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Abstract 20 

Brain function emerges from a highly complex network of specialized cells that are interlinked by 21 

billions of synapses. The synaptic connectivity between neurons is established between the elongated 22 

processes of their axons and dendrites or, together, neurites. To establish these billions of often far-23 

reaching connections, cellular neurites have to grow in highly specialized, cell-type dependent patterns 24 

covering often mm distances and connecting with thousands of other neurons. The outgrowth and 25 

branching of neurites are tightly controlled during development and are a commonly used functional 26 

readout of imaging in the neurosciences. Manual analysis of neuronal morphology from microscopy 27 

images, however, is very time intensive and error prone. Especially fully automated segmentation and 28 

classification of all neurites remain unavailable in open-source software. Here we present a standalone, 29 

GUI-based software for batch-quantification of neuronal morphology in fluorescence micrographs 30 

with minimal requirements for user interaction. Neurons are segmented using a Hessian-based 31 

algorithm to detect thin neurite structures combined with intensity- and shape-based detection of the 32 

cell body. To measure the number of branches in a neuron accurately, rather than just determining 33 

branch points, neurites are classified into axon, dendrites and their branches of increasing order by their 34 

length using a geodesic distance transform of the cell skeleton. The software was benchmarked against 35 

a large, published dataset and reproduced the phenotype observed after manual annotation before. Our 36 

tool promises greatly accelerated and improved morphometric studies of neuronal morphology by 37 

allowing for consistent and automated analysis of large datasets.  38 
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Introduction 39 

Neuronal function manifests most obviously their complex morphology, and functional circuits require 40 

a tight regulation of the generation of each process and branching point. Dendrites serve as input 41 

structures that perform different integrations of the axonal input. Axons, on the other hand, distribute 42 

their signals to multiple cells that may be located in multiple brain regions. The connectivity patterns 43 

of neurons are both predefined in development as well as guided by local cues during neurite extension. 44 

Altered connectivity patterns in the brain seem to underly many neurodevelopmental disorders such as 45 

autism spectrum disorder, mental retardation or schizophrenia (Calhoun et al., 2012). 46 

The complex morphology of neurons is established during development and starts to emerge during 47 

migration of newborn neurons in the developing brain. Neuronal polarization, axon elongation, 48 

dendritic arborization and synapse formation also happen in culture and the molecular players are 49 

largely conserved, making cultured hippocampal neurons an established model for the development of 50 

a functional neuronal morphology (Dotti et al., 1988; Li and Sheng, 2003; Polleux and Snider, 2010; 51 

Cembrowski and Spruston, 2019; Denoth-Lippuner and Jessberger, 2021). 52 

The broad variety of neuronal cell types shows a wide diversity of morphological parameters that are 53 

related to function. Neuronal cell types can vary in number, length and branching of axons and 54 

complexity of dendritic arbor. The quantification of neuronal morphology via extraction of basic 55 

parameters such as neurite length, number of branches, and degree and density of branching points 56 

from microscopy images is thus of fundamental importance in the neurosciences. One of the longest 57 

used assays is Sholl analysis (Sholl, 1953), which approximates dendritic branching by counting the 58 

number of times neurites cross concentric circles emanating from the soma at increasing distances. 59 

Sholl analysis is a regular feature of neuronal segmentation software. The commonly implemented 60 

strategies range from manual tracing over semi-automatic detection (Schmitz et al., 2011) to 61 

segmentation-free analysis (Ferreira et al., 2014).  62 

Due to their tortuous and elongated growth patterns, however, Sholl analysis is not suitable to quantify 63 

axon morphology. Axonal outgrowth has been mainly quantified by the length of the longest process, 64 

the summed length of all axonal processes, and axon complexity as the number of branch points per 65 

micron (Sainath et al., 2017; Pan et al., 2019). Extraction of these parameters require first the 66 

reconstruction of the neuronal outline and secondly the subsequent classification of processes as axons 67 

and dendrites and their primary, secondary, and tertiary branches. Commonly implemented strategies 68 

mainly use manual tracing and classifications using tools like NeuronJ (Meijering et al., 2004). 69 
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Automated reconstruction of neurons has made significant progress over the past years, also stimulated 70 

by an interest in connectomics in projects such as the BRAIN Initiative 71 

(http://www.braininitiative.nih.gov/) or the Human Brain Project (http://www.humanbrainproject.eu/), 72 

the DIADEM challenge (http://diademchallenge.org/) or the BigNeuron project (reviewed in Parekh 73 

and Ascoli, 2013; Magliaro et al., 2019). Most current pipelines employ pre-processing strategies such 74 

as denoising and deconvolution followed by segmentation algorithms differing by the strategy they 75 

employ to distinguish neurons from background. These pipelines are implemented in commercial 76 

(Neurolucida, IMARIS, Amira, HCA-Vision) as well as free standalone packages (Neuronstudio: 77 

Rodriguez et al., 2008; Neutube: Feng et al., 2015) or as plugins in image processing software such as 78 

