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Abstract

Brain function emerges from a highly complex network of specialized cells that are interlinked by
billions of synapses. The synaptic connectivity between neurons is established between the elongated
processes of their axons and dendrites or, together, neurites. To establish these billions of often far-
reaching connections, cellular neurites have to grow in highly specialized, cell-type dependent patterns
covering often mm distances and connecting with thousands of other neurons. The outgrowth and
branching of neurites are tightly controlled during development and are a commonly used functional
readout of imaging in the neurosciences. Manual analysis of neuronal morphology from microscopy
images, however, is very time intensive and error prone. Especially fully automated segmentation and
classification of all neurites remain unavailable in open-source software. Here we present a standalone,
GUI-based software for batch-quantification of neuronal morphology in fluorescence micrographs
with minimal requirements for user interaction. Neurons are segmented using a Hessian-based
algorithm to detect thin neurite structures combined with intensity- and shape-based detection of the
cell body. To measure the number of branches in a neuron accurately, rather than just determining
branch points, neurites are classified into axon, dendrites and their branches of increasing order by their
length using a geodesic distance transform of the cell skeleton. The software was benchmarked against
a large, published dataset and reproduced the phenotype observed after manual annotation before. Our
tool promises greatly accelerated and improved morphometric studies of neuronal morphology by

allowing for consistent and automated analysis of large datasets.
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Introduction

Neuronal function manifests most obviously their complex morphology, and functional circuits require
a tight regulation of the generation of each process and branching point. Dendrites serve as input
structures that perform different integrations of the axonal input. Axons, on the other hand, distribute
their signals to multiple cells that may be located in multiple brain regions. The connectivity patterns
of neurons are both predefined in development as well as guided by local cues during neurite extension.
Altered connectivity patterns in the brain seem to underly many neurodevelopmental disorders such as

autism spectrum disorder, mental retardation or schizophrenia (Calhoun et al., 2012).

The complex morphology of neurons is established during development and starts to emerge during
migration of newborn neurons in the developing brain. Neuronal polarization, axon elongation,
dendritic arborization and synapse formation also happen in culture and the molecular players are
largely conserved, making cultured hippocampal neurons an established model for the development of
a functional neuronal morphology (Dotti et al., 1988; Li and Sheng, 2003; Polleux and Snider, 2010;
Cembrowski and Spruston, 2019; Denoth-Lippuner and Jessberger, 2021).

The broad variety of neuronal cell types shows a wide diversity of morphological parameters that are
related to function. Neuronal cell types can vary in number, length and branching of axons and
complexity of dendritic arbor. The quantification of neuronal morphology via extraction of basic
parameters such as neurite length, number of branches, and degree and density of branching points
from microscopy images is thus of fundamental importance in the neurosciences. One of the longest
used assays is Sholl analysis (Sholl, 1953), which approximates dendritic branching by counting the
number of times neurites cross concentric circles emanating from the soma at increasing distances.
Sholl analysis is a regular feature of neuronal segmentation software. The commonly implemented
strategies range from manual tracing over semi-automatic detection (Schmitz et al., 2011) to

segmentation-free analysis (Ferreira et al., 2014).

Due to their tortuous and elongated growth patterns, however, Sholl analysis is not suitable to quantify
axon morphology. Axonal outgrowth has been mainly quantified by the length of the longest process,
the summed length of all axonal processes, and axon complexity as the number of branch points per
micron (Sainath et al., 2017; Pan et al., 2019). Extraction of these parameters require first the
reconstruction of the neuronal outline and secondly the subsequent classification of processes as axons
and dendrites and their primary, secondary, and tertiary branches. Commonly implemented strategies

mainly use manual tracing and classifications using tools like NeuronJ (Meijering et al., 2004).
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Automated reconstruction of neurons has made significant progress over the past years, also stimulated
by an interest in connectomics in projects such as the BRAIN Initiative
(http://www.braininitiative.nih.gov/) or the Human Brain Project (http://www.humanbrainproject.eu/),
the DIADEM challenge (http://diademchallenge.org/) or the BigNeuron project (reviewed in Parekh
and Ascoli, 2013; Magliaro et al., 2019). Most current pipelines employ pre-processing strategies such
as denoising and deconvolution followed by segmentation algorithms differing by the strategy they
employ to distinguish neurons from background. These pipelines are implemented in commercial
(Neurolucida, IMARIS, Amira, HCA-Vision) as well as free standalone packages (Neuronstudio:
Rodriguez et al., 2008; Neutube: Feng et al., 2015) or as plugins in image processing software such as
Matlab (TREES toolbox: Cuntz et al., 2010), ImageJ (PhD-filtering: Radojevi¢ and Meijering, 2017)
or Vaa3D (APP2: Xiao and Peng, 2013; Rivulet: Liu et al., 2016; Ensemble neuron tracer: Wang et al.,
2017; NeuroGPS-Tree: Quan et al., 2016; Advantra: Radojevi¢ and Meijering, 2019). An enormous
number of further solutions have been also developed over the years to cope with segmentation and
reconstruction of the neuron morphology, resulting in a vast number of different applications (Narro et
al., 2007; Oberlaender et al., 2007; Schmitz et al., 2011; Meijering, 2010; Peng et al., 2010; Peng et
al., 2014; Megjhani et al., 2015; Acciai et al., 2016; Magliaro et al., 2017; Yoon et al., 2017; Ikeno et
al., 2018; Abdellah et al., 2018; Shahbazi et al., 2018; Wang et al., 2019; Abdolhoseini et al., 2019;
Vidotto et al., 2019; Lopez-Cabrera et al., 2020; Bates et al., 2020).

