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Abstract 29 

Fungi are major drivers of ecosystem functions. Increases in aridity are known to negatively 30 

impact fungal communities in dryland ecosystems globally, however, much less is known on 31 

the potential influence of other environmental drivers. To fill this knowledge gap, we 32 

reanalyzed fungal data from 912 soil samples, providing the largest and most complete fungal 33 

community dataset from global drylands. We used machine learning tools to examine 34 

geographical patterns in community composition and spatial, edaphic, and climatic factors 35 

driving them. Further, we determined critical thresholds of community turnover along those 36 

gradients. Our analysis identifies UV index, climate seasonality, and sand content as the most 37 

important environmental predictors of community shifts, harbouring greatest association with 38 

the richness of putative plant pathogens and saprobes. Important nonlinear relationships existed 39 

with each of these fungal guilds, with increases in UV and temperature seasonality above 7.5 40 

and 900 SD, respectively, being associated with an increased probability of plant pathogens 41 

and unspecified saprotrophs occurrence. Conversely, these environmental parameters had a 42 

negative relationship with litter and soil saprotrophs richness. Consequently, these functional 43 

groups might be differentially sensitive to environmental changes, which might result in an 44 

inevitable disturbance of current plant-soil dynamics in drylands.  45 

 46 

 47 

 48 
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Introduction 52 

Drylands are the largest terrestrial biome (covering about 41% of the land surface and 53 

supporting 40% and 35% of the global population and global diversity, respectively) and are 54 

expected to expand further up to 56% by the end of the century 1.  Drylands play key roles in 55 

regulating the global carbon, nitrogen and water cycles, and are thus fundamental for sustaining 56 

life on Earth 2. Due to their extreme temperatures, low and variable rainfall, and low soil 57 

fertility, drylands are particularly sensitive to changes in climate that lead to increased aridity 58 

(i.e, precipitation/potential evapotranspiration) 3.  59 

Fungi are paramount components and drive critical ecosystem services in drylands, 60 

contributing to the formation of fertile islands 4, nutrient cycling and climate regulation 5, with 61 

a major role in dryland primary production 6 and pedogenesis 7. Key fungal groups include 62 

pathogens, mutualistic symbionts of both plants and animals, lichenized fungi, as well as soil 63 

and litter saprobes. Most previous studies on the biogeography and ecological attributes of 64 

fungal communities in dry systems have focussed on the role of aridity, given its role as a key 65 

driver of dryland ecology 3,8-9. However, other environmental factors could be potentially 66 

important in predicting fungal diversity and distributions in global drylands. For example, solar 67 

UV radiation is a primary driver of litter and soil organic carbon decomposition and plant 68 

growth in many arid and semi-arid ecosystems 10,11, suggesting a potential major contribution 69 

to the occurrence of decomposers and plant-associated fungi 12. Similarly, temperature and 70 

precipitation seasonality regulate plant cover dynamics and productivity in arid systems 13, 71 

which in turn can influence soil physical attributes important for saprotrophs, pathogen and 72 

mutualists distribution,  such as soil moisture, pH, structure or carbon content 14,15. 73 

Despite the possible centrality of multiple environmental variables in determining the spatial 74 

distributions of important fungal groups, their relative contribution to fungal biogeographical 75 

patterns remains largely unexplored at larger scales 16. Given the ecological and economic 76 

significance of drylands, and the global role of fungi in regulating their functions, it is critical 77 

to identify the environmental factors associated with distributions of fungal communities, and 78 

most importantly, to test whether the dependence of fungi on those drivers are linear or non-79 

linear. The latter is important because non-linear associations between fungal distributions and 80 

environmental predictors, may signal particular environmental scenarios of exacerbated 81 

sensitivity (i.e., thresholds). Such abrupt shifts can mark regime shifts with potential 82 

implications for ecosystem functioning, which should be monitored and managed closely if we 83 

want to prevent changes of high magnitudes in the functional roles of fungi in a context of 84 

climate change 17. A better understanding of the forces shaping the global biogeography of 85 

