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12 Abstract

13 Advent of high throughput sequencing and population genomics is enabling researchers to
14  investigate selection pressure at hyper-variable genomic loci encoding pathogen-associated
15  molecular patter (PAMP) molecules like lipopolysaccharide (LPS) in an unprecedented
16  manner. Xanthomonas is a model group of phytopathogenic bacteria that infects host in tissue-
17 specific manner. Our in-depth investigation revealed that the successful emergence of lineages
18  infecting major cereals and grasses like rice, sugarcane, and wheat was mediated by acquisition
19 and later replacement of an ancestral type (BXO8) of LPS cassette by distinct one. In the
20  population of the rice xylem pathogen, X. oryzae pv. oryzae (X00), the BXO8 is replaced by a
21 distinct BXOL1 type of cassette. Alternatively, in diverse Xanthomonas species that infect
22 sugarcane, the BXO8 ancestral cassette has been replaced by yet another kind of Xvv type of
23 LPS cassette, suggesting convergent evolution at an LPS locus mediated by horizontal gene
24 transfer (HGT) events. Aside from xylem, two closely related lineages of X. oryzae that infect
25  parenchyma tissue of rice and Leersia hexandra grass have acquired an LPS cassette from
26 Xanthomonas pathogens that infect citrus, walnut, and strawberry parenchyma, indicating yet
27  another instance of parallel evolution facilitated by HGT. Our targeted and mega-population-
28  based genome dynamic studies revealed potential role of acquisition of specific types of LPS
29  cassettes in the emergence and evolution of tissue specificity in Xanthomonas. Additional
30  cellular, molecular, genetic, and plant studies will help us figure out how a distinct type of LPS

31 help Xanthomonas pathovars and lineages adapt to parenchyma and xylem tissues.
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35  Abbreviations

36 HGT: horizontal gene transfer, LPS: lipopolysaccharide, X00: Xanthomonas oryzae pv. oryzae,
37 Xoc: Xanthomonas oryzae pv. oryzicola, Xol: Xanthomonas oryzae pv. leersia, Xcc:
38  Xanthomonas citri pv. citri, Xvv: Xanthomonas vasicola pv. vasculorum, Xalb: Xanthomonas
39 albilineans, Xsac: Xanthomonas sacchari, Xaxn: Xanthomonas axonopodis, QC: query

40  coverage, Per.ID: percent identity, PAMP: pathogen-associated molecular pattern
41 Introduction

42  Phytopathogen genomics and systemic-functional studies have provided a remarkable
43  understanding of host-microbiome interactions, virulence, and host adaptation pathways,
44  giving significant insights into microbial ecology and epidemiology (An et a., 2020). LPSisa
45  major component of the outer membrane of phytopathogens that is well known to act as a
46  pathogen-associated molecular pattern (PAMP), virulence determinant, and an elicitor of
47  defence responses (Clifford, Rapicavoli, & Roper, 2013). It accounts for nearly 75% of the
48  bacteria cell surface and most likely isa pivotal contributor to the adhesion of the bacterial cell
49  to the host cells (Alexander & Rietschel, 2001; Goldberg & Pler, 1996; Walker, Redman, &
50 Elimelech, 2004). Interestingly, it has a significant role as a stimulator of the immune system in
51  both humans and plants. LPS possess long O-antigen that restrict the initial plant recognition,
52  thereby enabling elicitation of innate immunity and helping to evade successfully into the host
53 (Ranf et a., 2015; Rapicavoli et a., 2018). Whereas the recent plant immunology study also
54  demonstrated that acetylated LPS in Arabidopsis thaliana protects the LPS from immune
55  recognition (Vanacore et a., 2022), and it is found to activate biphasic production of reactive
56  oxygen species (ROS) (Shang-Guan et al., 2018). In addition, LPS has been discovered to be a
57  fundamental factor that increases bacterial viability and aids in inter-organismic interaction as
58 well. It increases bacterial virulence during host infection and distracts bacteria from host
59  immune responses (Kutschera & Ranf, 2019). It has recently been shown to induce a defence-
60 response in rice cells that leads to programmed cell death (Desaki et al., 2006). Surprisingly,
61 LPS in human and pathogenic bacteria varies greatly across species and strains. With the
62 availability of a large number of genome seguences, there is an exciting opportunity to
63  understand the evolutionary pattern at the population level and selection pressure at LPSloci in

