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Abstract

Immunotherapy has transformed cancer treatments; however, a large fraction of patients encounter
resistance. Such resistance is mediated by complex factors, often involving interactions between
multiple genes. Thus, it is crucially important to identify genetic interactions between genes that
are significantly mutated in cancer patients and those involved in immune responses, ideally the
ones that currently have chemical compounds for direct targeting. To systematically interrogate
such genetic interactions that mediate cancer cells’ response to T cell killing, we designed an
asymmetric CRISPR/Cas9 dual perturbation library targeting the matched combinations between
significantly mutated tumor suppressors and immune resistance genes. We performed a
combinatorial double knockout screen on 1,159 gene pairs and identified those where joint loss-
of-function renders altered cellular response to T cell cytotoxicity. With individual double
knockout constructs we validated these genetic interactions including Jakl-Trp53, Jakl-Kmt2d,
and Ifngri-Kmt2d. Interactions between significantly mutated tumor suppressors and potentially
druggable immune resistance genes may offer insights on potential new concepts of how to target
clinically relevant cancer mutations with currently available agents. This study also provides a
technology platform and an asymmetric CRISPR double knockout library for interrogating genetic

interactions between cancer mutations and immune resistance pathways under various settings.
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Background

Despite impressive durable responses elicited by cancer immunotherapy, the majority of patients
do not see long-term benefit with treatment 2. This has motivated many ongoing studies on
identification of both tumor cell-intrinsic and extrinsic factors that affect the immunogenicity of
tumors >/, however the molecular mechanisms that determine therapeutic resistance remain poorly
understood. In particular, most genetic correlates of immune responsiveness to date have been
made with single genetic events rather than with cooperative genetic interactions %°, with notable
exceptions including the immunosuppressive phenotype being driven by cooperativity between
Myc overexpression and Ras mutation '°, as well as STK11/LKB1 mutation in KRAS-driven lung
adenocarcinoma !!. Such synergistic oncogenic alterations may play an important role in response
to immunotherapy but are difficult to identify due to lack of experimental tools for studying

functional consequences of gene interactions at scale.

One recent strategy to enable scalable systematic mapping of genetic-interaction networks is to
adapt the CRISPR-Cas9 screening technology for massively parallel knockout of single genes and
gene pairs 213, Simultaneous gene perturbation can be used to study the coordinated behaviors of
genes and, in particular, whether the phenotypic effects of mutations are different when acting in
concert rather than individually. While CRISPR-Cas9-based screens have been used to identify
single gene events that contribute to resistance to immune cell killing '*!°, there has been limited
studies using combinatorial CRISPR screens for identifying novel cooperative gene interactions
contributing to immune cytotoxicity resistance in an unbiased, high-throughput manner.
Identifying such interactions may generate deeper insights into the underlying biological networks
that drive tumor-cell intrinsic mechanisms of immunotherapy resistance as well as potentially

identify genetic vulnerabilities for combinatorial immune-based therapies.

Methods:
Cell lines
Single cell clones were derived from the murine melanoma cell line (B16F10) transduced with
PGK-mCherry-OVA lentivirus to reduce cellular heterogeneity and ensure homogenous
expression of antigen. Single cells were sorted and multiple clones were derived. A clonal cell line

(clone #3) was used for subsequent experiments. A combination of antibiotic selection and flow
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cytometry was used to ensure purity. These cells were subsequently transduced with Cas9
lentivirus to create BI6F10;0VA;Cas9 clone #3 cells (referred to as BC3 cells). All screens were
conducted in this background. BC3 cells were transduced with Firefly Luciferase (FLuc) lentivirus
for bioluminescence assays, and all experiments were conducted in the BC3-FLuc background.
All cell lines were grown under standard conditions using D10 (DMEM supplemented with 10%

FBS, 1% Penicillin-Streptomycin) in an incubator maintained at 37 C with 5% CO..

Design of CADRE library

The Combinatorial Antineoplastic Drug Resistance Experiment (CADRE) library follows an
asymmetric design, combining the most significantly mutated tumor suppressors in human cancers
with immunotherapy resistance associated genes derived from the antigen processing and
presentation, IFN-gamma, MAPK, PI3K/AKT/MTOR, and WNT/beta-catenin signaling

pathways. To generate the immunotherapy resistance gene set, the union of the following gene

lists were used “regulation_of MAP kinase activity” (GO: 0043405),
“antigen_processing and_presentation” (GO: 0019882), “interferon-gamma-
mediated signaling_pathway” (GO: 0060333), “T cell costimulation” (GO: 0031295),
“HALLMARK PI3K AKT MTOR SIGNALING” (MSigDB: M5923),
“HALLMARK WNT BETA CATENIN SIGNALING” (MSigDB: M5895),
“HALLMARK INTERFERON GAMMA RESPONSE” (MSigDB: M5913), with the following
gene lists removed “T_cell receptor complex™ (GO: 0042101),
“B_cell receptor signaling pathway” (GO: 0050853), “Toll-like receptor 1-Toll-
like receptor 2 protein complex” (GO: 0035354), “Toll-like receptor 2-Toll-

like receptor 6 protein_complex” (GO: 0035355). This gene list was then intersected with the a
list of drug targets obtained by cross-reference of the UniProtKB/Swiss-Prot manually reviewed,
complete human proteome (proteome identifier up000005640) with the DrugBank database of
targets for FDA-approved small molecule drugs, FDA-approved biotech drugs, nutraceuticals, and
experimental drugs. The tumor suppressor gene list was curated from Kandoth et al., 2013 1,
sgRNAs were designed using a custom pipeline integrating sgRNA quality scoring by CRISPOR
17 In total, the library consists of 1,159 DKO gene pairs represented by 8,321 DKO sgRNA-
sgRNAs; 632 SKO genes represented by 1,684 sgRNA-NTCs; and 84 DNTCs. The library was

synthesized as an oligo pool (CustomArray).
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Lentiviral production and transduction

