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Summary

Combining multiple Parkinson's disease (PD) relevant cellular phenotypes might increase
the accuracy of midbrain dopaminergic (mDA) in vitro models. We differentiated patient-derived
induced pluripotent stem cells (iPSCs) with a LRRK2 G2019S mutation, isogenic control and
genetically unrelated iPSCs into mDA neurons. Using automated fluorescence microscopy in 384-
well plate format, we identified elevated levels of a-synuclein and Serine 129 phosphorylation
(pS129), reduced dendritic complexity, and mitochondrial dysfunction. Next, we measured
additional image-based phenotypes and used machine learning (ML) to accurately classify mDA
neurons according to their genotype. Additionally, we show that chemical compound treatments,
targeting LRRK2 kinase activity or a-synuclein levels, are detectable when using ML classification
based on multiple image-based phenotypes. We validated our approach using a second isogenic
patient derived SNCA gene triplication mDA neuronal model. This phenotyping and classification
strategy improves the exploitability of mDA neurons for disease modelling and the identification

of novel PD drug targets.
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Introduction

Parkinson's disease (PD) is a heterogeneous movement disorder with a combination of
motor and non-motor features caused by environmental and genetic risk factors or mutations in
specific genes. Pathological characteristics of PD include the progressive loss of midbrain
dopaminergic (mDA) neurons and often the appearance of Lewy bodies, cytoplasmic inclusions
containing aggregated a-synuclein protein (Blesa et al., 2022; Domingo and Klein, 2018; Poewe

et al., 2017).

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) have been associated with
PD. The Glycine to Serine substitution at position 2019 (G2019S) in the LRRK2 kinase domain is
the most frequent mutation and accounts for 5-6% of familial PD and 1-2% of sporadic cases
(Correia Guedes et al., 2010). Increased LRRK2 G2019S kinase activity is believed to be one
reason for mDA neuron loss, but the exact mechanism remains unclear (Smith et al., 2006; West
et al., 2005; Weykopf et al., 2019). One hypothesis is that LRRK2 G2019S causes defects in
mitochondrial biology. Increased autophagy markers, but also PINK1/Parkin-, and Mirol-related
defects support the idea that specifically mitophagy-linked processes are disturbed in LRRK2
G2019S neurons (Bonello et al., 2019; Hsieh et al., 2016; Schwab et al., 2017). Additionally,
LRRK2 G2019S could induce mDA neuron loss by increasing the levels of phosphorylated a-
synuclein, leading to its aggregation, since LRRK2 kinase inhibition can prevent phosphorylated
a-synuclein from forming protein inclusions (Daher et al., 2014; Longo et al., 2017; Obergasteiger

et al., 2020; Volpicelli-Daley et al., 2016; Xiong et al., 2017).

An emerging picture of PD is therefore that multiple disease mechanisms, such as
a-synuclein aggregation or mitochondrial dysfunction act together or can even exacerbate each
other. Human patient induced pluripotent stem cell (iPSC)-derived mDA neurons expressing
LRRK2 G2019S constitute a valuable in vitro model to understand PD pathophysiology and to

improve therapeutic hypotheses by experimental testing.
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Despite the apparent value of neuronal models, important challenges remain: Individual
in vitro PD pathological features are often subtle or variable when examined across different
differentiation batches or genotypes. Furthermore, single isolated PD phenotypes do not capture
the multifactorial complexity of PD. Additionally, and despite their physiologically relevance, iPSC
neuronal models are rarely used for PD-related drug discovery due to throughput feasibility
concerns based on technical complexity as well as genetic variability (Cobb et al., 2018; Elitt et
al., 2018; Farkhondeh et al., 2019). The goal of this study was therefore to develop a robust
methodology able to detect multiple cellular PD-related pathophysiological phenotypes in a
physiologically relevant human mDA neuronal model system. We aimed for sufficient sensitivity
to detect phenotypic variations based on genetic, but also chemical compound induced

phenotypic changes.

We demonstrate that multiple PD relevant cellular phenotypes can be detected in
microscopic images obtained from human patient LRRK2 G2019S iPSC-derived mDA neurons in
384-well plate format. We show that machine learning (ML) can be used to distinctively classify
PD mDA neurons from control neurons based on multiple image-derived phenotypes. Finally, we
demonstrate that our multi-phenotype classification approach is sensitive enough to detect
different small molecules with a PD-relevant mode of action. We applied our method also to a
SNCA gene triplication-carrying mDA neuronal model and obtained similar results. Our work
outlines a novel and robust strategy for the use of PD patient iPSC-derived mDA neurons for
imaging-based disease modelling by computationally combining multiple disease relevant

phenotypes.
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Results

Differentiation of iPSCs to midbrain dopaminergic cultures

iPSC lines from a patient with a confirmed LRRK2 G2019S mutation and a genetically
corrected isogenic control line (GS/+ and +/+, respectively) were differentiated to midbrain
dopaminergic (mDA) neural cultures. Differentiated cultures expressed neuronal markers (TUBB3
and MAP2) and dopaminergic neuron markers, including tyrosine hydroxylase (TH) in
combination with expression of FOXA2, while the glial marker Glial Fibrillary Acidic Protein
(GFAP) was only weakly expressed (Figure S1A-B). Immunostaining showed similar
percentages of TH- and MAP2-expressing isogenic control +/+ and GS/+ neurons indicating

comparable differentiation potentials in both genotypes (Figure S1C).