dryland soil fungi can improve our ability to predict their fate under global change, and 86 

therefore inform future conservation and management policies. 87 

Towards this aim, we conducted a meta-analysis of multiple datasets from different dryland 88 

biogeographical regions, merging sequencing data from a wide range of ecosystem and 89 

climates (i.e. hot, temperate, and cold drylands) and encompassing a representative plethora of 90 

all dryland sub-types (i.e. from hyper arid to dry-sub humid). We generated an unprecedented 91 

database of 1,473 fungal genera from a total of 912 individual topsoil samples (top 5-10cm) 92 

from all continents, including Antarctica. We examined geographical patterns in fungal 93 

assemblages and the main environmental (spatial, edaphic, and climatic) factors driving them 94 
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as well as to establish where, along a range of environmental pressure gradients, important 95 

changes in community composition occur to identify critical thresholds along those gradients.  96 

 97 

 98 

Results  99 

General description of the dataset 100 

Our dataset represents the largest extant fungal community dataset from drylands. Compared 101 

to previous large-scale studies focused on fungal diversity in drylands, our survey encompasses 102 

all continents, including Antarctica, and spans all dryland subtypes (defined by their aridity 103 

ranges), from hyperarid (AI ≤ 0.05, n = 38), to arid (0.05 < AI ≤ 0.2, n = 274), semiarid 104 

(0.2 < AI ≤ 0.5, n = 355), and dry sub-humid (0.5 < AI < 0.65, n = 265) regions of the world. 105 

Samples were distributed across cold (n = 378), temperate (n = 458) and hot drylands (n = 71) 106 

(Supplementary Information, Figure S1).  107 

Of the 1,473 genera of fungi retrieved after bioinformatics analysis, 60% belonged to 108 

Ascomycota, 33% to Basidiomycota and 2.6% to Glomeromycota and 2% to Zygomycota 109 

(Supplementary Information, Figure S2). Out of the 66% (986) of taxa, 34.9% were saprotrophs 110 

(including 11.5% wood saprotroph, 9% litter saprotrophs, and 8% soil saprotrophs), 13% plant 111 

pathogens, 8% endophytic-mycorrhizal (5% ectomycorrhizal, 1% arbuscular-mycorrhizal, and 112 

2% root-foliar endophytes/epiphytes), and 5% were lichenized (Supplementary Information, 113 

Figure S3). Plant pathogens were mostly dominated by Dothideomycetes (37.6%) and 114 

Leotiomycetes (10%), while ectomycorrhizal fungi, wood, litter and soil saprotrophs were 115 

dominated by Agaricomycetes (71, 60.5, 32 and 30%, respectively) (Supplementary 116 

Information, Figure S4). 117 

 118 

Environmental drivers of functional composition 119 

The relative importance of spatial, edaphic, and climatic variables in predicting the 120 

composition of the main fungal ecological groups was determined using Gradient Forest (GF) 121 

methods, which identified the major determinants of community composition of fungi. The 122 

total model prediction performance from the GF analysis (i.e., the proportion of variance 123 

explained in a random forest) was averaged across the suite of environmental variables from 124 

the most common guilds (i.e., among those occurring in at least 10% of the samples), and 125 

ranged from 0.01 to 0.12 (R-squared; Figure 1A). Greatest global community turnover was 126 

associated with the spatial variables (PCNM1 and PCNM1 eigenvector-based vectors, 127 

maximum cumulative importance: 0.12 and 0.08, respectively), followed closely by UV index 128 

(UV), with a maximum value above 0.07. Importance in relation to other environmental 129 

predictors was highest (> 0.04) for diurnal temperature range (DTR), sand and temperature 130 

seasonality (TSEA), while mean annual temperature (MAT), precipitation seasonality (PSEA), 131 

pH, aridity index (AI) and soil organic content (SOC) had the lowest importance values (0.02-132 