Matlab (TREES toolbox: Cuntz et al., 2010), ImageJ (PhD-filtering: Radojević and Meijering, 2017) 79 

or Vaa3D (APP2: Xiao and Peng, 2013; Rivulet: Liu et al., 2016; Ensemble neuron tracer: Wang et al., 80 

2017; NeuroGPS-Tree: Quan et al., 2016; Advantra: Radojević and Meijering, 2019). An enormous 81 

number of further solutions have been also developed over the years to cope with segmentation and 82 

reconstruction of the neuron morphology, resulting in a vast number of different applications (Narro et 83 

al., 2007; Oberlaender et al., 2007; Schmitz et al., 2011; Meijering, 2010; Peng et al., 2010; Peng et 84 

al., 2014; Megjhani et al., 2015; Acciai et al., 2016; Magliaro et al., 2017; Yoon et al., 2017; Ikeno et 85 

al., 2018; Abdellah et al., 2018; Shahbazi et al., 2018; Wang et al., 2019; Abdolhoseini et al., 2019; 86 

Vidotto et al., 2019; López-Cabrera et al., 2020; Bates et al., 2020). 87 

While these works mainly focus on the reconstruction of neurons, a reliable quantification of neuronal 88 

morphology requires the subsequent classification of neurites. Recent work describes the extraction of 89 

growth parameters (Narro et al., 2007; Scorcioni et al., 2008; Billeci et al., 2013), the modelling of 90 

these parameters to derive growth or electrophysiological characteristics (Cuntz et al., 2010; Ascoli 91 

and Krichmar, 2000) and the classification of cell types based on morphology (Armañanzas and Ascoli, 92 

2015). These advances, however, so far do not allow for automated analysis, especially of axons, which 93 

would greatly enhance throughput in image analysis and create compatibility of this assay with high-94 

throughput approaches. 95 

To overcome this bottleneck and accelerate data analysis, we here developed a software that allows for 96 

batch processing of raw fluorescence micrographs of cultured neuronal cells to extract morphological 97 

parameters of axons and dendrites. We set out to use concepts and tools from the fields of automatic 98 

reconstruction and unsupervised image classification to facilitate the analysis of molecular mechanisms 99 

underlying the growth patterns of primary neurons in 2D culture. Our goal was to implement the 100 

quantification of intuitive biological descriptors in a tool capable of batch processing microscopic 101 
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images of neurons with a focus on developing axons where automated analysis strategies are sparse. 102 

Here we present an open-source MATLAB-based software capable of classifying individual processes 103 

of neurons as dendrites or axons and their branches, respectively in an automated manner and 104 

benchmark it against human classification and data analysis. 105 

Our software imports raw fluorescence micrographs of neurons from standard image file formats and 106 

applies a set of consecutive tools for denoising, segmentation, detection of the soma, primary neurites 107 

and finer, second and third order branches. This is followed by unsupervised classification of the 108 

neurites. Finally, quantitative measurements are exported for each batch as a comprehensive collection 109 

of figures and tables. The exported results include, but are not limited to the size of the soma, the total 110 

length of the axon, number and the respective lengths of the axonal branches, dendrites and dendritic 111 

branches. This information can be accessible for more specific downstream processing (Narro et al., 112 

2007; Zhou et al., 2013; Gillette et al., 2015; Acciai et al., 2016; Mihaljević et al., 2018; Abdellah et 113 

al., 2018).  114 

We demonstrate the capability of our software on fluorescence micrographs of primary hippocampal 115 

neurons and compare the achieved neurite classification with results obtained by manual image 116 

analysis as ground truth. We find that the analysis of our software matches the analysis of an 117 

experienced user while being capable of simultaneous analysis of tens to hundreds of images in a short 118 

time without manual intervention.    119 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.03.01.482454doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482454
http://creativecommons.org/licenses/by-nc/4.0/


Automated Analysis of Neuronal Morphology 

 
6 

Results 120 

The GUI 121 

Here we developed a graphical user interface (GUI)-based open-source software to analyze 122 

fluorescence micrographs of neurons for quantitative analysis of neurite length and branching. Files 123 

are automatically imported, and visual and numeric results are saved as standard file formats for further 124 

downstream processing and analysis. The main interface is shown in Figure 1. The workflow contains 125 

modules for importing data, pre-processing, segmentation, neurite classification and the export of 126 

quantitative measurements (see also Fig. S1).  127 

 128 

Figure 1: Graphical user interface and processing steps. Screenshot of the automated neuron reconstruction and neurite 129 

classification software’s GUI. Loaded raw or preprocessed images are shown as preview (left top) and can be preprocessed. 130 

The segmentation can be performed in automated or user-guided manner (left bottom). The segmented neuron is then 131 

analyzed (right), the soma is detected (blue) and its neurites are classified (axon yellow, primary axon branches teal, 132 

secondary axonal branches blue, dendrites red) and quantified. 133 

The first block within the proposed framework allows the user to load the input data in two ways: (1) 134 

loading raw neuronal images, or (2) importing data which have been segmented or skeletonized before. 135 

The software can operate in two different modes. In default mode, the user can change parameter 136 

settings (such as pixel size, minimal soma size, minimal neurite length) for each image individually. 137 
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In batch mode, the program sequentially processes all imported data with the same settings. When the 138 

batch mode is enabled, it is essential that pixel size metainformation is included in the image file. 139 