LRRK2 G2019S mDA neurons overexpress a-synuclein and display mitochondrial

dysfunction

To detect image-based hallmarks of PD, we designed an immunofluorescence-based
workflow in 384-well plate format. In brief, cryopreserved 30-day old mDA neurons were thawed
and seeded in 384-well plates, cultured for 7 days, fixed and stained. Automated microscopy and
image segmentation was used to extract multiple quantitative image features. First, GS/+ and +/+
mDA neurons were stained with antibodies against a-synuclein, TH and MAP2. In the TH-positive
GS/+ neuronal population, a-synuclein levels were increased by 15% (Figure 1A). Western
blotting with a different antibody confirmed the increase in a-synuclein levels across multiple
differentiation batches (Figure S2A-D). In addition, MAP2 staining indicated that less dendritic
branches were present in GS/+ neurons (Figure 1A). Staining with a pS129 a-synuclein antibody
showed that the surface area occupied by pS129 a-synuclein and its fluorescence intensity were
increased (Figure 1B). To exclude signal originating from non-phosphorylated forms of a-

synuclein, we treated the fixed cells with lambda phosphatase. As expected, we observed that
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lambda phosphatase treatment strongly reduced the pS129 a-synuclein signal intensity in both
GS/+ and +/+ neurons (Figure 1C). These findings suggest that pS129 a-synuclein levels are

indeed increased in GS/+ mDA neurons.
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Figure 1: LRRK2 G2019S mDA neurons overexpress d-synuclein and display mitochondrial
dysfunction. (A) iPSC-derived LRRK2 G2019S mDA neurons were immunostained against a-synuclein,
TH and MAP2 and a-synuclein intensity in TH positive GS/+ neurons as well as a neuronal network
complexity was quantified in microscopic images. (B) Immunofluorescence staining against pS129 a-
synuclein, a-synuclein and MAP2 and quantification of pS129 a-synuclein in neurites as well as overall

pS129 a-synuclein fluorescence intensity. (C) mDANs were treated with lambda phosphatase before
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staining with a pS129 a-synuclein antibody. (D) Staining with the live cell dye Calcein and mitochondrial
membrane potential-sensitive dye TMRM and quantification of TMRM intensity and mitochondrial (TMRM)
compactness. (E) Assessment of mitochondrial respiration using the Seahorse XF analyzer. Seahorse
experiments were performed in triplicate and means + SEMs are shown. Imaging experiments shown in
panels (B)-(D) were performed at least in duplicate with multiple technical replicates. Each data point
represents one well. All data has been median normalized to the respective +/+ condition per plate. Welch's
unequal variances t-test was used for significance testing. Notches in boxplots indicate the 95% confidence

interval.

Next, we examined mitochondrial phenotypes. Staining with the live cell dye Calcein and
the mitochondrial membrane potential-sensitive dye Tetramethylrhodamine (TMRM) indicated
that the overall TMRM fluorescence in living cells was decreased by 33% in GS/+ mDA neurons
suggesting that the intactness of the mitochondrial membrane is compromised in GS/+ mDA
neurons (Figure 1D). Additionally, mitochondria in GS/+ mDA neurons were more compact,
indicating an altered morphology compared to the web-like mitochondrial structure in control
neurons (Figure 1D). We used the mitochondria-targeting toxin Rotenone to chemically validate
the TMRM staining (Figure S3). Additionally, we measured the oxygen consumption rate (OCR)
in our mDA neurons. We found that the basal respiration rate did not differ between both
genotypes, while the maximal respiration rate after Carbonyl cyanide p-(tri-fluromethoxy)phenyl-
hydrazone (FCCP) treatment was two-fold increased in +/+ control mDA neurons (Figure 1E).
Taken together, we found that LRRK2 G2019S mDA neurons show multiple hallmarks of PD,
including elevated a-synuclein level, presence of pS129 a-synuclein, and mitochondrial

dysfunction.

ML strategy to classify neurons based on image-derived cellular features
We hypothesized that the combination of multiple image-based phenotypes would give

rise to a “neuronal fingerprint” and allow the accurate and robust identification of different cell lines
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or treatment conditions, thereby making it a useful tool for iPSC-based disease modelling or
compound screening. We applied different ML algorithms termed “classifiers” to achieve this task.
Specifically, we used Linear Discriminant Analysis (LDA) (Fisher, 1936), Support Vector Machine
(SVM) (Cortes and Vapnik, 1995), and Light Gradient Boosting Machine (LightGBM) (Ke et al.,
2017) algorithms (Figure 2). Quantitative image-derived features were used as input data and
the ML classifiers were trained to separate two classes from each other (Table S1 & 2). Next,
new data (i.e. data from drug treated neurons), was then mapped based on feature similarity to
the pre-trained reference classes. For example, to estimate the effect of a chemical compound
treatment, compound-treated cells can be classified in comparison to DMSO-treated mutant and
wild-type cells. An increased classification proximity generally indicates a higher phenotypic

similarity (Figure 2C).
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Figure 2: Machine learning (ML) strategy to classify neurons based on image-derived cellular
features. (A) Schematic depiction of the generation of image-derived cellular feature data. (B) Overview of
the data processing steps and ML methodology. (C) Schematic depiction of how ML classification was used
to separate different neuronal cell lines (left panel), identify bioactive chemical compounds (middle panel)
and how “leave-one-out” analysis can identify the contribution of individual image-derived cellular features

to ML classification (right panel). Whitney U-testing was performed for significance testing.
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ML classification can distinguish neuronal genotypes based on image-derived cellular
features