64  pathogenic bacteria.
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65 Xanthomonas is a gram-negative, highly evolved, and extremely successful group of
66  phytopathogens that infects a wide range of dicot and monocot plants (NINOCLIU, Ronald, &
67 Bogdanove, 2006). Xanthomonas pathovars are aso used as model pathogens to study the
68  evolution of host specificity and adaptation in pathogen bacteria. These species encompasses a
69  diverse range of plant pathogens that use various pathogenicity modes in order to survive and
70  thrive in the host (Timilsina et al., 2020). Xanthomonas species are classified into two clades:
71 the minor clade | and the major clade Il (Bansal, Kumar, Kaur, Singh, & Patil, 2021). Clade |
72 represents early branching and comprises pathogens with reduced genome such as X.
73 albilineans (Xalb) (Mens, Vernerey, Gargani, Nicole, & Rott, 2014) as well as non-pathogens
74 like X. sontii (Bansal, Kaur, et al., 2021) whereas the clade |1 comprises pathogens such as X.
75 oryzae and X. citri (Bansal, Midha, Kumar, & Patil, 2017; Midha et al., 2017). While most
76  cladell speciesinfect dicot parenchyma, such as X. citri and X. arboricola, a few exceptions to
77  this clade are monocot infecting X. oryzae, X. axonopodis, and X. vasicola, which are well-
78  known pathogens of cereals and grasses. Clade I, on the other hand, is made up of species that
79  primarily infect monocots, such as X. sacchari and X. albilineans. While Clade Il is composed
80 of X. oryzae pv. oryzae or Xo0o0 the causal agent of bacterial leaf blight, that infects the xylem
81 of rice plants, a staple crop for more than half the world population. There are two more
82  pathovars of X. oryzae that infect parenchyma tissue. One is X. oryzae pv. oryzicola (Xoc) that
83  causes bacterial leaf streak in rice, and the other is X. oryzae pv. leersia (Xol) that infects
84 Leersia hexandra grass. One of its two major relatives are X. axonopodis (Xaxn), which
85  comprises of two groups: X. axonopodis that infects grasses (Constantin et a., 2016) and the
86 other is X. axonopodis pv. vasculorum that infects sugarcane. Along with this, clade Il also
87  consists of X. vasicola pv. vasculorum (Xvv) which infects sugarcane, and causes gumming
88 and leaf chlorotic streak disease and X. citri pv. citri (Xcc), infecting primarily fruit crops and
89 citrus (Patané et al., 2019). Clade | consist of X. albilineans (Xalb) and X. sacchari (Xsac)
90 which are two closely related species infecting sugarcane. Xsac causes leaf chlorotic streak
91 disease of sugarcane (Sun et al., 2017) and Xalb leads to leaf scald, a vascular disease of
92 sugarcane (Muimba-Kankolongo, 2018), respectively. Previously, it was believed that the
93  pathogen of Xalb was restricted to the xylem of sugarcane. However, it was detected in the
94  parenchyma and bulliform cells of infected leaves. It is now known that the pathogen initially
95 exists in the xylem and infects the parenchyma after creating openings by degrading the cell
96 wall and middle lamellae. So, it is interesting to note that Xalb is a sugarcane pathogenic
97  vascular bacterium that invades and multiplies in otherwise healthy non-vascular plant tissues
98 (Mensi et al., 2014).
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99 LPSis an essential factor in Xanthomonas pathogenicity and virulence, as it aids in evading
100 host immune responses (Babu et al., 2014; Lang et a., 2019). An LPS locus between
101 housekeeping genes metB and etfA in the genus Xanthomonas is hypervariable within
102  species/strains (Patil & Sonti, 2004). Mutations at this locus have been linked to a loss of
103  virulence in both Xoo and Xoc (Dharmapuri, Yashitola, Vishnupriya, & Sonti, 2001)(Wang,
104  Vinogradov, & Bogdanove, 2013). It has been reported that the Xvv pathogen can infect
105 sugarcane via LPS, which is similar to X. axonopodis pv. citri (Wasukira et al., 2014).
106  However, studies on the LPS locus at the population level within and between pathovars are
107  lacking. Earlier studies revealed three types of LPS gene clusters or cassettes (BXO1, BXO8,
108  and BLS256 type) in X. oryzae (Patil & Sonti, 2004). Even within lineages of Xoo, there are
109 two types of LPS cassettes which only infect rice xylem, suggesting LPS as a potential
110  determinant of tissue-specificity. However, these and other studies on variation on LPS locus
111  were based on a limited number of genomes, and with the explosion in the number of
112 sequenced genomes of members of the genus Xanthomonas, there is a scope and need to carry

113 out deeper and population-based comparative studies.