After loading images, an optional pre-processing is available to smoothen the image based on two 140 

different types of morphological filtering (Zehtabian and Ghassemian, 2016). Smoothing the data often 141 

results in higher quality segmentation, ensuring smoother outlines of the segmented neurons and less 142 

discontinuities.  143 

The data will be then fed into the built-in segmentation module which follows an automated, fast 144 

algorithm based on Hessian filtering. The segmented images will then be skeletonized using standard 145 

techniques. If previously segmented data are loaded, they will directly proceed to the classification 146 

step. The segmented neurons are then processed to automatically extract the soma, axon, dendrites, 147 

axonal and dendritic branches, respectively. Quantitative measures such as the region occupied by the 148 

soma, total length of the neurites as well as the length of each neurite per se will be then extracted from 149 

the neurons. All numeric results and variables of interest are saved in a Matlab file and as .txt for further 150 

statistical analysis. A labelled .tiff image is also generated and saved for inspection of classification 151 

results. 152 
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Figure 2: Schematic overview of the algorithm used in the built-in segmentation module. (A) General overview of 

the data processing pipeline of the proposed segmentation method. (B) Visualization of results from the individual 

segmentation steps performed by the proposed technique with an emphasis on quality control measures that “repair” 

errors in segmentation (pink and green, bottom left). (C) The soma reconstruction scheme: morphological filling serves 

as the preferred reconstruction method but is backed up by intensity thresholding if unsuccessful.  
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Segmentation 153 

One of the critical steps in morphological analysis is segmentation, i.e., the determination what is part 154 

of the neurite and what is not. This can be challenging for fluorescence micrographs of neurons where 155 

local differences in intensity gradients can lead to artifacts such as continuity breaks or complete loss 156 

of branches. We addressed these concerns in two ways. First, we pre-processed the data to generate a 157 

homogenously high quality of input images as described before, and secondly, we equipped our 158 

segmentation module with multiscale filters that emphasize features in images that are important for 159 

efficient neurite reconstruction. A schematic overview of the proposed neuron segmentation method is 160 

depicted in Fig. 2A while example results of applying each step to a given neuron is shown in Fig. 2B.  161 

The first step of the proposed segmentation algorithm highlights elongated linear structures (which are 162 

the neurites in our case). To this end, we employ a technique proposed for the detection of blood vessels 163 

(Frangi et al., 1998), which is based on eigenvalue analysis of the Hessian. Hessian-based multiscale 164 

filtering extracts information related to local second order structures within the image. This fibermetric 165 

algorithm enhances linear structures of a specified thickness, while minimizing information on thinner 166 

or thicker structures. In our software, the starting parameter for this ‘neurite thickness’ (in µm) may be 167 

adjusted to accelerate performance of the software if prior knowledge exists. Otherwise, the software 168 

will adaptively set the value of this parameter.  169 

To create the neuron model, we apply an intensity-based hard-thresholding on the tubule-enhanced 170 

image to obtain a binarized image. Hard thresholding potentially introduces short gaps within the 171 

neurites. This may be caused by low contrast in images or locally varying thickness of neurites, often 172 

resulting in incomplete skeletonization. To overcome this problem, the software includes an optional 173 

gap-filling algorithm which is based on finding and connecting nearest neighbors of endpoints from 174 

unconnected objects. If the closest endpoint is closer than a maximal allowed user-specified gap size 175 

(in µm), the gap is closed with a direct line. Bridging gaps can successfully re-connect short gaps 176 

between neurites (Fig. 2B, repaired segmentation left inset). However, it should be used with caution, 177 

as also noise or neighboring short processes might be artificially hyperconnected when large gap sizes 178 

are allowed for this algorithm (Fig. 2B, repaired segmentation right inset). 179 

As can be inferred from Fig. 2B (segmented processes), although the linear structures are segmented 180 

well, the interior region of the soma is not segmented. To accurately reconstruct the soma, we apply 181 
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morphological operations to the binary image to fill interior image regions and holes (Fig. 2C). 182 

However, individual neurites may cross paths and thus create closed-off interior regions other than the 183 

soma (Fig. 2C, top left). To overcome this problem, our algorithm screens for soma candidate regions 184 

(Fig. 2C, middle left) with a high average brightness. The largest two of such overlapping regions are 185 

subsequently dilated and serve as region selectors for the filling operation. (Fig. 2C, bottom left). In 186 

this way morphological filling is only applied around the most likely position of the soma to avoid mis-187 

localization of the soma or overestimation of soma size. 188 

While this approach works well for the majority of tested neurons, in some cases the soma region is 189 

not fully enclosed after segmentation and thereby cannot be morphologically filled. Such cases are 190 

detected and soma regions are then reconstructed using an intensity threshold only. To limit the effect 191 

of brightness artifacts on the image, the algorithm first finds new soma candidate regions based on the 192 

amount of overlap of the intensity threshold and the segmented neurite skeleton and then only 193 

reconstructs the soma with largest overlap to the neuron (Fig 2C, right panels). To avoid contribution 194 

of small segmentation artifacts and noise to this overlap quantification, unconnected small objects are 195 

removed prior to soma reconstruction. The final step of segmentation finds the largest connected object 196 

on the image and removes all unconnected objects, thereby focusing the analysis to only one cell.   197 