While these works mainly focus on the reconstruction of neurons, a reliable quantification of neuronal
morphology requires the subsequent classification of neurites. Recent work describes the extraction of
growth parameters (Narro et al., 2007; Scorcioni et al., 2008; Billeci et al., 2013), the modelling of
these parameters to derive growth or electrophysiological characteristics (Cuntz et al., 2010; Ascoli
and Krichmar, 2000) and the classification of cell types based on morphology (Armafianzas and Ascoli,
2015). These advances, however, so far do not allow for automated analysis, especially of axons, which
would greatly enhance throughput in image analysis and create compatibility of this assay with high-

throughput approaches.

To overcome this bottleneck and accelerate data analysis, we here developed a software that allows for
batch processing of raw fluorescence micrographs of cultured neuronal cells to extract morphological
parameters of axons and dendrites. We set out to use concepts and tools from the fields of automatic
reconstruction and unsupervised image classification to facilitate the analysis of molecular mechanisms
underlying the growth patterns of primary neurons in 2D culture. Our goal was to implement the

quantification of intuitive biological descriptors in a tool capable of batch processing microscopic
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102  images of neurons with a focus on developing axons where automated analysis strategies are sparse.
103  Here we present an open-source MATLAB-based software capable of classifying individual processes
104  of neurons as dendrites or axons and their branches, respectively in an automated manner and

105 benchmark it against human classification and data analysis.

106  Our software imports raw fluorescence micrographs of neurons from standard image file formats and
107  applies a set of consecutive tools for denoising, segmentation, detection of the soma, primary neurites
108 and finer, second and third order branches. This is followed by unsupervised classification of the
109 neurites. Finally, quantitative measurements are exported for each batch as a comprehensive collection
110  of figures and tables. The exported results include, but are not limited to the size of the soma, the total
111 length of the axon, number and the respective lengths of the axonal branches, dendrites and dendritic
112 branches. This information can be accessible for more specific downstream processing (Narro et al.,
113 2007; Zhou et al., 2013; Gillette et al., 2015; Acciai et al., 2016; Mihaljevi¢ et al., 2018; Abdellah et
114 al., 2018).

115  We demonstrate the capability of our software on fluorescence micrographs of primary hippocampal
116  neurons and compare the achieved neurite classification with results obtained by manual image
117  analysis as ground truth. We find that the analysis of our software matches the analysis of an
118  experienced user while being capable of simultaneous analysis of tens to hundreds of images in a short

119 time without manual intervention.
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120 Results

121  The GUI

122  Here we developed a graphical user interface (GUI)-based open-source software to analyze
123 fluorescence micrographs of neurons for quantitative analysis of neurite length and branching. Files
124  are automatically imported, and visual and numeric results are saved as standard file formats for further
125  downstream processing and analysis. The main interface is shown in Figure 1. The workflow contains
126  modules for importing data, pre-processing, segmentation, neurite classification and the export of

127  quantitative measurements (see also Fig. S1).

4 MATLAB App o= ] X

Neuron segmenter Neuron classifier

Load segmented images pixel size [px/um] 0.2261

Input image

Classification

Find soma, neurites and branches minimal branch length [um] 10

Soma Axon & Dendrites

Preprocessing

SE size

Segmentation

Neurite thickness [um] maximal gap size [um]
Final classification

Segmented image

Close

1 2 8 reset all

129 Figure 1: Graphical user interface and processing steps. Screenshot of the automated neuron reconstruction and neurite
130 classification software’s GUI. Loaded raw or preprocessed images are shown as preview (left top) and can be preprocessed.
131 The segmentation can be performed in automated or user-guided manner (left bottom). The segmented neuron is then
132  analyzed (right), the soma is detected (blue) and its neurites are classified (axon yellow, primary axon branches teal,
133 secondary axonal branches blue, dendrites red) and quantified.