Prior to transduction media was removed from 80-90 percent confluent HEK293FT cells and
replaced with OptiMEM serum free media to enhance transduction efficiency. Envelope packaging
plasmid pMD2.G, packaging plasmid psPAX2, and dual-sgRNA lentiviral plasmids were
combined in a ratio of 1:1.5:2 and suspended in OptiMem serum free media. Polyethyleneimine
(PEI) was added to plasmid DNA pool (8 pL Img/mL PEI per 1pg DNA) and mixed gently before
being incubated at room temperature for 15 min. After incubation, plasmid solutions were added
dropwise to HEK293FT cells. 6 hours post transduction OptiMEM media was replaced with D10
media. Supernatant was collected from HEK293FT cells after 48 h post transduction and spun
down at 1000 x g, 4 C, for 5 min to remove cellar debris. Viral supernatant was then aliquoted
before being frozen at -80 ‘C prior to experimentation. To determine viral titer to be infected cells
were counted and seeded in plates at appropriate densities, before being infected with various
dilutions of viral supernatant. 24 h post infection titrated puromycin was added to infected cells
(10 pg/mL) and cultured for 72 h. Cell survival was then assayed to determine the functional viral

titer of the supernatant.

Double knockout cellular library production

Each screen was performed with four infection replicates, low multiplicity of infection (MOI), and
high screening coverage. Briefly, BC3 cells were seeded at a density of 5e6 cells per plate in 15¢cm
plates were transduced with 1e6 functional viral particles per plate for a calculated MOI of 0.2,
and incubated for 24 h prior to replacing media with fresh media containing 4 pg/mL puromycin
for selection. A total of 2.5¢7 cells (5 plates of 5e6) were seeded and approximately a total of 5¢6

cells were infected, conferring ~500x library coverage.

Naive OT-1 CD8" T cell isolation and culture

Mouse CD8" T cell isolation and culture methods were based on our previous works '%1°, Briefly,
mesenteric lymph nodes (mLNs) and spleens were dissected from OT-I mice, then placed into ice-
cold PBS supplemented with 2 % FBS. Lymphocytes were released by grinding organs through a
100 um filter, then re-suspended with 2 % FBS. Red blood cells (RBCs) were lysed with ACK
lysis buffer (Lonza). RBC-lysed lymphocyte solution was filtered through 40 um filters to remove
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cell debris. Naive CD8a" T cell purification was performed using Naive CD8a" T cell Isolation
Kits (Miltenyi Biotec) according to the manufacturer’s protocols. Naive CD8a" T cells were
cultured in RPMI-1640 (Gibco) media supplemented with 10 % FBS, 2 mM L-Glutamine, 200 U
/ mL penicillin—streptomycin (Gibco), and 49 uM B-mercaptoethanol (Sigma), hereafter referred
to as cRPMI media. Naive CD8a" T cells were activated with anti-CD3¢ and anti-CD28 antibodies
(BioLegend), For in vitro experiments, cRPMI media was supplemented with 2 ng / mL IL-2, 1
pg / mL anti-CD28, and 12 ng / mL 11-12p70 cytokines or antibodies. All cytokines and antibodies
were purchased from BioLegend. For antigen stimulation co-culture experiments OT-1 cells were
collected as described above, but activated by culturing harvested T-cells with OVA expressing
cancer cells in a 1:1 ratio. Antigen stimulated OT-1 cells were activated for 3-4 days prior to co-

culture experimentation.

Asymmetric CRISPR double knockout screen

Library transduced cells resuspended in cRPMI were seeded at a density of 2.5¢4 into three 96
well plates to achieve a coverage of ~720X for the R1 screen per E:T ratio. OT-I1 CD8" T-cells
were added to each well at either E:T 2 or 5 and cultured for 48 h before the introduction of 1ug/ml
puromycin to remove selective pressure of T-cells. Cells were then allowed to rest for 72 h before
being collected for gDNA extraction. The screen was repeated in entirety using the same
methodology to have independent experimental biological replicates, with the sole exception of

using 6 plates per E:T ratio to increase library coverage.

Genomic DNA extraction

To isolate gDNA from CADRE screen cells, cells were washed three times with PBS to remove
cellular debris from dead cells before being collected and pooled by condition. Pooled cells were
spun down at 400 x g for 5 min and reconstituted in 200 pL of PBS before being extracted with
Qiagen blood mini gDNA extraction kit according to manufacturer’s protocol. To isolate gDNA
for non-screen samples ~2.5e4 cells were taken per sample, and washed with PBS. PBS was
aspirated and resuspended in 100 puL Lucigen QuickExtract buffer and incubated for 30 minutes

at 65 ‘C before being heat inactivated at 95 ‘C for 5 min.

CADRE library readout
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Two rounds of PCR were used for sgRNA library readout. PCR #1 used genomic DNA (~2 pg per
reaction and 3 reactions per sample) for sufficient coverage of screen, and PCR #2 used 1uL of
PCR#1 product with barcoded primers. Samples were amplified with different barcoded primers
and pooled for deep sequencing.

The following cycle parameters were used for PCR #1: 98 °C for 1 min, 25 cycles of (98 °C for 1
s, 62 °C for 5's, 72 °C for 15 s). The following primers were used as well:

Forward: 5’-aatggactatcatatgcttaccgtaacttgaaagtatttcg-3’

Reverse: 5’-ctttagtttgtatgtctgttgctattatgtctactattctttcee-3’

The following cycle parameters were used for PCR #2: 98 °C for 30 s, 28 cycles of (98 °C for 1 s,
62 °C for 5 s, 72 °C for 15 s), and 72 °C 2 min for the final extension. See Table S4 for barcoded
primers. PCR reactions were performed using Phusion Flash High Fidelity Master Mix
(ThermoFisher). Gel purification of pooled products from a 2% E-gel EX (Life Technologies)
were performed using the QiaQuick Gel Extraction kit (Qiagen).

