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Abstract

Current methods for analyzing single-cell datasets have relied primarily on static gene expression
measurements to characterize the molecular state of individual cells. However, capturing temporal
changes in cell state is crucial for the interpretation of dynamic phenotypes such as the cell cycle,
development, or disease progression. RNA velocity infers the direction and speed of transcriptional
changes in individual cells, yet it is unclear how these temporal gene expression modalities may
be leveraged for predictive modeling of cellular dynamics. Here, we present the first task-oriented
benchmarking study that investigates integration of temporal sequencing modalities for dynamic cell
state prediction. We benchmark eight integration approaches on eight datasets spanning different
biological contexts, sequencing technologies, and species. We find that integrated data more accurately
infers biological trajectories and achieves increased performance on classifying cells according to
perturbation and disease states. Furthermore, we show that simple concatenation of spliced and
unspliced molecules performs consistently well on classification tasks and can be used over more
memory intensive and computationally expensive methods. This work provides users with practical
recommendations for task-specific integration of single-cell gene expression modalities.

Introduction1

Single-cell RNA sequencing (scRNA-seq) technologies have enabled the functional characterization of cellular2

states associated with dynamic biological processes such as development [1, 2, 3] and disease progression [4, 5, 6, 7].3

While transcriptomic information holds great promise for gaining insight into the biological mechanisms that4

govern phenotypic changes, inference has been traditionally limited to incompletely-sampled static mature mRNA5

measurements. This poses two fundamental challenges for robust prediction of the dynamic progression of cell state.6

First, many gene regulatory mechanisms can give rise to the same distribution of mature mRNA measurements7

[8]. Second, snapshot data often fails to fully capture the large biological variability required for population-level8

inference by missing important transition states or rare cell populations [9, 10, 11].9

More recently, computational tools such as RNA velocity have been used to extract directed dynamic information10

from single cells [12, 13, 14, 15, 16]. By leveraging unspliced pre mRNA and spliced mature mRNA molecules11

in a kinetic model, RNA velocity can predict the future transcriptional state of a cell. Indeed, RNA velocity has12

been successfully incorporated into algorithms for inferring fate probabilities [17], gene regulatory networks [18],13

differentiation trajectories [19, 20, 21], and embeddings [22]. However, it is still unclear whether integrating spliced14

gene expression with either unspliced molecules or RNA velocity predictions is useful for predictive modeling at15

the data-level. Such an integrated approach may help uncover salient features predictive of cell type or response to16

therapy, enhance our understanding of the relationship between cell states, or provide insight into the molecular17

pathways that drive a cell’s transition to a more pathological phenotype.18

Single-cell multi-omics data integration methods have had great success in fusing different molecular data types, or19

modalities for disease subtyping, predicting biomarkers, or uncovering cross-modality correlations [23, 24]. Here,20

integration methods aim to merge individual layers of single-cell data (e.g. transcriptomic, proteomic, epigenomic)21
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into a unified consensus representation, such as an integrated graph [25] or a joint-embedding [24, 26]. To do22

so, computational approaches have leveraged techniques, including kernel learning [27, 28], matrix factorization23

[29, 30, 31, 32, 33], or deep learning [34]. Moreover, downstream analysis of integrated multi-omics data has has24

provided fundamental insights into the molecular mechanisms underlying complex biological processes, including25

disease heterogeneity and pathological development [35].26

Motivated by identifying a new more biologically-meaningful set of features underlying cellular dynamics, we27

investigate integration of gene expression modalities at three distinct temporal stages of gene regulation: unspliced,28

spliced, and RNA velocity. We benchmark eight integration approaches on eight biological datasets with applications29

ranging from cellular differentiation to disease progression. We show that unspliced and spliced integration improves30

predictive performance when inferring biological trajectories, perturbation conditions, and disease states. This31

work illustrates how integrated temporal gene expression modalities may be leveraged for predictive modeling of32

cellular dynamics.33

Results34

We compared eight integration approaches for recovering discrete and continuous variation in cell and disease35

states. In the sections that follow, we will describe the integration results in more detail. We will begin by giving36

an introduction of the datasets used in this study. Next, we will provide details about the benchmarking design,37

including the integration methods considered and the evaluation criteria for each prediction task. We will then38

demonstrate how an integrative analysis can be used to obtain increased biological insight over spliced expression39

alone. Ultimately, we will end with practical recommendations for task-specific integration.40

Description of datasets41

We tested integration method performance on inferring biological trajectories or classifying cells according to42

perturbation condition or disease status across eight publicly available single-cell RNA sequencing datasets (see43

Methods, Supplementary Table 1). Datasets were grouped into three general categories according to the prediction44

task. Here, we briefly introduce the datasets used in this study.45

Datasets for Trajectory Inference (TI): We evaluated inference of biological trajectories using two single-cell RNA46

sequencing datasets representing the cell cycle and stem cell differentiation. To assess inference of cell cycle, we47

considered a mouse embryonic stem cell cycle dataset [36], where embryonic stem cells were collected along three48

stages of the cell cycle (G1, S, G2/M). Cell cycle phase was manually annotated a priori based on flow sorting49

cells according to the Hoeschst 33342 stained distribution. The authors of the original study used this dataset to50

assess the proportion of cell-to-cell heterogeneity that arises from cell cycle variation. To assess inference of a51

complex differentiation trajectory, we considered a mouse hematopoietic stem and progenitor cell differentiation52

(HPSC) dataset [37]. Here, the transcriptomes of HPSCs were profiled and nine cell surface protein measurements53

(Supplementary Table 3) were used to annotate six subpopulations, including, long-term hematopoeitic stem cells54

(LT-HSC), lymphoid multipotent progenitors (LMPP), multipotent progenitors (MPP), megakaryocyte-erythrocyte55

progenitors (MEP), common myeloid progenitors (CMP), and granulocyte-monocyte progenitors (GMP). Moreover,56

in the original study, reconstruction of the differentiation trajectory revealed dynamic gene expression patterns57

consistent with early lymphoid, erythroid, and granulocyte-macrophage differentiation. For our analysis, cells were58

excluded if they did not have ground truth annotations.59

Datasets for perturbation classification: To assess integration performance on classifying cells according to60

perturbation condition, we considered three diverse datasets with clinical relevance representing drug stimulation61

and treatment of cells, denoted as LPS stimulation, INFγ stimulation, and AML chemotherapy, respectively. In the62

LPS stimulation dataset [38], RAW 264.7 macrophage-like cells were treated with time course of lipopolysaccharide63

(0 min, 50 min-, 150min-, 300min- LPS) to induce NF-κB expression. NF-κB is a transcription factor that serves as64

a master regulator of inflammatory responses from macrophages and other innate immune cells [39]. The authors65

of this study integrated live cell imaging with single-cell RNA sequencing to demonstrate that NF-κB signaling66

shapes gene expression and has a functional role on cellular phenotypes. Therefore, in our experiments, we sought67

to classify cells according to stimulation condition (e.g. 150min- LPS). In the INFγ stimulation dataset [40],68

pancreatic islet cells from three donors were stimulated with or without Interferon-γ (INFγ) for 24 hours. INFγ69

is a proinflammatory cytokine that has been implicated in pancreatic beta cell damage during the pathogenesis70

of Type I Diabetes [41]. Here, the authors applied their method MELD to characterize INFγ treatment response71

across pancreatic islet cell populations and identified a non-responsive subpopulation of beta cells characterized72

by high expression of insulin. Consequently, we sought to classify INFγ-stimulated from unstimulated cells.73
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Lastly, the AML chemotherapy dataset [5] consisted of peripheral blood mononuclear cells (PBMCs) collected74

from a patient with Acute Myeloid Leukemia (AML) at baseline or after two or four days of treatment with75

chemotherapy agents Venetoclax and Azacitidine. It is hypothesized that the persistence of leukemia stem cells76

(LSCs) following treatment drives disease severity, relapse, and results in worse clinical outcomes [7, 42]. Here, the77

authors demonstrate how chemotherapy treatment induces the depletion of LSCs through metabolic reprogramming,78

where oxidative phosphorylation, a critical pathway for LSC maintenance and survival, is suppressed. Thus, we79

sought to classify PBMCs according to treatment condition (day 0, day 2, day 4).80

Datasets for disease status classification: To assess integration performance on classifying cells according to81

disease status, we considered three case/ control datasets of two disease systems, Acute Myeloid Leukemia (AML)82

and Multiple Sclerosis (MS). In the first dataset [7], Leukemia stem cells (LSCs) were collected from AML patients83

at treatment-naive diagnosis (N = 5) and following relapse after chemotherapy treatment (N = 5). Here, the84

authors compared diagnosis from relapse samples to characterize gene expression heterogeneity during AML85

disease progression and show that differences were largely due to metabolic reprogramming, apoptotic signaling,86

and chemokine signaling. Therefore, in our experiments, we sought to classify diagnosis from relapse cells. For the87

second and third study, we considered a Multiple Sclerosis dataset [6], where PBMCs and cerebral spinal fluid88

(CSF) were collected from MS patients (N = 5) and controls (N = 5). MS is a chronic inflammatory disorder89

of the central nervous system that results in neurological dysfunction [43]. When examining the transcriptional90

profiles of MS patient cells as compared to controls, CSF exhibited differences in cell type composition, including91

an enrichment of myeloid dendritic cells and the expansion of CD4+ cytotoxic T cells and late stage B cells.92