134 The first block within the proposed framework allows the user to load the input data in two ways: (1)
135 loading raw neuronal images, or (2) importing data which have been segmented or skeletonized before.
136  The software can operate in two different modes. In default mode, the user can change parameter

137  settings (such as pixel size, minimal soma size, minimal neurite length) for each image individually.
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138  In batch mode, the program sequentially processes all imported data with the same settings. When the

139  batch mode is enabled, it is essential that pixel size metainformation is included in the image file.

140  After loading images, an optional pre-processing is available to smoothen the image based on two
141  different types of morphological filtering (Zehtabian and Ghassemian, 2016). Smoothing the data often
142 results in higher quality segmentation, ensuring smoother outlines of the segmented neurons and less

143  discontinuities.

144 The data will be then fed into the built-in segmentation module which follows an automated, fast
145  algorithm based on Hessian filtering. The segmented images will then be skeletonized using standard
146  techniques. If previously segmented data are loaded, they will directly proceed to the classification
147  step. The segmented neurons are then processed to automatically extract the soma, axon, dendrites,
148  axonal and dendritic branches, respectively. Quantitative measures such as the region occupied by the
149  soma, total length of the neurites as well as the length of each neurite per se will be then extracted from
150 the neurons. All numeric results and variables of interest are saved in a Matlab file and as .txt for further
151  statistical analysis. A labelled .tiff image is also generated and saved for inspection of classification
152 results.
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Figure 2: Schematic overview of the algorithm used in the built-in segmentation module. (A) General overview of

the data processing pipeline of the proposed segmentation method. (B) Visualization of results from the individual

segmentation steps performed by the proposed technique with an emphasis on quality control measures that “repair”
errors in segmentation (pink and green, bottom left). (C) The soma reconstruction scheme: morphological filling serves

as the preferred reconstruction method but is backed up by intensity thresholding if unsuccessful.
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153  Segmentation

154  One of the critical steps in morphological analysis is segmentation, i.e., the determination what is part
155  of the neurite and what is not. This can be challenging for fluorescence micrographs of neurons where
156 local differences in intensity gradients can lead to artifacts such as continuity breaks or complete loss
157  of branches. We addressed these concerns in two ways. First, we pre-processed the data to generate a
158  homogenously high quality of input images as described before, and secondly, we equipped our
159  segmentation module with multiscale filters that emphasize features in images that are important for
160 efficient neurite reconstruction. A schematic overview of the proposed neuron segmentation method is

161  depicted in Fig. 2A while example results of applying each step to a given neuron is shown in Fig. 2B.

162  The first step of the proposed segmentation algorithm highlights elongated linear structures (which are
163  the neurites in our case). To this end, we employ a technique proposed for the detection of blood vessels
164  (Frangi et al., 1998), which is based on eigenvalue analysis of the Hessian. Hessian-based multiscale
165 filtering extracts information related to local second order structures within the image. This fibermetric
166  algorithm enhances linear structures of a specified thickness, while minimizing information on thinner
167  or thicker structures. In our software, the starting parameter for this ‘neurite thickness’ (in um) may be
168  adjusted to accelerate performance of the software if prior knowledge exists. Otherwise, the software

169  will adaptively set the value of this parameter.

170  To create the neuron model, we apply an intensity-based hard-thresholding on the tubule-enhanced
171  image to obtain a binarized image. Hard thresholding potentially introduces short gaps within the
172 neurites. This may be caused by low contrast in images or locally varying thickness of neurites, often
173 resulting in incomplete skeletonization. To overcome this problem, the software includes an optional
174 gap-filling algorithm which is based on finding and connecting nearest neighbors of endpoints from
175  unconnected objects. If the closest endpoint is closer than a maximal allowed user-specified gap size
176  (in um), the gap is closed with a direct line. Bridging gaps can successfully re-connect short gaps
177  between neurites (Fig. 2B, repaired segmentation left inset). However, it should be used with caution,
178  as also noise or neighboring short processes might be artificially hyperconnected when large gap sizes

179  are allowed for this algorithm (Fig. 2B, repaired segmentation right inset).

180  As can be inferred from Fig. 2B (segmented processes), although the linear structures are segmented

181  well, the interior region of the soma is not segmented. To accurately reconstruct the soma, we apply
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182  morphological operations to the binary image to fill interior image regions and holes (Fig. 2C).
183  However, individual neurites may cross paths and thus create closed-off interior regions other than the
184  soma (Fig. 2C, top left). To overcome this problem, our algorithm screens for soma candidate regions
185  (Fig. 2C, middle left) with a high average brightness. The largest two of such overlapping regions are
186  subsequently dilated and serve as region selectors for the filling operation. (Fig. 2C, bottom left). In
187  this way morphological filling is only applied around the most likely position of the soma to avoid mis-

188 localization of the soma or overestimation of soma size.

