 692–704 (2016).
- 645 9. Koob, G. & Kreek, M. J. Stress, dysregulation of drug reward pathways, and the transition to drug
646 dependence. *American Journal of Psychiatry* vol. 164 1149–1159 (2007).
- 647 10. Papini, M. R. & Dudley, R. T. Consequences of surprising reward omissions. *Rev. Gen. Psychol.* **1**,
648 175–197 (1997).
- 649 11. Do-Monte, F. H., Minier-Toribio, A., Quiñones-Laracuente, K., Medina-Colón, E. M. & Quirk, G. J.
650 Thalamic Regulation of Sucrose Seeking during Unexpected Reward Omission. *Neuron* **94**, 388–400.e4
651 (2017).
- 652 12. Zimmerman, P. H. & Koene, P. The effect of frustrative nonreward on vocalisations and behaviour in
653 the laying hen, *Gallus gallus domesticus*. *Behav. Processes* **44**, 73–79 (1998).
- 654 13. Burokas, A., Gutiérrez-Cuesta, J., Martín-García, E. & Maldonado, R. Operant model of frustrated
655 expected reward in mice. *Addict. Biol.* **17**, 770–782 (2012).
- 656 14. Duncan, I. J. H. & Wood-Gush, D. G. M. Frustration and aggression in the domestic fowl. *Anim. Behav.*
657 **19**, 500–504 (1971).
- 658 15. Dantzer, R., Arnone, M. & Mormede, P. Effects of frustration on behaviour and plasma corticosteroid
659 levels in pigs. *Physiol. Behav.* **24**, 1–4 (1980).
- 660 16. De Almeida, R. M. M. & Miczek, K. A. Aggression escalated by social instigation or by discontinuation
661 of reinforcement ('Frustration') in mice: Inhibition by anpiptoline: A 5-HT1B receptor agonist.
662 *Neuropsychopharmacology* **27**, 171–181 (2002).
- 663 17. Amsel, A. & Roussel, J. Motivational properties of frustration: I. Effect on a running response of the
664 addition of frustration to the motivational complex. *J. Exp. Psychol.* **43**, 363–368 (1952).
- 665 18. Miller, N. E. & Stevenson, S. S. Agitated behavior of rats during experimental extinction and a curve
666 of spontaneous recovery. *undefined* **21**, 205–231 (1936).
- 667 19. Manzo, L., Gómez, M. J., Callejas-Aguilera, J. E., Fernández-Teruel, A., Papini, M. R. & Torres, C.
668 Anti-anxiety self-medication induced by incentive loss in rats. *Physiol. Behav.* **123**, 86–92 (2014).
- 669 20. Vindas, M. A., Johansen, I. B., Vela-Avitua, S., Nørstrud, K. S., Aalgaard, M., Braastad, B. O.,
670 Höglund, E. & Øverli, Ø. Frustrative reward omission increases aggressive behaviour of inferior
671 fighters. *Proc. R. Soc. B Biol. Sci.* **281**, (2014).
- 672 21. Carpenter, R. E., Maruska, K. P., Becker, L. & Fernald, R. D. Social Opportunity Rapidly Regulates

673 Expression of CRF and CRF Receptors in the Brain during Social Ascent of a Teleost Fish,
674 *Astatotilapia burtoni*. *PLoS One* **9**, e96632 (2014).

675 22. DeVries, A. C., Glasper, E. R. & Detillion, C. E. Social modulation of stress responses. in *Physiology*
676 and *Behavior* vol. 79 399–407 (2003).

677 23. Zuri, I., Gottreich, A. & Terkel, J. Social stress in neighboring and encountering blind mole-rats (*Spalax*
678 *ehrenbergi*). *Physiol. Behav.* **64**, 611–620 (1998).

679 24. Padgett, D. A., Sheridan, J. F., Dorne, J., Berntson, G. G., Candelora, J. & Glaser, R. Social stress and
680 the reactivation of latent herpes simplex virus type 1. *Proc. Natl. Acad. Sci. U. S. A.* **95**, 7231–7235
681 (1998).

682 25. Quan, N., Avitsur, R., Stark, J. L., He, L., Shah, M., Caligiuri, M., Padgett, D. A., Marucha, P. T. &
683 Sheridan, J. F. Social stress increases the susceptibility to endotoxic shock. *J. Neuroimmunol.* **115**, 36–
684 45 (2001).

685 26. DeVries, A. C., Joh, H. D., Bernard, O., Hattori, K., Hurn, P. D., Traystman, R. J. & Alkayed, N. J.
686 Social stress exacerbates stroke outcome by suppressing Bcl-2 expression. *Proc. Natl. Acad. Sci. U. S.*
687 *A.* **98**, 11824–11828 (2001).

688 27. Sugo, N., Hurn, P. D., Morahan, M. B., Hattori, K., Traystman, R. J. & DeVries, A. C. Social stress
689 exacerbates focal cerebral ischemia in mice. *Stroke* **33**, 1660–1664 (2002).

690 28. Razzoli, M., Nyuyki-Dufe, K., Gurney, A., Erickson, C., McCallum, J., Spielman, N., Marzullo, M.,
691 Patricelli, J., Kurata, M., Pope, E. A., Touma, C., Palme, R., Largaespada, D. A., Allison, D. B. &
692 Bartolomucci, A. Social stress shortens lifespan in mice. *Aging Cell* **17**, 1–14 (2018).

693 29. Pleil, K. E., Rinker, J. A., Lowery-Gionta, E. G., Mazzone, C. M., McCall, N. M., Kendra, A. M.,
694 Olson, D. P., Lowell, B. B., Grant, K. A., Thiele, T. E. & Kash, T. L. NPY signaling inhibits extended
695 amygdala CRF neurons to suppress binge alcohol drinking. *Nat. Neurosci.* **18**, 545–552 (2015).

696 30. Gilpin, N. W., Herman, M. A. & Roberto, M. The Central Amygdala as an Integrative Hub for Anxiety
697 and Alcohol Use Disorders. *Biological Psychiatry* vol. 77 859–869 (2015).

698 31. Baik, J. H. Stress and the dopaminergic reward system. *Experimental and Molecular Medicine* vol. 52
699 1879–1890 (2020).

700 32. Ulrich-Lai, Y. M., Christiansen, A. M., Ostrander, M. M., Jones, A. A., Jones, K. R., Choi, D. C.,
701 Krause, E. G., Evanson, N. K., Furay, A. R., Davis, J. F., Solomon, M. B., De Kloet, A. D., Tamashiro,
702 K. L., Sakai, R. R., Seeley, R. J., Woods, S. C. & Herman, J. P. Pleasurable behaviors reduce stress via
703 brain reward pathways. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 20529–20534 (2010).

704 33. Lemos, C., Salti, A., Amaral, I. M., Fontebasso, V., Singewald, N., Dechant, G., Hofer, A. & El Rawas,
705 R. Social interaction reward in rats has anti-stress effects. *Addict. Biol.* **26**, e12878 (2021).

706 34. Montagud-Romero, S., Blanco-Gandía, M. C., Reguilón, M. D., Ferrer-Pérez, C., Ballestín, R.,
707 Miñarro, J. & Rodríguez-Arias, M. Social defeat stress: Mechanisms underlying the increase in
708 rewarding effects of drugs of abuse. *European Journal of Neuroscience* vol. 48 2948–2970 (2018).

709 35. Dedic, N., Chen, A. & Deussing, J. M. The CRF Family of Neuropeptides and their Receptors -
710 Mediators of the Central Stress Response. *Curr. Mol. Pharmacol.* **11**, (2017).

711 36. Deussing, J. M. & Chen, A. The corticotropin-releasing factor family: Physiology of the stress
712 response. *Physiological Reviews* vol. 98 2225–2286 (2018).

713 37. Gilpin, N. W. Corticotropin-releasing factor (CRF) and neuropeptide Y (NPY): Effects on inhibitory
714 transmission in central amygdala, and anxiety- & alcohol-related behaviors. *Alcohol* **46**, 329–337
715 (2012).

716 38. M.Jiménez & L.Buén. Inhibitory effects of neuropeptide Y (NPY) on CRF and stress-induced cecal
717 motor response in rats. *Life Sci.* **47**, 205–211 (1990).

718 39. Sokolowski, M. B. Social interactions in ‘simple’ model systems. *Neuron* **65**, 780–94 (2010).

719 40. Shohat-Ophir, G., Kaun, K. R., Azanchi, R., Mohammed, H. & Heberlein, U. Sexual deprivation
720 increases ethanol intake in *Drosophila*. *Science* **335**, 1351–5 (2012).

721 41. Shankar, S., Chua, J. Y., Tan, K. J., Calvert, M. E. K., Weng, R., Ng, W. C., Mori, K. & Yew, J. Y.
722 The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit. *Elife* **4**,
723 1–23 (2015).

724 42. Hoyer, S. C., Eckart, A., Herrel, A., Zars, T., Fischer, S. A., Hardie, S. L. & Heisenberg, M. Octopamine
725 in Male Aggression of *Drosophila*. *Curr. Biol.* **18**, 159–167 (2008).

726 43. Liu, W., Liang, X., Gong, J., Yang, Z., Zhang, Y. H., Zhang, J. X. & Rao, Y. Social regulation of
727 aggression by pheromonal activation of *Or65a* olfactory neurons in *Drosophila*. *Nat. Neurosci.* **14**, 896–
728 902 (2011).

729 44. Wang, L., Dankert, H., Perona, P. & Anderson, D. J. A common genetic target for environmental and
730 heritable influences on aggressiveness in *Drosophila*. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 5657–63
731 (2008).

732 45. Ejima, A., Smith, B. P. C., Lucas, C., van der Goes van Naters, W., Miller, C. J., Carlson, J. R., Levine,
733 J. D. & Griffith, L. C. Generalization of courtship learning in *Drosophila* is mediated by *cis*-vaccenyl
734 acetate. *Curr. Biol.* **17**, 599–605 (2007).

735 46. Certel, S. J., Savella, M. G., Schlegel, D. C. F. F. & Kravitz, E. A. Modulation of *Drosophila* male
736 behavioral choice. *PNAS* **104**, 4706–4711 (2007).

737 47. Omesi, L., Levi, M., Bentzur, A., Kim, Y.-K., Ben-Shaanan, S., Azanchi, R. & Shohat-Ophir, G. Sexual
738 deprivation modulates social interaction and reproductive physiology. *bioRxiv* 2021.04.27.441612
739 (2021).

740 48. Kim, W. J., Jan, L. Y. & Jan, Y. N. A PDF/NPF neuropeptide signaling circuitry of male *Drosophila*
741 melanogaster controls rival-induced prolonged mating. *Neuron* **80**, 1190–1205 (2013).

742 49. Kim, W. J., Jan, L. Y. & Jan, Y. N. Contribution of visual and circadian neural circuits to memory for
743 prolonged mating induced by rivals. *Nat. Neurosci.* **15**, 876–83 (2012).

744 50. Bretman, A., Fricke, C., Hetherington, P., Stone, R. & Chapman, T. Exposure to rivals and plastic
745 responses to sperm competition in *Drosophila melanogaster*. *Behav. Ecol.* **21**, 317–321 (2010).