After having identified multiple individual PD-linked phenotypes we asked whether
combining a large number of cellular phenotypes would result in a distinct GS/+ phenotypic
fingerprint. To evaluate the specificity of a GS/+ phenotypic fingerprint compared to the +/+
isogenic control line, we differentiated two additional and genetically unrelated iPSC lines
(EDIiO01-A-5 and GIBCO) into mDA neurons (Figure S8). All four mDA neuronal cell lines were
then stained with Hoechst and antibodies against a-synuclein, TH and MAP2. After image
acquisition and segmentation, we derived a total of 126 quantitative features from the images
(Table S1). We hypothesized that a weighted combination of all 126 cellular image features might
allow the generation of a unique phenotypic fingerprint per cell line. Secondly, we hypothesized
that the generated phenotypic fingerprint of GS/+ neurons would be significantly different from all
control mDA neuron control lines.

To test our hypotheses, we evaluated the two supervised ML classifiers LDA and SVM. In
a first step, we determined the Pearson correlations of all image features to remove strongly
correlated image features (Figure S4A-C). Both LDA and SVM algorithms were then trained
repeatedly on shuffled sets of 80% of the imaging data and tested on 20% of the imaging data. In
total training and testing were repeated 25 times on shuffled slices of the dataset in a process
referred to as cross-validation (CV) (Figure 2B, Figure S4D-E). CV is useful to detect and prevent
overfitting and to increase robustness since the ML models are trained on multiple slightly different
datasets. We observed that training variability over all cycles was generally low, indicating that
sufficient training data was provided to both the LDA and SVM algorithms. Although by eye the
four mDA neuronal lines appeared relatively similar (Figure 3A), both LDA and SVM classification
algorithms successfully distinguished GS/+ neurons from the other three tested cell lines based
on the extracted image features. Overall, SVM performed better as indicated by the larger
distance between GS/+ neurons and the other three control cell lines (Figure 3B). Since GS/+
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and its isogenic counterpart +/+ were the two reference classes in our experiment, we calculated
the statistical Z-factor between both (Zhang et al., 1999). The SVM classification Z-factor was
superior to the LDA Z-factor (0.12 vs. 0.43) (Figure 3B). Based on these results, we focused
mainly on SVM classification. To obtain a biological meaningful explanation of the classification
results, we applied Leave-One-Out Cross-Validation (LOOCV). During LOOCV, each image
feature is left out once, classification is performed repeatedly on the remaining image features,
and the resulting Z-factor is calculated (Figure 2C, right panel). LOOCV demonstrated that our
SVM results can most likely be explained by cell line differences concerning the ratio of MAP2
positive neurons and the level of a-synuclein (Figure 3C). We confirmed the contribution of these
image features identified by LOOCV by using LightGBM, a different classification algorithm
(Figure S4F). Together these findings demonstrate that iPSC-derived mDA neurons can be stably

classified by SVM, based on multiple subtle, but detectable, image-extracted phenotypes.

11


https://doi.org/10.1101/2022.03.01.482490
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482490; this version posted March 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
aSyn TH Hoechst MAP2 Merge
+/+
GS/+
?.fa
A
>
N3
<&
&
&
B C
Machine learning classification of mDA neuronal cell lines
using Hoechst, TH, aSyn, MAP2 staining .
Feature importances
++ ++
Linear olo Non-linear PN E
Discriminant  Jo | 0% Support Vector :@% L 02
Analysis (LDA) ©@|00 Machine (SVM) "e\°© g
Fokokok “C,E
stoksk T N 0.0
ok worpk T FFFRXRFT T FEF
ok (o) Z-factor = 0.43 SIS F @R R
e 0 10 @§.§é§§° Sy
c 104 Z-factor=0.12 s= " - IS EFELEES
'-g =0 '\3@‘;\1@1@05 S&FE
= g2 os TS T LS T
2 =+ FEL T 7.8 Ny
@ 20 IF ey
Y 2’ & NN
3 5 == 30 & £ £
g 55 o=k S A
n ¢ >
- 9 0.0 -l ’ g ¢
-15 T T T T g_ ’ T T T O' {}\A‘bﬁ
++  GS/+ » O +H+  GS/+ o IS RS
NY \?70 "X N
O ) P O
Q »
SO} O
0% £%
D E F
Features based on: Features based on:
Hoechst, TH, aSyn, MAP2 staining Hoechst, Calcein, TMRM staining )
Feature importances
o *k
=
B ns KRk * B .
—_ —_— = T =
O Z-factor 8 . Z-fa%or 8
) = 1. =0. u
c =013 = =5 0
sz = == = === N oo
%0 %2 os ' @2 {
T = 08 3 LS TS EHERD
o4 2+ ST I o
= =~ G Sl s N S
? B 06 @@ 06 57 &7 3087 &0 57 & P
g O sQ FEPS O LLE S
T > 04 S 5 04 SIS FSE S S o
= b FEET T L o5 2
== S 3 02 o Fer &7
5 S 02 D ® S EEE S S
'8 0.0 % _8 0.0 y \,QS .\‘; %&Qo
S o [ T T T T T & &S
T T T T T o : S 7 <
a DMSO DMSO GNE ML PFE DMSO DMSO GNE MLi  PFE 4 OSQO
T Goi +H GS/+ ¢

