

Integrating temporal single-cell gene expression modalities for trajectory inference and disease prediction

Jolene S. Ranek^{1,2}, Natalie Stanley^{*2,3}, and Jeremy E. Purvis^{*1,2}

¹Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

²Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

³Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

March 1, 2022

Abstract

Current methods for analyzing single-cell datasets have relied primarily on static gene expression measurements to characterize the molecular state of individual cells. However, capturing temporal changes in cell state is crucial for the interpretation of dynamic phenotypes such as the cell cycle, development, or disease progression. RNA velocity infers the direction and speed of transcriptional changes in individual cells, yet it is unclear how these temporal gene expression modalities may be leveraged for predictive modeling of cellular dynamics. Here, we present the first task-oriented benchmarking study that investigates integration of temporal sequencing modalities for dynamic cell state prediction. We benchmark eight integration approaches on eight datasets spanning different biological contexts, sequencing technologies, and species. We find that integrated data more accurately infers biological trajectories and achieves increased performance on classifying cells according to perturbation and disease states. Furthermore, we show that simple concatenation of spliced and unspliced molecules performs consistently well on classification tasks and can be used over more memory intensive and computationally expensive methods. This work provides users with practical recommendations for task-specific integration of single-cell gene expression modalities.

1 Introduction

2 Single-cell RNA sequencing (scRNA-seq) technologies have enabled the functional characterization of cellular
3 states associated with dynamic biological processes such as development [1, 2, 3] and disease progression [4, 5, 6, 7].
4 While transcriptomic information holds great promise for gaining insight into the biological mechanisms that
5 govern phenotypic changes, inference has been traditionally limited to incompletely-sampled static mature mRNA
6 measurements. This poses two fundamental challenges for robust prediction of the dynamic progression of cell state.
7 First, many gene regulatory mechanisms can give rise to the same distribution of mature mRNA measurements
8 [8]. Second, snapshot data often fails to fully capture the large biological variability required for population-level
9 inference by missing important transition states or rare cell populations [9, 10, 11].

10 More recently, computational tools such as RNA velocity have been used to extract directed dynamic information
11 from single cells [12, 13, 14, 15, 16]. By leveraging unspliced pre mRNA and spliced mature mRNA molecules
12 in a kinetic model, RNA velocity can predict the future transcriptional state of a cell. Indeed, RNA velocity has
13 been successfully incorporated into algorithms for inferring fate probabilities [17], gene regulatory networks [18],
14 differentiation trajectories [19, 20, 21], and embeddings [22]. However, it is still unclear whether integrating spliced
15 gene expression with either unspliced molecules or RNA velocity predictions is useful for predictive modeling at
16 the data-level. Such an integrated approach may help uncover salient features predictive of cell type or response to
17 therapy, enhance our understanding of the relationship between cell states, or provide insight into the molecular
18 pathways that drive a cell's transition to a more pathological phenotype.

19 Single-cell multi-omics data integration methods have had great success in fusing different molecular data types, or
20 modalities for disease subtyping, predicting biomarkers, or uncovering cross-modality correlations [23, 24]. Here,
21 integration methods aim to merge individual layers of single-cell data (e.g. transcriptomic, proteomic, epigenomic)

*Correspondence to Natalie Stanley, email: natalies@cs.unc.edu and Jeremy Purvis, email: purvis@email.unc.edu

22 into a unified consensus representation, such as an integrated graph [25] or a joint-embedding [24, 26]. To do
23 so, computational approaches have leveraged techniques, including kernel learning [27, 28], matrix factorization
24 [29, 30, 31, 32, 33], or deep learning [34]. Moreover, downstream analysis of integrated multi-omics data has provided
25 fundamental insights into the molecular mechanisms underlying complex biological processes, including
26 disease heterogeneity and pathological development [35].

27 Motivated by identifying a new more biologically-meaningful set of features underlying cellular dynamics, we
28 investigate integration of gene expression modalities at three distinct temporal stages of gene regulation: unspliced,
29 spliced, and RNA velocity. We benchmark eight integration approaches on eight biological datasets with applications
30 ranging from cellular differentiation to disease progression. We show that unspliced and spliced integration improves
31 predictive performance when inferring biological trajectories, perturbation conditions, and disease states. This
32 work illustrates how integrated temporal gene expression modalities may be leveraged for predictive modeling of
33 cellular dynamics.

34 Results

35 We compared eight integration approaches for recovering discrete and continuous variation in cell and disease
36 states. In the sections that follow, we will describe the integration results in more detail. We will begin by giving
37 an introduction of the datasets used in this study. Next, we will provide details about the benchmarking design,
38 including the integration methods considered and the evaluation criteria for each prediction task. We will then
39 demonstrate how an integrative analysis can be used to obtain increased biological insight over spliced expression
40 alone. Ultimately, we will end with practical recommendations for task-specific integration.

41 Description of datasets

42 We tested integration method performance on inferring biological trajectories or classifying cells according to
43 perturbation condition or disease status across eight publicly available single-cell RNA sequencing datasets (see
44 Methods, Supplementary Table 1). Datasets were grouped into three general categories according to the prediction
45 task. Here, we briefly introduce the datasets used in this study.

46 *Datasets for Trajectory Inference (TI):* We evaluated inference of biological trajectories using two single-cell RNA
47 sequencing datasets representing the cell cycle and stem cell differentiation. To assess inference of cell cycle, we
48 considered a mouse embryonic stem cell cycle dataset [36], where embryonic stem cells were collected along three
49 stages of the cell cycle (G1, S, G2/M). Cell cycle phase was manually annotated *a priori* based on flow sorting
50 cells according to the Hoescht 33342 stained distribution. The authors of the original study used this dataset to
51 assess the proportion of cell-to-cell heterogeneity that arises from cell cycle variation. To assess inference of a
52 complex differentiation trajectory, we considered a mouse hematopoietic stem and progenitor cell differentiation
53 (HPSC) dataset [37]. Here, the transcriptomes of HPSCs were profiled and nine cell surface protein measurements
54 (Supplementary Table 3) were used to annotate six subpopulations, including, long-term hematopoietic stem cells
55 (LT-HSC), lymphoid multipotent progenitors (LMPP), multipotent progenitors (MPP), megakaryocyte-erythrocyte
56 progenitors (MEP), common myeloid progenitors (CMP), and granulocyte-monocyte progenitors (GMP). Moreover,
57 in the original study, reconstruction of the differentiation trajectory revealed dynamic gene expression patterns
58 consistent with early lymphoid, erythroid, and granulocyte-macrophage differentiation. For our analysis, cells were
59 excluded if they did not have ground truth annotations.

60 *Datasets for perturbation classification:* To assess integration performance on classifying cells according to
61 perturbation condition, we considered three diverse datasets with clinical relevance representing drug stimulation
62 and treatment of cells, denoted as LPS stimulation, INF γ stimulation, and AML chemotherapy, respectively. In the
63 LPS stimulation dataset [38], RAW 264.7 macrophage-like cells were treated with time course of lipopolysaccharide
64 (0 min, 50 min-, 150min-, 300min- LPS) to induce NF- κ B expression. NF- κ B is a transcription factor that serves as
65 a master regulator of inflammatory responses from macrophages and other innate immune cells [39]. The authors
66 of this study integrated live cell imaging with single-cell RNA sequencing to demonstrate that NF- κ B signaling
67 shapes gene expression and has a functional role on cellular phenotypes. Therefore, in our experiments, we sought
68 to classify cells according to stimulation condition (e.g. 150min- LPS). In the INF γ stimulation dataset [40],
69 pancreatic islet cells from three donors were stimulated with or without Interferon- γ (INF γ) for 24 hours. INF γ
70 is a proinflammatory cytokine that has been implicated in pancreatic beta cell damage during the pathogenesis
71 of Type I Diabetes [41]. Here, the authors applied their method MELD to characterize INF γ treatment response
72 across pancreatic islet cell populations and identified a non-responsive subpopulation of beta cells characterized
73 by high expression of insulin. Consequently, we sought to classify INF γ -stimulated from unstimulated cells.

74 Lastly, the AML chemotherapy dataset [5] consisted of peripheral blood mononuclear cells (PBMCs) collected
75 from a patient with Acute Myeloid Leukemia (AML) at baseline or after two or four days of treatment with
76 chemotherapy agents Venetoclax and Azacitidine. It is hypothesized that the persistence of leukemia stem cells
77 (LSCs) following treatment drives disease severity, relapse, and results in worse clinical outcomes [7, 42]. Here, the
78 authors demonstrate how chemotherapy treatment induces the depletion of LSCs through metabolic reprogramming,
79 where oxidative phosphorylation, a critical pathway for LSC maintenance and survival, is suppressed. Thus, we
80 sought to classify PBMCs according to treatment condition (day 0, day 2, day 4).

81 *Datasets for disease status classification:* To assess integration performance on classifying cells according to
82 disease status, we considered three case/ control datasets of two disease systems, Acute Myeloid Leukemia (AML)
83 and Multiple Sclerosis (MS). In the first dataset [7], Leukemia stem cells (LSCs) were collected from AML patients
84 at treatment-naive diagnosis ($N = 5$) and following relapse after chemotherapy treatment ($N = 5$). Here, the
85 authors compared diagnosis from relapse samples to characterize gene expression heterogeneity during AML
86 disease progression and show that differences were largely due to metabolic reprogramming, apoptotic signaling,
87 and chemokine signaling. Therefore, in our experiments, we sought to classify diagnosis from relapse cells. For the
88 second and third study, we considered a Multiple Sclerosis dataset [6], where PBMCs and cerebral spinal fluid
89 (CSF) were collected from MS patients ($N = 5$) and controls ($N = 5$). MS is a chronic inflammatory disorder
90 of the central nervous system that results in neurological dysfunction [43]. When examining the transcriptional
91 profiles of MS patient cells as compared to controls, CSF exhibited differences in cell type composition, including
92 an enrichment of myeloid dendritic cells and the expansion of CD4+ cytotoxic T cells and late stage B cells.
93 In contrast, PBMCs exhibited increased transcriptional diversity with an increased proportion of differentially
94 expressed genes. Consequently, we sought to classify control from MS cells across patients using either CSF or
95 PBMC biological samples.

96 Selection of integration methods

97 The power of multi-omics data integration methods lies in their ability to combine individual layers of data (e.g.
98 spliced expression, RNA velocity) to identify a new set of cellular features that more holistically represents cell type
99 or functional state [23, 44]. Once computed, these features can be used in machine learning models to jointly analyze
100 cell type-specific differences or to obtain clinically meaningful predictions that can inform therapeutics [45, 46].
101 In this study, our goal is to compare integration approaches for merging gene expression data matrices across the
102 same set of profiled cells in order to evaluate their performance on downstream analysis tasks, including trajectory
103 inference or sample-associated classification of cells. Given the large variety of different integration approaches,
104 we performed a systematic evaluation of eight integration methods by selecting and grouping approaches according
105 to two categories: early integration approaches and intermediate integration approaches. First, we consider early
106 integration approaches as baseline computational strategies for merging individual modalities into one input matrix.
107 Here, we selected three representative baseline strategies (cell-wise concatenation, cell-wise sum, CellRank [17]),
108 in addition to an unintegrated control. In contrast, we consider intermediate integration approaches as computational
109 strategies that transform individual modalities into an intermediate representation prior to merging, such as a cell
110 similarity graph or a subspace. Within this category, we selected four representative methods, including Similarity
111 Network Fusion (SNF) [25], Grassmann Joint Embedding [26], integrated diffusion [24], and Patient Response
112 Estimation Corrected by Interpolation of Subspace Embeddings (PRECISE) [47]. Here, we briefly define the eight
113 integration approaches evaluated in this study. For more details on the overall problem formulation and integration
114 method implementation, see the integration section in the Methods.

- 115 1. *Unintegrated:* A representation consisting of one data modality. In this case, our unintegrated data consists
116 of mature spliced expression counts, as this is what is traditionally used for downstream single-cell analysis,
117 as outlined by current best practices [48].
- 118 2. *Concatenation:* Modalities are merged through cell-wise concatenation of data matrices.
- 119 3. *Sum:* Modalities are merged through summing data matrices.
- 120 4. *CellRank:* CellRank [17] merges data modalities by computing a weighted sum of gene expression similarity
121 and RNA velocity transition matrices. We refer to this approach as an early integration strategy as it simply
122 reweights the edges of the original gene expression cell similarity graph according to RNA velocity transition
123 probabilities. Notably, this method is specific to integrating RNA velocity data.
- 124 5. *Similarity Network Fusion (SNF):* SNF [25] merges data by first computing an cell affinity graph for each
125 data type. Next, individual modality networks are merged through nonlinear diffusion iterations to obtain a
126 fused network.

127 6. *Grassmann Joint Embedding*: Grassmann Joint Embedding [26] integrates data modalities by first computing
 128 an cell affinity graph for each data modality, and then merges networks through subspace analysis on a
 129 Grassmann manifold.

130 7. *Integrated diffusion*: Integrated diffusion [24] merges data modalities by first computing a diffusion operator
 131 for each denoised data type. Next, individual operators are merged by computing a joint diffusion operator.

132 8. *Patient Response Estimation Corrected by Interpolation of Subspace Embeddings (PRECISE)*: PRECISE
 133 merges data by first performing principal components analysis (PCA) on each individual modality. Next,
 134 principal components are geometrically aligned and consensus features are determined through interpolation.
 135 For this analysis, we implement two versions by projecting spliced expression onto (1) the principal vectors
 136 (denoted as PRECISE) or (2) the consensus features (denoted as PRECISE consensus).

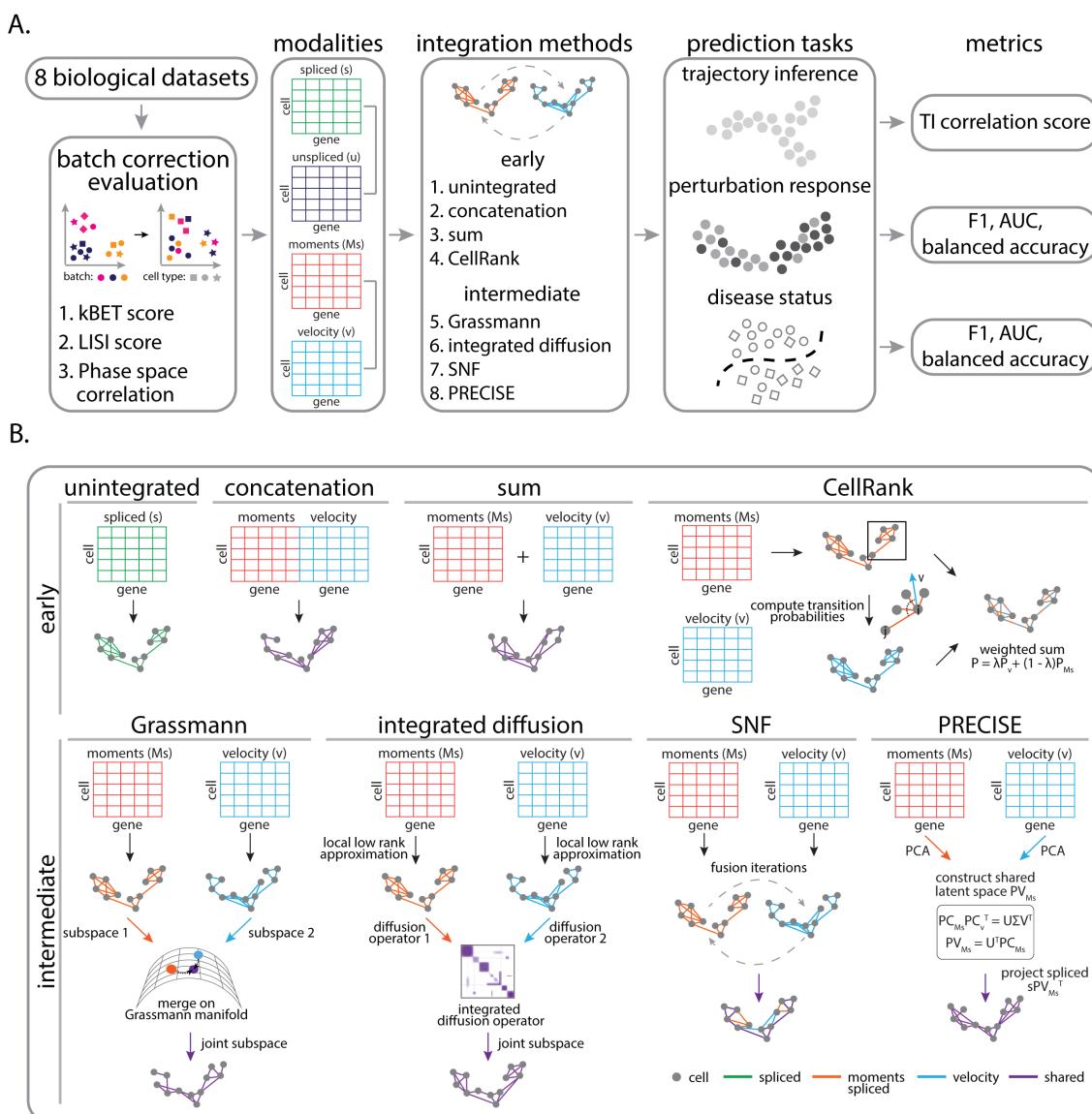


Figure 1: Schematic overview of benchmarking design. (A) Workflow of integration method evaluation. Eight integration approaches and four temporal mRNA modalities are evaluated on three prediction tasks. Data are first preprocessed and jointly batch effect corrected. Next cross-modality integration (spliced and unsplashed counts or moments of spliced and RNA velocity) is performed using eight different integration approaches. Features specified through the integration strategy are used to infer trajectories, predict response to drug treatment, and classify patient cells. (B) Overview of data integration strategies (unintegrated, concatenation, sum, CellRank [17], Grassmann joint embedding [26], integrated diffusion [24], SNF [25], and PRECISE [47]).

137 **Benchmarking overview**

138 Given that gene expression modalities are collected along a temporal axis of gene regulation, we evaluated the
139 performance of integrating unspliced, spliced, or RNA velocity modalities on predicting discrete and continuous
140 variation in cell and disease states across a range of biological scenarios (Supplementary Table 1). Following
141 transcriptomic profiling, spliced and unspliced counts were preprocessed and jointly batch effect-corrected prior
142 to RNA velocity estimation (see Methods, Supplementary Table 1, Supplementary Figures 1-10). For each set
143 of modalities (spliced and unspliced counts, moments of spliced and RNA velocity), our goal is to identify a
144 consensus representation that we can use as input to a predictive model (Figure 1A). We benchmarked eight
145 integration approaches for combining these gene expression modalities by evaluating how well integrated features
146 infer biological trajectories, classify a cell's response to a drug perturbation, or classify the disease status of a
147 cell. Moreover, to quantify the predictive performance of an integration strategy, we computed several metrics for
148 each prediction task. To assess the quality of trajectory inference prediction following integration, we computed a
149 trajectory inference correlation score to a ground truth reference that takes into account cellular positioning and
150 trajectory-specific dynamically expressed genes. To assess classification performance, we computed the accuracy
151 of predicted labels from an integration strategy using three complementary metrics, such as F1 score, balanced
152 accuracy, and area under the receiver operator curve. For integration methods that required user-specified input
153 parameters (Supplementary Table 2), we performed hyperparameter tuning to select the best performers. We then
154 ranked the overall predictive performance of integration strategies for each task by averaging scores across all
155 datasets (see Methods). This measures how well incorporating dynamic mRNA information aids in recovering
156 intermediate transitions or classifying the state of a cell.