746 51. Asahina, K., Watanabe, K., Duistermars, B. J., Hoopfer, E., González, C. R., Eyjólfssdóttir, E. A.,
747 Perona, P. & Anderson, D. J. Tachykinin-expressing neurons control male-specific aggressive arousal
748 in *Drosophila*. *Cell* **156**, 221–235 (2014).

749 52. Bentzur, A., Shmueli, A., Omesi, L., Ryvkin, J., Knapp, J. M., Parnas, M., Davis, F. P. & Shohat-Ophir,
750 G. Odorant binding protein 69a connects social interaction to modulation of social responsiveness in
751 *Drosophila*. *PLoS Genet.* **14**, 1–23 (2018).

752 53. Catalano, J., Mei, N., Azanchi, R., Song, S., Blackwater, T., Heberlein, U. & Kaun, K. Behavioral
753 features of motivated response to alcohol in *Drosophila*. *bioRxiv* 2020.02.17.953026 (2020).

754 54. Ryvkin, J., Bentzur, A., Zer-krispil, S. & Shohat-Ophir, G. Mechanisms Underlying the Risk to
755 Develop Drug Addiction, Insights From Studies in *Drosophila melanogaster*. *Front. Physiol.* **9**, 327
756 (2018).

757 55. Dvořáček, J. & Kodrík, D. *Drosophila* reward system - A summary of current knowledge. *Neuroscience
758 and Biobehavioral Reviews* vol. 123 301–319 (2021).

759 56. Xu, J., Li, M. & Shen, P. A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and
760 sensory response to multiple stressful stimuli in *Drosophila*. *J. Neurosci.* **30**, 2504–12 (2010).

761 57. Walker, R. J., Papaioannou, S. & Holden-Dye, L. A review of FMRFamide- and RFamide-like peptides
762 in metazoa. *Invertebrate Neuroscience* vol. 9 111–153 (2009).

763 58. Cardoso, J. C. R., Félix, R. C., Bergqvist, C. A. & Larhammar, D. New insights into the evolution of
764 vertebrate CRH (corticotropin-releasing hormone) and invertebrate DH44 (diuretic hormone 44)
765 receptors in metazoans. *Gen. Comp. Endocrinol.* **209**, 162–170 (2014).

766 59. Zhang, S. X., Rogulja, D. & Crickmore, M. A. Recurrent Circuitry Sustains *Drosophila* Courtship Drive
767 While Priming Itself for Satiety. *Curr. Biol.* **29**, 3216–3228.e9 (2019).

768 60. Ryvkin, J., Bentzur, A., Shmueli, A., Tannenbaum, M., Shallom, O., Dokarker, S., C., B. J. I., Levi, M.

769 & Shohat-Ophir, G. Transcriptome analysis of NPFR neurons reveals a connection between proteome
770 diversity and social behavior. *Front. Behav. Neurosci.* **15**, 35 (2021).

771 61. Krashes, M. J., DasGupta, S., Vreede, A., White, B., Douglas Armstrong, J., Waddell, S., Armstrong,
772 J. D. & Waddell, S. A neural circuit mechanism integrating motivational state with memory expression
773 in *Drosophila*. *Cell* **139**, 416–27 (2009).

774 62. Dierick, H. A. & Greenspan, R. J. Serotonin and neuropeptide F have opposite modulatory effects on
775 fly aggression. *Nat. Genet.* **39**, 678–682 (2007).

776 63. Lingo, P. R., Zhao, Z. & Shen, P. Co-regulation of cold-resistant food acquisition by insulin- and
777 neuropeptide Y-like systems in *Drosophila melanogaster*. *Neuroscience* **148**, 371–374 (2007).

778 64. Beshel, J. & Zhong, Y. Graded Encoding of Food Odor Value in the *Drosophila* Brain. *J. Neurosci.* **33**,
779 15693–15704 (2013).

780 65. Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T. & Schlenke, T. A. Fruit flies medicate offspring after
781 seeing parasites. *Science* **339**, 947–50 (2013).

782 66. Johnson, E. C., Garczynski, S. F., Park, D., Crim, J. W., Nässel, D. R. & Taghert, P. H. Identification
783 and characterization of a G protein-coupled receptor for the neuropeptide proctolin in *Drosophila*
784 *melanogaster*. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 6198–6203 (2003).

785 67. Lee, G., Bahn, J. H. & Park, J. H. Sex- and clock-controlled expression of the neuropeptide F gene in
786 *Drosophila*. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 12580–12585 (2006).

787 68. Wen, T., Parrish, C. a., Xu, D., Wu, Q. & Shen, P. *Drosophila* neuropeptide F and its receptor, NPFR1,
788 define a signaling pathway that acutely modulates alcohol sensitivity. *Proc. Natl. Acad. Sci. U. S. A.*
789 **102**, 2141–6 (2005).

790 69. Kim, Y. K., Saver, M., Simon, J., Kent, C. F., Shao, L., Eddison, M., Agrawal, P., Texada, M., Truman,
791 J. W. & Heberlein, U. Repetitive aggressive encounters generate a long-lasting internal state in
792 *Drosophila melanogaster* males. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 1099–1104 (2018).

793 70. Kalra, S. P. & Kalra, P. S. To subjugate NPY is to improve the quality of life and live longer. *Peptides*
794 **28**, 413–418 (2007).

795 71. Kalra, S. Global Life-Long Health Benefits of Repression of Hypothalamic NPY System by Central
796 Leptin Gene Therapy. *Curr. Top. Med. Chem.* **7**, 1675–1681 (2007).

797 72. Chiba, T., Tamashiro, Y., Park, D., Kusudo, T., Fujie, R., Komatsu, T., Kim, S. E., Park, S., Hayashi,
798 H., Mori, R., Yamashita, H., Chung, H. Y. & Shimokawa, I. A key role for neuropeptide y in lifespan
799 extension and cancer suppression via dietary restriction. *Sci. Rep.* **4**, 1–10 (2014).

800 73. Michalkiewicz, M., Knestaut, K. M., Bytchkova, E. Y. & Michalkiewicz, T. Hypotension and reduced
801 catecholamines in neuropeptide Y transgenic rats. *Hypertension* **41**, 1056–1062 (2003).

802 74. SJ, A. & H, H. NPY family of peptides in neurobiology, cardiovascular and metabolic disorders: from
803 genes to therapeutics. in *Springer Science & Business Media* (eds. Z, Z. & GZ, F.) vol. 95 113–223
804 (Birkhäuser Basel, 2006).

805 75. Gendron, C. M., Kuo, T. H., Harvanek, Z. M., Chung, B. Y., Yew, J. Y., Dierick, H. A. & Pletcher, S.
806 D. *Drosophila* life span and physiology are modulated by sexual perception and reward. *Science* (80-
807). **343**, 544–548 (2014).

808 76. Chung, B. Y., Ro, J., Hutter, S. A., Miller, K. M., Guduguntla, L. S., Kondo, S. & Pletcher, S. D.
809 *Drosophila* Neuropeptide F Signaling Independently Regulates Feeding and Sleep-Wake Behavior.
810 *Cell Rep.* **19**, 2441–2450 (2017).

811 77. Zer-Krissip, S., Zak, H., Shao, L., Ben-Shaanan, S., Tordjman, L., Bentzur, A., Shmueli, A. & Shohat-
812 Ophir, G. Ejaculation Induced by the Activation of Crz Neurons Is Rewarding to *Drosophila* Males.
813 *Curr. Biol.* **28**, 1445–1452.e3 (2018).

814 78. Gao, C., Guo, C., Peng, Q., Cao, J., Shohat-Ophir, G., Liu, D. & Pan, Y. Sex and Death: Identification
815 of Feedback Neuromodulation Balancing Reproduction and Survival. *Neurosci. Bull.* **36**, 1429–1440
816 (2020).

817 79. Ejima, A., Smith, B. P. C., Lucas, C., Levine, J. D. & Griffith, L. C. Sequential learning of pheromonal
818 cues modulates memory consolidation in trainer-specific associative courtship conditioning. *Curr. Biol.*
819 **15**, 194–206 (2005).

820 80. Siegel, R. W. & Hall, J. C. Conditioned responses in courtship behavior of normal and mutant
821 *Drosophila*. *Proc. Natl. Acad. Sci. U. S. A.* **76**, 3430–3434 (1979).

822 81. Mehren, J. E., Ejima, A. & Griffith, L. C. Unconventional sex: fresh approaches to courtship learning.
823 *Curr. Opin. Neurobiol.* **14**, 745–50 (2004).

824 82. Morley, J. E. & Levine, A. S. Corticotrophin releasing factor, grooming and ingestive behavior. *Life
825 Sci.* **31**, 1459–1464 (1982).

826 83. Moyaho, A. & Valencia, J. Grooming and yawning trace adjustment to unfamiliar environments in
827 laboratory Sprague-Dawley rats (*Rattus norvegicus*). *J. Comp. Psychol.* **116**, 263–269 (2002).

828 84. Troisi, A. Displacement activities as a behavioral measure of stress in nonhuman primates and human
829 subjects. *Stress* **5**, 47–54 (2002).

830 85. Gould, T. D., Dao, D. T. & Kovacsics, C. E. Mood and Anxiety Related Phenotypes in Mice.
831 *Neuromethods* **42**, 1–20 (2009).

832 86. Harvanek, Z. M., Lyu, Y., Gendron, C. M., Johnson, J. C., Kondo, S., Promislow, D. E. L. & Pletcher,
833 S. D. Perceptive costs of reproduction drive ageing and physiology in male *Drosophila*. *Nat. Ecol. Evol.*
834 **1**, 1–15 (2017).

835 87. Henry, G. L., Davis, F. P., Picard, S. & Eddy, S. R. Cell type-specific genomics of *Drosophila* neurons.
836 *Nucleic Acids Res.* **40**, 9691–704 (2012).

837 88. Okamoto, N. & Nishimura, T. Signaling from Glia and Cholinergic Neurons Controls Nutrient-
838 Dependent Production of an Insulin-like Peptide for *Drosophila* Body Growth. *Dev. Cell* **35**, 295–310
839 (2015).

840 89. Orgad, S., Rosenfeld, G., Greenspan, R. J. & Segal, D. courtless, The *Drosophila* UBC7 homolog, is
841 involved in male courtship behavior and spermatogenesis. *Genetics* **155**, 1267–1280 (2000).

842 90. Post, S., Karashchuk, G., Wade, J. D., Sajid, W., De Meyts, P. & Tatar, M. *Drosophila* insulin-like
843 peptides DILP2 and DILP5 differentially stimulate cell signaling and glycogen phosphorylase to
844 regulate longevity. *Front. Endocrinol. (Lausanne)* **9**, (2018).

845 91. Nässel, D. R. Substrates for neuronal cotransmission with neuropeptides and small molecule
846 neurotransmitters in *drosophila*. *Frontiers in Cellular Neuroscience* vol. 12 (2018).