CADRE library mapping:

Raw paired FASTQ files were filtered and demultiplexed using Cutadapt 2°. To demultiplex the
barcodes in the forward PCR primers used during readout, the following settings were used
cutadapt -g file:fbc.fasta —no-trim, where the fbc.fasta contained the forward barcodes. To pare
down the forward read to the first 20 base pair sgRNA spacer sequence, and the reverse read to
the second spacer sequence, the following settings were used cutadapt -g
GTGGAAAGGACGAAACACCG -G CTCTAAAAC -120 -¢ 0.2 -m 19 —discard-untrimmed. The
reverse complement of the second spacer sequence from the reverse read was obtained using
fastx_reverse complement from FASTX-Toolkit, and then combined with the first spacer
sequence from the forward read to create 40bp fused spacer-spacer sequences. These 40bp fused
sequences were then mapped to the fused sgRNA sequences from the CADRE library
(Supplementary Table 2) for dual sgRNA quantification using BWA-ALN 2!, A BWA index of
the sgRNA library was generated using the bwa index command, and SAMTools was used for

post-processing 22,

Minimum count threshold
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We determined a minimum count threshold used for downstream analysis (Figure S1D). First, we
measured frequencies of the SKO sgRNAs in the library, calculated the expected frequencies of
the double sgRNAs, and compared them to observed DKO double sgRNAs frequencies. The ratio
of observed to expected frequencies fell markedly below a read count of 15. The sgRNAs with

counts below this threshold (read count of 15) were then masked from further analysis.

Identification of gene interaction sgRNA pairs

We used two methods to identify potential gene interactions. Sample counts were read normalized
to 1e6. In order to see if the phenotypic effect of DKO dual gene pair perturbation was different
from the constitutive SKO perturbations, we performed the two-sided Wilcoxon rank sum test on
DKO sgRNAs abundances compared to gene A and gene B SKO sgRNA abundances for gene
pairs. In order to determine enrichment-based gene interactions, we calculated the observed and
expected DKO enrichment:

Eobserved = (Ds/De¢) * (N¢/Ns)

Eexpected = (As/Ac) * (N/Ns) + (Bs/Be) * (Ne/Ns)

D = median abundance for DKO pair observed in post-selection screen samples

D. = median abundance for DKO pair observed in pre-T cell treatment cell control samples

N = median abundance for DNTCs observed in pre-T cell treatment cell control samples

Ns = median abundance for DNTCs observed in post-selection screen samples

As = median abundance for SKO gene A observed in post-selection screen samples

A. = median abundance for SKO gene A observed in pre-selection cell control samples

Bs = median abundance for SKO gene B observed in post-selection screen samples

B = median abundance for SKO gene B observed in pre-selection cell control samples

To determine the outlier gene interactions, linear regression was performed on Eexpected VS Eobserved
using the Im function in R, and the outlier.test function from the “car” package was used to

determine Bonferroni p-values for the most extreme observations.

Luciferase assay for cell survival
Luciferase readout was done both 24 and 48 h after co-culture in 96-well white polystyrene plates.

150 pg/mL D-luciferin (PerkinElmer) was added using a multichannel pipette to cells, and covered
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from light and incubated for 10 min. After 10 min, luciferase intensity was measured using a plate

reader (PerkinElmer)

TCGA transcriptome analyses

For global comparative TCGA gene expression profile analyses, Gene Expression Profiling
Interactive Analysis (GEPIA) 2* and GEPIA2 ?* were used. Log normalized transcripts per million
(TPM) values were visualized for normal RNA-seq samples from GTEx and tumor RNA-seq
samples from TCGA across 33 different cohorts or selected cohorts using individual gene queries
or gene signature queries, with significance thresholds set at |log2FC| cutoff of 0.5 and g-value
cutoff at 0.01. Correlation analyses used Spearman’s coefficient. Cell type proportion analysis of
GTEx normal and TCGA tumor samples were performed using GEPIA2021 and CIBERSORT for

deconvolution.

For additional KMT2D correlation analysis, skin cutaneous melanoma (SKCM) TCGA RNA-seq
samples were obtained from the Broad GDAC and normalized to TPM. Spearman correlations
were calculated using the cor function in R. Genes that were significantly positively or negatively
correlated with KMT2D were determined using a cutoff to select approximately the top or bottom
10% of the sorted values, and the identified genes were used for Database for Annotation,

Visualization and Integrated Discovery (DAVID)??¢ functional gene annotation analysis.

Survival analyses

Survival analyses based on the expression status of genes were performed using GEPIA2 and
parameters Group Cutoff: Median, Cutoff-High(%): 50; Cutoff-Low(%): 50. Survival maps were
also created, using a significance level of 0.05. Survival analyses for how query genes affect the
influence of cytotoxic T lymphocyte (CTL) levels on patient outcomes were performed using the

Tumor Immune Dysfunction and Exclusion (TIDE) algorithm 27,

Gene mutation profiles in patient cohorts
KMT2D, JAK1, JAK2, IFNGRI, and TP53 allele frequencies was queried using cBioPortal 2%2°.
All melanoma studies were selected for visualization and analyses, leading to a combined study of

2834 samples from 2781 patients in 15 studies. Alteration frequencies were obtained using a
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minimum number of total cases threshold of 10, and mutual exclusivity and co-occurrence

analyses were obtained for all pairwise combinations. Statistics were determined by cBioPortal.