157 In selecting an appropriate data integration strategy, it is crucial that the approach is able to satisfy computational
158 challenges that are specific to each modality. First, a method must be robust to varying amounts of sparsity
159 between data types. Single-cell RNA sequencing modalities produce matrices which contain a large proportion of
160 zeros, where only a small fraction of total transcripts are detected due to capture inefficiency, amplification noise,
161 and stochasticity [49]. This sparsity is far greater in unspliced molecules due to polyadenylation enrichment in
162 library preparation [12]. Moreover, given that unspliced, spliced, and RNA velocity predictions are influenced by
163 biological and technical noise, a method must be able to resolve noisy signals for robust prediction. To address these
164 challenges, we compared two classes of integration approaches for combining temporal sequencing modalities,
165 including early integration approaches (concatenation, sum, CellRank) and intermediate integration approaches
166 (Grassmann joint embedding, integrated diffusion, SNF, PRECISE) (see Selection of integration methods, Methods,
167 Figure 1B).

168 **Integration performance on inference of biological trajectories**

169 When undergoing dynamic processes such as differentiation, cells exhibit a continuum of cell states with fate
170 transitions marked by external stimuli, cell-cell interactions, and stochastic gene expression [50]. One limitation
171 of trajectory inference (TI) reconstruction from snapshot single-cell data is the fact that many gene regulatory
172 mechanisms and cellular dynamics could give rise to the same distribution of cell states [8]. We reasoned that
173 incorporation of unspliced counts or RNA velocity data may provide increased granularity of the state space to
174 more accurately recapitulate the underlying trajectory. To test this hypothesis, we evaluated integration method
175 performance on inferring two types of biological trajectories, cell cycle and differentiation, by measuring their
176 ability to (1) recover known cell population transitions and (2) infer lineage-specific dynamically expressed
177 genes.

178 In order to construct reference trajectories for evaluation, we chose well-studied biological systems and selected
179 datasets that had gold standard cell type annotations according to the expression of particular characteristic
180 phenotypic markers. Therefore, we selected datasets consisting of mouse embryonic stem cell cycle and mouse
181 hematopoietic stem and progenitor cell differentiation trajectories (see Description of datasets, Methods). We
182 then quantified how well integrated features recapitulated cell cycle or differentiation trajectories by adapting
183 an approach previously used to assess the accuracy of trajectory inference methods [51] (see Methods). Briefly,
184 we constructed predicted trajectories for each integration approach by applying partition-based graph abstraction
185 (PAGA) [52], a state-of-the-art trajectory inference method, on the joint graph following integration. First, PAGA
186 was used on the integrated k -nearest neighbor graph to determine directed weighted edges between known cell
187 types according to FACS annotations. Here, the edge weights quantify the strength in connectivity between cell
188 populations, which represents the overall confidence of a cell population transition. Next, we applied diffusion
189 pseudotime [53] to determine an individual cell's progression through those high-confidence paths. Since integrated
190 features are used as input, the inferred trajectory now contains transcriptional information from a transitional
191 process at or following a measured time point. To assess the accuracy of predicted trajectories, we defined a

192 trajectory inference correlation score that compares predicted trajectories to a ground truth reference trajectory
 193 we curated from the literature (see Methods). By taking into account a cell's position along the trajectory, as well
 194 as the features that are dynamically expressed, this correlation metric reflects how well integration infers known
 195 cellular dynamics. Moreover, to ensure a robust comparison across integration approaches, we generated predicted
 196 trajectories and correlation scores with respect to the same ten random root cells selected from the annotated root
 197 cluster (mouse embryonic cell cycle: G1, mouse hematopoietic differentiation: long-term hematopoietic stem cells
 198 (LT-HSC)).

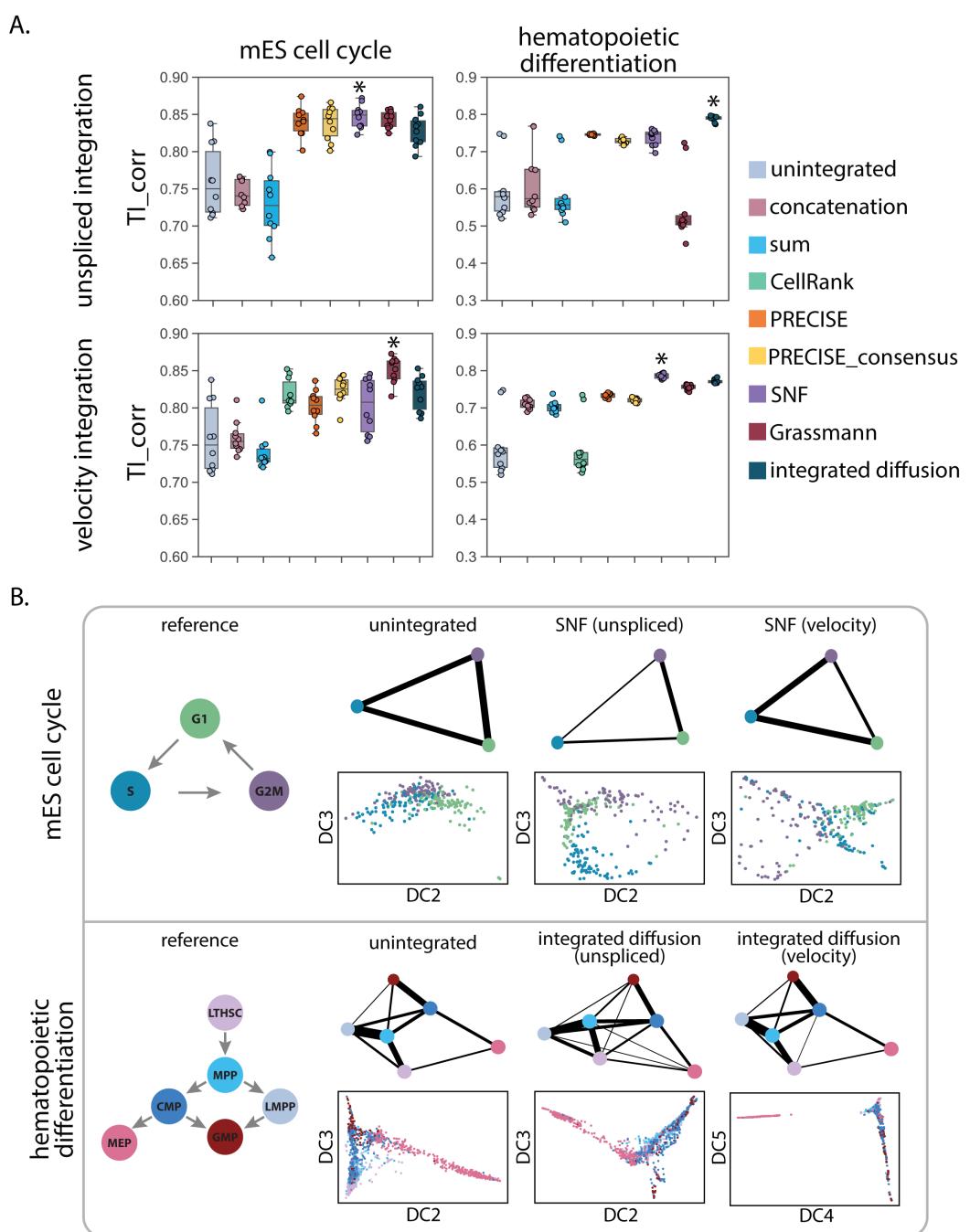


Figure 2: Integration improves inference of cell cycle and differentiation trajectories. Trajectory inference was performed to assess the quality of inferred mouse embryonic cell cycle and mouse hematopoiesis differentiation trajectories from (A top panel) spliced and unspliced or (A bottom panel) moments of spliced and RNA velocity integrated features generated from eight integration methods. The boxplots represent trajectory inference correlation scores (TI_{corr}) for ten random root cells. * indicates the method with the highest median TI_{corr} score. (B) PAGA predicted trajectories and diffusion map embeddings representing the inferred biological trajectory for unintegrated data, as well as high ranking performers for unspliced and RNA velocity integration.

199 When comparing predicted trajectories across integration approaches, we found spliced and unspliced as well as
200 moments of spliced and RNA velocity integrated features led to a higher trajectory inference correlation score
201 when compared to unintegrated data (Figure 2A). For cell cycle, the best performing median TI correlation scores
202 were 0.849, 0.856, 0.750 for unspliced integration, velocity integration, and unintegrated data, respectively. For
203 hematopoietic stem cell differentiation, the scores were 0.792, 0.787, 0.579 for unspliced integration, velocity
204 integration, and unintegrated data, respectively. We next investigated how incorporating temporal gene expression
205 modalities alters the inferred PAGA trajectories and diffusion map embeddings for the top integration performers
206 with respect to unintegrated data (Figure 2B). When examining the PAGA graphs, we found that all predicted
207 trajectories captured the major cell state transitions supported by the literature. For mouse embryonic cell cycle,
208 predicted trajectories included the cyclical transition through the proliferative phases of the cell cycle [36]. For
209 mouse hematopoiesis, predicted trajectories inferred known developmental lineages, with cells transitioning from
210 the multipotent progenitor (MPP) population to early lymphoid (LMPP), erythroid (MEP), and granulocyte-
211 macrophage (GMP) cell populations [54, 37]. In addition to capturing known transitions, predicted trajectories
212 with integrated data resulted in an improved recovery of cellular dynamics. For example, integration of spliced
213 and unspliced counts with SNF better resolves the smooth cyclical progression through the embryonic cell cycle,
214 with cells following a clear trajectory from G1 to S to G2/M (Figure 2B). Moreover, by comparing the change in
215 PAGA connectivity across the same integration strategy for different input modalities (Figure 2B), we observe how
216 temporal gene expression modalities influences the confidence of an inferred cell state transition. When integrating
217 unspliced and spliced features for cell cycle inference, we observe an increase in PAGA connectivity from G2/M to
218 G1 to S phases, whereas RNA velocity integration illustrates the next time point and provides stronger transition
219 weights from G1 to S to G2/M. This added layer of granularity demonstrates prioritized cell type transitions with
220 respect to the underlying gene expression dynamics, which may provide additional insight into the gene regulatory
221 programs that drive specific paths of temporal variation. Lastly, by aggregating trajectory inference correlation
222 scores across datasets, we find integrated diffusion and similarity network fusion amongst the best ranking methods
223 for predicting trajectories with both sets of modalities (Supplementary Figure 11). Taken together, these results
224 indicate that integrating gene expression data improves the ability to predict temporal changes in gene expression
225 along progressive changes in cell state.

226 Testing integration under perturbation conditions

227 A key application of scRNA sequencing is the ability to identify subpopulations of cells that are either responsive or
228 resistant to drug therapy [55]. To examine if integration of unspliced or RNA velocity data can aid in these tasks, we
229 tested integration performance on classifying perturbation condition labels from three diverse datasets with clinical
230 relevance, including lipopolysaccharide (LPS) stimulated macrophage-like cells, Interferon γ (INF γ) stimulated
231 pancreatic islet cells, and peripheral blood mononuclear cells (PBMCs) collected from a patient with Acute Myeloid
232 Leukemia (AML) after chemotherapy treatment (see Description of datasets). Using these perturbation datasets, we
233 constructed a set of integrated features corresponding to a cell's transcriptional response following a perturbation.
234 We then considered the problem of cell state classification, where our goal is to learn the annotated condition labels
235 (e.g. INF γ stimulated or unstimulated) from the underlying feature set. We labeled or classified cells using label
236 propagation [56] (see Methods) and compared predictions to the ground truth labels using three complementary
237 accuracy metrics, including area under the receiver operator curve (AUC), F1 score, and balanced accuracy (acc_b).
238 Across all three datasets, we found that integration of spliced and unspliced counts led to higher classification
239 accuracy than unintegrated data (Figure 3A), with median AUCs (best performing integrated: 0.905, 0.953, 0.785;
240 unintegrated: 0.895, 0.930, 0.768) for LPS, INF γ , AML chemotherapy datasets, respectively. In contrast, we
241 found that RNA velocity integration generally led to worse classification accuracy than unintegrated data (Figure
242 3B). One notable exception was integration performed with CellRank, which resulted in a similar performance to
243 unintegrated data, with median AUCs (CellRank: 0.895, 0.934, 0.766, unintegrated: 0.895, 0.930, 0.768). Similar
244 results were obtained for additional metrics, such as F1 score and balanced accuracy (Supplementary Figure 12).
245 As a secondary validation, we trained a support vector machine (SVM) classifier to learn perturbation labels from
246 the shared lower dimensional space following integration. We performed nested 10-fold cross validation to obtain a
247 distribution of predictions for each method and dataset (see Methods). We observed similar classification results
248 with unspliced integration outperforming unintegrated data (Supplementary Figure 13).

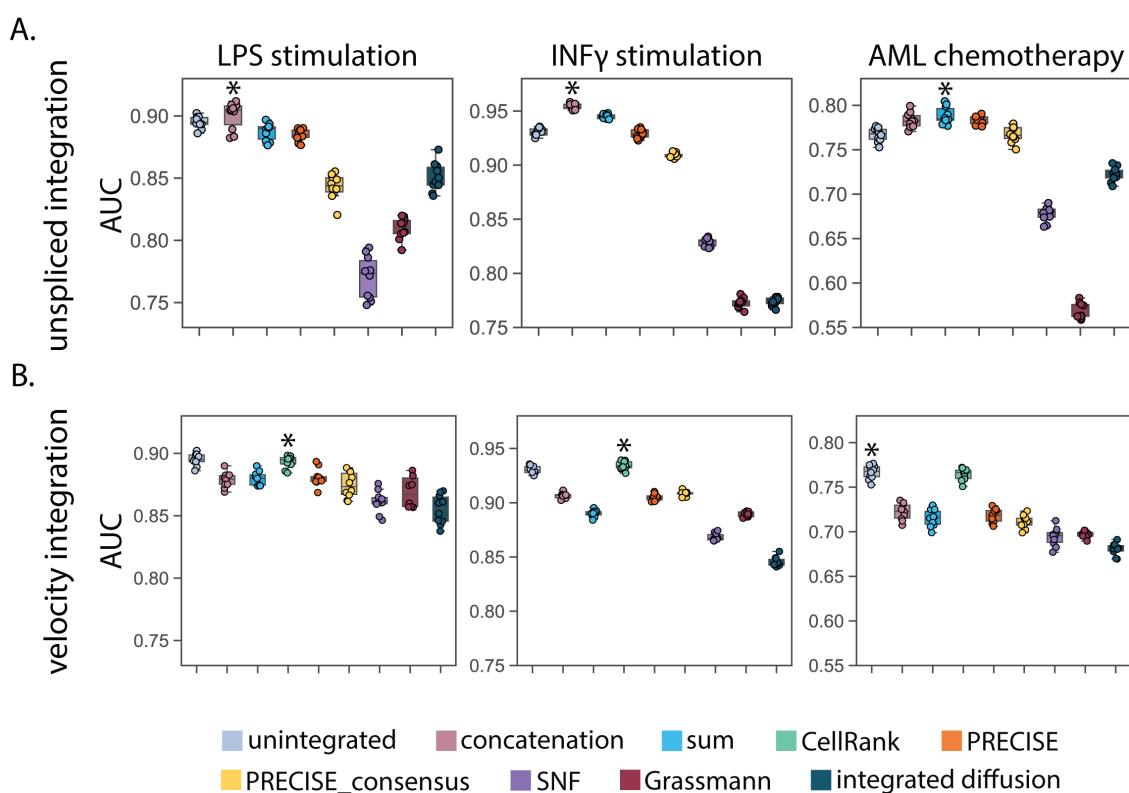


Figure 3: Integrating spliced and unspliced counts improves drug treatment condition prediction. Label propagation was used to classify cells according to treatment response from (A) spliced and unspliced or (B) moments of spliced and RNA velocity integrated features generated from eight integration approaches. The boxplots represent classification accuracy according to area under the receiver operator curve (AUC) and the * represents the method with the highest median AUC. Across all three datasets, spliced and unspliced integration achieves increased classification accuracy over unintegrated data.

249 To rank methods according to how accurately they can predict a cell's perturbation, we computed aggregate scores
 250 by taking the mean of individual method scores across datasets (see Methods). Overall, we found that early
 251 integration strategies (concatenation, sum, CellRank) as well as PRECISE tended to outperform intermediate
 252 embedding-based approaches (SNF, Grassmann joint embedding, integrated diffusion) (Supplementary Figure 14).
 253 The best performing method for unspliced integration was concatenation (Supplementary Figure 14A), whereas
 254 the best performing method for RNA velocity integration was CellRank (Supplementary Figure 14B). Overall,
 255 these results suggest that a straightforward integration of spliced and unspliced counts may provide the best
 256 strategy to most accurately predict a cell's associated perturbation. Furthermore, these results illustrate how an
 257 integrated analysis of gene expression modalities may provide the granularity necessary for better identifying cells
 258 that are strongly associated with a particular treatment condition, which may provide insights into the biological
 259 mechanisms conferring a phenotypic response.

260 Spliced and unspliced integration improves disease state classification

261 We next asked if an integrative analysis of unspliced or RNA velocity data can help distinguish discrete disease cell
 262 states. In particular, we aimed to evaluate integration performance on predicting whether or not cells were from
 263 control or disease patients using three datasets, including an Acute Myeloid Leukemia (AML) diagnosis/relapse
 264 dataset, a Multiple Sclerosis (MS) case/control dataset of cerebral spinal fluid (CSF), and a MS case/ control dataset
 265 of peripheral blood mononuclear cells (PBMCs) (see Description of datasets). To test whether leveraging temporal
 266 gene expression modalities can aid in this tasks, we used the same label propagation strategy; however, now
 267 formulated as a binary classification task based on the disease status labels for each cell. Similar to the perturbation
 268 results, we found that unspliced integration achieves higher classification accuracy for predicting disease status,
 269 with the median AUCs for the best performing methods (0.916, 0.861, 0.884) compared to unintegrated data
 270 (0.895, 0.828, 0.825) for AML, MS-CSF, and MS-PBMC datasets, respectively (Figure 4A). Interestingly, we
 271 observe differences in the predictive performance of integrated modalities across biological samples (CSF, PBMCs)

272 collected from the same cohort of patients. Overall trends for integration performance were consistent across
 273 additional metrics and classifiers (Supplementary Figure 13, Supplementary Figure 15). When ranking each
 274 particular method's performance on classifying the disease status of a cell across datasets, we found the best
 275 performing methods for unspliced integration to be PRECISE, sum and concatenation (Supplementary Figure
 276 16).