Figure 3: Machine learning (ML) classification can identify genotype-related and chemical
compound-induced phenotypic differences based on image-derived cellular features in mDA
neurons. (A) Representative images of neurons stained with Hoechst and antibodies against TH, a-
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synuclein and MAP2. Image-derived cellular features were extracted from such images. (B) The two
supervised ML classification algorithms Linear Discriminant Analysis (LDA) and Support Vector Machine
(SVM) were trained to separate the two reference classes GS/+ and +/+ isogenic control mDANs. The
additional mDAN control lines were then mapped to the reference classes’ feature space. (C) Leave-One-
Out Cross-Validation (LOOCYV) to identify individual feature contributions to SVM classification of multiple
cell lines in (B). (D) SVM classification of GS/+ and +/+ isogenic control mMDANs and mapping neurons
treated with the LRRK2 inhibitors GNE-7915, MLi-2 and PFE-360 to the reference classes’ feature space.
(E) Same experiment as in (D) but instead neurons were stained with Hoechst, Tetramethylrhodamine
(TMRM) and Calcein. (F) LOOCYV to identify individual feature contributions to SVM classification in (E). All
imaging data was generated in duplicate experiments with multiple technical replicates. Each data point
represents one well. Mann-Whitney U-testing was performed for significance testing. Notches in boxplots

indicate the 95% confidence interval.

Machine learning classification can identify LRRK2 inhibitor treated neurons based on
image-derived cellular features

Next, we asked whether SVM-driven analysis is sensitive enough to detect chemical
compound induced phenotypic changes. We hypothesized that LRRK2 inhibitor treatment might
partially rescue the previously observed combined feature phenotype (Figure 3B). Cryopreserved
D30 mDA neurons were thawed and seeded in 384-well plates. Five days after seeding the
LRRK?2 inhibitors GNE-7915, PFE-360, and MLi-2 were added for 48 hours and the neurons were
fixed and stained using Hoechst, a-synuclein, TH, and MAP2 antibodies. Image-based feature
extraction, data processing and SVM model training were performed (Figure S5). The SVM
classifier successfully distinguished +/+ and GS/+ mDA neurons treated with DMSO with a Z-
factor of 0.13 (Figure 3D). Next, LRRK2 inhibitor treated GS/+ mDA neurons were classified
relative to the DMSO controls. GNE-7915 did not lead to phenotypic changes detectable in our
assays and resembled the DMSO control classification. PFE-360 and MLi-2 induced subtle

phenotypic differences detected by Hoechst/a-synuclein/TH/MAP2 staining and were classified
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as significantly different from DMSO-treated neurons. The shift towards the +/+ isogenic control
was strongest for the PFE-360 treated GS/+ mDA neurons (Figure 3D).

Next, we tested whether LRRK2 inhibitor treatment would also lead to SVM-detectable
multiphenotypic changes on the mitochondrial level. Neurons were cultured and treated as before
and stained with Hoechst, the live cell dye Calcein and the mitochondria-specific dye TMRM. We
extracted a total of 96 mitochondria-related image features based on these three stainings (Table
S2) and trained a SVM model using these features to distinguish +/+ from GS/+ mDA neurons
(Figure S6). We then applied the SVM model to sets of mitochondrial image features from LRRK2
inhibitor-treated mDA neurons. Similar to the previous results obtained with the Hoechst/a-
synuclein/TH/MAP2 staining, we detected only a weak effect of GNE-7915 on the measured
mitochondrial phenotypes, while PFE-360 and MLi-2 treatment of GS/+ mDA neurons led to a
classification shift towards +/+ isogenic control mDA neurons (Figure 3E). To identify the
mitochondrial features most responsible for the observed classification result, we performed
LOOCYV analysis. We found that mitochondrial shape (i.e. compactness and form factor) as well

as TMRM intensity contributed the most to the classification result (Figure 3F).

Detection PKC agonist-treated single wells using multiple image-derived cellular features
in LRRK2 G2019S neurons