847 92. Kannan, K. & Fridell, Y.-W. C. Functional implications of *Drosophila* insulin-like peptides in
848 metabolism, aging, and dietary restriction. *Front. Physiol.* **4**, (2013).

849 93. Manière, G., Ziegler, A. B., Geillon, F., Featherstone, D. E. & Grosjean, Y. Direct Sensing of Nutrients
850 via a LAT1-like Transporter in *Drosophila* Insulin-Producing Cells. *Cell Rep.* **17**, 137–148 (2016).

851 94. Scharf, M. E., Scharf, D. W., Bennett, G. W. & Pittendrigh, B. R. Catalytic activity and expression of
852 two flavin-containing monooxygenases from *Drosophila melanogaster*. *Arch. Insect Biochem. Physiol.*
853 **57**, 28–39 (2004).

854 95. Andres, A. J., Fletcher, J. C., Karim, F. D. & Thummel, C. S. Molecular Analysis of the Initiation of
855 Insect Metamorphosis: A Comparative Study of *Drosophila* Ecdysteroid-Regulated Transcription. *Dev.
856 Biol.* **160**, 388–404 (1993).

857 96. Maciejczyk, M., Żebrowska, E. & Chabowski, A. Insulin resistance and oxidative stress in the brain:
858 What's new? *Int. J. Mol. Sci.* **20**, 874 (2019).

859 97. Zhang, X., Beaulieu, J. M., Sotnikova, T. D., Gainetdinov, R. R. & Caron, M. G. Tryptophan
860 hydroxylase-2 controls brain synthesis. *Science (80-.).* **305**, 217 (2004).

861 98. Mahony, S. M. O., Clarke, G., Borre, Y. E., Dinan, T. G. & Cryan, J. F. Serotonin , tryptophan
862 metabolism and the brain-gut-microbiome axis. *Behav. Brain Res.* **277**, 32–48 (2015).

863 99. Platten, M. & Fallarino, F. Tryptophan metabolism as a common therapeutic target in cancer ,
864 neurodegeneration and beyond. *Nat. Rev. Drug Discov.* **18**, (2019).

865 100. P.D, L. Tryptophan availability and serotonin synthesis. in *Paoletti R., Vanhoutte P.M., Brunello N., Maggi F.M. (eds) Serotonin* vol. 46 143–156 (Springer, Dordrecht, 1987).

866 101. Broughton, S., Alic, N., Slack, C., Bass, T., Ikeya, T., Vinti, G., Tommasi, A. M., Driege, Y., Hafen, E. & Partridge, L. Reduction of DILP2 in *Drosophila* triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. *PLoS One* **3**, 3–11 (2008).

867 102. Belgacem, Y. H. & Martin, J. R. Disruption of insulin pathways alters trehalose level and abolishes sexual dimorphism in locomotor activity in *Drosophila*. *J. Neurobiol.* **66**, 19–32 (2006).

868 103. Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in files: Growth and diabetic phenotypes. *Science (80-.)* **296**, 1118–1120 (2002).

869 104. Reyes-DelaTorre, A., Pena-Rangel, M. T. & Riesgo-Escovar, J. R. Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology. in *inTech* (ed. Chang, C.-F.) 317–338 (BoD – Books on Demand, 2012).

870 105. Hwangbo, D. S., Garsham, B., Tu, M. P., Palmer, M. & Tatar, M. *Drosophila* dFOXO controls lifespan and regulates insulin signalling in brain and fat body. *Nature* **429**, 562–566 (2004).

871 106. Broughton, S. J., Piper, M. D. W., Ikeya, T., Bass, T. M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D. J., Leevers, S. J. & Partridge, L. Longer lifespan, altered metabolism, and stress resistance in *Drosophila* from ablation of cells making insulin-like ligands. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 3105–3110 (2005).

872 107. Piper, M. D. W., Selman, C., McElwee, J. J. & Partridge, L. Separating cause from effect: How does insulin/IGF signalling control lifespan in worms, flies and mice? *J. Intern. Med.* **263**, 179–191 (2008).

873 108. Giannakou, M. E. & Partridge, L. Role of insulin-like signalling in *Drosophila* lifespan. *Trends Biochem. Sci.* **32**, 180–188 (2007).

874 109. De Rosa, M. J., Veuthey, T., Florman, J., Grant, J., Blanco, M. G., Andersen, N., Donnelly, J., Rayes, D. & Alkema, M. J. The flight response impairs cytoprotective mechanisms by activating the insulin pathway. *Nature* **573**, 135–138 (2019).

875 110. Kim, S. Y. & Webb, A. E. Neuronal functions of FOXO/DAF-16. *Nutr. Heal. Aging* **4**, 113–126 (2017).

876 111. Lehtinen, M. K., Yuan, Z., Boag, P. R., Yang, Y., Villén, J., Becker, E. B. E., DiBacco, S., de la Iglesia, N., Gygi, S., Blackwell, T. K. & Bonni, A. A Conserved MST-FOXO Signaling Pathway Mediates Oxidative-Stress Responses and Extends Life Span. *Cell* **125**, 987–1001 (2006).

877 112. Bai, H., Kang, P. & Tatar, M. *Drosophila* insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of *Drosophila* insulin-like peptide-2 from the brain. *Aging Cell* **11**, 978–985 (2012).

878 113. Wang, B., Moya, N., Niessen, S., Hoover, H., Mihaylova, M. M., Shaw, R. J., Yates, J. R., Fischer, W. H., Thomas, J. B. & Montminy, M. A hormone-dependent module regulating energy balance. *Cell* **145**, 596–606 (2011).

879 114. Vihervaara, T. & Puig, O. dFOXO Regulates Transcription of a *Drosophila* Acid Lipase. *J. Mol. Biol.* **376**, 1215–1223 (2008).

880 115. Cao, J., Ni, J., Ma, W., Shi, V., Milla, L. A., Park, S., Spletter, M. L., Tang, S., Zhang, J., Wei, X., Kim, S. K. & Scott, M. P. Insight into insulin secretion from transcriptome and genetic analysis of insulin-producing cells of *Drosophila*. *Genetics* **197**, 175–192 (2014).

881 116. Bitran, M., Torres, G., Fournier, A., Pierre, S. S. & Pablo Huidobro-Toro, J. Age and castration modulate the inhibitory action of neuropeptide Y on neurotransmission In the rat vas deferens. *Eur. J. Pharmacol.* **203**, 267–274 (1991).

882 117. Rajpara, S. M., Garcia, P. D., Roberts, R., Eliassen, J. C., Owens, D. F., Maltby, D., Myers, R. M. & Mayeri, E. Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in *aplysia* neurons. *Neuron* **9**, 505–513 (1992).

883 118. Browning, K. N. & Travagli, R. A. Neuropeptide Y and Peptide YY Inhibit Excitatory Synaptic Transmission in the Rat Dorsal Motor Nucleus of the Vagus. *J. Physiol.* **549**, 775–785 (2003).

913 119. Bentzur, A., Ben-Shaanan, S., Benishou, J., Costi, E., Levi, M., Ilany, A. & Shohat-Ophir, G. Early
914 Life Experience Shapes Male Behavior and Social Networks in *Drosophila*. *Curr. Biol.* **31**, 486–501.e3
915 (2020).

916 120. Shao, L., Saver, M., Chung, P., Ren, Q., Lee, T., Kent, C. F. & Heberlein, U. Dissection of the
917 *Drosophila* neuropeptide F circuit using a high-throughput two-choice assay. *Proc. Natl. Acad. Sci. U.*
918 *S. A.* **114**, E8091–E8099 (2017).

919 121. Pimentel, E., Vidal, L. M., Cruces, M. P. & Janczur, M. K. Action of protoporphyrin-IX (PP-IX) in the
920 lifespan of *Drosophila melanogaster* deficient in endogenous antioxidants, Sod and Cat. *Open J. Anim.*
921 *Sci.* **03**, 1–7 (2013).

922 122. Williams, M., Krootjes, B. B. H., van Steveninck, J. & van Der Zee, J. The pro- and antioxidant
923 properties of protoporphyrin IX. *Biochim. Biophys. Acta (BBA)/Lipids Lipid Metab.* **1211**, 310–316
924 (1994).

925 123. Afonso, S., Vanore, G. & Batlle, A. Protoporphyrin IX and oxidative stress. *Free Radic. Res.* **31**, 161–
926 170 (1999).

927 124. Sachar, M., Anderson, K. E. & Ma, X. Protoporphyrin IX: The good, the bad, and the ugly. *J.*
928 *Pharmacol. Exp. Ther.* **356**, 267–275 (2016).

929 125. Kikuchi, G., Yoshida, T. & Noguchi, M. Heme oxygenase and heme degradation. *Biochemical and*
930 *Biophysical Research Communications* vol. 338 558–567 (2005).

931 126. Abaqua, T. A. L., Damulewicz, M., Bhattacharya, D. & Pyza, E. Regulation of heme oxygenase and
932 its cross-talks with apoptosis and autophagy under different conditions in *drosophila*. *Antioxidants* **10**,
933 1716 (2021).

934 127. Nässel, D. R., Zandawala, M., Kawada, T. & Satake, H. Tachykinins: Neuropeptides That Are Ancient,
935 Diverse, Widespread and Functionally Pleiotropic. *Front. Neurosci.* **13**, 1262 (2019).

936 128. Winther, Å. M. E., Siviter, R. J., Isaac, R. E., Predel, R. & Nässel, D. R. Neuronal expression of
937 tachykinin-related peptides and gene transcript during postembryonic development of *Drosophila*. *J.*
938 *Comp. Neurol.* **464**, 180–196 (2003).

939 129. Davis, F. P., Nern, A., Picard, S., Reiser, M. B., Rubin, G. M., Eddy, S. R. & Henry, G. L. A genetic,
940 genomic, and computational resource for exploring neural circuit function. *Elife* **9**, 1–40 (2020).

941 130. Alon, S., Goodwin, D. R., Sinha, A., Wassie, A. T., Chen, F., Daugharthy, E. R., Bando, Y., Kajita, A.,
942 Xue, A. G., Marrett, K., Prior, R., Cui, Y., Payne, A. C., Yao, C.-C., Suk, H.-J., Wang, R., Yu, C.-C.
943 (Jay), ... Boyden, E. S. Expansion sequencing: Spatially precise *in situ* transcriptomics in intact
944 biological systems. *Science (80-)*. **371**, eaax2656 (2021).

945 131. Keeney, A., Jessop, D. S., Harbuz, M. S., Marsden, C. A., Hogg, S. & Blackburn-Munro, R. E.
946 Differential Effects of Acute and Chronic Social Defeat Stress on Hypothalamic-Pituitary-Adrenal
947 Axis Function and Hippocampal Serotonin Release in Mice. *J. Neuroendocrinol.* **18**, 330–338 (2006).

948 132. Newman, E. L., Leonard, M. Z., Arena, D. T., de Almeida, R. M. M. & Miczek, K. A. Social defeat
949 stress and escalation of cocaine and alcohol consumption: Focus on CRF. *Neurobiology of Stress* vol.
950 9 151–165 (2018).