189  While this approach works well for the majority of tested neurons, in some cases the soma region is
190 not fully enclosed after segmentation and thereby cannot be morphologically filled. Such cases are
191  detected and soma regions are then reconstructed using an intensity threshold only. To limit the effect
192  of brightness artifacts on the image, the algorithm first finds new soma candidate regions based on the
193 amount of overlap of the intensity threshold and the segmented neurite skeleton and then only
194  reconstructs the soma with largest overlap to the neuron (Fig 2C, right panels). To avoid contribution
195  of small segmentation artifacts and noise to this overlap quantification, unconnected small objects are
196  removed prior to soma reconstruction. The final step of segmentation finds the largest connected object

197  on the image and removes all unconnected objects, thereby focusing the analysis to only one cell.

198  Our software also allows for use of the automated classification only and is compatible with data
199  segmented manually in Vaa3D (Peng et al., 2010) or SynD (Schmitz et al., 2011). It is possible to load
200  segmentations from those tools as binary image files and then to proceeding with the subsequent

201  classification step in our software only.

202

203  Classification

204  The neurite classification scheme is illustrated in Fig. 3. The classification step initiates with the
205  detection of the soma, followed by a stepwise detection of the longest processes originating from the
206  detected soma. The longest of these processes is classified as the “axon”, the remaining processes as
207  “dendrites”. Classification proceeds by detecting processes originating from the axon as “primary
208  branches” and subsequently processes originating from these primary branches. Detection is completed
209 after no further level of branches is detected or a hard cap of maximal 10 levels of branches is reached.
210  After detection of axonal branches, the same procedure is applied to all dendrites and their branches
211  (Fig. 3).

10
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Figure 3: lllustration of neurite classification. (A) General overview of the proposed classification approach.
Axon, dendrites and their branches are classified using the same algorithm ‘find paths’. Axon branches are
classified iteratively as primary branches, secondary, etc. before dendrite branches. (B) Strategy for ‘find paths’

used to detect the set of non-overlapping longest paths from a set of starting points. For each start point, the

11
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longest direct path in the skeleton is determined using a geodesic distance transform. In case the skeleton contains
circular features precluding length measurements, these structures are separated at the originating branch point.
In case a detected path does not exceed a user-specified minimal length, it is removed from further analyses. In
case paths from multiple start points overlap, the longest path is stored, and all other start points are reevaluated
on a skeleton without this path. (C) Determination of the longest direct connection of two points by finding the
minimum of the difference of the geodesic distance transform for both points. (D-E) The reliable detection of
start points defines the reliability of the classification algorithm, as paths without start points will not be classified.
(D) Start points on the soma are detected as morphological end points of the soma that overlap with the skeleton
excluding the soma. (E) Start points on neurites (i.e., start points for branches) are detected as the added
morphological end points of the skeleton after removing the given neurite (or set of neurites) from the skeleton.

To refine the selection, only points within a 5 px distance (‘region of interest’) to the given neurite are retained.

212  Soma Detection

213  Since axonal and dendritic trees both emerge from the soma, their location is required as a starting
214  point for reconstruction (Meijering, 2010). In general, even an approximation of the soma contour is
215  often difficult to be accurately reconstructed (Abdellah et al., 2018). One solution to facilitate detection
216  of the soma is to stain for DNA in a separate image channel (Meijering, 2010) to identify the soma
217  unambiguously. This does, however, not allow for an accurate measurement of soma size. In the
218  presented work we assume that neuronal images are imported to the software as single-channel data of

219  fluorophore-filled neurons.

220  Fig. 4 illustrates our proposed soma detection scheme in detail. The procedure starts by detecting the
221  largest connected component of a minimal diameter by a repeated morphological erosion operation
222 using a square (with size I; X [; at the i*" step) as the structural element SE1 with varying size. The
223 SE1 size follows a descending order starting from I; = S5E (which can be set either manually or
224 automatically). Although the erosion operation itself reduces a given structure to a slightly thinner
225  version, since the SE1 size decreases, each step of performing the repeating erosion block slightly
226  expands the eroded image (which is called Bf"at the it" step). At each step, the size of Bf" is compared
227  to the pre-specified minimum allowed size of the soma $°™¢, The repeating erosion cycle continues
228  up to the point when the size of Bf" is no longer smaller than the threshold $5°™¢, At this point, the
229  eroded image will be checked for the number of connected components (called ‘island’ hereafter). In

230  case of having multiple islands, only the largest connected component will be kept and named as B¢,

12
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231  The main soma detection step initiates with the centroid of B'*“found in the previous step. The centroid
232  pixel (also called ‘seed point’) is considered as the initial soma (Soma,). The proposed technique then
233  carries out a local search around the seed point and expands it by adding those pixels within its
234  immediate spatial vicinity with intensities between Mean(Soma) + tol, in which tol is the tolerance

235  parameter.