Our software also allows for use of the automated classification only and is compatible with data 198 

segmented manually in Vaa3D (Peng et al., 2010) or SynD (Schmitz et al., 2011). It is possible to load 199 

segmentations from those tools as binary image files and then to proceeding with the subsequent 200 

classification step in our software only.  201 

 202 

Classification 203 

The neurite classification scheme is illustrated in Fig. 3. The classification step initiates with the 204 

detection of the soma, followed by a stepwise detection of the longest processes originating from the 205 

detected soma. The longest of these processes is classified as the “axon”, the remaining processes as 206 

“dendrites”. Classification proceeds by detecting processes originating from the axon as “primary 207 

branches” and subsequently processes originating from these primary branches. Detection is completed 208 

after no further level of branches is detected or a hard cap of maximal 10 levels of branches is reached. 209 

After detection of axonal branches, the same procedure is applied to all dendrites and their branches 210 

(Fig. 3).  211 
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Figure 3: Illustration of neurite classification. (A) General overview of the proposed classification approach. 

Axon, dendrites and their branches are classified using the same algorithm ‘find paths’. Axon branches are 

classified iteratively as primary branches, secondary, etc. before dendrite branches. (B) Strategy for ‘find paths’ 

used to detect the set of non-overlapping longest paths from a set of starting points. For each start point, the 
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longest direct path in the skeleton is determined using a geodesic distance transform. In case the skeleton contains 

circular features precluding length measurements, these structures are separated at the originating branch point. 

In case a detected path does not exceed a user-specified minimal length, it is removed from further analyses. In 

case paths from multiple start points overlap, the longest path is stored, and all other start points are reevaluated 

on a skeleton without this path. (C) Determination of the longest direct connection of two points by finding the 

minimum of the difference of the geodesic distance transform for both points. (D-E) The reliable detection of 

start points defines the reliability of the classification algorithm, as paths without start points will not be classified. 

(D) Start points on the soma are detected as morphological end points of the soma that overlap with the skeleton 

excluding the soma. (E) Start points on neurites (i.e., start points for branches) are detected as the added 

morphological end points of the skeleton after removing the given neurite (or set of neurites) from the skeleton. 

To refine the selection, only points within a 5 px distance (‘region of interest’) to the given neurite are retained. 

 

 

Soma Detection 212 

Since axonal and dendritic trees both emerge from the soma, their location is required as a starting 213 

point for  reconstruction (Meijering, 2010). In general, even an approximation  of the soma contour is 214 

often difficult to be accurately reconstructed (Abdellah et al., 2018). One solution to facilitate detection 215 

of the soma is to stain for DNA in a separate image channel (Meijering, 2010) to identify the soma 216 

unambiguously. This does, however, not allow for an accurate measurement of soma size. In the 217 

presented work we assume that neuronal images are imported to the software as single-channel data of 218 

fluorophore-filled neurons. 219 

Fig. 4 illustrates our proposed soma detection scheme in detail. The procedure starts by detecting the 220 

largest connected component of a minimal diameter by a repeated morphological erosion operation 221 

using a square (with size 𝑙𝑖 × 𝑙𝑖 at the 𝑖𝑡ℎ step) as the structural element 𝑆𝐸1 with varying size. The 222 

𝑆𝐸1 size follows a descending order starting from 𝑙1 = 𝑆𝑆𝐸 (which can be set either manually or 223 

automatically). Although the erosion operation itself reduces a given structure to a slightly thinner 224 

version, since the 𝑆𝐸1 size decreases, each step of performing the repeating erosion block slightly 225 

expands the eroded image (which is called 𝐵𝑖
𝑒𝑟at the 𝑖𝑡ℎ step). At each step, the size of 𝐵𝑖

𝑒𝑟 is compared 226 

to the pre-specified minimum allowed size of the soma 𝑆𝑆𝑜𝑚𝑎. The repeating erosion cycle continues 227 

up to the point when the size of 𝐵𝑖
𝑒𝑟 is no longer smaller than the threshold 𝑆𝑆𝑜𝑚𝑎. At this point, the 228 

eroded image will be checked for the number of connected components (called ‘island’ hereafter). In 229 

case of having multiple islands, only the largest connected component will be kept and named as 𝐵𝑙𝑐𝑐.  230 
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The  main soma detection step initiates with the centroid of 𝐵𝑙𝑐𝑐found in the previous step. The centroid 231 

pixel (also called ‘seed point’) is considered as the initial soma (𝑆𝑜𝑚𝑎0). The proposed technique then 232 

carries out a local search around the seed point and expands it by adding those pixels within its 233 

immediate spatial vicinity with intensities between 𝑀𝑒𝑎𝑛(𝑆𝑜𝑚𝑎) ± 𝑡𝑜𝑙, in which 𝑡𝑜𝑙 is the tolerance 234 

parameter.  235 

The region growing step continues as long as the two following criteria are met: 236 

