

1 Apical constriction induces tissue rupture in a proliferative epithelium

2
3 Mariana Osswald^{1,2}, André Barros-Carvalho^{1,2}, Ana M Carmo^{1,2,5}, Nicolas Loyer³, Patricia C
4 Gracio⁴, Claudio Sunkel^{1,2}, Catarina C Homem⁴, Jens Januschke³ and Eurico Morais-de-Sá^{1,2,*}

5
6 1. Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
7 2. Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto,
8 3. Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street,
9 Dundee, DD5 1EH UK
10 4. iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon,
11 Portugal.
12 5. Present address: Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S
13 3G9, Canada.

14
15 * Correspondence: eurico.sa@ibmc.up.pt

16 17 18 Abstract

19 Apical-basal polarity is an essential epithelial trait controlled by the evolutionarily conserved
20 PAR-aPKC polarity network. Deregulation of polarity proteins disrupts tissue organization
21 during development and in disease, but the underlying mechanisms are unclear due to the
22 broad implications of polarity loss. Here, we uncovered how *Drosophila* aPKC maintains
23 epithelial architecture by directly observing tissue disorganization after fast optogenetic
24 inactivation in living adult flies and ovaries cultured *ex vivo*. We show that fast aPKC
25 perturbation in the proliferative follicular epithelium produces large epithelial gaps that result
26 from increased apical constriction, rather than loss of apical-basal polarity. Accordingly, we
27 could modulate the incidence of epithelial gaps by increasing and decreasing actomyosin-
28 driven contractility. We traced the origin of epithelial gaps to tissue rupture next to dividing
29 cells. Live imaging shows that aPKC perturbation rapidly induces apical constriction in non-
30 mitotic cells, producing pulling forces that ultimately detach dividing and neighbouring cells.
31 We further demonstrate that epithelial rupture requires a global increase of apical constriction,
32 since it was prevented by the presence of non-constricting cells. Conversely, a global
33 induction of apical tension through light-induced recruitment of RhoGEF2 to the apical side
34 was sufficient to produce tissue rupture. Hence, our work reveals that the roles of aPKC in
35 polarity and actomyosin regulation are separable and provides the first *in vivo* evidence that
36 excessive tissue stress can break the epithelial barrier during proliferation.

37
38
39
40
41
42
43
44
45
46
47

48 **Introduction**

49

50 Cell polarity is a defining feature of epithelial architecture and function. Apical-basal
51 polarity ensures the asymmetric localization of the intercellular junctions that maintain the
52 cohesion of epithelia and thereby preserve the epithelial barrier. Epithelial architecture is also
53 regulated by the distribution of actomyosin-driven forces at the apical, basal and junctional
54 level [1, 2]. It is thus not surprising that polarity disruption induces epithelial disorganization
55 during animal development or disease [3-7]. This raises the importance of spatial cues
56 provided by polarity regulators to build and support the three-dimensional structure of an
57 organ. However, because polarity proteins are involved in many different processes that can
58 ultimately affect tissue shape, how these proteins maintain epithelial architecture remains a
59 critical longstanding question.

60 Interfering with polarity regulators in monolayered epithelia leads to different defects that
61 disrupt epithelial integrity. These include the formation of multilayered tissue [4, 5, 8], ectopic
62 lumens [5, 9, 10] and the appearance of gaps [7, 8, 11, 12]. Extensive characterization using
63 loss or gain of function perturbations linked these defects to junctional disorganization,
64 misoriented cell division, defective control of proliferation or misdifferentiation. However, direct
65 observation of how an epithelium becomes disorganized upon disruption of polarity regulators
66 is still missing, which prevents a clear understanding of how defects arise.

67 Atypical Protein Kinase C (aPKC) is part of the apical PAR complex (Cdc42-Par6-aPKC)
68 and is a central regulator of animal cell polarity[13, 14]. It generates apical-basal asymmetry
69 through phosphorylation of a number of polarity proteins, including Baz/Par3, Lgl, Par-1, Yurt
70 and Crb. Their phosphorylation regulates local cortical binding through the modulation of
71 multivalent protein interactions, homo-oligomerization [15-20], or simply by reducing
72 electrostatic interactions with plasma membrane phospholipids [21, 22]. Apical-basal
73 polarization ultimately positions belt-like adherens junctions (AJ) at the apical-lateral border
74 where they mechanically link neighboring cells.

75 In addition to its well studied role in polarity regulation, aPKC regulates cell fate,
76 epithelial-to-mesenchymal transition, cell cycle length, cell division orientation, actomyosin
77 contractility and microtubule dynamics [9, 23-32]. In fact, some aPKC targets are not polarity
78 proteins. Phosphorylation of Rho-associated coiled-coil-containing kinase (ROCK) represses
79 the localization of this myosin activator to apical junctions, and thereby inhibits apical
80 constriction in mammalian cells [26, 33, 34]. Moreover, aPKC acts as a negative regulator of
81 apicomедial actomyosin networks to regulate pulsatile apical constriction in the *Drosophila*
82 amnioserosa [35, 36]. aPKC function is also linked with actomyosin reorganization during cell
83 division in fly tissues, which is consistent with its mitotic redistribution along the lateral cortex
84 in mouse and sea anemone blastomeres [37-41]. Thus, aPKC may ensure epithelial
85 architecture through different functional outputs, and assessing the contribution of actomyosin
86 regulation and polarity maintenance demands separation of these aPKC functions.

87 Here, we combined optogenetic with chemical-genetic approaches to finetune aPKC
88 inactivation with high-temporal control. This allowed us to disentangle the functions of aPKC
89 in the regulation of actomyosin contractility and polarity. The monolayered follicular epithelium
90 that encloses the *Drosophila* germline is a powerful system to explore the mechanisms that
91 regulate epithelial architecture *in vivo*. Acute perturbation allowed us to capture that epithelial
92 gaps form in the proliferative stages, where they arise by tissue rupture next to dividing follicle
93 cells. We show this phenotype stems from the role of aPKC as an inhibitor of apical
94 actomyosin networks in non-mitotic cells. These become hypercontractile after aPKC

95 downregulation and pull on dividing cells until detachment occurs. Our work reveals the
96 importance of keeping apical contractility in check during proliferation-mediated growth to
97 maintain epithelial integrity.

98

99 **Results**

100

101 **Optogenetic clustering inactivates aPKC**

102

103 To explore how apical polarity maintains epithelial architecture, we developed a new
104 approach to inactivate aPKC with high temporal control in the *Drosophila* follicular epithelium
105 with an optogenetic clustering tool – light activated reversible inhibition by assembled trap
106 (LARIAT) [42]. When exposed to blue light, LARIAT components – CRY2 fused to a GFP
107 nanobody (V_HH) and CIBN fused to a multimerization domain – interact with each other and
108 cluster. To target and sequester aPKC, we used flies with endogenously GFP-tagged aPKC
109 [43] and co-expressed GAL4-driven UAS-LARIAT (UAS-V_HH::CRY2-P2A-CIBN::MP) [44]
110 specifically in the follicular epithelium (Figure 1A).

111 Expression of the UAS-LARIAT system in homozygous GFP::aPKC flies that remained
112 in the dark did not interfere with aPKC localization or protein levels, and did not produce
113 defects in epithelial organization (Figures 1B and S1A). This shows that GFP::aPKC is fully
114 functional in the presence of the LARIAT components. We then exposed female flies to blue
115 light continuously for at least 24h to test if optogenetic clustering reproduced the aPKC loss
116 of function phenotypes described for the follicular epithelium [45, 46]. GFP::aPKC clustered in
117 puncta, and led to the anticipated defects in epithelial architecture, namely epithelial gaps and
118 multilayering (Figures 1B and 1C). A similar frequency of tissue defects was also visible after
119 clustering heterozygous GFP::aPKC in the presence of an *apk* mutant allele, but not in
120 presence of the untagged wild-type allele (Figures 1B and 1C), which suggests that clustering
121 inactivates GFP::aPKC. Furthermore, as predicted for aPKC inactivation, its substrate Lgl
122 mislocalized to the apical domain upon aPKC optogenetic clustering in follicle cells (Figures
123 1D and 1E). Taken together, these results show that illuminating flies is sufficient to trigger
124 CRY2-CIBN heterodimerization and perturb aPKC with optogenetics *in vivo* in adult flies prior
125 to dissection. We further evaluated the impact of optogenetic aPKC clustering in the
126 assymetric distribution of Miranda during *Drosophila* neural stem cell division, where it is a
127 relevant aPKC substrate [47]. aPKC clustering prevented Miranda's release from the apical
128 domain of dividing larval neuroblasts (Figures S1B and S1C). Thus, LARIAT-mediated
129 clustering is applicable to study aPKC in distinct contexts of cell polarity.

130

131

132 **Optogenetic aPKC inactivation leads to fast tissue disorganization**

133

134 We took advantage of optogenetic perturbation *in vivo* to monitor the progression of
135 tissue disorganization in flies exposed to light for specific periods of time (Figures 2A and 2B).
136 We narrowed the analysis to stages 4 to 6 of egg chamber development, so as to determine
137 the impact of aPKC perturbation in epithelial architecture prior to major morphogenetic
138 changes during egg chamber development. Multilayering was the most prevalent phenotype
139 in fixed tissue from flies exposed to light for longer periods of time, whereas gaps were the
140 most frequent defect upon 2 hours of GFP::aPKC clustering *in vivo* (2h: ~50% egg chambers
141 with gaps and ~30% with multilayering; 4h: ~25% gaps and ~85% multilayering; Figures 2A

142 and 2B). The two phenotypes were not mutually exclusive (Figure 1C), and were commonly
143 observed in different positions of the egg chamber (Figure 2C). Epithelial gaps appeared
144 almost exclusively at the dorsal/ventral region, whereas multilayering was largely restricted to
145 the egg chamber poles, which suggests a distinct basis for the two phenotypes.

146 Intriguingly, gap frequency declined with increasing duration of light exposure (Figures
147 2A and 2B), suggesting that epithelial gaps appear specifically during the initial phase of aPKC
148 clustering and before the formation of multilayered tissue. We confirmed these results by live
149 imaging using fluorescent markers of the nucleus (H2A::RFP) and plasma membrane in egg
150 chambers cultured *ex vivo*. GFP::aPKC formed large clusters at the apical domain within
151 minutes of exposure to blue light (488 nm; Figure 2D; Movie S1). Epithelial gaps formed within
152 30 minutes of light exposure and earlier than tissue multilayering (Figure 2D; Movie S1).

153 aPKC is likely only partially inactive during the initial period of clustering due to the time
154 necessary to completely cluster and mislocalize aPKC. Prolonged aPKC clustering could
155 further inactivate aPKC and favor multilayering. To test if the predominance of distinct defects
156 was associated with the level of aPKC inactivation, we treated ovaries mutant for an aPKC
157 ATP-analogue sensitive allele ($aPKC^{as4}$) [48] for 2h with a range of 1NA-PP1 inhibitor
158 concentrations. Treatment with 1 μ M of 1NA-PP1, which *in vitro* reduces aPKC activity to ~15%
159 [48], led predominantly to epithelial gaps (~50% of egg chambers with gaps vs 10% with
160 multilayering), whereas increasing drug concentrations led predominantly to multilayering
161 (Figures 2E and 2F). Thus, epithelial gaps are associated with partial aPKC inhibition,
162 whereas multilayering arises after strong loss of aPKC function. Moreover, epithelial gaps are
163 the earliest defect in epithelial architecture after aPKC inactivation.

164

165 aPKC antagonizes apical constriction in multiple *Drosophila* tissues

166

167 To identify the primary cellular effect underlying epithelial gaps, we clustered aPKC and
168 analyzed the immediate impact on polarity, adhesion and the actomyosin cytoskeleton. In
169 contrast to long-term clustering (Figure 1D), apical-basal polarity was not affected before gap
170 formation, as both Lgl::mCherry and E-cad::mKate2 remained enriched at the lateral
171 membrane and apical junctions, respectively (Figures 3A and S2A). However, the
172 fluorescence of Sqh::mKate2, a tagged version of non-muscle myosin II regulatory light chain
173 (MyoII-RLC), increased rapidly at the apical side of the epithelium within minutes of light-
174 exposure and prior to the formation of gaps (Figures 3B, 3C; Movie S2). Furthermore, this
175 apical myosin increase was accompanied by an increase in circularity of the apical surface of
176 the epithelium (Figures 3B and 3D). This tissue deformation could result from alterations in
177 the apical area of individual cells. Accordingly, live imaging of mosaic epithelia with clonal
178 expression of UAS-LARIAT showed that optogenetic aPKC clustering induced constriction of
179 the apical area of LARIAT-expressing cells (Figures 3E and 3F; Movie S3). Thus, upregulation
180 of apical contractility is the earliest effect upon optogenetic aPKC inactivation.

181 We further tested if the apical myosin increase was the first consequence of aPKC
182 inactivation using chemical-genetics (Figures S2B and S2C). Live imaging showed that
183 treatment of $aPKC^{as4}$ egg chambers with 1 μ M 1NA-PP1 led to a quick increase of apical
184 Sqh::mKate2, which persisted for 50 min in regions of the follicular epithelium without gaps. A
185 higher inhibitor concentration (10 μ M 1NA-PP1) also increased apical Sqh::mKate2 initially.
186 However, this effect was transient, possibly due to the quicker loss of apical-basal polarity,
187 which was reported to occur around 20 minutes after addition of 10 μ M 1NA-PP1 in the

188 follicular epithelium [48]. Perturbation of aPKC activity with high-temporal control therefore
189 demonstrates that aPKC regulates apical contractility prior to polarity loss.

190 To determine if downregulation of apical myosin is a general function of aPKC, we
191 analyzed the effect of aPKC inhibition on the neuroepithelium of the developing fly brain.
192 Previous genetic perturbation in neuropithelial cells indicated that aPKC could support apical
193 contractility by maintaining the polarized apical localization of myosin [28]. Therefore, we
194 hypothesised that fast inactivation would also be necessary to separate the roles of aPKC in
195 contractility and polarity in this tissue. We performed live imaging of *aPKC^{as4}::mScarlet* brains
196 to follow the initial impact of aPKC inhibition on apical shape and myosin accumulation. These
197 experiments showed a dramatic constriction of the neuroepithelium within 10 minutes of
198 inhibitor addition (Figures 3G and 3H; Movie S4). Apical constriction was associated with an
199 increase in junctional and medioapical myosin II intensity (Figures 3I and 3J). Hence, aPKC
200 downregulates apical constriction to control the shape of distinct epithelial tissues.

201
202

203 **Epithelial gaps result from increased apical contractility**

204

205 To determine if increased apical actomyosin contractility is necessary to generate
206 epithelial gaps in the follicular epithelium, we first disrupted the actin cytoskeleton with
207 Latrunculin A (Lat A). Time-lapse imaging with E-cad::mKate2 to measure the apical area at
208 the AJ level shows that treatment with LatA before light exposure blocks constriction during
209 optogenetic clustering of aPKC (Figures 4A and 4B). Moreover, disruption of the actin
210 cytoskeleton prior to aPKC clustering prevented the formation of epithelial gaps in tissue
211 exposed *ex vivo* for 2 hours to light (Figures 4C and 4D). To further test whether increased
212 MyoII activity promotes gap formation, we modulated actomyosin contractility and evaluated
213 the presence of epithelial gaps after *in vivo* aPKC clustering for 2 hours. Overexpressed
214 unphosphorylatable (SqhAA) or phosphomimetic (SqhEE) versions of myosin-RLC
215 respectively reduce and increase contractility when they form bipolar filaments with wild-type
216 myosin-RLC [49-51]. Upon optogenetic aPKC inactivation, SqhAA overexpression restored
217 epithelial integrity, whereas SqhEE overexpression increased epithelial gap frequency (Figure
218 4E). Together, these results indicate that actomyosin-dependent cell contractility promotes
219 and is necessary for the formation of epithelial gaps after aPKC inactivation.

