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Abstract

Current methods for analyzing single-cell datasets have relied primarily on static gene expression
measurements to characterize the molecular state of individual cells. However, capturing temporal
changes in cell state is crucial for the interpretation of dynamic phenotypes such as the cell cycle,
development, or disease progression. RNA velocity infers the direction and speed of transcriptional
changes in individual cells, yet it is unclear how these temporal gene expression modalities may
be leveraged for predictive modeling of cellular dynamics. Here, we present the first task-oriented
benchmarking study that investigates integration of temporal sequencing modalities for dynamic cell
state prediction. We benchmark eight integration approaches on eight datasets spanning different
biological contexts, sequencing technologies, and species. We find that integrated data more accurately
infers biological trajectories and achieves increased performance on classifying cells according to
perturbation and disease states. Furthermore, we show that simple concatenation of spliced and
unspliced molecules performs consistently well on classification tasks and can be used over more
memory intensive and computationally expensive methods. This work provides users with practical
recommendations for task-specific integration of single-cell gene expression modalities.

. Introduction

2 Single-cell RNA sequencing (scRNA-seq) technologies have enabled the functional characterization of cellular
s states associated with dynamic biological processes such as development [1; 2} 3] and disease progression [4} 5} 16} [7]].
4+ While transcriptomic information holds great promise for gaining insight into the biological mechanisms that
s govern phenotypic changes, inference has been traditionally limited to incompletely-sampled static mature mRNA
¢ measurements. This poses two fundamental challenges for robust prediction of the dynamic progression of cell state.
7 First, many gene regulatory mechanisms can give rise to the same distribution of mature mRNA measurements
s [8]. Second, snapshot data often fails to fully capture the large biological variability required for population-level
o inference by missing important transition states or rare cell populations [9, [10} [11]].

10 More recently, computational tools such as RNA velocity have been used to extract directed dynamic information
1 from single cells [12} 113} 114,15/ [16]. By leveraging unspliced pre mRNA and spliced mature mRNA molecules
12 in a kinetic model, RNA velocity can predict the future transcriptional state of a cell. Indeed, RNA velocity has
13 been successfully incorporated into algorithms for inferring fate probabilities [17], gene regulatory networks [18]],
14 differentiation trajectories [19} 120} [21]], and embeddings [22]. However, it is still unclear whether integrating spliced
15 gene expression with either unspliced molecules or RNA velocity predictions is useful for predictive modeling at
16 the data-level. Such an integrated approach may help uncover salient features predictive of cell type or response to
17 therapy, enhance our understanding of the relationship between cell states, or provide insight into the molecular
18 pathways that drive a cell’s transition to a more pathological phenotype.

19 Single-cell multi-omics data integration methods have had great success in fusing different molecular data types, or
20 modalities for disease subtyping, predicting biomarkers, or uncovering cross-modality correlations [23}[24]]. Here,
21 integration methods aim to merge individual layers of single-cell data (e.g. transcriptomic, proteomic, epigenomic)
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22 into a unified consensus representation, such as an integrated graph [25] or a joint-embedding [24, 26]. To do
23 80, computational approaches have leveraged techniques, including kernel learning [27, 28], matrix factorization
24 [290130, 13141321 133]], or deep learning [34]]. Moreover, downstream analysis of integrated multi-omics data has has
»s  provided fundamental insights into the molecular mechanisms underlying complex biological processes, including
2 disease heterogeneity and pathological development [35]].

27 Motivated by identifying a new more biologically-meaningful set of features underlying cellular dynamics, we
28 investigate integration of gene expression modalities at three distinct temporal stages of gene regulation: unspliced,
2 spliced, and RNA velocity. We benchmark eight integration approaches on eight biological datasets with applications
s0 ranging from cellular differentiation to disease progression. We show that unspliced and spliced integration improves
a1 predictive performance when inferring biological trajectories, perturbation conditions, and disease states. This
32 work illustrates how integrated temporal gene expression modalities may be leveraged for predictive modeling of
33 cellular dynamics.

« Results

s We compared eight integration approaches for recovering discrete and continuous variation in cell and disease
36 states. In the sections that follow, we will describe the integration results in more detail. We will begin by giving
37 an introduction of the datasets used in this study. Next, we will provide details about the benchmarking design,
33 including the integration methods considered and the evaluation criteria for each prediction task. We will then
3 demonstrate how an integrative analysis can be used to obtain increased biological insight over spliced expression
s alone. Ultimately, we will end with practical recommendations for task-specific integration.

«  Description of datasets

2 We tested integration method performance on inferring biological trajectories or classifying cells according to
+ perturbation condition or disease status across eight publicly available single-cell RNA sequencing datasets (see
o Supplementary Table[T). Datasets were grouped into three general categories according to the prediction
45 task. Here, we briefly introduce the datasets used in this study.

s Datasets for Trajectory Inference (TI): We evaluated inference of biological trajectories using two single-cell RNA
4 sequencing datasets representing the cell cycle and stem cell differentiation. To assess inference of cell cycle, we
s considered a mouse embryonic stem cell cycle dataset [36], where embryonic stem cells were collected along three
4 stages of the cell cycle (G1, S, G2/M). Cell cycle phase was manually annotated a priori based on flow sorting
so  cells according to the Hoeschst 33342 stained distribution. The authors of the original study used this dataset to
s1 assess the proportion of cell-to-cell heterogeneity that arises from cell cycle variation. To assess inference of a
s2 complex differentiation trajectory, we considered a mouse hematopoietic stem and progenitor cell differentiation
ss (HPSC) dataset [37]. Here, the transcriptomes of HPSCs were profiled and nine cell surface protein measurements
s+ (Supplementary Table [3) were used to annotate six subpopulations, including, long-term hematopoeitic stem cells
ss  (LT-HSC), lymphoid multipotent progenitors (LMPP), multipotent progenitors (MPP), megakaryocyte-erythrocyte
s progenitors (MEP), common myeloid progenitors (CMP), and granulocyte-monocyte progenitors (GMP). Moreover,
57 in the original study, reconstruction of the differentiation trajectory revealed dynamic gene expression patterns
ss consistent with early lymphoid, erythroid, and granulocyte-macrophage differentiation. For our analysis, cells were
so excluded if they did not have ground truth annotations.

e Datasets for perturbation classification: To assess integration performance on classifying cells according to
61 perturbation condition, we considered three diverse datasets with clinical relevance representing drug stimulation
ez and treatment of cells, denoted as LPS stimulation, INFy stimulation, and AML chemotherapy, respectively. In the
63 LPS stimulation dataset [38]], RAW 264.7 macrophage-like cells were treated with time course of lipopolysaccharide
6+ (0 min, 50 min-, 150min-, 300min- LPS) to induce NF-xB expression. NF-xB is a transcription factor that serves as
es a master regulator of inflammatory responses from macrophages and other innate immune cells [39]. The authors
e of this study integrated live cell imaging with single-cell RNA sequencing to demonstrate that NF-«B signaling
&7 shapes gene expression and has a functional role on cellular phenotypes. Therefore, in our experiments, we sought
es to classify cells according to stimulation condition (e.g. 150min- LPS). In the INF~y stimulation dataset [40],
e pancreatic islet cells from three donors were stimulated with or without Interferon-y (INF~) for 24 hours. INFy
7 is a proinflammatory cytokine that has been implicated in pancreatic beta cell damage during the pathogenesis
7 of Type I Diabetes [41]. Here, the authors applied their method MELD to characterize INF~ treatment response
72 across pancreatic islet cell populations and identified a non-responsive subpopulation of beta cells characterized
73 by high expression of insulin. Consequently, we sought to classify INF~-stimulated from unstimulated cells.
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7+ Lastly, the AML chemotherapy dataset [5] consisted of peripheral blood mononuclear cells (PBMCs) collected
75 from a patient with Acute Myeloid Leukemia (AML) at baseline or after two or four days of treatment with
76 chemotherapy agents Venetoclax and Azacitidine. It is hypothesized that the persistence of leukemia stem cells
77 (LSCs) following treatment drives disease severity, relapse, and results in worse clinical outcomes [7,42]. Here, the
7s  authors demonstrate how chemotherapy treatment induces the depletion of LSCs through metabolic reprogramming,
7o where oxidative phosphorylation, a critical pathway for LSC maintenance and survival, is suppressed. Thus, we
s sought to classify PBMCs according to treatment condition (day 0, day 2, day 4).

s1  Datasets for disease status classification: To assess integration performance on classifying cells according to
s2 disease status, we considered three case/ control datasets of two disease systems, Acute Myeloid Leukemia (AML)
83 and Multiple Sclerosis (MS). In the first dataset [7], Leukemia stem cells (LSCs) were collected from AML patients
s4 at treatment-naive diagnosis (N = 5) and following relapse after chemotherapy treatment (N = 5). Here, the
ss authors compared diagnosis from relapse samples to characterize gene expression heterogeneity during AML
ss disease progression and show that differences were largely due to metabolic reprogramming, apoptotic signaling,
&7 and chemokine signaling. Therefore, in our experiments, we sought to classify diagnosis from relapse cells. For the
ss second and third study, we considered a Multiple Sclerosis dataset [6], where PBMCs and cerebral spinal fluid
s (CSF) were collected from MS patients (N = 5) and controls (N = 5). MS is a chronic inflammatory disorder
o0 of the central nervous system that results in neurological dysfunction [43]. When examining the transcriptional
o1 profiles of MS patient cells as compared to controls, CSF exhibited differences in cell type composition, including
sz an enrichment of myeloid dendritic cells and the expansion of CD4+ cytotoxic T cells and late stage B cells.
o3 In contrast, PBMCs exhibited increased transcriptional diversity with an increased proportion of differentially
s+ expressed genes. Consequently, we sought to classify control from MS cells across patients using either CSF or
os PBMC biological samples.

s Selection of integration methods

97 The power of multi-omics data integration methods lies in their ability to combine individual layers of data (e.g.
ss  spliced expression, RNA velocity) to identify a new set of cellular features that more holistically represents cell type
90 or functional state [2344]]. Once computed, these features can be used in machine learning models to jointly analyze
100 cell type-specific differences or to obtain clinically meaningful predictions that can inform therapeutics [45] 46].
101 In this study, our goal is to compare integration approaches for merging gene expression data matrices across the
102 same set of profiled cells in order to evaluate their performance on downstream analysis tasks, including trajectory
103 inference or sample-associated classification of cells. Given the large variety of different integration approaches,
14 we performed a systematic evaluation of eight integration methods by selecting and grouping approaches according
10s  to two categories: early integration approaches and intermediate integration approaches. First, we consider early
106 integration approaches as baseline computational strategies for merging individual modalities into one input matrix.
107 Here, we selected three representative baseline strategies (cell-wise concatentation, cell-wise sum, CellRank [[17]),
108 in addition to an unintegrated control. In contrast, we consider intermediate integration approaches as computational
100 strategies that transform individual modalities into an intermediate representation prior to merging, such as a cell
no  similarity graph or a subspace. Within this category, we selected four representative methods, including Similarity
1 Network Fusion (SNF) [25]], Grassmann Joint Embedding [26]], integrated diffusion [24], and Patient Response
12 Estimation Corrected by Interpolation of Subspace Embeddings (PRECISE) [47]. Here, we briefly define the eight
113 integration approaches evaluated in this study. For more details on the overall problem formulation and integration
ns  method implementation, see the integration section in the

115 1. Unintegrated: A representation consisting of one data modality. In this case, our unintegrated data consists
116 of mature spliced expression counts, as this is what is traditionally used for downstream single-cell analysis,
117 as outlined by current best practices [48]].

118 2. Concatenation: Modalities are merged through cell-wise concatenation of data matrices.

119 3. Sum: Modalities are merged through summing data matrices.

120 4. CellRank: CellRank [17] merges data modalities by computing a weighted sum of gene expression similarity
121 and RNA velocity transition matrices. We refer to this approach as an early integration strategy as it simply
122 reweights the edges of the original gene expression cell similarity graph according to RNA velocity transition
123 probabilities. Notably, this method is specific to integrating RNA velocity data.