236  The region growing step continues as long as the two following criteria are met:
Soma; # Soma;_; and  Rj = Ry, 1)
237 inwhich

Size of Soma; (2)
J 7 Size of bounding box around Soma;

238  and Ry, is an upper-bound threshold for the above-mentioned ratio R; with the default value set to 0.4
239  that can be also tuned in the Software. The parameter R; is defined to cope with ambiguities in the
240  transitions from soma to dendrites (Fig. 4 — Fig. S2) .

241  We visually inspected the results of applying our proposed soma extraction method to several hundred

242  neuronal images with different shapes and morphologies and found that the reconstructed soma masks

243  delineated the real cell body in the neuron images with a high level of accuracy.
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Figure 4: The soma detection scheme highlighting the individual steps in analysis.

244  Neurite Classification

245  The detection of the longest connected path originating from a specified set of start points lies at the
246  core of the neurite classification scheme (Fig. 3B). We here define an axon as a single process growing
247 individually for the longest possible distance from the soma. Beginning with soma detection, the

248  segmented image is transformed into a skeleton using a repetitive morphological thinning operation

14


https://doi.org/10.1101/2022.03.01.482454
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482454; this version posted March 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0\yj¢rtieit® d-apralysis of Neuronal Morphology

249  which thins the segmented foreground to its medial axis (Lam et al., 1992). Afterwards, geodesic
250  distance transforms (Soille, 2013) starting from specified points on the skeleton are calculated (Fig.
251 3C, transform D1). If the maximal geodesic distance from a given start point is found on an endpoint
252  of the skeleton, this endpoint serves as the start of a second geodesic distance transform (Fig. 4C,
253  transform D2). The difference of D1-D2 reaches a minimum at the directly connecting path of start

254  point and detected endpoint and is stored as a detected path.

255  Circular structures in the skeleton complicate the detection of a longest path, as multiple paths could
256  be equally distant to the point of maximal distance. In such a case, the maximal geodesic distance does
257  not coincide with an endpoint of the skeleton and the detected path would be incomplete. To overcome
258  this problem, a repair function is initiated to trace back to where the circular structure in the skeleton
259  starts. This is achieved by walking backwards from the point of maximal distance until the respective
260  geodesic distance is only found once in the array of distances — representing the point where two
261  equally long paths branch out. The repair function cuts one of the paths (randomly) by removing the
262  first pixel after the branchpoint. Subsequently, the same starting point will be used to detect the new
263  longest geodesic distance in the skeleton until it this distance is reached at an endpoint of the skeleton.

264  Further steps of the path-detecting algorithms mainly deal with exclusion criteria for any specific path.
265  If a detected path is below a user-defined minimal length of interest (the standard value is set to 10 um
266  as a threshold to distinguish precursor protrusions from mature branches but can be modified by users
267  depending on the specific research question), the starting point in question and the path will be deleted
268  from the skeleton to accelerate downstream detection. Only paths longer than this maximal length are

269  stored for further processing.

270  As paths from different given starting points tend to overlap if there are intersections in a skeleton, the
271  final step deals with removing these overlaps. If overlaps are detected, the longest path and its start
272  point in the set are saved and subsequently removed from the analyzed skeleton, and the detection is
273  restarted with all starting points on the modified skeleton. Restarting detection for all paths has turned
274  out to be necessary as newly detected paths on the refined skeleton have been found to often overlap
275  with previously detected other branches, and in rare cases, more than two branches overlapped. To
276  avoid overlap between any branches also after this re-evaluation step, this overlap-removing algorithm
277  isrepeated until no overlap is detected between any branches. The final step of the path-detection from
278  a set of start points removes all detected paths from the skeleton for subsequent detection of higher

279  order branches.
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280  The accuracy and speed of the proposed classification algorithm depends strongly on the choice of start
281  points. For the initial step of detecting axon and dendrites, start point candidates are found as the
282  endpoints of the detected soma. Those endpoints that overlap with the skeleton of the segmented image
283  excluding the soma classify as final start points for axon and dendrite detection (Fig. 4D). Axon and
284  dendrite detection then proceeds on the skeleton without the soma, to avoid detection of the axon-
285  endpoint from all possible start points (the geodesic distance for unconnected parts of a skeleton is
286 infinite and will therefore never qualify as a path of minimal distance).

287  To detect start points for higher order branches on axons, dendrites or their branches, endpoints and
288  branchpoints are detected before and after removing the originating path from the skeleton (Fig. 4E).
289  Additional endpoints and lost branchpoints serve as candidate start points for the detection of the next
290  order of branches. These candidates are refined by proximity to the process of interest (within 5 px)

291 and the refined set will initiate the first iteration of the find paths algorithm described above (Fig. 4B).