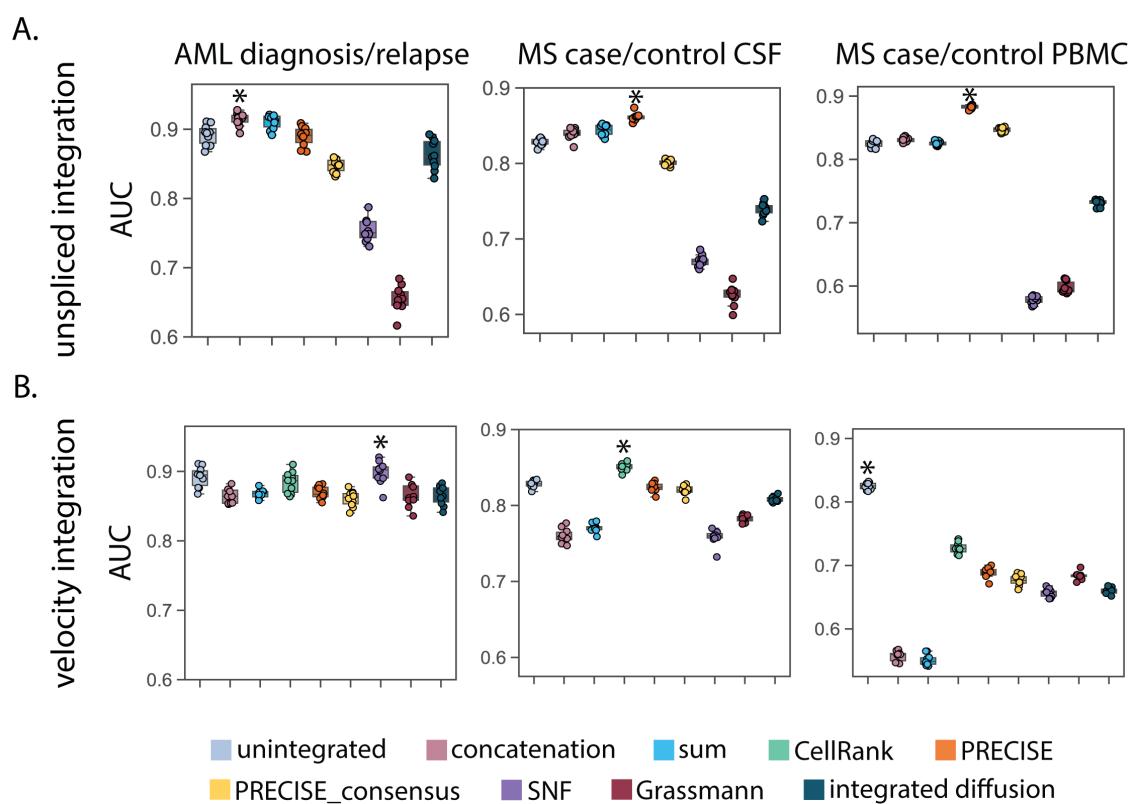
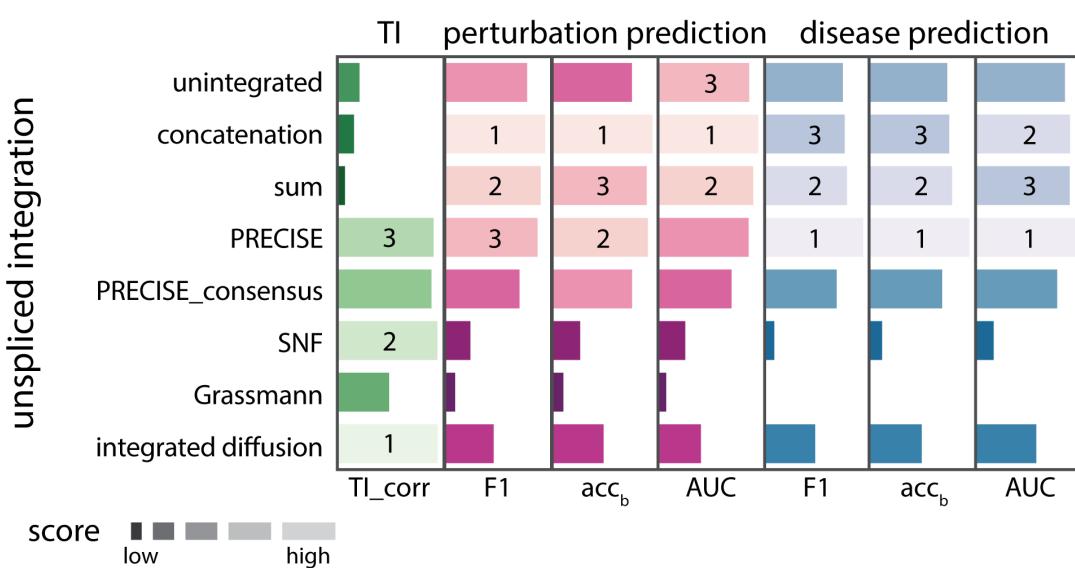


Figure 4: Integrating spliced and unspliced counts improves disease state classification. Label propagation was used to classify cells according to patient disease status from (A) spliced and unspliced or (B) moments of spliced and RNA velocity integrated features generated from eight integration approaches. The boxplots represent classification accuracy according to area under the receiver operator curve (AUC) and the * represents the method with the highest median AUC. Across all three datasets, spliced and unspliced integration achieves increased classification accuracy over unintegrated data.

277 Overall integration method performance across datasets and tasks

278 Figure 5 displays the overall ranked aggregate scores for each method colored according to task (green: trajectory
 279 inference, pink: perturbation classification, blue: disease state classification). Across all three tasks, we found
 280 unspliced integration (Figure 5A) to be more predictive of cellular state than RNA velocity integration (Figure
 281 5B) or no integration (unintegrated Figure 5A, 5B). While integration method performance varied across datasets,
 282 experimental modalities, and tasks, some clear trends emerged. When inferring biological trajectories, unspliced
 283 integration with integrated diffusion and similarity network fusion (SNF) provided the highest trajectory inference
 284 correlation score to the ground truth (Figure 5A). In comparison, when evaluating perturbation or disease cell state
 285 classification, concatenation, sum, and PRECISE were amongst the best ranking methods across all three metrics
 286 and datasets (Figure 5A). Collectively, these results indicate that integration method performance is task-specific,
 287 with intermediate embedding-based approaches outperforming unintegrated data on inferring biological trajectories
 288 and early baseline approaches achieving increased classification performance.

A.



B.

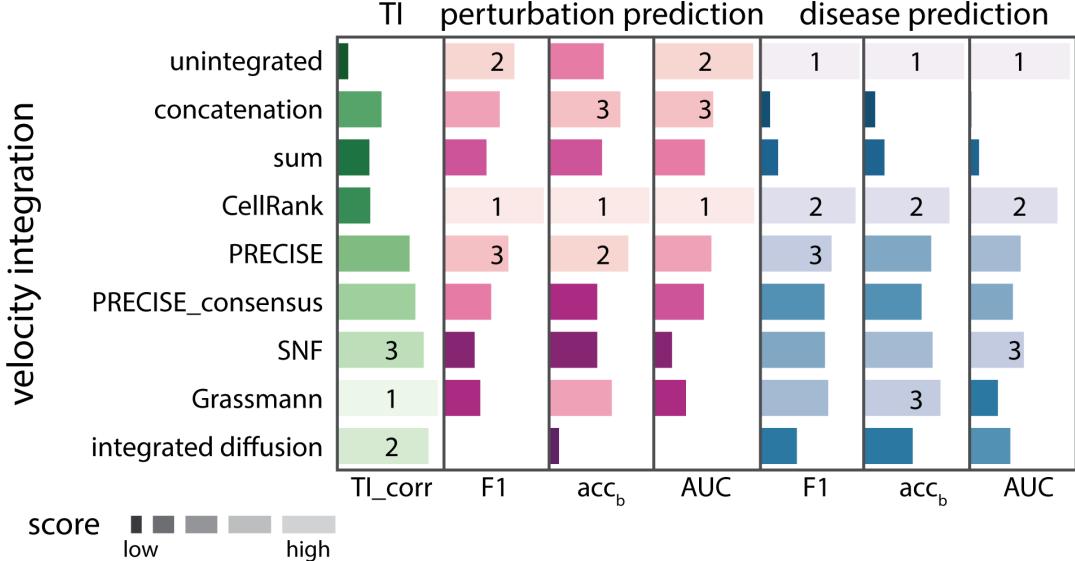


Figure 5: Ranked integration method performance across prediction tasks. Integration methods were ranked by averaging their overall performance across datasets for each prediction task (trajectory inference: green, perturbation classification: blue, and classification of disease status: pink). Ranked scores were computed for several metrics for evaluating a prediction task: (TI_{corr}), F1 score, balanced accuracy (acc_b), and area under the receiver operator curve (AUC). Here, higher ranked method scores are indicated by a longer lighter bar. (A) Overall quality of spliced and unspliced integration performance according to several metrics for evaluating prediction tasks. (B) Overall quality of moments of spliced and RNA velocity integration performance according to several metrics for evaluating prediction tasks. Of note, CellRank was not performed on unspliced and spliced integration, as it relies on RNA velocity data. Across all three prediction tasks, unspliced integration outperforms unintegrated data, while RNA velocity integration achieves increased trajectory inference correlation and perturbation classification scores.

289 Discussion

290 Here, we investigated integration of unspliced, spliced, and RNA velocity gene expression modalities for resolving
 291 discrete and continuous variation in cell and disease states. We found that integrating modalities along a temporal
 292 axis of gene regulation provides additional information necessary for robustly predicting cellular trajectories during
 293 differentiation and cell cycle. Additionally, we show how spliced and unspliced integrated features can be used

294 to better classify cells according to sample-associated phenotypes acquired after an experimental perturbation or
295 within a disease state. Lastly, by benchmarking eight data integration methods on the aforementioned prediction
296 tasks, we elucidate method performance specific to gene expression modalities or tasks. While intermediate
297 integration approaches such as SNF, Grassmann joint embedding, integrated diffusion, and PRECISE facilitate
298 increased performance on inferring biological trajectories, simple integration of spliced and unspliced counts
299 through concatenation, sum, or PRECISE achieves increased trajectory inference correlation scores, perturbation
300 classification accuracy, and disease state classification accuracy across most datasets. To this end, integrating multiple
301 gene expression modalities profiled from the same set of cells provides a finer resolution of the transcriptional
302 landscape of development or disease. Thus, an integrated analysis of gene expression modalities may be crucial for
303 the interpretation of dynamic phenotypes.

304 Several limitations should be considered when integrating gene expression modalities for cellular trajectory
305 inference or disease state classification. In this study, we evaluated methods for constructing integrated graphs or
306 joint embeddings with *a priori* knowledge of ground truth labels. For trajectory inference evaluation, we explored
307 how integrated data influences the change in connectivity or inferred cell state transitions between known cell
308 types identified via FACS. We found that integrated data resulted in increased trajectory inference correlation with
309 respect to a reference trajectory. However, given that the results are sensitive to choice in hyperparameters, it may
310 be challenging to select optimal hyperparameters without *a priori* knowledge of cell types or expected cell type
311 transitions. Here, a range of hyperparameters should be considered when using the intermediate integration methods
312 outlined in this study. Of note, we observed that baseline integration approaches, such as sum and concatenation of
313 spliced and unspliced counts perform consistently well on classifying sample-associated cell phenotypes. This
314 is particularly useful as these approaches are less computationally expensive and do not require hyperparameter
315 tuning. Of note, these baseline methods did not perform well when integrating moments of spliced data with RNA
316 velocity predictions for classification.

317 Furthermore, the limitations of integration performance are an extension of the modalities used as input. RNA
318 velocity is a noisy extrapolation of gene regulation that can be biased by insufficient sampling of unspliced
319 molecules [57], relies on model assumptions that may be violated [58], and is sensitive to choice in preprocessing
320 tools, such as the quantification of mRNA abundances [59]. Notably, the accuracy of RNA velocity estimation
321 can be improved by incorporating both gene expression and chromatin accessibility data [60]. Moreover, there
322 is currently no consensus on how to appropriately batch effect correct linked gene expression modalities [57].
323 We chose to jointly correct spliced and unspliced count matrices according to the three metrics and two methods
324 outlined in this study; however, we note that this challenge may bias or limit the interpretation of our results. We
325 anticipate improved performance as bioinformatics tools are developed to better analyze such data. Lastly, although
326 RNA velocity often did not result in an increase in classification accuracy for the datasets selected in this study,
327 this does not preclude it from being informative for the analysis of other datasets. RNA velocity captures gene
328 expression dynamics over the timescale of hours, thus may provide crucial information for longitudinal datasets
329 with finer temporal sampling.

330 Future work could focus on evaluating temporal gene expression integration for a wider range of tasks, such
331 as unsupervised cell population identification [61], characterizing phenotypic-related cells [40], characterizing
332 differentially abundant cell populations [62, 63], or gene regulatory network inference [64]. This work could also
333 be extended to the analysis of other extrapolated regulatory modalities, including RNA velocity in-situ [14], protein
334 velocity [15], or chromatin velocity [65].

335 Methods

336 Datasets

337 We evaluated trajectory inference, experimental perturbation, and disease classification performance on eight
338 datasets spanning various biological contexts. For more details on data preprocessing, see Supplementary Table
339 1.

340 **Hematopoiesis differentiation:** FASTQ files consisting of hematopoietic stem and progenitor cells were accessed
341 from Nestorowa et al., [37] with the accession code GSE81682. FACS labels from broad gating were used to
342 annotate six cell populations along three differentiation lineages: long term hematopoietic stem cells (LT-HSC),
343 lymphoid multipotent progenitors (LMPP), multipotent progenitors (MPP), megakaryocyte-erythrocyte progenitors
344 (MEP), common myeloid progenitors (CMP), and granulocyte-monocyte progenitors (GMP) (see Supplementary

345 Table 3). Individual cell FASTQ files were aligned to the mouse reference genome mm10 with the STAR v2.7.7
346 aligner. A loom file containing spliced and unspliced molecular counts was obtained using Velocyto v0.17.

347 **Mouse embryonic cell cycle:** A dataset of mouse embryonic stem cells undergoing different stages of the cell
348 cycle was accessed from Buettner et al., [36] with the accession code E-MTAB-2805. FACS cell cycle labels from
349 Hoesct flow sorting were used to annotate cells along three phases: G1, S, and G2/M. Individual cell FASTQ files
350 were aligned to the mouse reference genome mm10 with the STAR v2.7.7 aligner. A loom file containing spliced
351 and unspliced molecular counts was subsequently generated with Velocyto v0.17.

352 **LPS stimulation:** FASTQ files were accessed from Lane et al., [38] with the accession code GSE94383. Here,
353 a macrophage-like cell line RAW 264.7 was stimulated with lipopolysaccharide (LPS) over 4 time points: 0min
354 unstimulated, 75min-, 150min-, 300min- post LPS stimulation. Files were aligned to the mouse reference genome
355 mm10 with the STAR v2.7.7 aligner. A loom file containing spliced and unspliced molecular counts was generated
356 with Velocyto v0.17. Following preprocessing, batch effect correction was performed on the libraries.

357 **INF γ stimulation:** Aligned BAM files of pancreatic islet cell INF γ stimulation were accessed from Burkhardt
358 et al., [40] with the accession code GSE161465. This dataset consisted of three donors per stimulation condition
359 (control, INF γ stimulated). A loom file containing spliced and unspliced molecular counts was generated for each
360 donor and condition with Velocyto v0.17, then subsequently merged into a single file. Following preprocessing,
361 batch effect correction was performed using the donor labels.

362 **AML chemotherapy:** To assess disease progression, aligned BAM files of an individual patient with AML
363 undergoing chemotherapy were accessed from Polleyea et al., [5] with the accession code GSE116481. Condition
364 labels consisted of three timepoints: d0 untreated, d2-, d4- post Venotoclax and Azacitidine treatment. A loom
365 file containing spliced and unspliced molecular counts for each timepoint was generated with Velocyto v0.17,
366 then merged into a single file. Following preprocessing, batch effect correction was performed on the condition
367 labels.

368 **AML matched diagnosis/relapse:** Raw FASTQ files were accessed from Stetson et al., [7] with the accession
369 code GSE126068. In this dataset, PBMCs were collected from 5 patients with AML on the onset of diagnosis and
370 following relapse. FASTQ files were aligned to the human reference genome GRCh38 with the STAR v2.7.7 aligner.
371 A loom file containing spliced and unspliced molecular counts was obtained with Velocyto v0.17. Following
372 preprocessing, batch effect correction was performed using the patient labels.

373 **MS case/control:** Aligned BAM files were accessed from Schafflick et al., [6] with the accession code GSE138266.
374 Here, two biological samples were collected from each patient (CSF, PBMCs) with a disease status label (control or
375 MS). Loom files containing spliced and unspliced molecular counts for each patient sample were obtained with
376 Velocyto v0.17. Then a merged loom file consisting of control and MS patient cells was generated for each sample
377 independently. Following preprocessing, batch effect correction was performed using the patient labels.

378 Preprocessing

379 Quality control, normalization, and highly variable gene selection

380 All scRNA sequencing datasets were quality control filtered according to read depth and distributions of counts.
381 Following empty droplet and doublet removal, dying cells were removed by ensuring less than 20 percent of total
382 reads were mapped to mitochondrial transcripts. Genes were filtered out if they were expressed in less than five cells
383 or had less than five counts shared between spliced and unspliced matrices. To perform normalization, we estimated
384 size factors for filtered spliced and unspliced count matrices with Scran pooling normalization v1.20.1 [66]. For
385 datasets with an appreciable batch effect, size factors were subsequently scaled according to median normalization
386 of the ratio of average counts between batches with Batchelor v1.8.0; this ensures data is downsampled based upon
387 the batch with the smallest read depth. To restrict the feature space, we selected highly variable genes on $\log_{10} + 1$
388 transformed data by estimating a normalized dispersion measure [67] using the highly variable genes function in
389 Scanpy v1.8.1 (flavor = seurat, minimum mean = 0.012, minimum dispersion = 0.25, maximum mean = 5).

390 **Batch effect correction**

391 RNA velocity relies on an ordinary differential equation framework to estimate the relationship between two
392 connected modalities, spliced and unspliced mRNA counts [68, 12, 13]. As such, correcting each modality
393 independently may lead to incorrect model fitting and spurious velocity vectors [57]. We evaluated the performance
394 of batch effect correction methods, ComBat [69] and mutual nearest neighbors (MNN) [70] on correcting count
395 data simultaneously. These methods were chosen as they directly correct the original gene expression data. Briefly,
396 we considered two simple approaches for combining the data prior to correction (1) summed spliced and unspliced
397 counts or (2) cell-wise concatenation. To obtain corrected count matrices for summed input data, we followed the
398 batch effect correction approach introduced in Ref. [71],

$$M = \log(S + U + 1) \quad (1)$$

$$R = \frac{S}{S + U} \quad (2)$$

$$S_c = \exp(M_c \cdot R - 1) \quad (3)$$

$$U_c = \exp(M_c \cdot (1 - R) - 1). \quad (4)$$

399 Here, S and U represent spliced and unspliced count matrices, respectively. Batch effect correction was performed
400 on the summed total expression matrix, M , to yield a corrected data matrix M_c . Corrected spliced S_c and unspliced
401 U_c counts were then obtained by inverting the log transformation through exponentiation. ComBat was run in
402 python using Scanpy v1.8.1 and MNN was run in R using Batchelor v1.8.0.

403 **Batch effect correction evaluation**

404 To evaluate batch effect correction methods on combined spliced and unspliced modalities, we consider three
405 metrics for assessing batch effect removal while preserving both biological variation and the unspliced to spliced
406 relationship.

- 407 1. *k*-nearest neighbor batch effect correction test (kBET): The kBET algorithm [72] quantifies batch effects by
408 comparing the batch label composition of local random neighborhoods to the overall global label composition
409 through a χ^2 test. Tests are then averaged to obtain an overall rejection rate. To test for batch effects,
410 we perform kBET using a fixed neighborhood size of $k = 10$ neighbors for each correction approach
411 (uncorrected, MNN sum, MNN concatenation, ComBat sum, ComBat concatenation). kBET scores were
412 computed using kBET v0.99.6.
- 413 2. Local Inverse Simpson's Index (LISI): The LISI score [73] measures the degree of batch label mixing by
414 computing the number of cells that can be drawn from a local neighborhood before a batch label is observed
415 twice. Here, local distances are weighted according to a Gaussian kernel and probabilities are determined by
416 the inverse Simpson's index. LISI returns a diversity score ranging from 1 to the total number of batches. To
417 test for batch label diversity, we compute LISI using a fixed perplexity of 30 for each correction approach
418 (uncorrected, MNN sum, MNN concatenation, ComBat sum, ComBat concatenation). LISI scores were
419 computed using harmonypy.
- 420 3. Pearson correlation of phase space pairwise distances: The dynamical model of RNA velocity estimates
421 transcriptional dynamics by inferring gene-specific reaction rate and latent parameters through an expectation-
422 maximization framework on the phase space (spliced and unspliced counts) of the data. To quantify how
423 well a batch effect correction approach preserves the unspliced to spliced relationship across all cells, we
424 compared phase space cellular neighborhoods by computing the Pearson correlation of pairwise distances in
425 the phase space for each donor and pairwise distances of the same cells in corrected data. In other words, for
426 each gene we obtain a single correlation score capturing how well cell-cell distances are preserved in the
427 phase space of corrected data with respect to an individual donor/patient. The distribution of gene correlations
428 measure the overall quality of correction for retaining similar cell distributions for RNA velocity fitting and
429 estimation.