951 133. Boyson, C. O., Holly, E. N., Shimamoto, A., Albrechet-Souza, L., Weiner, L. A., DeBold, J. F. &
952 Miczek, K. A. Social Stress and CRF–Dopamine Interactions in the VTA: Role in Long-Term
953 Escalation of Cocaine Self-Administration. *J. Neurosci.* **34**, 6659–6667 (2014).

954 134. Boyson, C. O., Miguel, T. T., Quadros, I. M., DeBold, J. F. & Miczek, K. A. Prevention of social stress-
955 escalated cocaine self-administration by CRF-R1 antagonist in the rat VTA. *Psychopharmacology*
956 (*Berl.*) **218**, 257–269 (2011).

957 135. Hwa, L. S., Holly, E. N., Debold, J. F. & Miczek, K. A. Social stress-escalated intermittent alcohol
958 drinking: modulation by CRF-R1 in the ventral tegmental area and accumbal dopamine in mice.
959 doi:10.1007/s00213-015-4144-2.

960 136. Tovar-Díaz, J., Pomrenze, M. B., Kan, R., Pahlavan, B. & Morikawa, H. Cooperative CRF and α 1
961 Adrenergic Signaling in the VTA Promotes NMDA Plasticity and Drives Social Stress Enhancement

962 of Cocaine Conditioning. *Cell Rep.* **22**, 2756–2766 (2018).

963 137. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* **17**, 10 (2011).

965 138. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. & 966 Gingeras, T. R. STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

967 139. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput 968 sequencing data. *Bioinformatics* **31**, 166–169 (2015).

969 140. Liao, Y., Smyth, G. & Shi, W. featureCounts: an efficient general purpose program for assigning 970 sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).

971 141. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq 972 data with DESeq2. *Genome Biol.* **15**, 550 (2014).

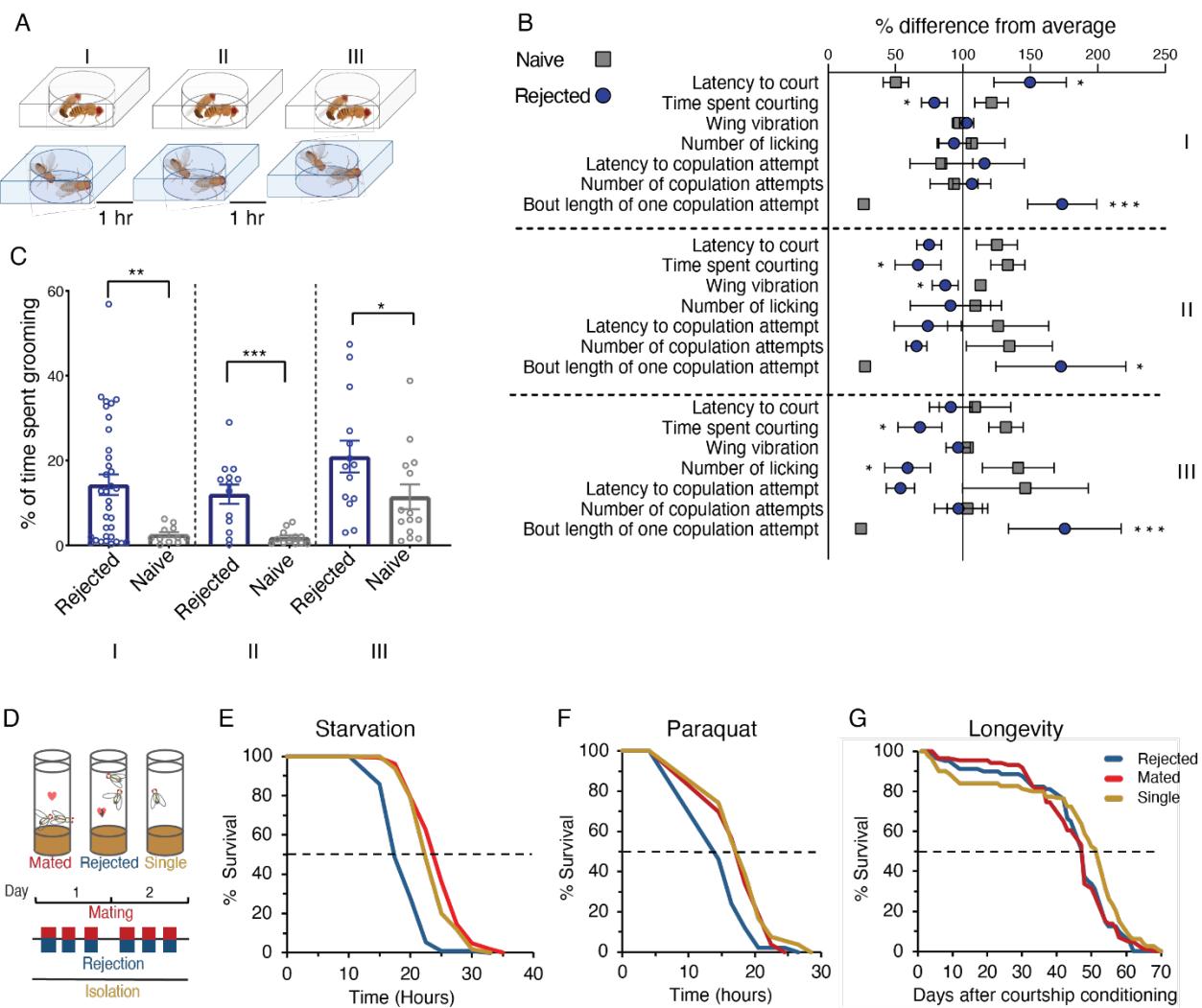
973 142. Branson, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H. High-throughput ethomics in 974 large groups of *Drosophila*. *Nat. Methods* **6**, 451–457 (2009).

975 143. Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S. & Branson, K. JAABA: Interactive machine 976 learning for automatic annotation of animal behavior. *Nat. Methods* **10**, 64–67 (2013).

977 144. Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying metabolism in 978 *Drosophila*. *Methods* **68**, 105–115 (2014).

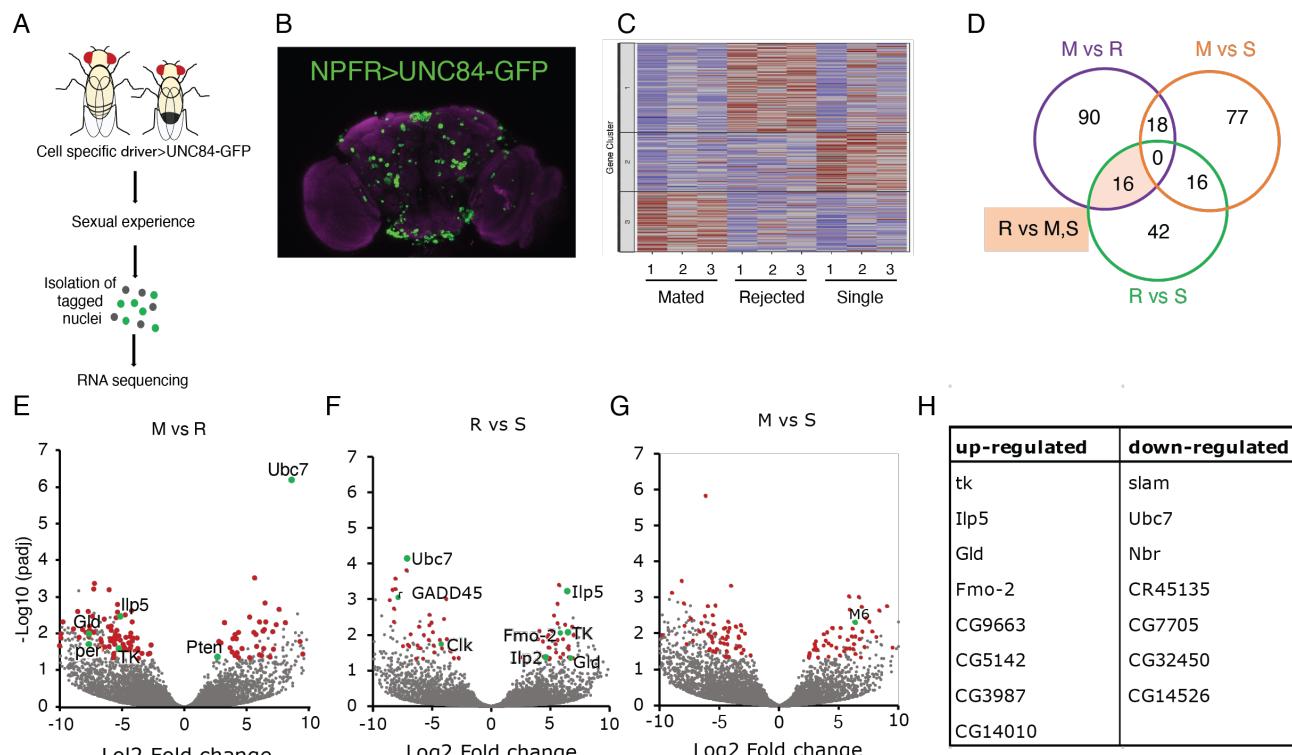
979 145. MacKay, G. M., Zheng, L., Van Den Broek, N. J. F. & Gottlieb, E. Analysis of Cell Metabolism Using 980 LC-MS and Isotope Tracers. *Methods Enzymol.* **561**, 171–196 (2015).

981 146. Pietzke, M. & Vazquez, A. Metabolite AutoPlotter - an application to process and visualise metabolite 982 data in the web browser. *Cancer Metab.* **2020 81** **8**, 1–11 (2020).


983 147. Thomas, P. D., Kejariwal, A., Guo, N., Mi, H., Campbell, M. J., Muruganujan, A. & Lazareva-Ulitsky, 984 B. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and 985 coding SNP scoring tools. *Nucleic Acids Res.* **34**, W645–W650 (2006).