114  Currently, the NCBI genome portal contains 406 high-quality genomes from X. oryzae,
115  submitted by various research groups around the world (Zheng et al., 2020). Apart from X.
116  oryzae, the genomic resources of its relatives from other species are also abundant. As of
117  December 2021, there were 151genomes of Xcc, 114 genomes of Xvv, 17 genomes of Xalb
118 aong with five genomes of Xaxn and four genomes of Xsac available on GTDB
119  (https://gtdb.ecogenomic.org/) and NCBI portal. Hence, this provides an unprecedented
120  opportunity to investigate the type of LPS cassettes found in Xanthomonas pathovars and their
121  association with tissue specificities. There is also potential to investigate the association with
122 host specificity by robustly comparing the variation with other members of the Xanthomonas
123 genus with similar lifestyles using mega-population-based targeted comparative genomic
124  studies. In this present study, we aim to conduct targeted and systematic comparative and
125  evolutionary genomics at the population level in order to understand large scale variation at
126  LPSloci.

127 Results

128  Evolutionary tracing reveals the presence of the BXO8 type of LPS cassette in diverse

129  Xanthomonas species that infect the xylem of rice, carpet grass, and sugarcane
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130  To understand the diversity, we screened the LPS locus for the type of LPS cassette variation
131  availablein the NCBI. The analysis revealed the presence of a 21 KB cassette with 57.1% GC
132 content and encoding 17 ORFs, which we refer to as the BXO8 type LPS or grass type of LPS
133  cassette. One part of the cassette harbours genes involved in LPS biosynthesis, and the
134  remaining cassette harbours genes involved in virulence and accessory genes. In the BXO8
135  type LPS cassette, there is a set of nine genes at the etfA end involved in NAD/FAD dependent-
136  oxidoreductase, prenyltransferase, methyltransferase, and GtrA family proteins involved in the
137  synthesis of cell surface polysaccharides. The initial ORFs from the metB side of BXO8 were

138  annotated as wzm, wzt genes, glycosyltransferase, and some hypothetical proteins.

139  Phylogenetic analysis also revealed that this intact BXO8 type LPS is present in strains
140  belonging to four Xanthomonas species, i.e., X00, Xaxn, Xvv, and Xsac that infect the xylem
141  of rice, grasses (Axonopus scoparius and Axonopus micay), and sugarcane, respectively (Figure
142 1A, Figure 1B). While it is interesting to note that X00, Xaxn, and Xvv belong to clade-Il,
143 Xsac belongs to clade-1. Population level genomic studies revealed that 19/406 strains of Xoo
144  (figure 2A), 5/5 strains of Xaxn, 19/113 strains of Xvv (figure 3A), and 1/4 strains of Xsac
145  (figure 4A) have BXO8 type of LPS cassette. Homology blast results for all the genomes is
146  provided in supplementary table 1. We compared the cassette to interspecies variation and
147  found minor differences at some IS elements and hypothetical genes (figure 1B). Minor
148  differences between X. axonopodis pv. vasculorum NCPPB 796 (T) and BXO8 type LPS
149  include the presence of one more phytanoyl-coA dioxygenase family protein, the presence of
150 IS5 transposons, and the presence of two new hypothetical genes whose functions are
151 unknown. In a similar way, in the case of the Xvv NCPPB 795 strain and X. sacchari F10,
152  there is more than 90% query coverage and 80% above percent identity found with the BXO8
153  type of LPS cassette. The arrangement of genes from the both etfA and metB sides in al the
154  genomesis similar with BXO8 (figure 1B).

155  Population mapping reveals that BXO8 has been replaced by newer types of LPS
156  cassette(s) during their emergence

157  The availahility of a large number of genome segquences from several Xanthomonas pathogens
158  allowed us to understand the evolution of the LPS locus at the population level. In the case of
159  the Xoo pathogen, which infects rice xylem, genome sequences of 406 strains are available in
160  the public domain. While the BXO8 type gene cluster is found in 19 strains, the remaining 386
161  dtrains consist of the entirely distinct BXO1 type LPS cluster (figure 2A, B). The
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162  phylogenomic analysis reveals that the BXOL1 type of cassette has overtaken a 386/406 X 00
163  dtrains (figure 2A). The BXOL LPS cassette is 14 KB in size, has a 54% GC content, and
164  encodes nine genes that have homology to genes involved in LPS biosynthesis and transport. In
165 BXO1, the wzm and wzt genes are on the etfA side, whereas they are on the metB side in the
166 BXO8 type LPS cassette. The presence of a large number of continuous transposes (IS5,
167  1S256, 1S30, and 1S701) on the etfA side differentiates this LPS from BXO8. Even the FkbM
168  family methyltransferase and acetyltransferase on the metB side are responsible for O-antigen
169  biosynthesis of BXO1 type LPS, distinguishing it from BXO8 type LPS (figure 2B,
170  supplementary figure 1).