430 To select a batch effect correction approach, we evaluated correction performance on the each biological condition
431 individually. Furthermore, we took the intersection of genes that were highly variable across all profiled samples
432 (e.g. libraries, donors, patients) to ensure that the data being compared were specific to the biological system under
433 study and that donor-specific variation was removed. For each dataset, we selected the batch effect correction
434 approach that had the best performance across all three metrics (see Supplementary Table 1, Supplementary Figure
435 16). One exception was the AML diagnosis/relapse dataset, which contained too few cells for the analysis. Here,
436 we selected ComBat concatenation, as it was the approach that consistently performed well on all other datasets.
437 Once an approach was selected, we performed joint correction on the original full dataset as outlined previously
438 (See Preprocessing).

439 RNA velocity estimation

440 To estimate RNA velocity, we used the dynamical model implementation in Scvelo v0.2.3. More specifically,
441 first order moments of spliced and unspliced counts were computed based on a k -nearest neighbor graph of cells
442 ($k = 10$), constructed by calculating pairwise Euclidean distances between cells based on their first 50 principal
443 components (PCs). The full dynamical model was then solved for all genes to obtain a high dimensional velocity
444 vector for every cell. Given that populations of cells may have different mRNA splicing and degradation kinetics,
445 we performed a likelihood ratio test for differential kinetics on the clusters identified from Leiden community
446 detection (resolution parameter of 1.0) [74]. Clusters of cells that exhibited different kinetic regimes were fit
447 independently and velocity vectors were corrected.

448 Sketching

449 To evaluate integration performance on the large-scale case/control datasets, we first performed subsampling
450 with geometric sketching. Geometric sketching [75] is an algorithm that aims to select a representative subset of
451 cells that preserves the overall transcriptional heterogeneity of the full dataset. By approximating the underlying
452 geometry of the data through a plaid covering of equal volume hypercubes, geometric sketching is able to evenly
453 select cells such that rare cell types are sufficiently sampled. We implemented geometric sketching to select a
454 representative subset of cells from both Multiple Sclerosis case/control datasets. Sketches were constructed from
455 the transcriptional landscape of the mature gene expression data (spliced or moments of spliced), with sketch sizes
456 of approximately twenty percent of the total data. Sketch indices were then used to subsample all modalities prior
457 to integration and disease state classification evaluation.

458 Integration methods

459 Problem Formulation

460 Let $X = \{x_i\}_{i=1}^n$ denote a single-cell dataset consisting of one gene expression modality, where $x_i \in \mathbb{R}^d$ represents
461 a vector of d genes measured in cell i . Given a collection of m gene expression modalities $\{X^m\}_{k=1}^m$ sampled from
462 N individuals, where for sample i there is an associated label y_i , our goal is to identify a biologically meaningful
463 consensus representation, $Z = \{z_i \in \mathbb{R}^p\}_{i=1}^n$ where p represents shared latent features such that $p \leq d$. In this
464 case, we wish to use this consensus representation to build a predictive model to infer biological trajectories or to
465 predict the patient-specific or treatment-induced phenotypic label for sample i , y_i . In this section, we describe the
466 methods selected for integrating two groups of gene expression modalities, either moments of spliced counts with
467 RNA velocity data or normalized and log transformed spliced and unspliced count matrices. For more details on
468 implementation and hyperparameter tuning, see Supplementary Table 2.

469 **Unintegrated:** To evaluate a baseline approach representing unintegrated data, we constructed a k -nearest
470 neighbor graph ($k = 10$) from the top 50 principal components, generated from the normalized and log transformed
471 spliced counts. This is akin to what is traditionally used for downstream single-cell analysis, as outlined by current
472 best practices [48].

473 **Concatenation:** Gene expression data matrices were horizontally concatenated to obtain a merged data matrix
474 with dimensions $n \times 2d$. Principal Component Analysis (PCA) was performed on the concatenated matrix
475 and a k -nearest neighbors graph ($k = 10$) of cells was ultimately constructed based on the top 50 principal
476 components.

477 **Sum:** Gene expression data matrices were summed to obtain a merged data matrix with dimensions $n \times d$. PCA
 478 was performed on the summed matrix and a k -nearest neighbor graph ($k = 10$) was constructed from the top 50
 479 principal components.

480 **CellRank:** CellRank [17] computes a joint transition probability matrix through a weighted sum of expression
 481 and velocity transition probability matrices as,

$$P = \lambda P_v + (1 - \lambda)P_s \text{ for } \lambda \in [0, 1]. \quad (5)$$

482 Here, P_v represents the velocity transition matrix, P_s represents the expression similarity transition matrix, and λ
 483 is the weight parameter. We used CellRank v1.1.0 and performed hyperparameter tuning by varying the weight
 484 parameter λ , the measure of velocity similarity (correlation, dot product, or cosine), and the model that determines
 485 if velocity uncertainty is propagated in the transition matrix computation (monte-carlo, dynamical). Given that this
 486 approach relies on RNA velocity directionality, integration was only performed using moments of spliced and RNA
 487 velocity data.

488 **PRECISE:** PRECISE [47] was adapted to integrate temporal gene expression modalities. PRECISE first com-
 489 putes principal components for each modality individually, then geometrically aligns components to extract
 490 common principal vectors that represent similar weighted combinations of genes. From here, a consensus feature
 491 representation is computed by optimizing the match between interpolated sets of features (e.g. expression and
 492 velocity). For this analysis, we obtained a lower dimensional latent space by projecting expression data onto (1) the
 493 principal vectors (denoted as PRECISE) or (2) the consensus features (denoted as PRECISE consensus). From
 494 this shared embedding space, we constructed a k -nearest neighbor graph ($k = 10$). For both approaches, we
 495 performed hyperparameter tuning by varying the number of included principal vectors. Given that the principal
 496 vectors are rank ordered according to modality similarity, selection is analogous to filtering the data based on shared
 497 or unshared information. PRECISE v1.2 was used and modified to include dissimilar components.

498 **Similarity Network Fusion:** Similarity Network Fusion (SNF) [25] constructs a joint graph of cells according to
 499 gene expression data modalities using a two step process. First a cell affinity graph $\mathcal{G}^m = (\mathcal{V}^m, \mathcal{E}^m)$ is computed
 500 for each modality, where \mathcal{V}^m represents cells and edges, \mathcal{E}^m , are weighted according to modality-specific similarity
 501 using a heat kernel as follows. Here, we compute W_{ij}^m , which gives the specific edge-weight between cells i and j
 502 in modality m as,

$$W_{ij}^m = \exp \left(-\frac{\|x_i^m - x_j^m\|^2}{\mu \epsilon_{ij}} \right). \quad (6)$$

503 Specifically, W^m is a $n \times n$ similarity matrix for modality m , μ is a scaling hyperparameter, and ϵ_{ij} is a bandwidth
 504 parameter that takes into account local neighborhood sizes. Next, the two individual modality networks are
 505 integrated through nonlinear diffusion iterations between each modality to obtain a fused network. Importantly,
 506 the network fusion step ensures that the merged graph representation retains edge similarities that are strongly
 507 supported by an individual modality in addition to similarities shared across modalities. To compare results to
 508 the intermediate embedding integration methods, we modified SNF by constructing a shared embedding from the
 509 fused network through eigendecomposition of the unnormalized graph Laplacian L_u . Note that L_u is computed
 510 as,

$$L_u = D - A. \quad (7)$$

511 Here, D is a diagonal degree matrix with i -th diagonal element, $d_i = \sum_j A_{ij}$ and A is the symmetric merged SNF
 512 affinity adjacency matrix. Given that eigenvectors of the Laplacian represent frequency harmonics, we selected
 513 the eigenvectors corresponding to the K smallest eigenvalues to low pass filter high frequency noise [76]. We
 514 then constructed a k -nearest neighbor graph ($k = 10$) for evaluation. We performed hyperparameter tuning by
 515 varying the number of nearest neighbors, the bandwidth scaling parameter μ , and the number of eigenvectors for
 516 the merged graph embedding. SNF was implemented using the snfpy v0.2.2 package in python.

517 **Grassmann Joint Embedding:** The Grassmann joint embedding approach introduced in Ref. [26] was adapted to
 518 construct a shared representative subspace of temporal gene expression information. Similar to SNF, the Grassmann
 519 embedding approach begins by constructing affinity matrices to encode similarities between cells i and j in each
 520 modality using a heat kernel as,

$$S_{ij}^m = \exp \left(-\frac{\|x_i^m - x_j^m\|^2}{2t^2} \right). \quad (8)$$

521 Here, S^m is a $n \times n$ between-cell similarity matrix for modality m and t is the kernel bandwidth parameter. To
 522 prioritize local similarities, the k -nearest neighbors according to the similarity matrix S^m are identified and the
 523 similarity matrix is further redefined as,

$$W_{ij}^m = \begin{cases} S_{ij}^m, & \text{if } v_j \in \mathcal{N}_i \\ 0, & \text{otherwise.} \end{cases} \quad (9)$$

524 Here, cell v_i and v_j are connected with an edge with edge weight S_{ij} if the cell is within the set of v_i 's neighbors,
 525 \mathcal{N}_i . Next, low-dimensional subspaces are computed through eigendecomposition of the normalized graph Laplacian
 526 of each data type. The normalized graph Laplacian L_n^m , is formally defined as,

$$L_n^m = D^{m-\frac{1}{2}} (D^m - W^m) D^{m-\frac{1}{2}}. \quad (10)$$

527 Here, m indexes the data modality and D^m represents a diagonal degree matrix, such that the i -th diagonal
 528 element, $d_i^m = \sum_j W_{ij}^m$. Furthermore, A^m is the symmetric Grassmann affinity matrix of modality m . A shared
 529 representative subspace from [26] is then ultimately computed as,

$$L_{mod} = \sum_{k=1}^m L_n^m - \alpha \sum_{k=1}^m U^m U^{m'}. \quad (11)$$

530 Here, U^m represents an individual subspace representation and α controls the trade-off between preserving modality-
 531 specific structural similarities (in the first term) and minimizing the distance between each subspace representation
 532 (in the second term). Lastly, an eigendecomposition of the Laplacian of the joint graph L_{mod} was computed to
 533 extract the K eigenvectors corresponding to the first K eigenvalues to represent the merged embedding space. For
 534 evaluation, we constructed a k -nearest neighbor graph ($k = 10$) from this shared space. Hyperparameter tuning
 535 was performed by varying the number of nearest neighbors and kernel bandwidth parameter t in the affinity graph
 536 construction, as well as α , and the number of eigenvectors to include for the merged graph embedding.

537 **Integrated Diffusion:** Integrated diffusion [24] combines data modalities by computing a joint data diffusion
 538 operator. First, individual modalities are locally denoised by performing a truncated singular value decomposition
 539 (SVD) on local neighborhoods determined through spectral clustering. Next a symmetric diffusion operator is
 540 constructed for each denoised modality, and spectral entropy is used to determine the number of diffusion time
 541 steps to take. By taking the reduced ratio of information, the joint diffusion operator P_j is computed as,

$$P_j = P_1^{t_1} \cdot P_2^{t_2}. \quad (12)$$

542 Here, P_1 and P_2 represent individual modality diffusion operators (e.g. expression and velocity) and t_1 and
 543 t_2 represent the reduced ratio of diffusion time steps, respectively. By powering transition probability matrices
 544 independently, this captures both modality-specific information, while allowing the random walk to jump between
 545 data types for merging. Lastly, the joint diffusion operator is powered using the same spectral entropy measure.
 546 It is important to note that choice of t is crucial, as it can either effectively denoise data or remove important
 547 variation and lead to oversmoothing. We eigendecomposed the diffused joint operator and selected the eigenvectors
 548 corresponding to the K largest eigenvalues to obtain a merged lower dimensional representation. We then
 549 constructed a k -nearest neighbor graph ($k = 10$). Hyperparameter tuning was performed by varying the number
 550 of clusters for local denoising, the number of nearest neighbors in affinity graph construction, and the number of
 551 included eigenvectors.

552 Evaluation

553 Trajectory inference

554 To quantify how well incorporation of unspliced counts or RNA velocity recapitulates the underlying biological
555 trajectory, we compared predicted trajectories to a ground truth reference using the metrics implemented in the
556 R suite Dynverse [51]. Reference trajectories were curated from the literature [37, 36, 54], with cell groups,
557 connections, and root cluster provided by the authors of the original study. We note that cell population annotations
558 were externally determined through cell surface protein measurements and not from unsupervised clustering on the
559 expression data.

560 To obtain predicted trajectories from integrated data, we performed trajectory inference using Partition-based
561 Graph Abstraction [52] followed by diffusion pseudotime [53], as this approach was shown to outperform other
562 methods for inference of complex differentiation topologies [51]. Predicted trajectories consisted of two main
563 attributes: (1) a trajectory network, where nodes represent FACS cell groups and edges connect populations based
564 on PAGA inferred connectivity and (2) a list of cellular percentages representing a cell's relative position between
565 groups. Here, cellular percentages were determined from diffusion pseudotime using 20 diffusion map components
566 generated from the underlying integrated or unintegrated k -nearest neighbor graph. For each integration approach,
567 we computed predicted trajectories for ten random root cells selected from the annotated root cluster.

568 To evaluate a method's performance on inferring developmental gene expression dynamics from integrated or
569 unintegrated data, we compared reference and predicted trajectories using two metrics previously described in Ref.
570 [51]: cell distance correlation and feature importance score correlation.

571 1. *Cell distance correlation* C_{corr} : Geodesic distances represent the shortest path distance between two cells on
572 a nearest neighbor graph of the data [77]. To estimate a measure of the correlation of between-cell distances
573 between reference and predicted trajectories, geodesic distances were computed between cells on a trajectory
574 graph. The cell distance correlation is defined as the Spearman rank correlation between the geodesic cell
575 distances of both trajectories.

576 2. *Feature importance score correlation* F_{corr} : To assess whether the same temporally expressed genes were
577 found in the predicted trajectory as in the reference, a random forest regression framework was used to
578 predict the expression values of each gene based on geodesic distances of each cell to each cell state cluster.
579 The feature importance score correlation is defined as the Pearson correlation between the reference and
580 predicted scores.

581 To obtain an overall trajectory inference correlation score reflective of high cell and feature similarity, we compute
582 the harmonic mean of both correlation metrics as,

$$TI_{corr} = 2 \cdot \frac{C_{corr} \cdot F_{corr}}{C_{corr} + F_{corr}}. \quad (13)$$

583 Classification

584 **Label Propagation:** To quantitatively compare integration methods on disease state prediction, we aimed to
585 implement an approach that would use the underlying integrated or unintegrated graph structure. Label propagation
586 [56] is a semi-supervised learning algorithm that uses iterative diffusion processes to predict the labels of unlabeled
587 nodes. The output of this algorithm is a probability distribution of labels for every cell. We implemented label
588 propagation to predict stimulation condition or disease status labels as follows.

589 Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, y = \{y_i\}_{i=1}^n)$ denote a graph of n cells comprising the nodes (\mathcal{V}) generated from an integration
590 approach and the set \mathcal{E} edges encoding between-cell similarities. Similarly, a particular y_i gives a phenotypic label
591 for cell i (e.g. patient disease status). Let $y' = (y_l, y_u)$ denote a vector consisting of a training subset of cells that
592 are labeled $y_l = \{y_j\}_{j=1}^m$ where $y_j \in y$ and $m < n$, and a test subset of cells that are unlabeled, $y_u = \{0\}^{n-m}$.
593 Given \mathcal{G} and y' , our goal is to assign a label to the unlabeled cells and the corresponding entries of y' 's. To do so,
594 we perform the following approach.

- 595 1. Stratified random sampling is used to assign cells to a training or test set; this ensures that the original ratio
596 of class labels (e.g. AML diagnosis or relapse) remains the same as in the full dataset.
- 597 2. Initialize algorithm on the training set to predict the labels of the masked test set. Each node has a label
598 y'_i , and edge weight w_{ij} representing the strength of similarity between nodes i and j . Here, larger weights
599 indicate a higher probability of cell i propagating its label y'_i to cell j .

3. Labels are iteratively updated through diffusion, where D is a diagonal degree matrix with i 'th diagonal element $d_i = \sum_j W_{ij}$ as,

$$y'^{(t+1)} \leftarrow D^{-1}W y'^{(t)}. \quad (14)$$

600 4. Row normalize labels y' to maintain a probability distribution.

5. Training labels are clamped after each iteration as,

$$y_l^{(t+1)} \leftarrow y_l^{(t)}. \quad (15)$$

6. Iterations are repeated until convergence, with a threshold $\delta = 0.001$, such that,

$$|y'^{(t)} - y'^{(t-1)}| < \delta. \quad (16)$$

601 7. Class labels are assigned to every node by taking the label with the maximum probability.

602 603 We repeated this procedure for ten random training initializations to obtain a set of predicted labels for each integration approach.

604 **Support Vector Machine (SVM):** The support vector machine (SVM) [78] is a supervised learning algorithm
605 that constructs hyperplanes in the high dimensional data to separate classes. We implemented SVM as a secondary
606 classification approach for predicting perturbation response or disease status labels from the individual or joint
607 embedding space (e.g. PCA, diffusion embedding). Specifically, nested 10-fold cross validation was performed
608 using stratified random sampling to assign cells to either a training or test set. SVM hyperparameters were tuned
609 over a grid search within each fold prior to training the model and labels were subsequently predicted from the test
610 data.

611 **Metrics:** To quantify stimulation condition and disease status classification performance, we compared predicted
612 labels to ground truth annotations using three metrics: F1 score, balanced accuracy (acc_b), and area under the
613 receiver operator curve (AUC). The F1 score measures the harmonic mean of precision and recall as,

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}. \quad (17)$$

614 615 Balanced accuracy represents the average of sensitivity (true positive rate) and specificity (true negative rate). When
predicting more than two labels (e.g. disease progression), we computed the mean sensitivity for all classes.

$$acc_b = \frac{\text{sensitivity} + \text{specificity}}{2} \quad (18)$$

616 617 618 619 Lastly, area under the receiver operator curve was computed using the soft probability assignments. For the
multi-class case, each class label was compared to the remaining in an all vs. rest approach, then averaged. All of
these metrics return a value between 0 and 1, where 1 indicates predicted labels were in perfect accordance to the
ground truth annotations.

620 Aggregate scores

621 622 623 624 To rank methods for each prediction task, we compute aggregate scores by taking the mean of scaled method scores
across datasets. More specifically, we first define an overall method score per dataset as the median of each metric.
Method scores were subsequently min-max scaled to ensure datasets were equally weighted prior to computing the
average.

625 Data and code availability

626 627 628 629 The raw publicly available single-cell RNA sequencing datasets downloaded and used in this study are available
in the Gene Expression Omnibus repository, under the accession codes GSE81682 for hematopoiesis differentiation [37],
GSE94383 for LPS stimulation [38], GSE161465 for INF γ stimulation [40], GSE11648 for AML chemotherapy [5],
GSE1260681 for AML diagnosis/relapse [7], and GSE138266 for MS case/control PBMC and

630 CSF datasets [6] and in the European Nucleotide Archive repository, under accession numbers E-MTAB-2805
631 for mouse embryonic cell cycle [36] datasets, respectively. Loom files and preprocessed data are available in the
632 Zenodo repository <https://doi.org/10.5281/zenodo.6110279>. All functions for preprocessing, integration,
633 and evaluation are available at www.github.com/jranek/EVI.

634 **Funding**

635 This work was supported by the National Institutes of Health, F31-HL156433 (JSR), 5T32-GM067553 (JSR),
636 DP2-HD091800 (JEP), R01-GM138834 (JEP), and NSF CAREER Award 1845796 (JEP).

637 **Authors' contributions**

638 JSR, NS, JEP conceptualized and designed the study. JSR performed data preprocessing, benchmarking, evaluation,
639 and analysis. JSR wrote the manuscript with input from all authors. All authors read and approved of the final
640 manuscript.

641 **Acknowledgements**

642 The authors would like to thank Logan Whitehouse and Tarek Zikry for their thoughtful discussions related to this
643 work.