In contrast, PBMCs exhibited increased transcriptional diversity with an increased proportion of differentially93

expressed genes. Consequently, we sought to classify control from MS cells across patients using either CSF or94

PBMC biological samples.95

Selection of integration methods96

The power of multi-omics data integration methods lies in their ability to combine individual layers of data (e.g.97

spliced expression, RNA velocity) to identify a new set of cellular features that more holistically represents cell type98

or functional state [23, 44]. Once computed, these features can be used in machine learning models to jointly analyze99

cell type-specific differences or to obtain clinically meaningful predictions that can inform therapeutics [45, 46].100

In this study, our goal is to compare integration approaches for merging gene expression data matrices across the101

same set of profiled cells in order to evaluate their performance on downstream analysis tasks, including trajectory102

inference or sample-associated classification of cells. Given the large variety of different integration approaches,103

we performed a systematic evaluation of eight integration methods by selecting and grouping approaches according104

to two categories: early integration approaches and intermediate integration approaches. First, we consider early105

integration approaches as baseline computational strategies for merging individual modalities into one input matrix.106

Here, we selected three representative baseline strategies (cell-wise concatentation, cell-wise sum, CellRank [17]),107

in addition to an unintegrated control. In contrast, we consider intermediate integration approaches as computational108

strategies that transform individual modalities into an intermediate representation prior to merging, such as a cell109

similarity graph or a subspace. Within this category, we selected four representative methods, including Similarity110

Network Fusion (SNF) [25], Grassmann Joint Embedding [26], integrated diffusion [24], and Patient Response111

Estimation Corrected by Interpolation of Subspace Embeddings (PRECISE) [47]. Here, we briefly define the eight112

integration approaches evaluated in this study. For more details on the overall problem formulation and integration113

method implementation, see the integration section in the Methods.114

1. Unintegrated: A representation consisting of one data modality. In this case, our unintegrated data consists115

of mature spliced expression counts, as this is what is traditionally used for downstream single-cell analysis,116

as outlined by current best practices [48].117

2. Concatenation: Modalities are merged through cell-wise concatenation of data matrices.118

3. Sum: Modalities are merged through summing data matrices.119

4. CellRank: CellRank [17] merges data modalities by computing a weighted sum of gene expression similarity120

and RNA velocity transition matrices. We refer to this approach as an early integration strategy as it simply121

reweights the edges of the original gene expression cell similarity graph according to RNA velocity transition122

probabilities. Notably, this method is specific to integrating RNA velocity data.123

5. Similarity Network Fusion (SNF): SNF [25] merges data by first computing an cell affinity graph for each124

data type. Next, individual modality networks are merged through nonlinear diffusion iterations to obtain a125

fused network.126
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6. Grassmann Joint Embedding: Grassmann Joint Embedding [26] integrates data modalities by first computing127

an cell affinity graph for each data modality, and then merges networks through subspace analysis on a128

Grassmann manifold.129

7. Integrated diffusion: Integrated diffusion [24] merges data modalities by first computing a diffusion operator130

for each denoised data type. Next, individual operators are merged by computing a joint diffusion operator.131

8. Patient Response Estimation Corrected by Interpolation of Subspace Embeddings (PRECISE): PRECISE132

merges data by first performing principal components analysis (PCA) on each individual modality. Next,133

principal components are geometrically aligned and consensus features are determined through interpolation.134

For this analysis, we implement two versions by projecting spliced expression onto (1) the principal vectors135

(denoted as PRECISE) or (2) the consensus features (denoted as PRECISE consensus).136

Figure 1: Schematic overview of benchmarking design. (A) Workflow of integration method evaluation. Eight
integration approaches and four temporal mRNA modalities are evaluated on three prediction tasks. Data are first
preprocessed and jointly batch effect corrected. Next cross-modality integration (spliced and unspliced counts or
moments of spliced and RNA velocity) is performed using eight different integration approaches. Features specified
through the integration strategy are used to infer trajectories, predict response to drug treatment, and classify patient
cells. (B) Overview of data integration strategies (unintegrated, concatenation, sum, CellRank [17], Grassmann
joint embedding [26], integrated diffusion [24], SNF [25], and PRECISE [47]).
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Benchmarking overview137

Given that gene expression modalities are collected along a temporal axis of gene regulation, we evaluated the138

performance of integrating unspliced, spliced, or RNA velocity modalities on predicting discrete and continuous139

variation in cell and disease states across a range of biological scenarios (Supplementary Table 1). Following140

transcriptomic profiling, spliced and unspliced counts were preprocessed and jointly batch effect-corrected prior141

to RNA velocity estimation (see Methods, Supplementary Table 1, Supplementary Figures 1-10). For each set142

of modalities (spliced and unspliced counts, moments of spliced and RNA velocity), our goal is to identify a143

consensus representation that we can use as input to a predictive model (Figure 1A). We benchmarked eight144

integration approaches for combining these gene expression modalities by evaluating how well integrated features145

infer biological trajectories, classify a cell’s response to a drug perturbation, or classify the disease status of a146

cell. Moreover, to quantify the predictive performance of an integration strategy, we computed several metrics for147

each prediction task. To assess the quality of trajectory inference prediction following integration, we computed a148

trajectory inference correlation score to a ground truth reference that takes into account cellular positioning and149

trajectory-specific dynamically expressed genes. To assess classification performance, we computed the accuracy150

of predicted labels from an integration strategy using three complementary metrics, such as F1 score, balanced151

accuracy, and area under the receiver operator curve. For integration methods that required user-specified input152

parameters (Supplementary Table 2), we performed hyperparameter tuning to select the best performers. We then153

ranked the overall predictive performance of integration strategies for each task by averaging scores across all154

datasets (see Methods). This measures how well incorporating dynamic mRNA information aids in recovering155

intermediate transitions or classifying the state of a cell.156

In selecting an appropriate data integration strategy, it is crucial that the approach is able to satisfy computational157

challenges that are specific to each modality. First, a method must be robust to varying amounts of sparsity158

between data types. Single-cell RNA sequencing modalities produce matrices which contain a large proportion of159

zeros, where only a small fraction of total transcripts are detected due to capture inefficiency, amplification noise,160

and stochasticity [49]. This sparsity is far greater in unspliced molecules due to polyadenylation enrichment in161

library preparation [12]. Moreover, given that unspliced, spliced, and RNA velocity predictions are influenced by162

biological and technical noise, a method must be able to resolve noisy signals for robust prediction. To address these163

challenges, we compared two classes of integration approaches for combining temporal sequencing modalities,164

including early integration approaches (concatenation, sum, CellRank) and intermediate integration approaches165

(Grassmann joint embedding, integrated diffusion, SNF, PRECISE) (see Selection of integration methods, Methods,166

Figure 1B).167

Integration performance on inference of biological trajectories168

When undergoing dynamic processes such as differentiation, cells exhibit a continuum of cell states with fate169

transitions marked by external stimuli, cell-cell interactions, and stochastic gene expression [50]. One limitation170

of trajectory inference (TI) reconstruction from snapshot single-cell data is the fact that many gene regulatory171

mechanisms and cellular dynamics could give rise to the same distribution of cell states [8]. We reasoned that172

incorporation of unspliced counts or RNA velocity data may provide increased granularity of the state space to173

more accurately recapitulate the underlying trajectory. To test this hypothesis, we evaluated integration method174

performance on inferring two types of biological trajectories, cell cycle and differentiation, by measuring their175

ability to (1) recover known cell population transitions and (2) infer lineage-specific dynamically expressed176

genes.177

In order to construct reference trajectories for evaluation, we chose well-studied biological systems and selected178

datasets that had gold standard cell type annotations according to the expression of particular characteristic179

phenotypic markers. Therefore, we selected datasets consisting of mouse embryonic stem cell cycle and mouse180

hematopoietic stem and progenitor cell differentiation trajectories (see Description of datasets, Methods). We181

then quantified how well integrated features recapitulated cell cycle or differentiation trajectories by adapting182

an approach previously used to assess the accuracy of trajectory inference methods [51] (see Methods). Briefly,183

we constructed predicted trajectories for each integration approach by applying partition-based graph abstraction184

(PAGA) [52], a state-of-the-art trajectory inference method, on the joint graph following integration. First, PAGA185

was used on the integrated k-nearest neighbor graph to determine directed weighted edges between known cell186

types according to FACS annotations. Here, the edge weights quantify the strength in connectivity between cell187

populations, which represents the overall confidence of a cell population transition. Next, we applied diffusion188

pseudotime [53] to determine an individual cell’s progression through those high-confidence paths. Since integrated189

features are used as input, the inferred trajectory now contains transcriptional information from a transitional190

process at or following a measured time point. To assess the accuracy of predicted trajectories, we defined a191
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trajectory inference correlation score that compares predicted trajectories to a ground truth reference trajectory192

we curated from the literature (see Methods). By taking into account a cell’s position along the trajectory, as well193

as the features that are dynamically expressed, this correlation metric reflects how well integration infers known194

cellular dynamics. Moreover, to ensure a robust comparison across integration approaches, we generated predicted195

trajectories and correlation scores with respect to the same ten random root cells selected from the annotated root196

cluster (mouse embryonic cell cycle: G1, mouse hematopoietic differentiation: long-term hematopoietic stem cells197