171 Aside from Xoo0, we have discovered BXO8 LPS cassette in X. vasicola (figure 1A), which is
172 another pathogen with a large-scale genomic resource (n =113 genomes). As a result, we
173 searched for the LPS locus diversity in the LPS of the Xvv population. The analysis revealed
174  that only 19 strains have the BXO8 type of cassette, while 94 strains harbour a novel LPS
175  cassette, which we name as novel Xvv type of LPS cassette (figure 3A and B). An Xvv type of
176  cassette was reported in an earlier study while comparing variation at the LPS locus in
177  Xanthomonas species that infect sugarcane. Interestingly, like in Xoo, the population level
178  analysis reveas that in Xvv, the BXO8 type of LPS cassette was supplanted by a novel Xvv
179  type LPS cassette (figure 3A). The new cassette has a size of 23 KB, a GC content of 58.5%,
180  and the wzm and wzt marker gene do not match with the marker genes of BXO8 type LPS,
181  making it novel LPS. The presence of glycosyltransferase just before the wzm and wzt marker
182  genesin the metB flanking region is completely new. Aside from that, two GDP-mannose 4, 6-
183  dehydratases and an IS3 family transposase are noticeable. This cassette contains a relatively
184 new class | SAM-dependent methyltransferase. The other half of the etfA flanking region
185  contains ORFs that are similar to those found in the BXO8 LPS cassette, resulting in Xvv LPS
186  being adiversified BXO8 cassette (figure 3B, supplementary figure 2).

187 While Xoo and Xvv are from clade Il, clade | consists of X. sacchari, which is another
188  pathogen of sugarcane infecting xylem (figure 1A). Despite the fact that there are fewer
189  genome sequences available for Xsac (n = 4 genomes) than for Xoo (n = 406 genomes) and
190 Xwv (n = 113 genomes), we discovered that only one strain i.e. X. sacchari F10, which forms
191 the basal branch of the phylogenetic tree (figure 4A), has the BXO8 type of LPS cassette.
192  While the other three strains have a new LPS cassette that is interestingly homologous to the
193  Xwv type of LPS cassette (figure 4A and B). It appears that during the evolution of Xoo and
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194  Xvv pathogens from clade Il and Xsac from clade I, selection of novel LPS cassettes rather
195  than the BXO8 type of LPS occurred.

196 The emergence of X. oryzae variant lineages infecting parenchyma is associated with the
197  acquisition of a novel LPS cassette from its relative X. citri pv. citri, which infects the

198  parenchyma of citrus plants

199 We used atotal of 22 genomes of Xoc (n = 19 genomes) and Xol (n = 3 genomes) with the
200 Xoo (n = 405 genomes) population that are available a  NCBI
201 (https://www.ncbi.nim.nih.gov/).Interestinly,Xoc and Xol fall into lineage Il only and are not
202 found in any other lineages (figure 5A). Amongst seven lineages, it is the only lineage
203 consisting solely of pathovars that infect specificaly parenchymal tissues (figure 5A). A
204 genomic analysis of the LPS locus in Xoc and Xol revealed that these pathovars harbour a
205  distinct type of LPS as compared to xylem-infecting LPS (BXO1 and BXO8). In Xoc type
206 LPS, seven genes towards the metB side were identified as distinct. The Xoc locus is 22 KB
207  and has 58% GC content, making it larger than BXO1 and BXO8, while having the highest GC
208  content. The catB-O acetyltransferase, which is present only in Xoc LPS, is a chloramphenicol
209 resistance effector in bacteria. Xoc has a hybrid LPS cluster; half of this gene cluster is
210  homologous to the LPS cluster of BXO8, while the other half is very distinct (figure 5B,
211 supplementary figure 1). The genes from the etfA side of Xoc LPS cluster such as Fippase-like
212 domain, UbiA, FAD-binding, NAD/FAD oxidoreductase, and the GtrA family, were
213 homologous to those from the BXO8 LPS cluster. Further, SDR family oxidoreductase, two
214  different glycosyltransferases, and considerable numbers of hypothetical proteins are present in
215  Xoc type LPS that are absent in other cassettes which are absent in rice xylem infecting LPS.
216  The other side of metB was essentialy different from the BXO8 LPS cluster, inferring it a
217  chimeric LPS gene cluster and utterly different from the BXOL1 type of cluster (supplementary
218  figure 1). This chimeric LPS cluster of Xoc might be responsible for the origin of tissue-
219  specific pathogenicity of Xoc and helping it evolve into a parenchyma-specific pathovar.
220  Interestingly, the LPS cassette in Xol is of 25 KB with 57.5% GC content and contain same
221 marker genes (wzm and wzt) asin the Xoc type (figure 5B). Numerous glycosyltransferases and
222 hydrolases, however, are replaced, and hypothetical proteins and IS elements are introduced
223 (figure 5B). This addition of five hypothetical proteins with unknown functions may aid in the
224  infection of grasses and the evolution of Xol as a parenchyma pathovar capable of jumping