220
221

222 **Epithelial gaps form by tissue rupture next to dividing cells**

223

224 During live imaging of Sqh::mKate2 in midsagittal egg chamber sections, we noticed
225 that epithelial gaps frequently formed next to dividing cells (Figure S3A; Movie S5). To test if
226 epithelial gaps appear specifically in proliferative tissue, we analysed egg chambers in stage
227 8 of oogenesis to ensure that they were not proliferating during the 2-hour period of light-
228 induced clustering. Epithelial gaps were almost absent in these non-proliferative stages
229 (Figure S3B), which suggests that cell division challenges cell attachment in the follicular
230 epithelium. Consistent with this, we observed frequent local loss of apical contacts next to
231 dividing cells in *aPKC^{as4}* neuroepithelia upon aPKC inhibition (Figure S3C), despite the
232 absence of large tissue rupture. To address how cell division contributed to loss of tissue
233 integrity, we imaged epithelial gaps forming in the follicular epithelium stained with a
234 membrane marker. Strikingly, the majority of epithelial gaps initiated as ruptures between cells
235 undergoing cytokinesis and their neighbors (Figures 5A and 5B; Movie S6)

236 The force produced by cytokinetic ring constriction could promote epithelial rupture in
237 the context of aPKC downregulation by pulling on neighboring cells undergoing apical
238 constriction. To test whether cytokinesis was necessary for epithelial cells to detach from each
239 other, we blocked cytokinesis either by disrupting contractile ring assembly with the Aurora B
240 inhibitor Binucleine 2 (Bin2) [52], or by blocking cells in prometaphase with the microtubule-
241 depolymerizing drug Colchicine (Colch) (Figure S3D). We also depleted
242 Tumbleweed/RacGAP50C (Tum; Figure S3E), a component of the centralspindlin complex
243 that controls contractile ring assembly [53]. However, neither of these treatments prevented
244 the formation of epithelial gaps upon aPKC clustering (Figures 5C-E). In addition, live imaging
245 of egg chambers treated with Colch or Bin2 showed that optogenetic clustering of aPKC still
246 led to recurrent tissue rupture next to mitotic cells even though they did not undergo
247 cytokinesis (Figures 5G and 5H). Altogether, we conclude that while tissue rupture upon aPKC
248 perturbation is commonly observed next to dividing cells, it does not require cytokinesis. Thus,
249 other aspects of cell division likely provide an additional challenge to epithelial upon increased
250 apical constriction.

251

252 **Dividing cells are stretched by hypercontractile neighbors after aPKC inactivation**

253

254 To understand why epithelial gaps form between dividing and neighboring cells, we
255 further characterized the impact of aPKC on MyoII distribution in mitotic and non-mitotic cells.
256 During interphase, MyoII is enriched at the junctions and at the medioapical surface of follicle
257 cells, where it drives pulses of apical constriction [54]. Live imaging showed GFP::aPKC
258 accumulated at the apical intercellular contacts and displayed a smaller dynamic medioapical
259 pool that accompanied the cycles of medioapical MyoII accumulation in interphasic follicle
260 cells (Figures 6A and 6B; Movie S7). During mitosis, aPKC extends along the lateral cortex,
261 a spatial redistribution that is also reminiscent of MyoII (Figure 6A) [38]. To evaluate the
262 effect of aPKC inactivation on distinct MyoII pools, we imaged Sqh::mKate2 in apical sections
263 of epithelial cells. MyoII rapidly accumulated at the medioapical level upon optogenetic or
264 chemical aPKC inhibition in interphasic follicle cells (orange arrows; Figures 6C and 6D; Movie
265 S8). In contrast, in mitotic cells, aPKC inactivation did not affect the normal reduction of
266 medioapical myosin (yellow arrows) nor the mitotic redistribution of myosin along the lateral
267 cortex (blue arrow; Figures 6C and 6D). This result suggests that aPKC is required to
268 antagonize apicomедial actomyosin specifically during interphase.

269 We hypothesised that increased apical constriction in neighboring non-mitotic cells
270 could produce excessive pulling on dividing cells, which could be unable to sustain this force
271 due to the decrease in apical myosin. To evaluate this hypothesis, we monitored the effect of
272 optogenetic aPKC inactivation on the apical surface area of mitotic cells with E-cad::mKate2.
273 In contrast to interphasic cells (Figure 4A), mitotic cells did not contract, but rather expanded
274 their apical domain upon mitotic entry and later detached from constricting neighboring cells
275 (Movie S9). Quantification of the apical area in cells that were mitotic in the initial period of
276 light exposure showed that clustering increased the expansion of the apical domain during
277 mitosis (Figures 6E and 6F). Hence, excessive apical contractility in non-mitotic cells induces
278 stretching of dividing cells and promotes tissue disruption.

279

280 **Increase in apical contractility at the tissue-level induces epithelial gaps**

281

282 To address whether rupture of the follicular epithelium was produced by a global or local
283 increase in apical contractility, we analysed proliferative epithelial tissue with clonal expression

284 of UAS-LARIAT. In contrast to egg chambers where the whole tissue expressed UAS-LARIAT,
285 there was no rupture in mosaic egg chambers containing cells insensitive to light (Figures 7A
286 and 7B), neither if LARIAT cells divided adjacent to wild-type cells ($n = 16$) nor within LARIAT
287 clones ($n = 28$). This result suggests that the apical side of wild-type cells may stretch to
288 accommodate the constriction of neighboring tissue and prevent tissue rupture. Accordingly,
289 wild-type cells neighboring UAS-LARIAT patches expanded their apical area during light
290 exposure (Figure 7C).

291 To test if the global increase of apical contractility is sufficient to drive tissue rupture, we
292 used an optogenetic tool to stimulate apical constriction by light-dependent recruitment of the
293 RhoGTPase activator RhoGEF2 (RhoGEF2::CRY2::mCherry) to an apically enriched
294 PatJ::CIBN::GFP::CAAX fusion [55]. Live imaging showed cytoplasmic
295 RhoGEF2::CRY2::mCherry was quickly recruited to the apical domain after light exposure
296 (Figure 7D). Apical recruitment of RhoGEF2::CRY2::mCherry induced apical MyoII
297 accumulation and produced gaps next to dividing cells (Figures 7D and 7E). Moreover, *in vivo*
298 exposure of flies expressing this optogenetic system to 2h of blue light reproduced the
299 phenotype of aPKC LARIAT, leading to a high frequency of egg chambers with epithelial gaps
300 (Figure 7F). Thus, increased apical contractility is sufficient to disrupt epithelial integrity in a
301 proliferative epithelium, further supporting the idea that aPKC protects epithelial integrity
302 through regulation of apical actomyosin.

303

304 **Discussion**

305

306 Apical-basal polarity provides positional information at the cellular level that is essential
307 for tissue architecture. However, it remains ill-defined how loss of polarity regulators leads to
308 epithelial architecture defects. Even though genetic approaches have yielded substantial
309 insight, the inherent temporal constraints preclude direct visualization of the underlying events.
310 Here, we used fast aPKC perturbation approaches in *Drosophila* epithelia to shed light on how
311 aPKC regulates epithelial architecture. We show that epithelial gaps form prior to loss of
312 apical-basal polarity and within minutes of aPKC downregulation in the follicular epithelium.
313 aPKC inactivation increases apical contractility in non-mitotic cells. This increase pulls dividing
314 and neighbor cells apart and ruptures the epithelium. Thus, we propose that aPKC
315 downregulates apical contractility in polarized epithelia to prevent the build-up of excessive
316 forces that compromise epithelial integrity (Figure 7G).

317 Rapid protein perturbation approaches are necessary to define the primary cellular
318 cause of phenotypes in tissues. Here, we have developed a strategy to quickly inactivate
319 aPKC in epithelial and neural stem cells by employing optogenetic clustering in the abdomen
320 of living flies or *ex vivo* in intact organs. By complementing optogenetic clustering with the
321 ability to adjust aPKC activity with chemical-genetics, we show that, immediately after
322 clustering, aPKC is only partially inactive. More importantly, this allowed us to show that
323 decreasing aPKC activity initially increases apical contractility and leads to the formation of
324 gaps in the follicular epithelium. Strikingly, partial inactivation did not disrupt apical-basal
325 polarity immediately, revealing that this is not the direct cause of epithelial gaps. This
326 recapitulates the phenotype of hypomorphic aPKC alleles that produce gaps but do not disrupt
327 apical-basal polarity [11, 45]. Our results therefore indicate that a high threshold of aPKC
328 inactivation is required to disrupt apical-basal polarity, which suggests that polarized epithelia
329 can withstand fluctuations in aPKC activity. In turn, the higher sensitivity of the apical

330 actomyosin cytoskeleton likely enables aPKC-dependent regulation of contractility without
331 compromising apical-basal polarity.

332 aPKC is essential for apical-basal polarity, which provides spatial cues that orient the
333 organization of the apical actomyosin network. However, aPKC has also been reported to
334 antagonize the apical actomyosin network during morphogenesis in *Drosophila* and
335 mammalian embryos [35, 56, 57]. We now propose that aPKC downregulates apical
336 contractility to balance forces within proliferating epithelia to maintain epithelial integrity.
337 Interestingly, whereas inhibition of aPKC induces accumulation of myosin at the apicomедial
338 surface in follicle cells, myosin increase is more pronounced at junctions in neuroepithelial
339 tissue. Consequently, our work highlights a primary role for aPKC as a negative regulator of
340 apical constriction whose function can be locally regulated for different morphogenetic and
341 homeostatic purposes. The molecular nature of this function has yet to be uncovered.
342 Phosphorylation of ROCK by aPKC induces its cortical dissociation to downregulate junctional
343 contractility in mammalian cells [26], but aPKC does not regulate equivalent sites in *Drosophila*
344 Rok [58]. Alternatively, aPKC may target other actomyosin regulators or function through other
345 apical polarity proteins implicated in the regulation of apical contractility, such as Crumbs and
346 Lulu2/Yurt [34, 59-63].

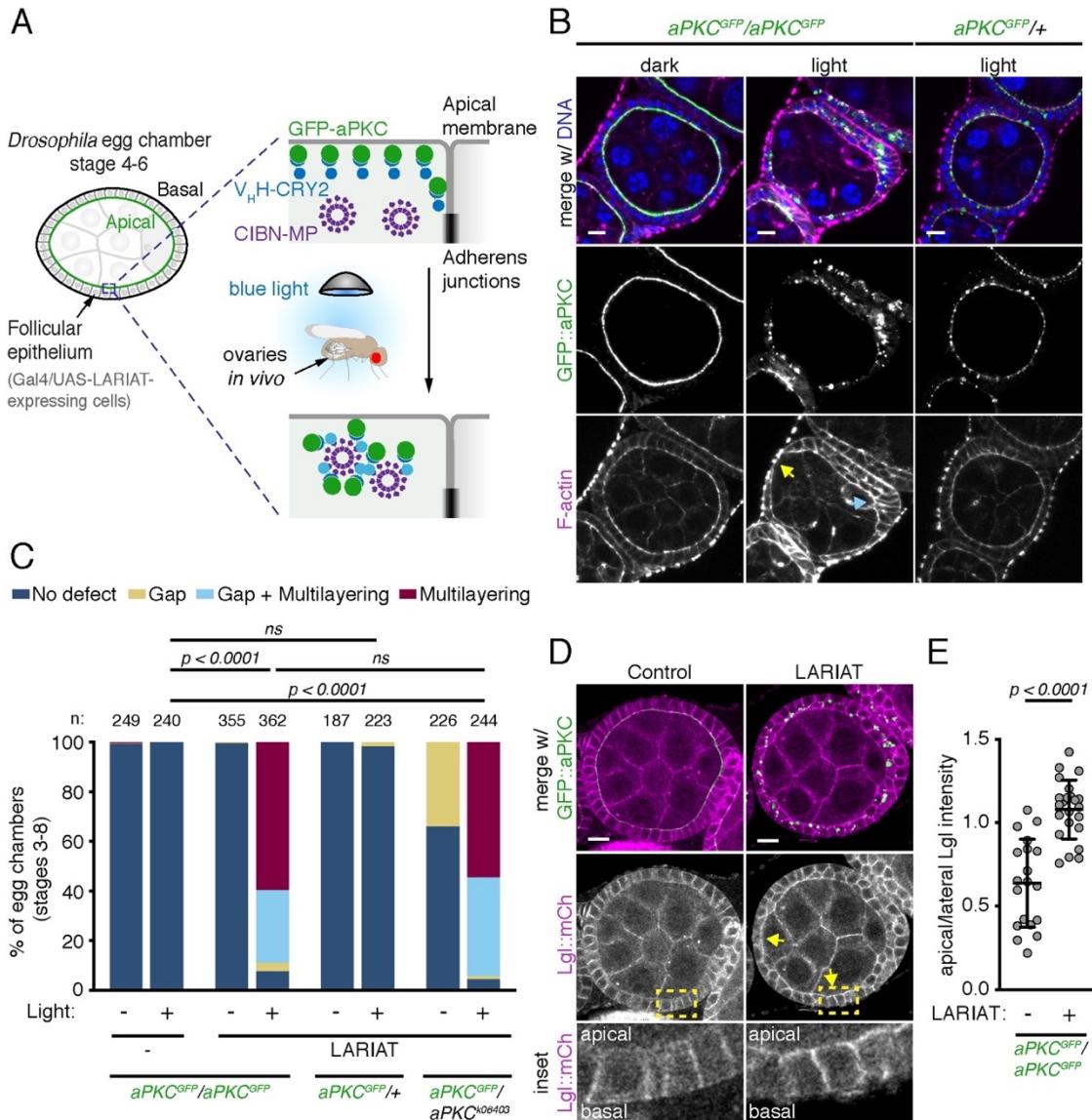
347 Our findings suggest that physical constraints also define the phenotypic outcome of
348 apical constriction. Our analysis shows that epithelial gaps form almost exclusively at the
349 dorsal/ventral regions of egg chambers, where tension at the apical domain has been reported
350 to be higher [54, 64]. The follicular epithelium is physically constrained at the basal side by a
351 stiff basement membrane [65] and at the apical side by the growing germline, which may keep
352 the epithelium stretched [66, 67]. Thus, egg chamber organization likely opposes the shape
353 changes necessary to accommodate global apical constriction, leading to an increase in
354 tension and rupture upon aPKC inactivation. In contrast, neuroepithelial cells constrict their
355 apical area freely, which should release tension. Accordingly, while partial aPKC inactivation
356 consistently led to large epithelial gaps in the follicular epithelium, in the neuroepithelium only
357 minor perturbations at apical cell contacts were detected. Hence, on top of possible
358 differences in the local response at the junctional or medioapical level, our findings stress the
359 importance of physical boundaries, tissue geometry and mechanical context on the outcome
360 of increased apical contractility.

361 We also provide direct evidence that large epithelial rupture can arise by intercellular
362 detachment during cell division, which provides a weak spot primed for disruption upon
363 increased mechanical stress. This is consistent with previous observations that reinforcement
364 of junctional attachment to the cytoskeleton prevents detachment during cell division in the
365 *Drosophila* embryonic epithelium and mammalian cell culture [68, 69]. Dividing cells do not
366 generate gaps upon aPKC inactivation in a mosaic tissue, showing that a direct effect in mitotic
367 cells is not responsible for gap formation by itself. Then, why are mitotic cells prone to separate
368 from hypercontractile surrounding tissue? Mitotic cells downregulate apicomедial actomyosin
369 and revert apical constriction, which makes them more susceptible to extrinsic forces [70, 71].
370 We show that increased pulling forces exerted by the constricting non-mitotic tissue indeed
371 expand the apical surface of mitotic cells upon aPKC clustering. These forces could amplify
372 outward pulling forces at the poles of dividing cells [72], and spatially oppose pulling forces by
373 the contractile ring on cell adhesion during cytokinesis. We observed that ruptures generally
374 occur next to the equatorial region during cytokinesis, which is consistent with opposing forces
375 overcoming cell adhesion in this region (Figure 7G). Furthermore, local remodelling of cell
376 adhesion during mitosis [39, 73, 74] and cytokinesis [38, 75-78] may favour detachment next
377 to dividing cells.