Results

It is crucially important to identify genetic interactions between two key partners — (1) tumor
suppressors that are significantly mutated in cancer and thereby have direct clinical relevance, and
(2) immunotherapy resistance associated genes that are potentially targetable with small molecule
inhibitors or chemical compounds. Interactions between tumor suppressors and druggable immune
resistance targets can offer insights on new concepts of how to target clinically prevalent cancer
mutations with currently available agents. To systematically interrogate such genetic interactions
that mediate immune resistance, we employed an asymmetric, combinatorial CRISPR Cas9
screening approach. We designed a Combinatorial Antineoplastic Drug Resistance Experiment
(CADRE) screening strategy with an asymmetric library design, combining the pan-cancer most
significantly mutated tumor suppressors (“TS genes”) in human cancers on one side of the
combination; with putative drug targetable immunotherapy resistance-associated genes (“IR
genes”’) on the other, which include the antigen processing and presentation, IFN-gamma, MAPK,
PI3BK/AKT/MTOR, and WNT/beta-catenin signaling pathways (Figure 1A-B). The CADRE
library targets the combinations between 61 immune resistance genes and 19 tumor suppressors
across cancer types, with a total of 1,159 genetic combinations (gene pairs) (Figure 1B). For each
gene pair, 3 guides were chosen in most cases, for a total of 9 sgRNA pairs of double knockout
(DKO) constructs per gene pairs for most gene pairs (except certain cases where optimal sgRNAs
were not available). In addition, corresponding single knockout (SKO) constructs were represented
in the library, as well as double non-targeting controls (DNTCs) for a total of 10,089 constructs
(Figure 1B). All guides were selected on the basis of sgRNA quality scoring by CRISPOR !7

including cutting efficiency, out-of-frame patterns, and specificity (Figure S1B).

The CADRE library was synthesized via oligonucleotide array and cloned into lentiviral vectors
(Figure S1A), and the representations of DKOs, SKOs and DNTCs in the library were verified by
next-generation sequencing (NGS) (Figure S1C-D). While every single guide in the library

(10,089 / 10,089) was found to have some read representation in the plasmid samples, we found

10
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that below a read count of 15 the ratio of observed to expected DKO sgRNA frequencies fell
markedly (Figure S1D). Guides with counts below this threshold (15 reads) were masked from
further analysis yielding 10,031 sgRNAs. CADRE lentiviral library was generated and transduced
into B16F10 melanoma cells stably expressing antigenic ovalbumin (OVA) protein, Cas9 protein,
and reporter firefly luciferase (FLuc). Murine BI6F10 melanoma cells were chosen as a model
due to their resistance to immune checkpoint blockade against receptors such as programmed cell
death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 3%, OVA
protein transduction was performed due to availability of transgenic mice with OT-I T cells that
recognize OV A peptide of amino acids 257-264 (SIINFEKL) expressed in the context of H-2Kb
3233 which allows for antigen-specific T cell killing assays. Lentiviral infection occurred at a low
multiplicity of infection (MOI) (MOI < 0.2) to bias towards single lentiviral sgRNA construct
integration. Additionally, lentiviral library infection occurred at a coverage of approximately 500X
to ensure high representation of the sgRNA pairs in the CADRE library. We NGS verified that the
transduced pre-selection cell pool retained the vast majority of the DKO, SKO and DNTC
constructs in the CADRE library, with 10,029 / 10,031 sgRNAs detected in the pre-selection

samples (Figure S1E).

We then assayed the innate resistance of these cells by co-culturing library and non-library infected
B16F10;0VA;Cas9 clone #3 cells (hereafter referred to as BC3 cells) with OT-1 CD8+ T-cells
which homogeneously recognize SIINFEKL epitope presented by the cell line. A titration series
of effector to target ratios (E:T ratios) were assayed ranging from 0.1 T-cells per cancer cell to 5
T-cells per cancer cell. Survival was measured by bioluminescence assay at 24 and 48 hours to
determine cancer cell survival. Across E:T ratios, library and non-library transduced cell survival
was comparable, with the exception of the high E:T ratio conditions (E:T ratios > 1) where the
mutant pool demonstrated a significant increase in resistance compared to baseline (Figure 1C).
Given the increased resistance of library transduced cells at higher E:T ratios, E:T ratios of two
and five were chosen to conduct the screen. We co-cultured BC3-CADRE cells with OT-1 CD8+
T-cells in 96 well plates, and 72 hours post selection low dose puromycin (1ug/ml) was introduced
to culture conditions to remove T-cell selective pressure and allow surviving cells to rest. After 72
hours of resting, plates were washed with PBS, and cells were collected for genomic extraction.

This screening process was repeated as a whole to generate independent biological experimental

1"
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replicates for more robust analysis. The sgRNA cassettes were PCR amplified from each
condition’s gDNA across both screens for both post-selection samples and pre-selection cell pool
controls, barcoded, and deep-sequenced by NGS, which revealed high level coverage of the
CADRE library in all samples sequenced (Figure S2A). Clustering analysis of the library
representation showed distinct clusters between plasmid, cell population before co-culture, and
cell populations post co-culture (Figure S2B), suggesting a high-quality screen and NGS readout.
Principal components analysis using the mapped read counts revealed consistency between the
cell pool conditions and the E:T ratios two and five across both screens (Figure 1D). Based on the
cumulative distribution functions (CDFs) of the representative samples, there are strong shifts
between pre-selection and post-selection co-cultures (Figure S2C), indicative of strong selection

seen at sgRNA library levels.

Using DNTC sgRNA pairs to represent an empirical null distribution without selection, at a false-
discovery rate (FDR) of 1.19% we identified 222 enriched sgRNA pairs of which 194 (87.4%) are
associated with Janus kinase 1 (Jakl) or Janus kinase 2 (Jak2), including DKO and SKO
constructs. Bulk analysis revealed that Jak-associated sgRNAs dominated the enrichment in the
screen post-selection (Figure 1E; Figure S3A-D). In the context of tumor immune resistance,
Jakl LOF mutations have consistently demonstrated a functional role in resistance to checkpoint
blockade immune therapy 4. The dominance of Jak1/2 in the enriched resistant population proved

the robustness of the T cell resistance phenotype measuring the effect of the screen.