225  from grasses to paddies. Despite the presence of Xoc type marker genes (wzm and wzt) in the
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226 LPS of Xol strains, the addition of six genes between the cassettes demonstrates that HGT
227  occurs within the cassette to alow it to survive in two distinct hosts. All the strains of X. oryzae
228  that infect parenchyma strains have a Xoc type of LPS cassette, whereas BXO1 and BXO8

229  cassettes are specifically present in X oo strains that infect xylem tissue.

230 NCBI BLAST results indicate that the Xoc type is found in the genomes of strains of
231  Xanthomonas pathogens, X. citri pv. citri (Xcc), X. fragariae YL19, and X. arboricola pv.
232 corylina A7, which infect the parenchyma of citrus, strawberry, and hazelnut plants,
233 respectively. Further, we mapped the distribution of the Xoc type of cassette in the publicly
234  avalable 200 genome sequences of the Xcc population (figure 6B). We discovered that 14
235 dirains that are A* and Aw pathotypes, have the Xoc type of LPS cassette arrangement with
236  100% coverage and more than 90% percent identity with Xoc LPS (figure 6B). It is pertinent to
237 note that the Xcc causes citrus bacterial canker and is found to exist as three distinct
238  pathotypes: A, A*, and Aw, of which has a unique host range and host response variations
239 (Webster, Bogema, & Chapman, 2020). Pathotype A has the broadest host range, whereas
240 pathotypes A* and Aw have a narrower host range that infects key lime (Citrus aurantifolia),
241 aemow (Citrus macrophylla), and produces a hypersensitive response on grapefruit (Jalan et
242  a., 2013; Rybak, Minsavage, Stall, & Jones, 2009). The evolutionary study suggests that both
243  A* and Aw changed from a wide host range to a narrow host range over time. Whereas X.
244  fragariae YL19 has a limited host range, it primarily infects strawberry varieties, causing
245  crown infection pockets and angular leaf spots. Meanwhile, X. arboricola pv. corylina A7
246  infects hazels. X. arboricola pv. corylina A7 has over 90% query coverage and 54% identity
247  with Xoc LPS, whereas X. fragariae has 100% query coverage and 94% identity with Xoc LPS
248  (figure 6B, supplementary figure 3).

249  Hence, the presence of the Xoc type of LPS cassette in these pathotypes indicates that this
250 emerging Xoc type is undergoing continuous evolution in Xanthomonas, assisting bacteria in
251  evolving as parenchyma pathovars and restricting them becoming host-specific pathovars as
252 well. The presence of the Xoc type of LPS cassette in diverse Xanthomonas species infecting
253  the parenchyma of diverse hosts indicates a potential role of this type of cassette in parallel
254  evolution. It is possible that HGT’ s of Xoc LPS cassette in a X 0o strain played acritical rolein
255  the emergence of the X. oryzae pathovar capable of infecting the rice parenchyma. The other

256  pathovar of X. oryzae, i.e., Xol, also infects the parenchyma of Leersia hexandra grass and
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257  forms a monophyletic lineage with Xoc. Unsurprisingly, Xol strains also comprise Xoc-type
258  LPS cassette, corroborated our observation.

259  Distinct LPS cassettes support diversified tissue specificities in sugar cane infecting Xalb
260 pathogen

261  Xab, another significant Xanthomonas pathogen that causes leaf scald, a lethal sugarcane
262  disease, is also found in clade | (figure 1A). The NCBI public domain contains 17 genome
263  sequences, as a result we scanned the LPS locus in these strains and discovered that Xalb is
264  dominated by the Xvv type of LPS cassette. Twelve of the seventeen strains contain an LPS
265  cassette of the Xvv type, while the remaining five contain an LPS cassette of the Xoc type
266  (figure 4A). The Xvv type of LPS in Xab has query coverage of more than 50%, whereas the
267  wzm maker gene has 100% query coverage with an Xvv type LPS cassette, making it more
268  similar to sugarcane infecting like the Xvv type LPS cassette. In comparison to the Xvv type of
269 X vasicola, the Xalb Xvv type LPS cassette is smaller in size (16 KB) with 58.7% GC content.
270  The arrangement of genes towards metB is similar to that of the Xvv type where there is a
271 reduction of genes like the SDR family, UbiA family, and Flippase on the etfA side. The
272 presence of hypothetical genes, glycosyltransferas, and GtrA family proteins flanking the etfA
273 geneis unique to this cassette (figure 4B). In the case of Xoc type LPSin Xalb, itis23 KB in
274 size (55% GC), whereas the pseudogenization of Xoc specific catB-O acetyltransferase
275 towards the metB side is noticeable. Along with this, there is the presence of two
276 glycosyltransferases and three hypothetical proteins with unknown functions on the etfA side
277  (figure 4B). Infection and multiplication of Xalb bacteria in sugarcane xylem along with
278  parenchyma tissues have been reported recently. Hence, we can conclude that in order to
279  successfully invade both vascular and non-vascular sugarcane tissue, it appears that two
280 distinct LPS types are required in the Xalb population.