0.04) (Figure 1A).  133 

Then, for each ecological group, we identified the most important predictors of changes in their 134 

abundance along spatial, climatic, and edaphic gradients. The cumulative model prediction 135 

performance of the guilds for which significant predictive power was established (R-136 
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squared >0) had a range of 0.11–0.86 (R-squared), with the highest model performance (>0.70) 137 

recorded for plant pathogens and soil, litter, wood and unspecified saprotrophs (Figure 1B). 138 

The predictive power of PCNM1 and PCNM2 was strongest for these fungi relative to other 139 

ecological groups (R-Squared values > 0.10; Supplementary Information, Figure S5). 140 

However, plant pathogen and unspecified saprotroph richness were also strongly predicted by 141 

UV radiation and sand content (R-Squared values 0.07-0.08, respectively), while DTR was the 142 

single most important climate predictor of litter saprotroph richness, followed by UV (R-143 

Squared values = 0.08 and 0.06, respectively). DTR was also important in predicting soil 144 

saprotrophs distributions, together with sand content (R-Squared values = 0.06 for both). 145 

Conversely, PSEA and TSEA were the strongest predictors of ectomycorrhizal fungi (R-146 

Squared values=0.04 and 0.05, respectively), with TSEA also strongly associating with 147 

lichenised fungi (R-Squared values=0.05; Supplementary Information, Figure S5).  148 

  149 
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 150 

 151 

 152 

 153 
Figure 1. Environmental predictors of dryland fungal community composition (A) 154 
Relative importance, R-squared (R2), of each environmental predictor included in the gradient 155 
forest analysis. (B) Contribution (0 to 1) of climatic, soil and spatial categories to the variation 156 
explained by the complete gradient forest model for the 15 ecological groups for which 157 
significant predictive power was established (R-squared >0). 158 

 159 
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 161 

Detection of thresholds 162 

Frequency histograms and density plots of the values used by the classification trees for splits 163 

(i.e. the split density plots in Figure 2A) were utilised to quantify thresholds at whole 164 

community scales (i.e., where important community changes occur) along the most predictive 165 

environmental gradients. UV index harboured a major threshold at values > 7, where most of 166 

the data occurred (Figure 2A). This threshold corresponded to a shift in the proportion of most 167 

ecological groups, including plant pathogens, litter and dung saprotrophs, as indicated by the 168 

steep slope in the cumulative plots (Figure 2B). Along the two secondly most important 169 

climatic variables (DTR and TSEA), we observed multiple subsequent strong splits. The fungal 170 

community showed a first response with mean diurnal temperature range > 8 °C, and then a 171 

second threshold with mean diurnal range > 14 °C, the latter mainly corresponding to shift in 172 

proportion of a range of saprotrophic fungi (i.e, litter, soil and unspecified saprotrophs); shifts 173 

in lichenized and ectomycorrhizal fungi, as well as animal and plant pathogens and dung 174 

saprotrophs, was recorded with a variation of monthly temperature averages > 1,000 SD and > 175 

500 SD (Figure 2A and B). Finally, important community changes related to soil edaphic 176 

features were brought about by sand content between 45-60%, with shifts in plant pathogens 177 

and a range of saprotrophs (unspecified, dung and soil; Figure 2A and B).  178 

  179 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.03.01.482255doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482255
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 180 

 181 

 182 

 183 
Figure 2: Most relevant predictors of fungal composition in drylands worldwide. (A) 184 
Frequency histograms of gradient values at which splits occur in the regression trees of the 185 
top 15 ecological groups in relationship to the top six environmental variables, showing where 186 
along these gradients important compositional changes are taking place. Black lines are the 187 
kernel density of the histograms, red lines show the (normalized) distribution of the data along 188 
the environmental gradients, and blue lines indicate the ratio between splits and data (ratio 189 
between black and red lines). Ratios >1 (above the dotted line) indicate conditions of relatively 190 
greater change in genus composition (i.e. community thresholds). Individual plots depict the 191 
predictors, arranged (left to right) from the most to the least important. PSEA = precipitation 192 
seasonality; TSEA = temperature seasonality; DTR = diurnal temperature range; AI= aridity 193 
Index; UV = UV index; MAT = Mean annual temperature. (B) Compositional change along the 194 
top six environmental gradients for the top five fungal ecological groups. Each line denotes an 195 
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ecological group and their pattern of compositional change along the gradient. The y-axes 196 
have been normalized so that the maximum corresponds to the relative variable importance.  197 