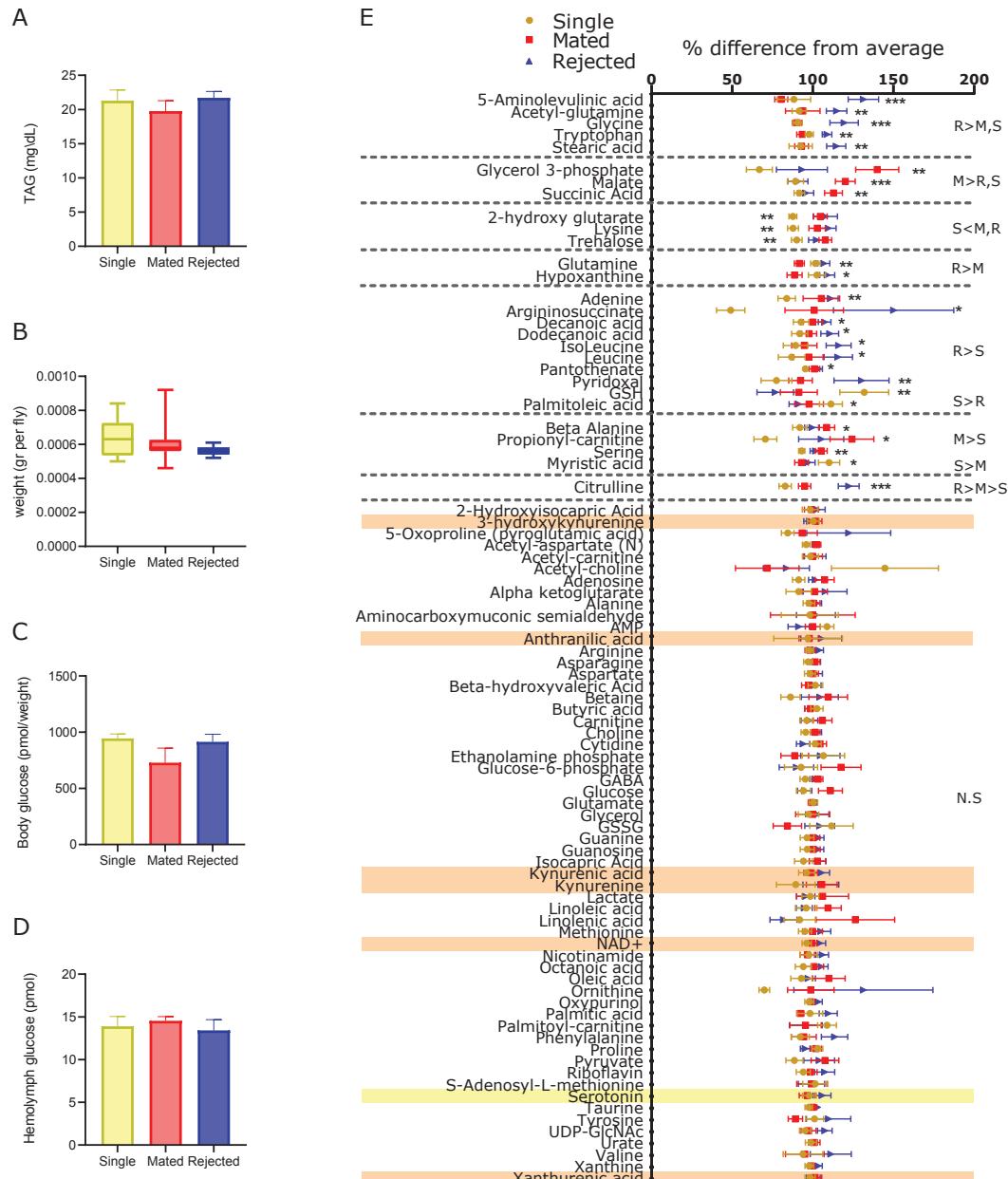
986 148. Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: More genomes, 987 a new PANTHER GO-slim and improvements in enrichment analysis tools. *Nucleic Acids Res.* **47**, 988 D419–D426 (2019).

989 149. Bouliotis, G. & Billingham, L. Crossing survival curves: alternatives to the log-rank test. *Trials* **12**, 990 6215 (2011).


991

992

993
994


995 **Fig 1. Repeated sexual deprivation increases sensitivity to stressors.** **A.** Schematic representation of behavioral assays: Virgin male flies were exposed to either mated or virgin females for three 1h sessions, and their behavior was recorded. At the end of each session, the females and males from the naive cohort (top) were removed, and the males that experienced rejection (bottom) were kept isolated in narrow glass vials for 1h. **B.** % difference from average courtship behaviors performed by rejected (blue circle) and naive (grey square) males in the first (I), second (II), and third (III) sessions. Student's t-test or Mann-Whitney were performed with FDR correction for multiple comparisons. *p<0.05, ***p<0.001. **C.** % time spent grooming by rejected males (blue) compared to naive males (grey) during the first (I), second (II), and third (III) sessions. T-test or Mann-Whitney were performed. *p<0.05, **p<0.01, ***p<0.001. N of rejected males= 41 (I),16 (II,III) (In order to capture differences in courtship behavior that resulted from a second and third exposure to mated females, only males that courted in both II, III sessions were analyzed). N of naive males= 24 (I), 21 (II), 18 (III). **D.** Schematic representation of courtship conditioning: naive males were introduced to either virgin, sexually receptive or sexually non-receptive females. As a result, males were either mated or rejected. The third cohort consisted of naive single housed males that did not experience any social or sexual event (single). Encounters with females were repeated 3x a day for two days. **E.** Starvation resistance assay: rejected males (blue, n=91) compared to mated (red, n=102) and single housed (yellow, n=110) males, ***p<2E-16; mated vs single males, *p<0.05. **F.** Resistance to oxidative stress (20mM Paraquat): rejected males (blue, n=50) compared to mated (red, n=53) p<0.01** and single housed (yellow, n=54) males ***p<0.001. Pairwise log-rank with FDR correction for multiple comparisons was performed in E,F. **G.** Longevity assay: single males (yellow, n=80) compared to mated (red, n=86) and rejected (blue, n=80) males. *p<0.05. Renyi-type test with PDF corrections for multiple comparisons was performed.

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

Fig 2. Courtship conditioning induces differential gene expression for rejected, mated, and single housed males.

A. Schematic representation of INTACT procedure. B. Distribution of NPFR (Green) neurons as visualized by the expression of GFP driven by NPFR-GAL4 driver. Anti-nc-82 staining is shown in magenta. C. Clustering of average normalized reads for all significantly differentially expressed genes in NPFR neurons of rejected, mated, and single housed males. D. Venn diagram depicting differentially expressed genes shared among the courtship conditioning cohorts. Highlighted in beige are genes that were differentially expressed in rejected males compared to mated and single males. E-G. Volcano plots of genes that were differentially expressed when comparing: Mated vs rejected (E), rejected vs single (F) and mated vs single (G). H. Table of genes up-regulated (left) and down-regulated (right) in rejected males compared to mated and single males.

1024
1025

1026

1027

1028

1029

1030

1031

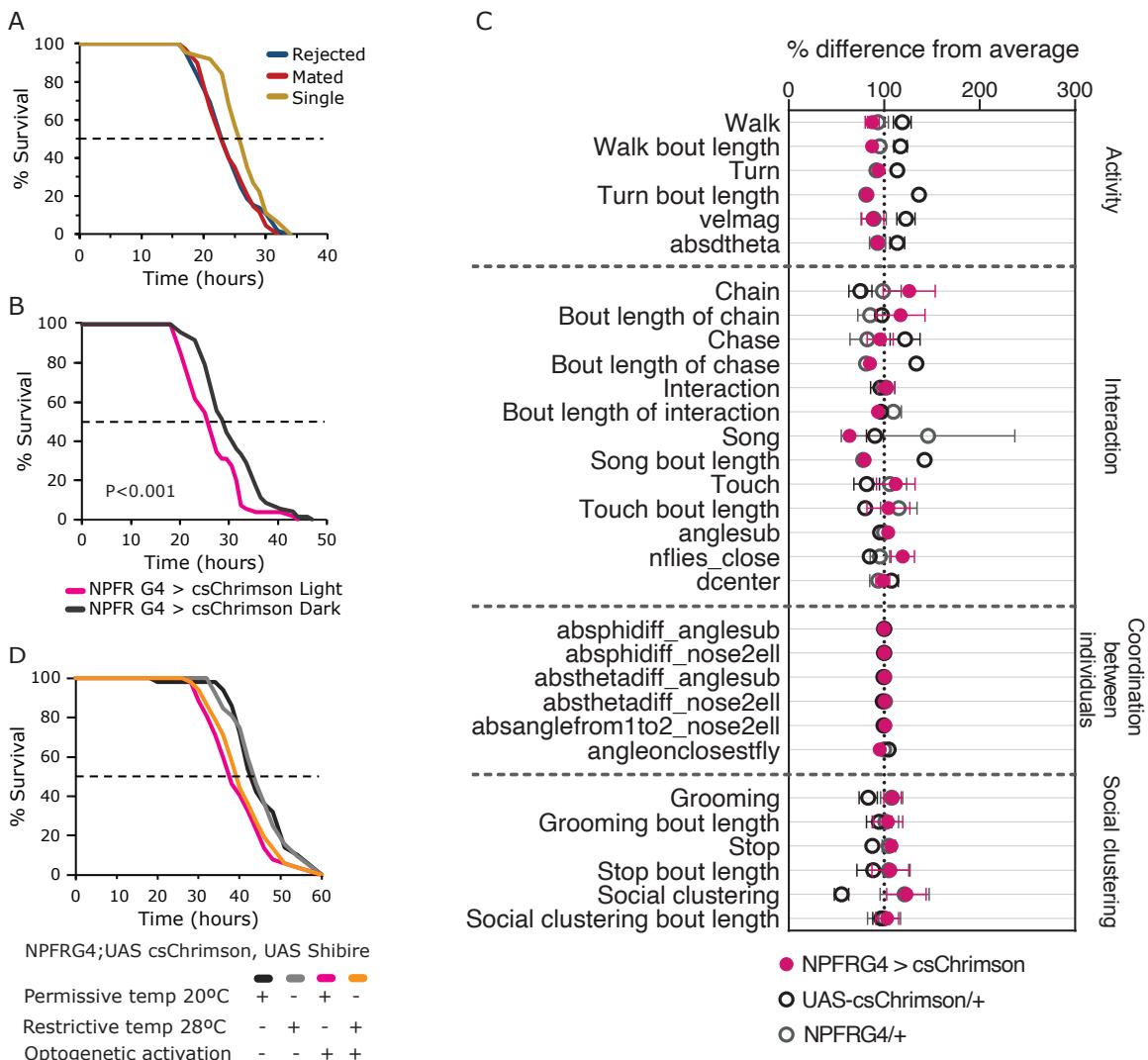
1032

1033


1034

1035

1036


Figure 3. Courtship conditioning did not affect TAG and glucose levels and most head metabolite in males. A-D.

Metabolic indices of rejected males (blue) compared to single (yellow) or mated (red) males. No differences were observed for measurements of (A) triglycerides (TAG, n=11 for all groups, 5 males/ sample). (B) weight (n= 10 single, 9 mated, 9 rejected, 5 males/sample). (C) hemolymph, or (D) body glucose (n=3 for all groups, 5 males/body sample, and 40 males/hemolymph sample). ANOVA or Kruskal-Wallis with post-hoc Tukey's or Friedman test were performed. NS $p>0.05$. E. % difference from average (peak area/ total measurable ions) of metabolites detected using LC-MS in rejected, mated, and single males' heads. 5-aminolevulinic acid, acetyl-glutamine, glycine, tryptophan, and stearic acid levels were higher in rejected males' heads (blue triangles, n=17) compared to single (yellow circles, n=17) and mated (red squares, n=16, 5 heads/sample). Metabolites of the kynurenine pathways are highlighted in orange; serotonin is highlighted in yellow. NS $p>0.05$, * $p<0.05$, ** $p<0.01$, *** $p<0.001$. Statistical analysis was performed by ANOVA or Kruskal-Wallis with post-hoc Tukey's or Friedman test.