281  Discussion

282  Large-scale variaion in pathogens can be expected because of the enormous diversification of
283  the hosts they infect. Further, with the advancement of third-generation sequencing, it becomes
284  easier to study complete genome sequences and find their origin and evolution through
285 comparative and population genomics. The large-scale variations in LPS clusters of
286  Xanthomonas at strain, pathovar, and species-level indicate that plant pathogenic bacteria are

287  under intense selection to vary their Ips gene cluster, and earlier mutation studies suggest an
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288  essentia role for LPS in plant-pathogen interactions and the virulence process (Petrocelli,
289  Tondo, Daurelio, & Orellano, 2012).

290  Our deep phylogenomics of diverse Xanthomonas species reveals lineages associated with
291  different types of LPSin accordance with their host and tissue specificity (figure 7). Population
292 study of rice pathogens suggests it was originally a xylem pathogen, as evident by multiple
293  Xoo pathovar lineages versus a single parenchyma lineage comprising of Xoc and Xol
294  sandwiched between xylem Xoo lineages. As a result, parenchyma pathovars could be variant
295  lineages of the xylem pathovars in the X. oryzae population (Figure 2A). Further, the presence
296 of the Xoc type LPS cassette in the narrow host-range Xcc population implies their
297  dgnificance in invading the parenchyma tissues of their respective hosts. To support our
298  finding, we have also found that pathogens that infect the parenchyma, such as X. fragariae

299  and X. arboricola pv. corylina also have Xoc type LPS cassettes.

300 The presence of BXO8 type cassettes in xylem pathogens from distinct clades, such as X.
301 oryzae infecting rice, X. axonopodis, which infects grasses, and sugarcane pathogens X.
302 vasicola and X. sacchari, suggests that it was an ancestral cassette. Interestingly, in xylem
303 invaders, BXO8 type LPS is supplanted by BXOL1 in rice pathogens and Xvv type LPS in
304 sugarcane pathogens. Our study illustrates that genes at the metB locus of BXO8 are at
305  systemic hyper-variation due to presence of multiple IS elements, leading to distinct
306  glycosyltransferases, methyltransferases, and hypothetical proteins. In this context, distinct
307 LPS cassettes fit the bill as a dominant emerging lineage leads to successful invasion and

308  adaptation in sugarcane and rice plants.

309 Peculiarly, X. albilineans is a lethal sugarcane pathogen with reduced genome invading both
310 xylem and parenchyma (Pieretti et al., 2015). Our genomic investigation reveals Xalb to have
311  two different LPS cassettes: Xvv and Xoc types, found to be specific to xylem invading
312 sugarcane pathogens and parenchyma invaders in the present study. Having two different types
313  of LPS cassettes without any pathovar or tissue specific lineage suggests that these pathovars
314 have evolved their LPS cassettes to survive in both xylem and parenchyma tissues. This also
315  supports our conclusion that LPS not only plays a role in pathovar specific lineage
316 diverdification, but also in pathogen adaptation to different hosts and tissue specificity. Unlike
317  rice pathogens, Xalb lacks tissue-specific lineages warranting its population level genomic
318  investigation.
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319  Both the xylem and parenchyma represent distinct niches in the plant (An et al., 2020). In the
320 xylem, it is expected that defence responses are lower compared to the parenchyma
321  Parenchyma pathogens may have to actively deal with antimicrobial and other defence
322 responses of parenchyma cells. LPS may act as barrier for antimicrobial peptides and
323 molecules (Galloway & Raetz, 1990). In Burkholderia cenocepacia, deletion mutants in the
324  LPS gene cluster were found to be resistant to tailocin (a phage tail-like bacteriocin) (Yao et
325 a., 2017). Because LPS is a phage receptor, xylem pathovars are likely to have a different type
326  of LPS cassette than parenchyma pathogens. Simultaneously, the number and diversity of
327  phagesin the xylem may be higher than in the parenchyma due to the continuity of water flow.
328  While Xanthomonas pathogens that infect the xylem of grasses have acquired Xoc type
329  cassette which led to the emergence and success of X. oryzae as a parenchyma pathogen may
330 have coincided with the acquisition of LPS cassettes, which are also present in strains of Xol.
331  The deep genomic investigation has provided detailed insights into changes in large-scale
332 variations mediated by horizontal gene transfer in diverse Xanthomonas pathogens that infect
333  the xylem and parenchyma of grasses, sugarcane, and citrus plants. Further genetic, cellular,
334  and functional studies are warranted to establish the role of variant LPS cassettes in conferring