 198 

 199 

Because the results of the previous analyses do not allow to depict the relationship between 200 

environmental predictors and functional guilds of fungi (they only inform about the existence 201 

of a high magnitude change affecting the composition of the community), we used Random 202 

Forest (RF) models for each guild and SHAP dependence plots (see Online Methods) to 203 

visualise these dependencies (Figure 3). All these relationships showed different degree of non-204 

linear behaviours, with marked thresholds in the predictors signalling either abrupt (e.g., 205 

changes for DTR, sand, UV or TSEA for unspecified saprotrophs), or non-linear trends (e.g., 206 

changes occurring in TSEA) affecting probability of occurrence of fungal ecological guilds. 207 

For instance, plant pathogens and unspecified saprotrophs had a higher probability of 208 

occurrence with increases in UV (values > 7.5), TSEA (values > 900 SD), and decreases in 209 

DTR (values < 14 °C), with pathogens also being positively associated with sand content of 210 

approximately 35-50%. Soil saprotrophs were predicted to occur with decreasing UV (values 211 

< 7.5), TSEA (values < 500degC), and DTR (values < 14 °C); litter saprotrophs were generally 212 

most likely to occur at narrower TSEA (values < 500 SD).  213 

  214 
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 215 

 216 

 217 

Figure 3: Distribution and environmental predictors of the main fungal ecological 218 
groups in drylands.  Shapley additive explanations (SHAP) dependence plot of selected 219 
climatic and edaphic predictors of plant pathogens and saprotrophs richness in drylands. The 220 
effect is expressed as SHAP values, which measure the impact of each predictor on the model 221 
output (richness of a particular fungal ecological group). SHAP values are derived for a given 222 
predictor value in a process analogous to partial dependence plots; thus each point on the 223 
plot corresponds to a prediction in a sample (see methods).  224 
R = Spearman Rho correlation coefficient; p = p value.  225 
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Global patterns of fungal diversity in drylands  227 

The Random Forest model built to assess the relative contribution of environmental predictions 228 

of overall fungal richness in drylands revealed a strong contribution of spatial distance 229 

(PCNM1) and AI (%IncMSE > 20 for both; Figure 4A). We observed generally similar levels 230 

of richness between dry sub-humid, semi-arid and arid biomes, while hyper-arid areas 231 

supported a significantly lower (Wilcoxon test, p > 0.05) fungal diversity (Figure 4B). 232 

Consistently, the fungal maps estimating the expected geographical distribution and richness 233 

of dryland fungi (R=0.92, Figure 4C), broadly reflected the extent of well-characterised high 234 

classes of aridity, with sharp declines in fungal alpha diversity in hyper-arid regions of the 235 

globe. 236 

 237 

 238 
 239 

Figure 4. Environmental predictors of dryland fungal community richness. (A) Relative 240 
importance, expressed as %IncMSE, of each environmental predictor included in the random 241 
forest analysis. (B) Box-plots illustrating alpha diversity indices (Observed richness) of fungal 242 
phylotypes (genus level) for the different aridity classes. Individual data points, median values 243 
and interquartile ranges are shown. Different letters indicate significant differences (P < 0.05, 244 
Wilcoxon test). (C) Predicted global distribution of fungal richness across drylands worldwide. 245 
The scale bar represents the observed richness of each ecological group. 246 

 247 
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Discussion 249 

Our study demonstrates, for the first time, that environmental gradients related with solar UV 250 

radiation (i.e., the UV index), climate seasonality (i.e., DTR and TSEA) and soil structure (i.e., 251 

sand content) are critical predictors of fungal community composition in global dryland soils, 252 

with the greatest influence detected in association with the richness of putative plant pathogens 253 

and a range of fungal saprotrophic groups. Most importantly, we found that the relationships 254 

of these environmental predictors with different fungal ecological groups are markedly non-255 

lineal, exhibiting thresholds in the values of environmental variables that may signal 256 

particularly vulnerable environmental scenarios. In particular, increases in UV and temperature 257 

seasonality above a certain threshold (7.5 and 900 SD, respectively) were associated with an 258 

increased probability of plant pathogens and unspecified saprotrophs occurrence, with plant 259 

pathogens also being positively associated with sand content of approximately 35-50%. 260 