644 **References**

- 645 [1] Jeffrey A Farrell, Yiqun Wang, Samantha J Riesenfeld, Karthik Shekhar, Aviv Regev, and Alexander F Schier.
646 Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. *Science*, 360(6392),
647 June 2018.
- 648 [2] Edie I Crosse, Sabrina Gordon-Keylock, Stanislav Rybtsov, Anahi Binagui-Casas, Hannah Felchle, Nneka C
649 Nnadi, Kristina Kirschner, Tamir Chandra, Sara Tamagno, David J Webb, Fiona Rossi, Richard A Anderson,
650 and Alexander Medvinsky. Multi-layered spatial transcriptomics identify secretory factors promoting human
651 hematopoietic stem cell development. *Cell Stem Cell*, 27(5):822–839.e8, November 2020.
- 652 [3] David Fawkner-Corbett, Agne Antanaviciute, Kaushal Parikh, Marta Jagielowicz, Ana Sousa Gerós, Tarun
653 Gupta, Neil Ashley, Doran Khamis, Darren Fowler, Edward Morrissey, Chris Cunningham, Paul R V Johnson,
654 Hashem Koohy, and Alison Simmons. Spatiotemporal analysis of human intestinal development at single-cell
655 resolution. *Cell*, 184(3):810–826.e23, February 2021.
- 656 [4] Max Kaufmann, Hayley Evans, Anna-Lena Schaupp, Jan Broder Engler, Gurman Kaur, Anne Willing, Nina
657 Kursawe, Charlotte Schubert, Kathrine E Attfield, Lars Fugger, and Manuel A Friese. Identifying CNS-
658 colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis. *Med (N Y)*,
659 2(3):296–312.e8, March 2021.
- 660 [5] Daniel A Polleyea, Brett M Stevens, Courtney L Jones, Amanda Winters, Shanshan Pei, Mohammad Min-
661 hajuddin, Angelo D'Alessandro, Rachel Culp-Hill, Kent A Riemondy, Austin E Gillen, Jay R Hesselberth,
662 Diana Abbott, Derek Schatz, Jonathan A Gutman, Enkhtsetseg Purev, Clayton Smith, and Craig T Jordan.
663 Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute
664 myeloid leukemia. *Nat. Med.*, 24(12):1859–1866, December 2018.
- 665 [6] David Schafflick, Chenling A Xu, Maike Hartlehner, Michael Cole, Andreas Schulte-Mecklenbeck, Tobias
666 Lautwein, Jolien Wolbert, Michael Heming, Sven G Meuth, Tanja Kuhlmann, Catharina C Gross, Heinz
667 Wiendl, Nir Yosef, and Gerd Meyer Zu Horste. Integrated single cell analysis of blood and cerebrospinal fluid
668 leukocytes in multiple sclerosis. *Nat. Commun.*, 11(1):247, January 2020.
- 669 [7] L C Stetson, Dheepa Balasubramanian, Susan Pereira Ribeiro, Tammy Stefan, Kalpana Gupta, Xuan Xu, Slim
670 Fourati, Anne Roe, Zachary Jackson, Robert Schauner, Ashish Sharma, Banumathi Tamilselvan, Samuel Li,
671 Marcos de Lima, Tae Hyun Hwang, Robert Balderas, Yogen Saunthararajah, Jaroslaw Maciejewski, Thomas
672 LaFramboise, Jill S Barnholtz-Sloan, Rafick-Pierre Sekaly, and David N Wald. Single cell RNA sequencing of
673 AML initiating cells reveals RNA-based evolution during disease progression. *Leukemia*, 35(10):2799–2812,
674 October 2021.

675 [8] Caleb Weinreb, Samuel Wolock, Betsabeh K Tusi, Merav Socolovsky, and Allon M Klein. Fundamental limits
676 on dynamic inference from single-cell snapshots. *Proc. Natl. Acad. Sci. U. S. A.*, 115(10):E2467–E2476,
677 March 2018.

678 [9] Andrew E Teschendorff and Andrew P Feinberg. Statistical mechanics meets single-cell biology. *Nat. Rev.
679 Genet.*, 22(7):459–476, July 2021.

680 [10] Vladimir Yu Kiselev, Tallulah S Andrews, and Martin Hemberg. Challenges in unsupervised clustering of
681 single-cell RNA-seq data. *Nat. Rev. Genet.*, 20(5):273–282, May 2019.

682 [11] Sophie Tritschler, Maren Büttner, David S Fischer, Marius Lange, Volker Bergen, Heiko Lickert, and
683 Fabian J Theis. Concepts and limitations for learning developmental trajectories from single cell genomics.
684 *Development*, 146(12), June 2019.

685 [12] Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja
686 Lidschreiber, Maria E Kastriti, Peter Lönnerberg, Alessandro Furlan, Jean Fan, Lars E Borm, Zehua Liu,
687 David van Bruggen, Jimin Guo, Xiaoling He, Roger Barker, Erik Sundström, Gonçalo Castelo-Branco, Patrick
688 Cramer, Igor Adameyko, Sten Linnarsson, and Peter V Kharchenko. RNA velocity of single cells. *Nature*,
689 560(7719):494–498, August 2018.

690 [13] Volker Bergen, Marius Lange, Stefan Peidli, F Alexander Wolf, and Fabian J Theis. Generalizing RNA
691 velocity to transient cell states through dynamical modeling. *Nat. Biotechnol.*, August 2020.

692 [14] Chenglong Xia, Jean Fan, George Emanuel, Junjie Hao, and Xiaowei Zhuang. Spatial transcriptome profiling
693 by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. *Proc.
694 Natl. Acad. Sci. U. S. A.*, 116(39):19490–19499, September 2019.

695 [15] Gennady Gorin, Valentine Svensson, and Lior Pachter. Protein velocity and acceleration from single-cell
696 multiomics experiments. *Genome Biol.*, 21(1):39, February 2020.

697 [16] Chen Li, Maria Virgilio, Kathleen L Collins, and Joshua D Welch. Single-cell multi-omic velocity infers
698 dynamic and decoupled gene regulation. December 2021.

699 [17] Marius Lange, Volker Bergen, Michal Klein, Manu Setty, Bernhard Reuter, Mostafa Bakhti, Heiko Lickert,
700 Meshal Ansari, Janine Schniering, Herbert B Schiller, Dana Pe'er, and Fabian J Theis. CellRank for directed
701 single-cell fate mapping. *Nat. Methods*, pages 1–12, January 2022.

702 [18] Xiaojie Qiu, Arman Rahimzamani, Li Wang, Bingcheng Ren, Qi Mao, Timothy Durham, José L McFaline-
703 Figueroa, Lauren Saunders, Cole Trapnell, and Sreeram Kannan. Inferring causal gene regulatory networks
704 from coupled Single-Cell expression dynamics using scribe. *Cell Syst*, 10(3):265–274.e11, March 2020.

705 [19] Guangzheng Weng, Junil Kim, and Kyoung Jae Won. VeTra: a tool for trajectory inference based on RNA
706 velocity. *Bioinformatics*, May 2021.

707 [20] Alexander Tong, Jessie Huang, Guy Wolf, David van Dijk, and Smita Krishnaswamy. TrajectoryNet: A
708 dynamic optimal transport network for modeling cellular dynamics. *Proc Mach Learn Res*, 119:9526–9536,
709 July 2020.

710 [21] Ziqi Zhang and Xiuwei Zhang. Inference of high-resolution trajectories in single-cell RNA-seq data by using
711 RNA velocity. *Cell Reports Methods*, 1(6):100095, October 2021.

712 [22] Lyla Atta, Arpan Sahoo, and Jean Fan. VeloViz: RNA velocity informed embeddings for visualizing cellular
713 trajectories. *Bioinformatics*, September 2021.

714 [23] Indhupriya Subramanian, Srikant Verma, Shiva Kumar, Abhay Jere, and Krishanpal Anamika. Multi-omics
715 data integration, interpretation, and its application. 14:1177932219899051, January 2020.

716 [24] Manik Kuchroo, Abhinav Godavarthi, Guy Wolf, and Smita Krishnaswamy. Multimodal data visualization,
717 denoising and clustering with integrated diffusion. February 2021.

718 [25] Bo Wang, Aziz M Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen Tu, Michael Brudno, Benjamin Haibe-
719 Kains, and Anna Goldenberg. Similarity network fusion for aggregating data types on a genomic scale. *Nat.
720 Methods*, 11(3):333–337, March 2014.

721 [26] Hao Ding, Michael Sharpnack, Chao Wang, Kun Huang, and Raghu Machiraju. Integrative cancer patient
722 stratification via subspace merging. *Bioinformatics*, 35(10):1653–1659, May 2019.

723 [27] Bo Wang, Junjie Zhu, Emma Pierson, Daniele Ramazzotti, and Serafim Batzoglou. Visualization and analysis
724 of single-cell RNA-seq data by kernel-based similarity learning. *Nat. Methods*, 14(4):414–416, April 2017.

725 [28] Daniele Ramazzotti, Avantika Lal, Bo Wang, Serafim Batzoglou, and Arend Sidow. Multi-omic tumor data
726 reveal diversity of molecular mechanisms that correlate with survival. *Nat. Commun.*, 9(1):4453, October
727 2018.

728 [29] Ricard Argelaguet, Britta Velten, Damien Arnol, Sascha Dietrich, Thorsten Zenz, John C Marioni, Florian
729 Buettner, Wolfgang Huber, and Oliver Stegle. Multi-Omics factor analysis-a framework for unsupervised
730 integration of multi-omics data sets. *Mol. Syst. Biol.*, 14(6):e8124, June 2018.

731 [30] Ricard Argelaguet, Damien Arnol, Danila Bredikhin, Yonatan Deloro, Britta Velten, John C Marioni, and
732 Oliver Stegle. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data.
733 *Genome Biol.*, 21(1):111, May 2020.

734 [31] Eric F Lock, Katherine A Hoadley, J S Marron, and Andrew B Nobel. JOINT AND INDIVIDUAL VARIA-
735 TION EXPLAINED (JIVE) FOR INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES. *Ann. Appl.*
736 *Stat.*, 7(1):523–542, March 2013.

737 [32] Prabhakar Chalise, Yonghui Ni, and Brooke L Fridley. Network-based integrative clustering of multiple types
738 of genomic data using non-negative matrix factorization. *Comput. Biol. Med.*, 118:103625, March 2020.

739 [33] Britta Velten, Jana M Braunger, Ricard Argelaguet, Damien Arnol, Jakob Wirbel, Danila Bredikhin, Georg
740 Zeller, and Oliver Stegle. Identifying temporal and spatial patterns of variation from multimodal data using
741 MEFISTO. *Nat. Methods*, January 2022.

742 [34] Gregory Gundersen, Jordan T Ash, and Barbara E Engelhardt. End-to-end training of deep probabilistic
743 CCA on paired biomedical observations. <http://proceedings.mlr.press/v115/gundersen20a/gundersen20a.pdf>. Accessed: 2022-1-27.

744 [35] Tao Zeng and Hao Dai. Single-Cell RNA Sequencing-Based computational analysis to describe disease
745 heterogeneity. *Front. Genet.*, 10:629, July 2019.

746 [36] Florian Buettner, Kedar N Natarajan, F Paolo Casale, Valentina Proserpio, Antonio Scialdone, Fabian J Theis,
747 Sarah A Teichmann, John C Marioni, and Oliver Stegle. Computational analysis of cell-to-cell heterogeneity
748 in single-cell RNA-sequencing data reveals hidden subpopulations of cells. *Nat. Biotechnol.*, 33(2):155–160,
749 February 2015.

750 [37] Sonia Nestorowa, Fiona K Hamey, Blanca Pijuan Sala, Evangelia Diamanti, Mairi Shepherd, Elisa Laurenti,
751 Nicola K Wilson, David G Kent, and Berthold Göttgens. A single-cell resolution map of mouse hematopoietic
752 stem and progenitor cell differentiation. *Blood*, 128(8):e20–31, August 2016.

753 [38] Keara Lane, David Van Valen, Mialy M DeFelice, Derek N Macklin, Takamasa Kudo, Ariel Jaimovich,
754 Ambrose Carr, Tobias Meyer, Dana Pe'er, Stéphane C Boutet, and Markus W Covert. Measuring signaling
755 and RNA-Seq in the same cell links gene expression to dynamic patterns of NF- κ B activation. *Cell Syst*,
756 4(4):458–469.e5, April 2017.

757 [39] Michael G Dorrington and Iain D C Fraser. NF- κ B signaling in macrophages: Dynamics, crosstalk, and
758 signal integration. *Front. Immunol.*, 10:705, April 2019.

759 [40] Daniel B Burkhardt, Jay S Stanley, 3rd, Alexander Tong, Ana Luisa Perdigoto, Scott A Gigante, Kevan C
760 Herold, Guy Wolf, Antonio J Giraldez, David van Dijk, and Smita Krishnaswamy. Quantifying the effect of
761 experimental perturbations at single-cell resolution. *Nat. Biotechnol.*, 39(5):619–629, May 2021.

762 [41] Miguel Lopes, Burak Kutlu, Michela Miani, Claus H Bang-Berthelsen, Joachim Størling, Flemming Pociot,
763 Nathan Goodman, Lee Hood, Nils Welsh, Gianluca Bontempi, and Decio L Eizirik. Temporal profiling of
764 cytokine-induced genes in pancreatic β -cells by meta-analysis and network inference. *Genomics*, 103(4):264–
765 275, April 2014.

766 [42] Brian J P Huntly and D Gary Gilliland. Leukaemia stem cells and the evolution of cancer-stem-cell research.
767 *Nat. Rev. Cancer*, 5(4):311–321, April 2005.

768 [43] Alastair Compston and Alasdair Coles. Multiple sclerosis. *Lancet*, 372(9648):1502–1517, October 2008.

769 [44] Milan Picard, Marie-Pier Scott-Boyer, Antoine Bodein, Olivier Périn, and Arnaud Droit. Integration strategies
770 of multi-omics data for machine learning analysis. *Comput. Struct. Biotechnol. J.*, 19:3735–3746, June 2021.

772 [45] Blue B Lake, Song Chen, Brandon C Sos, Jean Fan, Gwendolyn E Kaeser, Yun C Yung, Thu E Duong, Derek
773 Gao, Jerold Chun, Peter V Kharchenko, and Kun Zhang. Integrative single-cell analysis of transcriptional and
774 epigenetic states in the human adult brain. *Nat. Biotechnol.*, 36(1):70–80, January 2018.

775 [46] Qianxing Mo, Roger Li, Dennis O Adeegbe, Guang Peng, and Keith Syson Chan. Integrative multi-omics
776 analysis of muscle-invasive bladder cancer identifies prognostic biomarkers for frontline chemotherapy and
777 immunotherapy. *Commun Biol*, 3(1):784, December 2020.

778 [47] Soufiane Mourragui, Marco Loog, Mark A van de Wiel, Marcel J T Reinders, and Lodewyk F A Wessels.
779 PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to
780 tumors. *Bioinformatics*, 35(14):i510–i519, July 2019.

781 [48] Malte D Luecken and Fabian J Theis. Current best practices in single-cell RNA-seq analysis: a tutorial. *Mol.
782 Syst. Biol.*, 15(6):e8746, June 2019.

783 [49] Peter V Kharchenko, Lev Silberstein, and David T Scadden. Bayesian approach to single-cell differential
784 expression analysis. *Nat. Methods*, 11(7):740–742, July 2014.

785 [50] Gabriel Torregrosa and Jordi Garcia-Ojalvo. Mechanistic models of cell-fate transitions from single-cell data.
786 *Current Opinion in Systems Biology*, 26:79–86, June 2021.

787 [51] Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell trajectory
788 inference methods. *Nat. Biotechnol.*, 37(5):547–554, May 2019.

789 [52] F Alexander Wolf, Fiona K Hamey, Mireya Plass, Jordi Solana, Joakim S Dahlin, Berthold Göttgens, Nikolaus
790 Rajewsky, Lukas Simon, and Fabian J Theis. PAGA: graph abstraction reconciles clustering with trajectory
791 inference through a topology preserving map of single cells. *Genome Biol.*, 20(1):59, March 2019.

792 [53] Laleh Haghverdi, Maren Büttner, F Alexander Wolf, Florian Buettner, and Fabian J Theis. Diffusion
793 pseudotime robustly reconstructs lineage branching. *Nat. Methods*, 13(10):845–848, October 2016.

794 [54] Elisa Laurenti and Berthold Göttgens. From haematopoietic stem cells to complex differentiation landscapes.
795 *Nature*, 553(7689):418–426, January 2018.

796 [55] Yalan Lei, Rong Tang, Jin Xu, Wei Wang, Bo Zhang, Jiang Liu, Xianjun Yu, and Si Shi. Applications of
797 single-cell sequencing in cancer research: progress and perspectives. *J. Hematol. Oncol.*, 14(1):91, June 2021.

798 [56] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation.(2002),
799 2002.

800 [57] Volker Bergen, Ruslan A Soldatov, Peter V Kharchenko, and Fabian J Theis. RNA velocity-current challenges
801 and future perspectives. *Mol. Syst. Biol.*, 17(8):e10282, August 2021.

802 [58] Gennady Gorin, Meichen Fang, Tara Chari, and Lior Pachter. RNA velocity unraveled. February 2022.

803 [59] Charlotte Soneson, Avi Srivastava, Rob Patro, and Michael B Stadler. Preprocessing choices affect RNA
804 velocity results for droplet scRNA-seq data. *PLoS Comput. Biol.*, 17(1):e1008585, January 2021.

805 [60] Chen Li, Maria Virgilio, Kathleen L Collins, and Joshua D Welch. Single-cell multi-omic velocity infers
806 dynamic and decoupled gene regulation. December 2021.

807 [61] Jacob H Levine, Erin F Simonds, Sean C Bendall, Kara L Davis, El-Ad D Amir, Michelle D Tadmor, Oren
808 Litvin, Harris G Fienberg, Astraea Jager, Eli R Zunder, Rachel Finck, Amanda L Gedman, Ina Radtke,
809 James R Downing, Dana Pe'er, and Garry P Nolan. Data-Driven phenotypic dissection of AML reveals
810 progenitor-like cells that correlate with prognosis. *Cell*, 162(1):184–197, July 2015.

811 [62] Emma Dann, Neil C Henderson, Sarah A Teichmann, Michael D Morgan, and John C Marioni. Differential
812 abundance testing on single-cell data using k-nearest neighbor graphs. *Nat. Biotechnol.*, September 2021.

813 [63] Aaron T L Lun, Arianne C Richard, and John C Marioni. Testing for differential abundance in mass cytometry
814 data. *Nat. Methods*, 14(7):707–709, July 2017.

815 [64] Aditya Pratapa, Amogh P Jalihal, Jeffrey N Law, Aditya Bharadwaj, and T M Murali. Benchmarking algo-
816 rithms for gene regulatory network inference from single-cell transcriptomic data. *Nat. Methods*, 17(2):147–
817 154, February 2020.

818 [65] Martina Tedesco, Francesca Giannese, Dejan Lazarević, Valentina Giansanti, Dalia Rosano, Silvia Monzani,
819 Irene Catalano, Elena Grassi, Eugenia R Zanella, Oronza A Botrugno, Leonardo Morelli, Paola Panina Bor-
820 dignon, Giulio Caravagna, Andrea Bertotti, Gianvito Martino, Luca Aldrighetti, Sebastiano Pasqualato, Livio
821 Trusolino, Davide Cittaro, and Giovanni Tonon. Chromatin velocity reveals epigenetic dynamics by single-cell
822 profiling of heterochromatin and euchromatin. *Nat. Biotechnol.*, October 2021.

823 [66] Aaron T L Lun, Karsten Bach, and John C Marioni. Pooling across cells to normalize single-cell RNA
824 sequencing data with many zero counts. *Genome Biol.*, 17:75, April 2016.

825 [67] Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier, and Aviv Regev. Spatial reconstruction of
826 single-cell gene expression data. *Nat. Biotechnol.*, 33(5):495–502, May 2015.

827 [68] Amit Zeisel, Wolfgang J Köstler, Natali Molotski, Jonathan M Tsai, Rita Krauthgamer, Jasmine Jacob-Hirsch,
828 Gideon Rechavi, Yoav Soen, Steffen Jung, Yosef Yarden, and Eytan Domany. Coupled pre-mRNA and mRNA
829 dynamics unveil operational strategies underlying transcriptional responses to stimuli. *Mol. Syst. Biol.*, 7:529,
830 September 2011.