(LT-HSC)).198

Figure 2: Integration improves inference of cell cycle and differentiation trajectories. Trajectory inference
was performed to assess the quality of inferred mouse embryonic cell cycle and mouse hematopoiesis differentiation
trajectories from (A top panel) spliced and unspliced or (A bottom panel) moments of spliced and RNA velocity
integrated features generated from eight integration methods. The boxplots represent trajectory inference correlation
scores (TIcorr) for ten random root cells. * indicates the method with the highest median TIcorr score. (B) PAGA
predicted trajectories and diffusion map embeddings representing the inferred biological trajectory for unintegrated
data, as well as high ranking performers for unspliced and RNA velocity integration.
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When comparing predicted trajectories across integration approaches, we found spliced and unspliced as well as199

moments of spliced and RNA velocity integrated features led to a higher trajectory inference correlation score200

when compared to unintegrated data (Figure 2A). For cell cycle, the best performing median TI correlation scores201

were 0.849, 0.856, 0.750 for unspliced integration, velocity integration, and unintegrated data, respectively. For202

hematopoietic stem cell differentiation, the scores were 0.792, 0.787, 0.579 for unspliced integration, velocity203

integration, and unintegrated data, respectively. We next investigated how incorporating temporal gene expression204

modalities alters the inferred PAGA trajectories and diffusion map embeddings for the top integration performers205

with respect to unintegrated data (Figure 2B). When examining the PAGA graphs, we found that all predicted206

trajectories captured the major cell state transitions supported by the literature. For mouse embryonic cell cycle,207

predicted trajectories included the cyclical transition through the proliferative phases of the cell cycle [36]. For208

mouse hematopoiesis, predicted trajectories inferred known developmental lineages, with cells transitioning from209

the multipotent progenitor (MPP) population to early lymphoid (LMPP), erythroid (MEP), and granulocyte-210

macrophage (GMP) cell populations [54, 37]. In addition to capturing known transitions, predicted trajectories211

with integrated data resulted in an improved recovery of cellular dynamics. For example, integration of spliced212

and unspliced counts with SNF better resolves the smooth cyclical progression through the embryonic cell cycle,213

with cells following a clear trajectory from G1 to S to G2/M (Figure 2B). Moreover, by comparing the change in214

PAGA connectivity across the same integration strategy for different input modalities (Figure 2B), we observe how215

temporal gene expression modalities influences the confidence of an inferred cell state transition. When integrating216

unspliced and spliced features for cell cycle inference, we observe an increase in PAGA connectivity from G2/M to217

G1 to S phases, whereas RNA velocity integration illustrates the next time point and provides stronger transition218

weights from G1 to S to G2/M. This added layer of granularity demonstrates prioritized cell type transitions with219

respect to the underlying gene expression dynamics, which may provide additional insight into the gene regulatory220

programs that drive specific paths of temporal variation. Lastly, by aggregating trajectory inference correlation221

scores across datasets, we find integrated diffusion and similarity network fusion amongst the best ranking methods222

for predicting trajectories with both sets of modalities (Supplementary Figure 11). Taken together, these results223

indicate that integrating gene expression data improves the ability to predict temporal changes in gene expression224

along progressive changes in cell state.225

Testing integration under perturbation conditions226

A key application of scRNA sequencing is the ability to identify subpopulations of cells that are either responsive or227

resistant to drug therapy [55]. To examine if integration of unspliced or RNA velocity data can aid in these tasks, we228

tested integration performance on classifying perturbation condition labels from three diverse datasets with clinical229

relevance, including lipopolysaccharide (LPS) stimulated macrophage-like cells, Interferonγ (INFγ) stimulated230

pancreatic islet cells, and peripheral blood mononuclear cells (PBMCs) collected from a patient with Acute Myeloid231

Leukemia (AML) after chemotherapy treatment (see Description of datasets). Using these perturbation datasets, we232

constructed a set of integrated features corresponding to a cell’s transcriptional response following a perturbation.233

We then considered the problem of cell state classification, where our goal is to learn the annotated condition labels234

(e.g. INFγ stimulated or unstimulated) from the underlying feature set. We labeled or classified cells using label235

propagation [56] (see Methods) and compared predictions to the ground truth labels using three complementary236

accuracy metrics, including area under the receiver operator curve (AUC), F1 score, and balanced accuracy (accb).237

Across all three datasets, we found that integration of spliced and unspliced counts led to higher classification238

accuracy than unintegrated data (Figure 3A), with median AUCs (best performing integrated: 0.905, 0.953, 0.785;239

unintegrated: 0.895, 0.930, 0.768) for LPS, INFγ, AML chemotherapy datasets, respectively. In contrast, we240

found that RNA velocity integration generally led to worse classification accuracy than unintegrated data (Figure241

3B). One notable exception was integration performed with CellRank, which resulted in a similar performance to242

unintegrated data, with median AUCs (CellRank: 0.895, 0.934, 0.766, unintegrated: 0.895, 0.930, 0.768). Similar243

results were obtained for additional metrics, such as F1 score and balanced accuracy (Supplementary Figure 12).244

As a secondary validation, we trained a support vector machine (SVM) classifier to learn perturbation labels from245

the shared lower dimensional space following integration. We performed nested 10-fold cross validation to obtain a246

distribution of predictions for each method and dataset (see Methods). We observed similar classification results247

with unspliced integration outperforming unintegrated data (Supplementary Figure 13).248
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Figure 3: Integrating spliced and unspliced counts improves drug treatment condition prediction. Label
propagation was used to classify cells according to treatment response from (A) spliced and unspliced or (B)
moments of spliced and RNA velocity integrated features generated from eight integration approaches. The boxplots
represent classification accuracy according to area under the receiver operator curve (AUC) and the * represents
the method with the highest median AUC. Across all three datasets, spliced and unspliced integration achieves
increased classification accuracy over unintegrated data.

To rank methods according to how accurately they can predict a cell’s perturbation, we computed aggregate scores249

by taking the mean of individual method scores across datasets (see Methods). Overall, we found that early250

integration strategies (concatenation, sum, CellRank) as well as PRECISE tended to outperform intermediate251

embedding-based approaches (SNF, Grassmann joint embedding, integrated diffusion) (Supplementary Figure 14).252

The best performing method for unspliced integration was concatenation (Supplementary Figure 14A), whereas253

the best performing method for RNA velocity integration was CellRank (Supplementary Figure 14B). Overall,254

these results suggest that a straightforward integration of spliced and unspliced counts may provide the best255

strategy to most accurately predict a cell’s associated perturbation. Furthermore, these results illustrate how an256

integrated analysis of gene expression modalities may provide the granularity necessary for better identifying cells257

that are strongly associated with a particular treatment condition, which may provide insights into the biological258

mechanisms conferring a phenotypic response.259

Spliced and unspliced integration improves disease state classification260

We next asked if an integrative analysis of unspliced or RNA velocity data can help distinguish discrete disease cell261

states. In particular, we aimed to evaluate integration performance on predicting whether or not cells were from262

control or disease patients using three datasets, including an Acute Myeloid Leukemia (AML) diagnosis/relapse263

dataset, a Multiple Sclerosis (MS) case/control dataset of cerebral spinal fluid (CSF), and a MS case/ control dataset264

of peripheral blood mononuclear cells (PBMCs) (see Description of datasets). To test whether leveraging temporal265

gene expression modalities can aid in this tasks, we used the same label propagation strategy; however, now266

formulated as a binary classification task based on the disease status labels for each cell. Similar to the perturbation267

results, we found that unspliced integration achieves higher classification accuracy for predicting disease status,268

with the median AUCs for the best performing methods (0.916, 0.861, 0.884) compared to unintegrated data269

(0.895, 0.828, 0.825) for AML, MS-CSF, and MS-PBMC datasets, respectively (Figure 4A). Interestingly, we270

observe differences in the predictive performance of integrated modalities across biological samples (CSF, PBMCs)271
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collected from the same cohort of patients. Overall trends for integration performance were consistent across272

additional metrics and classifiers (Supplementary Figure 13, Supplementary Figure 15). When ranking each273

particular method’s performance on classifying the disease status of a cell across datasets, we found the best274

performing methods for unspliced integration to be PRECISE, sum and concatenation (Supplementary Figure275

16).276

Figure 4: Integrating spliced and unspliced counts improves disease state classification. Label propagation
was used to classify cells according to patient disease status from (A) spliced and unspliced or (B) moments of
spliced and RNA velocity integrated features generated from eight integration approaches. The boxplots represent
classification accuracy according to area under the receiver operator curve (AUC) and the * represents the method
with the highest median AUC. Across all three datasets, spliced and unspliced integration achieves increased
classification accuracy over unintegrated data.