Recently, Laperle et al. demonstrated that lysosomal activation by phorbol esters, such as
PEPOO05 and Prostratin, reduced a-synuclein levels in iPSC-derived mDA neurons (Laperle et al.,
2020). Given the established connection between LRRK2 and lysosomal biology, we
hypothesized that PEP005 and Prostratin might also be able to lower the elevated a-synuclein
levels in our LRRK2 G2019S model and thereby shift multiple cellular phenotypes towards an
unmutated control phenotype (Hockey et al., 2015; Obergasteiger et al., 2020). To demonstrate
that ML classification is sensitive enough to detect a chemical modulation in mDA neurons, we
tested the sensitivity of our model by treating only 6 randomly selected wells per biological
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replicate with PEPOO5 or Prostratin for 72 hours (Figure 4A). Next, cells were fixed and stained
with Hoechst and a-synuclein, TH and MAP2 antibodies. After microscopic imaging and
segmentation, 126 image features were extracted (Table S1). Verification of individual image
features, such as the number of TH-positive cells, showed that PEP005 and Prostratin compound
treatment was neither toxic for GS/+ nor +/+ neurons (Figure 4B). Confirming our previous
results, we detected elevated a-synuclein levels in DMSO-treated GS/+ neurons in this
experimental setup. Importantly, PEPOO5 and Prostratin treatment led to a statistically significant
decrease in a-synuclein levels specifically in GS/+ neurons, but not control +/+ neurons,
confirming the initial results of Laperle et al. obtained in different PD mDA neuron lines (Figure
4C). Next, we trained a SVM model to distinguish +/+ from GS/+ mDA neurons using image-
based features as input (Figure S7). Consistent with our previous results, SVM was able to
separate both DMSO-treated control classes +/+ and GS/+ with high accuracy (0.98 + SEM 0.02)
and a Z-factor of 0.72 (Figure 4D). We then applied the SVM model to sets of image-features
originating from PEPOO05 and Prostratin treated wells. PEPOO5 and Prostratin treated GS/+
neurons classified differently than the DMSO-treated GS/+ neurons. Although this effect was
small for PEP005, most Prostratin treated wells shifted towards the +/+ isogenic control neurons.
Additionally, we observed that compound treated +/+ control neurons responded less to PEP005

and Prostratin treatment (Figure 4D).
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data point represents one well. Mann-Whitney U-testing was performed for significance testing. Notches in

boxplots indicate the 95% confidence interval.

To assess whether single PEPO0O5 or Prostratin treated wells could be detected in a typical
screen setup using only a small number of replicates, we determined a 3x SD threshold around
the median of the DMSO-treated GS/+ neurons. Next, we calculated the percentage of compound
treated wells beyond the threshold that could be regarded as a “hit". For GS/+ neurons treated
with DMSO less than 1% of wells were more than 3 SDs away from the median, while this was

11% of PEP0OO5 and 43% of Prostratin treated wells (Figure 4E).

Detection PKC agonist-treated single wells using multiple image-derived cellular features
in SNCA triplication neurons

To generalize our multi phenotype approach, we established a second PD mDA neuron
model based on SNCA gene triplication-carrying donor iPSCs expressing four copies of SNCA.
Additionally, we differentiated isogenic control iPSCs expressing two SNCA copies into mDA
neurons (Figure S8). Using both cell lines, we performed a similar experiment as described in
Figure 4A with the aim to detect individual wells treated with PEPOO5 or Prostratin using SVM
classification (Figure 5A). SNCA triplication mDA neurons showed signs of a-synuclein
accumulation in dendrites and a reduced dendritic network (Figure 5B). Image feature
guantification confirmed, that indeed a-synuclein levels were increased in SNCA triplication mDA
neurons. Additionally, we observed a-synuclein lowering effects of 15% by PEP005 and 25% by
Prostratin (Figure 5C). Next, we trained a SVM classifier to separate isogenic control from SNCA
triplication mDA neurons. Like our previous findings using the LRRK2 model, the SVM algorithm
was able to separate isogenic control from SNCA triplication mDA neurons with high accuracy
(0.97 £ SEM 0.03) resulting in a Z-factor of 0.73 (Figure 5D, Figure S9). SVM classification of

SNCA triplication mDA neurons treated with PEPOO5 or Prostratin showed a shift towards
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isogenic control mDA neurons. Isogenic control neurons treated with both compounds had a
similar image feature-based profile and were statistically indistinguishable from DMSO-treated
control neurons, suggesting a specific effect of PEP0O05 and Prostratin in SNCA triplication

neurons (Figure 5D).
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Figure 5: Machine learning (ML) can identify Protein Kinase C (PKC) agonist treated SNCA
triplication mDA neurons in a simulated screening setup. (A) Schematic depiction of experimental
design. Single wells spiked with PEP0O05 or Prostratin were randomly distributed over the plate. Support
Vector Machine (SVM) classification was applied to identify these wells. (B) Representative images of
neurons stained with Hoechst, and TH, a-synuclein and MAP2 antibodies after 37 days of differentiation
and treated with either DMSO, PEPOOS5 or Prostratin. Red arrows indicate a-synuclein staining in neurites.
(C) Quantification of a-synuclein staining intensity across all treatment conditions. (D) SVM classification of
SNCA triplication and isogenic control mMDANs based on cellular image features extracted from Hoechst,
a-synuclein, TH, and MAP2 staining. PEPOO5 and Prostratin treated wells were then mapped to the
reference classes’ feature space. The broken square includes datapoints (wells) that are more than three
standard deviations (SD) from the SNCA triplication DMSO treated median. (E) Quantification of the fraction
of wells more than three SDs from the SNCA triplication DMSO treated class median. (F) Leave-One-Out
Cross-Validation (LOOCV) to identify individual feature contributions to SVM classification in (D). All
imaging data was generated in triplicate experiments with multiple technical replicates. Each data point
represents one well. Mann-Whitney U-testing was performed for significance testing. Notches in boxplots

indicate the 95% confidence interval.