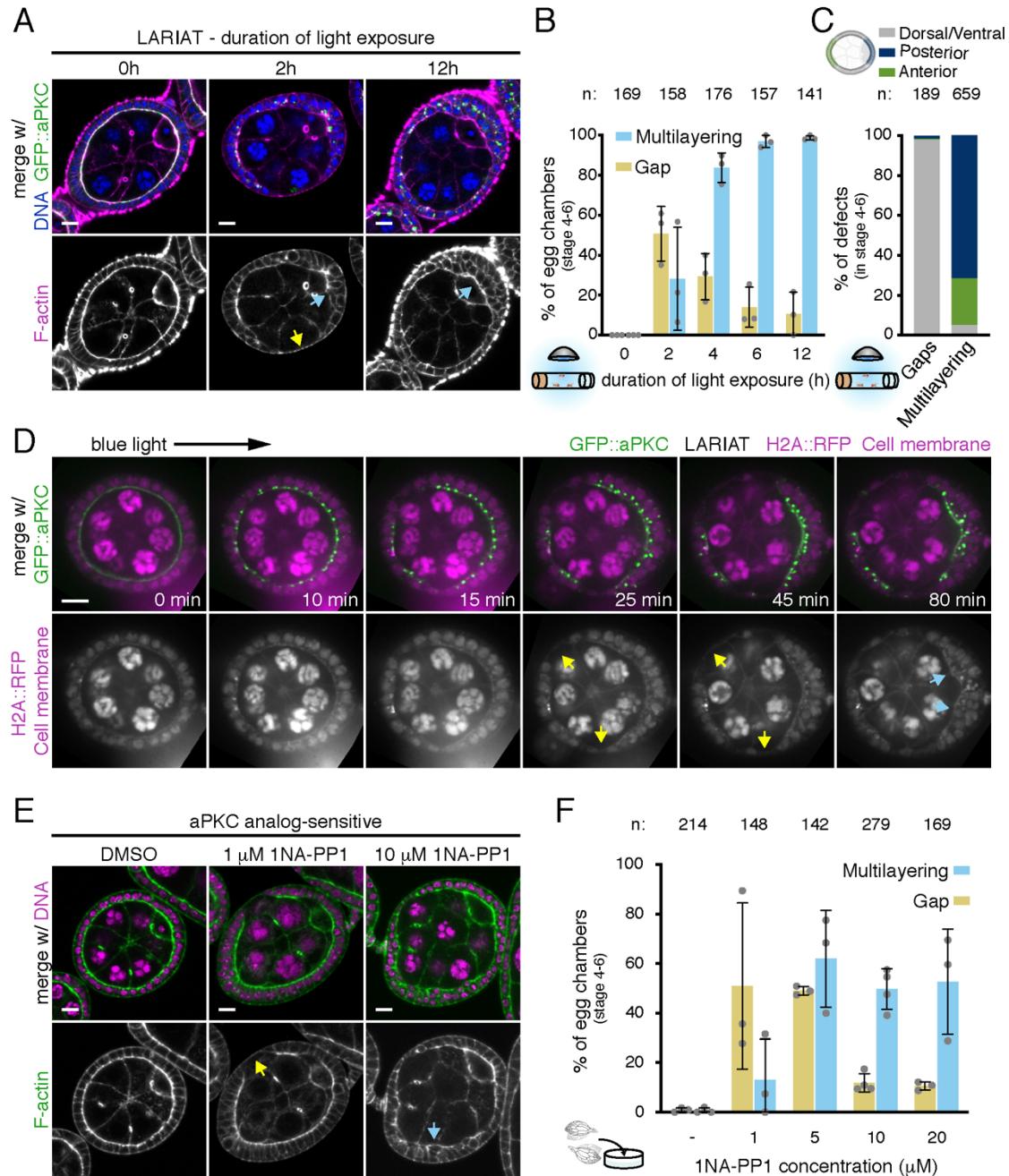
378 Different cellular events have to be integrated at the tissue level to drive concerted shape
379 changes during morphogenesis. Apical constriction is frequently used to bend or fold epithelia
380 during development [79]. Cell division actively contributes to tissue morphogenesis by
381 controlling tissue material properties [74, 80-82] and driving shape change [83-85] or cellular
382 rearrangements [86]. However, the cell-intrinsic mitotic remodelling of the cytoskeleton can
383 disrupt morphogenetic processes that require apical constriction [70, 87-89]. Our results now
384 show that forces produced by apical constriction challenge cohesion at the dividing-
385 neighboring cell interface, and thereby disrupt epithelial integrity. Hence, this study shows the
386 importance of a strict control over apical constriction in proliferative tissues, so as to enable
387 growth and morphogenesis without compromising epithelial integrity.
388

389 **Acknowledgments**

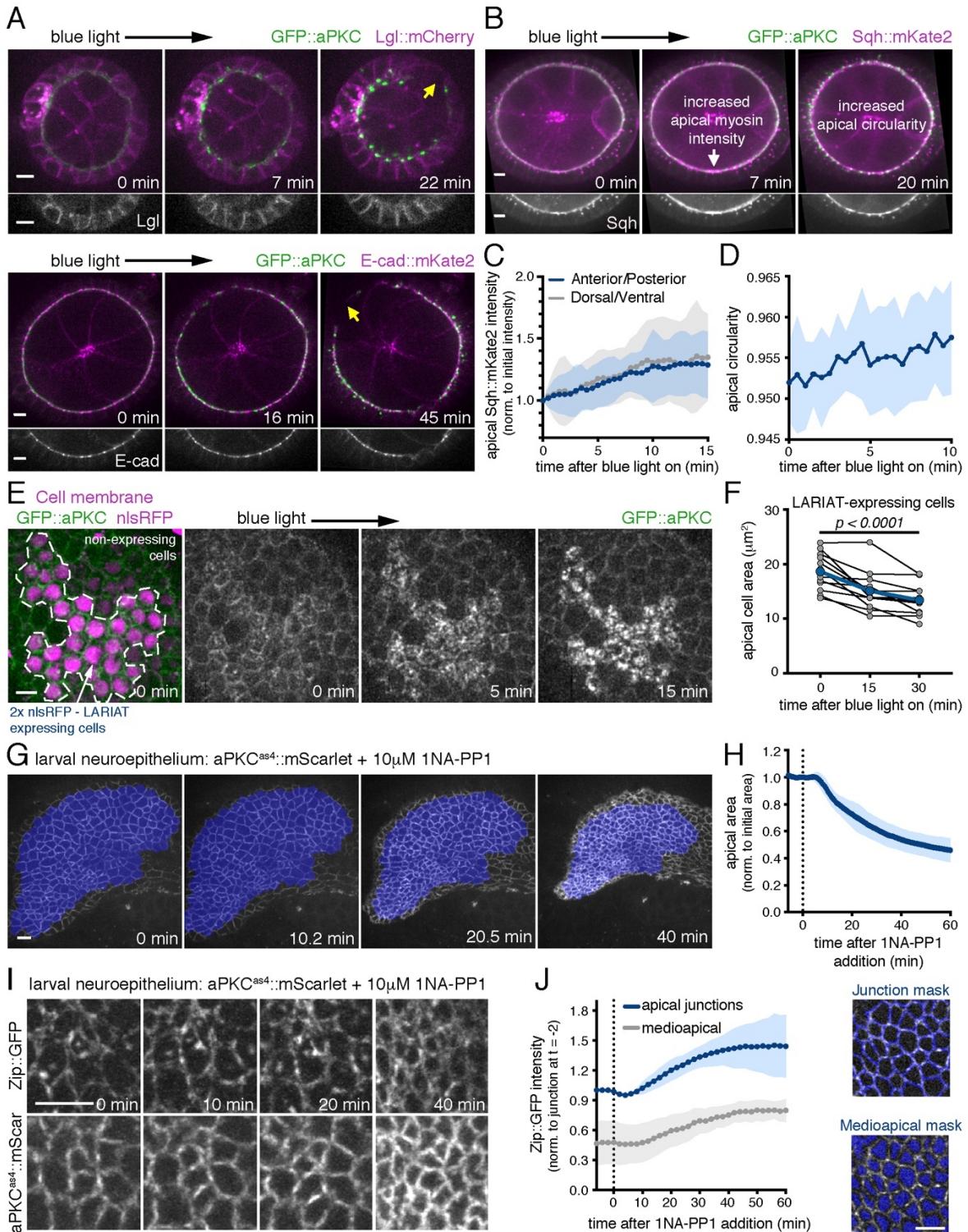
390 We thank Daniel St Johnston, Juergen A. Knoblich, Stefano de Renzis, Xiaobo Wang,
391 Yohanns Bellaïche and the Bloomington *Drosophila* Stock Center for fly stocks. We also thank
392 Yohanns Bellaïche, Ivo Telley and Romain Levayer for insightful comments on the manuscript.
393 This work was funded by National Funds through FCT—Fundação para a Ciência e a
394 Tecnologia, I.P., under the projects PTDC/BEX-BCM/0432/2014 and PTDC/BIA-
395 CEL/1511/2021. E.M. is funded by “FCT Scientific Employment Stimulus - Individual Call”
396 program (CEECIND/00622/2017). M.O. and A.M.C. were supported by PhD fellowships from
397 FCT through the GABBA PhD program. We also acknowledge the support of the i3S Scientific
398 Platform ALM, member of the national infrastructure PPBI - Portuguese Platform of
399 Bioimaging (PPBI-POCI-01-0145-FEDER-022122). Work in JJ’s lab is supported by the
400 100031/Z/12/Z and 100031/Z/12/A from Wellcome and the Royal Society. We would like to
401 thank the Dundee Imaging Facility for excellent support.
402


403 **Author contributions**

404 E.M. and M.O. conceptualized the study and wrote the original manuscript draft; Data
405 acquisition: M.O., A.B., A.M.C. and E.M. performed all experiments in follicular epithelium
406 apart of the experiment performed by N.L. in Fig. 6D; N.L performed experiments in larval
407 neuroepithelium; P.G. performed neuroblast experiments. Data analysis and interpretation:
408 M.O., A.B., A.M.C., N.L., P.G., C.H., J.J., and E.M.; Supervision: C.S., C.H., J.J. and E.M.
409 Funding acquisition: C.H., J.J. and E.M.; All authors reviewed the manuscript.
410


411 **Declaration of interests**

412 The authors declare no competing interests.
413
414
415
416
417
418
419
420
421
422
423


424 **Figures**

425 **Figure 1. Optogenetic clustering inactivates aPKC and disrupts tissue architecture *in vivo*.**
426 (A) Schematic representation of optogenetic aPKC inactivation strategy using LARIAT (V_{HH} ::CRY2 and
427 CIBN::MP). GFP::aPKC is targeted by CRY2 fused with a GFP nanobody (V_{HH}). Exposing flies to blue
428 light triggers CRY2 binding to CIBN fused with a multimerization domain (MP) and clusters GFP::aPKC.
429 (B) Living flies were exposed to blue light for 48 hours to cluster GFP::aPKC or kept in the dark (control)
430 before egg chambers were stained for F-actin and DNA. Control flies were kept in the dark. Flies were
431 either homozygous or heterozygous for endogenously-tagged GFP::aPKC. Arrows point to epithelial
432 gap (yellow) and multilayering (cyan). (C) Frequency of epithelial defects in egg chambers (stages 3 to
433 8) from flies with the indicated combinations of wild-type, GFP::aPKC or *apk*^{k06403} null allele after 24
434 hours blue light exposure (n = number of egg chambers). LARIAT was expressed in the follicular
435 epithelium when indicated. Control flies were kept in the dark. Fisher's exact test compared the
436 incidence of defects between different samples (ns, not significant). (D) Representative midsagittal
437 images of control and LARIAT egg chambers from flies expressing GFP::aPKC and Lgl::mCherry
438 exposed to blue light for 24 hours. Arrows point to apical Lgl::mCherry. Yellow boxes define region in
439 insets. (E) Ratio of apical/lateral mean pixel intensity of Lgl::mCherry in control (n = 684 cells, 19 egg
440 chambers) and LARIAT (n = 447 cells, 23 egg chambers). Graphs show mean \pm SD, grey points
441 represent average for individual egg chambers (t-test). Scale bars: 10 μ m. See also Figure S1.

442 **Figure 2. aPKC inactivation leads to fast tissue disorganization in a proliferative epithelium.**
443 (A-C) Representative midsagittal images and quantification of epithelial defects in GFP::aPKC
444 homozygous egg chambers in proliferative stages (4-6) expressing LARIAT and stained for F-actin and
445 DNA. Flies were exposed to light for the indicated time before ovary fixation. (B) Frequency (mean \pm
446 SD) of epithelial gaps (yellow arrow in A) and multilayering (cyan arrows in A). (C) The data from (B)
447 was re-analyzed to show the spatial distribution of all defects, n = total amount of gaps or multilayering
448 events. (D,E) Time-lapse midsagittal images of an egg chamber expressing LARIAT (in the follicular
449 epithelium), GFP::aPKC and H2A::RFP show epithelial gaps (yellow arrows) and multilayering (cyan
450 arrows). Imaging with 488nm laser triggered LARIAT clustering from min 0 onwards. (E,F) Midsagittal
451 images and epithelial defect quantification in proliferative *aPKC^{as4}* egg chambers treated ex vivo for 2
452 hours with the indicated concentrations of 1NA-PP1 to inactivate aPKC and stained for F-actin and
453 DNA. (F) Graph shows frequency (mean \pm SD) of epithelial gaps (yellow arrow) and multilayering (cyan
454 arrow). Grey data points (graphs in (B,F)) represent independent experiments; n = number of egg
455 chambers. Scale bars: 10 μ m.

456
457

458 **Figure 3. aPKC antagonizes apical constriction in *Drosophila* tissues**

459 (A, B) Time-lapse midsagittal images of egg chambers expressing LARIAT, GFP::aPKC and
460 either (A top) Lgl-mCherry, (A bottom) E-cad::mKate2 or (B) Sqh::mKate2. Imaging with 488
461 nm laser triggered aPKC clustering from min 0 onwards. Yellow arrows in (A) indicate epithelial
462 gaps. (C) Sqh accumulation at the apical surface after aPKC clustering (mean \pm SD) measured
463 at the anterior/posterior (AP) and dorsal/ventral (DV) regions, corrected for cytoplasm intensity
464 and normalized to its initial value ($n \geq 96$ AP and ≥ 96 DV cells, 12 egg chambers). (D) Egg
465 chamber circularity (mean \pm SD) was measured at the apical surface of the follicular epithelium

466 (n = 10 egg chambers). **(E)** Time-lapse images of GFP::aPKC follicular epithelium cells with
467 mosaic LARIAT expression (marked by 2xnlS::RFP in magenta). Imaging with 488 nm laser
468 triggered aPKC clustering and apical domain constriction in LARIAT-expressing cells. **(F)**
469 Average apical cell area (mean \pm SD) within LARIAT expressing clones before and after aPKC
470 clustering. Points represent average for individual clones (n = 161 cells, 12 clones, p<0001,
471 ANOVA for paired samples). **(G)** Contraction of *aPKC^{as4}::mScarlet* larval brain neuroepithelium
472 following the addition of 10 μ M 1NA-PP1 at min 0. **(H)** Graph shows apical area (mean \pm SD,
473 normalized to its initial value) of *aPKC^{as4}::mScarlet* larval brain neuroepithelial tissue after
474 addition of 10 μ M 1NA-PP1 (n = 10 neuroepithelia with an average of 157 cells, 5 independent
475 experiments). **(I)** Close-up of the neuroepithelium of an *aPKC^{as4}::mScarlet* larvae expressing non-
476 muscle myosin II heavy chain (Zip::YFP) following addition of 10 μ M 1NA-PP1. **(J)** Zip::YFP
477 intensity (mean \pm SD) at the apical junctions and medioapical region (quantification masks
478 shown) was normalized to junction intensity at -2 min (n = 4 neuroepithelia with \geq 108 cells).
479 Scale bars: 5 μ m. See also Figure S2.