Overall integration method performance across datasets and tasks277

Figure 5 displays the overall ranked aggregate scores for each method colored according to task (green: trajectory278

inference, pink: perturbation classification, blue: disease state classification). Across all three tasks, we found279

unspliced integration (Figure 5A) to be more predictive of cellular state than RNA velocity integration (Figure280

5B) or no integration (unintegrated Figure 5A, 5B). While integration method performance varied across datasets,281

experimental modalities, and tasks, some clear trends emerged. When inferring biological trajectories, unspliced282

integration with integrated diffusion and similarity network fusion (SNF) provided the highest trajectory inference283

correlation score to the ground truth (Figure 5A). In comparison, when evaluating perturbation or disease cell state284

classification, concatenation, sum, and PRECISE were amongst the best ranking methods across all three metrics285

and datasets (Figure 5A). Collectively, these results indicate that integration method performance is task-specific,286

with intermediate embedding-based approaches outperforming unintegrated data on inferring biological trajectories287

and early baseline approaches achieving increased classification performance.288
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Figure 5: Ranked integration method performance across prediction tasks. Integration methods were ranked
by averaging their overall performance across datasets for each prediction task (trajectory inference: green,
perturbation classification: blue, and classification of disease status: pink). Ranked scores were computed for
several metrics for evaluating a prediction task: (TIcorr), F1 score, balanced accuracy (accb), and area under the
receiver operator curve (AUC)). Here, higher ranked method scores are indicated by a longer lighter bar. (A) Overall
quality of spliced and unspliced integration performance according to several metrics for evaluating prediction tasks.
(B) Overall quality of moments of spliced and RNA velocity integration performance according to several metrics
for evaluating prediction tasks. Of note, CellRank was not performed on unspliced and spliced integration, as it
relies on RNA velocity data. Across all three prediction tasks, unspliced integration outperforms unintegrated data,
while RNA velocity integration achieves increased trajectory inference correlation and perturbation classification
scores.

Discussion289

Here, we investigated integration of unspliced, spliced, and RNA velocity gene expression modalities for resolving290

discrete and continuous variation in cell and disease states. We found that integrating modalities along a temporal291

axis of gene regulation provides additional information necessary for robustly predicting cellular trajectories during292

differentiation and cell cycle. Additionally, we show how spliced and unspliced integrated features can be used293
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to better classify cells according to sample-associated phenotypes acquired after an experimental perturbation or294

within a disease state. Lastly, by benchmarking eight data integration methods on the aforementioned prediction295

tasks, we elucidate method performance specific to gene expression modalities or tasks. While intermediate296

integration approaches such as SNF, Grassmann joint embedding, integrated diffusion, and PRECISE facilitate297

increased performance on inferring biological trajectories, simple integration of spliced and unspliced counts298

through concatenation, sum, or PRECISE achieves increased trajectory inference correlation scores, perturbation299

classification accuracy, and disease state classification accuracy across most datasets. To this end, integrating multi-300

ple gene expression modalities profiled from the same set of cells provides a finer resolution of the transcriptional301

landscape of development or disease. Thus, an integrated analysis of gene expression modalities may be crucial for302

the interpretation of dynamic phenotypes.303

Several limitations should be considered when integrating gene expression modalities for cellular trajectory304

inference or disease state classification. In this study, we evaluated methods for constructing integrated graphs or305

joint embeddings with a priori knowledge of ground truth labels. For trajectory inference evaluation, we explored306

how integrated data influences the change in connectivity or inferred cell state transitions between known cell307

types identified via FACS. We found that integrated data resulted in increased trajectory inference correlation with308

respect to a reference trajectory. However, given that the results are sensitive to choice in hyperparameters, it may309

be challenging to select optimal hyperparameters without a priori knowledge of cell types or expected cell type310

transitions. Here, a range of hyperparameters should be considered when using the intermediate integration methods311

outlined in this study. Of note, we observed that baseline integration approaches, such as sum and concatenation of312

spliced and unspliced counts perform consistently well on classifying sample-associated cell phenotypes. This313

is particularly useful as these approaches are less computationally expensive and do not require hyperparameter314

tuning. Of note, these baseline methods did not perform well when integrating moments of spliced data with RNA315

velocity predictions for classification.316

Furthermore, the limitations of integration performance are an extension of the modalities used as input. RNA317

velocity is a noisy extrapolation of gene regulation that can be biased by insufficient sampling of unspliced318

molecules [57], relies on model assumptions that may be violated [58], and is sensitive to choice in preprocessing319

tools, such as the quantification of mRNA abundances [59]. Notably, the accuracy of RNA velocity estimation320

can be improved by incorporating both gene expression and chromatin accessibility data [60]. Moreover, there321

is currently no consensus on how to appropriately batch effect correct linked gene expression modalities [57].322

We chose to jointly correct spliced and unspliced count matrices according to the three metrics and two methods323

outlined in this study; however, we note that this challenge may bias or limit the interpretation of our results. We324

anticipate improved performance as bioinformatics tools are developed to better analyze such data. Lastly, although325

RNA velocity often did not result in an increase in classification accuracy for the datasets selected in this study,326

this does not preclude it from being informative for the analysis of other datasets. RNA velocity captures gene327

expression dynamics over the timescale of hours, thus may provide crucial information for longitudinal datasets328

with finer temporal sampling.329

Future work could focus on evaluating temporal gene expression integration for a wider range of tasks, such330

as unsupervised cell population identification [61], characterizing phenotypic-related cells [40], characterizing331

differentially abundant cell populations [62, 63], or gene regulatory network inference [64]. This work could also332

be extended to the analysis of other extrapolated regulatory modalities, including RNA velocity in-situ [14], protein333

velocity [15], or chromatin velocity [65].334

Methods335

Datasets336

We evaluated trajectory inference, experimental perturbation, and disease classification performance on eight337

datasets spanning various biological contexts. For more details on data preprocessing, see Supplementary Table338

1.339

Hematopoiesis differentiation: FASTQ files consisting of hematopoietic stem and progenitor cells were accessed340

from Nestorowa et al., [37] with the accession code GSE81682. FACS labels from broad gating were used to341

annotate six cell populations along three differentiation lineages: long term hematopoietic stem cells (LT-HSC),342

lymphoid multipotent progenitors (LMPP), multipotent progenitors (MPP), megakaryocyte-erythrocyte progenitors343

(MEP), common myeloid progenitors (CMP), and granulocyte-monocyte progenitors (GMP) (see Supplementary344
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Table 3). Individual cell FASTQ files were aligned to the mouse reference genome mm10 with the STAR v2.7.7345

aligner. A loom file containing spliced and unspliced molecular counts was obtained using Velocyto v0.17.346

Mouse embryonic cell cycle: A dataset of mouse embryonic stem cells undergoing different stages of the cell347

cycle was accessed from Buettner et al., [36] with the accession code E-MTAB-2805. FACS cell cycle labels from348

Hoesct flow sorting were used to annotate cells along three phases: G1, S, and G2/M. Individual cell FASTQ files349

were aligned to the mouse reference genome mm10 with the STAR v2.7.7 aligner. A loom file containing spliced350

and unspliced molecular counts was subsequently generated with Velocyto v0.17.351

LPS stimulation: FASTQ files were accessed from Lane et al., [38] with the accession code GSE94383. Here,352

a macrophage-like cell line RAW 264.7 was stimulated with lipopolysaccharide (LPS) over 4 time points: 0min353

unstimulated, 75min-, 150min-, 300min- post LPS stimulation. Files were aligned to the mouse reference genome354

mm10 with the STAR v2.7.7 aligner. A loom file containing spliced an unspliced molecular counts was generated355

with Velocyto v0.17. Following preprocessing, batch effect correction was performed on the libraries.356

INFγ stimulation: Aligned BAM files of pancreatic islet cell INFγ stimulation were accessed from Burkhardt357

et al., [40] with the accession code GSE161465. This dataset consisted of three donors per stimulation condition358

(control, INFγ stimulated). A loom file containing spliced and unspliced molecular counts was generated for each359

donor and condition with Velocyto v0.17, then subsequently merged into a single file. Following preprocessing,360

batch effect correction was performed using the donor labels.361

AML chemotherapy: To assess disease progression, aligned BAM files of an individual patient with AML362

undergoing chemotherapy were accessed from Pollyea et al., [5] with the accession code GSE116481. Condition363

labels consisted of three timepoints: d0 untreated, d2-, d4- post Venotoclax and Azacitidine treatment. A loom364

file containing spliced and unspliced molecular counts for each timepoint was generated with Velocyto v0.17,365

then merged into a single file. Following preprocessing, batch effect correction was performed on the condition366

labels.367

AML matched diagnosis/relapse: Raw FASTQ files were accessed from Stetson et al., [7] with the accession368

code GSE126068. In this dataset, PBMCs were collected from 5 patients with AML on the onset of diagnosis and369

following relapse. FASTQ files were aligned to the human reference genome GRCh38 with the STAR v2.7.7 aligner.370

A loom file containing spliced and unspliced molecular counts was obtained with Velocyto v0.17. Following371

preprocessing, batch effect correction was performed using the patient labels.372

MS case/control: Aligned BAM files were accessed from Schafflick et al., [6] with the accession code GSE138266.373

Here, two biological samples were collected from each patient (CSF, PBMCs) with a disease status label (control or374

MS). Loom files containing spliced and unspliced molecular counts for each patient sample were obtained with375

Velocyto v0.17. Then a merged loom file consisting of control and MS patient cells was generated for each sample376

independently. Following preprocessing, batch effect correction was performed using the patient labels.377