We then compared the representation of the dual-sgRNAs of each DKO gene pair with the
representation of the SKOs of their constitutive genes, and found that Jak1/2-associated gene pairs
were the most statistically significantly different from their constitutive SKOs (Figure 1E-F),
suggestive of potential gene interactions. In order to determine whether such gene interactions may
be additive or subtractive, we calculated phenotype scores for observed DKO enrichment
compared to expected DKO enrichment (SKO gene A enrichment + gene B enrichment),
normalized to DNTCs and pre-T cell treatment cell control representation. While the immune cell
killing phenotype can be reliably predicted as sums of individual gene perturbations, using the
Bonferroni Outlier Test for extreme values from the linear regression and comparing the values

against the Studentized residuals, we observe that gene pairs Jakl Trp53, Jakl Nfl, and
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Jakl RbI have higher observed enrichment for double knockout than expected (Bonferroni-
adjusted p-value < 0.001) suggesting potential additive gene interaction (Figure 1F), while gene
pairs Jakl Apc, Jakl Vhl, Jakl Kmt2c, Jakl Kmt2d, Jakl Aridla, Jakl Fbxw7, Jakl Ctnnbl
(Bonferroni-adjusted p-value < 0.001) have lower observed enrichment for double knockout than
expected, suggesting potential subtractive gene interaction (Figure 1F). Boxplots of normalized
read counts for Jakl Kmt2d, Jak2 Kmt2d, Jakl Trp53 and Jak2 Trp53 (Figures 1G-J) suggest
subtractive and additive phenotypic interactions to Jakl/2 perturbation for Kmt2d and Trp53,
respectively. Jakl, the dominant gene found in our analysis, is a non-receptor tyrosine kinase
associated with interferon gamma (IFN-gamma) signaling. While this role of Jak/ has been linked
to immunotherapy resistance **, which support the rigor of the screen, it was still surprising to see
the significant interaction between Jakl and Kmt2d. KMT2D (Lysine Methyltransferase 2D) is an
epigenetic modifier that regulates transcription of multiple pathways including beta-globin and
estrogen receptor genes. KMT2D has also been shown to be a tumor suppressor gene in multiple

human cancers 163338,

In order to further study the significance of the genes of interest identified in this study and how
they may potentially interact, we have performed a series of comparative transcriptomics-based
analyses on tumor and normal samples from the Cancer Genome Atlas (TCGA) and Genotype-
Tissue Expression (GTEx), both across many TCGA cancer types and for the skin cutaneous
melanoma (SKCM) cohort specifically. First we looked at the global gene expression profiles of
KMT2D, JAKI, TP53, and IFNGRI across all tumor samples and paired normal tissues (Figure
S4A-D) and more specifically for KMT2D and JAKI in the SKCM cohort (Figure 1K-M), and
identified tumor type specific expression patterns. We found that KMT2D expression levels were
significantly decreased in melanoma samples compared to normal tissue, likely due to its tumor

suppressor functionality.

Next we looked at the expression levels of gene signatures in the SKCM cohort and found that the
effector and exhaustion T-cell signatures were upregulated in the tumor samples (Figure 1M).
Moreover, cell proportion deconvolution analyses with CIBERSORT revealed increased estimated
proportions of CD8 T cells, memory activated CD4 T cells, and Tregs in the tumor samples, with

a decrease of naive and memory resting CD4 T cells (Figure 1N). These results suggest a tumor
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microenvironment where there is both increased infiltration of effector CD8 T cells albeit with
concomitant increased exhaustion and immunosuppression. The increased infiltration of CD8 T
cells along with the association of high tumor mutational burden and neoantigens with better
responses to immunotherapy *° highlight the importance of MHC class I based antigen processing
and presentation in tumor-immune interactions for certain tumor types such as melanoma and non-

small cell lung cancer.

To further evaluate the significance of KM72D and JAKI in clinical cohorts, we performed
correlation analyses to determine which genes and signatures were associated with KM72D
expression levels. We calculated the Spearman correlations for all genes compared to KM72D
expression in the TCGA SKCM melanoma cohort and identified positively and negatively
correlated genes. Genes negatively correlated with KMT2D were further analyzed using DAVID
gene ontology functional annotation and found to be enriched for mitochondrial electron transport,
translation, peptide cross-linking, antigen processing and presentation via MHC-I, and immune
response (Figure 1L). Genes positively correlated with KMT72D were found to be enriched in
transcription, mRNA splicing, protein phosphorylation, mRNA processing, and ubiquitination.
These results suggest that KMT2D has an important role in MHC-I based antigen processing and
presentation, which is consistent with our experimental data and model whereby KMT2D loss may
potentially increase antigen presentation. We also find that specific class I MHC genes are also
negatively correlated with KMT2D expression: Spearman coefficients for HLA-A is -
0.093165455; HLA-B, -0.062233376; HLA-C, -0.047136103, which provides further evidence for
this model. We also performed correlation analyses between KM72D and JAKI expression and
genes associated with the ontology term “interferon-gamma mediated signaling pathway” (GO ID
0060333) to see if there is any relationship between KM72D and IFN-gamma signaling. We found
positive and significant correlations for both JAK/ and IFN-gamma signaling gene signatures

across both the SKCM cohort and across 33 different cancer types from TCGA (Figure S5A).