124 5. Similarity Network Fusion (SNF): SNF [25] merges data by first computing an cell affinity graph for each
125 data type. Next, individual modality networks are merged through nonlinear diffusion iterations to obtain a
126 fused network.
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127 6. Grassmann Joint Embedding: Grassmann Joint Embedding [26]] integrates data modalities by first computing
128 an cell affinity graph for each data modality, and then merges networks through subspace analysis on a
129 Grassmann manifold.
130 7. Integrated diffusion: Integrated diffusion [24] merges data modalities by first computing a diffusion operator
131 for each denoised data type. Next, individual operators are merged by computing a joint diffusion operator.
132 8. Patient Response Estimation Corrected by Interpolation of Subspace Embeddings (PRECISE): PRECISE
133 merges data by first performing principal components analysis (PCA) on each individual modality. Next,
134 principal components are geometrically aligned and consensus features are determined through interpolation.
135 For this analysis, we implement two versions by projecting spliced expression onto (1) the principal vectors
136 (denoted as PRECISE) or (2) the consensus features (denoted as PRECISE consensus).
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Figure 1: Schematic overview of benchmarking design. (A) Workflow of integration method evaluation. Eight
integration approaches and four temporal mRNA modalities are evaluated on three prediction tasks. Data are first
preprocessed and jointly batch effect corrected. Next cross-modality integration (spliced and unspliced counts or
moments of spliced and RNA velocity) is performed using eight different integration approaches. Features specified
through the integration strategy are used to infer trajectories, predict response to drug treatment, and classify patient
cells. (B) Overview of data integration strategies (unintegrated, concatenation, sum, CellRank [17], Grassmann
joint embedding [26], integrated diffusion [24], SNF [23], and PRECISE [47]).
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17 Benchmarking overview

138 Given that gene expression modalities are collected along a temporal axis of gene regulation, we evaluated the
130 performance of integrating unspliced, spliced, or RNA velocity modalities on predicting discrete and continuous
o variation in cell and disease states across a range of biological scenarios (Supplementary Table[I)). Following
11 transcriptomic profiling, spliced and unspliced counts were preprocessed and jointly batch effect-corrected prior
12 to RNA velocity estimation (see Supplementary Table[I] Supplementary Figures[I} 10). For each set
13 of modalities (spliced and unspliced counts, moments of spliced and RNA velocity), our goal is to identify a
14 consensus representation that we can use as input to a predictive model (Figure [TIA). We benchmarked eight
s integration approaches for combining these gene expression modalities by evaluating how well integrated features
s infer biological trajectories, classify a cell’s response to a drug perturbation, or classify the disease status of a
17 cell. Moreover, to quantify the predictive performance of an integration strategy, we computed several metrics for
s each prediction task. To assess the quality of trajectory inference prediction following integration, we computed a
1o trajectory inference correlation score to a ground truth reference that takes into account cellular positioning and
150 trajectory-specific dynamically expressed genes. To assess classification performance, we computed the accuracy
151 of predicted labels from an integration strategy using three complementary metrics, such as F1 score, balanced
152 accuracy, and area under the receiver operator curve. For integration methods that required user-specified input
153 parameters (Supplementary Table[2)), we performed hyperparameter tuning to select the best performers. We then
15« ranked the overall predictive performance of integration strategies for each task by averaging scores across all
155 datasets (see[Methods). This measures how well incorporating dynamic mRNA information aids in recovering
156 intermediate transitions or classifying the state of a cell.

157 In selecting an appropriate data integration strategy, it is crucial that the approach is able to satisfy computational
1ss  challenges that are specific to each modality. First, a method must be robust to varying amounts of sparsity
159 between data types. Single-cell RNA sequencing modalities produce matrices which contain a large proportion of
160 zeros, where only a small fraction of total transcripts are detected due to capture inefficiency, amplification noise,
161 and stochasticity [49]]. This sparsity is far greater in unspliced molecules due to polyadenylation enrichment in
162 library preparation [[12]. Moreover, given that unspliced, spliced, and RNA velocity predictions are influenced by
s biological and technical noise, a method must be able to resolve noisy signals for robust prediction. To address these
164 challenges, we compared two classes of integration approaches for combining temporal sequencing modalities,
s including early integration approaches (concatenation, sum, CellRank) and intermediate integration approaches
16 (Grassmann joint embedding, integrated diffusion, SNF, PRECISE) (see[Selection of integration methods| [Methods]

17 Figure[IB).

s Integration performance on inference of biological trajectories

1o When undergoing dynamic processes such as differentiation, cells exhibit a continuum of cell states with fate
170 transitions marked by external stimuli, cell-cell interactions, and stochastic gene expression [S0]. One limitation
i1 of trajectory inference (TI) reconstruction from snapshot single-cell data is the fact that many gene regulatory
12 mechanisms and cellular dynamics could give rise to the same distribution of cell states [8]. We reasoned that
173 incorporation of unspliced counts or RNA velocity data may provide increased granularity of the state space to
174 more accurately recapitulate the underlying trajectory. To test this hypothesis, we evaluated integration method
175 performance on inferring two types of biological trajectories, cell cycle and differentiation, by measuring their
176 ability to (1) recover known cell population transitions and (2) infer lineage-specific dynamically expressed
177 genes.

17s  In order to construct reference trajectories for evaluation, we chose well-studied biological systems and selected
179 datasets that had gold standard cell type annotations according to the expression of particular characteristic
10 phenotypic markers. Therefore, we selected datasets consisting of mouse embryonic stem cell cycle and mouse
11 hematopoietic stem and progenitor cell differentiation trajectories (see [Description of datasets| [Methods). We
12 then quantified how well integrated features recapitulated cell cycle or differentiation trajectories by adapting
153 an approach previously used to assess the accuracy of trajectory inference methods [51]] (see[Methods)). Briefly,
1.4 we constructed predicted trajectories for each integration approach by applying partition-based graph abstraction
15 (PAGA) [52], a state-of-the-art trajectory inference method, on the joint graph following integration. First, PAGA
18 was used on the integrated k-nearest neighbor graph to determine directed weighted edges between known cell
17 types according to FACS annotations. Here, the edge weights quantify the strength in connectivity between cell
188 populations, which represents the overall confidence of a cell population transition. Next, we applied diffusion
189 pseudotime [S3]] to determine an individual cell’s progression through those high-confidence paths. Since integrated
100 features are used as input, the inferred trajectory now contains transcriptional information from a transitional
191 process at or following a measured time point. To assess the accuracy of predicted trajectories, we defined a
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trajectory inference correlation score that compares predicted trajectories to a ground truth reference trajectory
we curated from the literature (see[Methods). By taking into account a cell’s position along the trajectory, as well
as the features that are dynamically expressed, this correlation metric reflects how well integration infers known
cellular dynamics. Moreover, to ensure a robust comparison across integration approaches, we generated predicted
trajectories and correlation scores with respect to the same ten random root cells selected from the annotated root
cluster (mouse embryonic cell cycle: G1, mouse hematopoietic differentiation: long-term hematopoietic stem cells

(LT-HSC)).
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Figure 2: Integration improves inference of cell cycle and differentiation trajectories. Trajectory inference
was performed to assess the quality of inferred mouse embryonic cell cycle and mouse hematopoiesis differentiation
trajectories from (A top panel) spliced and unspliced or (A bottom panel) moments of spliced and RNA velocity
integrated features generated from eight integration methods. The boxplots represent trajectory inference correlation
scores (T1¢o,r) for ten random root cells. * indicates the method with the highest median T1.,, score. (B) PAGA
predicted trajectories and diffusion map embeddings representing the inferred biological trajectory for unintegrated
data, as well as high ranking performers for unspliced and RNA velocity integration.
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199 When comparing predicted trajectories across integration approaches, we found spliced and unspliced as well as
200 moments of spliced and RNA velocity integrated features led to a higher trajectory inference correlation score
20 when compared to unintegrated data (Figure[2JA). For cell cycle, the best performing median TI correlation scores
202 were 0.849, 0.856, 0.750 for unspliced integration, velocity integration, and unintegrated data, respectively. For
203 hematopoietic stem cell differentiation, the scores were 0.792, 0.787, 0.579 for unspliced integration, velocity
204 integration, and unintegrated data, respectively. We next investigated how incorporating temporal gene expression
20s  modalities alters the inferred PAGA trajectories and diffusion map embeddings for the top integration performers
206 With respect to unintegrated data (Figure [2B). When examining the PAGA graphs, we found that all predicted
207 trajectories captured the major cell state transitions supported by the literature. For mouse embryonic cell cycle,
208 predicted trajectories included the cyclical transition through the proliferative phases of the cell cycle [36]]. For
200 mouse hematopoiesis, predicted trajectories inferred known developmental lineages, with cells transitioning from
210 the multipotent progenitor (MPP) population to early lymphoid (LMPP), erythroid (MEP), and granulocyte-
a1 macrophage (GMP) cell populations [54,37]]. In addition to capturing known transitions, predicted trajectories
212 with integrated data resulted in an improved recovery of cellular dynamics. For example, integration of spliced
213 and unspliced counts with SNF better resolves the smooth cyclical progression through the embryonic cell cycle,
24 with cells following a clear trajectory from G1 to S to G2/M (Figure[2B). Moreover, by comparing the change in
x5 PAGA connectivity across the same integration strategy for different input modalities (Figure 2B), we observe how
216 temporal gene expression modalities influences the confidence of an inferred cell state transition. When integrating
217 unspliced and spliced features for cell cycle inference, we observe an increase in PAGA connectivity from G2/M to
2s GI to S phases, whereas RNA velocity integration illustrates the next time point and provides stronger transition
210 weights from Gl to S to G2/M. This added layer of granularity demonstrates prioritized cell type transitions with
220 respect to the underlying gene expression dynamics, which may provide additional insight into the gene regulatory
221 programs that drive specific paths of temporal variation. Lastly, by aggregating trajectory inference correlation
222 scores across datasets, we find integrated diffusion and similarity network fusion amongst the best ranking methods
2 for predicting trajectories with both sets of modalities (Supplementary Figure [TT). Taken together, these results
24 indicate that integrating gene expression data improves the ability to predict temporal changes in gene expression
225 along progressive changes in cell state.

»s Testing integration under perturbation conditions

227 A key application of scRNA sequencing is the ability to identify subpopulations of cells that are either responsive or
228 resistant to drug therapy [S5]. To examine if integration of unspliced or RNA velocity data can aid in these tasks, we
220 tested integration performance on classifying perturbation condition labels from three diverse datasets with clinical
20 relevance, including lipopolysaccharide (LPS) stimulated macrophage-like cells, Interferony (INF~) stimulated
21 pancreatic islet cells, and peripheral blood mononuclear cells (PBMCs) collected from a patient with Acute Myeloid
22 Leukemia (AML) after chemotherapy treatment (see [Description of datasets). Using these perturbation datasets, we
233 constructed a set of integrated features corresponding to a cell’s transcriptional response following a perturbation.
234 We then considered the problem of cell state classification, where our goal is to learn the annotated condition labels
25 (e.g. INFv stimulated or unstimulated) from the underlying feature set. We labeled or classified cells using label
236 propagation [56] (see and compared predictions to the ground truth labels using three complementary
237 accuracy metrics, including area under the receiver operator curve (AUC), F1 score, and balanced accuracy (accy,).
233 Across all three datasets, we found that integration of spliced and unspliced counts led to higher classification
z9  accuracy than unintegrated data (Figure[3]A), with median AUCs (best performing integrated: 0.905, 0.953, 0.785;
20 unintegrated: 0.895, 0.930, 0.768) for LPS, INFvy, AML chemotherapy datasets, respectively. In contrast, we
2 found that RNA velocity integration generally led to worse classification accuracy than unintegrated data (Figure
22 [3B). One notable exception was integration performed with CellRank, which resulted in a similar performance to
243 unintegrated data, with median AUCs (CellRank: 0.895, 0.934, 0.766, unintegrated: 0.895, 0.930, 0.768). Similar
214 results were obtained for additional metrics, such as F1 score and balanced accuracy (Supplementary Figure [12).
s As a secondary validation, we trained a support vector machine (SVM) classifier to learn perturbation labels from
26 the shared lower dimensional space following integration. We performed nested 10-fold cross validation to obtain a
247 distribution of predictions for each method and dataset (see[Methods). We observed similar classification results
24 with unspliced integration outperforming unintegrated data (Supplementary Figure [T3).
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Figure 3: Integrating spliced and unspliced counts improves drug treatment condition prediction. Label
propagation was used to classify cells according to treatment response from (A) spliced and unspliced or (B)
moments of spliced and RNA velocity integrated features generated from eight integration approaches. The boxplots
represent classification accuracy according to area under the receiver operator curve (AUC) and the * represents
the method with the highest median AUC. Across all three datasets, spliced and unspliced integration achieves
increased classification accuracy over unintegrated data.