Preprocessing378

Quality control, normalization, and highly variable gene selection379

All scRNA sequencing datasets were quality control filtered according to read depth and distributions of counts.380

Following empty droplet and doublet removal, dying cells were removed by ensuring less than 20 percent of total381

reads were mapped to mitochondrial transcripts. Genes were filtered out if they were expressed in less than five cells382

or had less than five counts shared between spliced and unspliced matrices. To perform normalization, we estimated383

size factors for filtered spliced and unspliced count matrices with Scran pooling normalization v1.20.1 [66]. For384

datasets with an appreciable batch effect, size factors were subsequently scaled according to median normalization385

of the ratio of average counts between batches with Batchelor v1.8.0; this ensures data is downsampled based upon386

the batch with the smallest read depth. To restrict the feature space, we selected highly variable genes on log+1387

transformed data by estimating a normalized dispersion measure [67] using the highly variable genes function in388

Scanpy v1.8.1 (flavor = seurat, minimum mean = 0.012, minimum dispersion = 0.25, maximum mean = 5).389
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Batch effect correction390

RNA velocity relies on an ordinary differential equation framework to estimate the relationship between two391

connected modalities, spliced and unspliced mRNA counts [68, 12, 13]. As such, correcting each modality392

independently may lead to incorrect model fitting and spurious velocity vectors [57]. We evaluated the performance393

of batch effect correction methods, ComBat [69] and mutual nearest neighbors (MNN) [70] on correcting count394

data simultaneously. These methods were chosen as they directly correct the original gene expression data. Briefly,395

we considered two simple approaches for combining the data prior to correction (1) summed spliced and unspliced396

counts or (2) cell-wise concatenation. To obtain corrected count matrices for summed input data, we followed the397

batch effect correction approach introduced in in Ref. [71],398

M = log (S + U + 1) (1)

R =
S

S + U
(2)

Sc = exp (Mc · R− 1) (3)

Uc = exp (Mc · (1− R)− 1) . (4)

Here, S and U represent spliced and unspliced count matrices, respectively. Batch effect correction was performed399

on the summed total expression matrix, M , to yield a corrected data matrix Mc. Corrected spliced Sc and unspliced400

Uc counts were then obtained by inverting the log transformation through exponentiation. ComBat was run in401

python using Scanpy v1.8.1 and MNN was run in R using Batchelor v1.8.0.402

Batch effect correction evaluation403

To evaluate batch effect correction methods on combined spliced and unspliced modalities, we consider three404

metrics for assessing batch effect removal while preserving both biological variation and the unspliced to spliced405

relationship.406

1. k-nearest neighbor batch effect correction test (kBET): The kBET algorithm [72] quantifies batch effects by407

comparing the batch label composition of local random neighborhoods to the overall global label composition408

through a χ2 test. Tests are then averaged to obtain an overall rejection rate. To test for batch effects,409

we perform kBET using a fixed neighborhood size of k = 10 neighbors for each correction approach410

(uncorrected, MNN sum, MNN concatenation, ComBat sum, ComBat concatenation). kBET scores were411

computed using kBET v0.99.6.412

2. Local Inverse Simpson’s Index (LISI): The LISI score [73] measures the degree of batch label mixing by413

computing the number of cells that can be drawn from a local neighborhood before a batch label is observed414

twice. Here, local distances are weighted according to a Gaussian kernel and probabilities are determined by415

the inverse Simpson’s index. LISI returns a diversity score ranging from 1 to the total number of batches. To416

test for batch label diversity, we compute LISI using a fixed perplexity of 30 for each correction approach417

(uncorrected, MNN sum, MNN concatenation, ComBat sum, ComBat concatenation). LISI scores were418

computed using harmonypy.419

3. Pearson correlation of phase space pairwise distances: The dynamical model of RNA velocity estimates420

transcriptional dynamics by inferring gene-specific reaction rate and latent parameters through an expectation-421

maximization framework on the phase space (spliced and unspliced counts) of the data. To quantify how422

well a batch effect correction approach preserves the unspliced to spliced relationship across all cells, we423

compared phase space cellular neighborhoods by computing the Pearson correlation of pairwise distances in424

the phase space for each donor and pairwise distances of the same cells in corrected data. In other words, for425

each gene we obtain a single correlation score capturing how well cell-cell distances are preserved in the426

phase space of corrected data with respect to an individual donor/patient. The distribution of gene correlations427

measure the overall quality of correction for retaining similar cell distributions for RNA velocity fitting and428

estimation.429
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To select a batch effect correction approach, we evaluated correction performance on the each biological condition430

individually. Furthermore, we took the intersection of genes that were highly variable across all profiled samples431

(e.g. libraries, donors, patients) to ensure that the data being compared were specific to the biological system under432

study and that donor-specific variation was removed. For each dataset, we selected the batch effect correction433

approach that had the best performance across all three metrics (see Supplementary Table 1, Supplementary Figure434

16). One exception was the AML diagnosis/relapse dataset, which contained too few cells for the analysis. Here,435

we selected ComBat concatenation, as it was the approach that consistently performed well on all other datasets.436

Once an approach was selected, we performed joint correction on the original full dataset as outlined previously437

(See Preprocessing).438

RNA velocity estimation439

To estimate RNA velocity, we used the dynamical model implementation in Scvelo v0.2.3. More specifically,440

first order moments of spliced and unspliced counts were computed based on a k-nearest neighbor graph of cells441

(k = 10), constructed by calculating pairwise Euclidean distances between cells based on their first 50 principal442

components (PCs). The full dynamical model was then solved for all genes to obtain a high dimensional velocity443

vector for every cell. Given that populations of cells may have different mRNA splicing and degradation kinetics,444

we performed a likelihood ratio test for differential kinetics on the clusters identified from Leiden community445

detection (resolution parameter of 1.0) [74]. Clusters of cells that exhibited different kinetic regimes were fit446

independently and velocity vectors were corrected.447

Sketching448

To evaluate integration performance on the large-scale case/control datasets, we first performed subsampling449

with geometric sketching. Geometric sketching [75] is an algorithm that aims to select a representative subset of450

cells that preserves the overall transcriptional heterogeneity of the full dataset. By approximating the underlying451

geometry of the data through a plaid covering of equal volume hypercubes, geometric sketching is able to evenly452

select cells such that rare cell types are sufficiently sampled. We implemented geometric sketching to select a453

representative subset of cells from both Multiple Sclerosis case/control datasets. Sketches were constructed from454

the transcriptional landscape of the mature gene expression data (spliced or moments of spliced), with sketch sizes455

of approximately twenty percent of the total data. Sketch indices were then used to subsample all modalities prior456

to integration and disease state classification evaluation.457

Integration methods458

Problem Formulation459

LetX = {xi}ni=1 denote a single-cell dataset consisting of one gene expression modality, where xi ∈ Rd represents460

a vector of d genes measured in cell i. Given a collection of m gene expression modalities {Xm}mk=1 sampled from461

N individuals, where for sample i there is an associated label yi, our goal is to identify a biologically meaningful462

consensus representation, Z = {zi ∈ Rp}ni=1 where p represents shared latent features such that p ≤ d. In this463

case, we wish to use this consensus representation to build a predictive model to infer biological trajectories or to464

predict the patient-specific or treatment-induced phenotypic label for sample i, yi. In this section, we describe the465

methods selected for integrating two groups of gene expression modalities, either moments of spliced counts with466

RNA velocity data or normalized and log transformed spliced and unspliced count matrices. For more details on467

implementation and hyperparameter tuning, see Supplementary Table 2.468

Unintegrated: To evaluate a baseline approach representing unintegrated data, we constructed a k-nearest469

neighbor graph (k = 10) from the top 50 principal components, generated from the normalized and log transformed470

spliced counts. This is akin to what is traditionally used for downstream single-cell analysis, as outlined by current471

best practices [48].472

Concatenation: Gene expression data matrices were horizontally concatenated to obtain a merged data matrix473

with dimensions n × 2d. Principal Component Analysis (PCA) was performed on the concatenated matrix474

and a k-nearest neighbors graph (k = 10) of cells was ultimately constructed based on the top 50 principal475

components.476
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Sum: Gene expression data matrices were summed to obtain a merged data matrix with dimensions n× d. PCA477

was performed on the summed matrix and a k-nearest neighbor graph (k = 10) was constructed from the top 50478

principal components.479

CellRank: CellRank [17] computes a joint transition probability matrix through a weighted sum of expression480

and velocity transition probability matrices as,481

P = λPv + (1− λ)Ps for λ ∈ [0, 1]. (5)

Here, Pv represents the velocity transition matrix, Ps represents the expression similarity transition matrix, and λ482

is the weight parameter. We used CellRank v1.1.0 and performed hyperparameter tuning by varying the weight483

parameter λ, the measure of velocity similarity (correlation, dot product, or cosine), and the model that determines484

if velocity uncertainty is propagated in the transition matrix computation (monte-carlo, dynamical). Given that this485

approach relies on RNA velocity directionality, integration was only performed using moments of spliced and RNA486

velocity data.487

PRECISE: PRECISE [47] was adapted to integrate temporal gene expression modalities. PRECISE first com-488

putes principal components for each modality individually, then geometrically aligns components to extract489

common principal vectors that represent similar weighted combinations of genes. From here, a consensus feature490

representation is computed by optimizing the match between interpolated sets of features (e.g. expression and491

velocity). For this analysis, we obtained a lower dimensional latent space by projecting expression data onto (1) the492

principal vectors (denoted as PRECISE) or (2) the consensus features (denoted as PRECISE consensus). From493

this shared embedding space, we constructed a k-nearest neighbor graph (k = 10). For both approaches, we494

performed hyperparameter tuning by varying the number of included principal vectors. Given that the principal495

vectors are rank ordered according to modality similarity, selection is analogous to filtering the data based on shared496

or unshared information. PRECISE v1.2 was used and modified to include dissimilar components.497