Conversely, these parameters had an overall negative relationship with litter and soil 261 

saprotrophs richness, the latter being negatively influenced also by increases in DTR (values > 262 

14 °C).  263 

These trends can be explained by the unique abiotic features that regulate biogeochemical 264 

cycling in drylands and the peculiar physiological attributes of different saprotrophic and 265 

pathogenic fungal groups  18. In most arid lands, temperature-related variables and soil structure 266 

are considered critical factors in determining decomposers composition 19, and traditional 267 

models identify extreme temperatures and low soil moisture typical of dry regions of the world 268 

as main controllers of litter quality and microbial activities 20. These environmental parameters 269 

can thus act as limiting factors for the distribution of fungal decomposer, which tend withstand 270 

overall lower temperature ranges compared to other guilds, such as pathogenic fungi 28, thus 271 

explaining their decrease in occurrence probability with increases in temperature ranges and 272 

variability 15. Soil structure attributes are also expected to exert various influences on fungal 273 

communities, for example by enhancing substrate availability from SOC pools, while also 274 

controlling water holding capacity 21, which can in turn regulate fungal saprotroph richness and 275 

composition.  276 

Similarly, in many arid ecosystems, solar radiation is considered a primary driver of 277 

decomposition and carbon cycling 2223, resulting in a significant photo priming effect that 278 

controls root exudation, litter quality and nutrient availability, and accelerates abiotic-driven 279 

decomposition in these systems 24. The tight link between UV radiation and biogeochemical 280 

cycling in drylands could thus explain the prominent role of the UV index in predicting the 281 

distributions of saprotrophic groups associated with soil and litter, and the overall negative 282 

influence on soil saprotroph richness.   283 

Conversely, putative plant pathogens were mostly dominated by ascomycetes from the classes 284 

Dothideomycetes and Leotiomycetes, which are known to possess unique physiological traits 285 

allowing them to resist environmental stresses typical of drylands, including UV radiation, high 286 

temperature fluctuations and dissection 7,9,25. Such common traits might allow potential 287 

pathogens from these taxonomic groups to adapt to a wide range of environmental stressors, 288 

possibly explaining the ability of the members of this ecological group to thrive in extreme 289 

environments. Additionally, photoreception and light-dependent traits have been recently 290 

suggested as a likely mechanism allowing foliar pathogens from sun-lit habitats to recognize 291 
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potential partners and stressed hosts 26, indicating that increases in UV radiation might have an 292 

important but underestimated role in facilitating the establishment of pathotrophic fungi in 293 

dryland ecosystems. Our analyses indicate that countries crossing a 7.5 UV radiation index 294 

threshold and experiencing high temperature seasonality (values > 900 SD) could be at 295 

increased risk of pathogen outbreaks, with potentially detrimental ecological and economic 296 

implications. 297 

Overall, the relative importance of the environmental predictors identified in our survey is 298 

markedly different from the findings from previous global studies conducted in more mesic 299 

environments, where mean annual precipitation has the strongest influence on the richness of 300 

most fungal taxonomic and functional guilds27,28, reflecting the peculiarity of the 301 

environmental attributes that regulate ecosystem functionality in drylands. Interestingly, the 302 

aridity index, which is considered a primary driver of change in drylands 3, had a secondary 303 

role in determining fungal functional changes in our dataset. However, in line with other global 304 

surveys, we observed significant decline in fungal alpha diversity with increasing aridity, 305 

confirming the critical role of this climatic variable in shaping microbial biodiversity in global 306 

drylands. The compositional turnover of the dryland functional mycobiome was also strongly 307 

associated with the eigenvector-based spatial descriptors (PCNMs), which were also 308 