To rank methods according to how accurately they can predict a cell’s perturbation, we computed aggregate scores
by taking the mean of individual method scores across datasets (see [Methods). Overall, we found that early
integration strategies (concatenation, sum, CellRank) as well as PRECISE tended to outperform intermediate
embedding-based approaches (SNF, Grassmann joint embedding, integrated diffusion) (Supplementary Figure [T4).
The best performing method for unspliced integration was concatenation (Supplementary Figure[T4JA), whereas
the best performing method for RNA velocity integration was CellRank (Supplementary Figure [T4B). Overall,
these results suggest that a straightforward integration of spliced and unspliced counts may provide the best
strategy to most accurately predict a cell’s associated perturbation. Furthermore, these results illustrate how an
integrated analysis of gene expression modalities may provide the granularity necessary for better identifying cells
that are strongly associated with a particular treatment condition, which may provide insights into the biological
mechanisms conferring a phenotypic response.

Spliced and unspliced integration improves disease state classification

We next asked if an integrative analysis of unspliced or RNA velocity data can help distinguish discrete disease cell
states. In particular, we aimed to evaluate integration performance on predicting whether or not cells were from
control or disease patients using three datasets, including an Acute Myeloid Leukemia (AML) diagnosis/relapse
dataset, a Multiple Sclerosis (MS) case/control dataset of cerebral spinal fluid (CSF), and a MS case/ control dataset
of peripheral blood mononuclear cells (PBMCs) (see [Description of datasets)). To test whether leveraging temporal
gene expression modalities can aid in this tasks, we used the same label propagation strategy; however, now
formulated as a binary classification task based on the disease status labels for each cell. Similar to the perturbation
results, we found that unspliced integration achieves higher classification accuracy for predicting disease status,
with the median AUCs for the best performing methods (0.916, 0.861, 0.884) compared to unintegrated data
(0.895, 0.828, 0.825) for AML, MS-CSF, and MS-PBMC datasets, respectively (Figure EIA). Interestingly, we
observe differences in the predictive performance of integrated modalities across biological samples (CSF, PBMCs)
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272 collected from the same cohort of patients. Overall trends for integration performance were consistent across
»s  additional metrics and classifiers (Supplementary Figure [I3] Supplementary Figure [I3). When ranking each
274 particular method’s performance on classifying the disease status of a cell across datasets, we found the best
275 performing methods for unspliced integration to be PRECISE, sum and concatenation (Supplementary Figure

e [T6).
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Figure 4: Integrating spliced and unspliced counts improves disease state classification. Label propagation
was used to classify cells according to patient disease status from (A) spliced and unspliced or (B) moments of
spliced and RNA velocity integrated features generated from eight integration approaches. The boxplots represent
classification accuracy according to area under the receiver operator curve (AUC) and the * represents the method
with the highest median AUC. Across all three datasets, spliced and unspliced integration achieves increased
classification accuracy over unintegrated data.

2 Overall integration method performance across datasets and tasks

zs  Figure[5|displays the overall ranked aggregate scores for each method colored according to task (green: trajectory
270 inference, pink: perturbation classification, blue: disease state classification). Across all three tasks, we found
20 unspliced integration (Figure [5]A) to be more predictive of cellular state than RNA velocity integration (Figure
21 [3B) or no integration (unintegrated Figure [5]A, [5B). While integration method performance varied across datasets,
;2 experimental modalities, and tasks, some clear trends emerged. When inferring biological trajectories, unspliced
2g3  integration with integrated diffusion and similarity network fusion (SNF) provided the highest trajectory inference
24 correlation score to the ground truth (Figure[5]A). In comparison, when evaluating perturbation or disease cell state
25 classification, concatenation, sum, and PRECISE were amongst the best ranking methods across all three metrics
26 and datasets (Figure[5JA). Collectively, these results indicate that integration method performance is task-specific,
237 with intermediate embedding-based approaches outperforming unintegrated data on inferring biological trajectories
233 and early baseline approaches achieving increased classification performance.
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Figure 5: Ranked integration method performance across prediction tasks. Integration methods were ranked
by averaging their overall performance across datasets for each prediction task (trajectory inference: green,
perturbation classification: blue, and classification of disease status: pink). Ranked scores were computed for
several metrics for evaluating a prediction task: (TI.,,.), F1 score, balanced accuracy (accy), and area under the
receiver operator curve (AUC)). Here, higher ranked method scores are indicated by a longer lighter bar. (A) Overall
quality of spliced and unspliced integration performance according to several metrics for evaluating prediction tasks.
(B) Overall quality of moments of spliced and RNA velocity integration performance according to several metrics
for evaluating prediction tasks. Of note, CellRank was not performed on unspliced and spliced integration, as it
relies on RNA velocity data. Across all three prediction tasks, unspliced integration outperforms unintegrated data,
while RNA velocity integration achieves increased trajectory inference correlation and perturbation classification
scores.

» Discussion

20 Here, we investigated integration of unspliced, spliced, and RNA velocity gene expression modalities for resolving
201 discrete and continuous variation in cell and disease states. We found that integrating modalities along a temporal
202 axis of gene regulation provides additional information necessary for robustly predicting cellular trajectories during
203 differentiation and cell cycle. Additionally, we show how spliced and unspliced integrated features can be used
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204 to better classify cells according to sample-associated phenotypes acquired after an experimental perturbation or
205 within a disease state. Lastly, by benchmarking eight data integration methods on the aforementioned prediction
206 tasks, we elucidate method performance specific to gene expression modalities or tasks. While intermediate
207 integration approaches such as SNF, Grassmann joint embedding, integrated diffusion, and PRECISE facilitate
208 increased performance on inferring biological trajectories, simple integration of spliced and unspliced counts
200 through concatenation, sum, or PRECISE achieves increased trajectory inference correlation scores, perturbation
a0 classification accuracy, and disease state classification accuracy across most datasets. To this end, integrating multi-
so1  ple gene expression modalities profiled from the same set of cells provides a finer resolution of the transcriptional
302 landscape of development or disease. Thus, an integrated analysis of gene expression modalities may be crucial for
a3 the interpretation of dynamic phenotypes.

s+ Several limitations should be considered when integrating gene expression modalities for cellular trajectory
ss inference or disease state classification. In this study, we evaluated methods for constructing integrated graphs or
306 joint embeddings with a priori knowledge of ground truth labels. For trajectory inference evaluation, we explored
307 how integrated data influences the change in connectivity or inferred cell state transitions between known cell
as  types identified via FACS. We found that integrated data resulted in increased trajectory inference correlation with
a0 respect to a reference trajectory. However, given that the results are sensitive to choice in hyperparameters, it may
a0 be challenging to select optimal hyperparameters without a priori knowledge of cell types or expected cell type
s transitions. Here, a range of hyperparameters should be considered when using the intermediate integration methods
s1z  outlined in this study. Of note, we observed that baseline integration approaches, such as sum and concatenation of
a1z spliced and unspliced counts perform consistently well on classifying sample-associated cell phenotypes. This
a4 1s particularly useful as these approaches are less computationally expensive and do not require hyperparameter
a5 tuning. Of note, these baseline methods did not perform well when integrating moments of spliced data with RNA
s velocity predictions for classification.

s17  Furthermore, the limitations of integration performance are an extension of the modalities used as input. RNA
ais velocity is a noisy extrapolation of gene regulation that can be biased by insufficient sampling of unspliced
a9 molecules [57], relies on model assumptions that may be violated [58]], and is sensitive to choice in preprocessing
320  tools, such as the quantification of mRNA abundances [59]. Notably, the accuracy of RNA velocity estimation
;21 can be improved by incorporating both gene expression and chromatin accessibility data [60]. Moreover, there
32 1s currently no consensus on how to appropriately batch effect correct linked gene expression modalities [S7]].
323 We chose to jointly correct spliced and unspliced count matrices according to the three metrics and two methods
224 outlined in this study; however, we note that this challenge may bias or limit the interpretation of our results. We
325 anticipate improved performance as bioinformatics tools are developed to better analyze such data. Lastly, although
326 RINA velocity often did not result in an increase in classification accuracy for the datasets selected in this study,
327 this does not preclude it from being informative for the analysis of other datasets. RNA velocity captures gene
38 expression dynamics over the timescale of hours, thus may provide crucial information for longitudinal datasets
320 with finer temporal sampling.

a0 Future work could focus on evaluating temporal gene expression integration for a wider range of tasks, such
;a1 as unsupervised cell population identification [[61]], characterizing phenotypic-related cells [40], characterizing
332 differentially abundant cell populations [62, 163]], or gene regulatory network inference [64]. This work could also
333 be extended to the analysis of other extrapolated regulatory modalities, including RNA velocity in-situ [[14], protein
a¢  velocity [[15]], or chromatin velocity [65]].

» Methods

1 Datasets

37 We evaluated trajectory inference, experimental perturbation, and disease classification performance on eight
a8 datasets spanning various biological contexts. For more details on data preprocessing, see Supplementary Table

339 m

s0  Hematopoiesis differentiation: FASTQ files consisting of hematopoietic stem and progenitor cells were accessed
sn from Nestorowa et al., [37] with the accession code GSE81682. FACS labels from broad gating were used to
a2 annotate six cell populations along three differentiation lineages: long term hematopoietic stem cells (LT-HSC),
a3 lymphoid multipotent progenitors (LMPP), multipotent progenitors (MPP), megakaryocyte-erythrocyte progenitors
34 (MEP), common myeloid progenitors (CMP), and granulocyte-monocyte progenitors (GMP) (see Supplementary
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sss  Table[3). Individual cell FASTQ files were aligned to the mouse reference genome mm10 with the STAR v2.7.7
a6 aligner. A loom file containing spliced and unspliced molecular counts was obtained using Velocyto v0.17.

s7 Mouse embryonic cell cycle: A dataset of mouse embryonic stem cells undergoing different stages of the cell
as  cycle was accessed from Buettner et al., [36] with the accession code E-MTAB-2805. FACS cell cycle labels from
a0 Hoesct flow sorting were used to annotate cells along three phases: G1, S, and G2/M. Individual cell FASTQ files
30 were aligned to the mouse reference genome mm10 with the STAR v2.7.7 aligner. A loom file containing spliced
351 and unspliced molecular counts was subsequently generated with Velocyto v0.17.

32 LPS stimulation: FASTQ files were accessed from Lane et al., [38]] with the accession code GSE94383. Here,
353 a macrophage-like cell line RAW 264.7 was stimulated with lipopolysaccharide (LPS) over 4 time points: Omin
354 unstimulated, 75min-, 150min-, 300min- post LPS stimulation. Files were aligned to the mouse reference genome
sss. mml0 with the STAR v2.7.7 aligner. A loom file containing spliced an unspliced molecular counts was generated
s with Velocyto v0.17. Following preprocessing, batch effect correction was performed on the libraries.

357 INF~y stimulation: Aligned BAM files of pancreatic islet cell INF~ stimulation were accessed from Burkhardt
sss et al., [40] with the accession code GSE161465. This dataset consisted of three donors per stimulation condition
350 (control, INFv stimulated). A loom file containing spliced and unspliced molecular counts was generated for each
30 donor and condition with Velocyto v0.17, then subsequently merged into a single file. Following preprocessing,
31 batch effect correction was performed using the donor labels.