Similarity Network Fusion: Similarity Network Fusion (SNF) [25] constructs a joint graph of cells according to498

gene expression data modalities using a two step process. First a cell affinity graph Gm = (Vm, Em) is computed499

for each modality, where Vm represents cells and edges, Em, are weighted according to modality-specific similarity500

using a heat kernel as follows. Here, we compute Wm
ij , which gives the specific edge-weight between cells i and j501

in modality m as,502

Wm
ij = exp

(
−
‖xmi − xmj ‖2

µεij

)
. (6)

Specifically, Wm is a n× n similarity matrix for modality m, µ is a scaling hyperparameter, and εij is a bandwidth503

parameter that takes into account local neighborhood sizes. Next, the two individual modality networks are504

integrated through nonlinear diffusion iterations between each modality to obtain a fused network. Importantly,505

the network fusion step ensures that the merged graph representation retains edge similarities that are strongly506

supported by an individual modality in addition to similarities shared across modalities. To compare results to507

the intermediate embedding integration methods, we modified SNF by constructing a shared embedding from the508

fused network through eigendecomposition of the unnormalized graph Laplacian Lu. Note that Lu is computed509

as,510

Lu = D−A. (7)

Here, D is a diagonal degree matrix with i-th diagonal element, di =
∑

j Aij and A is the symmetric merged SNF511

affinity adjacency matrix. Given that eigenvectors of the Laplacian represent frequency harmonics, we selected512

the eigenvectors corresponding to the K smallest eigenvalues to low pass filter high frequency noise [76]. We513

then constructed a k-nearest neighbor graph (k = 10) for evaluation. We performed hyperparameter tuning by514

varying the number of nearest neighbors, the bandwidth scaling parameter µ, and the number of eigenvectors for515

the merged graph embedding. SNF was implemented using the snfpy v0.2.2 package in python.516
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Grassmann Joint Embedding: The Grassmann joint embedding approach introduced in Ref. [26] was adapted to517

construct a shared representative subspace of temporal gene expression information. Similar to SNF, the Grassmann518

embedding approach begins by constructing affinity matrices to encode similarities between cells i and j in each519

modality using a heat kernel as,520

Sm
ij = exp

(
−
‖xmi − xmj ‖2

2t2

)
. (8)

Here, Sm is a n× n between-cell similarity matrix for modality m and t is the kernel bandwidth parameter. To521

prioritize local similarities, the k-nearest neighbors according to the similarity matrix Sm are identified and the522

similarity matrix is further redefined as,523

Wm
ij =

{
Sm
ij , if vj ∈ Ni

0, otherwise.
(9)

Here, cell vi and vj are connected with an edge with edge weight Sij if the cell is within the set of vi’s neighbors,524

Ni. Next, low-dimensional subspaces are computed through eigendecomposition of the normalized graph Laplacian525

of each data type. The normalized graph Laplacian Lm
n , is formally defined as,526

Lm
n = Dm−

1
2 (Dm −Wm) Dm−

1
2 . (10)

Here, m indexes the data modality and Dm represents a diagonal degree matrix, such that the i-th diagonal527

element, dmi =
∑

j W
m
ij . Furthermore, Am is the symmetric Grassmann affinity matrix of modality m. A shared528

representative subspace from [26] is then ultimately computed as,529

Lmod =
m∑

k=1

Lm
n − α

m∑
k=1

UmUm′ . (11)

Here, Um represents an individual subspace representation and α controls the trade-off between preserving modality-530

specific structural similarities (in the first term) and minimizing the distance between each subspace representation531

(in the second term). Lastly, an eigendecomposition of the Laplacian of the joint graph Lmod was computed to532

extract the K eigenvectors corresponding to the first K eigenvalues to represent the merged embedding space. For533

evaluation, we constructed a k-nearest neighbor graph (k = 10) from this shared space. Hyperparameter tuning534

was performed by varying the number of nearest neighbors and kernel bandwidth parameter t in the affinity graph535

construction, as well as α, and the number of eigenvectors to include for the merged graph embedding.536

Integrated Diffusion: Integrated diffusion [24] combines data modalities by computing a joint data diffusion537

operator. First, individual modalities are locally denoised by performing a truncated singular value decomposition538

(SVD) on local neighborhoods determined through spectral clustering. Next a symmetric diffusion operator is539

constructed for each denoised modality, and spectral entropy is used to determine the number of diffusion time540

steps to take. By taking the reduced ratio of information, the joint diffusion operator Pj is computed as,541

Pj = Pt1
1 · P

t2
2 . (12)

Here, P1 and P2 represent individual modality diffusion operators (e.g. expression and velocity) and t1 and542

t2 represent the reduced ratio of diffusion time steps, respectively. By powering transition probability matrices543

independently, this captures both modality-specific information, while allowing the random walk to jump between544

data types for merging. Lastly, the joint diffusion operator is powered using the same spectral entropy measure.545

It is important to note that choice of t is crucial, as it can either effectively denoise data or remove important546

variation and lead to oversmoothing. We eigendecomposed the diffused joint operator and selected the eigenvectors547

corresponding to the K largest eigenvalues to obtain a merged lower dimensional representation. We then548

constructed a k-nearest neighbor graph (k = 10). Hyperparameter tuning was performed by varying the number549

of clusters for local denoising, the number of nearest neighbors in affinity graph construction, and the number of550

included eigenvectors.551
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Evaluation552

Trajectory inference553

To quantify how well incorporation of unspliced counts or RNA velocity recapitulates the underlying biological554

trajectory, we compared predicted trajectories to a ground truth reference using the metrics implemented in the555

R suite Dynverse [51]. Reference trajectories were curated from the literature [37, 36, 54], with cell groups,556

connections, and root cluster provided by the authors of the original study. We note that cell population annotations557

were externally determined through cell surface protein measurements and not from unsupervised clustering on the558

expression data.559

To obtain predicted trajectories from integrated data, we performed trajectory inference using Partition-based560

Graph Abstraction [52] followed by diffusion pseudotime [53], as this approach was shown to outperform other561

methods for inference of complex differentiation topologies [51]. Predicted trajectories consisted of two main562

attributes: (1) a trajectory network, where nodes represent FACS cell groups and edges connect populations based563

on PAGA inferred connectivity and (2) a list of cellular percentages representing a cell’s relative position between564

groups. Here, cellular percentages were determined from diffusion pseudotime using 20 diffusion map components565

generated from the underlying integrated or unintegrated k-nearest neighbor graph. For each integration approach,566

we computed predicted trajectories for ten random root cells selected from the annotated root cluster.567

To evaluate a method’s performance on inferring developmental gene expression dynamics from integrated or568

unintegrated data, we compared reference and predicted trajectories using two metrics previously described in Ref.569

[51]: cell distance correlation and feature importance score correlation.570

1. Cell distance correlation Ccorr: Geodesic distances represent the shortest path distance between two cells on571

a nearest neighbor graph of the data [77]. To estimate a measure of the correlation of between-cell distances572

between reference and predicted trajectories, geodesic distances were computed between cells on a trajectory573

graph. The cell distance correlation is defined as the Spearman rank correlation between the geodesic cell574

distances of both trajectories.575

2. Feature importance score correlation Fcorr: To assess whether the same temporally expressed genes were576

found in the predicted trajectory as in the reference, a random forest regression framework was used to577

predict the expression values of each gene based on geodesic distances of each cell to each cell state cluster.578

The feature importance score correlation is defined as the Pearson correlation between the reference and579

predicted scores.580

To obtain an overall trajectory inference correlation score reflective of high cell and feature similarity, we compute581

the harmonic mean of both correlation metrics as,582

TIcorr = 2 · Ccorr · Fcorr

Ccorr + Fcorr
. (13)

Classification583

Label Propagation: To quantitatively compare integration methods on disease state prediction, we aimed to584

implement an approach that would use the underlying integrated or unintegrated graph structure. Label propagation585

[56] is a semi-supervised learning algorithm that uses iterative diffusion processes to predict the labels of unlabeled586

nodes. The output of this algorithm is a probability distribution of labels for every cell. We implemented label587

propagation to predict stimulation condition or disease status labels as follows.588

Let G = (V, E , y = {yi}ni=1) denote a graph of n cells comprising the nodes (V) generated from an integration589

approach and the set E edges encoding between-cell similarities. Similarly, a particular yi gives a phenotypic label590

for cell i (e.g. patient disease status). Let y′ = (yl, yu) denote a vector consisting of a training subset of cells that591

are labeled yl = {yj}mj=1 where yj ∈ y and m < n, and a test subset of cells that are unlabeled, yu = {0}n−m.592