To assess whether single PEPO0O5 or Prostratin treated wells could be detected in a typical
screen setup using only a small number of replicates, we again determined a 3x SD threshold
around the median of the DMSO-treated SNCA triplication neurons and calculated the percentage
of compound treated wells beyond the threshold. For SNCA triplication neurons treated with
DMSO less than 1% of wells were more than 3 SDs away from the median, while this was 81%
of PEPOO5 and 91% of Prostratin treated wells (Figure 5E). To deduce which image features
contributed to the successful separation of SNCA triplication and isogenic control mDA neurons
by SVM classification we performed LOOCV. As expected, the single most important image
feature distinguishing both cell lines was the a-synuclein staining intensity, a proxy for cellular a-

synuclein content (Figure 5F). This feature explained 0.2 points of the observed 0.73 Z-factor.

20


https://doi.org/10.1101/2022.03.01.482490
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482490; this version posted March 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We confirmed the contribution of a-synuclein content and other features by using LightGBM, a
different classification algorithm (Figure S9F). These findings in a second PD-relevant disease
model indicate that bioactive molecules such as PEP0OO05 and Prostratin can be detected using

our multiphenotypic approach and a relatively small number of technical replicates.
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Discussion

In this study, we demonstrate that image-derived phenotypes in human iPSC-derived
mDA neurons can be used for cell line stratification and the identification of chemical compound
treated neurons by ML classification approaches. iPSC-derived neurons are only rarely used in
drug discovery due to complex cell culture protocols, long culture duration, and genetic or clonal
heterogeneity (Cobb et al., 2018; Elitt et al., 2018; Farkhondeh et al., 2019). We applied multiple
strategies to improve the reproducibility of our iPSC-derived neuron models. First, we worked with
large cryopreserved batches in order to reduce the number of required differentiations. We also
used LRRK2 G2019S and SNCA triplication mDA neurons with their respective isogenic controls
in order to reduce sources of inter-donor genetic variability. Additionally, we developed a compact
seven day experimental protocol in 384-well plate format to reduce intervention steps related to
cell culturing or compound treatment. To further minimize sources of technical variability we semi-

automated key cell handling steps and imaging.

The functions of LRRK2 are not fully understood, but it has become clear that LRRK2 can
trigger autophosphorylation at Serl292 and phosphorylate a subset of Rab small GTPases
(Rab8A and Rab10) (Rocha et al., 2022; Sheng et al., 2012; Steger et al., 2016). A direct readout
of these targets was not present in our panel of stains. This is likely the reason why one of the
three tested LRRK2 inhibitors showed only little effects in our experimental setup. Similarly, the
used phorbol esters PEPOO5 and Prostratin have specific phosphorylation inducing effects on
PKC subunits a and & (Hampson et al., 2005; Laperle et al., 2020; Mischak et al., 1993), which
we did not examine directly in our phenotypic characterization. Despite this, we observed PEP005
and Prostratin effects in both the LRRK2, but especially the SNCA triplication model, likely
because both molecules have a-synuclein lowering capabilities in mDA neurons (Laperle et al.,

2020). Since we wanted to capture a broad panel of PD-relevant phenotypes to remain target
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agnostic with respect to novel modes of actions, we purposely did not include LRRK2 or PKC

specific readouts into our cellular staining protocols to reduce target bias.

A small number of studies describe small molecule screening in iPSC-derived neurons in
the context of neurodegenerative disorders (Imamura et al., 2017; Kondo et al., 2017; Tabata et
al., 2018; Yamaguchi et al., 2020). Of those, Tabata et al. and Yamaguchi et al. used iPSC-
derived DA neurons. Tabata et al. screened 1165 FDA-approved drugs and used resistance to
Rotenone-induced apoptosis and neurite outgrowth as phenotypic readouts (Tabata et al., 2018).
Yamaguchi et al. screened 320 compounds and used resistance to carbonyl cyanide m-
chlorophenylhydrazone (CCCP)-induced apoptosis and rescued mitophagy as readouts
(Yamaguchi et al., 2020). We also observed hallmarks of PD in our mDA neurons such as
increased a-synuclein levels, S129 phosphorylation and mitochondrial dysfunction. In contrast to
previous work, we use ML classification to bundle multiple phenotypes which offers certain
advantages: The used cellular stainings allow the extraction of a large number of PD-relevant
image features and thereby create a more biologically diverse representation of mDA neurons
amendable to chemical interventions. Second, the combination of multiple, including subtle,
phenotypes is statistically more robust than single phenotypic approaches. Additionally, our ML
classification approach allows to determine which phenotypic features contributed in particular to
the overall phenotypic differences between healthy and disease mDA neurons and might

therefore aid the target deconvolution process.

In summary, we developed an experimental and analytical framework using image-based
multidimensional readouts capturing multiple PD relevant phenotypes in mDA neurons. We
anticipate that this approach could increase the chance to detect active chemical compounds

which rescue not only an isolated phenotype, but an ensemble of disease relevant phenotypes.
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Experimental procedures

Generation of iPSC lines & differentiation into mDA neurons

All'iPSC lines were generated by third parties and are deposited in the European Bank for

Induced Pluripotent Stem Cells (EBISC, https://cells.ebisc.org/) and listed in the Human

Pluripotent Stem Cell Registry (hPSCreg, https://hpscreg.eu/) (Table S3). The original generators

have obtained the informed consent from the donors. iPSCs were cultivated on Geltrex-coated
(Thermo Fisher Scientific) dishes in StemMACS iPS-Brew XF (Miltenyi Biotech). The medium
was changed daily, and cells were passaged twice a week using 0.5 mM EDTA in PBS (Thermo