292  This selection of start points on neurites is not capable of distinguishing crossing of a neurite from
293  branching and therefore slightly overestimates the number of branches (see next section). The
294  implemented length threshold for branch-detection nevertheless improves accuracy of detecting
295  relevant branches when compared to simply determining branch points as pixels with more than two
296  neighbors: morphometric branchpoint detection does not account for the length of connected processes
297  and is therefore more susceptible to noise in images or overly detailed segmentation results — in many
298  cases, these paths contain only individual pixels. Furthermore, detection will speed up with iterations,
299  as parts of the skeleton that are too short to be relevant will be removed from downstream calculations.

300  After extracting features of interest from the classified neurites, all numeric results as well as a labelled
301 neuron are saved in folders specified for storing data. The numeric outputs are exported to space-
302  delimited .txt and .csv file formats to be imported later into other software for further analysis. The
303  segmentation and classification results are saved as .tiff files in specific folders. Additionally, all
304  variables of interest used in the current setting will be stored in the Matlab file ‘result.mat’ as a global
305 data matrix.

306 Benchmarking

307  In order to evaluate the performance of our proposed framework, we compared the results of our
308 algorithm with the analysis of an experienced user as ground truth. To do so, we used data from manual

309  segmentation performed in a recent study on axonal branching (Brosig et al., 2019).
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310  This dataset consists of 883 fluorescence micrographs of neurons, 204 of which were excluded from
311  being analyzed by the software due to either the presence of large imaging artifacts, their very low
312  signal-to-noise ratio or overlapping signal from several cells. While this means that 24% of the data
313 are lost, this dataset has not been specifically acquired for automated analysis and a dedicated dataset
314 would not have required such a step. If users limit their microscopy to non-overlapping cells (also non-
315  overlapping with debris), we expect a much higher applicability. Nevertheless, we advise users to
316  quality control segmented images before proceeding with classification to improve the quality of
317 quantitative readouts. The remaining 679 images were fed into the proposed segmentation and
318 classification steps (Fig. 5A). In 2 images, the software produced a segmentation artifact precluding
319  further classification (no soma reconstructed), and in 8 images the software did not label all major

320  processes and their branches. The remaining neurons were fully segmented.
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Figure 5. Benchmarking of software against a published dataset. (A) The test dataset consists of neurons
manually analyzed for a study on axon branching (taken from Brosig et. al., 2019). (B) Duration of the calculation
scales exponentially with neuron size. (C) Example results from the proposed neurite classification framework in
comparison to expert user. (D-1) Quantitative comparisons of automated software analysis with expert user analysis.
Axes in F-I are logarithmic due to the non-linear distribution of the data. Blue line and R-values are shown to
visualize offset from unity between software and manual annotation. (J-K) Re-analysis of an experiment from Brosig
et. al., 2019 (axon arborization in PRG2/PLPPR3-KO neurons with or without additional knockdown of PTEN).
While absolute values are not identical, differences between biological treatments are reliably detected and not
skewed by the software.
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321  The analyses presented were run on a laptop (Intel® Core™ i7-8565U CPU 1.80GHz, 8, 16 GB RAM,
322 Windows 10 64bit) using Matlab R2021a. Neuronal images used in our experiments are between 1.3
323  MB (1280 x 1024 pixels) to 29.6 MB (6720 x 4506 pixels) in size and in 8-bit depth. The median
324 analysis time per neuron was at 2 minutes for this dataset. As shown in Fig. 5B, however, the required
325  processing time scales exponentially with image properties such as image size and neuron complexity.
326  The neurite classification is the most time-consuming step ranging between few seconds and an upper
327  border of two hours for one image. In case the desired dataset consists of larger neurons, computation
328  time could therefore increase considerably. However, our experiments show that even for large, highly
329  complex images, dozens of neurons can be batch-processed over-night in a fully-automatic manner

330 with no need for manual interventions.

331  Example results are presented in (Fig. 5C) showing the performance of the proposed method compared
332  to the manual segmentation and classification of neurites. In many cases, the software reproduces the
333  manual analysis nearly identically (Fig. 5C, top). In some cases, the expert user included additional
334  information such as neurite intensity or crossing of neurites to define the full path of an axon differently
335 (Fig. 5C, middle). In other cases, the software provided a more accurate length measurement than
336  human users and therefore chose a different endpoint for the axon (Fig. 5C bottom). In general,

337  however, reconstruction and classification of neurites appeared largely similar to expert user analysis.

338 To better evaluate the accuracy of the measurements generated by our software, we compared
339  quantitative readouts of morphology of the software to those achieved by manual analysis made by the
340  expert user (Fig. 5D-1): Total lengths of all reconstructed neurites, axon and dendrites serve as a
341  measure for neuron size, densities of axonal and dendritic branches as a measure of complexity, and
342  the ratio of axon to dendrite length as a readout for neuron polarization and therefore correct

343 classification of the axon.