831 [69] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray expression data using
832 empirical bayes methods. *Biostatistics*, 8(1):118–127, January 2007.

833 [70] Laleh Haghverdi, Aaron T L Lun, Michael D Morgan, and John C Marioni. Batch effects in single-cell
834 RNA-sequencing data are corrected by matching mutual nearest neighbors. *Nat. Biotechnol.*, 36(5):421–427,
835 June 2018.

836 [71] Hansen Lab. Batch effects in scRNA velocity analysis.

837 [72] Maren Büttner, Zhichao Miao, F Alexander Wolf, Sarah A Teichmann, and Fabian J Theis. A test metric for
838 assessing single-cell RNA-seq batch correction. *Nat. Methods*, 16(1):43–49, January 2019.

839 [73] Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko,
840 Michael Brenner, Po-Ru Loh, and Soumya Raychaudhuri. Fast, sensitive and accurate integration of single-cell
841 data with harmony. *Nat. Methods*, 16(12):1289–1296, December 2019.

842 [74] V A Traag, L Waltman, and N J van Eck. From louvain to leiden: guaranteeing well-connected communities.
843 *Sci. Rep.*, 9(1):5233, March 2019.

844 [75] Brian Hie, Hyunghoon Cho, Benjamin DeMeo, Bryan Bryson, and Bonnie Berger. Geometric sketching
845 compactly summarizes the Single-Cell transcriptomic landscape. *Cell Syst*, 8(6):483–493.e7, June 2019.

846 [76] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The emerging
847 field of signal processing on graphs: Extending High-Dimensional data analysis to networks and other
848 irregular domains. October 2012.

849 [77] J B Tenenbaum, V de Silva, and J C Langford. A global geometric framework for nonlinear dimensionality
850 reduction. *Science*, 290(5500):2319–2323, December 2000.

851 [78] Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Mach. Learn.*, 20(3):273–297, September
852 1995.

853 Supplementary Tables

854 **Supplementary Table 1:** Datasets and preprocessing overview

ID	Description	Metadata	Task	Platform	Organism	Reference	Batch	Batch correction approach	Normalization
Nestorowa	hematopoiesis differentiation	FACS	TI	Smart-seq2	Mouse	mm10	NA	NA	Scran
Buettner	mouse embryonic cell cycle	FACS	TI	Smarter C1	Mouse	mm10	NA	NA	Scran
Lane	LPS stimulation	condition	classification	Smart-seq2	Mouse	mm10	library	ComBat concatenation	Scran with batch
Pollyea	AML chemotherapy	condition	classification	10X Genomics	Human	GRCh38	condition	ComBat concatenation	Scran with batch
Burkhardt	IFN- γ stimulation	condition	classification	10X Genomics	Human	GRCh38	patient	MNN concatenation	Scran with batch
Stetson	AML diagnosis/relapse	disease status	classification	Smart-seq2	Human	GRCh38	patient	ComBat concatenation	Scran with batch
Schafflick	MS case/control	disease status	classification	10X Genomics	Human	GRCh38	patient	ComBat concatenation	Scran with batch

Supplementary Table 2: Overview of optimized parameters

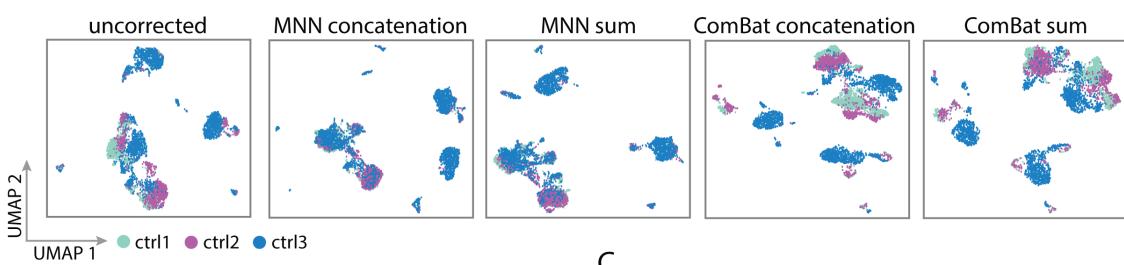
Method name	Type	Parameter description	Parameters
Unintegrated	early	NA	NA
Concatentation	early	NA	NA
Sum	early	NA	NA
CellRank	early	weight given to velocity transition probability matrix velocity similarity metric velocity transition probability matrix mode	$\lambda \in [0.2, 0.8]$ correlation, dot product, cosine monte-carlo, dynamical
SNF	intermediate	number of nearest neighbors in affinity graph kernel bandwidth parameter number of eigenvectors	$k = 5, 10, 25, 50$ $\mu \in [0.4, 0.8]$ $K = 20, 50$
Grassmann joint embedding	intermediate	number of nearest neighbors in affinity graph kernel bandwidth parameter tradeoff parameter between individual and merged subspaces number of eigenvectors	$k = 5, 10, 25, 50$ $t \in [100, 500]$ $\alpha \in [0.01, 2]$ $K = 20, 50$
Integrated diffusion	intermediate	number of nearest neighbors in diffusion operator number of clusters for denoising number of eigenvectors	$k = 5, 10, 25, 50$ $c = 5, 10, 25, 50$ $K = 20, 50$
PRECISE	intermediate	number of principal vectors	$npvs \in [10, 50]$

Supplementary Table 3: Surface markers for hematopoietic stem and progenitor cells in Nestorowa et al.

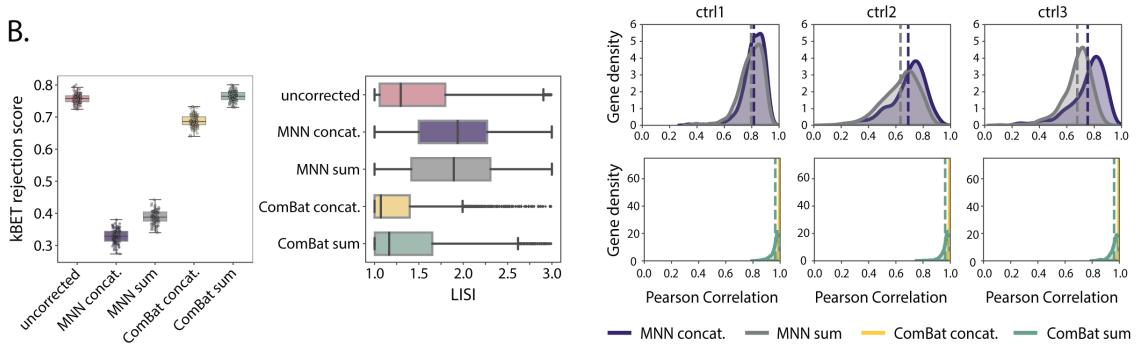
name	ID	markers
long-term hematopoietic stem cells	LT-HSC	Lin ⁻ c-Kit ⁺ Sca1 ⁺ Flk2 ⁻ CD34 ⁻
lymphoid multipotent progenitors	LMPP	Lin ⁻ c-Kit ⁺ Sca1 ⁺ Flk2 ⁺ CD34 ⁺
multipotent progenitors	MPP	Lin ⁻ c-Kit ⁺ Sca1 ⁺ Flk2 ⁻ CD34 ⁺
megakaryocyte-erythrocyte progenitors	MEP	Lin ⁻ c-Kit ⁺ Sca1 ⁻ CD16/32 ⁻ CD34 ⁻
common myeloid progenitors	CMP	Lin ⁻ c-Kit ⁺ Sca1 ⁻ CD16/32 ⁻ CD34 ⁺
granulocyte-monocyte progenitors	GMP	Lin ⁻ c-Kit ⁺ Sca1 ⁻ CD16/32 ⁺ CD34 ⁺

854 **Supplementary Figures**

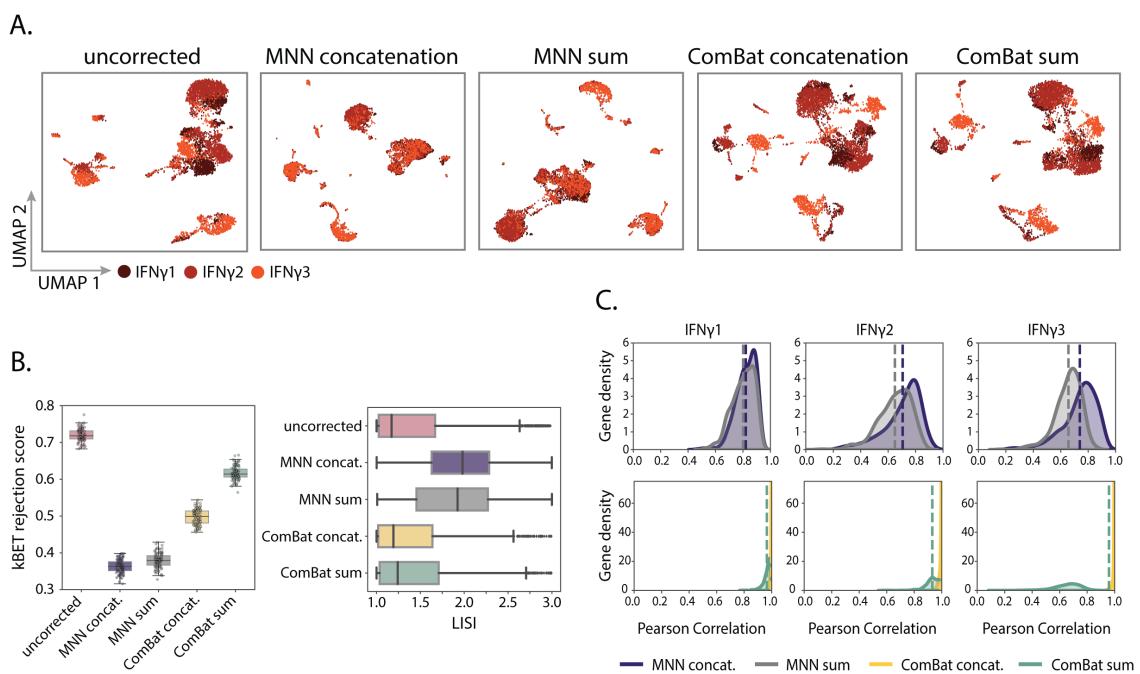
A.



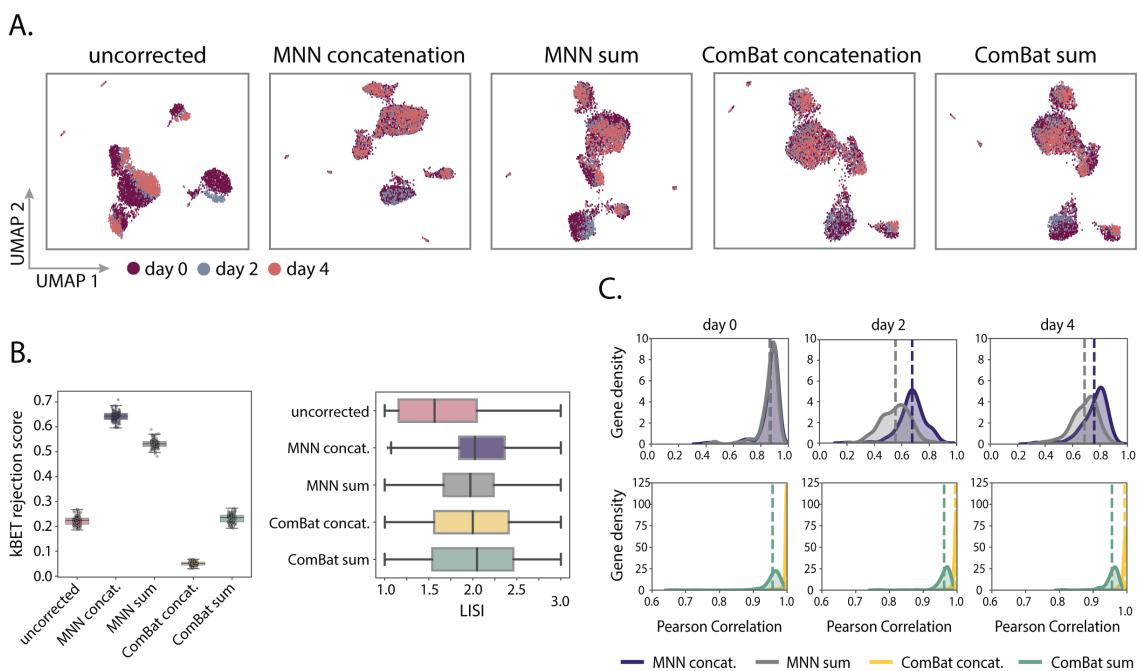
C.



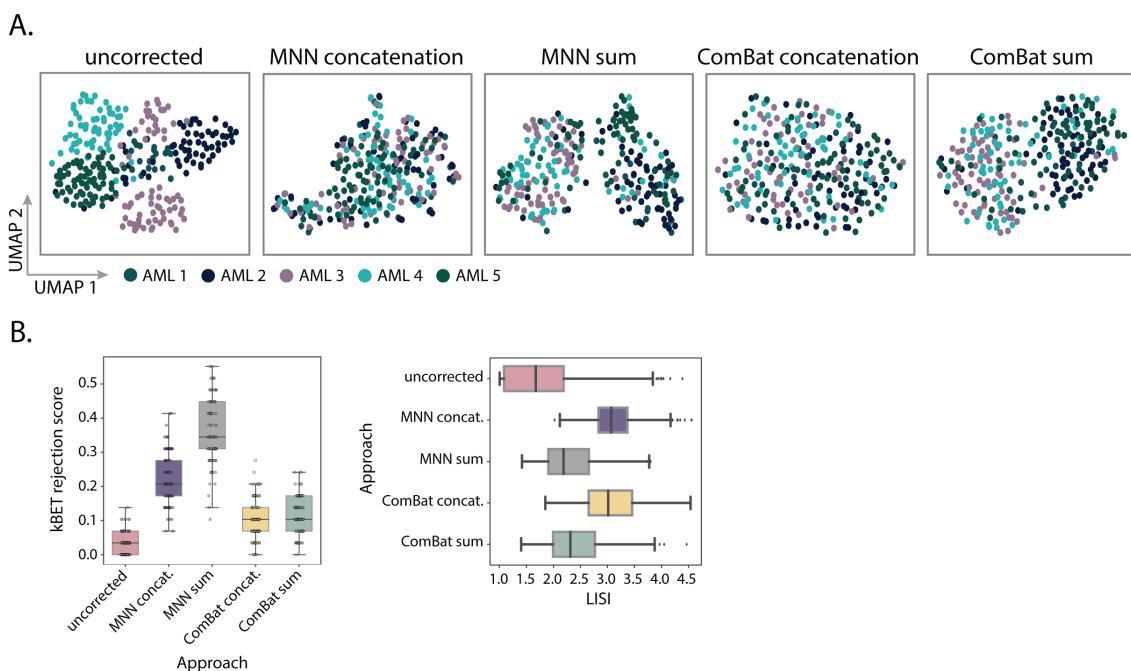
Supplementary Figure 1: Evaluating batch effect correction for control pancreatic islet cells in INF γ stimulation dataset. (A) UMAP visualization of control pancreatic islet cells across batch correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase space of each individual donor. Top panel: Pearson correlation of MNN concatenation or MNN sum to control donors. Bottom panel: Pearson correlation of ComBat concatenation or ComBat sum to control donors. Dashed line represents the mean correlation.



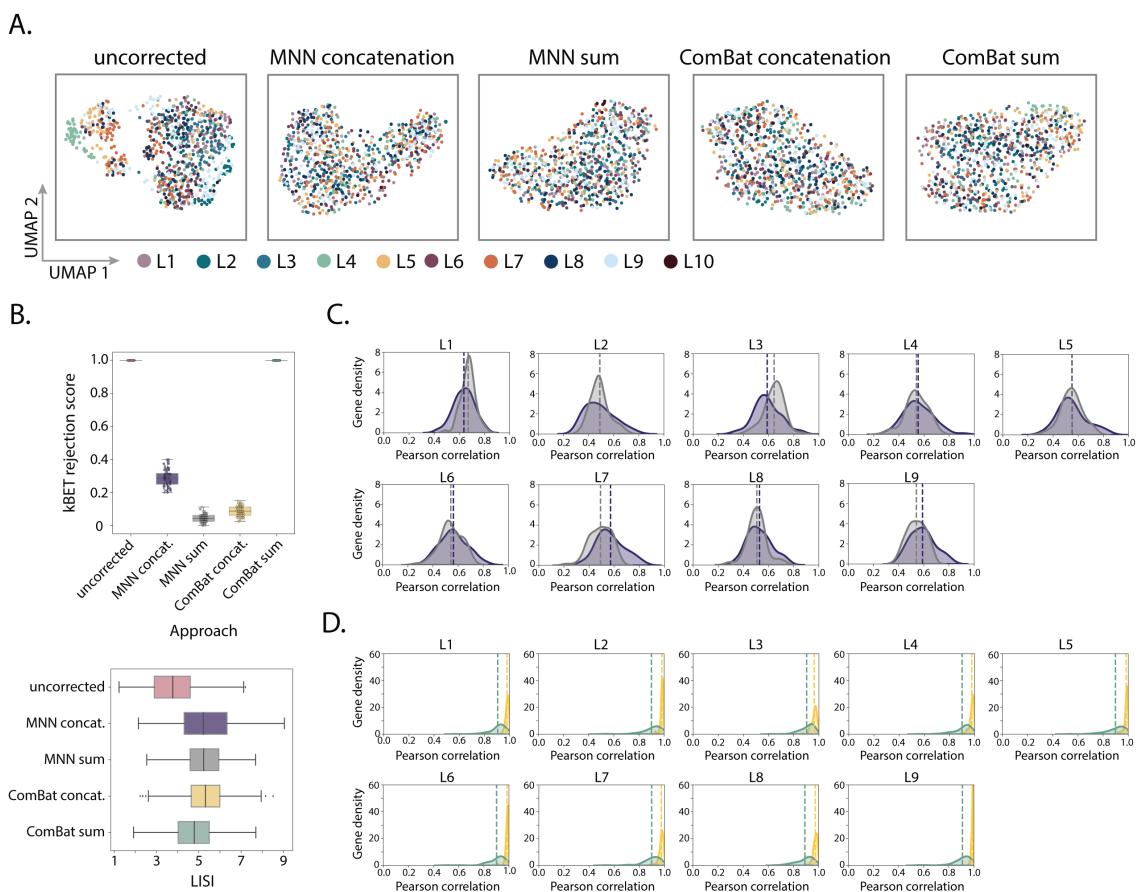
Supplementary Figure 2: Evaluating batch effect correction for INF γ stimulated pancreatic islet cells in INF γ stimulation dataset. (A) UMAP visualization of INF γ stimulated pancreatic islet cells across batch correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase space of each individual donor. Top panel: Pearson correlation of MNN concatenation or MNN sum to INF γ stimulated donors. Bottom panel: Pearson correlation of ComBat concatenation or ComBat sum to INF γ stimulated donors. Dashed line represents the mean correlation.