32 AML chemotherapy: To assess disease progression, aligned BAM files of an individual patient with AML
s undergoing chemotherapy were accessed from Pollyea et al., [15] with the accession code GSE116481. Condition
3+ labels consisted of three timepoints: dO untreated, d2-, d4- post Venotoclax and Azacitidine treatment. A loom
3s file containing spliced and unspliced molecular counts for each timepoint was generated with Velocyto v0.17,
36 then merged into a single file. Following preprocessing, batch effect correction was performed on the condition
367 labels.

s AML matched diagnosis/relapse: Raw FASTQ files were accessed from Stetson et al., [7] with the accession
30 code GSE126068. In this dataset, PBMCs were collected from 5 patients with AML on the onset of diagnosis and
30 following relapse. FASTQ files were aligned to the human reference genome GRCh38 with the STAR v2.7.7 aligner.
371 A loom file containing spliced and unspliced molecular counts was obtained with Velocyto v0.17. Following
sz preprocessing, batch effect correction was performed using the patient labels.

a3 MS case/control: Aligned BAM files were accessed from Schafflick et al., [6] with the accession code GSE138266.
374 Here, two biological samples were collected from each patient (CSF, PBMCs) with a disease status label (control or
35 MS). Loom files containing spliced and unspliced molecular counts for each patient sample were obtained with
s76  Velocyto v0.17. Then a merged loom file consisting of control and MS patient cells was generated for each sample
377 independently. Following preprocessing, batch effect correction was performed using the patient labels.

s Preprocessing
379 Quality control, normalization, and highly variable gene selection

a0 All sScCRNA sequencing datasets were quality control filtered according to read depth and distributions of counts.
31 Following empty droplet and doublet removal, dying cells were removed by ensuring less than 20 percent of total
sz reads were mapped to mitochondrial transcripts. Genes were filtered out if they were expressed in less than five cells
a3 or had less than five counts shared between spliced and unspliced matrices. To perform normalization, we estimated
as¢  size factors for filtered spliced and unspliced count matrices with Scran pooling normalization v1.20.1 [66]. For
sss  datasets with an appreciable batch effect, size factors were subsequently scaled according to median normalization
sss  of the ratio of average counts between batches with Batchelor v1.8.0; this ensures data is downsampled based upon
ss7  the batch with the smallest read depth. To restrict the feature space, we selected highly variable genes on log+1
ass  transformed data by estimating a normalized dispersion measure [67]] using the highly variable genes function in
a0 Scanpy v1.8.1 (flavor = seurat, minimum mean = 0.012, minimum dispersion = 0.25, maximum mean = 5).
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30 Batch effect correction

31 RNA velocity relies on an ordinary differential equation framework to estimate the relationship between two
32 connected modalities, spliced and unspliced mRNA counts [68] [12, [13]. As such, correcting each modality
33 independently may lead to incorrect model fitting and spurious velocity vectors [57]]. We evaluated the performance
as  of batch effect correction methods, ComBat [69] and mutual nearest neighbors (MNN) [[70] on correcting count
35 data simultaneously. These methods were chosen as they directly correct the original gene expression data. Briefly,
36 we considered two simple approaches for combining the data prior to correction (1) summed spliced and unspliced
37 counts or (2) cell-wise concatenation. To obtain corrected count matrices for summed input data, we followed the
s0s  batch effect correction approach introduced in in Ref. [[71],

M=log(S+U+1) ey

S
R=577 @
Se=exp(M.-R—-1) 3)
U.=exp(M.-(1-R)—-1). “4)

a9 Here, S and U represent spliced and unspliced count matrices, respectively. Batch effect correction was performed
400 on the summed total expression matrix, M, to yield a corrected data matrix M. Corrected spliced S. and unspliced
41 U, counts were then obtained by inverting the log transformation through exponentiation. ComBat was run in
402 python using Scanpy v1.8.1 and MNN was run in R using Batchelor v1.8.0.

w3 Batch effect correction evaluation

404 To evaluate batch effect correction methods on combined spliced and unspliced modalities, we consider three
405 metrics for assessing batch effect removal while preserving both biological variation and the unspliced to spliced
406 relationship.

407 1. k-nearest neighbor batch effect correction test (kBET): The kBET algorithm [72] quantifies batch effects by

408 comparing the batch label composition of local random neighborhoods to the overall global label composition
409 through a x? test. Tests are then averaged to obtain an overall rejection rate. To test for batch effects,
410 we perform kBET using a fixed neighborhood size of £ = 10 neighbors for each correction approach
411 (uncorrected, MNN sum, MNN concatenation, ComBat sum, ComBat concatenation). KBET scores were
412 computed using kBET v0.99.6.

413 2. Local Inverse Simpson’s Index (LISI): The LISI score [73] measures the degree of batch label mixing by
414 computing the number of cells that can be drawn from a local neighborhood before a batch label is observed
415 twice. Here, local distances are weighted according to a Gaussian kernel and probabilities are determined by
416 the inverse Simpson’s index. LISI returns a diversity score ranging from 1 to the total number of batches. To
417 test for batch label diversity, we compute LISI using a fixed perplexity of 30 for each correction approach
418 (uncorrected, MNN sum, MNN concatenation, ComBat sum, ComBat concatenation). LISI scores were
419 computed using harmonypy.

420 3. Pearson correlation of phase space pairwise distances: The dynamical model of RNA velocity estimates
421 transcriptional dynamics by inferring gene-specific reaction rate and latent parameters through an expectation-
422 maximization framework on the phase space (spliced and unspliced counts) of the data. To quantify how
423 well a batch effect correction approach preserves the unspliced to spliced relationship across all cells, we
424 compared phase space cellular neighborhoods by computing the Pearson correlation of pairwise distances in
425 the phase space for each donor and pairwise distances of the same cells in corrected data. In other words, for
426 each gene we obtain a single correlation score capturing how well cell-cell distances are preserved in the
427 phase space of corrected data with respect to an individual donor/patient. The distribution of gene correlations
428 measure the overall quality of correction for retaining similar cell distributions for RNA velocity fitting and
429 estimation.
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a0 To select a batch effect correction approach, we evaluated correction performance on the each biological condition
41 individually. Furthermore, we took the intersection of genes that were highly variable across all profiled samples
42 (e.g. libraries, donors, patients) to ensure that the data being compared were specific to the biological system under
43 study and that donor-specific variation was removed. For each dataset, we selected the batch effect correction
44 approach that had the best performance across all three metrics (see Supplementary Table[I] Supplementary Figure
s [16)). One exception was the AML diagnosis/relapse dataset, which contained too few cells for the analysis. Here,
a6 we selected ComBat concatenation, as it was the approach that consistently performed well on all other datasets.
47 Once an approach was selected, we performed joint correction on the original full dataset as outlined previously

a8 (See|Preprocessing).

4239 RNA velocity estimation

40 To estimate RNA velocity, we used the dynamical model implementation in Scvelo v0.2.3. More specifically,
an  first order moments of spliced and unspliced counts were computed based on a k-nearest neighbor graph of cells
a2 (k = 10), constructed by calculating pairwise Euclidean distances between cells based on their first 50 principal
43 components (PCs). The full dynamical model was then solved for all genes to obtain a high dimensional velocity
44 vector for every cell. Given that populations of cells may have different mRNA splicing and degradation kinetics,
45 we performed a likelihood ratio test for differential kinetics on the clusters identified from Leiden community
46 detection (resolution parameter of 1.0) [[74]. Clusters of cells that exhibited different kinetic regimes were fit
47 independently and velocity vectors were corrected.

4s  Sketching

49 To evaluate integration performance on the large-scale case/control datasets, we first performed subsampling
40 with geometric sketching. Geometric sketching [75] is an algorithm that aims to select a representative subset of
41 cells that preserves the overall transcriptional heterogeneity of the full dataset. By approximating the underlying
42 geometry of the data through a plaid covering of equal volume hypercubes, geometric sketching is able to evenly
43 select cells such that rare cell types are sufficiently sampled. We implemented geometric sketching to select a
44 representative subset of cells from both Multiple Sclerosis case/control datasets. Sketches were constructed from
45 the transcriptional landscape of the mature gene expression data (spliced or moments of spliced), with sketch sizes
46 of approximately twenty percent of the total data. Sketch indices were then used to subsample all modalities prior
47 to integration and disease state classification evaluation.

s Integration methods
49 Problem Formulation

wo Let X = {x;}"_, denote a single-cell dataset consisting of one gene expression modality, where x; € R? represents
w1 avector of d genes measured in cell ¢. Given a collection of m gene expression modalities { X"} ; sampled from
42 IV individuals, where for sample 7 there is an associated label y;, our goal is to identify a biologically meaningful
w3 consensus representation, Z = {z; € RP}?_, where p represents shared latent features such that p < d. In this
a4 case, we wish to use this consensus representation to build a predictive model to infer biological trajectories or to
45 predict the patient-specific or treatment-induced phenotypic label for sample ¢, y;. In this section, we describe the
466 methods selected for integrating two groups of gene expression modalities, either moments of spliced counts with
47 RNA velocity data or normalized and log transformed spliced and unspliced count matrices. For more details on
48 implementation and hyperparameter tuning, see Supplementary Table[2]

4o Unintegrated: To evaluate a baseline approach representing unintegrated data, we constructed a k-nearest
470 neighbor graph (k = 10) from the top 50 principal components, generated from the normalized and log transformed
41 spliced counts. This is akin to what is traditionally used for downstream single-cell analysis, as outlined by current
42 best practices [48].

43 Concatenation: Gene expression data matrices were horizontally concatenated to obtain a merged data matrix
474 with dimensions n x 2d. Principal Component Analysis (PCA) was performed on the concatenated matrix
w5 and a k-nearest neighbors graph (k = 10) of cells was ultimately constructed based on the top 50 principal
476 components.
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47 Sum: Gene expression data matrices were summed to obtain a merged data matrix with dimensions n x d. PCA
478 was performed on the summed matrix and a k-nearest neighbor graph (k = 10) was constructed from the top 50
479 principal components.

a0 CellRank: CellRank [17] computes a joint transition probability matrix through a weighted sum of expression
41 and velocity transition probability matrices as,

P = AP, + (1 — \)P, for \ € [0,1]. (5)

42 Here, P, represents the velocity transition matrix, P, represents the expression similarity transition matrix, and A
43 1s the weight parameter. We used CellRank v1.1.0 and performed hyperparameter tuning by varying the weight
44 parameter A\, the measure of velocity similarity (correlation, dot product, or cosine), and the model that determines
45 1f velocity uncertainty is propagated in the transition matrix computation (monte-carlo, dynamical). Given that this
46 approach relies on RNA velocity directionality, integration was only performed using moments of spliced and RNA
47 velocity data.

ws PRECISE: PRECISE [47] was adapted to integrate temporal gene expression modalities. PRECISE first com-
49 putes principal components for each modality individually, then geometrically aligns components to extract
40 common principal vectors that represent similar weighted combinations of genes. From here, a consensus feature
41 representation is computed by optimizing the match between interpolated sets of features (e.g. expression and
42 velocity). For this analysis, we obtained a lower dimensional latent space by projecting expression data onto (1) the
43 principal vectors (denoted as PRECISE) or (2) the consensus features (denoted as PRECISE consensus). From
404 this shared embedding space, we constructed a k-nearest neighbor graph (k = 10). For both approaches, we
45 performed hyperparameter tuning by varying the number of included principal vectors. Given that the principal
496 vectors are rank ordered according to modality similarity, selection is analogous to filtering the data based on shared
47 or unshared information. PRECISE v1.2 was used and modified to include dissimilar components.

a8 Similarity Network Fusion: Similarity Network Fusion (SNF) [25] constructs a joint graph of cells according to
w9 gene expression data modalities using a two step process. First a cell affinity graph G™ = (V™, £™) is computed
soo  for each modality, where V""" represents cells and edges, £, are weighted according to modality-specific similarity
s using a heat kernel as follows. Here, we compute W7, which gives the specific edge-weight between cells ¢ and j
so2  in modality m as,

o7 — 2
Wil = exp <J> . (6)
HEij
sos  Specifically, W™ is a n X n similarity matrix for modality 1, j is a scaling hyperparameter, and ¢;; is a bandwidth
so+ parameter that takes into account local neighborhood sizes. Next, the two individual modality networks are
sos integrated through nonlinear diffusion iterations between each modality to obtain a fused network. Importantly,
sos the network fusion step ensures that the merged graph representation retains edge similarities that are strongly
so7  supported by an individual modality in addition to similarities shared across modalities. To compare results to
sos the intermediate embedding integration methods, we modified SNF by constructing a shared embedding from the
soo  fused network through eigendecomposition of the unnormalized graph Laplacian L,,. Note that L, is computed
510 as,

L,=D— A. 7)

su Here, D is a diagonal degree matrix with i-th diagonal element, d; = > j A;j and A is the symmetric merged SNF
siz  affinity adjacency matrix. Given that eigenvectors of the Laplacian represent frequency harmonics, we selected
siz the eigenvectors corresponding to the K smallest eigenvalues to low pass filter high frequency noise [76]. We
s« then constructed a k-nearest neighbor graph (k = 10) for evaluation. We performed hyperparameter tuning by
515 varying the number of nearest neighbors, the bandwidth scaling parameter i, and the number of eigenvectors for
sie  the merged graph embedding. SNF was implemented using the snfpy v0.2.2 package in python.
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si7 Grassmann Joint Embedding: The Grassmann joint embedding approach introduced in Ref. [26] was adapted to
s1is  construct a shared representative subspace of temporal gene expression information. Similar to SNF, the Grassmann
so - embedding approach begins by constructing affinity matrices to encode similarities between cells 7 and j in each

s20 modality using a heat kernel as,
qm _— ||x:n B x;n”Z 8
i Y (®)

s Here, S™ is a n X n between-cell similarity matrix for modality m and ¢ is the kernel bandwidth parameter. To
s22  prioritize local similarities, the k-nearest neighbors according to the similarity matrix S™ are identified and the
523 similarity matrix is further redefined as,

Sg}l, if’Uj EM

WE‘ = .
0, otherwise.