Fisher Scientific). Mycoplasma testing was performed twice per month.

mDA neurons were differentiated using a modified protocol based on Kriks et al. (Kriks et
al., 2011; Ryan et al., 2013; Weykopf et al., 2019). Briefly, iPSCs were seeded onto Geltrex-
coated 6 well plates or T75 flasks at a density of 2x10° cells/cm2 in StemMACS iPS-Brew XF
containing 10 pM Y-27632 (Hiss). The next day, medium was switched to KnockOut DMEM
medium containing KnockOut serum replacement (both Thermo Fisher Scientific) supplemented
with 200 nM LDN19318 (Axon Medchem) and 10 uM SB431542 (Biozol) for dual SMAD-inhibition.
On day 2, also 100 ng/ml Shh C24l1 (Miltenyi Biotech), 2 uM Purmorphamine (Miltenyi Biotec),
100 ng/ml FGF8 (Peprotech) and 3 uM CHIR99021 (Miltenyi Biotec) were added to the medium.
After 5 days, medium was gradually shifted to Neurobasal medium (Thermo Fisher Scientific) and
SB431542 was omitted from the medium. Starting at day 7, cells were grown only in the presence
of LDN19318 and CHIR99021. On day 11, cells were switched to Neurobasal/B27/L-glutamine
medium supplemented with CHIR99021 only. On day 13, cells were replated onto Geltrex-coated
dishes in Neurobasal/B27/L-glutamine medium supplemented with 20 ng/ml BDNF, 20 ng/ml
GDNF (both Cell Guidance Sys.), 221 uM L-ascorbic-acid (Sigma-Aldrich), 10 uM DAPT (Axon
Medchem), 1 ng/ml TGF-RIIl (Peprotech), 0.5 mM dibutyryl-cAMP (Enzo Life Sciences) and 10

MM Y-27632 (Hiss). Cells were maintained in the same medium but without Y-27632. Around day
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23 — 25, cells were dissociated using StemPro Accutase (Thermo Fisher Scientific) and plated at
a density of 1.4 x 105 cells/cm2 onto Geltrex-coated dishes. To eliminate non-neuronal cells,
cultures were treated with 1 pg/ml Mitomycin C for 2 hours on day 26. At day 30, neuronal cultures
were dissociated using StemPro Accutase supplemented with 10 uM Y-27632 and singularized.

Cells were counted and cryopreserved at 2.5x10° cells/vial in CryoStor CS 10 (Sigma Aldrich).
Neuronal culture & compound treatment

Cryopreserved 30 DIV (days in vitro) old neurons were thawed in a water bath and
centrifuged (400g, 5 min, RT) in basal medium (Table S3) supplemented with ROCK
inhibitor (Miltenyi, #130-095-563). Cell pellets were resuspended in differentiation medium (Table
S3) supplemented with ROCK inhibitor. 384-well plates (Perkin Elmer, #6007558) were coated
with 15 pg/ml Poly-L-Ornithin for 1 hour at 37 °C followed by 10ug/ml Laminin overnight at
4 °C. Using Tryphan Blue (Sigma, # T8154-20ML) and a Countess automated cell counter
(Invitrogen) 10x10° cells/well were seeded in 384-well plates. Edge wells were avoided for
seeding and filled with PBS. Typically, thawed cells were incubate at 37 °C and 5 % CO;, for seven
days until 37 DIV with differentiation medium changes every other day. Plate coating, cell seeding
and medium changes were initially performed manually by multichannel pipetting and later
automated using an Agilent Bravo pipetting robot (Agilent) and EL406 plate washer and dispenser
(Biotek). Compound treatment with 1uM PEPOO5 (Tocris, #4054) and 5uM Prostratin (Tocris,
#5749) was performed five days after thawing at 35 DIV for 72 hours until 37 DIV. Compound
treatment with 0.1pM GNE-7915 (MedChemExpress, #HY-18163), 0.1uM MLi-2
(MedChemExpress, #HY-100411), and 0.1uM PFE-360 (MedChemExpress, #HY-120085) ) was
performed six days after thawing at 36 DIV for 48 hours until 37 DIV. Treatment with 0.1uM
Rotenone (Sigma, #R8875) was performed for 24 hours until DIV 37. For Western blotting
experiments, 5uM AraC (Cytosine B-D-arabinofuranoside hydrochloride, Sigma, #C6645) was

added for 24 hours before cell lysis on DIV 37 or 44.
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In situ cytochemistry

Fixation was performed in 4% paraformaldehyde (PFA, EMS Euromedex, #15710) for 20 minutes,
followed by two PBS (Gibco, #14190) washes and permeabilization and blocking with 10% FBS
(Gibco, #10270-106) and 0.1 % Triton X-100 (Sigma, #T79284) dissolved in PBS for 30 minutes.
Primary antibodies (Table S3) were prepared in antibody dilution buffer (PBS supplemented with
5% FBS and 0.1 % Triton X-100) and incubated with the cells overnight at 4°C, followed by three
PBS washes. Secondary antibodies and Hoechst (Table S3) in antibody dilution buffer were
added to the cells for 1 hour at RT, followed by three PBS washes. Mitochondrial imaging was
performed in live cells. All dyes (Table S3) were prepared in differentiation medium and incubated
with the cells for 30 minutes at 37 °C and 5 % CO., followed by a wash with differentiation medium.
Cells were imaged in a preheated microscope chamber at 37°C and 5% CO:.. In situ cytochemistry
was initially performed manually by multichannel pipetting and later automated using an Agilent

Bravo pipetting robot (Agilent) and EL406 plate washer and dispenser (Biotek).