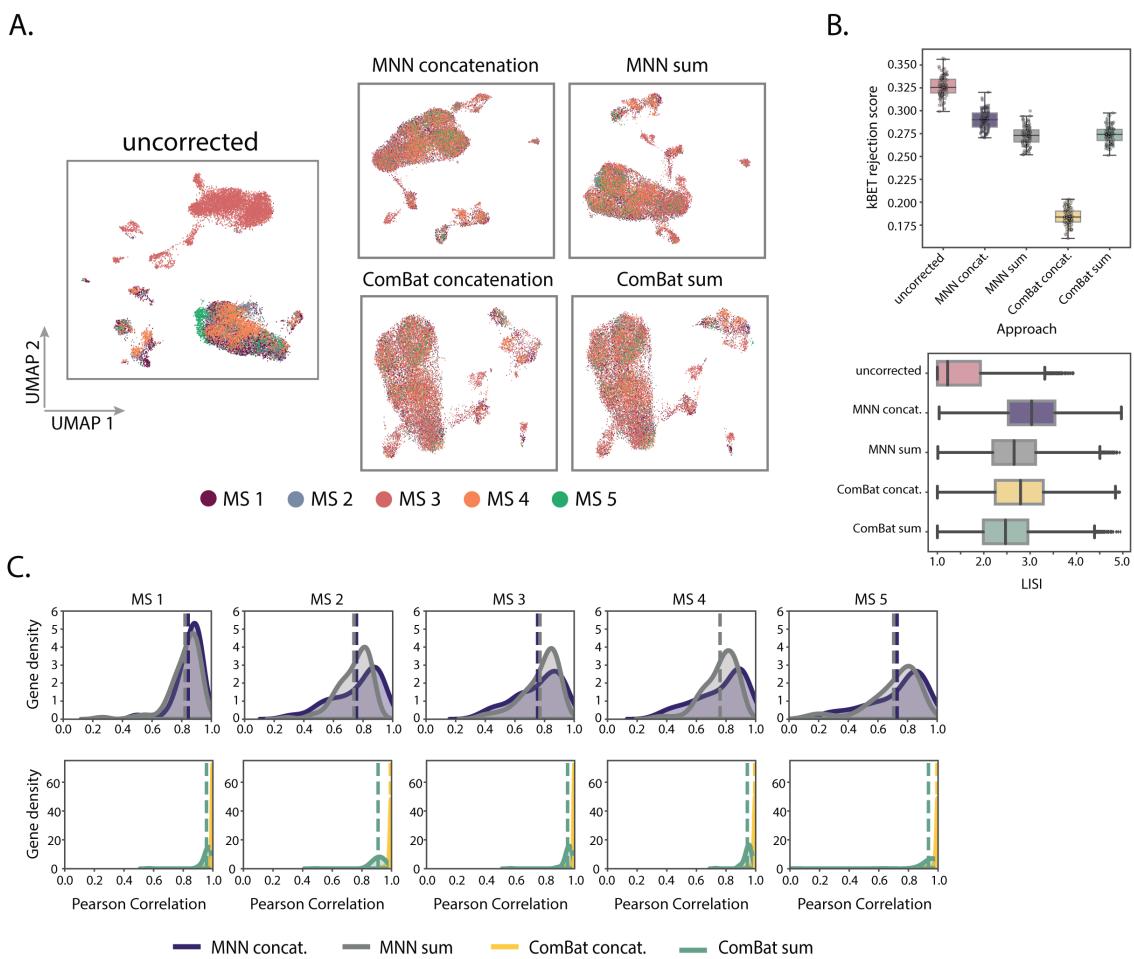
Supplementary Figure 3: Evaluating batch effect correction for AML chemotherapy treated cells. (A) UMAP visualization of AML chemotherapy treated cells across batch correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase space of each time point (d0, d2, d4). Top panel: Pearson correlation of MNN concatenation or MNN sum to individual timepoint. Bottom panel: Pearson correlation of ComBat concatenation or ComBat sum to individual timepoint. Dashed line represents the mean correlation.



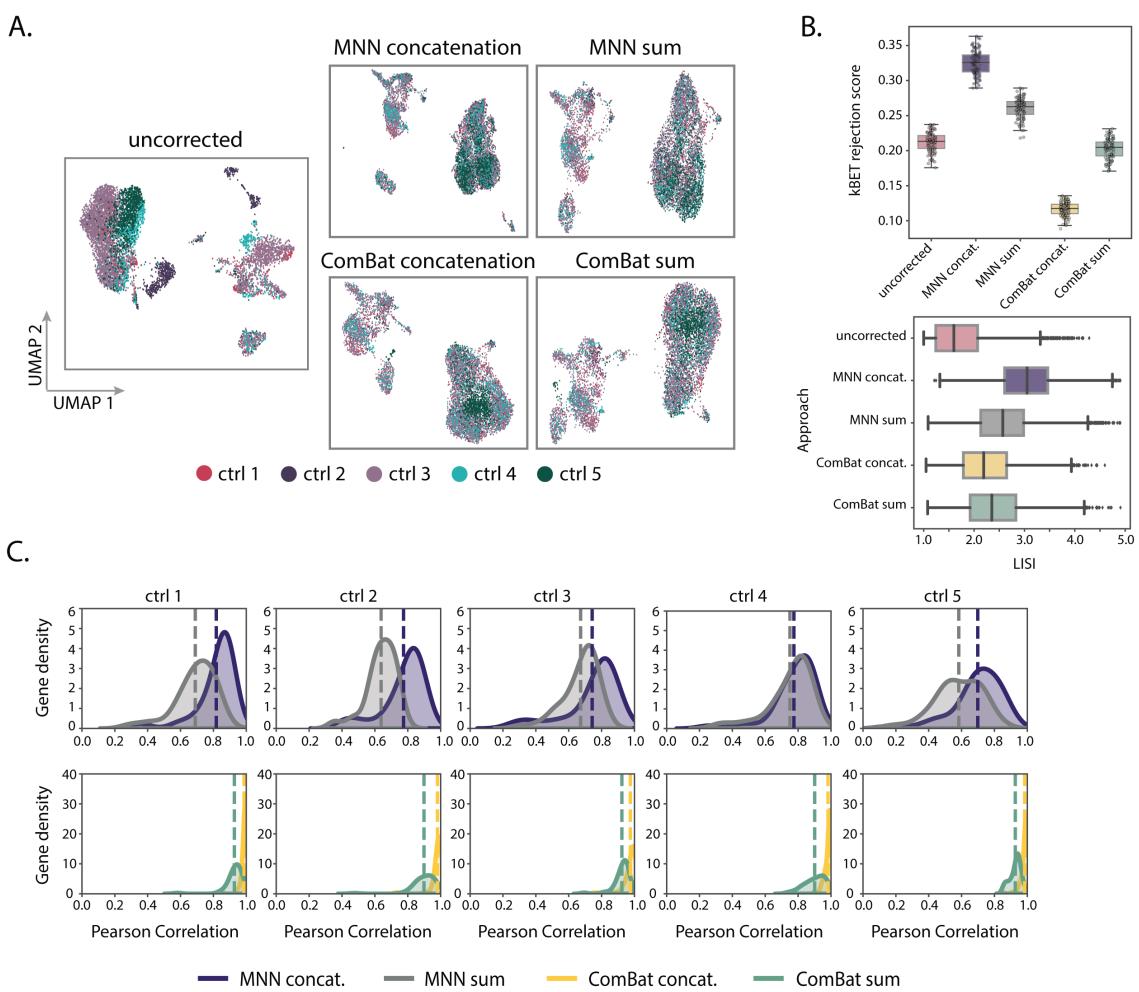
Supplementary Figure 4: Evaluating batch effect correction for AML diagnosis patient cells in AML diagnosis/relapse dataset. (A) UMAP visualization of AML diagnosis patient cells across batch correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. (B) Method performance was measured by batch label mixing metrics kBET and LISI across patients. Dashed line represents the mean correlation.



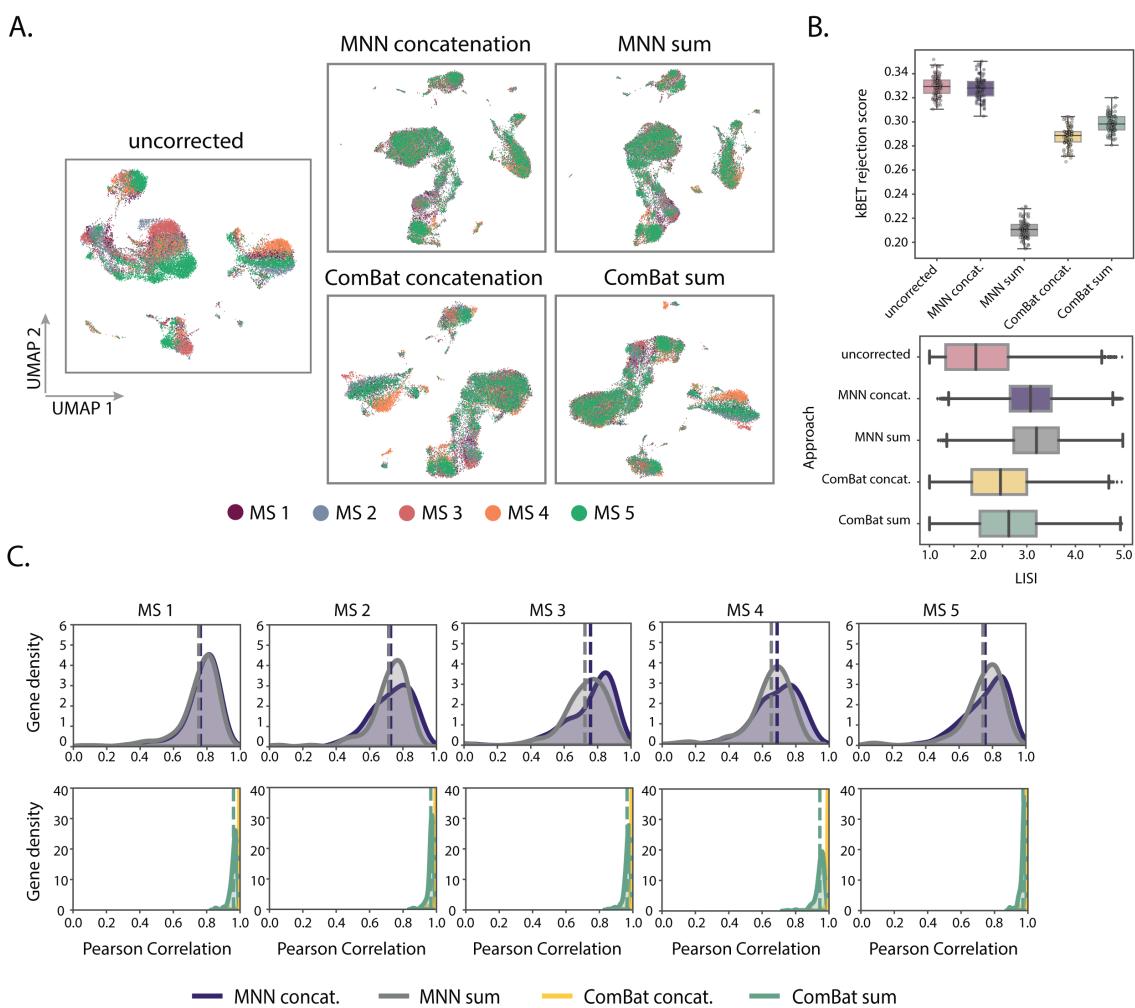
Supplementary Figure 5: Evaluating batch effect correction for LPS stimulated cells. (A) UMAP visualization of LPS stimulated cells across batch correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C, D). Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase space of each individual library. Panel C: Pearson correlation of MNN concatenation or MNN sum to individual library. Panel D: Pearson correlation of ComBat concatenation or ComBat sum to individual library. Dashed line represents the mean correlation. Library 10 was excluded from correlation analysis as it contained too few cells.



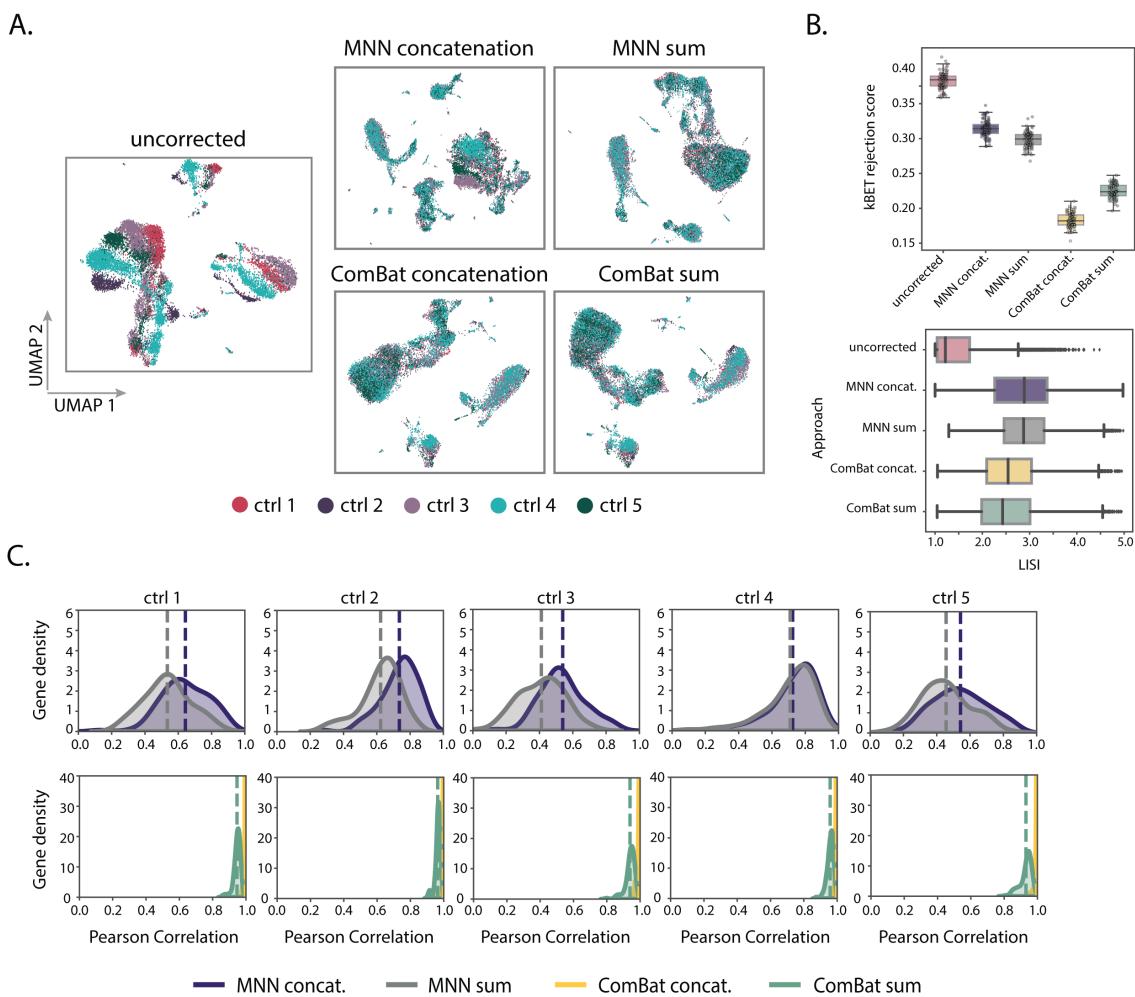
Supplementary Figure 6: Evaluating batch effect correction for MS patient CSF cells in MS case/control dataset. (A) UMAP visualization of MS patient CSF cells across batch correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase space of each individual MS patient. Top panel: Pearson correlation of MNN concatenation or MNN sum to MS patients. Bottom panel: Pearson correlation of ComBat concatenation or ComBat sum to MS patients. Dashed line represents the mean correlation.



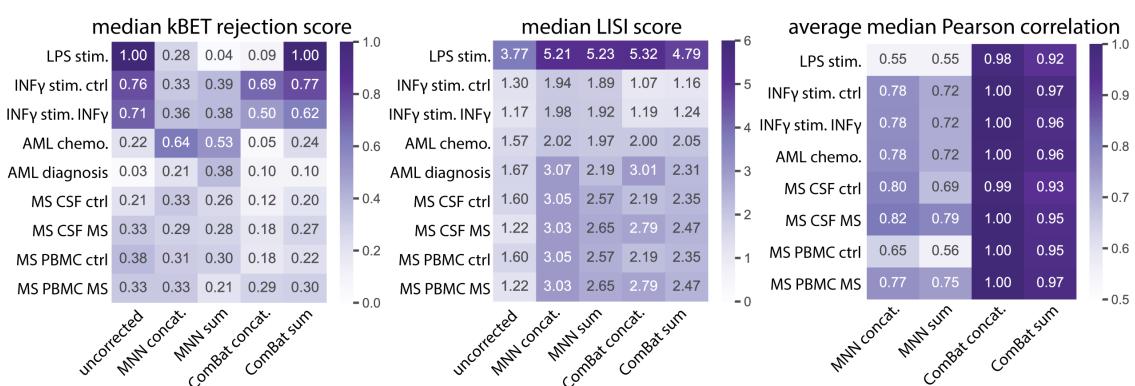
Supplementary Figure 7: Evaluating batch effect correction for control patient CSF cells in MS case/control dataset. (A) UMAP visualization of control patient CSF cells across batch correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase space of each individual control patient. Top panel: Pearson correlation of MNN concatenation or MNN sum to control patients. Bottom panel: Pearson correlation of ComBat concatenation or ComBat sum to control patients. Dashed line represents the mean correlation.



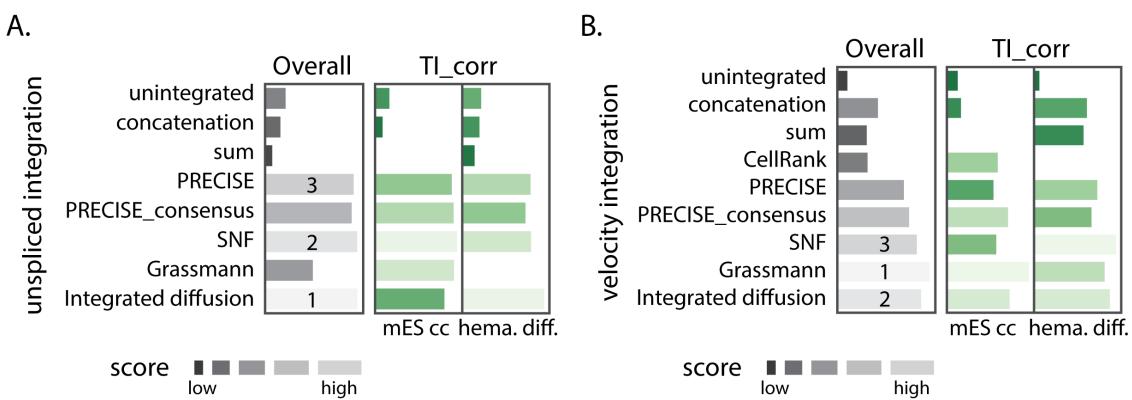
Supplementary Figure 8: Evaluating batch effect correction for MS patient PBMCs in MS case/control dataset. (A) UMAP visualization of MS patient PBMCs across batch correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase space of each individual MS patient. Top panel: Pearson correlation of MNN concatenation or MNN sum to MS patients. Bottom panel: Pearson correlation of ComBat concatenation or ComBat sum to MS patients. Dashed line represents the mean correlation.