€))

s2«  Here, cell v; and v; are connected with an edge with edge weight S;; if the cell is within the set of v;’s neighbors,
55 Nj. Next, low-dimensional subspaces are computed through eigendecomposition of the normalized graph Laplacian
s26  of each data type. The normalized graph Laplacian L, is formally defined as,

1
2

[N

L™ =D™ * (D™ - W™)D™ (10)
s Here, m indexes the data modality and D™ represents a diagonal degree matrix, such that the i-th diagonal
s element, d]” =) ; Wij'. Furthermore, A" is the symmetric Grassmann affinity matrix of modality m. A shared

s representative subspace from [26] is then ultimately computed as,

m m

Linoa = » LI —ay_ UmU™. (an
k=1 k

=1

s  Here, U™ represents an individual subspace representation and « controls the trade-off between preserving modality-
s31 - specific structural similarities (in the first term) and minimizing the distance between each subspace representation
52 (in the second term). Lastly, an eigendecomposition of the Laplacian of the joint graph L,,,,q was computed to
si3 extract the K eigenvectors corresponding to the first K eigenvalues to represent the merged embedding space. For
ss  evaluation, we constructed a k-nearest neighbor graph (£ = 10) from this shared space. Hyperparameter tuning
sss was performed by varying the number of nearest neighbors and kernel bandwidth parameter ¢ in the affinity graph
s construction, as well as «, and the number of eigenvectors to include for the merged graph embedding.

ss7  Integrated Diffusion: Integrated diffusion [24] combines data modalities by computing a joint data diffusion
sss  operator. First, individual modalities are locally denoised by performing a truncated singular value decomposition
s3  (SVD) on local neighborhoods determined through spectral clustering. Next a symmetric diffusion operator is
s constructed for each denoised modality, and spectral entropy is used to determine the number of diffusion time
sa steps to take. By taking the reduced ratio of information, the joint diffusion operator P; is computed as,

P; =P} - Py. 12)

s22 Here, P; and P, represent individual modality diffusion operators (e.g. expression and velocity) and t; and
ses to represent the reduced ratio of diffusion time steps, respectively. By powering transition probability matrices
s« independently, this captures both modality-specific information, while allowing the random walk to jump between
ses  data types for merging. Lastly, the joint diffusion operator is powered using the same spectral entropy measure.
se6 It is important to note that choice of ¢ is crucial, as it can either effectively denoise data or remove important
sz variation and lead to oversmoothing. We eigendecomposed the diffused joint operator and selected the eigenvectors
sss corresponding to the K largest eigenvalues to obtain a merged lower dimensional representation. We then
sso  constructed a k-nearest neighbor graph (K = 10). Hyperparameter tuning was performed by varying the number
sso  of clusters for local denoising, the number of nearest neighbors in affinity graph construction, and the number of
ss1 - included eigenvectors.
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2 Evaluation
ss3 Trajectory inference

ss« To quantify how well incorporation of unspliced counts or RNA velocity recapitulates the underlying biological
555 trajectory, we compared predicted trajectories to a ground truth reference using the metrics implemented in the
sss R suite Dynverse [S1]. Reference trajectories were curated from the literature [37, 36] 154], with cell groups,
ss7  connections, and root cluster provided by the authors of the original study. We note that cell population annotations
sss were externally determined through cell surface protein measurements and not from unsupervised clustering on the
sso - expression data.

seo 1o obtain predicted trajectories from integrated data, we performed trajectory inference using Partition-based
st Graph Abstraction [52] followed by diffusion pseudotime [53]], as this approach was shown to outperform other
ss2  methods for inference of complex differentiation topologies [51]. Predicted trajectories consisted of two main
se3  attributes: (1) a trajectory network, where nodes represent FACS cell groups and edges connect populations based
se«  on PAGA inferred connectivity and (2) a list of cellular percentages representing a cell’s relative position between
ses  groups. Here, cellular percentages were determined from diffusion pseudotime using 20 diffusion map components
ses  generated from the underlying integrated or unintegrated k-nearest neighbor graph. For each integration approach,
ss7 we computed predicted trajectories for ten random root cells selected from the annotated root cluster.

ses 1o evaluate a method’s performance on inferring developmental gene expression dynamics from integrated or
se0  unintegrated data, we compared reference and predicted trajectories using two metrics previously described in Ref.
s [S1]): cell distance correlation and feature importance score correlation.

571 1. Cell distance correlation C.,,..: Geodesic distances represent the shortest path distance between two cells on
572 a nearest neighbor graph of the data [[77]. To estimate a measure of the correlation of between-cell distances
573 between reference and predicted trajectories, geodesic distances were computed between cells on a trajectory
574 graph. The cell distance correlation is defined as the Spearman rank correlation between the geodesic cell
575 distances of both trajectories.

576 2. Feature importance score correlation F .o: To assess whether the same temporally expressed genes were
577 found in the predicted trajectory as in the reference, a random forest regression framework was used to
578 predict the expression values of each gene based on geodesic distances of each cell to each cell state cluster.
579 The feature importance score correlation is defined as the Pearson correlation between the reference and
580 predicted scores.

ss1To obtain an overall trajectory inference correlation score reflective of high cell and feature similarity, we compute
ss2  the harmonic mean of both correlation metrics as,

Ccorr : Fcorr
Tleopr =2 —m——. 13
Ccorr + Fcorr ( )

sss  Classification

ss+ Label Propagation: To quantitatively compare integration methods on disease state prediction, we aimed to
sss  implement an approach that would use the underlying integrated or unintegrated graph structure. Label propagation
ss6  [56]] is a semi-supervised learning algorithm that uses iterative diffusion processes to predict the labels of unlabeled
ss7 nodes. The output of this algorithm is a probability distribution of labels for every cell. We implemented label
sss  propagation to predict stimulation condition or disease status labels as follows.

ss9 LetG = (V, €,y = {y;},) denote a graph of n cells comprising the nodes (V) generated from an integration
s approach and the set £ edges encoding between-cell similarities. Similarly, a particular y; gives a phenotypic label
s for cell i (e.g. patient disease status). Let y' = (y;, ¥.,) denote a vector consisting of a training subset of cells that
s are labeled y; = {y;}]; where y; € y and m < n, and a test subset of cells that are unlabeled, y,, = {0}"~™.
sss Given G and 3/, our goal is to assign a label to the unlabeled cells and the corresponding entries of y’s. To do so,
s0«  we perform the following approach.

595 1. Stratified random sampling is used to assign cells to a training or test set; this ensures that the original ratio
596 of class labels (e.g. AML diagnosis or relapse) remains the same as in the full dataset.

597 2. Initialize algorithm on the training set to predict the labels of the masked test set. Each node has a label
598 y;, and edge weight w;; representing the strength of similarity between nodes ¢ and j. Here, larger weights
599 indicate a higher probability of cell ¢ propagating its label y; to cell j.
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3. Labels are iteratively updated through diffusion, where D is a diagonal degree matrix with ¢’th diagonal
element d; = Zj W;j as,
y/(t-‘rl) — D—lwy/(t). (14)

600 4. Row normalize labels ¢’ to maintain a probability distribution.

5. Training labels are clamped after each iteration as,

)y, (15)

6. Iterations are repeated until convergence, with a threshold § = 0.001, such that,

' — D) <6, (16)

601 7. Class labels are assigned to every node by taking the label with the maximum probability.

¢02 We repeated this procedure for ten random training initializations to obtain a set of predicted labels for each
03 integration approach.

s  Support Vector Machine (SVM): The support vector machine (SVM) [78]] is a supervised learning algorithm
s that constructs hyperplanes in the high dimensional data to separate classes. We implemented SVM as a secondary
s classification approach for predicting perturbation response or disease status labels from the individual or joint
s7 embedding space (e.g. PCA, diffusion embedding). Specifically, nested 10-fold cross validation was performed
s using stratified random sampling to assign cells to either a training or test set. SVM hyperparameters were tuned
60 over a grid search within each fold prior to training the model and labels were subsequently predicted from the test
610 data.

e1  Metrics: To quantify stimulation condition and disease status classification performance, we compared predicted
612 labels to ground truth annotations using three metrics: F1 score, balanced accuracy (accy), and area under the
ez receiver operator curve (AUC). The F1 score measures the harmonic mean of precision and recall as,

P —2. precision - recall

. 17
precision + recall 17

s12 Balanced accuracy represents the average of sensitivity (true positive rate) and specificity (true negative rate). When
e1s  predicting more than two labels (e.g. disease progression), we computed the mean sensitivity for all classes.

sensitivity + specificity

5 (18)

accp =

e16 Lastly, area under the receiver operator curve was computed using the soft probability assignments. For the
617 multi-class case, each class label was compared to the remaining in an all vs. rest approach, then averaged. All of
618 these metrics return a value between 0 and 1, where 1 indicates predicted labels were in perfect accordance to the
610 ground truth annotations.

o0 Aggregate scores

621 To rank methods for each prediction task, we compute aggregate scores by taking the mean of scaled method scores
622 across datasets. More specifically, we first define an overall method score per dataset as the median of each metric.
623 Method scores were subsequently min-max scaled to ensure datasets were equally weighted prior to computing the
624 average.

= Data and code availability

626 The raw publicly available single-cell RNA sequencing datasets downloaded and used in this study are available
627 in the Gene Expression Omnibus repository, under the accession codes GSE81682 for hematopoiesis differen-
628 tiation [37)], GSE94383 for LPS stimulation [38], GSE161465 for INF~y stimulation [40], GSE11648 for AML
629 chemotherapy [5], GSE1260681 for AML diagnosis/relapse [7], and GSE138266 for MS case/control PBMC and
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630 CSF datasets [6] and in the European Nucleotide Archive repository, under accession numbers E-MTAB-2805
631 for mouse embryonic cell cycle [36] datasets, respectively. Loom files and preprocessed data are available in the
62 Zenodo repository https://doi.org/10.5281/zenodo.6110279, All functions for preprocessing, integration,
¢33 and evaluation are available at www.github.com/jranek/EVI,

o« Funding
635 This work was supported by the National Institutes of Health, F31-HL156433 (JSR), 5T32-GM067553 (JSR),
&6  DP2-HD091800 (JEP), RO1-GM 138834 (JEP), and NSF CAREER Award 1845796 (JEP).

v Authors’ contributions

633 JSR, NS, JEP conceptualized and designed the study. JSR performed data preprocessing, benchmarking, evaluation,
630 and analysis. JSR wrote the manuscript with input from all authors. All authors read and approved of the final
60 Mmanuscript.

«1  Acknowledgements

62 The authors would like to thank Logan Whitehouse and Tarek Zikry for their thoughtful discussions related to this
643 Work.

« References

ess  [1] Jeffrey A Farrell, Yiqun Wang, Samantha J Riesenfeld, Karthik Shekhar, Aviv Regev, and Alexander F Schier.

646 Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science, 360(6392),
647 June 2018.

ess [2] Edie I Crosse, Sabrina Gordon-Keylock, Stanislav Rybtsov, Anahi Binagui-Casas, Hannah Felchle, Nneka C
649 Nnadi, Kristina Kirschner, Tamir Chandra, Sara Tamagno, David J] Webb, Fiona Rossi, Richard A Anderson,
650 and Alexander Medvinsky. Multi-layered spatial transcriptomics identify secretory factors promoting human
651 hematopoietic stem cell development. Cell Stem Cell, 27(5):822-839.e8, November 2020.

62 [3] David Fawkner-Corbett, Agne Antanaviciute, Kaushal Parikh, Marta Jagielowicz, Ana Sousa Ger6s, Tarun
653 Gupta, Neil Ashley, Doran Khamis, Darren Fowler, Edward Morrissey, Chris Cunningham, Paul R V Johnson,
654 Hashem Koohy, and Alison Simmons. Spatiotemporal analysis of human intestinal development at single-cell
655 resolution. Cell, 184(3):810-826.e23, February 2021.

66 [4] Max Kaufmann, Hayley Evans, Anna-Lena Schaupp, Jan Broder Engler, Gurman Kaur, Anne Willing, Nina
657 Kursawe, Charlotte Schubert, Kathrine E Attfield, Lars Fugger, and Manuel A Friese. Identifying CNS-
658 colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis. Med (N Y),
659 2(3):296-312.e8, March 2021.