𝑺𝒐𝒎𝒂𝒊 ≠ 𝑺𝒐𝒎𝒂𝒊−𝟏    and       𝑹𝒋 ≥ 𝑹𝒕𝒉𝒓 (1) 

in which 237 

𝑹𝒋  =
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑺𝒐𝒎𝒂𝒋

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑎𝑟𝑜𝑢𝑛𝑑 𝑺𝒐𝒎𝒂𝒋
 

(2) 

and 𝑹𝒕𝒉𝒓 is an upper-bound threshold for the above-mentioned ratio 𝑹𝒋 with the default value set to 0.4 238 

that can be also tuned in the Software. The parameter 𝑹𝒋 is defined to cope with ambiguities in the 239 

transitions from soma to dendrites (Fig. 4 –  Fig. S2) . 240 

We visually inspected the results of applying our proposed soma extraction method to several hundred 241 

neuronal images with different shapes and morphologies and found that the reconstructed soma masks 242 

delineated the real cell body in the neuron images with a high level of accuracy. 243 
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Figure 4: The soma detection scheme highlighting the individual steps in analysis. 

Neurite Classification 244 

The detection of the longest connected path originating from a specified set of start points lies at the 245 

core of the neurite classification scheme (Fig. 3B). We here define an axon as a single process growing 246 

individually for the longest possible distance from the soma. Beginning with soma detection, the 247 

segmented image is transformed into a skeleton using a repetitive morphological thinning operation 248 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.03.01.482454doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482454
http://creativecommons.org/licenses/by-nc/4.0/


Automated Analysis of Neuronal Morphology 

 
15 

which thins the segmented foreground to its medial axis (Lam et al., 1992). Afterwards, geodesic 249 

distance transforms (Soille, 2013) starting from specified points on the skeleton are calculated (Fig. 250 

3C, transform D1). If the maximal geodesic distance from a given start point is found on an endpoint 251 

of the skeleton, this endpoint serves as the start of a second geodesic distance transform (Fig. 4C, 252 

transform D2). The difference of D1-D2 reaches a minimum at the directly connecting path of start 253 

point and detected endpoint and is stored as a detected path. 254 

Circular structures in the skeleton complicate the detection of a longest path, as multiple paths could 255 

be equally distant to the point of maximal distance. In such a case, the maximal geodesic distance does 256 

not coincide with an endpoint of the skeleton and the detected path would be incomplete. To overcome 257 

this problem, a repair function is initiated to trace back to where the circular structure in the skeleton 258 

starts. This is achieved by walking backwards from the point of maximal distance until the respective 259 

geodesic distance is only found once in the array of distances – representing the point where two 260 

equally long paths branch out. The repair function cuts one of the paths (randomly) by removing the 261 

first pixel after the branchpoint. Subsequently, the same starting point will be used to detect the new 262 

longest geodesic distance in the skeleton until it this distance is reached at an endpoint of the skeleton. 263 

Further steps of the path-detecting algorithms mainly deal with exclusion criteria for any specific path. 264 

If a detected path is below a user-defined minimal length of interest (the standard value is set to 10 µm 265 

as a threshold to distinguish precursor protrusions from mature branches but can be modified by users 266 

depending on the specific research question), the starting point in question and the path will be deleted 267 

from the skeleton to accelerate downstream detection. Only paths longer than this maximal length are 268 

stored for further processing. 269 

As paths from different given starting points tend to overlap if there are intersections in a skeleton, the 270 

final step deals with removing these overlaps. If overlaps are detected, the longest path and its start 271 

point in the set are saved and subsequently removed from the analyzed skeleton, and the detection is 272 

restarted with all starting points on the modified skeleton. Restarting detection for all paths has turned 273 

out to be necessary as newly detected paths on the refined skeleton have been found to often overlap 274 

with previously detected other branches, and in rare cases, more than two branches overlapped. To 275 

avoid overlap between any branches also after this re-evaluation step, this overlap-removing algorithm 276 

is repeated until no overlap is detected between any branches. The final step of the path-detection from 277 

a set of start points removes all detected paths from the skeleton for subsequent detection of higher 278 

order branches. 279 
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The accuracy and speed of the proposed classification algorithm depends strongly on the choice of start 280 

points. For the initial step of detecting axon and dendrites, start point candidates are found as the 281 

endpoints of the detected soma. Those endpoints that overlap with the skeleton of the segmented image 282 

excluding the soma classify as final start points for axon and dendrite detection (Fig. 4D). Axon and 283 

dendrite detection then proceeds on the skeleton without the soma, to avoid detection of the axon-284 

endpoint from all possible start points (the geodesic distance for unconnected parts of a skeleton is 285 

infinite and will therefore never qualify as a path of minimal distance). 286 

To detect start points for higher order branches on axons, dendrites or their branches, endpoints and 287 

branchpoints are detected before and after removing the originating path from the skeleton (Fig. 4E). 288 