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

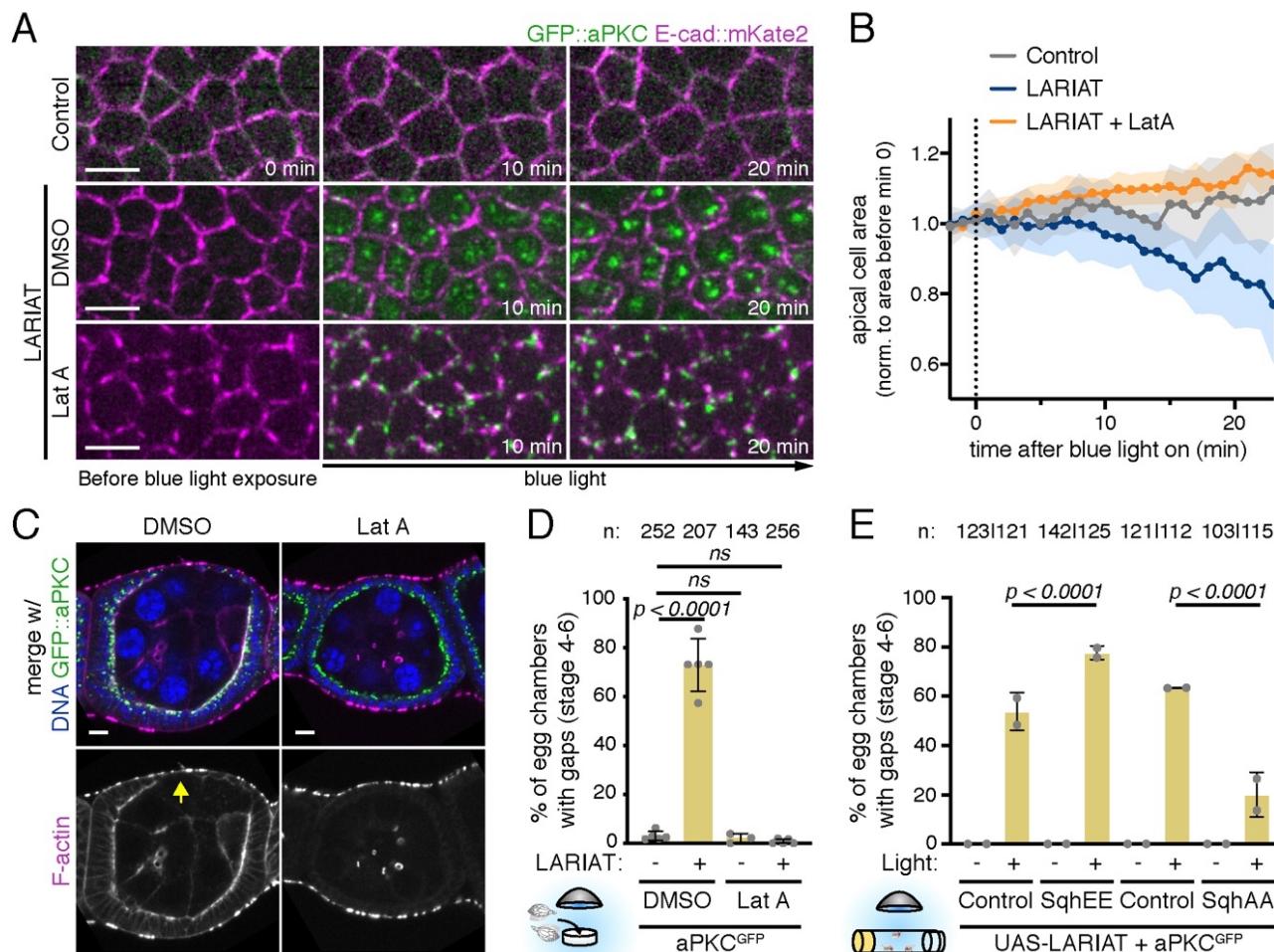
505

506

507

508

509

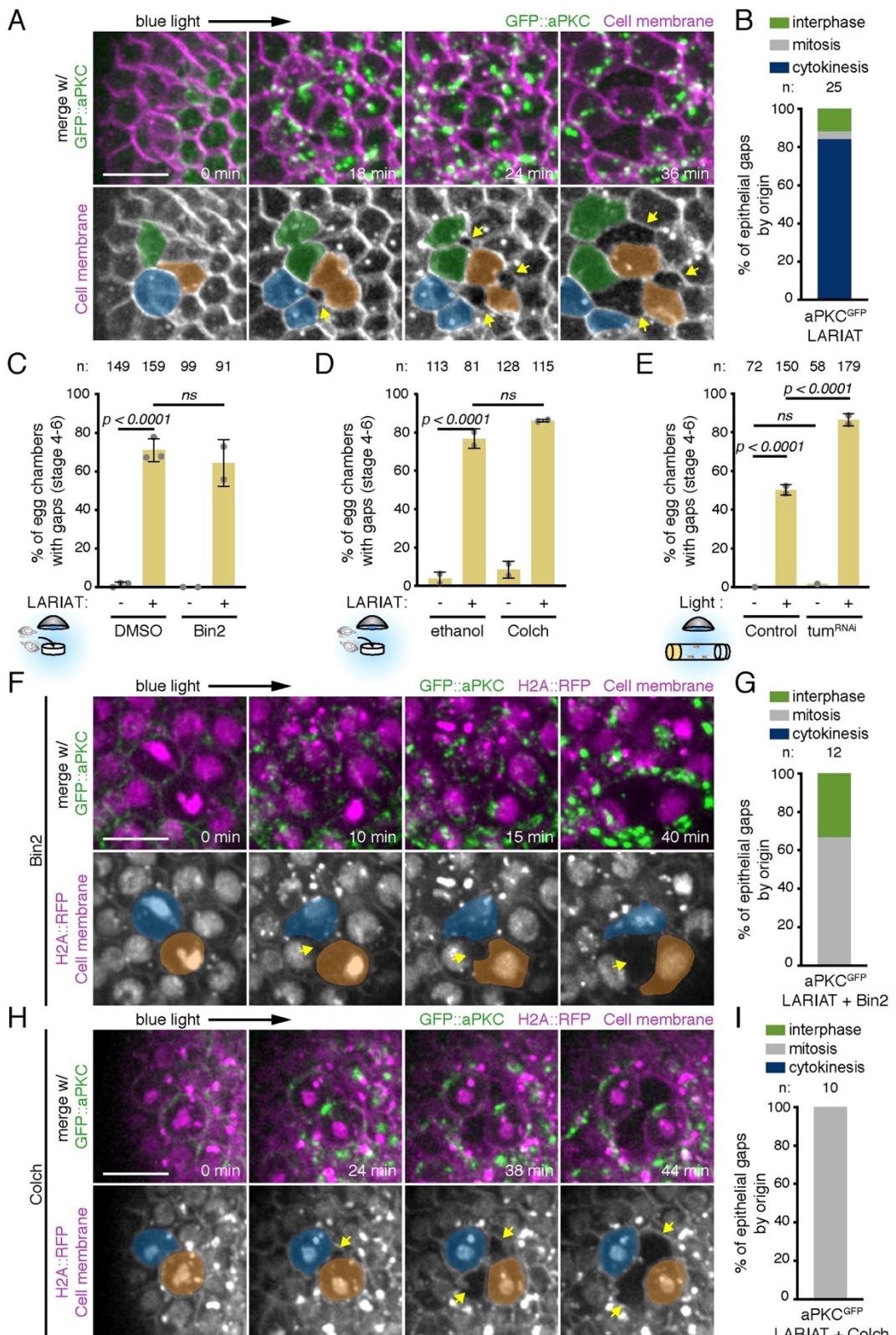

510

511

512

513

514



515 **Figure 4. Increased apical contractility underlies gap formation after aPKC optogenetic
516 clustering.**

517 (A) Live imaging of GFP::aPKC in control or LARIAT egg chambers co-expressing E-cad::mKate2
518 (apical view) and treated or not with Lat A prior to aPKC clustering (bottom). Imaging with the 488 nm
519 laser triggered aPKC clustering from min 0 onwards. (B) Apical surface area (mean \pm SD) measured at
520 the junction level and normalized to the mean value before clustering ($n \geq 7$ egg chambers per
521 condition). (C,D) Representative midsagittal images and quantification of epithelial gaps in proliferative
522 follicular epithelium expressing GFP::aPKC (green) and LARIAT and stained for F-actin and DNA.
523 Ovaries were exposed to blue light ex vivo before fixation. Actin disruption by Lat A treatment restores
524 epithelial integrity. (D) Frequency (mean \pm SD) of epithelial gaps (yellow arrow in C) scored in the
525 presence (+) or absence of LARIAT (-) in egg chambers treated with DMSO (control) or Lat A. (E)
526 Epithelial gap frequency (mean \pm SD) was scored upon overexpression of mCherry (Control), Sqh^{E20E21}
527 (SqhEE) or Sqh^{A20A21} (SqhAA) in the follicular epithelium of GFP::aPKC LARIAT flies. Flies were
528 exposed to blue light (+) or kept in the dark (-) for 2 hours prior to fixation; grey data points represent
529 independent experiments; n = number of egg chambers scored; Fisher's exact test (ns, not significant).

530
531
532
533
534
535
536
537

538

539 **Figure 5. Cell division challenges tissue cohesion upon aPKC inactivation.**

540 (A) Time-lapse images of an egg chamber (surface view) expressing LARIAT, GFP::aPKC and stained
541 with membrane marker. Imaging with 488nm laser clustered aPKC from min 0 onwards. Epithelial gaps
542 (arrow) form adjacent to dividing cells (colored). (B) Quantification of epithelial gap origin according to
543 cell division stage of neighbouring cells. n = number of gaps scored. (C,D) Gap frequency in the

544 presence and absence of LARIAT in egg chambers treated with the indicated drug: **(C)** Binucleine-2
545 (Bin2), to inhibit AurB, or **(D)** Colchicine (Colch), to depolymerize microtubules, before light exposure
546 for 2 hours *ex vivo*. **(E)** Frequency of epithelial gaps scored in control and Tum RNAi egg chambers
547 from flies expressing GFP::aPKC LARIAT and exposed (+) or not (-) to blue light for 2 hours. Graphs in
548 **(C-E)** show mean \pm SD; grey data points represent independent experiments; n = number of egg
549 chambers scored; Fisher's exact test was used (ns, not significant). **(F-I)** Time-lapse images of follicular
550 epithelium (surface views) expressing LARIAT, GFP::aPKC and H2A::RFP and stained with membrane
551 marker. **(F)** Bin-2 or **(H)** Colch were added at least 15 min prior to clustering from min 0 onwards.
552 Epithelial gaps (arrows) form adjacent to dividing cells (colored) despite **(F)** cytokinesis failure
553 (chromatin (H2A::RFP) decondenses without chromosome separation) or **(H)** mitotic arrest (condensed
554 chromatin throughout the movie). **(G,I)** Epithelial gap origin according to cell division stage of
555 neighbouring cells. n = number of gaps scored. Scale bars: 10 μ m. See also Figure S3.