60 [5] Daniel A Pollyea, Brett M Stevens, Courtney L Jones, Amanda Winters, Shanshan Pei, Mohammad Min-
661 hajuddin, Angelo D’ Alessandro, Rachel Culp-Hill, Kent A Riemondy, Austin E Gillen, Jay R Hesselberth,
662 Diana Abbott, Derek Schatz, Jonathan A Gutman, Enkhtsetseg Purev, Clayton Smith, and Craig T Jordan.
663 Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute
664 myeloid leukemia. Nat. Med., 24(12):1859-1866, December 2018.

es [6] David Schafflick, Chenling A Xu, Maike Hartlehnert, Michael Cole, Andreas Schulte-Mecklenbeck, Tobias
666 Lautwein, Jolien Wolbert, Michael Heming, Sven G Meuth, Tanja Kuhlmann, Catharina C Gross, Heinz
667 Wiendl, Nir Yosef, and Gerd Meyer Zu Horste. Integrated single cell analysis of blood and cerebrospinal fluid
668 leukocytes in multiple sclerosis. Nat. Commun., 11(1):247, January 2020.

6o [7] L C Stetson, Dheepa Balasubramanian, Susan Pereira Ribeiro, Tammy Stefan, Kalpana Gupta, Xuan Xu, Slim
670 Fourati, Anne Roe, Zachary Jackson, Robert Schauner, Ashish Sharma, Banumathi Tamilselvan, Samuel Li,
671 Marcos de Lima, Tae Hyun Hwang, Robert Balderas, Yogen Saunthararajah, Jaroslaw Maciejewski, Thomas
672 LaFramboise, Jill S Barnholtz-Sloan, Rafick-Pierre Sekaly, and David N Wald. Single cell RNA sequencing of
673 AML initiating cells reveals RNA-based evolution during disease progression. Leukemia, 35(10):2799-2812,
674 October 2021.

19


https://doi.org/10.5281/zenodo.6110279
www.github.com/jranek/EVI
https://doi.org/10.1101/2022.03.01.482381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482381; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

e7s  [8] Caleb Weinreb, Samuel Wolock, Betsabeh K Tusi, Merav Socolovsky, and Allon M Klein. Fundamental limits
676 on dynamic inference from single-cell snapshots. Proc. Natl. Acad. Sci. U. S. A., 115(10):E2467-E2476,
677 March 2018.

o6 [9] Andrew E Teschendorff and Andrew P Feinberg. Statistical mechanics meets single-cell biology. Nat. Rev.
679 Genet., 22(7):459-476, July 2021.

60 [10] Vladimir Yu Kiselev, Tallulah S Andrews, and Martin Hemberg. Challenges in unsupervised clustering of

681 single-cell RNA-seq data. Nat. Rev. Genet., 20(5):273-282, May 2019.

62 [11] Sophie Tritschler, Maren Biittner, David S Fischer, Marius Lange, Volker Bergen, Heiko Lickert, and
683 Fabian J Theis. Concepts and limitations for learning developmental trajectories from single cell genomics.
684 Development, 146(12), June 2019.

ess [12] Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja
686 Lidschreiber, Maria E Kastriti, Peter Lonnerberg, Alessandro Furlan, Jean Fan, Lars E Borm, Zehua Liu,
687 David van Bruggen, Jimin Guo, Xiaoling He, Roger Barker, Erik Sundstrom, Gongalo Castelo-Branco, Patrick
688 Cramer, Igor Adameyko, Sten Linnarsson, and Peter V Kharchenko. RNA velocity of single cells. Nature,
689 560(7719):494-498, August 2018.

e0 [13] Volker Bergen, Marius Lange, Stefan Peidli, F Alexander Wolf, and Fabian J Theis. Generalizing RNA
691 velocity to transient cell states through dynamical modeling. Nat. Biotechnol., August 2020.

e2 [14] Chenglong Xia, Jean Fan, George Emanuel, Junjie Hao, and Xiaowei Zhuang. Spatial transcriptome profiling
693 by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc.
694 Natl. Acad. Sci. U. S. A., 116(39):19490-19499, September 2019.

es [15] Gennady Gorin, Valentine Svensson, and Lior Pachter. Protein velocity and acceleration from single-cell
696 multiomics experiments. Genome Biol., 21(1):39, February 2020.

67 [16] Chen Li, Maria Virgilio, Kathleen L Collins, and Joshua D Welch. Single-cell multi-omic velocity infers
698 dynamic and decoupled gene regulation. December 2021.

60 [17] Marius Lange, Volker Bergen, Michal Klein, Manu Setty, Bernhard Reuter, Mostafa Bakhti, Heiko Lickert,

700 Meshal Ansari, Janine Schniering, Herbert B Schiller, Dana Pe’er, and Fabian J Theis. CellRank for directed
701 single-cell fate mapping. Nat. Methods, pages 1-12, January 2022.

702 [18] Xiaojie Qiu, Arman Rahimzamani, Li Wang, Bingcheng Ren, Qi Mao, Timothy Durham, José L McFaline-
703 Figueroa, Lauren Saunders, Cole Trapnell, and Sreeram Kannan. Inferring causal gene regulatory networks
704 from coupled Single-Cell expression dynamics using scribe. Cell Syst, 10(3):265-274.e11, March 2020.

7s [19] Guangzheng Weng, Junil Kim, and Kyoung Jae Won. VeTra: a tool for trajectory inference based on RNA
706 velocity. Bioinformatics, May 2021.

707 [20] Alexander Tong, Jessie Huang, Guy Wolf, David van Dijk, and Smita Krishnaswamy. TrajectoryNet: A
708 dynamic optimal transport network for modeling cellular dynamics. Proc Mach Learn Res, 119:9526-9536,
709 July 2020.

70 [21] Ziqi Zhang and Xiuwei Zhang. Inference of high-resolution trajectories in single-cell RNA-seq data by using
711 RNA velocity. Cell Reports Methods, 1(6):100095, October 2021.

712 [22] Lyla Atta, Arpan Sahoo, and Jean Fan. VeloViz: RNA velocity informed embeddings for visualizing cellular
713 trajectories. Bioinformatics, September 2021.

74 [23] Indhupriya Subramanian, Srikant Verma, Shiva Kumar, Abhay Jere, and Krishanpal Anamika. Multi-omics
715 data integration, interpretation, and its application. 14:1177932219899051, January 2020.

76 [24] Manik Kuchroo, Abhinav Godavarthi, Guy Wolf, and Smita Krishnaswamy. Multimodal data visualization,
717 denoising and clustering with integrated diffusion. February 2021.

78 [25] Bo Wang, Aziz M Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen Tu, Michael Brudno, Benjamin Haibe-
719 Kains, and Anna Goldenberg. Similarity network fusion for aggregating data types on a genomic scale. Nat.
720 Methods, 11(3):333-337, March 2014.

721 [26] Hao Ding, Michael Sharpnack, Chao Wang, Kun Huang, and Raghu Machiraju. Integrative cancer patient
722 stratification via subspace merging. Bioinformatics, 35(10):1653-1659, May 2019.

20


https://doi.org/10.1101/2022.03.01.482381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482381; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

723 [27] Bo Wang, Junjie Zhu, Emma Pierson, Daniele Ramazzotti, and Serafim Batzoglou. Visualization and analysis

724 of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods, 14(4):414-416, April 2017.

75 [28] Daniele Ramazzotti, Avantika Lal, Bo Wang, Serafim Batzoglou, and Arend Sidow. Multi-omic tumor data
726 reveal diversity of molecular mechanisms that correlate with survival. Nat. Commun., 9(1):4453, October
727 2018.

78 [29] Ricard Argelaguet, Britta Velten, Damien Arnol, Sascha Dietrich, Thorsten Zenz, John C Marioni, Florian
729 Buettner, Wolfgang Huber, and Oliver Stegle. Multi-Omics factor analysis-a framework for unsupervised
730 integration of multi-omics data sets. Mol. Syst. Biol., 14(6):e8124, June 2018.

71 [30] Ricard Argelaguet, Damien Arnol, Danila Bredikhin, Yonatan Deloro, Britta Velten, John C Marioni, and
732 Oliver Stegle. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data.
733 Genome Biol., 21(1):111, May 2020.

734 [31] Eric F Lock, Katherine A Hoadley, J S Marron, and Andrew B Nobel. JOINT AND INDIVIDUAL VARIA-
735 TION EXPLAINED (JIVE) FOR INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES. Ann. Appl.
736 Stat., 7(1):523-542, March 2013.

737 [32] Prabhakar Chalise, Yonghui Ni, and Brooke L Fridley. Network-based integrative clustering of multiple types
738 of genomic data using non-negative matrix factorization. Comput. Biol. Med., 118:103625, March 2020.

730 [33] Britta Velten, Jana M Braunger, Ricard Argelaguet, Damien Arnol, Jakob Wirbel, Danila Bredikhin, Georg
740 Zeller, and Oliver Stegle. Identifying temporal and spatial patterns of variation from multimodal data using
741 MEFISTO. Nat. Methods, January 2022.

742 [34] Gregory Gundersen, Jordan T Ash, and Barbara E Engelhardt. End-to-end training of deep probabilis-
743 tic CCA on paired biomedical observations. http://proceedings.mlr.press/v115/gundersen20a/
744 gundersen20a.pdf. Accessed: 2022-1-27.

75 [35] Tao Zeng and Hao Dai. Single-Cell RNA Sequencing-Based computational analysis to describe disease
746 heterogeneity. Front. Genet., 10:629, July 2019.

747 [36] Florian Buettner, Kedar N Natarajan, F Paolo Casale, Valentina Proserpio, Antonio Scialdone, Fabian J Theis,

748 Sarah A Teichmann, John C Marioni, and Oliver Stegle. Computational analysis of cell-to-cell heterogeneity
749 in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol., 33(2):155-160,
750 February 2015.

751 [37] Sonia Nestorowa, Fiona K Hamey, Blanca Pijuan Sala, Evangelia Diamanti, Mairi Shepherd, Elisa Laurenti,
752 Nicola K Wilson, David G Kent, and Berthold Géttgens. A single-cell resolution map of mouse hematopoietic
753 stem and progenitor cell differentiation. Blood, 128(8):¢20-31, August 2016.

754 [38] Keara Lane, David Van Valen, Mialy M DeFelice, Derek N Macklin, Takamasa Kudo, Ariel Jaimovich,
755 Ambrose Carr, Tobias Meyer, Dana Pe’er, Stéphane C Boutet, and Markus W Covert. Measuring signaling
756 and RNA-Seq in the same cell links gene expression to dynamic patterns of NF-xB activation. Cell Syst,
757 4(4):458-469.e5, April 2017.

758 [39] Michael G Dorrington and Iain D C Fraser. NF-xB signaling in macrophages: Dynamics, crosstalk, and
759 signal integration. Front. Immunol., 10:705, April 2019.

70 [40] Daniel B Burkhardt, Jay S Stanley, 3rd, Alexander Tong, Ana Luisa Perdigoto, Scott A Gigante, Kevan C
761 Herold, Guy Wolf, Antonio J Giraldez, David van Dijk, and Smita Krishnaswamy. Quantifying the effect of
762 experimental perturbations at single-cell resolution. Nat. Biotechnol., 39(5):619-629, May 2021.

73 [41] Miguel Lopes, Burak Kutlu, Michela Miani, Claus H Bang-Berthelsen, Joachim Stgrling, Flemming Pociot,
764 Nathan Goodman, Lee Hood, Nils Welsh, Gianluca Bontempi, and Decio L Eizirik. Temporal profiling of
765 cytokine-induced genes in pancreatic 3-cells by meta-analysis and network inference. Genomics, 103(4):264—
766 275, April 2014.

767 [42] Brian J P Huntly and D Gary Gilliland. Leukaemia stem cells and the evolution of cancer-stem-cell research.
768 Nat. Rev. Cancer, 5(4):311-321, April 2005.

760 [43] Alastair Compston and Alasdair Coles. Multiple sclerosis. Lancet, 372(9648):1502—-1517, October 2008.

770 [44] Milan Picard, Marie-Pier Scott-Boyer, Antoine Bodein, Olivier Périn, and Arnaud Droit. Integration strategies
71 of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J., 19:3735-3746, June 2021.

21


http://proceedings.mlr.press/v115/gundersen20a/gundersen20a.pdf
http://proceedings.mlr.press/v115/gundersen20a/gundersen20a.pdf
http://proceedings.mlr.press/v115/gundersen20a/gundersen20a.pdf
https://doi.org/10.1101/2022.03.01.482381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482381; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

772 [45] Blue B Lake, Song Chen, Brandon C Sos, Jean Fan, Gwendolyn E Kaeser, Yun C Yung, Thu E Duong, Derek

773 Gao, Jerold Chun, Peter V Kharchenko, and Kun Zhang. Integrative single-cell analysis of transcriptional and
774 epigenetic states in the human adult brain. Nat. Biotechnol., 36(1):70-80, January 2018.