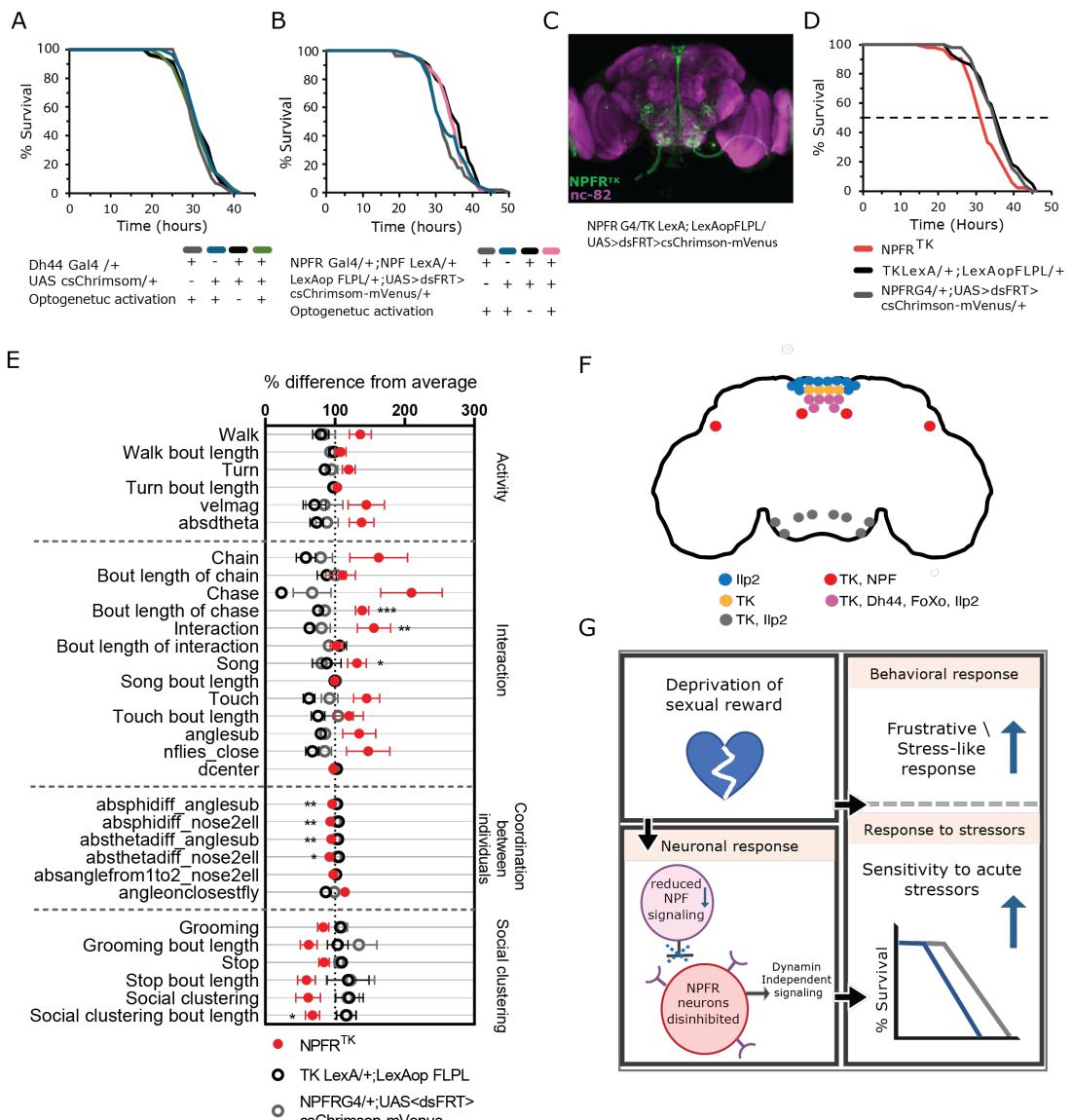
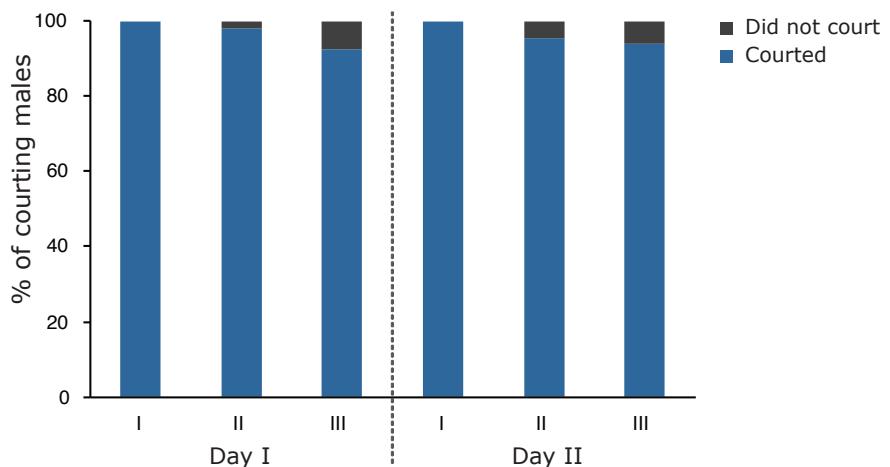

1037
1038
1039
1040
1041
1042
1043
1044
1045

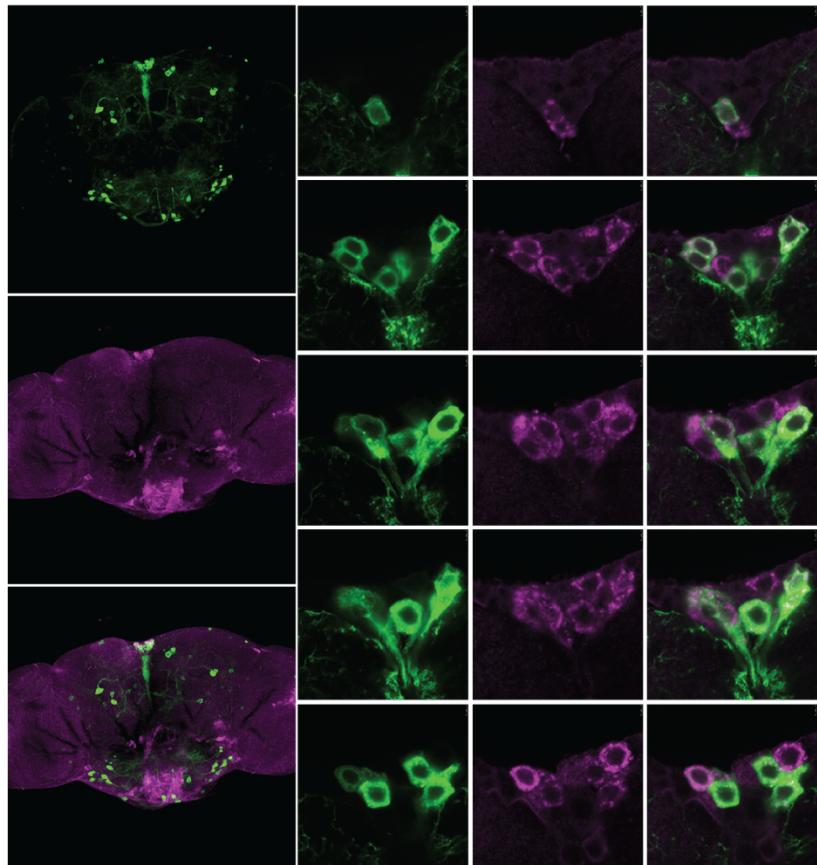
Fig 4. FoxO activity in NPFR-Dh44 neurons does not abrogate sensitivity to starvation in rejected males. A. Six NPFRG4; UAS-mcd8GFP (green) neurons co-localized with FoxO (red, endogenous FoxO expression), as indicated by arrows. B. Co-localization of NPFR neurons (green, NPFRG4/+;UAS-mcd8GFP/+) with six Dh44 neurons (magenta, endogenous Dh44 expression). C. At least five Dh44 neurons (green, Dh44 G4/+;UAS-mcd8GFP/+) co-localized with FoxO+ neurons (magenta, endogenous expression). D. Sensitivity to starvation was assessed in rejected males with UAS-FoxO-TM expressed in DH44 neurons (DH44G4;UAS-dFoxO-TM, blue), and their genetic controls (light and dark grey), compared to single housed males (red) (*p<0.05). NS, not statistically significant (p>0.05). Pairwise log-rank with FDR correction for multiple comparisons was performed.



1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

Fig 5. Activation of NPFR neurons mimics reduced resistance to starvation observed in WT males. **A.** Starvation resistance assayed on NPFR G4/NPFR RNAi mated (red, n=68), rejected (blue, n=68) and single housed (yellow, n=63) male flies. No significant difference was observed among mated and rejected flies $p>0.05$. Both rejected and mated males were significantly more sensitive to starvation compared to single males. $*p<0.05$ rejected vs single, $**p<0.01$ mated vs single. Pairwise log-rank with FDR correction for multiple comparisons was performed. **B.** NPFR neurons were activated in NPFRG4^{+/+};UAS-csChrimson^{+/} flies (pink) by exposing them to red light three times a day for two days, while control flies (grey) were not exposed to light. Starvation resistance of experimental (n=55) and control flies (n=72) was assayed. Log-rank test was performed, $***p<0.001$. **C.** % difference from average scatter plot of behaviors observed and scored in the FlyBowl performed by NPFRG4^{+/+};UAS-csChrimson^{+/} males (pink, n=14) and their genetic controls NPFR G4^{+/}, UAS-csChrimson^{+/} (Grey and black, respectively, n=10 each). ANOVA or Kruskal-Wallis with post-hoc Tukey's or Dunn's test with FDR correction for multiple comparisons was performed. **D.** Male flies expressing UAS-csChrimson and UAS-Shibire^{ts} in NPFR neurons were subjected to three 5 min long optogenetic activations for three days, and their synaptic signaling was blocked at 28-29°C (light+ heat, orange, n=52). Positive control males (light+cold, pink, n=52), synaptic release block control (dark+heat, light gray, n=52), negative control (dark+cold, dark gray, n=50). Experimental and positive control flies showed no significant difference in resistance to starvation ($p>0.05$). Both experimental and positive control flies were significantly more sensitive to starvation than 'dark+heat', and 'dark+cold' flies ($**p<0.01$). Pairwise log-rank test with FDR correction for multiple comparisons was performed.