Imaging & image analysis

All imaging experiments were performed on a Yokogawa CV7000 microscope in scanning
confocal mode using a dual Nipkow disk. 384-well plates (Perkin EImer, #6007558) were mounted
on a motorized stage and images were acquired in a row-wise “zig-zag” fashion at RT for fixed
cells and 37°C and 5% CO; for living cells. The system’s CellVoyager software and
405/488/561/640nm solid laser lines were used to acquire single Z-plane 16-bit TIFF images
through a dry 40X objective lens using a cooled sCMOS camera with 2560x2160 pixels and a
pixel size of 6.5um without pixel binning. Nine images in a 3x3 orientation were acquired from the
center of each well. Image segmentation and feature extraction was performed with an in-house
software written in C++. Except for the detection of mitochondrial structures, image segmentation
was performed on illumination corrected raw images based on fluorescent channel intensity
thresholds empirically determined per plate. Multiple quantitative image features were calculated
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(Table S1 & S2). Mitochondrial structures and features were detected in rolling-ball background
subtracted and top-hat filtered images similar to a protocol described previously (lannetti et al.,

2016).

ML analysis

To support the reproducibility of the ML method of this study, the ML summary table is
included in the Supplemental Information as per data, optimization, model and evaluation
(DOME) recommendations (Walsh et al., 2021) (Table S4). Multiple datasets were generated
differing in terms of the used mDA neurons, chemical compound treatment, fluorescent staining
and extracted image features (Table 1). The input data was normalized, outliers were removed,
and the number of input features was reduced by removing strongly correlated features (Figure
2, Table S4). We applied the Python-written ML library scikit-learn to train and test all models
(Pedregosa et al., 2011). We used predominantly supervised binary classification algorithms with
a focus on the non-linear SVM algorithm. Figure 2B summarizes the overall ML workflow. All
models’ hyperparameters were systematically optimized using scikit-learn’s GridSearchCV
module. All models were evaluated using k-fold cross-validation and performance was checked
using accuracy. All raw data can be found in the Supplemental Information. ML pipelines are

available as Jupyter notebooks on GitHub (https://github.com/johanneswilbertz/mDA-neuron-

classification).

Table 1: Overview of generated data sets for ML analysis.

Figure in _CeIIuIar staining for N
Dataset study image feature | Purpose Dataset composition
calculation
Figure 3B- Classification of control mDA ] _
1 C & | Hoechst/TH/aSyn/MAP2 neuron lines relative to reference m Eltr(';]tglgﬁga:gi”fse)a;ufgs) - 126
Figure S4 classes +/+ and GS/+ neurons.
Classification of LRRK2 inhibitor-
Figure 3D treated GS/+ mDA neurons N (imaged wells) = 502
2 & Figure | Hoechst/TH/aSyn/MAP2 relative to reference classes N (total image features) = 126
S5 DMSO-treated +/+ and GS/+
neurons.
Figure 3E Classification of LRRK2 inhibitor- : _
3 & Figure | Hoechst/Calcein/TMRM treated GS/+ mDA neurons N (|maggd wells) = 308 _
S6 relative to reference classes N (total image features) = 96
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DMSO-treated +/+ and GS/+
neurons.
Classification of small number of

Figure PEPOO5/Prostratin-treated GS/+ N (imaged wells) = 716
4 4D-F & | Hoechst/TH/aSyn/MAP2 mDA neurons relative to reference N (totalgima o fea;ures) - 126
Figure S7 classes DMSO-treated +/+ and 9 B

GS/+ neurons.
Classification of small number of
PEPOO5/Prostratin-treated SNCA

Figure T : . _
5 5C-E & | HoechstTH/aSyn/MAP2 trlpllcaftlon mDA Feurons relative | N (|ma|g_ed Wellfs) =521 B
Figure S9 to reference classes DMSO- | N (total image features) = 126

treated isogenic control and
SNCA triplication neurons.

Statistics

All data was generated at least in duplicate with neurons from a single differentiation batch
being cultured, stained, and imaged in separate plates and on different days. All data are
represented as boxplots including all data points. Each data point represents the mean of a single
384-well plate well comprised of 9 images. Each boxplots’ inner box represent 2" — 3" quartile
of the data. The horizontal line inside the box represents the median. The notches of box
represent the 95% confidence interval of the median obtained by bootstrapping with parameter
value 1,000. Boxplot whiskers represent 1.5x of the 2" — 3" inner quartile range. Data from
different plates was median normalized to allow comparison across plates acquired on different
days. Data processing and plotting was carried out with Python packages Pandas (McKinney,
2010), Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021). Null-hypothesis significance
testing was performed with the freely available Python package Statannot (Weber, 2022). For
data not displaying a normal distribution, the non-parametrical Mann-Whitney U-test was
performed. For normally distributed data, Welch’ t-test was applied. Statistical significance is
presented in the figures as * = p < 0.05, ** = p < 0.01, **x = p < 0.001, **** = p < 0.0001, and

not significant (ns = p > 0.05).
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