Additional endpoints and lost branchpoints serve as candidate start points for the detection of the next 289 

order of branches. These candidates are refined by proximity to the process of interest (within 5 px) 290 

and the refined set will initiate the first iteration of the find paths algorithm described above (Fig. 4B).  291 

This selection of start points on neurites is not capable of distinguishing crossing of a neurite from 292 

branching and therefore slightly overestimates the number of branches (see next section). The 293 

implemented length threshold for branch-detection nevertheless improves accuracy of detecting 294 

relevant branches when compared to simply determining branch points as pixels with more than two 295 

neighbors: morphometric branchpoint detection does not account for the length of connected processes 296 

and is therefore more susceptible to noise in images or overly detailed segmentation results – in many 297 

cases, these paths contain only individual pixels. Furthermore, detection will speed up with iterations, 298 

as parts of the skeleton that are too short to be relevant will be removed from downstream calculations. 299 

After extracting features of interest from the classified neurites, all numeric results as well as a labelled 300 

neuron are saved in folders specified for storing data. The numeric outputs are exported to space-301 

delimited .txt and .csv file formats to be imported later into other software for further analysis. The 302 

segmentation and classification results are saved as .tiff files in specific folders. Additionally, all 303 

variables of interest used in the current setting will be stored in the Matlab file ‘result.mat’ as a global 304 

data matrix.  305 

Benchmarking 306 

In order to evaluate the performance of our proposed framework, we compared the results of our 307 

algorithm with the analysis of an experienced user as ground truth. To do so, we used data from manual 308 

segmentation performed in a recent study on axonal branching (Brosig et al., 2019). 309 
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This dataset consists of 883 fluorescence micrographs of neurons, 204 of which were excluded from 310 

being analyzed by the software due to either the presence of large imaging artifacts, their very low 311 

signal-to-noise ratio or overlapping signal from several cells. While this means that 24% of the data 312 

are lost, this dataset has not been specifically acquired for automated analysis and a dedicated dataset 313 

would not have required such a step. If users limit their microscopy to non-overlapping cells (also non-314 

overlapping with debris), we expect a much higher applicability. Nevertheless, we advise users to 315 

quality control segmented images before proceeding with classification to improve the quality of 316 

quantitative readouts. The remaining 679 images were fed into the proposed segmentation and 317 

classification steps (Fig. 5A). In 2 images, the software produced a segmentation artifact precluding 318 

further classification (no soma reconstructed), and in 8 images the software did not label all major 319 

processes and their branches. The remaining neurons were fully segmented. 320 
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Figure 5. Benchmarking of software against a published dataset. (A) The test dataset consists of neurons 

manually analyzed for a study on axon branching (taken from Brosig et. al., 2019). (B) Duration of the calculation 

scales exponentially with neuron size. (C) Example results from the proposed neurite classification framework in 

comparison to expert user. (D-I) Quantitative comparisons of automated software analysis with expert user analysis. 

Axes in F-I are logarithmic due to the non-linear distribution of the data. Blue line and R-values are shown to 

visualize offset from unity between software and manual annotation. (J-K) Re-analysis of an experiment from Brosig 

et. al., 2019 (axon arborization in PRG2/PLPPR3-KO neurons with or without additional knockdown of PTEN). 

While absolute values are not identical, differences between biological treatments are reliably detected and not 

skewed by the software. 
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The analyses presented were run on a laptop (Intel® Core™ i7-8565U CPU 1.80GHz, 8, 16 GB RAM, 321 

Windows 10 64bit) using Matlab R2021a. Neuronal images used in our experiments are between 1.3 322 

MB (1280 x 1024 pixels) to 29.6 MB (6720 x 4506 pixels) in size and in 8-bit depth. The median 323 

analysis time per neuron was at 2 minutes for this dataset. As shown in Fig. 5B, however, the required 324 

processing time scales exponentially with image properties such as image size and neuron complexity. 325 

The neurite classification is the most time-consuming step ranging between few seconds and an upper 326 

border of two hours for one image. In case the desired dataset consists of larger neurons, computation 327 

time could therefore increase considerably. However, our experiments show that even for large, highly 328 

complex images, dozens of neurons can be batch-processed over-night in a fully-automatic manner 329 

with no need for manual interventions. 330 

Example results are presented in (Fig. 5C) showing the performance of the proposed method compared 331 

to the manual segmentation and classification of neurites. In many cases, the software reproduces the 332 

manual analysis nearly identically (Fig. 5C, top). In some cases, the expert user included additional 333 

information such as neurite intensity or crossing of neurites to define the full path of an axon differently 334 

(Fig. 5C, middle). In other cases, the software provided a more accurate length measurement than 335 

human users and therefore chose a different endpoint for the axon (Fig. 5C bottom). In general, 336 

however, reconstruction and classification of neurites appeared largely similar to expert user analysis.  337 