Fig. 6. Activation of NPFR^{TK} neurons reduces resistance to starvation and causes aroused behavior. **A.** Dh44 neurons were activated in Dh44 G4/+;UAS-csChrimson/+ flies followed by starvation resistance assay. No significant difference was observed between experimental (Light, green), genetic controls (Dh44-G4/+, grey, UAS-csChrimson/+, dark blue) and Dh44 G4/+;UAS-csChrimson/+ flies that were not exposed to light (Dark, black). $p>0.05$, $n=56$ for all cohorts. **B.** Intersection of NPFR with NPF neurons by crossing NPFRG4/+, NPF-LexA;+, +;LexAop-FlpL, +;UAS<dsFRT>cs-Chrimson-mVenus flies. Naïve experimental males (Light, pink), $n=52$ and their genetic controls (NPFR G4/+, NPF LexA/+, grey, $n=52$; LexAop-FLPL/+, UAS<dsFRT>cs-Chrimson-mVenus/+, dark blue, $n=58$) were exposed to red light three times a day for two days. NPFR-NPF flies that were not exposed to light served as a third control (Dark, black, $n=50$). Experimental flies (pink) did not exhibit significantly different resistance to starvation compared to control flies (grey) $p>0.05$. **C.** Intersection of NPFR neurons with TK neurons (NPFR^{TK}) by crossing NPFRG4/+, TK-LexA;+, +;LexAop-FlpL, +;UAS<dsFRT>cs-Chrimson-mVenus flies. Green marks NPFR^{TK} neurons, magenta marks nc-82 neurons. **D.** NPFR^{TK} neurons of naive males were activated, and their starvation resistance was assayed. Experimental flies (NPFR^{TK}, red, $n=51$) exhibited significantly lower resistance to starvation compared to genetic control flies (TK-LexA;LexAop-FLPL, black, $n=44$; and NPFR G4;UAS<dsFRT>csChrimson-mVenus, grey, $n=51$). $*p<0.05$, $**p<0.01$. Pairwise log-rank test with FDR correction for multiple comparisons was performed for A,B,D. **E.** Scatter plot of behaviors observed and scored in the FlyBowl performed by NPFR^{TK} males (red, $n=13$) and their genetic controls, TK-LexA; LexAop-FLPL, NPFRG4;UAS<dsFRT>csChrimson-mVenus (black, $n=13$, and grey, $n=12$). $*p<0.05$, $**p<0.01$, $***p<0.001$. ANOVA or Kruskal-Wallis with post-hoc Tukey's or Dunn's test, and FDR correction for multiple comparisons were performed. **F.** Schematic representation of brain NPFR neurons that intersect with TK, Ilp2, DH44, FoxO and NPF neurons. **G.** Summary of results: Deprivation of sexual reward induces a frustration-like or a stress-like behavioral response and increases sensitivity to subsequent acute stressors. This is mediated by a neuronal response: Sexual deprivation decreases NPF signaling, thereby disinhibits NPFR neurons and induces a dynamin-independent activity, which increases sensitivity to starvation.



1089
1090
1091
1092
1093
1094
1095
1096

Figure S1. Repeated rejection does not lower the percentage of males who are still motivated to court. Naive males were repeatedly introduced to sexually non-receptive females over two consecutive days. The number of courting males was documented for each session. Males that did not initiate courtship, or that succeeded to copulate were excluded from further analysis. Total n of males for day I= 97 first session (97 courting), 97 second session (95 courting), 95 third session (88 courting), n for day II= 86 first session (86 courting), 86 second session (82 courting), 82 third session (77 courting). Bar graph represents % of courting males in each session.

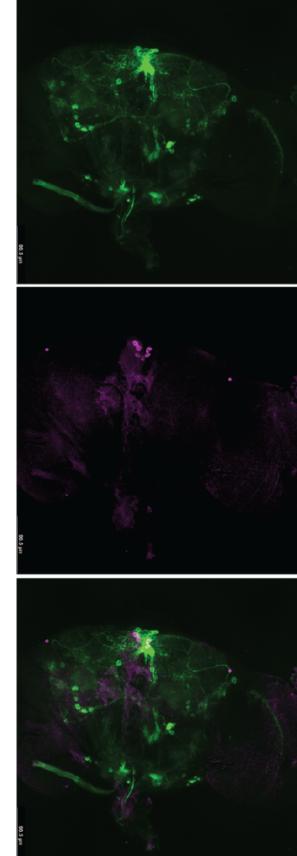
A

NPFRG4;UAS mcd8::GFP
Rb anti Ilp2

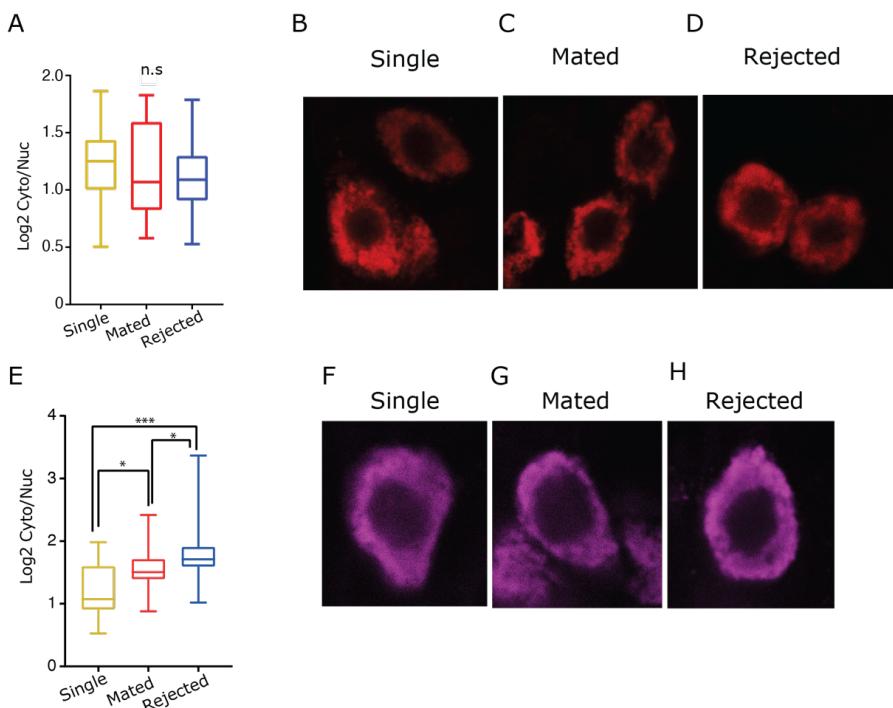
1097
1098

1099

1100


1101

1102


1103

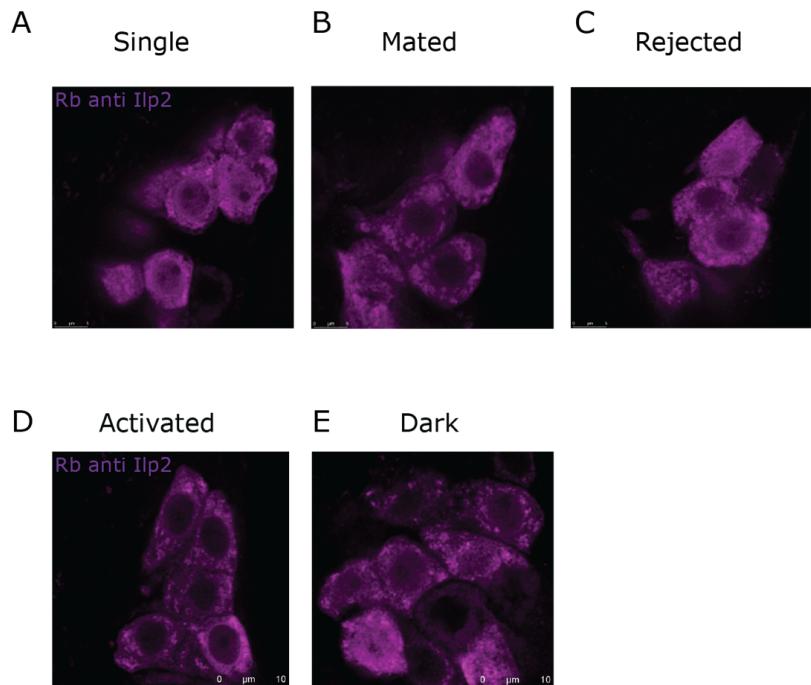
B

NPFRG4;UAS mcd8::GFP
Rb anti FoxO

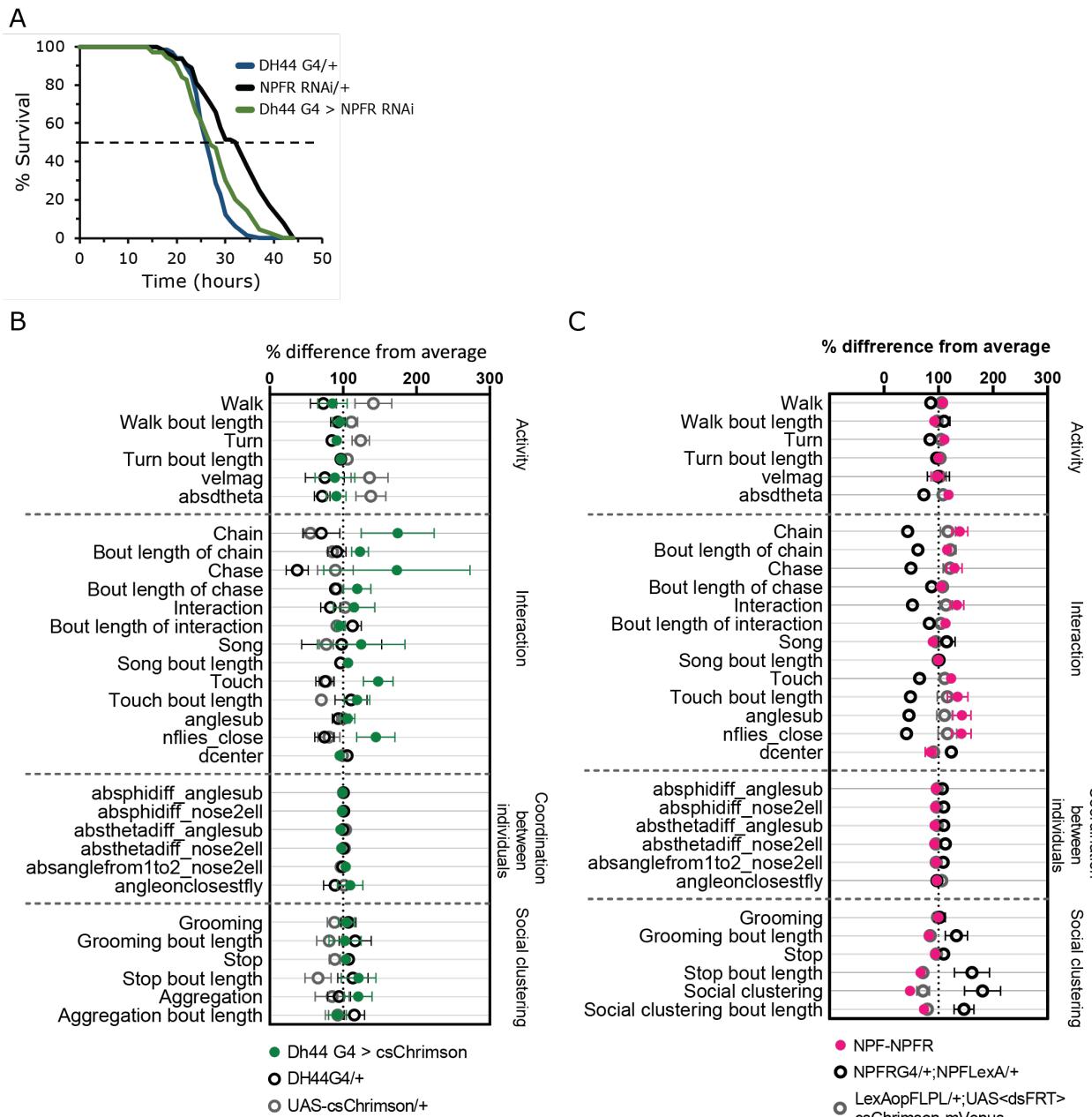
Figure S2. NPFR neurons colocalize with Ilp2 and FoxO expressing neurons. A. Immunostaining of NPFRG4; mcd8::GFP neurons using antibodies to GFP (green) and endogenous Ilp2 (magenta). On the left: whole brains. On the right: cells in the PI. B. Immunostaining of NPFRG4; mcd8::GFP neurons using antibodies to GFP (green) and endogenous FoxO (magenta).