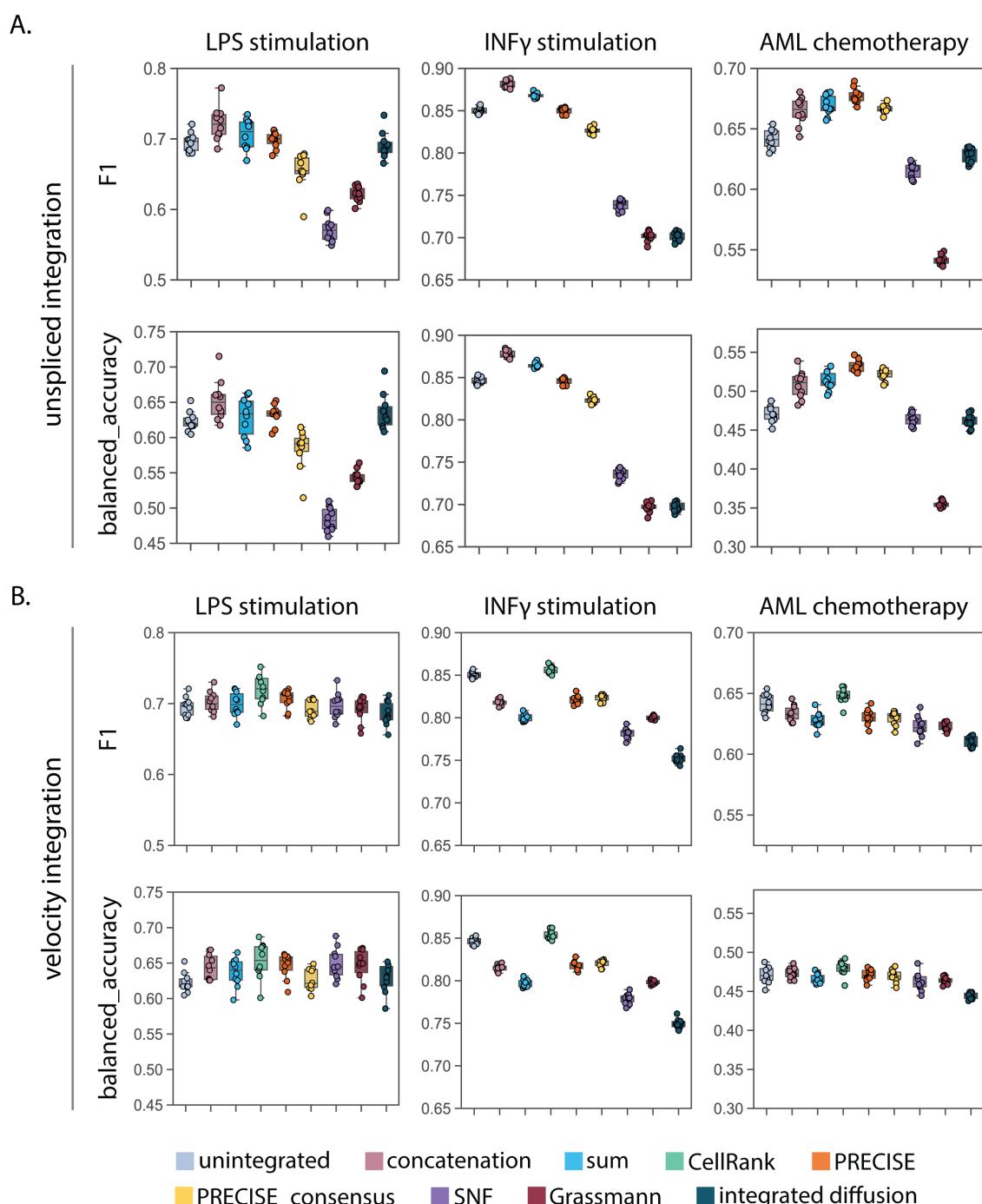
Supplementary Figure 9: Evaluating batch effect correction for control patient PBMCs in MS case/control dataset. (A) UMAP visualization of control patient PBMCs across batch correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase space of each individual control patient. Top panel: Pearson correlation of MNN concatenation or MNN sum to control patients. Bottom panel: Pearson correlation of ComBat concatenation or ComBat sum to control patients. Dashed line represents the mean correlation.



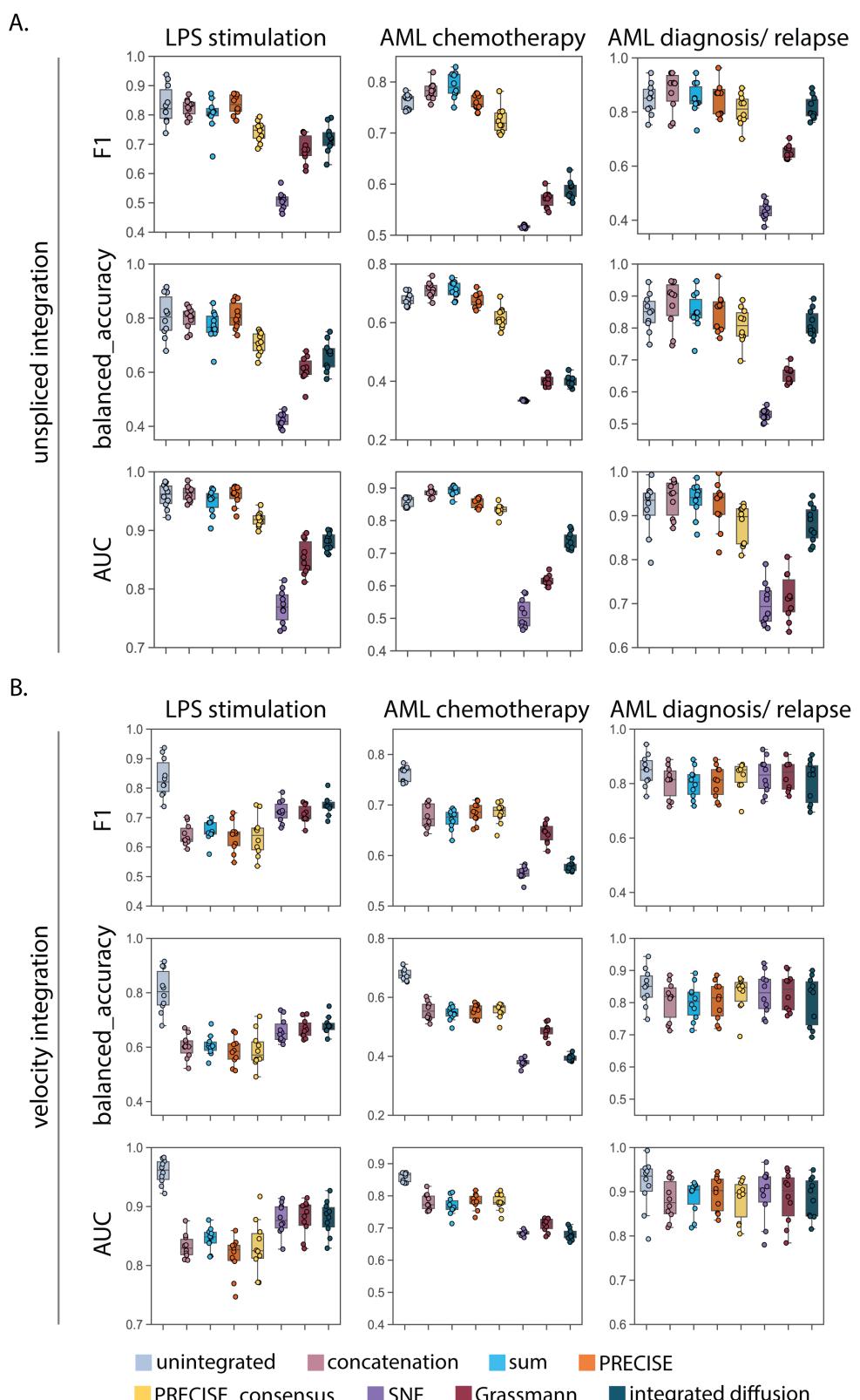
Supplementary Figure 10: Overall performance of batch correction approaches across perturbation and disease datasets. Batch effect correction performance was assessed according to three metrics, including the median kBET rejection score, median LISI score, and average median Pearson correlation of phase space distances. A correction approach was selected for each dataset if it had the lowest kBET score, highest LISI score, and highest Pearson correlation score.



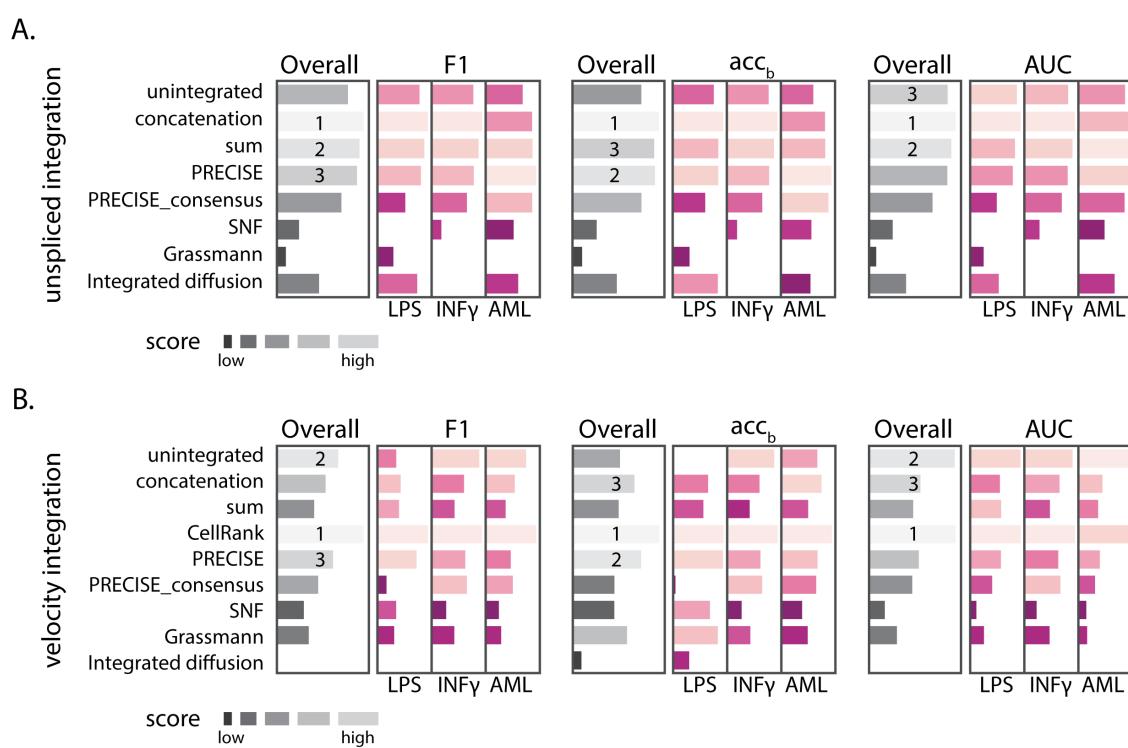
Supplementary Figure 11: Ranked integration method performance for trajectory inference. Integration methods were ranked by their performance on inferring biological trajectories across mouse embryonic stem cell cycle (mES cc) and mouse hematopoiesis differentiation (hema. diff.) datasets. Individual methods were first ranked according to a trajectory inference correlation (TI_{corr}) score, which measures the harmonic mean of cellular positioning correlation and feature importance score correlation to a ground truth reference. The overall performance was then assessed by taking the average of ranked scores across datasets. (A) Overall quality of spliced and unspliced integration performance on inferring biological trajectories. (B) Overall quality of moments of spliced and RNA velocity integration performance on inferring biological trajectories. Here, a higher score is represented by a longer lighter bar. Across both datasets and modalities, intermediate integration approaches outperform unintegrated data on trajectory inference.



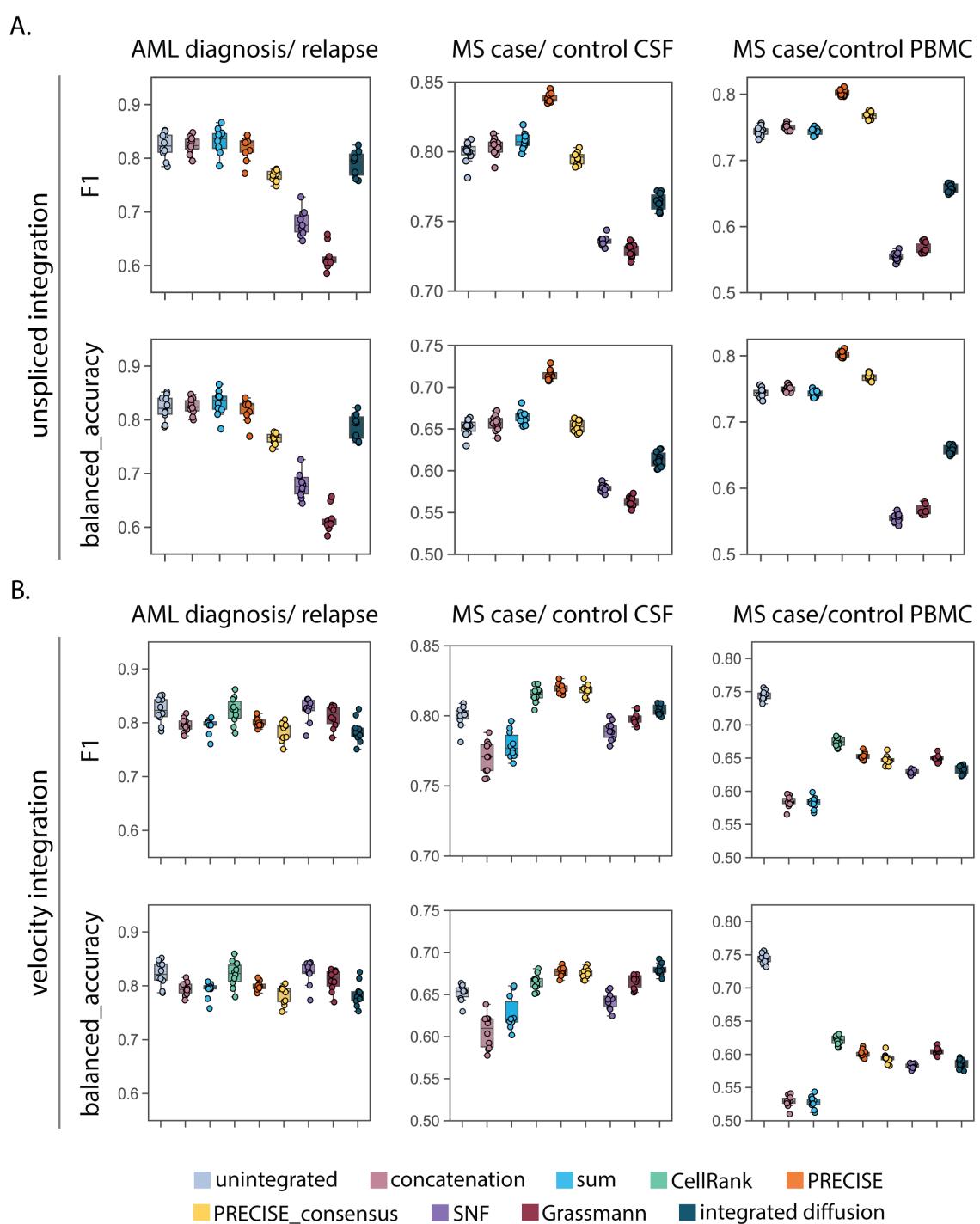
Supplementary Figure 12: Integration performance on classifying cells according to perturbation condition labels using label propagation. Label propagation was used to classify cells according to treatment condition from (A) spliced and unspliced or (B) moments of spliced and RNA velocity integrated features generated from eight integration approaches. The boxplots represent classification accuracy according to two metrics, top panel: F1 score, bottom panel: balanced accuracy score.



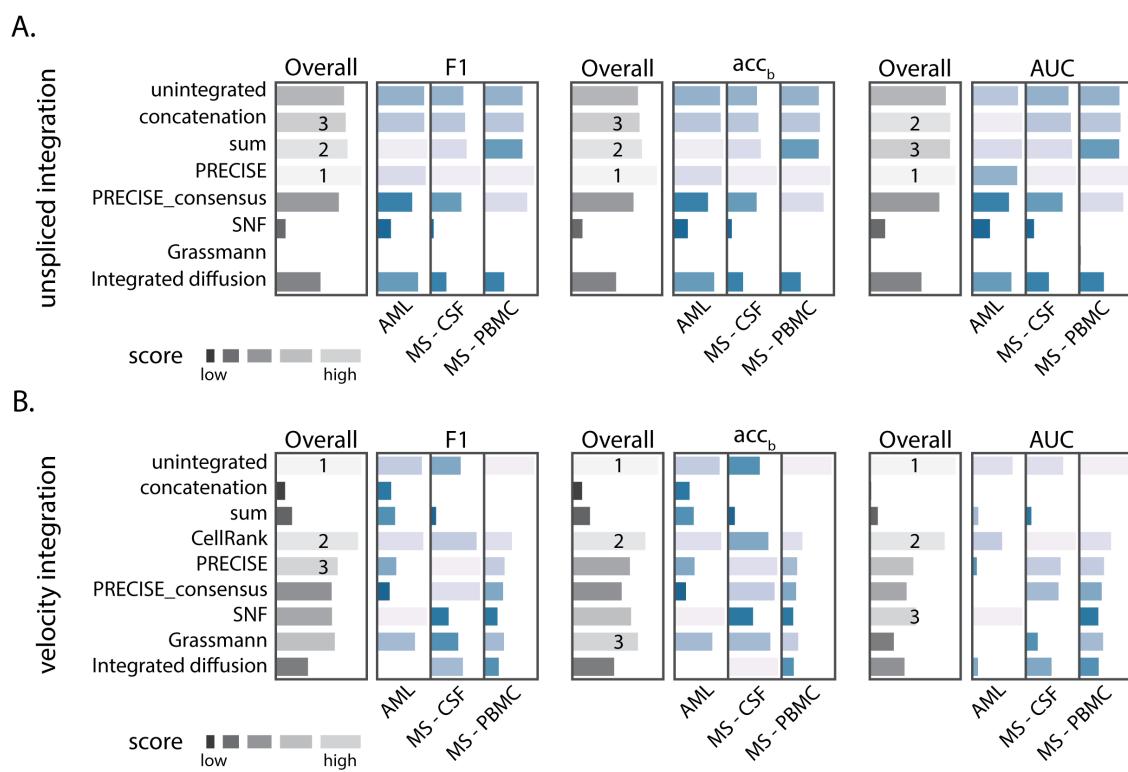
Supplementary Figure 13: Integration performance on classifying cells according to perturbation condition or disease status using a support vector machine (SVM) classifier. A SVM classifier was used to classify cells according to treatment condition or disease status from (A) spliced and unspliced or (B) moments of spliced and RNA velocity integrated features generated from eight integration approaches. The boxplots represent classification accuracy according to three metrics, including a F1 score, balanced accuracy, and area under the receiver operator curve (AUC).



Supplementary Figure 14: Ranked integration method performance for perturbation classification. Integration methods were ranked according to their performance on classifying cells according to perturbation condition across three datasets, including LPS stimulation of macrophage-like cells (LPS), INF γ stimulation of pancreatic islet cells (INF γ), and chemotherapy treated cells from a patient with Acute Myeloid Leukemia (AML). Label propagation was used to classify cells according to treatment condition and methods were evaluated by computing three metrics of success: F1 score, balanced accuracy (acc_b), and area under the receiver operator curve (AUC). The overall performance was then assessed by taking the average of ranked scores across datasets for each metric. (A) Overall quality of spliced and unspliced integration performance on classification of treatment condition. (B) Overall quality of moments of spliced and RNA velocity integration performance on classification of treatment condition. Here, a higher score is represented by a longer lighter bar. Across all three datasets and metrics, spliced and unspliced integration with concatenation and sum outperformed unintegrated data on perturbation classification.



Supplementary Figure 15: Integration performance on classifying cells according to patient disease status using label propagation. Label propagation was used to classify cells according to patient disease status from (A) spliced and unspliced or (B) moments of spliced and RNA velocity integrated features generated from eight integration approaches. The boxplots represent classification accuracy according to two metrics, top panel: F1 score, bottom panel: balanced accuracy.



Supplementary Figure 16: Ranked integration method performance on disease state classification. Integration methods were ranked according to their performance on predicting whether cells were from a healthy or disease patient across three datasets, including an Acute Myeloid Leukemia diagnosis and relapse dataset (AML), a Multiple Sclerosis case/control dataset of cerebral spinal fluid (MS-CSF), and a Multiple Sclerosis case/control dataset of peripheral blood mononuclear cells (MS-PBMC). Label propagation was used to classify cells according to patient disease status and methods were evaluated by computing three metrics of success: F1 score, balanced accuracy (acc_b), and area under the receiver operator curve (AUC). The overall performance was then assessed by taking the average of ranked scores across datasets for each metric. (A) Overall quality of spliced and unsplited integration performance on classification of cells according to patient disease status. (B) Overall quality of moments of spliced and RNA velocity integration performance on classification of cells according to patient disease status. Here, a higher score is represented by a longer lighter bar. Across all three datasets and metrics, spliced and unsplited integration with PRECISE, concatenation and sum outperformed unintegrated data on disease state prediction.