In addition to examining the transcriptional profiles of the genes of interest from this study, we
looked at the gene mutation profiles and frequencies across several melanoma studies (combined
study of 2834 samples from 2781 patients in 15 studies, using cBioPortal) to ensure that the
identified genes have clinical significance at the genomic level. We found that KM72D and JAK 1
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are both frequently mutated in melanoma patients (up to ~30% and ~15% alteration frequencies
respectively, Figure S5B). Mutual exclusivity and co-occurrence analyses for all pairwise
combinations of KMT2D, JAK1, JAK2, IFNGR1, and TP53 suggest that all mutation combinations
except JAK2-IFNGRI co-occur at a significant rate (Figure S5C), suggesting that these may have

some clinical significance and can be leveraged for patient stratification.

We also performed survival analyses on the TCGA-SKCM patient cohort and the pan-cancer
TCGA cohort to see the effect of expression status of KM72D and JAKI on patient survival
(Figures S4E-F, SSD-E). We found that for patients from the SKCM cohort, those with high
KMT2D expression had significantly worse disease free survival (hazard ratio 1.3, p = 0.026)
whereas high JAKI1 expression had no effect on survival. For pan-cancer analysis, both high
KMT2D and JAK1 expression led to a decreased hazard ratio for disease free survival. Survival
maps (Figures S4G-H) revealed cancer type specific effects of KMT2D, JAKI, JAK2, IFNGRI,
or TP53 expression levels on patient survival. These results suggest that for melanoma patients,
decreased KMT2D expression may lead to improved survival, perhaps in part due to increased
antigen presentation, but the survival effects do not necessarily generalize to all cancer types.
Given the high variability regarding immune infiltration, tumor mutational burden, and the

genomic profiles for different cancer types, cancer type specific patterns are to be expected.

We also performed Tumor Immune Dysfunction and Exclusion (TIDE) analysis 2’ and examined
the survival of melanoma patients from the GSE22153 cohort *° based on the expression status of
KMT2D and linked to estimated cytotoxic T lymphocyte (CTL) levels. The KMT2D-low patient
group demonstrated increased CTL-associated overall survival benefit, whereas high levels of
KMT2D abolished the overall survival benefit of CTL-high patients (Figure 10). These results
suggest that KMT2D deficiency is linked to the effect of infiltrating CTL on melanoma patient

survival.

Discussion
Genetic interactions occur when perturbation of genes in the same or related pathways result in

phenotypes that differ from the sum of the effects of the individual mutations '3, Studying such
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interactions provides insight into on the coordinated behavior of genes and potentially identify
new therapeutic avenues; for example, drugs targeting poly(ADP-ribose) polymerase (PARP)
enzymes have shown some efficacy for BRCA /2 mutant tumors, representing a synthetic lethal
strategy that incorporates the patient’s genetic background for targeted precision medicine #*.
However, tools for identifying such interactions at scale, particularly for complex phenotypes such

as immunotherapy resistance, have thus far been limited.

CRISPR—Cas9 systems offer scalable and precise gene editing with minimal off-target effects,
allowing for adaptations into high-throughput screening strategies for dissection of functional gene
interaction networks. Recent examples of such strategies have been in models of cell fitness or

1213 However, we were interested in developing a

sensitivity to small molecule inhibitors
combinatorial screening platform for a more complex tumor-immune model. Our group has
previously performed a screen of significantly mutated genes (SMGs) in human cancers using
CRISPR-mediated genetically engineered mouse models (CRISPR-GEMM) in immune
checkpoint blockade (ICB) settings *°. The strength of this system is that GEMMs can more
precisely mimic features of human cancers as the tumors develop in vivo in a preserved immune
microenvironment. The limitations of this model include the time scale of the experiments (on the
order of months) and that although the screening vector has an additional sgRNA cassette targeting
Trp53, the library design is still single gene KO and limited in scale (49 SMGs). Likewise, other
tumor-immune CRISPR screens performed to date !*!° have also been based on single gene
perturbation. The goal and novelty of our platform was for truly combinatorial (e.g. double gene
KO) screening in an antigen-specific in vitro co-culture model. Although such models are not as
sophisticated for recapitulating the tumor microenvironment as GEMMs, their advantages include:
(1) the time scale of the assays are much faster, on the order of days, (2) larger scale for library
design, in this case over a thousand gene pairs, (3) isolation of selective pressure, in this case
specifically for T cell mediated killing, and (4) simplicity of the co-culture system for ease of

adaption to other tumor cell types and immune cell types.
We have also performed an extensive set of analyses on clinical cohorts which in aggregate

demonstrate that for melanoma patients, KMT2D is significantly negatively correlated with antigen

presentation via MHC-I, is correlated with IFN-gamma signaling signatures, has significantly high
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co-occurrence with JAKI at the mutational level, and is associated with decreased survival in
TCGA patients with low KMT2D levels improving the survival of CTL-high patients based on
TIDE analysis. These human cancer patient based genomic data and analyses are consistent with
our murine model based experimental results which suggest that KM72D LOF can attenuate
immune resistance for mutations in the interferon gamma signaling pathway potentially through
rescue of antigen presentation. Further study will be necessary to definitively identify how these
processes occur on a molecular basis. Overall, we provide here evidence which sheds light on the
potential interactions between JAKI and KMT72D, and have demonstrated the potential of double

knockout screening as a tool for discovery in cancer immunology.

The double knockout screen system here is able to identify pairs whose simultaneous LOF would
render tumor cells very sensitive to T cell killing, potentially identifying drugs which may
potentiate the effect of immunotherapy in conjunction with the presence of biomarkers. We
unexpected found Jakl/Jak2 pairs to dominate the pool of the top hits, which limited the number
of other gene pairs without these two genes. KMT72D, for example, currently has no specific
inhibitors available. The double knockout screen and the resulting gene pairs identified in the study
have clinical relevance. First, the unbiased double knockout screen demonstrated the observation
that JAK1/2 is a dominating signal cancer resistance to T cell killing in a pool double mutant
setting of competition. Second, the screen results identified and validated gene pairs mediating
cancer resistance, in a quantitative manner. Third, these gene pairs provided potential double-
biomarkers for patient stratification to improve the probability of immunotherapy efficacy.
Moreover, we believe that the dual perturbation CRISPR screening strategy can serve as a starting
point to better understand immunotherapy resistance at a systems level, as we have shown with
comparative analyses in human patient cohorts. Finally, the double knockout approach provided
here can be used in other contexts and with other library designs to identify new therapeutic

avenues with more success.