significantly correlated to the total fungal community richness. At the guild level, the strongest 309 

effect was recorded for phototrophic and saprotrophic fungi, the most abundant members of 310 

the community in our dataset. The large predictive power of PCNMs could indicate a role for 311 

neutral processes, such as dispersion limitation and/or stochastic events, in shaping the 312 

community dynamics of the dominant fraction of the fungal assemblies 29. Indeed, abundant 313 

microbial taxa with higher dispersal rates tend to be affected by drift or priority effects more 314 

than their rarer counterparts 30, possibly explaining the large influence of spatial variables 315 

observed in this study for the most frequent functional groups. However, the overall 316 

performance of our models remained relatively low for the less common functional guilds in 317 

the dataset, suggesting that other processes such as biotic interactions 31, or unmeasured 318 

environmental gradients (e.g., vegetation composition 32,33) might play a critical role in 319 

characterising the distribution of these lower abundance community members in dry 320 

ecosystems, and warrant further investigations on a global scale.  321 

Collectively, our results indicate that solar UV radiation, temperature and precipitation 322 

variability, and soil structure might be underappreciated drivers of global distribution of 323 

critically important fungal groups, such as plant pathogens and saprobes. The relationships 324 

between functional composition and environment uncovered in this study are crucial for 325 

developing accurate mechanistic models and making predictions about climate-driven shifts in 326 

fungal community structure, and thus ecosystem functions. Overall, our findings imply that 327 

processes leading to shifts in solar radiation (e.g., stratospheric ozone depletion), soil structure 328 

(e.g., land-use change, and land degradation), and seasonal climatic patterns (e.g., increases in 329 

atmospheric levels of a greenhouse gases), might have disproportionate consequences for the 330 

distribution of fungal groups linked to vegetation and biogeochemical cycling in drylands, and 331 

could influence the balance of plant–soil interactions in drylands. These processes might be 332 

particularly exacerbated in the Southern Hemisphere, where climate change has profound 333 

influence on the ozone layer 34, and could be further compounded by predicted increases in 334 

extreme heatwave events, which can synergistically alter the UV-mediated effects on terrestrial 335 
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ecosystems 35,36. In particular, we observed a significant threshold in composition turnover at 336 

UV index > 7 and diurnal temperature ranges > 900 SD, suggesting that the strongest effects 337 

of climate-driven shifts in UV incidence and climate seasonality could occur in regions 338 

approaching these values, such as arid regions of the Australia, Centre and South America, 339 

North Africa and Central Asia 37, with unknown ecosystem-level implications.  340 

Taken together, the comprehensive catalogue of ecology–climate relationships we provide 341 

paves the way to a more exhaustive and detailed understanding of the complex role of climate 342 

and soil in regulating fungal biogeography, especially in those regions of the world that are 343 

most vulnerable to environmental changes, such as global drylands. This work opens a new 344 

line of investigation to include quantifying the importance of abiotic and biotic processes that 345 

govern fungal communities across contrasting regions of the world, with particular emphasis 346 

on identifying the traits, and traits trade-offs, underpinning their functional capabilities in such 347 

unique ecosystems 38. In particular, we anticipate that as strain-specific trait data become 348 

available, better assessment of functional variation expressed within and among communities 349 

in relation to UV tolerance and climate variability will be possible. This information is required 350 

to provide better predictions of the current and future adaptation of fungi to the effects of 351 

climate change, and their ramifications for sustainability of dryland ecosystems.  352 

 353 

 354 

Online Methods 355 

Literature and environmental variables selection 356 

We have undertaken a comprehensive meta-study of data published on the composition of soil 357 

fungal communities in drylands across the world. This approach enabled us to re-analyse 358 

multiple datasets from different biogeographical regions and biomes and compile a large 359 

dataset of fungal taxa distribution worldwide (see Supplementary Material for details on 360 

literature selection, bioinformatics data processing, and functional group assignments). In total, 361 

14 studies, encompassing over 912 top-soil (5-10 cm depth) sampling points, were identified 362 

and included in the analysis; this allowed us to encompass all continents (including Antarctica; 363 