75 [46] Qianxing Mo, Roger Li, Dennis O Adeegbe, Guang Peng, and Keith Syson Chan. Integrative multi-omics
776 analysis of muscle-invasive bladder cancer identifies prognostic biomarkers for frontline chemotherapy and
777 immunotherapy. Commun Biol, 3(1):784, December 2020.

778 [47] Soufiane Mourragui, Marco Loog, Mark A van de Wiel, Marcel J T Reinders, and Lodewyk F A Wessels.
779 PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to
780 tumors. Bioinformatics, 35(14):1510-i519, July 2019.

751 [48] Malte D Luecken and Fabian J Theis. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol.
782 Syst. Biol., 15(6):e8746, June 2019.

753 [49] Peter V Kharchenko, Lev Silberstein, and David T Scadden. Bayesian approach to single-cell differential

784 expression analysis. Nat. Methods, 11(7):740-742, July 2014.

755 [50] Gabriel Torregrosa and Jordi Garcia-Ojalvo. Mechanistic models of cell-fate transitions from single-cell data.
786 Current Opinion in Systems Biology, 26:79-86, June 2021.

757 [51] Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell trajectory
788 inference methods. Nat. Biotechnol., 37(5):547-554, May 2019.

780 [52] F Alexander Wolf, Fiona K Hamey, Mireya Plass, Jordi Solana, Joakim S Dahlin, Berthold Géttgens, Nikolaus
790 Rajewsky, Lukas Simon, and Fabian J Theis. PAGA: graph abstraction reconciles clustering with trajectory
791 inference through a topology preserving map of single cells. Genome Biol., 20(1):59, March 2019.

792 [53] Laleh Haghverdi, Maren Biittner, F Alexander Wolf, Florian Buettner, and Fabian J Theis. Diffusion
793 pseudotime robustly reconstructs lineage branching. Nat. Methods, 13(10):845-848, October 2016.

794 [54] Elisa Laurenti and Berthold Gottgens. From haematopoietic stem cells to complex differentiation landscapes.
795 Nature, 553(7689):418-426, January 2018.

796 [55] Yalan Lei, Rong Tang, Jin Xu, Wei Wang, Bo Zhang, Jiang Liu, Xianjun Yu, and Si Shi. Applications of
797 single-cell sequencing in cancer research: progress and perspectives. J. Hematol. Oncol., 14(1):91, June 2021.

796 [56] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation.(2002),
799 2002.

soo  [57] Volker Bergen, Ruslan A Soldatov, Peter V Kharchenko, and Fabian J Theis. RNA velocity-current challenges
801 and future perspectives. Mol. Syst. Biol., 17(8):e10282, August 2021.

sz [58] Gennady Gorin, Meichen Fang, Tara Chari, and Lior Pachter. RNA velocity unraveled. February 2022.

sz [59] Charlotte Soneson, Avi Srivastava, Rob Patro, and Michael B Stadler. Preprocessing choices affect RNA

804 velocity results for droplet sScRNA-seq data. PLoS Comput. Biol., 17(1):e1008585, January 2021.

sos [60] Chen Li, Maria Virgilio, Kathleen L Collins, and Joshua D Welch. Single-cell multi-omic velocity infers
806 dynamic and decoupled gene regulation. December 2021.

sz [61] Jacob H Levine, Erin F Simonds, Sean C Bendall, Kara L Davis, El-Ad D Amir, Michelle D Tadmor, Oren
808 Litvin, Harris G Fienberg, Astraea Jager, Eli R Zunder, Rachel Finck, Amanda L Gedman, Ina Radtke,
809 James R Downing, Dana Pe’er, and Garry P Nolan. Data-Driven phenotypic dissection of AML reveals
810 progenitor-like cells that correlate with prognosis. Cell, 162(1):184-197, July 2015.

sii [62] Emma Dann, Neil C Henderson, Sarah A Teichmann, Michael D Morgan, and John C Marioni. Differential
812 abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol., September 2021.

s13 [63] Aaron T L Lun, Arianne C Richard, and John C Marioni. Testing for differential abundance in mass cytometry
814 data. Nat. Methods, 14(7):707-709, July 2017.

sis  [64] Aditya Pratapa, Amogh P Jalihal, Jeffrey N Law, Aditya Bharadwaj, and T M Murali. Benchmarking algo-
816 rithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods, 17(2):147-
817 154, February 2020.

22


https://doi.org/10.1101/2022.03.01.482381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482381; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

sis  [65] Martina Tedesco, Francesca Giannese, Dejan Lazarevié, Valentina Giansanti, Dalia Rosano, Silvia Monzani,

819 Irene Catalano, Elena Grassi, Eugenia R Zanella, Oronza A Botrugno, Leonardo Morelli, Paola Panina Bor-
820 dignon, Giulio Caravagna, Andrea Bertotti, Gianvito Martino, Luca Aldrighetti, Sebastiano Pasqualato, Livio
821 Trusolino, Davide Cittaro, and Giovanni Tonon. Chromatin velocity reveals epigenetic dynamics by single-cell
822 profiling of heterochromatin and euchromatin. Nat. Biotechnol., October 2021.

823 [66] Aaron T L Lun, Karsten Bach, and John C Marioni. Pooling across cells to normalize single-cell RNA
824 sequencing data with many zero counts. Genome Biol., 17:75, April 2016.

s2s  [67] Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier, and Aviv Regev. Spatial reconstruction of

826 single-cell gene expression data. Nat. Biotechnol., 33(5):495-502, May 2015.

s27  [68] Amit Zeisel, Wolfgang J Kostler, Natali Molotski, Jonathan M Tsai, Rita Krauthgamer, Jasmine Jacob-Hirsch,
828 Gideon Rechavi, Yoav Soen, Steffen Jung, Yosef Yarden, and Eytan Domany. Coupled pre-mRNA and mRNA
820 dynamics unveil operational strategies underlying transcriptional responses to stimuli. Mol. Syst. Biol., 7:529,
830 September 2011.

ss1 [69] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray expression data using
832 empirical bayes methods. Biostatistics, 8(1):118-127, January 2007.

s33  [70] Laleh Haghverdi, Aaron T L Lun, Michael D Morgan, and John C Marioni. Batch effects in single-cell
834 RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol., 36(5):421-427,
835 June 2018.

83 [71] Hansen Lab. Batch effects in scrna velocity analysis.

837 [72] Maren Biittner, Zhichao Miao, F Alexander Wolf, Sarah A Teichmann, and Fabian J Theis. A test metric for

838 assessing single-cell RNA-seq batch correction. Nat. Methods, 16(1):43—49, January 2019.

s30  [73] Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko,
840 Michael Brenner, Po-Ru Loh, and Soumya Raychaudhuri. Fast, sensitive and accurate integration of single-cell
841 data with harmony. Nat. Methods, 16(12):1289-1296, December 2019.

s22  [74] V A Traag, L Waltman, and N J van Eck. From louvain to leiden: guaranteeing well-connected communities.
843 Sci. Rep., 9(1):5233, March 2019.

sa«  [75] Brian Hie, Hyunghoon Cho, Benjamin DeMeo, Bryan Bryson, and Bonnie Berger. Geometric sketching

845 compactly summarizes the Single-Cell transcriptomic landscape. Cell Syst, 8(6):483—493.e7, June 2019.

ss6  [76] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The emerging
847 field of signal processing on graphs: Extending High-Dimensional data analysis to networks and other
848 irregular domains. October 2012.

sso  [77] J B Tenenbaum, V de Silva, and J C Langford. A global geometric framework for nonlinear dimensionality
850 reduction. Science, 290(5500):2319-2323, December 2000.

ss1 [78] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273-297, September
852 1995.

= Supplementary Tables

Supplementary Table 1: Datasets and preprocessing overview

D Description Metadata Task Platform Organism  Reference Batch Batch correction approach ~ Normalization
Nestorowa hematopoiesis differentiation FACS TI Smart-seq2 Mouse mm10 NA NA Scran
Buettner mouse embryonic cell cycle FACS TI Smarter C1 Mouse mm10 NA NA Scran

Lane LPS stimulation condition classification Smart-seq2 Mouse mml10 library ComBat concatenation Scran with batch
Pollyea AML chemotherapy condition classification 10X Genomics ~ Human GRCh38  condition ComBat concatenation Scran with batch
Burkhardt IFN-v stimulation condition classification 10X Genomics ~ Human GRCh38 patient MNN concatenation Scran with batch
Stetson AML diagnosis/relapse disease status  classification Smart-seq2 Human GRCh38 patient ComBat concatenation Scran with batch
Schafflick MS case/control disease status ~ classification 10X Genomics ~ Human GRCh38 patient ComBat concatenation Scran with batch
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Supplementary Table 2: Overview of optimized parameters

Method name Type Parameter description Parameters
Unintegrated early NA NA
Concatentation early NA NA
Sum early NA NA
weight given to velocity transition probability matrix A €10.2,0.8]
CellRank early velocity similarity metric correlation, dot product, cosine
velocity transition probability matrix mode monte-carlo, dynamical
number of nearest neighbors in affinity graph k=5, 10,25, 50
SNF intermediate kernel bandwidth parameter 1 €1[0.4,0.8]
number of eigenvectors K =20, 50
number of nearest neighbors in affinity graph k=5,10,25,50
Grassmann joint embeddin, intermediate kernel bandwidth parameter ¢ € [100, 500]
) J & tradeoff parameter between individual and merged subspaces a €[0.01, 2]
number of eigenvectors K =20, 50
number of nearest neighbors in diffusion operator k=5, 10, 25, 50
Integrated diffusion intermediate number of clusters for denoising c=5,10, 25,50
number of eigenvectors K =20, 50
PRECISE intermediate number of principal vectors

npvs € [10, 50]

Supplementary Table 3: Surface markers for hematopoietic stem and progenitor cells in Nestorowa et al.

name ID markers

long-term hematopoietic stem cells LT-HSC Lin~c-Kit"Scal T F1k2~ CD34~
lymphoid multipotent progenitors LMPP Lin~ c-Kit"Scal " Flk2tCD34™"
multipotent progenitors MPP Lin~c-Kit"Scal "F1k2~ CD34"

megakaryocyte-erythrocyte progenitors ~ MEP  Lin~c-KittScal " CD16/327 CD34~
CMP  Lin c-Kit"Scal~CD16/32~ CD34"
granulocyte-monocyte progenitors GMP  Lin c-Kit*Scal CD16/ 32TCD34"

common myeloid progenitors
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Supplementary Figure 1: Evaluating batch effect correction for control pancreatic islet cells in INF~ stimu-
lation dataset. (A) UMAP visualization of control pancreatic islet cells across batch correction strategies. Spliced
and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors
(MNN) or ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as
well as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the
per gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data
and the cell-cell distances in the phase space of each individual donor. Top panel: Pearson correlation of MNN
concatenation or MNN sum to control donors. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to control donors. Dashed line represents the mean correlation.