To better evaluate the accuracy of the measurements generated by our software, we compared 338 

quantitative readouts of morphology of the software to those achieved by manual analysis made by the 339 

expert user (Fig. 5D-I): Total lengths of all reconstructed neurites, axon and dendrites serve as a 340 

measure for neuron size, densities of axonal and dendritic branches as a measure of complexity, and 341 

the ratio of axon to dendrite length as a readout for neuron polarization and therefore correct 342 

classification of the axon. 343 

The comparison of total length measurements reveals high levels of correlation between sizes of 344 

neurons, and their axons and dendrites detected by the software and those manually reconstructed by 345 

the expert (Fig. 5D-F). The neurons in this dataset were imaged at a timepoint where dendrites are not 346 

fully developed and therefore still very short. Therefore, the dendrite length (Fig. 5F) as well as the 347 

ratio of axon to dendrite length (Fig. 5I) vary by orders of magnitude and are presented on a logarithmic 348 

scale. Nevertheless, in both readouts automated analysis correlated well with manual quantification, 349 

indicating the correct automated detection of the axon. The current version of this software classifies 350 

crossing points of neurites as branches, and therefore slightly overestimates branch densities (Fig. 5G-351 
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H). The axon branch density nevertheless correlates well between automated and manual analysis and 352 

therefore provides a good estimate for neuron complexity. The dendrite branch density is again difficult 353 

to interpret due to the short length of dendrites in this dataset with most neurons not containing any 354 

branches on dendrites. 355 

Despite the slight overestimation of neuron complexity, this software nevertheless is sensitive and 356 

accurate enough to detect the same phenotypes between biological treatments as an expert user (Fig. 357 

5J-K). The analyzed dataset has been used to establish that PRG-2/PLPPR3 knockout does not alter 358 

total axon length (Fig. 5J, manual), but increases the primary axon length (Fig. 5K, manual) by 359 

exhibiting less axonal branches (Fig. 5L, manual), with additional knockdown of the phosphatase 360 

PTEN (shPTEN) rescuing this phenotype (compare to Fig 7C in Brosig et. al., 2019). The automated 361 

analysis of the same neurons provides the same differences between treatments even though absolute 362 

values of primary axon length are slightly lower and axon branch density are slightly higher compared 363 

to the manual dataset. Given the fully automated implementation, we therefore believe this tool allows 364 

for the faster screening of multiple biological treatments and for analyzing more neurons to achieve 365 

better statistical confidence. 366 

 367 

Discussion 368 

With the introduction of large field of view cameras and automated microscopes producing large 369 

amounts of data in a short amount of time, the automated computational processing and analysis of 370 

morphometric data has become more important for neuroscience research. At the same time, 371 

automation offers great prospect in terms of data reproducibility, as experiments can be performed with 372 

many datapoints and stronger statistics, allowing for the detection of smaller effects. Furthermore, 373 

manual processing may be subject to human’s biased interpretation. Reliable open-source software to 374 

extract and analyze morphometric data with minimal need for manual intervention are of interest to 375 

process a batch of neuronal images.  376 

We present here an automated image analysis routine for segmentation, classification and 377 

quantification of the morphology of sparsely labelled, cultured neurons based on several novel image 378 

processing algorithms. The developed software offers a user-friendly GUI that lets the user interact 379 

easily with different tools which are chained together. After segmentation, our software automatically 380 

classifies all reconstructed neurites and saves a list of key output parameters to .csv and .txt file formats 381 

for consecutive analysis with statistical software. All resulting figures and illustrations are also stored 382 
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as .tiff files within the defined output folders. The software is fully-automated with minimal need for 383 

manual intervention, enabling the analysis of hundreds of neuronal images per day.  384 

For most neuronal data, the built-in segmentation module can fulfil segmentation quality expectations, 385 

eliminating the need to run any auxiliary segmentation software or tool before starting the neurite 386 

classification step. However, the accuracy achieved in by the proposed neurite classifier depends most 387 

strongly on the outcome of the segmentation step. To this end, we included optional pre-processing 388 

and gap-bridging modules to reduce the effects of noise and artifacts. For complicated cases such as 389 

multiple overlapping cells or very low signal to noise, more powerful and tunable standalone 390 

segmentation software may produce more accurate results. In such cases, instead of importing the 391 

original raw images, users can load binarized image files, which have been segmented using another 392 

software/tool, with the single requirement that the segmentation has to contain a reconstructed soma. 393 

Our software then measures total soma area and extracts information on axon, dendrite, axonal and 394 

dendritic arbors with a high accuracy. In this way, the proposed approach could be applied as a plugin 395 

or extension to open-source frameworks such as Vaa3D or commercial neuron analysis and 396 

visualization frameworks.   397 

The classification module robustly detects and measures soma and neurites in 98.5% of tested cases. 398 

Furthermore, it accurately reproduces relevant quantitative readouts produced in manual analysis by 399 

an expert user and is sensitive enough to detect differences between biological treatments groups. 400 

However, it does not distinguish crossing neurites from branches due to lack of three-dimensional 401 

information. This overestimates the number, and under-estimates the length of individual branches. 402 