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

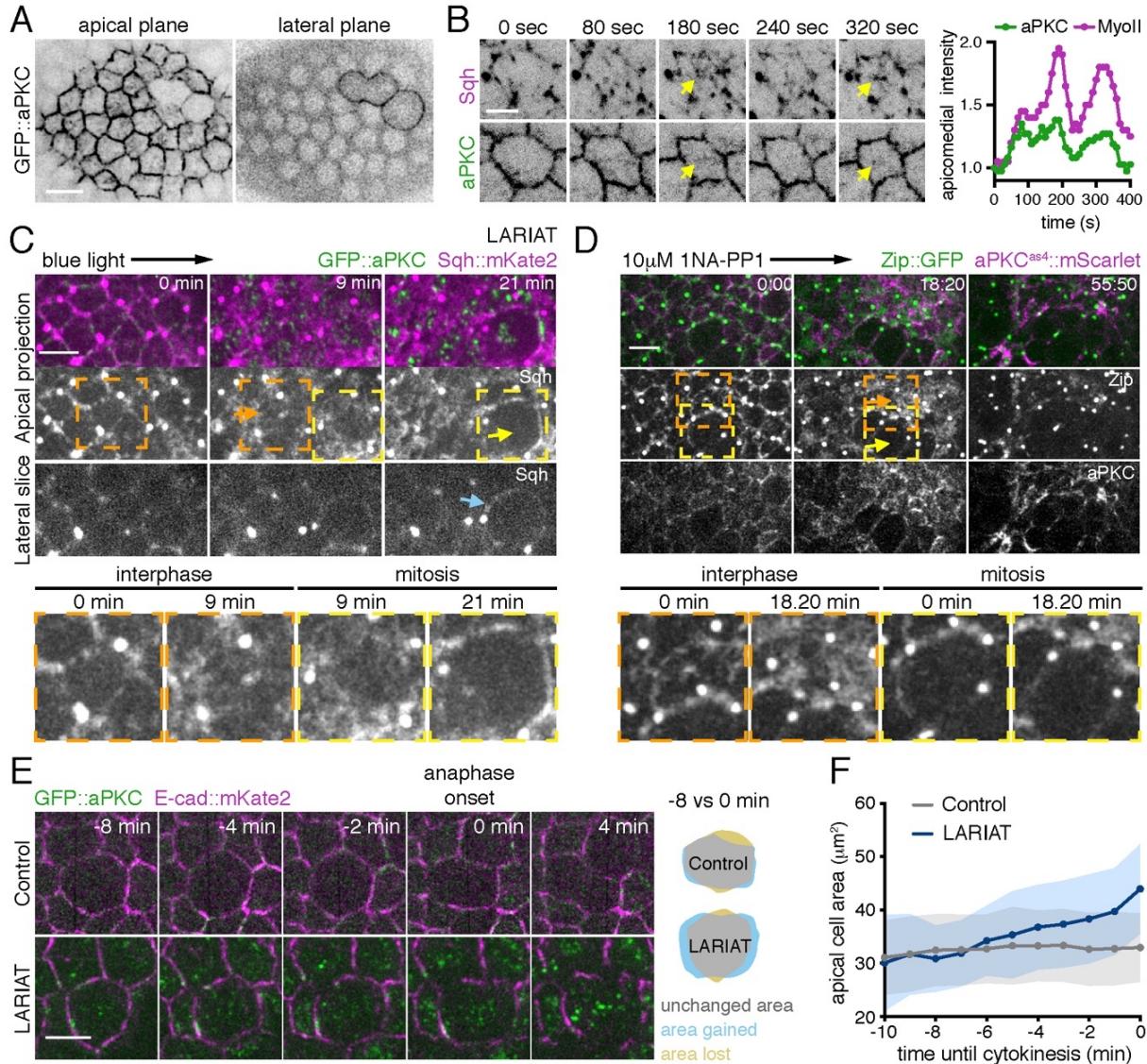
586

587

588

589

590

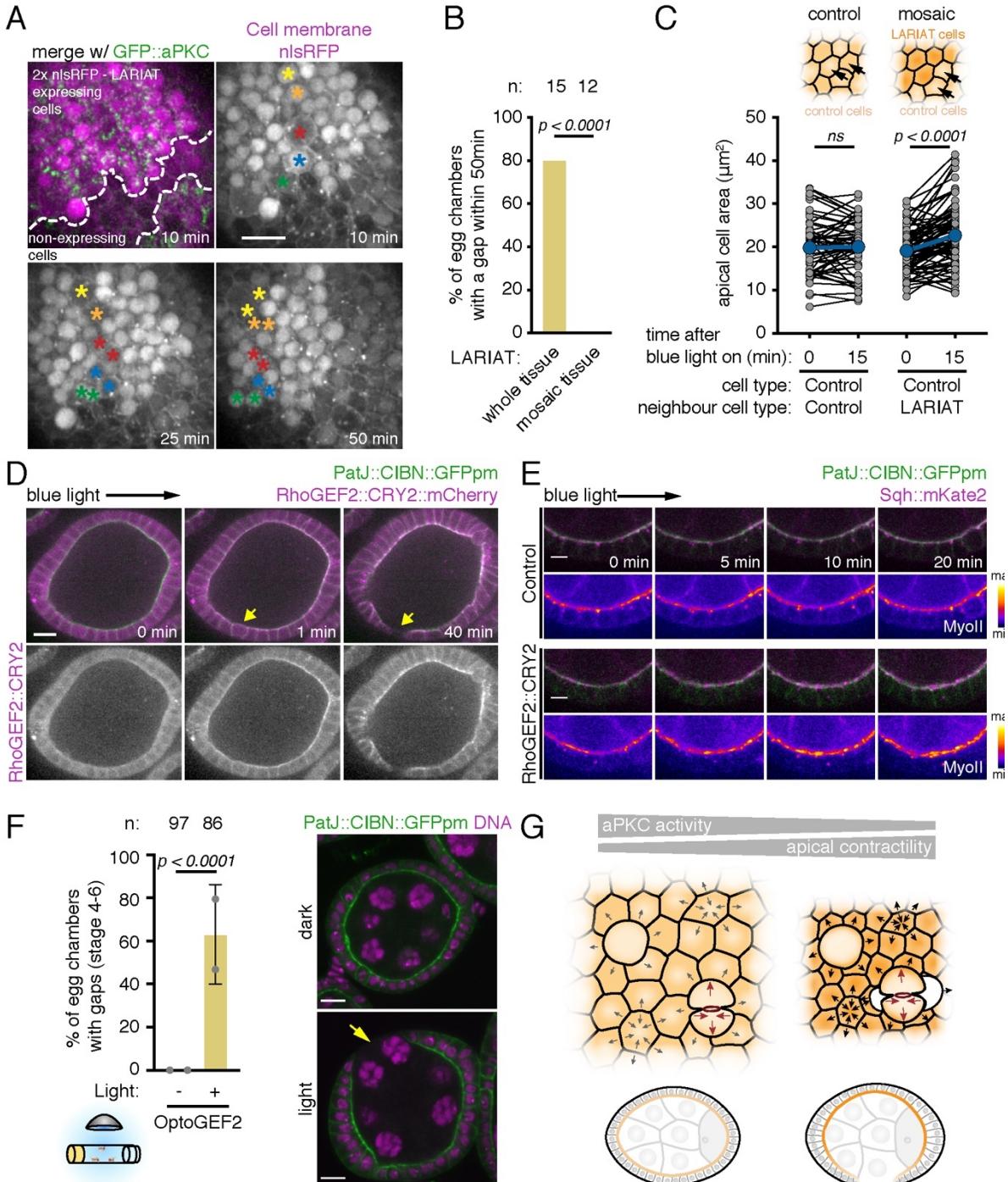

591

592

593

594

595


596

597

Figure 6. aPKC inactivation leads to excessive pulling forces on dividing cells.

598

599 (A) GFP::aPKC in the follicular epithelium at the apical surface (left) and at the lateral cortex (right). (B) 600 Live-imaging of GFP::aPKC and Sqh::mKate2 at the apical surface shows dynamic accumulation at the 601 apicomедial region (arrows). Normalized, background subtracted mean pixel intensity of GFP::aPKC 602 and Sqh::mKate2 measured in the medioapical region using a circular 2.5 μm diameter ROI (right). (C) 603 Live imaging of GFP::aPKC LARIAT in the follicular epithelium with Sqh::mKate2. Imaging with the 488 604 nm laser triggered aPKC clustering from min 0. After GFP::aPKC clustering, Sqh::mKate2 accumulates 605 at the apicomедial region in interphase cells (orange arrow), but not in mitotic cells (yellow arrow), 606 where aPKC clustering does not affect redistribution to the lateral cortex (blue arrow). (D) Time-lapse 607 images of aPKC^{as4}::mScarlet (magenta), Zip::YFP (green) follicle cells treated with 10 μM 1NA-PP1 at 608 timepoint 0. Transient apicomедial accumulation of Zip::YFP (orange arrow) is not observed in mitotic 609 cells (yellow arrow). (C,D) Insets show individual interphase and mitotic cells. (E) Live imaging of 610 GFP::aPKC and E-cad::mKate2 in the follicular epithelium (apical projection). aPKC clustering was 611 triggered up to 5 min before mitotic entry. Cells enter anaphase at min 0. (F) Apical surface area in 612 dividing cells was measured at the junction level until anaphase onset (n = 27 cells from 6 control egg 613 chambers and 12 cells from 8 LARIAT egg chambers. Graphs show mean ± SD. Scale bars: 5 μm. 614

615

616

Figure 7. Global increase of apical contractility induces epithelial gaps.

617 (A) Time-lapse images (surface of egg chamber) show epithelial rupture does not occur in GFP::aPKC
618 follicular epithelia with mosaic LARIAT expression (marked by nls::RFP in magenta) despite multiple
619 dividing cells (asterisks). (B) Frequency of gaps in tissue with mosaic LARIAT expression compared
620 with whole tissue expression of LARIAT (data from Figure 5B re-analysed, Fisher's test). (C) Variation
621 off apical cell area shows that wild-type neighbour cells (adjacent to LARIAT-expressing clones, n = 82
622 cells, 13 egg chambers) expand within 15 min of aPKC clustering, unlike wild-type cells in a fully wild-
623 type tissue (n = 60 cells, 2 egg chambers). Points represent individual cells (ANOVA for paired
624 samples). (D) Live imaging of egg chamber expressing PatJ::CIBN::pmGFP and
625 RhoGEF2::CRY2::mCherry in the follicular epithelium (midsagittal view). Imaging with 488 nm laser
626 targeted RhoGEF2 to the apical domain from timepoint 0 onwards. Yellow arrow denotes gap formation
627 in a region with a dividing cell. (E) Time-lapse images of the follicular epithelium expressing

628 PatJ::CIBN::pmGFP, RhoGEF2::CRY2 and Sqh::mKate2 (midsagittal view). Pseudo-colored
629 Sqh::mKate2 panel shows increase at the apical surface after RhoGEF2 apical recruitment. **(F)**
630 Representative midsagittal images and epithelial gap (yellow arrow) quantification in egg chambers
631 (stages 4 to 6) from flies expressing PatJ::CIBN::pmGFP and RhoGEF2::mCherry exposed to
632 blue light for 2 hours prior to fixation and staining for DNA. Control flies were left in the dark. Graphs
633 show mean \pm SD; grey data points represent independent experiments; n = total amount of egg
634 chambers; Fisher's exact test was used (ns, not significant); Scale bars: 5 μ m. **(G)** Model depicts how
635 downregulation of aPKC activity increases apical constriction in the non-mitotic cells of a polarized
636 epithelium, generating excessive pulling forces on dividing cells that induce detachment and, ultimately,
637 epithelial gaps.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673 **METHODS**

674

675 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

676

677 **Drosophila melanogaster genetics and husbandry**

678 We performed all experiments using *Drosophila melanogaster*. We raised fly lines on standard
679 fly food (cornmeal/agar/molasses/yeast) at 18°C or 25°C with 60% humidity and 12h/12h dark
680 light cycle, except when otherwise indicated in the method details section.

681 The following fly lines were used:

- 682 • Under regulation of the respective endogenous promoters: *Par-6::GFP* ([90], gift from
683 Jürgen Knoblich, IMBA, Vienna), *H2A::RFP* ([91] and *Sqh::mKate2x3* – *Drosophila*
684 non-muscle myosin II regulatory light chain tagged with three tandem *mKate2* and
685 inserted in chromosomes II and III ([92], gift from Yohanns Bellaïche, Institut Curie,
686 Paris);
- 687 • Tagged in the respective endogenous locus: *GFP::aPKC* ([43], gift from Daniel St
688 Johnston, The Gurdon Institute, Cambridge), *Lgl::mCherry* [22] and *E-cad::GFP* [93],
689 both gifts from Yang Hong, University of Pittsburgh), *E-cad::mKate2x3* and *E-*
690 *cad::GFPx3* (tagged with three tandem *mKate2* or *GFP*, [92], gift from Yohanns
691 Bellaïche, Institut Curie, Paris) and *Zip::YFP* – *Drosophila* non-muscle myosin II heavy
692 chain [94];
- 693 • *UAS-LARIAT* inserted in chromosomes II and III: *CRY2* PHR domain fused to
694 SNAPtag and a GFP nanobody (*VHH*) and N-terminal *CIB* domain (residues 1-170)
695 fused to the *CaMKIIα* multimerization domain (MP), both expressed from a single
696 construct with the help of a P2A self-cleaving peptide ([44], gift from Xiabo Wang, CBI,
697 Université de Toulouse);
- 698 • For optogenetic RhoGEF2 recruitment to the apical membrane: *PatJ::CIBN::pmGFP*,
699 for UAS-driven expression of *PatJ* fused to N-terminal *CIB* domain (residues 1-170)
700 and membrane targeted *GFP* fused to human *Kras4B* CAAX [55], *RhoGEF2::CRY2*
701 and *RhoGEF2::CRY2::mCherry*, for UAS-driven expression of tagged and untagged
702 catalytic DPH domain of *RhoGEF2* fused to *CRY2* PHR [95], gifts from Stefano de
703 Renzis, EMBL, Heidelberg);
- 704 • To drive Gal4-UAS mediated construct expression: *GR1-Gal4*, an enhancer trap line
705 where Gal4 is under regulation of unknown regulatory sequences that drive Gal4
706 expression in the follicular epithelium ([96] and *tj-Gal4*, an enhancer trap line where
707 Gal4 is under regulation of *traffic jam* regulatory sequences (DGGR_104055); *pnt-Gal4*
708 (VDRC_VT212057, discarded)
- 709 • *Gal80^{ts}*, temperature-sensitive *Gal80* under regulation of the α Tub84B promotor
710 (BDSC_7018);
- 711 • *nlsRFP hs-Flp FRT19A* (BDSC_31418) and *hs-Flp Gal80 FRT19A* (BDSC_5133), for
712 FLP/FRT-mediated generation of Gal80 clones.
- 713 • *aPKC^{K06403}*, an *aPKC* null allele obtained by insertional mutagenesis of a P-element
714 construct [6];
- 715 • *aPKC^{as4}* is an ATP analog-sensitive *aPKC* allele (I342A and T405A mutations
716 introduced in the endogenous locus through CRISPR/Cas9 [48];
- 717 • *aPKC::mScarlet^{as4}* was made by scar-less (inDroso co-CRISPR approach) CrispR
718 gene editing. The mScarlet-I sequence, preceded and followed by short two amino acid
719 (VAL GLY) linkers, was inserted into the genome of the *apk^{as4}* line using the

720 AATGGATCCTCCGGTGGCGGTGG guide RNA. The insert position was the same as
721 previously published for GFP [97]: the mScarlet-I amino acid sequence, including the
722 ATG and framed by the linkers, was inserted after amino acid 228 of aPKC-PA.

723 • UAS-mCherry (BDSC_35787), UAS-Tum RNAi (BDSC_28982) and phosphomimetic
724 and nonphosphorylatable Sqh - UAS-Sqh^{E20E21} (BDSC_64411) and UAS-Sqh^{A20A21}
725 (BDSC_64114);

726
727 Fly genotypes for each experiment can be found in **Table S1**. For optogenetic experiments
728 where flies were exposed to blue light, female offspring of the same cross with the same
729 genotype were randomly assigned to experimental groups (dark vs light). For each
730 independent *ex vivo* experiment with drug treatment of egg chambers, we dissected ovaries
731 from all flies of the same genotype, mixed them together, separated their ovarioles and then
732 randomly distributed them by the experimental groups. For live imaging of egg chambers, we
733 imaged 2-3 egg chambers per fly.

734
735 **Optogenetic experiments in the follicular epithelium**

736 To inactivate apical polarity with optogenetics, we combined *aPKC* tagged with GFP in its
737 endogenous locus [43] with *UAS-LARIAT* [44]. We used *tj-Gal4* or *GR1-Gal4* to drive *UAS*
738 constructs expression in the follicular epithelium. To minimize premature *UAS* construct
739 expression, crosses were kept at 18°C. 1-3 days after eclosion, adult offspring were
740 transferred to 29°C to drive expression of *UAS* constructs (1 day at 29°C for all *UAS*
741 constructs, except for optogenetic RhoGEF2 membrane recruitment (Figure 7D-F, which was
742 induced for 2-3 days at 29°C). To avoid unintended optogenetic system activation by light, we
743 kept fly vials inside cardboard boxes or wrapped in aluminum foil and handled them in a dark
744 room under a 593nm LED light source (SuperBrightLEDs) from this point forward. For co-
745 expression of LARIAT with other *UAS* constructs, we used temperature-sensitive *Gal80^{ts}* to
746 fully suppress premature *Gal4-UAS* driven transcription prior to temperature shift to 29°C. To
747 express LARIAT in clones, we generated *Gal80* clones through FLP/FRT-mediated
748 recombination [98]. These crosses were kept at 18°C, protected from light and heat shocked
749 at 37°C for 2 hours 3-5 times. LARIAT-expressing cells were marked by the presence of 2
750 nlsRFP copies, while wild-type cells had either 1 or no nlsRFP copies. Alternatively, in Figure
751 S2A, LARIAT-expressing cells were identified by the presence of GFP::aPKC clusters.

752 For *in vivo* optogenetic experiments, flies were exposed continuously to blue light for the
753 indicated periods of time (in Table S1 and figure legends) by placing vials at approximately 8
754 cm from a 472nm LED bulb (SuperBrightLEDs) at room temperature. Afterwards, we
755 dissected their ovaries and fixed them. For each independent experiment, control flies from
756 each genotype were kept in the dark and dissected in a dark room to avoid triggering CIBN-
757 CRY2 interaction. To control for potential blue light toxicity, we also exposed flies without
758 optogenetic constructs to blue light using the same setup (data included in Figure 1).