335  success on these tissue-specific pathovars and their predominant lineages.
336 Materialsand Methods
337  Genome procurement from the public repository

338 A total of 427 (X00), 215 (Xcc), 114 (Xvv), 63 (Xtl), 17 (Xalb), 4 (Xsac), and 5 (Xaxn)
339  genomes were used in this study. All Xanthomonas genomes [in 427 genomes, X00 (n = 405),
340 Xoc (n=19), and Xol (n =3)] are publicly available (https://www.nchi.nlm.nih.gov/) and were
341 usedinthis study.

342  Pan-genome analysis

343 Roary v3.12.0 (Page et a., 2015) was used to perform pan-genome analysis using .gff files
344  generated by Prokka v1.13.3 (Seemann, 2014) as input. As we were analysing genomes from
345  the same species, the cut-off used was 96%, which is set by default.

346 Phylogenetic analysis
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347 A phylogenetic tree analysis was performed using MEGA7 (Kumar, Stecher, & Tamura, 2016)
348 by the neighbor-joining method. A core genome tree of genomes was constructed using
349  PhyML (Guindon et al., 2010). For example, the core genome alignment was generated using
350 Roary v3.11.2 (Pageet a., 2015), and it was converted to phylip format using SeaView v4.4.2-
351 1 (Gouy, Guindon, & Gascuel, 2010). Then, the Newick tree file was obtained by using
352  PhyML and then visualized using iTOL (Letunic & Bork, 2021).

353  Comparative study-L PS cassette analysis

354  All the LPS cassettes flanked by two conserved sequences on both sides of the cassette were
355  extracted from genomes by doing NCBI BLAST (Johnson et al., 2008) of marker wzm (1 KB)
356 and wzt (1 KB) genes. Firstly, the query coverage and percent identity (more than 50%) of the
357 wzm gene are used to extract the cassettes from all genomes (both protein and nucleotide
358  sequence), and then a complete cassette (both protein and nucleotide sequence) is BLAST
359 against each LPS type of LPS cassette on the basis of query coverage and percent identity
360 (more than 50%) of the complete cassette for comparisons. With the help of an easy genome
361 comparison  tool-  Easyfig v22 (Sullivan, Petty, & Beatson,  2011)
362 (https://mjsull.github.io/Easyfig/), we performed BLAST and aligned all four complete LPS
363  cassettes with each other. We have also used the Artemis tool for annotation and visualization
364  of sequences of cassettes (http://sanger-pathogens.github.io/Artemis/Artemis/) (Rutherford et
365  al., 2000).
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493  Figure 1: Phylogenetic tree of Xanthomonas type strains. (A) Fast-tree was used to reconstruct
494  the core-gene tree, which was then visualised using iTOL software. Clade | depicted in yellow,
495 while Clade Il is depicted in green. The presence of BXO8 type LPS is indicated by a pink
496  coloured arrow. (B). Easyfig and the BLASTn algorithm were used to compare the LPS
497  synteny of X00-BX08, Xac NCPPB 796, Xvv NCPPB 795, and X. sacchari F10. The gene
498 locations are represented by arrows, and the degree of homology between pairs of genesin two
499  LPS cassettes is represented by shaded lines. The etfA and metB genes are represented by grey

500 arrows, while|S elements are shown in red.
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503  Figure 2: Distribution of LPS in the Xoo population. (A) PhyML was used to reconstruct the
504  core-gene tree, which was then visudised using iTOL software. The yellow colour represents
505 BXO1 type LPS, while the pink colour represents BXO8 type LPS found in each strain. The
506  number of substitutions per site is indicated by the scale bar. (B). Genetic comparison of LPS
507  cassettes of the BXO1 and BXOB8 types. The location and direction of genes are represented by
508  arrows, and homology between two genes is represented by similar colours. The etfA and metB