25


https://doi.org/10.1101/2022.03.01.482381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482381; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

uncorrected MNN concatenation MNN sum ComBat concatenation ComBat sum
& '
-, " T 3
i % L
\‘ﬁr- e -
o~ .
% S
=
]
UMAP 1~ @ IFNY1 @ IFNy2 @ IFNy3
IFNy1 IFNy2 IFNy3
o i 6 T 6 T
B. 25 5 1 5 LI
5 4 ] 4 1} 4 1
o< 3 3 3
08 g2 i 2 | 2 /i
o % uncorrected ﬂ:‘—f— g 1 1 " 1 1
8 0.7 0 i | 0 i | 0 11
a % MNN concat. |_-_| 00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
S 06
=1 I 1 1
] MNN sum I—:I:'—| ‘; 60 1| 60 1| 60 1
o 05 % g I I ]
= ComBat concat. E]:]—i—- < 40 I 40 140 !
5 oa @ I 1 1
g ™ éﬂ $ 20 20 I 20 I
ComBat sum { [ T ——+— 8 M I
0.3 0l 0 0 |
S &S &S 10 15 20 25 30 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.
&S & 8
@(3’ %& ®ee 7’&@ &'5" Lisi Pearson Correlation Pearson Correlation Pearson Correlation
R 068’ [
& === MNN concat. === MNN sum ComBat concat. === ComBat sum

Supplementary Figure 2: Evaluating batch effect correction for INF~ stimulated pancreatic islet cells in
INF~ stimulation dataset. (A) UMAP visualization of INFy stimulated pancreatic islet cells across batch
correction strategies. Spliced and unspliced modalities were combined via concatenation or sum prior to correction
with mutual nearest neighbors (MNN) or ComBat. Method performance was measured by batch label mixing
metrics KBET and LISI (B), as well as the preservation of the relationship between spliced and unspliced counts (C).
Distributions represent the per gene Pearson correlation between cell-cell distances in the phase space (unspliced,
spliced) of corrected data and the cell-cell distances in the phase space of each individual donor. Top panel: Pearson
correlation of MNN concatenation or MNN sum to INF stimulated donors. Bottom panel: Pearson correlation of
ComBat concatenation or ComBat sum to INF~ stimulated donors. Dashed line represents the mean correlation.
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Supplementary Figure 3: Evaluating batch effect correction for AML chemotherapy treated cells. (A)
UMAP visualization of AML chemotherapy treated cells across batch correction strategies. Spliced and unspliced
modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or
ComBat. Method performance was measured by batch label mixing metrics kBET and LISI (B), as well as the
preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene
Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the
cell-cell distances in the phase space of each time point (d0, d2, d4). Top panel: Pearson correlation of MNN
concatenation or MNN sum to individual timepoint. Bottom panel: Pearson correlation of ComBat concatenation
or ComBat sum to individual timepoint. Dashed line represents the mean correlation.
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Supplementary Figure 4: Evaluating batch effect correction for AML diagnosis patient cells in AML diag-
nosis/relapse dataset. (A) UMAP visualization of AML diagnosis patient cells across batch correction strategies.
Spliced and unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest
neighbors (MNN) or ComBat. (B) Method performance was measured by batch label mixing metrics kKBET and
LIST across patients. Dashed line represents the mean correlation.
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Supplementary Figure 5: Evaluating batch effect correction for LPS stimulated cells. (A) UMAP visualiza-
tion of LPS stimulated cells across batch correction strategies. Spliced and unspliced modalities were combined via
concatenation or sum prior to correction with mutual nearest neighbors (MNN) or ComBat. Method performance
was measured by batch label mixing metrics KBET and LISI (B), as well as the preservation of the relationship
between spliced and unspliced counts (C, D). Distributions represent the per gene Pearson correlation between
cell-cell distances in the phase space (unspliced, spliced) of corrected data and the cell-cell distances in the phase
space of each individual library. Panel C: Pearson correlation of MNN concatenation or MNN sum to individual
library. Panel D: Pearson correlation of ComBat concatenation or ComBat sum to individual library. Dashed line
represents the mean correlation. Library 10 was excluded from correlation analysis as it contained too few cells.
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Supplementary Figure 6: Evaluating batch effect correction for MS patient CSF cells in MS case/control
dataset. (A) UMAP visualization of MS patient CSF cells across batch correction strategies. Spliced and unspliced
modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or
ComBat. Method performance was measured by batch label mixing metrics KBET and LISI (B), as well as the
preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene
Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the
cell-cell distances in the phase space of each individual MS patient. Top panel: Pearson correlation of MNN
concatenation or MNN sum to MS patients. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to MS patients. Dashed line represents the mean correlation.
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Supplementary Figure 7: Evaluating batch effect correction for control patient CSF cells in MS case/control
dataset. (A) UMAP visualization of control patient CSF cells across batch correction strategies. Spliced and
unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors
(MNN) or ComBat. Method performance was measured by batch label mixing metrics KBET and LISI (B), as well
as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per
gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and
the cell-cell distances in the phase space of each individual control patient. Top panel: Pearson correlation of MNN
concatenation or MNN sum to control patients. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to control patients. Dashed line represents the mean correlation.
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Supplementary Figure 8: Evaluating batch effect correction for MS patient PBMCs in MS case/control
dataset. (A) UMAP visualization of MS patient PBMCs across batch correction strategies. Spliced and unspliced
modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors (MNN) or
ComBat. Method performance was measured by batch label mixing metrics KBET and LISI (B), as well as the
preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per gene
Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and the
cell-cell distances in the phase space of each individual MS patient. Top panel: Pearson correlation of MNN
concatenation or MNN sum to MS patients. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to MS patients. Dashed line represents the mean correlation.
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Supplementary Figure 9: Evaluating batch effect correction for control patient PBMCs in MS case/control
dataset. (A) UMAP visualization of control patient PBMCs across batch correction strategies. Spliced and
unspliced modalities were combined via concatenation or sum prior to correction with mutual nearest neighbors
(MNN) or ComBat. Method performance was measured by batch label mixing metrics kKBET and LISI (B), as well
as the preservation of the relationship between spliced and unspliced counts (C). Distributions represent the per
gene Pearson correlation between cell-cell distances in the phase space (unspliced, spliced) of corrected data and
the cell-cell distances in the phase space of each individual control patient. Top panel: Pearson correlation of MNN
concatenation or MNN sum to control patients. Bottom panel: Pearson correlation of ComBat concatenation or
ComBat sum to control patients. Dashed line represents the mean correlation.
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Supplementary Figure 10: Overall performance of batch correction approaches across perturbation and
disease datasets. Batch effect correction performance was assessed according to three metrics, including the
median KBET rejection score, median LISI score, and average median Pearson correlation of phase space distances.
A correction approach was selected for each dataset if it had the lowest kBET score, highest LISI score, and highest
Pearson correlation score.
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Supplementary Figure 11: Ranked integration method performance for trajectory inference. Integration
methods were ranked by their performance on inferring biological trajectories across mouse embryonic stem
cell cycle (mES cc) and mouse hematopoiesis differentiation (hema. diff.) datasets. Individual methods were
first ranked according to a trajectory inference correlation (T1.,,,) score, which measures the harmonic mean of
cellular positioning correlation and feature importance score correlation to a ground truth reference. The overall
performance was then assessed by taking the average of ranked scores across datasets. (A) Overall quality of
spliced and unspliced integration performance on inferring biological trajectories. (B) Overall quality of moments
of spliced and RNA velocity integration performance on inferring biological trajectories. Here, a higher score
is represented by a longer lighter bar. Across both datasets and modalities, intermediate integration approaches
outperform unintegrated data on trajectory inference.
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Supplementary Figure 12: Integration performance on classifying cells according to perturbation condition
labels using label propagation. Label propagation was used to classify cells according to treatment condition
from (A) spliced and unspliced or (B) moments of spliced and RNA velocity integrated features generated from
eight integration approaches. The boxplots represent classification accuracy according to two metrics, top panel: F1
score, bottom panel: balanced accuracy score.

35


https://doi.org/10.1101/2022.03.01.482381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482381; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A & LPS stimulation AML chemotherapy AML diagnosis/ relapse
. 10
0.9 084 q i
0.8_@4-;g% : 07@5 o) | alfs b
0.7 )
- 0.6 ° . ! 06 i 0.6 ‘
0.5 & i 04l *
- 0.4||||||||0,5,,,,.‘.'...||||||||
g Q 1.0 08 é 9 1.0
o 5 8 0.9 a 9
IEE [T A A I 1 LT
5 - ° ° @ ‘ i 0.7 4
@ v 064 0.4 d @ J i
é % ° ° 0.6 i
g EOA—.....?.. 73 I R I
10 % @ ! o[ s oo, 1.0 é
i ? ° é 0.8-@ ¢ ¢ 09+
0.9 ‘ ‘ °
é ‘ 0.71 i 0.8 o °
0.8 0.6
SERIE
v b 0677 T T T T
B.
LPS stimulation AML chemotherapy AML diagnosis/ relapse
10 1.0
9 0.8
i ivi o_ségij@ji‘
07 i ? 7 % °
ETITAL bedd o 1
os ° g 0.6 ‘ ‘
O e B B e 0.5\...|...| ol S
é g 10 : 08 . (1):
© 3 ]
g § i bees %“i@“‘
£ 8' 06 ° % ; i i i * ° ° 'i.' 0.7 °
%\ % | ’ " $ 4 o
o S 0.5
280'4........0.2........ — T
1.0 10713
% 09—@ E
O % o!?é 0.8 ii?@; . ong‘@1!‘
) b 0.7 ° S 84 o
< 0.8 ; é i 0.6 ‘ " ’
o © 0.7
o 0.5
07+—T—T—T——T—T—T T 04— T 06-—T—T—T—T—T—T

unintegrated M concatenation  Wsum W PRECISE
PRECISE_consensus MSNF M Grassmann Mintegrated diffusion

Supplementary Figure 13: Integration performance on classifying cells according to perturbation condition
or disease status using a support vector machine (SVM) classifier. A SVM classifer was used to classify cells
according to treatment condition or disease status from (A) spliced and unspliced or (B) moments of spliced and
RNA velocity integrated features generated from eight integration approaches. The boxplots represent classification
accuracy according to three metrics, including a F1 score, balanced accuracy, and area under the receiver operator
curve (AUC).

36


https://doi.org/10.1101/2022.03.01.482381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482381; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A.
c Overall F1 Overall acc, Overall AUC
.8 unintegrated 3
© concatenation 1 1 1
g sum 3 3 2
c PRECISE 3 2
- PRECISE_consensus
g n N 3
_8' Grassmann
g Integrated diffusion
LPS INFy AML LPS INFy AML LPS INFy AML
score 1w
low high
B.

Overall F1 Overall acc, Overall AUC
c unintegrated 2 2
.E concatenation 3 3
© sum .
Q CellRank 1 1 1
= PRECISE | 3 2
> PRECISE_consensus
‘O SNF
To) Grafsma‘nn
> Integrated diffusion ||

LPS INFy AML LPS INFy AML LPS INFy AML

score N W
low high

Supplementary Figure 14: Ranked integration method performance for perturbation classification. Integra-
tion methods were ranked according to their performance on classifying cells according to perturbation condition
across three datasets, including LPS stimulation of macrophage-like cells (LPS), INF~ stimulation of pancreatic
islet cells (INF~), and chemotherapy treated cells from a patient with Acute Myeloid Leukemia (AML). Label
propagation was used to classify cells according to treatment condition and methods were evaluated by computing
three metrics of success: F1 score, balanced accuracy (accy,), and area under the receiver operator curve (AUC).
The overall performance was then assessed by taking the average of ranked scores across datasets for each metric.
(A) Overall quality of spliced and unspliced integration performance on classification of treatment condition. (B)
Overall quality of moments of spliced and RNA velocity integration performance on classification of treatment
condition. Here, a higher score is represented by a longer lighter bar. Across all three datasets and metrics, spliced
and unspliced integration with concatenation and sum outperformed unintegrated data on perturbation classification.
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Supplementary Figure 15: Integration performance on classifying cells according to patient disease status
using label propagation. Label propagation was used to classify cells according to patient disease status from
(A) spliced and unspliced or (B) moments of spliced and RNA velocity integrated features generated from eight
integration approaches. The boxplots represent classification accuracy according to two metrics, top panel: F1
score, bottom panel: balanced accuracy.

38


https://doi.org/10.1101/2022.03.01.482381
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482381; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A.
- Overall F1 Overall acc, Overall AUC
o unintegrated
© concatenation 3 3 -
5% sum | 9 2 3
€ PRECISE 1 1 1
o  PRECISE_consensus
g SNF
el Grassmann
& Integrated diffusion
=]
SR SR SR
o R o R o R
score M ¥ o ¥ o ¥ o
low high w N N
B.
Overall F1 Overall acc, Overall AUC
c unintegrated 1 1 ] 1
-8 concatenation
o sum 1
9 CellRank 2 2 2
= PRECISE B
> PRECISE_consensus Il i i
k] SNF || 3
% Grassmann 3
> Integrated diffusion |
N ¢ v & (¢ V& ¢
score 1M » ¢ ¥ & N
low high A\ A\ )

Supplementary Figure 16: Ranked integration method performance on disease state classification. Integra-
tion methods were ranked according to their performance on predicting whether cells were from a healthy or
disease patient across three datasets, including an Acute Myeloid Leukemia diagnosis and relapse dataset (AML), a
Multiple Sclerosis case/control dataset of cerebral spinal fluid (MS-CSF), and a Multiple Sclerosis case/control
dataset of peripheral blood mononuclear cells (MS-PBMC). Label propagation was used to classify cells according
to patient disease status and methods were evaluated by computing three metrics of success: F1 score, balanced
accuracy (accy,), and area under the receiver operator curve (AUC). The overall performance was then assessed by
taking the average of ranked scores across datasets for each metric. (A) Overall quality of spliced and unspliced
integration performance on classification of cells according to patient disease status. (B) Overall quality of moments
of spliced and RNA velocity integration performance on classification of cells according to patient disease status.
Here, a higher score is represented by a longer lighter bar. Across all three datasets and metrics, spliced and
unspliced integration with PRECISE, concatenation and sum outperformed unintegrated data on disease state
prediction.
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