Given G and y′, our goal is to assign a label to the unlabeled cells and the corresponding entries of y′s. To do so,593

we perform the following approach.594

1. Stratified random sampling is used to assign cells to a training or test set; this ensures that the original ratio595

of class labels (e.g. AML diagnosis or relapse) remains the same as in the full dataset.596

2. Initialize algorithm on the training set to predict the labels of the masked test set. Each node has a label597

y′i, and edge weight wij representing the strength of similarity between nodes i and j. Here, larger weights598

indicate a higher probability of cell i propagating its label y′i to cell j.599
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3. Labels are iteratively updated through diffusion, where D is a diagonal degree matrix with i’th diagonal
element di =

∑
j Wij as,

y′(t+1) ← D−1Wy′(t). (14)

4. Row normalize labels y′ to maintain a probability distribution.600

5. Training labels are clamped after each iteration as,

y
(t+1)
l ← y

(t)
l . (15)

6. Iterations are repeated until convergence, with a threshold δ = 0.001, such that,

|y′(t) − y′(t−1)| < δ. (16)

7. Class labels are assigned to every node by taking the label with the maximum probability.601

We repeated this procedure for ten random training initializations to obtain a set of predicted labels for each602

integration approach.603

Support Vector Machine (SVM): The support vector machine (SVM) [78] is a supervised learning algorithm604

that constructs hyperplanes in the high dimensional data to separate classes. We implemented SVM as a secondary605

classification approach for predicting perturbation response or disease status labels from the individual or joint606

embedding space (e.g. PCA, diffusion embedding). Specifically, nested 10-fold cross validation was performed607

using stratified random sampling to assign cells to either a training or test set. SVM hyperparameters were tuned608

over a grid search within each fold prior to training the model and labels were subsequently predicted from the test609

data.610

Metrics: To quantify stimulation condition and disease status classification performance, we compared predicted611

labels to ground truth annotations using three metrics: F1 score, balanced accuracy (accb), and area under the612

receiver operator curve (AUC). The F1 score measures the harmonic mean of precision and recall as,613

F1 = 2 · precision · recall

precision + recall
. (17)

Balanced accuracy represents the average of sensitivity (true positive rate) and specificity (true negative rate). When614

predicting more than two labels (e.g. disease progression), we computed the mean sensitivity for all classes.615

accb =
sensitivity + specificity

2
(18)

Lastly, area under the receiver operator curve was computed using the soft probability assignments. For the616

multi-class case, each class label was compared to the remaining in an all vs. rest approach, then averaged. All of617

these metrics return a value between 0 and 1, where 1 indicates predicted labels were in perfect accordance to the618

ground truth annotations.619

Aggregate scores620

To rank methods for each prediction task, we compute aggregate scores by taking the mean of scaled method scores621

across datasets. More specifically, we first define an overall method score per dataset as the median of each metric.622

Method scores were subsequently min-max scaled to ensure datasets were equally weighted prior to computing the623

average.624

Data and code availability625

The raw publicly available single-cell RNA sequencing datasets downloaded and used in this study are available626

in the Gene Expression Omnibus repository, under the accession codes GSE81682 for hematopoiesis differen-627

tiation [37], GSE94383 for LPS stimulation [38], GSE161465 for INFγ stimulation [40], GSE11648 for AML628

chemotherapy [5], GSE1260681 for AML diagnosis/relapse [7], and GSE138266 for MS case/control PBMC and629
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CSF datasets [6] and in the European Nucleotide Archive repository, under accession numbers E-MTAB-2805630

for mouse embryonic cell cycle [36] datasets, respectively. Loom files and preprocessed data are available in the631

Zenodo repository https://doi.org/10.5281/zenodo.6110279. All functions for preprocessing, integration,632

and evaluation are available at www.github.com/jranek/EVI.633
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[65] Martina Tedesco, Francesca Giannese, Dejan Lazarević, Valentina Giansanti, Dalia Rosano, Silvia Monzani,818

Irene Catalano, Elena Grassi, Eugenia R Zanella, Oronza A Botrugno, Leonardo Morelli, Paola Panina Bor-819

dignon, Giulio Caravagna, Andrea Bertotti, Gianvito Martino, Luca Aldrighetti, Sebastiano Pasqualato, Livio820

Trusolino, Davide Cittaro, and Giovanni Tonon. Chromatin velocity reveals epigenetic dynamics by single-cell821

profiling of heterochromatin and euchromatin. Nat. Biotechnol., October 2021.822

[66] Aaron T L Lun, Karsten Bach, and John C Marioni. Pooling across cells to normalize single-cell RNA823

sequencing data with many zero counts. Genome Biol., 17:75, April 2016.824

[67] Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier, and Aviv Regev. Spatial reconstruction of825

single-cell gene expression data. Nat. Biotechnol., 33(5):495–502, May 2015.826

[68] Amit Zeisel, Wolfgang J Köstler, Natali Molotski, Jonathan M Tsai, Rita Krauthgamer, Jasmine Jacob-Hirsch,827

Gideon Rechavi, Yoav Soen, Steffen Jung, Yosef Yarden, and Eytan Domany. Coupled pre-mRNA and mRNA828

dynamics unveil operational strategies underlying transcriptional responses to stimuli. Mol. Syst. Biol., 7:529,829

September 2011.830

[69] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray expression data using831

empirical bayes methods. Biostatistics, 8(1):118–127, January 2007.832

[70] Laleh Haghverdi, Aaron T L Lun, Michael D Morgan, and John C Marioni. Batch effects in single-cell833

RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol., 36(5):421–427,834

June 2018.835

[71] Hansen Lab. Batch effects in scrna velocity analysis.836

[72] Maren Büttner, Zhichao Miao, F Alexander Wolf, Sarah A Teichmann, and Fabian J Theis. A test metric for837

assessing single-cell RNA-seq batch correction. Nat. Methods, 16(1):43–49, January 2019.838

[73] Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko,839

Michael Brenner, Po-Ru Loh, and Soumya Raychaudhuri. Fast, sensitive and accurate integration of single-cell840

data with harmony. Nat. Methods, 16(12):1289–1296, December 2019.841

[74] V A Traag, L Waltman, and N J van Eck. From louvain to leiden: guaranteeing well-connected communities.842

Sci. Rep., 9(1):5233, March 2019.843

[75] Brian Hie, Hyunghoon Cho, Benjamin DeMeo, Bryan Bryson, and Bonnie Berger. Geometric sketching844

compactly summarizes the Single-Cell transcriptomic landscape. Cell Syst, 8(6):483–493.e7, June 2019.845

[76] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The emerging846

field of signal processing on graphs: Extending High-Dimensional data analysis to networks and other847

irregular domains. October 2012.848

[77] J B Tenenbaum, V de Silva, and J C Langford. A global geometric framework for nonlinear dimensionality849

reduction. Science, 290(5500):2319–2323, December 2000.850

[78] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297, September851

1995.852

Supplementary Tables853

Supplementary Table 1: Datasets and preprocessing overview

ID Description Metadata Task Platform Organism Reference Batch Batch correction approach Normalization

Nestorowa hematopoiesis differentiation FACS TI Smart-seq2 Mouse mm10 NA NA Scran
Buettner mouse embryonic cell cycle FACS TI Smarter C1 Mouse mm10 NA NA Scran
Lane LPS stimulation condition classification Smart-seq2 Mouse mm10 library ComBat concatenation Scran with batch
Pollyea AML chemotherapy condition classification 10X Genomics Human GRCh38 condition ComBat concatenation Scran with batch
Burkhardt IFN-γ stimulation condition classification 10X Genomics Human GRCh38 patient MNN concatenation Scran with batch
Stetson AML diagnosis/relapse disease status classification Smart-seq2 Human GRCh38 patient ComBat concatenation Scran with batch
Schafflick MS case/control disease status classification 10X Genomics Human GRCh38 patient ComBat concatenation Scran with batch
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Supplementary Table 2: Overview of optimized parameters

Method name Type Parameter description Parameters

Unintegrated early NA NA

Concatentation early NA NA

Sum early NA NA

CellRank early
weight given to velocity transition probability matrix λ ∈ [0.2, 0.8]

velocity similarity metric correlation, dot product, cosine
velocity transition probability matrix mode monte-carlo, dynamical

SNF intermediate
number of nearest neighbors in affinity graph k = 5, 10, 25, 50

kernel bandwidth parameter µ ∈ [0.4, 0.8]
number of eigenvectors K = 20, 50

Grassmann joint embedding intermediate

number of nearest neighbors in affinity graph k = 5, 10, 25, 50
kernel bandwidth parameter t ∈ [100, 500]

tradeoff parameter between individual and merged subspaces α ∈ [0.01, 2]
number of eigenvectors K = 20, 50

Integrated diffusion intermediate
number of nearest neighbors in diffusion operator k = 5, 10, 25, 50

number of clusters for denoising c = 5, 10, 25, 50
number of eigenvectors K = 20, 50

PRECISE intermediate number of principal vectors npvs ∈ [10, 50]

Supplementary Table 3: Surface markers for hematopoietic stem and progenitor cells in Nestorowa et al.