1104 **Figure S3. Endogenous FoxO localizes to the cytoplasm in starved rejected males.** A. The ratio of
1105 cytoplasmic/nuclear localized FoxO in rejected males (blue, n=33 cells (7 brains)) compared to mated (red, n=18 cells (5
1106 brains)), and single males (yellow, n=29 cells (5 brains)). $p>0.05$ Kruskal-Wallis with Friedman post-hoc, No significant
1107 differences were observed. B-D. FoxO positive cells (red) of single (B), mated (C), and rejected (D) males. E. The ratio
1108 of cytoplasmic/nuclear localized FoxO in rejected males (blue, n=34 cells (6 brains)) compared to mated (red, n=30 cells
1109 (6 brains)) and single (yellow, n=33 cells (6 brains)) males, all of which were starved for 20 h. Rejected vs mated, mated
1110 vs single, * $p<0.05$, rejected vs single, *** $p<0.0001$. Kruskal-Wallis with Friedman post-hoc was performed. F-H. FoxO
1111 positive cells (magenta) of starved single (F), mated (G), and rejected (H) males.

1112

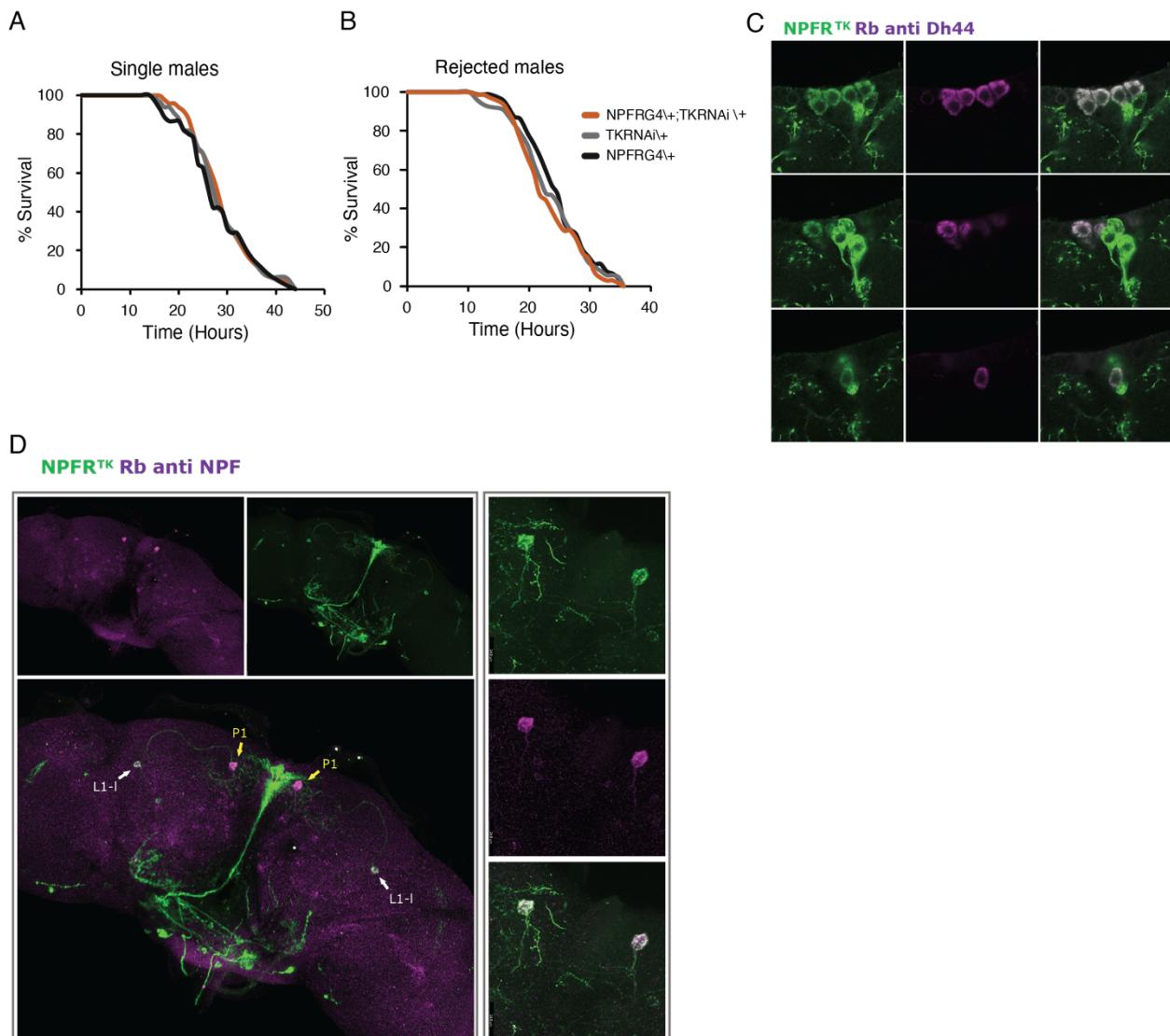

Definition	Description
Walk	Fly moves.
Stop	Fly is still.
Turn	Changes in fly's direction.
Touch	Fly actively touches another fly.
Approach	Fly approaches another fly and perform interaction (active or passive).
Aggregation	Fly sits in a group of 3 or more flies.
Grooming	Fly grooms.
Chase	Fly chases another fly.
Chain	Chase with 3 or more flies.
Song	Fly moves one wing next to another fly.
Social clustering	Fly sits in a social cluster (aggregate)
Behavior bout length	Length of the longest sequence of frames in which the behavior occurred per fly.
absdtheta	Angular speed (rad/s).
velmag	Speed of the center of rotation (mm/s).
nflies_close	Number of flies within 2 body lengths (4a).
dcenter	Minimum distance from this animal's center to other animal's center (mm).
absthetadiff_anglesub	Absolute difference in orientation between current animal and closest animal based on anglesub (rad).
absthetadiff-nose2ell	Absolute difference in velocity direction between current animal and closest animal based on dnose2ell (rad).
Absphidiff_anglesub	Absolute difference in velocity direction between current animal and closest animal based on anglesub (rad).
absphidiff_nose2ell	Absolute difference in velocity direction between current animal and closest animal based on dnose2ell (rad).
anglefrom1to2-nose2ell	Angle to closest (based on distance from nose to ellipse) animal's centroid in current animal's coordinate system (rad).
angleonclosestfly	Angle of the current animal's centroid in the closest (based on distance from nose to ellipse) animal's coordinate system (rad).

1113


1114 **Figure S4. List of behavioral features presented in Figures 5, 6 and S6.**

1115

1116



1117 **Figure S5. Activation of NPFR neurons does not affect insulin peptide 2 (Ilp2) abundance in IPCs. A.-C.**
1118 Immunostaining of male brains using antibodies to endogenous Ilp2 following courtship conditioning. Fluorescent
1119 microscope imaging of IPCs in single (A), mated (B), and rejected (C) males. **D,E.** NPFR neurons were activated in
1120 NPFR G4/+;UAS-csChrimson/+ male flies by exposing them to red light three times a day for two days (D). Control
1121 flies were not exposed to light (E). Brains of both groups were stained with antibodies to endogenous Ilp2 and imaged.

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

Figure S6. Disinhibition of DH44 or NPFR-NPF neurons did not affect male group behavior. **A.** Starvation resistance assayed on Dh44 G4/NPFR RNAi (green, n=70) flies and their genetic controls Dh44 G4/+ (blue, n=66) and NPFR RNAi/+ (black, n=64). No significant difference was observed among experimental flies and the controls, $p>0.05$. Pairwise log-rank test with FDR correction for multiple comparisons was performed. **B.** % difference average scatter plot of behaviors observed and scored in the FlyBowl performed by DH44 G4/+;UAS-csChrimson/+ males (green, n=8) and their genetic controls Dh44 G4/, UAS-csChrimson/+ (black, n=7 and grey, n=8, respectively). * $p<0.05$. Kruskal-Wallis and pairwise log-rank with FDR correction for multiple comparisons were performed. **C.** % difference average scatter plot of behaviors observed and scored in the FlyBowl performed by NPFR-NPF males (pink, n=22) and their genetic controls NPFR G4/+;NPFLexA/+ (grey, n=22), LexAop-FLPL/+;UAS<dsFRT>cs-Chrimson-mVenus/+ (black, n=21). $p>0.05$ Kruskal-Wallis. ANOVA or Kruskal-Wallis with post-hoc Tukey's or Dunn's test, and FDR correction for multiple comparisons were performed.

Figure S7. TK expression in NPFR neurons does not affect resistance to starvation. **A.** KD of tk in NPFR neurons of naïve males using NPFRG4+/+;tkRNAi/+ . Experimental single housed NPFR G4+/+;TK RNAi/+ (orange, n=50) flies did not exhibit different resistance to starvation compared to genetic controls: TK RNAi/+ (grey, n=33) and NPFR G4+/+ (black, n=45). **B.** NPFRG4+/+;tkRNAi/+ males and their genetic controls were subjected to rejection and their resistance to starvation was assayed. No significant difference in resistance to starvation in NPFR G4;tk RNAi flies (orange, n=79) compared to genetic controls (grey, n=90 and black, n=70) was observed. Pairwise log-rank test with FDR correction for multiple comparisons was performed for A,B. **C.** Six NPFR^{TK} (green) neurons colocalize with DH44 (magenta, endogenous Dh44 expression). **D. Right:** colocalization of NPFR^{TK} neurons (green) and NPF+ neurons (magenta, endogenous NPF expression), indicated by arrows. White arrows indicate L1-I neurons, yellow arrows indicate P1 neurons. **Left:** A closeup to two NPFR^{TK} NPF+ neurons (P1).

1145

1146 **Supplementary Tables**

1147 **Table S1:** List of differentially expressed genes shown in figure 2C. Genes were clustered using Kmeans
1148 clustering method (k= 3).

1149 **Table S2:** List of differentially expressed genes between rejected, mated and single cohorts.

1150 **Table S3:** LC-MS metabolite results. Compound averaged peak area/total measurable ions results are
1151 presented for mated (n= 16), rejected (n= 17), and single (n= 17) cohorts.