Conclusions
Here, we developed a high-throughput CRISPR-based dual perturbation genetic screening strategy

with asymmetric library design and antigen-specific tumor-immune interaction models to identify
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genetic interactions underlying cellular response to T cell killing between cancer mutations and
potentially druggable immune resistance pathways. The most striking phenotype observed in our
screens was the effect that Jak! / Jak2 mutations had on tumor cell resistance to cytotoxic effector
T cell killing. Loss-of-function mutations in these genes have been associated with anti—
programmed death 1 (PD-1) therapy resistance in patient populations **. Genetic interaction
analyses revealed that Kmt2d seemed to have a buffering effect and 7rp53 a synergistic effect on
the Jakl phenotype. Moreover, Jakl and Km¢2d mutations significantly co-occur in a multitude of
human cancers, including melanoma (cBioPortal mutual exclusivity analysis for pan cancer studies
q = <0.01), suggesting our asymmetric screen approach can identify clinically relevant genetic
interactions. These findings are consistent with our previous study, where we found that KM72D
deficiency sensitizes tumors to immune checkpoint blockade in GEMMs #°, and expands on our
knowledge of Kmt2d deficiency as a tumor cell intrinsic vulnerability predisposing factor in
context of combinatorial co-mutations. Together, we demonstrate how dual loss-of-function
CRISPR screens with asymmetric library designs can be extended to complex phenotypes such as
resistance to immune cell killing. Such approaches may help adapt precision medicine approaches

to extend the striking efficacy of immunotherapy to a broader population.
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List of abbreviations

BC3 cells — B16F10;0VA;Cas9 clone #3 cells

FLuc — firefly luciferase

CADRE — Combinatorial Antineoplastic Drug Resistance Experiment
SMG — significantly mutated gene

LOF —loss of function

GEMM - genetically engineered mouse model

CTL — cytotoxic T lymphocyte

ICB — immune checkpoint blockade

TIDE — Tumor Immune Dysfunction and Exclusion

DAVID — Database for Annotation, Visualization and Integrated Discovery
TCGA — The Cancer Genome Atlas

SKCM - skin cutaneous melanoma

GTEx — Genotype-Tissue Expression

OVA — ovalbumin

DKO — double knockout

SKO - single knockout

NTC — non-targeting control

DNTC — double non-targeting control
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Figure legends:

Figure 1. Asymmetric double knockout CRISPR screen of gene pairs that affect cancer cell
response to T cell killing

(A) Schematic overview of CADRE screen.

(B) Schematic of CADRE library design, 61 genes with immunotherapy resistance were crossed
in combinatorial fashion with 19 significantly mutated tumor suppressors to create a DKO pool.
SKOs and NTCs serve for comparison and as controls.

(C) Titration of BC3 cells, and BC3 CADRE cells co-cultured with E:T ratios ranging from 0.1 to
5. High E:T ratios demonstrated significant phenotypic differences and were therefor selected for
screening (q values of 1.76e-3 and 1.19e-2 by multiple T test, 1% FDR for E:T ratios 2 and 5
respectively). *, adjusted p-value < 0.05. **, adjusted p-value < 0.01. ***  adjusted p-value <
0.001.

(D) Principle component analysis (PCA) of the sgRNA pair read count distributions across screens,
E:T ratios, technical replicates, and pre-T cell treatment controls.

(E) Scatterplots comparing guide representation of the CADRE library in post co-culture samples
averaged across all replicates, E:T ratios, and screens compared to pre-selection infected cell
controls. Jakl and Jak2 associated sgRNA pairs (either DKO or SKO) are marked in red.

(F) Scatterplot comparing Bonferroni adjusted p value determined by outlier test compared to
Studentized residuals from linear regression analysis in (C).

(G-J) Tukey box plots (IQR boxes with 1.5 x IQR whiskers) overlaid on dot plots of sgRNA pair
abundances for each DKO, SKO, and DNTCs for pre-T cell treatment controls (also labelled as
“cell””) and post-selection co-culture samples with reads pooled from samples across screens, E:T
ratios, and technical replicates. Count distributions are shown for gene pairs (G) Jakl Kmt2d, (H)
Jak2 Kmt2d, (1) Jakl Trp53, and (J) Jak2 Trp53.

(K) Boxplots of KMT2D and JAKI expression in RNA-seq samples from the TCGA SKCM
melanoma cohort and paired normal samples (461 tumor samples, 558 normal samples). *, g-value
< 0.01 and |log2FC| > 0.5.

(L) Bar plots of top enriched pathways identified by DAVID biological processes analyses of
genes negatively (left) and positively (right) correlated with KMT2D expression in 473 melanoma
RNA-seq samples from TCGA.
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(M) Boxplots of effector T-cell gene signatures (CX3CRI, FGFBP2, FCGR3A) and exhausted T-
cell gene signatures (HAVCR2, TIGIT, LAG3, PDCDI1, CXCL13, LAYN) in RNA-seq samples from
the TCGA SKCM melanoma cohort and paired normal samples (461 tumor samples, 558 normal
samples). *, g-value < 0.01 and |log2FC| > 0.5.

(N) Boxplots of normalized cell type proportions from CIBERSORT deconvolution analyses of
TCGA-SKCM and GTEx normal skin RNA-seq samples for T cells. Statistics shown on plots.
(O) Kaplan-Meier curves showing the survival of melanoma patients from the GSE22153 cohort
based on the expression status of KM72D and linked to estimated cytotoxic T lymphocyte (CTL)
levels. Analyses performed with the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm.