509  genes are represented by grey arrows, while IS elements are shown in red.
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511  Figure 3: Population phylogenomics of X. vasicola. (A) Fast-tree was used to reconstruct the
512  core-gene tree, which was then visualised using iTOL software. The different lineagesin the X.
513  vasicola population are represented by the inner colour ring. The presence of BXO8 type
514  (pink) and Xvv type LPS cassettes is indicated by the outermost arrow (sky blue color). (B).
515  Comparison of BXO8 type LPS (pink) with Xvv NCPPB 795 (pink) and Xvv SAM 119 (pink)

516  (sky blue). The etfA and metB genes are represented by grey arrows, while IS elements are
517  showninred.
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520 Figure 4: Phylogenetic tree of X. albilineans and X. sacchari populations. (A) Population
521  study based on core genes and visualised with iTOL software, lineage-l (dark purple) and X.
522  sacchari, lineage-1l (light purple) (light purple). The presence of BXO8 type (pink colour), Xvv
523  type (sky blue colour), and Xoc type (green colour) LPS cassettes in both populations is
524  represented by the outermost arrow. (B). Comparison of LPS cassettes and genetic organisation
525 in two populations with BXO8 type LPS. Pink represents BXO8 type LPS (BXO8 and X.
526  sacchari F10), while sky blue and green represent Xvv (X. albilineans GPE PC73) and Xoc (X.
527  albilineans REU209). The etfA and metB genes are represented by grey arrows, while 1S

528  elements are shown in red.
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529

530 Figure5: Distribution of Xoc and Xol lineages and LPS cassettes in the Xoo population. (A)
531 PhyML was used to reconstruct the core-gene tree, which was then visualised using iTOL
532  software. Lineages are represented by different node colours. The green node represents the
533  Xoc and Xol population, with * denoting parenchyma pathovar and #X00 denoting X oo-xylem
534  pathovar. The outermost arrows indicate the presence of LPS cassettes (yellow-BXO1, green-
535  Xoc type, pink-BXO8) in each strain. The number of substitutions per site is indicated by the
536 scalebar. (B) Comparison of Xoc type LPS (X. oryzae pv. oryzicola BXOR1 and X. oryzae pv.
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537 leersia NCPPB 4346) and BXO8 type LPS cassette the etfA and metB genes are represented by

538  grey arrows, while IS elements are shown in red.
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539

540 Figure 6: Distribution of the Xoc type LPS in Xcc population. (A) PhyML was used to
541  reconstruct the core-gene tree, which was then visualised using iTOL software. The outermost
542  symbols represent different pathotypes, with green colour arrows representing strains with Xoc
543  type LPS with A* pathotype (red colour) and Aw pathotype (blue colour) (blue color). (B).
544  Easyfig anaysis: Xoc type LPS and BXO8 LPS cluster comparison with X. citri pv. citri
545 DARB84832. The arrows indicate gene location, and the shaded lines indicate the degree of

546  homology between pairs of genesin two LPS cassettes.
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547

548 Figure 7. Schematic view representing the mgor type of LPS cassettes in Xanthomonas
549  population. On the left are names of different tissues (indicating color boxes), and on the right
550 are different hosts to which each type of LPS is linked. Each LPS cassette has metB and etfA
551  flanking genes. The wzm and wzt marker genes are shown next to each other in the same colour
552  scheme, indicating homology. The star signifies IS elements and hypothetical genes. In present
553  study metB locus region of each cassette is found to be the most hyper-variable, responsible for
554  virulence and transport. The other biosynthesis locus is on etfA region and contains genes that

555  aresimilar to the ancestral one (BXO1 LPSis an exception).
556  Supplementary material

557  Supplementary figure 1. LPS synteny comparison of BXO1, BXO8 and Xoc type LPS
558  cassette with Easyfig and the BLASTn algorithm. Arrows represent the location of genes and
559  shaded lines reflect the degree of homology between pairs of genesin two LPS cassettes.

560 Supplementary figure 2: LPS synteny comparison with Easyfig and the BLASTn algorithm.
561  Arrows represent the location of genes and shaded lines reflect the degree of homology
562  between pairs of genesin two LPS cassettes. X. sacchari CFBP 4641 and X. albilineans CFBP
563 2523 shows more homology with Xvv type of LPS than BXO8.

564  Supplementary figure 3: LPS synteny comparison with Easyfig and the BLASTn algorithm.
565  Arrows represent the location of genes and shaded lines reflects the degree of homology
566  between pairs of genes in two LPS cassettes. Gene cluster in Xcc strains (DAR84832, AW13),
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567 X fragariae YL19, X. arboricola pv. corylina A7 LPS showing homology with Xoc type LPS
568  Ccassette (green color).

569  Supplementary table 1. Metadata of Xanthomonas strains used in present study.

570
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