name ID markers

long-term hematopoietic stem cells LT-HSC Lin−c-Kit+Sca1+Flk2−CD34−

lymphoid multipotent progenitors LMPP Lin−c-Kit+Sca1+Flk2+CD34+

multipotent progenitors MPP Lin−c-Kit+Sca1+Flk2−CD34+

megakaryocyte-erythrocyte progenitors MEP Lin−c-Kit+Sca1−CD16/32
−

CD34−

common myeloid progenitors CMP Lin−c-Kit+Sca1−CD16/32
−

CD34+

granulocyte-monocyte progenitors GMP Lin−c-Kit+Sca1−CD16/32
+

CD34+
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Supplementary Figures854

Supplementary Figure 1: Evaluating batch effect correction for control pancreatic islet cells in INFγ stimu-
lation dataset. (A) UMAP visualization of control pancreatic islet cells across batch correction strategies. Spliced
and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors
(MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as
well as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the
per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data
and the cell-cell distances in the phase space of each individual donor. Top panel: Pearson correlation of MNN
concatenation or MNN sum to control donors. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to control donors. Dashed line represents the mean correlation.
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Supplementary Figure 2: Evaluating batch effect correction for INFγ stimulated pancreatic islet cells in
INFγ stimulation dataset. (A) UMAP visualization of INFγ stimulated pancreatic islet cells across batch
correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction
with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing
metrics kBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C).
Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced,
spliced) of corrected data and the cell-cell distances in the phase space of each individual donor. Top panel: Pearson
correlation of MNN concatenation or MNN sum to INFγ stimulated donors. Bottom panel: Pearson correlation of
ComBat concatenation or ComBat sum to INFγ stimulated donors. Dashed line represents the mean correlation.
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Supplementary Figure 3: Evaluating batch effect correction for AML chemotherapy treated cells. (A)
UMAP visualization of AML chemotherapy treated cells across batch correction strategies. Spliced and unspliced
modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or
ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the
preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene
Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the
cell-cell distances in the phase space of each time point (d0, d2, d4). Top panel: Pearson correlation of MNN
concatenation or MNN sum to individual timepoint. Bottom panel: Pearson correlation of ComBat concatenation
or ComBat sum to individual timepoint. Dashed line represents the mean correlation.
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Supplementary Figure 4: Evaluating batch effect correction for AML diagnosis patient cells in AML diag-
nosis/relapse dataset. (A) UMAP visualization of AML diagnosis patient cells across batch correction strategies.
Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest
neighbors (MNN) or ComBat. (B) Method performance was measured by batch label mixing metrics kBET and
LISI across patients. Dashed line represents the mean correlation.
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Supplementary Figure 5: Evaluating batch effect correction for LPS stimulated cells. (A) UMAP visualiza-
tion of LPS stimulated cells across batch correction strategies. Spliced and unspliced modalities were combined via
concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance
was measured by batch label mixing metrics kBET and LISI (B), as well as the preservation of the relationship
between spliced and unspliced counts (C, D). Distributions represent the per gene Pearson correlation between
cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase
space of each individual library. Panel C: Pearson correlation of MNN concatenation or MNN sum to individual
library. Panel D: Pearson correlation of ComBat concatenation or ComBat sum to individual library. Dashed line
represents the mean correlation. Library 10 was excluded from correlation analysis as it contained too few cells.
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Supplementary Figure 6: Evaluating batch effect correction for MS patient CSF cells in MS case/control
dataset. (A) UMAP visualization of MS patient CSF cells across batch correction strategies. Spliced and unspliced
modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or
ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the
preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene
Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the
cell-cell distances in the phase space of each individual MS patient. Top panel: Pearson correlation of MNN
concatenation or MNN sum to MS patients. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to MS patients. Dashed line represents the mean correlation.
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Supplementary Figure 7: Evaluating batch effect correction for control patient CSF cells in MS case/control
dataset. (A) UMAP visualization of control patient CSF cells across batch correction strategies. Spliced and
unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors
(MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well
as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per
gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and
the cell-cell distances in the phase space of each individual control patient. Top panel: Pearson correlation of MNN
concatenation or MNN sum to control patients. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to control patients. Dashed line represents the mean correlation.
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Supplementary Figure 8: Evaluating batch effect correction for MS patient PBMCs in MS case/control
dataset. (A) UMAP visualization of MS patient PBMCs across batch correction strategies. Spliced and unspliced
modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or
ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the
preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene
Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the
cell-cell distances in the phase space of each individual MS patient. Top panel: Pearson correlation of MNN
concatenation or MNN sum to MS patients. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to MS patients. Dashed line represents the mean correlation.
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Supplementary Figure 9: Evaluating batch effect correction for control patient PBMCs in MS case/control
dataset. (A) UMAP visualization of control patient PBMCs across batch correction strategies. Spliced and
unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors
(MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well
as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per
gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and
the cell-cell distances in the phase space of each individual control patient. Top panel: Pearson correlation of MNN
concatenation or MNN sum to control patients. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to control patients. Dashed line represents the mean correlation.
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Supplementary Figure 10: Overall performance of batch correction approaches across perturbation and
disease datasets. Batch effect correction performance was assessed according to three metrics, including the
median kBET rejection score, median LISI score, and average median Pearson correlation of phase space distances.
A correction approach was selected for each dataset if it had the lowest kBET score, highest LISI score, and highest
Pearson correlation score.

Supplementary Figure 11: Ranked integration method performance for trajectory inference. Integration
methods were ranked by their performance on inferring biological trajectories across mouse embryonic stem
cell cycle (mES cc) and mouse hematopoiesis differentiation (hema. diff.) datasets. Individual methods were
first ranked according to a trajectory inference correlation (TIcorr) score, which measures the harmonic mean of
cellular positioning correlation and feature importance score correlation to a ground truth reference. The overall
performance was then assessed by taking the average of ranked scores across datasets. (A) Overall quality of
spliced and unspliced integration performance on inferring biological trajectories. (B) Overall quality of moments
of spliced and RNA velocity integration performance on inferring biological trajectories. Here, a higher score
is represented by a longer lighter bar. Across both datasets and modalities, intermediate integration approaches
outperform unintegrated data on trajectory inference.
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Supplementary Figure 12: Integration performance on classifying cells according to perturbation condition
labels using label propagation. Label propagation was used to classify cells according to treatment condition
from (A) spliced and unspliced or (B) moments of spliced and RNA velocity integrated features generated from
eight integration approaches. The boxplots represent classification accuracy according to two metrics, top panel: F1
score, bottom panel: balanced accuracy score.
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Supplementary Figure 13: Integration performance on classifying cells according to perturbation condition
or disease status using a support vector machine (SVM) classifier. A SVM classifer was used to classify cells
according to treatment condition or disease status from (A) spliced and unspliced or (B) moments of spliced and
RNA velocity integrated features generated from eight integration approaches. The boxplots represent classification
accuracy according to three metrics, including a F1 score, balanced accuracy, and area under the receiver operator
curve (AUC).
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Supplementary Figure 14: Ranked integration method performance for perturbation classification. Integra-
tion methods were ranked according to their performance on classifying cells according to perturbation condition
across three datasets, including LPS stimulation of macrophage-like cells (LPS), INFγ stimulation of pancreatic
islet cells (INFγ), and chemotherapy treated cells from a patient with Acute Myeloid Leukemia (AML). Label
propagation was used to classify cells according to treatment condition and methods were evaluated by computing
three metrics of success: F1 score, balanced accuracy (accb), and area under the receiver operator curve (AUC).
The overall performance was then assessed by taking the average of ranked scores across datasets for each metric.
(A) Overall quality of spliced and unspliced integration performance on classification of treatment condition. (B)
Overall quality of moments of spliced and RNA velocity integration performance on classification of treatment
condition. Here, a higher score is represented by a longer lighter bar. Across all three datasets and metrics, spliced
and unspliced integration with concatenation and sum outperformed unintegrated data on perturbation classification.
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Supplementary Figure 15: Integration performance on classifying cells according to patient disease status
using label propagation. Label propagation was used to classify cells according to patient disease status from
(A) spliced and unspliced or (B) moments of spliced and RNA velocity integrated features generated from eight
integration approaches. The boxplots represent classification accuracy according to two metrics, top panel: F1
score, bottom panel: balanced accuracy.
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Supplementary Figure 16: Ranked integration method performance on disease state classification. Integra-
tion methods were ranked according to their performance on predicting whether cells were from a healthy or
disease patient across three datasets, including an Acute Myeloid Leukemia diagnosis and relapse dataset (AML), a
Multiple Sclerosis case/control dataset of cerebral spinal fluid (MS-CSF), and a Multiple Sclerosis case/control
dataset of peripheral blood mononuclear cells (MS-PBMC). Label propagation was used to classify cells according
to patient disease status and methods were evaluated by computing three metrics of success: F1 score, balanced
accuracy (accb), and area under the receiver operator curve (AUC). The overall performance was then assessed by
taking the average of ranked scores across datasets for each metric. (A) Overall quality of spliced and unspliced
integration performance on classification of cells according to patient disease status. (B) Overall quality of moments
of spliced and RNA velocity integration performance on classification of cells according to patient disease status.
Here, a higher score is represented by a longer lighter bar. Across all three datasets and metrics, spliced and
unspliced integration with PRECISE, concatenation and sum outperformed unintegrated data on disease state
prediction.
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