Statistics shown on plot.

Figure S1. Construction and sequencing of the CADRE CRISPR knockout library in
plasmid and transduced cell pools

(A) Schematic overview of double perturbation CRISPR construct designs. Long oligonucleotides
containing paired guide sequences were synthesized and cloned into a lentiviral vector.
Subsequently, a gene fragment containing a secondary sgRNA scaffold and mU6 promoter were
cloned in between the paired guide sequences to reconstitute two fully functional sgRNA
expression systems.

(B) Density plot representing the distribution of scores for cutting efficiency, out-of-frame
patterns, and specificity for sgRNAs comprising the CADRE library.

(C) Density plot for the sgRNA pair representation in the CADRE plasmid library.

(D) Minimally required sgRNA pair read count estimation from plasmid library. Observed
frequency of double sgRNA was compared to expected frequency calculated from single sgRNAs
reads. This analysis revealed that below ~15 read counts, this ratio falls below expected. Guides
with less than 15 read counts were masked from further analysis.

(E) Scatterplot comparing guide representation of the CADRE library in the pre-T cell treatment

infected cell controls averaged across all replicates and screens to the plasmid control.

Figure S2. CADRE asymmetric double knockout CRISPR screen revealed dynamic cellular

population shifts before and after co-culture selection
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(A) Tukey box plots (IQR boxes with 1.5 x IQR whiskers) overlaid on dot plots of sgRNA pair
abundance in samples across screens, E:T ratios, technical replicates, and both pre-T cell treatment
(labelled as “cell”’) and plasmid controls.

(B) Heatmap showing Pearson correlation of log normalized sgRNA pair abundances across
samples.

(C) Empirical cumulative distribution function (CDF) plot of sgRNA pair abundances across

samples.

Figure S3. Additional analysis of CADRE double knockout CRISPR screen on T cell killing
(A-D) Scatterplots comparing guide representation of the CADRE library in post co-culture
samples compared to pre-T cell treatment infected cell controls for (A) screen 1 and E:T ratio 2,
(B) screen 1 and E:T ratio 5, (C) screen 2 and E:T ratio 2, (D) screen 2 and E:T ratio 5. Jakl and
Jak?2 associated sgRNA pairs (either DKO or SKO) are marked in red (JAK), with other non-JAK
DKO sgRNA pairs marked in dark blue, other SKO sgRNA pairs marked in light blue, and DNTCs

marked in yellow.

Figure S4. Additional analyses of TCGA cancer and matched normal RNA-seq samples
(A-D) Dot plots showing the gene expression profiles of (A) KMT2D, (B) JAKI, (C) TP53, and
(D) IFNGRI across all tumor samples and paired normal tissues. Green dots represent normal
samples, red dots represent tumor samples. Cohorts with g-value < 0.01 and [log2FC| > 0.5 are
labelled in green if expression levels are greater for the normal samples, and in red if levels are
greater for the tumor samples.

(E) Kaplan-Meier curves showing the survival of patients from 33 different TCGA cohorts based
on the expression status of KMT2D. Statistics shown on plot.

(F) Kaplan-Meier curves showing the survival of patients from 33 different TCGA cohorts based
on the expression status of JAK/. Statistics shown on plot.

(G) Survival map showing the overall survival contributions of KMT2D, JAKI, JAK2, IFNGRI,
and TP53 across multiple TCGA cohorts.

(H) Survival map showing disease free survival contributions of KMT2D, JAK1, JAK2, IFNGRI,
and TP53 across multiple TCGA cohorts.
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Figure S5. Analyses of TCGA cancer and matched normal RNA-seq samples and mutational
profiles

(A) Scatterplots comparing KMT2D expression with (far left) JAKI expression in TCGA SKCM
dataset; (left) JAKI expression in pan-cancer TCGA dataset of 33 types; (right) interferon-gamma-
mediated signaling pathway gene signature (gene ontology 0060333) in TCGA SKCM dataset;
(far right) interferon-gamma-mediated signaling pathway gene signature in pan-cancer TCGA
dataset of 33 types.

(B) Alteration frequencies for KMT2D and JAKI in 2834 samples from 15 melanoma studies.

(C) Co-mutation analyses for KMT2D, JAK 1, JAK2, IFNGR1, and TP53 across melanoma studies.
Statistics shown in table.

(D) Kaplan-Meier curves showing the survival of TCGA-SKCM patients based on the expression
status of KMT2D. Statistics shown on plot.

(E) Kaplan-Meier curves showing the survival of TCGA-SKCM patients based on the expression
status of JAK /. Statistics shown on plot.

List of Supplemental Tables (provided in a compound excel file)

S1. CADRE dual sgRNA library by gene pair.

S2. Concatenated sgRNA sequences for mapping CADRE.

S3. SgRNA quality scoring by CRISPOR.

S4. Second PCR NGC barcoded readout primers.

S5. CADRE abundance counts for plasmid, cell control, and screens.

S6. Wilcoxon rank sum test significance for DKO dual sgRNA construct abundance compared to
SKO gene A abundance or SKO gene B abundance.

S7. Observed DKO dual sgRNA construct enrichment compared to expected enrichment
determined by SKO gene A enrichment + SKO gene B enrichment.

S8. Studentized residual vs significance from gene pair outlier test on linear fit of observed vs
expected DKO enrichment.

S9. Spearman correlation values for comparisons to KM72D with gene expression values from

TCGA SKCM melanoma samples.
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S10. DAVID analysis for genes negatively correlated with KMT2D in TCGA SKCM samples.
S11. DAVID analysis for genes positively correlated with KM72D in TCGA SKCM samples.
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