759 For *ex vivo* optogenetic experiments, ovaries were dissected in a dark room in *ex vivo* culture
760 medium (Schneider's medium (Sigma-Aldrich) supplemented with 10% FBS (fetal bovine
761 serum, heat inactivated; Thermo Fisher) and 200 µg/mL insulin (Sigma-Aldrich)). Afterwards,
762 the dissected ovaries were transferred to new *ex vivo* culture medium and the ovarioles were
763 partially separated by pipetting up and down gently. The separated ovarioles were exposed
764 to blue light for 2 hours in 24-well-plates using the same setup as for whole flies and then they
765 were fixed and stained to evaluate epithelial architecture. When indicated in the figures and
766 figure legends, specific drugs (or DMSO or etanol for control samples) were added 20 minutes

767 before exposure to blue light: Colchicine (Sigma-Aldrich; 30 μ M; prepared in ethanol) to
768 depolymerize microtubules and block cells in mitosis; Binucleine-2 (Sigma-Aldrich; 40 μ M;
769 prepared in DMSO) to inhibit Aurora B; and Latrunculin A to disrupt the actin cytoskeleton
770 (Sigma Aldrich; 5 μ g/mL; prepared in DMSO). To confirm that Binucleine-2 blocked cytokinesis
771 and Colchicine blocked cells in mitosis in the follicular epithelium, ovarioles were treated with
772 these drugs for 30 minutes and then fixed (without exposing them to blue light).
773 For live imaging, ovaries were dissected in a dark room and CIBN-CRY2 interaction was only
774 triggered with the 488 nm laser used for GFP-tagged protein imaging.
775

776 **Fixation and staining of egg chambers**

777 To evaluate epithelial architecture, *Drosophila* ovaries were dissected in Schneider's medium
778 (Sigma-Aldrich) supplemented with 10% FBS (fetal bovine serum, heat inactivated; Thermo
779 Fisher), washed once with PBT (PBS + 0.05% Tween 20 (Sigma-Aldrich)) and fixed in 4%
780 paraformaldehyde solution (prepared in PBS with 0.2% Tween 20 (Sigma-Aldrich)) for 20 min.
781 For F-actin staining, Phalloidin-FITC (Sigma-Aldrich) or Phalloidin-TRITC (Sigma-Aldrich) was
782 added to the fixative solution at 1 μ g/mL and incubation time was increased to 30 min. After
783 washing three times for 10 min with PBT, samples were mounted with Vectashield with DAPI
784 (Vector Laboratories). To evaluate mitotic progression (for Figure S3D), egg chambers were
785 stained for Histone H3 phosphorylated Ser10 and actin. After fixation and washing, samples
786 were blocked for 2 hours at room temperature with 10% FBS (prepared in PBS + 0.2% Tween
787 20) and incubated overnight at 4°C with rabbit anti-phospho-Histone H3 (pH3) Ser10 (1:2000;
788 Upstate Biotechnology) diluted in PBT + 1% FBS. Afterwards, the samples were washed four
789 times with PBT + 1% FBS for 30 minutes and incubated for two hours at room temperature
790 with Alexa Fluor 568-conjugated goat anti-rabbit (Invitrogen; 1:300) diluted in PBT + 0.1%
791 FBS. After washing two times with PBT for ten minutes, samples were incubated for 30
792 minutes with Phalloidin-TRITC diluted in PBT, washed three times for ten minutes and
793 mounted with Vectashield with DAPI (Vector Laboratories).
794

795 **Optogenetic experiment and immunofluorescence in neuroblasts**

796 We used *pnt-Gal4* to drive *UAS-LARIAT* expression in type II neuroblasts. Following a 12h
797 egg-laying period, control and LARIAT embryos were kept in the dark until wandering L3
798 larvae (wL3) stage. wL3 of both conditions were exposed to light for 1h. Brains were then
799 dissected in PBS 1x, fixed in 4% paraformaldehyde for 20 min at room
800 temperature and washed three times with PBST (0.1% Triton X-100 in 1x PBS). Brains were
801 blocked with 1% normal goat serum in 0.1% PBST for at least 20 min at room temperature
802 and incubated overnight at 4°C with rabbit anti-Miranda (1:2000, [99], gift from Juergen A.
803 Knoblich) and mouse monoclonal anti-phospho-Histone H3 (pH3) Ser10 (1:1000, Cell
804 Signalling, 9706), diluted in blocking solution. Afterwards, brains were washed three times,
805 blocked for 20 min and incubated for 2h at room temperature with secondary antibodies Alexa
806 Fluor 647-conjugated goat anti-mouse and Alexa Fluor 568-conjugated goat anti-rabbit
807 (Invitrogen), used at 1:1000. Finally, brains were mounted in Aqua Polymount (Polysciences,
808 Inc.).
809

810 **Imaging of fixed tissue**

811 Images of fixed *Drosophila* egg chambers were collected with a 1.1 NA/40x water or 1.30
812 NA/63x glycerine objectives on an inverted laser scanning confocal microscope Leica TCS
813 SP5 II (Leica Microsystems) or 1.30 NA/63x glycerol objective on an inverted laser scanning

814 confocal microscope Leica SP8 (Leica Microsystems). To score epithelial defects and
815 evaluate mitotic progression, images for egg chamber staging were collected with a 10x
816 objective on a Zeiss Axio Imager Z1 microscope (Carl Zeiss, Germany) or a Zeiss Axio Imager
817 Z1 Apotome microscope (Carl Zeiss, Germany). To evaluate epithelial architecture defects
818 (epithelial gaps and/or multilayering), midsagittal cross-sections of egg chambers were
819 inspected with a 20x or 40x Oil objective. To evaluate mitotic progression, images from the
820 follicular epithelium at the surface of egg chambers were acquired with a 40x Oil objective on
821 a Zeiss Axio Imager Z1 microscope (Carl Zeiss, Germany). Images from *Drosophila* larvae
822 brains were acquired with a Zeiss LSM880 confocal microscope (Zeiss) using a LD LCI Plan-
823 Apochromat 40x/1.2 Imm Corr M27 water objective.

824

825 **Live imaging**

826 For live imaging of *Drosophila* egg chambers, individual ovarioles were dissected in *ex vivo*
827 culture medium (Schneider's medium (Sigma-Aldrich) supplemented with 10% FBS (fetal
828 bovine serum, heat inactivated; Thermo Fisher) and 200 µg/uL insulin (Sigma-Aldrich)) and
829 the enveloping muscle removed as previously described . Ovarioles were transferred to new
830 culture medium and imaged on uncoated coverslips or glass bottom dishes (MatTek; No 1.5;
831 P35G-1.5-7-C) with an Andor XD Revolution Spinning Disk Confocal system equipped with
832 two solid state lasers – 488nm and 561nm -, an iXonEM+ DU-897 EMCCD camera and a
833 Yokogawa CSU-22 unit built on an inverted Olympus IX81 microscope with a PLAPON 60x/NA
834 1.42 or a UPLSAPO 100x/NA 1.40 objective using iQ software (Andor). On average 2 egg
835 chambers were imaged per fly. When indicated in the figures, to mark the cell membrane,
836 ovarioles were stained with CellMask Orange Plasma membrane Stain (ThermoFisher;
837 C10045; diluted 1:10 000 in culture medium) for 15 minutes and washed twice with *ex vivo*
838 culture medium before imaging. Live imaging was performed at 25°C. When indicated in the
839 figures and figure legends, Colchicine (Sigma-Aldrich; 30 µM; prepared in ethanol), Binucleine-
840 2 (Sigma-Aldrich; 40 µM; prepared in DMSO) or Latrunculin A (Sigma Aldrich; 5 µg/mL;
841 prepared in DMSO) were added at least 15 minutes before imaging. Midsagittal egg chamber
842 cross-sections were used to image the follicular epithelium along the apical-basal axis and z-
843 stacks at the surface of the egg chamber to cross-section the follicular epithelium along the
844 apical-basal axis.

845 For live imaging of larval brain neuroepithelia, brains from L3 larvae were dissected in
846 Schneider's medium supplemented with glucose (1 mg/ml) and insulin (0.2 mg/ml) and
847 transferred to a 10 µl drop of the same medium supplemented with Fibrinogen (0.2 mg/ml) on
848 a 25 mm glass-bottom dish. Brains were oriented on their side and the Fibrinogen was clotted
849 using thrombin (100 U/ml, Sigma-Aldrich, T7513). After 3 min, 190 µl Schneider's medium
850 supplemented with glucose and insulin was pipetted on top of the clot. The neuroepithelia
851 were imaged for 15 minutes on a Zeiss 710 Spinning Disk microscope using a 63x Plan-
852 Apochromat 1.4 NA objective. 200 µl Schneider's medium supplemented with glucose, insulin
853 and 1NA-PP1 (20 µM) was then added for a final concentration of 10 µM 1NA-PP1, after which
854 imaging was resumed.

855

856 **Protein extracts and Western blot**

857 To confirm endogenous and GFP::aPKC levels in the different genotypes used for optogenetic
858 aPKC inactivation (Figure S1A), we prepared protein extracts from *Drosophila* ovaries (at least
859 15 flies per genotype) dissected in a dark room. Dissected *Drosophila* ovaries were transferred
860 to lysis buffer (150mM KCl, 75mM HEPES pH 7.5, 1.5 mM EGTA, 1.5mM MgCl₂, 15% glycerol,

861 0.1% NP-40, 1x protease inhibitors cocktail (Roche) and 1x phosphatase inhibitors cocktail 3
862 (Sigma-Aldrich)), frozen in liquid nitrogen, thawed and then disrupted through sonication. We
863 clarified lysates through two consecutive centrifugations at 14000 rpm for 10 min at 4°C.
864 Protein concentration was determined with NanoDrop 1000 Spectrophotometer (Thermo
865 Fisher). Samples were then resolved through SDS-PAGE and transferred to a nitrocellulose
866 membrane using the iBlot Dry Blotting System (Invitrogen) for Western blotting. Protein
867 transfer was confirmed by Ponceau staining (0.25% Ponceau S in 40% methanol and 15%
868 acetic acid). The membranes were blocked for two hours at room temperature with 5% dry
869 milk prepared in PBT and incubated overnight at 4°C with the primary antibodies (rabbit anti-
870 aPKC 1:2000 (c-20, Santa Cruz Biotechnology) and mouse anti- α -Tubulin 1:10 000 (DM1A,
871 Santa Cruz Biotechnology)) diluted in PBT + 1% dry milk. After washing three times for 10 min
872 with PBT, membranes were incubated with the secondary antibodies anti-mouse and anti-
873 rabbit conjugated with horseradish peroxidase diluted in PBT + 1% dry milk for one hour at
874 room temperature. After washing again three times for 10 min with PBT, blots were developed
875 with ECL Chemiluminescent Detection System (Amersham) according to the manufacturer's
876 instructions and revealed with a ChemiDoc XRS+ (BioRad).

877

878 ***aPKC^{as4}* allele inactivation**

879 For epithelial defect analysis in the follicular epithelium, *Drosophila* ovaries from *aPKC^{as4}* flies
880 (prepared as previously described in the optogenetic experiments section) were cultured ex
881 vivo for 2 hours in the presence of the ATP analog 1NA-PP1 (Calbiochem; prepared in DMSO;
882 at the concentrations indicated in Figure 2 and the respective figure legend) before fixation.
883 DMSO was added to control samples. For live imaging of egg chambers and larval
884 neuroepithelium, 1NA-PP1 (at the concentration indicated in figure legends) or DMSO was
885 added to the culture medium at the indicated timing.

886

887 **QUANTIFICATION AND STATISTICAL ANALYSIS**

888 Image processing and quantifications were done with FIJI [100]. Statistical analysis and
889 graphs were done in GraphPad Prism 8 (GraphPad Software Inc., La Jolla, CA, USA), except
890 when otherwise indicated.

891 **Epithelial defects analysis**

892 To evaluate epithelial architecture, we scored the amount of egg chambers at specific
893 developmental stages with one or more epithelial gaps, one or more multilayering events or
894 both in midsagittal cross-sections. As egg chambers develop, they grow in size. Thus, we
895 determined the developmental stage of egg chambers by measuring their area in midsagittal
896 cross-sections, as a proxy for size. To define the area intervals corresponding to each
897 developmental stage, we staged control egg chambers from *GFP::aPKC* flies according to
898 phenotypic characteristics, as in Jia *et al.*, [101], and correlated their stage with their size. We
899 scored epithelial defects (epithelial gaps and/or multilayering) and their position (anterior,
900 posterior, dorsal-ventral) by inspecting midsagittal cross-sections of egg chambers: for
901 LARIAT and *aPKC^{as4}* experiments, egg chambers were stained with DAPI (DNA) and
902 Phalloidin (F-actin); for optogenetic RhoGEF2 membrane recruitment, egg chambers were
903 stained with DAPI (DNA) and PatJ-CIBN-pmGFP and RhoGEF2-CRY2-mCherry fluorescence
904 was used. For the initial analysis of *aPKC* inactivation with LARIAT (Figure 1C), results from

905 3 independent experiments (≥ 8 flies per condition per experiment) were summed up in a
906 single contingency table and the graph shows the relative amount of egg chambers (stages 3
907 to 8) with each type of defect found. For statistical analysis, epithelial gaps and/or multilayering
908 were grouped in a single defect category and Fisher's exact test with Bonferroni correction for
909 multiple comparison was used. For other experiments, graphs show mean percentage of egg
910 chambers with the indicated type of defect \pm standard deviation (SD). The percentages of
911 defective egg chambers obtained for each independent experiment for each condition (≥ 8
912 flies per condition per independent experiment) are represented as individual data points in
913 the graphs. The total amount of egg chambers scored in each analysis is indicated in the
914 respective graph as n. To ensure consistent LARIAT expression levels, only proliferative
915 stages 4 to 6 were included in analyses (except in Figures 1 and S3B). To test for statistical
916 significance, we built contingency tables comparing the sum of egg chambers from all
917 replicates with one or more epithelial gap vs no gap and used Fisher's exact test, with
918 Bonferroni correction for multiple comparisons when necessary. To compare the frequency of
919 epithelial gap and multilayering formation at the anterior, posterior and dorsal-ventral regions,
920 we analyzed how many of the epithelial gaps and multilayering events detected upon aPKC
921 clustering in proliferative egg chambers were present at these different regions irrespective of
922 how long the samples had been exposed to blue light (data in Fig. 2C).

923 **Lgl asymmetry in the follicular epithelium**

924 The ratio of apical over lateral Lgl fluorescence intensity was used to analyse the asymmetric
925 distribution of Lgl along the apical-basal axis in the follicular epithelium after aPKC clustering.
926 For each egg chamber, the lateral and apical cortex of all epithelial cells was manually
927 segmented, average fluorescence intensity was extracted and corrected for average Lgl
928 intensity in the cytoplasm. Parts of the epithelium presenting with multilayering were excluded
929 from the analysis (at least 10 cells per egg chamber were included in the analysis). Each point
930 in Figure 1E represents the apical/lateral Lgl ratio for an individual egg chamber.

931
932 **Miranda asymmetry in neuroblasts**

933 The distribution of Miranda along the membrane of dividing NBs (pH3 positive) was analysed.
934 To extract Miranda intensity profile, that is, the intensity of Miranda (I_M) along the length of the
935 cell membrane (L), we proceeded as in (Rodriguez et al., 2017) with minor changes: we used
936 a 30-pixel wide stripe to delineate the membrane; profile extraction was initiated in the basal
937 membrane section, so that $L < 50\%$ correspond to basal Miranda intensity values. In the end,
938 Miranda intensity (I_M) was plotted as a function of percentage of membrane length (L). To
939 obtain the asymmetry index (ASI) for Miranda, Basal (B) and Apical (A) intensities were
940 calculated as the area under the Miranda intensity plot (I_M) for the basal ($L \leq 50\%$) and apical
941 ($L > 50\%$) sections of the membrane. Absolute ASI values were calculated as in (Hannaford et
942 al., 2019) with the following formula:

943
$$\frac{B - A}{2(B + A)}$$

944 ASI values were then normalized relative to control mean so that, an ASI of 1 represents
945 normal asymmetry and lower values (~ 0) indicate loss of asymmetry. As *pnt*-GAL4 only drives

946 LARIAT expression in type II neuroblasts, only this subtype was considered in all calculations.
947 Statistical analysis was performed using Prism 6 (GraphPad Software Inc., La Jolla, CA,
948 USA), mean \pm SD are depicted and individual ASI values represented (normalized to control
949 mean). Statistical significance of the difference of means was calculated using unpaired *t*-test
950 and considered significant when $p < 0.05$.

951 **Apical myosin II in the follicular epithelium**

952 To quantify apical accumulation of myosin II after aPKC inactivation, we measured
953 Sqh::mKate2x3 fluorescence intensity at the apical domain of follicular epithelial cells in single
954 plane midsagittal cross-sections of egg chambers acquired during live imaging. For each egg
955 chamber, 4 regions of interest (ROIs), each one encompassing the apical domain of at least
956 4 cells in a different region (dorsal, ventral, anterior or posterior), were manually defined and
957 tracked through time. Mean apical fluorescence intensity (AFI) for each timepoint was
958 extracted from raw movie datasets, corrected for mean cytoplasm fluorescence intensity (CFI;
959 average value measured for each timepoint in 3 follicular epithelial cells) and normalized to
960 the corrected fluorescence intensity before aPKC inactivation ($AFI_{initial} - CFI_{initial}$) as follows:

961
$$\frac{AFI - CFI}{AFI_{initial} - CFI_{initial}}$$

962 For aPKC LARIAT experiments, $AFI_{initial} - CFI_{initial}$ corresponds to the AFI-CFI value at min 0
963 (when optogenetic clustering is triggered). For aPKC^{as4} experiments $AFI_{initial} - CFI_{initial}$ was
964 obtained by averaging AFI-CFI for the 5 frames before aPKC inactivation with 1NA-PP1 at
965 min 0. Whenever, an epithelial gap started forming at a particular region, quantification at that
966 same region was stopped.