344  The comparison of total length measurements reveals high levels of correlation between sizes of
345  neurons, and their axons and dendrites detected by the software and those manually reconstructed by
346  the expert (Fig. 5D-F). The neurons in this dataset were imaged at a timepoint where dendrites are not
347  fully developed and therefore still very short. Therefore, the dendrite length (Fig. 5F) as well as the
348  ratio of axon to dendrite length (Fig. 51) vary by orders of magnitude and are presented on a logarithmic
349  scale. Nevertheless, in both readouts automated analysis correlated well with manual quantification,
350 indicating the correct automated detection of the axon. The current version of this software classifies

351  crossing points of neurites as branches, and therefore slightly overestimates branch densities (Fig. 5G-
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352 H). The axon branch density nevertheless correlates well between automated and manual analysis and
353  therefore provides a good estimate for neuron complexity. The dendrite branch density is again difficult
354  to interpret due to the short length of dendrites in this dataset with most neurons not containing any

355  branches on dendrites.

356  Despite the slight overestimation of neuron complexity, this software nevertheless is sensitive and
357  accurate enough to detect the same phenotypes between biological treatments as an expert user (Fig.
358 5J-K). The analyzed dataset has been used to establish that PRG-2/PLPPR3 knockout does not alter
359 total axon length (Fig. 5J, manual), but increases the primary axon length (Fig. 5K, manual) by
360 exhibiting less axonal branches (Fig. 5L, manual), with additional knockdown of the phosphatase
361 PTEN (shPTEN) rescuing this phenotype (compare to Fig 7C in Brosig et. al., 2019). The automated
362 analysis of the same neurons provides the same differences between treatments even though absolute
363  values of primary axon length are slightly lower and axon branch density are slightly higher compared
364  to the manual dataset. Given the fully automated implementation, we therefore believe this tool allows
365  for the faster screening of multiple biological treatments and for analyzing more neurons to achieve

366  better statistical confidence.

367
368 Discussion

369  With the introduction of large field of view cameras and automated microscopes producing large
370  amounts of data in a short amount of time, the automated computational processing and analysis of
371  morphometric data has become more important for neuroscience research. At the same time,
372  automation offers great prospect in terms of data reproducibility, as experiments can be performed with
373 many datapoints and stronger statistics, allowing for the detection of smaller effects. Furthermore,
374  manual processing may be subject to human’s biased interpretation. Reliable open-source software to
375  extract and analyze morphometric data with minimal need for manual intervention are of interest to

376  process a batch of neuronal images.

377 We present here an automated image analysis routine for segmentation, classification and
378  quantification of the morphology of sparsely labelled, cultured neurons based on several novel image
379  processing algorithms. The developed software offers a user-friendly GUI that lets the user interact
380 easily with different tools which are chained together. After segmentation, our software automatically
381 classifies all reconstructed neurites and saves a list of key output parameters to .csv and .txt file formats

382  for consecutive analysis with statistical software. All resulting figures and illustrations are also stored
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383  as .tiff files within the defined output folders. The software is fully-automated with minimal need for

384  manual intervention, enabling the analysis of hundreds of neuronal images per day.

385  For most neuronal data, the built-in segmentation module can fulfil segmentation quality expectations,
386 eliminating the need to run any auxiliary segmentation software or tool before starting the neurite
387 classification step. However, the accuracy achieved in by the proposed neurite classifier depends most
388  strongly on the outcome of the segmentation step. To this end, we included optional pre-processing
389  and gap-bridging modules to reduce the effects of noise and artifacts. For complicated cases such as
390 multiple overlapping cells or very low signal to noise, more powerful and tunable standalone
391 segmentation software may produce more accurate results. In such cases, instead of importing the
392  original raw images, users can load binarized image files, which have been segmented using another
393  software/tool, with the single requirement that the segmentation has to contain a reconstructed soma.
394  Our software then measures total soma area and extracts information on axon, dendrite, axonal and
395  dendritic arbors with a high accuracy. In this way, the proposed approach could be applied as a plugin
396 or extension to open-source frameworks such as Vaa3D or commercial neuron analysis and

397  visualization frameworks.

398  The classification module robustly detects and measures soma and neurites in 98.5% of tested cases.
399  Furthermore, it accurately reproduces relevant quantitative readouts produced in manual analysis by
400 an expert user and is sensitive enough to detect differences between biological treatments groups.
401  However, it does not distinguish crossing neurites from branches due to lack of three-dimensional
402  information. This overestimates the number, and under-estimates the length of individual branches.
403  The total length of branches is nevertheless detected accurately. One possible solution to this problem,
404  could involve manual post-processing of the classification result. As another solution, one could define
405  rule-based decision-making algorithms based on image features like diameter, signal intensity,
406  curvature, or the propagation vector of the intersecting neurites in order to distinguish and label them
407  individually.