The total length of branches is nevertheless detected accurately. One possible solution to this problem, 403 

could involve manual post-processing of the classification result. As another solution, one could define 404 

rule-based decision-making algorithms based on image features like diameter, signal intensity, 405 

curvature, or the propagation vector of the intersecting neurites in order to distinguish and label them 406 

individually.  407 

Furthermore, due to the composition of the test dataset of early developing neurons that have elaborated 408 

axons but comparably underdeveloped and short dendrites, we were not able to objectively score the 409 

performance for mature dendrite quantification. It is possible, that dendrites might be affected more by 410 

the crossing versus branching problem described above due to their proximity especially proximal to 411 

the soma. Furthermore, the order of classification, with axon branches being classified before dendrite 412 

branches, likely skews accuracy towards axon morphology. Users should therefore carefully monitor 413 

the performance of this tool when assessing dendrite morphology and, in case phenotypes are not 414 
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accurately captured, consider more dendrite-specific analysis strategies such as Sholl analysis. It is 415 

conceivable, however, that the software can be readily applied to quantifying growth potential, 416 

polarization, or protrusion density of neurons at earlier developmental timepoints. When used with a 417 

shorter minimal length threshold and subsequent filtering by length it could also measure density of 418 

branch-precursor structures such as filopodia in addition to branches individually. In the future the 419 

detection of dendritic spine number, size and length could be an avenue to pursue. 420 

The computational complexity of neurite branching analysis scales exponentially with neuron size. The 421 

current implementation allows for a high-throughput analysis of early developmental timepoints when 422 

neurons are small – without even exhausting the processor and RAM of a standard laptop. The analysis 423 

can easily be run in the background while continuing working on the machine. In case larger neurons 424 

are of interest, however, the duration might extend considerably, even when using more powerful 425 

workstations. We nevertheless believe that the benefits of fully automated implementation outweigh 426 

the downsides of analysis times and suggest batch-processing of large datasets overnight in such cases.  427 

In conclusion, we present a modular, fully automated software which provides reliable segmentation, 428 

classification, and quantification of the morphology of cultured neurons from two-dimensional 429 

fluorescence micrographs. We have evaluated the performance of the proposed neurite segmentation 430 

and classification approach by comparing it to that of an expert human user and found a high similarity 431 

in reconstruction and extraction quality. The fully automated implementation of the software will 432 

facilitate the quantification of large datasets containing micrographs of more neurons from multiple 433 

experiments to improve statistical confidence and enable fast screening of multiple treatments and 434 

thereby accelerate and improve research on neurodevelopmental mechanisms. 435 

 436 

Software Availability 437 

The software code and example raw images for testing the software are available in the software 438 

repository: https://github.com/AG-Ewers/NeuronAnalysis  439 

 440 

 441 

 442 

 443 

 444 
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Supplemental Materials 604 

Supplementary Methods: 605 

Neuron culture, microscopy and pre-processing of the validation dataset (Brosig et al., 2019) 606 

Primary hippocampal neurons of either C57 BL/6 or C57 Bl/6 PRG2 -/- mice were cultured on laminin 607 

and poly-ornithine coated coverslips at a density of 15,000 cells/cm2. To visualize individual cells, 608 

neurons were transfected with a plasmid encoding for green fluorescent protein (GFP) after two days 609 

in culture. Neurons were fixed after five days in culture and immunolabelled for the axon marker Tau 610 

and GFP. Individual neurons were imaged using a Nikon Eclipse Ti epifluorescence microscope with 611 

a 40x objective (NA: 0.8). Prior to analysis, the GFP channel was converted to an 8-bit tif. Manual 612 

tracing and classification of neurites was performed using NeuronJ (Meijering et al., 2004), a widely-613 

used ImageJ plugin based on a ridge-finding algorithm which allows semi-automated centerline tracing 614 

of 2D neuron images (Narro, 2007). Neurites in the ground truth data were classified as primary axon 615 

(Tau-positive and longest process originating from soma), dendrites (other processes originating from 616 

soma), primary axon branches (processes longer than 10 µm originating from primary axon), 617 

secondary, tertiary, and quaternary branches as well as dendritic branches (originating from dendrites).  618 

 619 

  620 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.03.01.482454doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482454
http://creativecommons.org/licenses/by-nc/4.0/


Automated Analysis of Neuronal Morphology 

 
29 

Supplementary Figures: 621 

 622 

 623 

Figure S1: Scheme of the workflow for neuron reconstruction and neurite classification. Shown 624 

are the major steps offered by the software and the respective options for the input of raw or 625 

preprocessed data and the automated saving of batch processed data. 626 
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Figure S2: Different approaches for filling the soma. (A) Updating the soma does not change its 

size or shape anymore. This so-called ‘saturated’ case results in breaking the soma expansion 

process; (B) After analyzing the outer vicinity of the current soma, it is now expanded to cover some 

of the neighboring pixels as well. Since the ratio between the ‘size of the updated soma’ and the ‘size 

of the bounding box’ (i.e. 𝑹𝒋) is still lower than a pre-defined threshold (i.e. 𝑹𝒕𝒉𝒓), the expansion 

process will continue; (C) Similar to the previous case, the reconstructed soma is still expanding. 

However, the relatively low value of 𝑹𝒋 shows that the soma mask tends to overlap with some non-

soma regions, leading to transitions from soma to dendrites and/or the axon. As a result, the soma 

expansion should stop. 
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