967 **Egg chamber circularity**

968 To assess egg chamber deformation after aPKC inactivation, we measured egg chamber
969 circularity in single plane midsagittal cross-sections of Sqh::mKate2x3 egg chambers acquired
970 during live imaging. The apical surface of the follicular epithelium was manually segmented
971 and circularity ($4\pi(area/perimeter^2)$) was measured. Egg chamber circularity was only
972 quantified while no epithelial defect appeared.

973 **Apical surface area and myosin II in the neuroepithelium**

974 To measure apical surface contraction in the neuroepithelium upon aPKC^{as4} inactivation with
975 1NA-PP1, the ROI edges were manually tracked as red dots using aPKC^{as}-mScarlet signal
976 to detect apical cell edges. These dots were then connected using a steerable filter for line
977 detection. The resulting shape was then filled and dilated (blue mask in Figure 3G) to
978 approximate the area to measure. Apical area was normalized to its initial value at min 0. To
979 measure myosin II intensity at the apicomедial region and apical junctions after aPKC^{as4}
980 inactivation with 1NA-PP1, apical junctions were segmented using aPKC^{as}-mScarlet signal.
981 aPKC signal to noise ratio was increased by a steerable filter detecting lines and a junctional
982 mask (as the one shown in Figure 3J) was generated by thresholding. The mask for the

983 apicomедial region was generated by inverting and contracting the junctional mask. Myosin II
984 intensity was obtained by extracting average Zip::YFP intensity with these masks and
985 normalizing to junctional intensity at min -2 before aPKC inactivation.

986 **Apical area in interphase and mitotic cells in the follicular epithelium**

987 To evaluate apical constriction in interphase cells and pulling forces on mitotic cells, we
988 measured epithelial cell area in cross-sections at the junctional level of the follicular epithelium
989 acquired during live imaging. For each egg chamber, we quantified the mean apical cell area
990 (average of at least 3 interphase cells manually segmented using E-cad::mKate2 per egg
991 chamber). Surface area was normalized to the initial mean value, obtained by averaging the
992 corresponding cell area for the 3 frames before aPKC clustering (from min -2 to 0). A similar
993 procedure was used to segment cells that entered mitosis up to 5 minutes after aPKC
994 clustering was initiated. Anaphase onset was defined as the first frame of cell elongation
995 (determined through E-cad::mKate2 signal at the lateral cortex). Mitotic entry was defined as
996 the first frame of visible mitotic rounding in a lateral cortex cross-section.

997 To evaluate apical constriction in clones of LARIAT-expressing cells, we measured the
998 epithelial cell area at the apical surface of the follicular epithelium acquired during live imaging.
999 For each clone, we quantified the mean apical cell area (average of at least 6 cells per clone
1000 manually segmented in 4D stacks using GFP::aPKC and a plasma membrane marker). A
1001 similar procedure was used to measure the apical area of individual wild-type cells adjacent
1002 to LARIAT-expressing cells (Figure 7C).

1003 **Epithelial gap analysis live**

1004 To evaluate whether and where gaps formed in the follicular epithelium, 4D stacks of surface
1005 cross-sections from egg chambers stained with membrane marker were analyzed. Gaps were
1006 inspected to verify if they span the whole length of the apical-basal axis and were only included
1007 in the analysis when all neighbour cells were in sight, so as to be able to determine whether
1008 any of them were in mitosis. The number of independent gaps detected in the 13 control, 8
1009 Binucleine-2-treated and 6 Colchicine-treated egg chambers is indicated as n in Figures 5B,
1010 5G and 5I, respectively.

1011 **Mitotic progression**

1012 To confirm the effect of Binucleine-2 and Colchicine, we analyzed mitotic progression in
1013 control and drug treated egg chambers. Mitotic cells were identified through positive staining
1014 with pH3 (number of cells counted indicated as n in Figure S3D and E). DAPI staining was
1015 used to verify whether sister chromatids had separated and group cells into early mitosis
1016 (prophase, prometaphase, metaphase) and late mitosis (anaphase, telophase) or cytokinesis.
1017 DNA. Actin staining was used to verify whether cells had elongated, confirming anaphase
1018 onset, and whether they had assembled a cytokinetic ring.

1019 **Image preparation**

1020 Representative images were processed and prepared using FIJI. Representative midsagittal
1021 images from egg chambers are from a single optical section or 2-5 plane maximum projection.
1022 Surface images from egg chambers are maximum projections of all optical sections covering
1023 the epithelial domain of interest. When necessary, movies were registered with the FIJI plugin

1024 StackReg (EPFL; Biomedical Imaging Group), to correct for whole egg chamber movement
1025 during live imaging; and a Gaussian Blur or Gaussian Blur 3D filter was applied to remove
1026 random noise.

1027

1028 **References**

- 1029 1. Munjal, A., and Lecuit, T. (2014). Actomyosin networks and tissue morphogenesis. *Development* **141**, 1789-1793.
- 1030 2. Takeichi, M. (2014). Dynamic contacts: rearranging adherens junctions to drive
1031 epithelial remodelling. *Nat Rev Mol Cell Biol* **15**, 397-410.
- 1032 3. Halaoui, R., Rejon, C., Chatterjee, S.J., Szymborski, J., Meterissian, S., Muller, W.J.,
1033 Omeroglu, A., and McCaffrey, L. (2017). Progressive polarity loss and luminal collapse disrupt
1034 tissue organization in carcinoma. *Genes Dev.* **31**, 1573-1587.
- 1035 4. Bilder, D., Li, M., and Perrimon, N. (2000). Cooperative regulation of cell polarity and
1036 growth by Drosophila tumor suppressors. *Science* **289**, 113-116.
- 1037 5. Horne-Badovinac, S., Lin, D., Waldron, S., Schwarz, M., Mbamalu, G., Pawson, T.,
1038 Jan, Y., Stainier, D.Y., and Abdelilah-Seyfried, S. (2001). Positional cloning of heart and soul
1039 reveals multiple roles for PKC lambda in zebrafish organogenesis. *Curr Biol* **11**, 1492-1502.
- 1040 6. Wodarz, A., Ramrath, A., Grimm, A., and Knust, E. (2000). Drosophila atypical protein
1041 kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. *J Cell
1042 Biol* **150**, 1361-1374.
- 1043 7. Imai, F., Hirai, S., Akimoto, K., Koyama, H., Miyata, T., Ogawa, M., Noguchi, S.,
1044 Sasaoka, T., Noda, T., and Ohno, S. (2006). Inactivation of aPKC λ results in the loss of
1045 adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex.
1046 *Development* **133**, 1735-1744.
- 1047 8. Tanentzapf, G., Smith, C., McGlade, J., and Tepass, U. (2000). Apical, lateral, and
1048 basal polarization cues contribute to the development of the follicular epithelium during
1049 Drosophila oogenesis. *J Cell Biol* **151**, 891-904.
- 1050 9. Salle, M.D., Pickett, M.A., and Feldman, J.L. (2021). Apical PAR complex proteins
1051 protect against programmed epithelial assaults to create a continuous and functional intestinal
1052 lumen. *Elife* **10**.
- 1053 10. Whiteman, E.L., Fan, S., Harder, J.L., Walton, K.D., Liu, C.J., Soofi, A., Fogg, V.C.,
1054 Hershenson, M.B., Dressler, G.R., Deutsch, G.H., et al. (2014). Crumbs3 is essential for
1055 proper epithelial development and viability. *Mol Cell Biol* **34**, 43-56.
- 1056 11. Guigur, L.G., Prudencio, P., Ferreira, T., Pimenta-Marques, A.R., and Martinho, R.G.
1057 (2012). Drosophila aPKC is required for mitotic spindle orientation during symmetric division
1058 of epithelial cells. *Development* **139**, 503-513.
- 1059 12. Seidl, S., Braun, U., Roos, N., Li, S., Lutke, T.H., Kispert, A., and Leitges, M. (2013).
1060 Phenotypical analysis of atypical PKCs in vivo function display a compensatory system at
1061 mouse embryonic day 7.5. *PLoS One* **8**, e62756.
- 1062 13. Rodriguez-Boulan, E., and Macara, I.G. (2014). Organization and execution of the
1063 epithelial polarity programme. *Nat Rev Mol Cell Biol* **15**, 225-242.
- 1064 14. Hong, Y. (2018). aPKC: the Kinase that Phosphorylates Cell Polarity. *F1000Res* **7**.
- 1065 15. Morais-de-Sa, E., Mirouse, V., and St Johnston, D. (2010). aPKC phosphorylation of
1066 Bazooka defines the apical/lateral border in Drosophila epithelial cells. *Cell* **141**, 509-523.
- 1067 16. Suzuki, A., Hirata, M., Kamimura, K., Maniwa, R., Yamanaka, T., Mizuno, K.,
1068 Kishikawa, M., Hirose, H., Amano, Y., Izumi, N., et al. (2004). aPKC acts upstream of PAR-
- 1069

1070 1b in both the establishment and maintenance of mammalian epithelial polarity. *Curr Biol* 14,
1071 1425-1435.

1072 17. Krahn, M.P., Buckers, J., Kastrup, L., and Wodarz, A. (2010). Formation of a Bazooka-
1073 Stardust complex is essential for plasma membrane polarity in epithelia. *J Cell Biol* 190, 751-
1074 760.

1075 18. Goransson, O., Deak, M., Wullschleger, S., Morrice, N.A., Prescott, A.R., and Alessi,
1076 D.R. (2006). Regulation of the polarity kinases PAR-1/MARK by 14-3-3 interaction and
1077 phosphorylation. *J Cell Sci* 119, 4059-4070.

1078 19. Gamblin, C.L., Parent-Prevost, F., Jacquet, K., Biehler, C., Jette, A., and Laprise, P.
1079 (2018). Oligomerization of the FERM-FA protein Yurt controls epithelial cell polarity. *J Cell Biol*
1080 217, 3853-3862.

1081 20. Soriano, E.V., Ivanova, M.E., Fletcher, G., Riou, P., Knowles, P.P., Barnouin, K.,
1082 Purkiss, A., Kostelecky, B., Saiu, P., Linch, M., et al. (2016). aPKC Inhibition by Par3 CR3
1083 Flanking Regions Controls Substrate Access and Underpins Apical-Junctional Polarization.
1084 *Dev Cell* 38, 384-398.

1085 21. Bailey, M.J., and Prehoda, K.E. (2015). Establishment of Par-Polarized Cortical
1086 Domains via Phosphoregulated Membrane Motifs. *Developmental cell* 35, 199-210.

1087 22. Dong, W., Zhang, X., Liu, W., Chen, Y.J., Huang, J., Austin, E., Celotto, A.M., Jiang,
1088 W.Z., Palladino, M.J., Jiang, Y., et al. (2015). A conserved polybasic domain mediates plasma
1089 membrane targeting of Lgl and its regulation by hypoxia. *The Journal of cell biology* 211, 273-
1090 286.

1091 23. Iden, S., Misselwitz, S., Peddibhotla, S.S., Tuncay, H., Rehder, D., Gerke, V.,
1092 Robenek, H., Suzuki, A., and Ebnet, K. (2012). aPKC phosphorylates JAM-A at Ser285 to
1093 promote cell contact maturation and tight junction formation. *J Cell Biol* 196, 623-639.

1094 24. Niessen, M.T., Scott, J., Zielinski, J.G., Vorhagen, S., Sotiropoulou, P.A., Blanpain, C.,
1095 Leitges, M., and Niessen, C.M. (2013). aPKC λ controls epidermal homeostasis and
1096 stem cell fate through regulation of division orientation. *J Cell Biol* 202, 887-900.

1097 25. Harris, T.J., and Peifer, M. (2007). aPKC controls microtubule organization to balance
1098 adherens junction symmetry and planar polarity during development. *Dev Cell* 12, 727-738.

1099 26. Ishiuchi, T., and Takeichi, M. (2011). Willin and Par3 cooperatively regulate epithelial
1100 apical constriction through aPKC-mediated ROCK phosphorylation. *Nat Cell Biol* 13, 860-866.

1101 27. Dias Gomes, M., Letzian, S., Saynisch, M., and Iden, S. (2019). Polarity signaling
1102 ensures epidermal homeostasis by coupling cellular mechanics and genomic integrity. *Nat
1103 Commun* 10, 3362.

1104 28. Franco, M., and Carmena, A. (2019). Eph signaling controls mitotic spindle orientation
1105 and cell proliferation in neuroepithelial cells. *J Cell Biol* 218, 1200-1217.

1106 29. Hao, Y., Du, Q., Chen, X., Zheng, Z., Balsbaugh, J.L., Maitra, S., Shabanowitz, J.,
1107 Hunt, D.F., and Macara, I.G. (2010). Par3 controls epithelial spindle orientation by aPKC-
1108 mediated phosphorylation of apical Pins. *Curr Biol* 20, 1809-1818.

1109 30. Jung, H.Y., Fattet, L., Tsai, J.H., Kajimoto, T., Chang, Q., Newton, A.C., and Yang, J.
1110 (2019). Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis
1111 by PAR-complex-mediated SNAI1 degradation. *Nat Cell Biol* 21, 359-371.

1112 31. Korotkevich, E., Niwayama, R., Courtois, A., Friese, S., Berger, N., Buchholz, F., and
1113 Hiragi, T. (2017). The Apical Domain Is Required and Sufficient for the First Lineage
1114 Segregation in the Mouse Embryo. *Dev Cell* 40, 235-247 e237.

1115 32. Sabherwal, N., Thuret, R., Lea, R., Stanley, P., and Papalopulu, N. (2014). aPKC
1116 phosphorylates p27Xic1, providing a mechanistic link between apicobasal polarity and cell-
1117 cycle control. *Dev Cell* 31, 559-571.

1118 33. Matsuzawa, K., Ohga, H., Shigetomi, K., Shiiya, T., Hirashima, M., and Ikenouchi, J.
1119 (2021). MAGIs regulate aPKC to enable balanced distribution of intercellular tension for
1120 epithelial sheet homeostasis. *Commun Biol* 4, 337.

1121 34. Zihni, C., Vlassaks, E., Terry, S., Carlton, J., Leung, T.K.C., Olson, M., Pichaud, F.,
1122 Balda, M.S., and Matter, K. (2017). An apical MRCK-driven morphogenetic pathway controls
1123 epithelial polarity. *Nat Cell Biol* 19, 1049-1060.

1124 35. David, D.J., Tishkina, A., and Harris, T.J. (2010). The PAR complex regulates pulsed
1125 actomyosin contractions during amnioserosa apical constriction in *Drosophila*. *Development*
1126 137, 1645-1655.

1127 36. Durney, C.H., Harris, T.J.C., and Feng, J.J. (2018). Dynamics of PAR Proteins Explain
1128 the Oscillation and Ratcheting Mechanisms in Dorsal Closure. *Biophys J* 115, 2230-2241.

1129 37. Rosa, A., Vlassaks, E., Pichaud, F., and Baum, B. (2015). Ect2/Pbl acts via Rho and
1130 polarity proteins to direct the assembly of an isotropic actomyosin cortex upon mitotic entry.
1131 *Developmental cell* 32, 604-616.

1132 38. Morais-de-Sa, E., and Sunkel, C. (2013). Adherens junctions determine the apical
1133 position of the midbody during follicular epithelial cell division. *EMBO Rep* 14, 696-703.