408  Furthermore, due to the composition of the test dataset of early developing neurons that have elaborated
409  axons but comparably underdeveloped and short dendrites, we were not able to objectively score the
410 performance for mature dendrite quantification. It is possible, that dendrites might be affected more by
411  the crossing versus branching problem described above due to their proximity especially proximal to
412  the soma. Furthermore, the order of classification, with axon branches being classified before dendrite
413  branches, likely skews accuracy towards axon morphology. Users should therefore carefully monitor

414  the performance of this tool when assessing dendrite morphology and, in case phenotypes are not
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415  accurately captured, consider more dendrite-specific analysis strategies such as Sholl analysis. It is
416  conceivable, however, that the software can be readily applied to quantifying growth potential,
417  polarization, or protrusion density of neurons at earlier developmental timepoints. When used with a
418  shorter minimal length threshold and subsequent filtering by length it could also measure density of
419  branch-precursor structures such as filopodia in addition to branches individually. In the future the

420  detection of dendritic spine number, size and length could be an avenue to pursue.

421  The computational complexity of neurite branching analysis scales exponentially with neuron size. The
422  current implementation allows for a high-throughput analysis of early developmental timepoints when
423  neurons are small — without even exhausting the processor and RAM of a standard laptop. The analysis
424 can easily be run in the background while continuing working on the machine. In case larger neurons
425  are of interest, however, the duration might extend considerably, even when using more powerful
426  workstations. We nevertheless believe that the benefits of fully automated implementation outweigh

427  the downsides of analysis times and suggest batch-processing of large datasets overnight in such cases.

428 In conclusion, we present a modular, fully automated software which provides reliable segmentation,
429  classification, and quantification of the morphology of cultured neurons from two-dimensional
430 fluorescence micrographs. We have evaluated the performance of the proposed neurite segmentation
431  and classification approach by comparing it to that of an expert human user and found a high similarity
432 in reconstruction and extraction quality. The fully automated implementation of the software will
433 facilitate the quantification of large datasets containing micrographs of more neurons from multiple
434  experiments to improve statistical confidence and enable fast screening of multiple treatments and

435  thereby accelerate and improve research on neurodevelopmental mechanisms.
436
437  Software Availability

438  The software code and example raw images for testing the software are available in the software
439  repository: https://github.com/AG-Ewers/NeuronAnalysis

440

441
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444
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Supplemental Materials
Supplementary Methods:

Neuron culture, microscopy and pre-processing of the validation dataset (Brosig et al., 2019)

Primary hippocampal neurons of either C57 BL/6 or C57 BI/6 PRG2 -/- mice were cultured on laminin
and poly-ornithine coated coverslips at a density of 15,000 cells/cm?. To visualize individual cells,
neurons were transfected with a plasmid encoding for green fluorescent protein (GFP) after two days
in culture. Neurons were fixed after five days in culture and immunolabelled for the axon marker Tau
and GFP. Individual neurons were imaged using a Nikon Eclipse Ti epifluorescence microscope with
a 40x objective (NA: 0.8). Prior to analysis, the GFP channel was converted to an 8-bit tif. Manual
tracing and classification of neurites was performed using NeuronJ (Meijering et al., 2004), a widely-
used ImageJ plugin based on a ridge-finding algorithm which allows semi-automated centerline tracing
of 2D neuron images (Narro, 2007). Neurites in the ground truth data were classified as primary axon
(Tau-positive and longest process originating from soma), dendrites (other processes originating from
soma), primary axon branches (processes longer than 10 pum originating from primary axon),

secondary, tertiary, and quaternary branches as well as dendritic branches (originating from dendrites).
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621  Supplementary Figures:
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624  Figure S1: Scheme of the workflow for neuron reconstruction and neurite classification. Shown
625 are the major steps offered by the software and the respective options for the input of raw or

626  preprocessed data and the automated saving of batch processed data.

627
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Figure S2: Different approaches for filling the soma. (A) Updating the soma does not change its

size or shape anymore. This so-called ‘saturated’ case results in breaking the soma expansion

process; (B) After analyzing the outer vicinity of the current soma, it is now expanded to cover some

of the neighboring pixels as well. Since the ratio between the ‘size of the updated soma’ and the ‘size

of the bounding box’ (i.e. Rj) is still lower than a pre-defined threshold (i.e. R;y,), the expansion

process will continue; (C) Similar to the previous case, the reconstructed soma is still expanding.

However, the relatively low value of R; shows that the soma mask tends to overlap with some non-

soma regions, leading to transitions from soma to dendrites and/or the axon. As a result, the soma

expansion should stop.
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