1134 39. Ragkousi, K., Marr, K., McKinney, S., Ellington, L., and Gibson, M.C. (2017). Cell-
1135 Cycle-Coupled Oscillations in Apical Polarity and Intercellular Contact Maintain Order in
1136 Embryonic Epithelia. *Curr Biol* 27, 1381-1386.

1137 40. Zenker, J., White, M.D., Gasnier, M., Alvarez, Y.D., Lim, H.Y.G., Bissiere, S., Biro, M.,
1138 and Plachta, N. (2018). Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst
1139 Formation. *Cell* 173, 776-791 e717.

1140 41. Osswald, M., and Morais-de-Sa, E. (2019). Dealing with apical-basal polarity and
1141 intercellular junctions: a multidimensional challenge for epithelial cell division. *Curr Opin Cell
1142 Biol* 60, 75-83.

1143 42. Lee, S., Park, H., Kyung, T., Kim, N.Y., Kim, S., Kim, J., and Heo, W.D. (2014).
1144 Reversible protein inactivation by optogenetic trapping in cells. *Nat Methods* 11, 633-636.

1145 43. Chen, J., Sayadian, A.C., Lowe, N., Lovegrove, H.E., and St Johnston, D. (2018). An
1146 alternative mode of epithelial polarity in the *Drosophila* midgut. *PLoS Biol* 16, e3000041.

1147 44. Qin, X., Park, B.O., Liu, J., Chen, B., Choesmel-Cadamuro, V., Belguise, K., Heo,
1148 W.D., and Wang, X. (2017). Cell-matrix adhesion and cell-cell adhesion differentially control
1149 basal myosin oscillation and *Drosophila* egg chamber elongation. *Nat Commun* 8, 14708.

1150 45. Kim, S., Gailite, I., Moussian, B., Luschnig, S., Goette, M., Fricke, K., Honemann-
1151 Capito, M., Grubmuller, H., and Wodarz, A. (2009). Kinase-activity-independent functions of
1152 atypical protein kinase C in *Drosophila*. *J Cell Sci* 122, 3759-3771.

1153 46. Franz, A., and Riechmann, V. (2010). Stepwise polarisation of the *Drosophila* follicular
1154 epithelium. *Dev Biol* 338, 136-147.

1155 47. Rolls, M.M., Albertson, R., Shih, H.P., Lee, C.Y., and Doe, C.Q. (2003). *Drosophila*
1156 aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. *J Cell Biol* 163,
1157 1089-1098.

1158 48. Hannaford, M., Loyer, N., Tonelli, F., Zoltner, M., and Januschke, J. (2019). A
1159 chemical-genetics approach to study the role of atypical Protein Kinase C in *Drosophila*.
1160 *Development* 146.

1161 49. Vasquez, C.G., Heissler, S.M., Billington, N., Sellers, J.R., and Martin, A.C. (2016).
1162 *Drosophila* non-muscle myosin II motor activity determines the rate of tissue folding. *Elife* 5.

1163 50. Munjal, A., Philippe, J.M., Munro, E., and Lecuit, T. (2015). A self-organized
1164 biomechanical network drives shape changes during tissue morphogenesis. *Nature* 524, 351-
1165 355.

1166 51. Kasza, K.E., Farrell, D.L., and Zallen, J.A. (2014). Spatiotemporal control of epithelial
1167 remodeling by regulated myosin phosphorylation. *Proc Natl Acad Sci U S A* **111**, 11732-
1168 11737.

1169 52. Smurnyy, Y., Toms, A.V., Hickson, G.R., Eck, M.J., and Eggert, U.S. (2010).
1170 Binucleine 2, an isoform-specific inhibitor of *Drosophila* Aurora B kinase, provides insights into
1171 the mechanism of cytokinesis. *ACS Chem Biol* **5**, 1015-1020.

1172 53. Mishima, M., Kaitna, S., and Glotzer, M. (2002). Central spindle assembly and
1173 cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity.
1174 *Dev Cell* **2**, 41-54.

1175 54. Alegot, H., Pouchin, P., Bardot, O., and Mirouse, V. (2018). Jak-Stat pathway induces
1176 *Drosophila* follicle elongation by a gradient of apical contractility. *Elife* **7**.

1177 55. Krueger, D., Tardivo, P., Nguyen, C., and De Renzis, S. (2018). Downregulation of
1178 basal myosin-II is required for cell shape changes and tissue invagination. *EMBO J* **37**.

1179 56. Maitre, J.L., Turlier, H., Illukkumbura, R., Eismann, B., Niwayama, R., Nedelec, F., and
1180 Hiragi, T. (2016). Asymmetric division of contractile domains couples cell positioning and fate
1181 specification. *Nature* **536**, 344-348.

1182 57. David, D.J., Wang, Q., Feng, J.J., and Harris, T.J. (2013). Bazooka inhibits aPKC to
1183 limit antagonism of actomyosin networks during amnioserosa apical constriction.
1184 *Development* **140**, 4719-4729.

1185 58. Sidor, C., Stevens, T.J., Jin, L., Boulanger, J., and Roper, K. (2020). Rho-Kinase
1186 Planar Polarization at Tissue Boundaries Depends on Phospho-regulation of Membrane
1187 Residence Time. *Dev Cell* **52**, 364-378 e367.

1188 59. Flores-Benitez, D., and Knust, E. (2015). Crumbs is an essential regulator of
1189 cytoskeletal dynamics and cell-cell adhesion during dorsal closure in *Drosophila*. *Elife* **4**.

1190 60. Letizia, A., Sotillos, S., Campuzano, S., and Llimargas, M. (2011). Regulated Crb
1191 accumulation controls apical constriction and invagination in *Drosophila* tracheal cells. *J Cell*
1192 *Sci* **124**, 240-251.

1193 61. Nakajima, H., and Tanoue, T. (2011). Lulu2 regulates the circumferential actomyosin
1194 tensile system in epithelial cells through p114RhoGEF. *J Cell Biol* **195**, 245-261.

1195 62. Silver, J.T., Wirtz-Peitz, F., Simoes, S., Pellikka, M., Yan, D., Binari, R., Nishimura, T.,
1196 Li, Y., Harris, T.J.C., Perrimon, N., et al. (2019). Apical polarity proteins recruit the RhoGEF
1197 Cysts to promote junctional myosin assembly. *J Cell Biol* **218**, 3397-3414.

1198 63. Biehler, C., Rothenberg, K.E., Jette, A., Gaude, H.M., Fernandez-Gonzalez, R., and
1199 Laprise, P. (2021). Pak1 and PP2A antagonize aPKC function to support cortical tension
1200 induced by the Crumbs-Yurt complex. *Elife* **10**.

1201 64. Finegan, T.M., Na, D., Cammarota, C., Skeeters, A.V., Nadasi, T.J., Dawney, N.S.,
1202 Fletcher, A.G., Oakes, P.W., and Bergstrahl, D.T. (2019). Tissue tension and not interphase
1203 cell shape determines cell division orientation in the *Drosophila* follicular epithelium. *EMBO J*
1204 **38**.

1205 65. Crest, J., Diz-Munoz, A., Chen, D.Y., Fletcher, D.A., and Bilder, D. (2017). Organ
1206 sculpting by patterned extracellular matrix stiffness. *Elife* **6**.

1207 66. Borreguero-Munoz, N., Fletcher, G.C., Aguilar-Aragon, M., Elbediwy, A., Vincent-
1208 Mistiaen, Z.I., and Thompson, B.J. (2019). The Hippo pathway integrates PI3K-Akt signals
1209 with mechanical and polarity cues to control tissue growth. *PLoS Biol* **17**, e3000509.

1210 67. Balaji, R., Weichselberger, V., and Classen, A.K. (2019). Response of *Drosophila*
1211 epithelial cell and tissue shape to external forces *in vivo*. *Development* **146**.

1212 68. Manning, L.A., Perez-Vale, K.Z., Schaefer, K.N., Sewell, M.T., and Peifer, M. (2019).
1213 The *Drosophila* Afadin and ZO-1 homologues Canoe and Polychaetoid act in parallel to

1214 maintain epithelial integrity when challenged by adherens junction remodeling. *Mol Biol Cell*
1215 30, 1938-1960.

1216 69. Monster, J.L., Donker, L., Vliem, M.J., Win, Z., Matthews, H.K., Cheah, J.S., Yamada, S., de Rooij, J., Baum, B., and Gloerich, M. (2021). An asymmetric junctional
1217 mechanoresponse coordinates mitotic rounding with epithelial integrity. *J Cell Biol* 220.

1218 70. Ko, C.S., Kalakuntla, P., and Martin, A.C. (2020). Apical Constriction Reversal upon
1219 Mitotic Entry Underlies Different Morphogenetic Outcomes of Cell Division. *Mol Biol Cell* 31,
1220 1663-1674.

1221 71. Godard, B.G., Dumollard, R., Munro, E., Chenevert, J., Hebras, C., McDougall, A., and
1222 Heisenberg, C.P. (2020). Apical Relaxation during Mitotic Rounding Promotes Tension-
1223 Oriented Cell Division. *Dev Cell*.

1224 72. Gupta, V.K., Nam, S., Yim, D., Camuglia, J., Martin, J.L., Sanders, E.N., O'Brien, L.E.,
1225 Martin, A.C., Kim, T., and Chaudhuri, O. (2021). The nature of cell division forces in epithelial
1226 monolayers. *J Cell Biol* 220.

1227 73. Aguilar-Aragon, M., Bonello, T.T., Bell, G.P., Fletcher, G.C., and Thompson, B.J.
1228 (2020). Adherens junction remodelling during mitotic rounding of pseudostratified epithelial
1229 cells. *EMBO Rep* 21, e49700.

1230 74. Petridou, N.I., Grigolon, S., Salbreux, G., Hannezo, E., and Heisenberg, C.P. (2019).
1231 Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt
1232 signalling. *Nat Cell Biol* 21, 169-178.

1233 75. Guillot, C., and Lecuit, T. (2013). Adhesion disengagement uncouples intrinsic and
1234 extrinsic forces to drive cytokinesis in epithelial tissues. *Dev Cell* 24, 227-241.

1235 76. Higashi, T., Arnold, T.R., Stephenson, R.E., Dinshaw, K.M., and Miller, A.L. (2016).
1236 Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during
1237 Cytokinesis. *Current biology : CB* 26, 1829-1842.

1238 77. Herszberg, S., Leibfried, A., Bosveld, F., Martin, C., and Bellaiche, Y. (2013). Interplay
1239 between the dividing cell and its neighbors regulates adherens junction formation during
1240 cytokinesis in epithelial tissue. *Dev Cell* 24, 256-270.

1241 78. Founounou, N., Loyer, N., and Le Borgne, R. (2013). Septins regulate the contractility
1242 of the actomyosin ring to enable adherens junction remodeling during cytokinesis of epithelial
1243 cells. *Dev. Cell* 24, 242-255.

1244 79. Gilmour, D., Rembold, M., and Leptin, M. (2017). From morphogen to morphogenesis
1245 and back. *Nature* 541, 311-320.

1246 80. Campinho, P., Behrndt, M., Ranft, J., Risler, T., Minc, N., and Heisenberg, C.P. (2013).
1247 Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during
1248 zebrafish epiboly. *Nat Cell Biol* 15, 1405-1414.

1249 81. Petridou, N.I., Corominas-Murtra, B., Heisenberg, C.P., and Hannezo, E. (2021).
1250 Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. *Cell*
1251 184, 1914-1928 e1919.

1252 82. Saadaoui, M., Rocancourt, D., Roussel, J., Corson, F., and Gros, J. (2020). A tensile
1253 ring drives tissue flows to shape the gastrulating amniote embryo. *Science* 367, 453-458.

1254 83. Hoijman, E., Rubbini, D., Colombelli, J., and Alsina, B. (2015). Mitotic cell rounding
1255 and epithelial thinning regulate lumen growth and shape. *Nat Commun* 6, 7355.

1256 84. Kondo, T., and Hayashi, S. (2013). Mitotic cell rounding accelerates epithelial
1257 invagination. *Nature* 494, 125-129.

1258 85. Guirao, B., Rigaud, S.U., Bosveld, F., Bailles, A., Lopez-Gay, J., Ishihara, S.,
1259 Sugimura, K., Graner, F., and Bellaiche, Y. (2015). Unified quantitative characterization of
1260 epithelial tissue development. *Elife* 4.

1262 86. Firmino, J., Rocancourt, D., Saadaoui, M., Moreau, C., and Gros, J. (2016). Cell
1263 Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick. *Dev Cell* 36, 249-
1264 261.

1265 87. Mata, J., Curado, S., Ephrussi, A., and Rorth, P. (2000). Tribbles coordinates mitosis
1266 and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. *Cell* 101, 511-522.

1267 88. Seher, T.C., and Leptin, M. (2000). Tribbles, a cell-cycle brake that coordinates
1268 proliferation and morphogenesis during Drosophila gastrulation. *Curr Biol* 10, 623-629.

1269 89. Grosshans, J., and Wieschaus, E. (2000). A genetic link between morphogenesis and
1270 cell division during formation of the ventral furrow in Drosophila. *Cell* 101, 523-531.

1271 90. Wirtz-Peitz, F., Nishimura, T., and Knoblich, J.A. (2008). Linking cell cycle to
1272 asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization.
1273 *Cell* 135, 161-173.

1274 91. Pandey, R., Heidmann, S., and Lehner, C.F. (2005). Epithelial re-organization and
1275 dynamics of progression through mitosis in Drosophila separase complex mutants. *J Cell Sci*
1276 118, 733-742.

1277 92. Pinheiro, D., Hannezo, E., Herszberg, S., Bosveld, F., Gaugue, I., Balakireva, M.,
1278 Wang, Z., Cristo, I., Rigaud, S.U., Markova, O., et al. (2017). Transmission of cytokinesis
1279 forces via E-cadherin dilution and actomyosin flows. *Nature* 545, 103-107.

1280 93. Huang, J., Zhou, W., Dong, W., Watson, A.M., and Hong, Y. (2009). From the Cover:
1281 Directed, efficient, and versatile modifications of the Drosophila genome by genomic
1282 engineering. *Proc Natl Acad Sci U S A* 106, 8284-8289.

1283 94. Lowe, N., Rees, J.S., Roote, J., Ryder, E., Armean, I.M., Johnson, G., Drummond, E.,
1284 Spriggs, H., Drummond, J., Magbanua, J.P., et al. (2014). Analysis of the expression patterns,
1285 subcellular localisations and interaction partners of Drosophila proteins using a pigP protein
1286 trap library. *Development* 141, 3994-4005.

1287 95. Izquierdo, E., Quinkler, T., and De Renzis, S. (2018). Guided morphogenesis through
1288 optogenetic activation of Rho signalling during early Drosophila embryogenesis. *Nat Commun*
1289 9, 2366.

1290 96. Gupta, T., and Schupbach, T. (2003). Cct1, a phosphatidylcholine biosynthesis
1291 enzyme, is required for Drosophila oogenesis and ovarian morphogenesis. *Development* 130,
1292 6075-6087.

1293 97. Besson, C., Bernard, F., Corson, F., Rouault, H., Reynaud, E., Keder, A., Mazouni, K.,
1294 and Schweiguth, F. (2015). Planar Cell Polarity Breaks the Symmetry of PAR Protein
1295 Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells. *Curr Biol* 25, 1104-
1296 1110.

1297 98. Xu, T., and Rubin, G.M. (1993). Analysis of genetic mosaics in developing and adult
1298 Drosophila tissues. *Development* 117, 1223-1237.

1299 99. Betschinger, J., Mechtler, K., and Knoblich, J.A. (2006). Asymmetric segregation of
1300 the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. *Cell* 124,
1301 1241-1253.

1302 100. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
1303 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform
1304 for biological-image analysis. *Nat Methods* 9, 676-682.

1305 101. Jia, D., Xu, Q., Xie, Q., Mio, W., and Deng, W.M. (2016). Automatic stage identification
1306 of Drosophila egg chamber based on DAPI images. *Sci Rep* 6, 18850.

1307