Supporting Information Figure S1), spanning a wide range of environmental conditions. The 364 

final sample list included all drylands subtypes (hyper-arid, AI 0.0–0.05, n = 42; arid, AI = 365 

0.05–0.20, n = 274; semiarid, AI = 0.20–0.50; n = 336; dry-sub humid, AI = 0.50–0.65; n = 366 

264).  367 

Metadata were collected from the published papers and/or public repositories where they were 368 

submitted by the authors, while in a few cases from the authors of individual studies upon 369 

request and are included in Supporting Information. Additional metadata were collected from 370 

the Worldclim database (https://www.worldclim.org; ~1 km resolution) 39, and included 371 

spatial, climatic and edaphic parameters. Climatic data included a range of variables related to 372 

temperature and precipitation variability that are considered important drivers of fungal 373 

distribution at large scales (28 – i.e., mean annual temperature (MAT), precipitation seasonality 374 

(PSEA), temperature seasonality (TSEA) - as well as the aridity index (AI). The aridity index 375 

was obtained from the global maps of 40, which provides the averaged AI of the period 1970-376 

2000, and has a spatial resolution of 30 arc-seconds. We also collected data on the AI from the 377 

Global Potential Evapotranspiration database 41, which is based on interpolations provided by 378 
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WorldClim. We used aridity index instead of mean annual precipitation in our study because 379 

aridity includes both mean annual precipitation and potential evapotranspiration, and is 380 

therefore a more accurate metric of the long-term water availability at each site; moreover 381 

aridity index is the one used for categorizing drylands and is the one used on global reports 382 

about desertification and climate change. UV radiation (UV) was further included given its 383 

importance in driving biogeochemical processes in dryland soils 18,41. Three important edaphic 384 

determinants of fungal biogeography (i.e., % of sand, SOC and pH), obtained from SoilGrids 385 

v2 database, were also included, allowing us to evaluate the importance of soil physico-386 

chemical attributes for fungal distribution in drylands. To accommodate spatial variables, 387 

principal coordinates of neighbour matrices (PCNMs) were also included as explanatory 388 

variables in downstream analyses to examine the importance of spatial filters on community 389 

composition 42. PCNMs were calculated with the vegan R package, and the first two of the 390 

positive PCNMs were retained. We obtained complete environmental metadata for a total of 391 

743 samples, which were used for the quantification of the functional turnover across 392 

environmental gradients (see methods below). Downstream analysis, unless otherwise 393 

specified, were performed in R environment v. 4 and using the genus-level taxonomy table. 394 

 395 

Quantification of ecological turnover and thresholds across environmental gradients  396 

To explore the environmental drivers of distributions of the most common fungal ecological 397 

guilds in global drylands, we modelled their occurrence using an approach similar to 43. Briefly, 398 

we first identified the most common guilds among those occurring in at least 10% of the 399 

samples, which resulted in 16 ecological groups. We then explored the most important 400 

environmental predictors of fungal ecological turnover by generating a random forest fitting a 401 

total of 500 trees using the extended modelling procedure available in R package 402 

“gradientForest” 44. The gradient forest (GF) technique derives monotonic, nonlinear functions 403 

that characterize compositional shifts along each fitted environmental gradient, without a priori 404 

distributional assumptions about the frequency of response variables, as opposed to other 405 

methods such as generalized linear models or generalized additive models. The importance of 406 

each predictor variable (measured as R-squared) in the model is assessed by quantifying the 407 

decrease in performance when each predictor variable is randomly permuted, using a 408 

conditional approach which accounts for collinearity between predictor variables 45. This 409 

allows us to assess each predictor's importance relative to one another in terms of their 410 

influence on patterns of composition. Additionally, GF allows the development of empirical 411 

distributions that represent species (ecological groups in this case) turnover along each 412 

environmental gradient, by aggregating the values of the tree splits from the Random Forest 413 

models for all individual models with positive fits (R-squared > 0). The turnover function is 414 

measured in dimensionless R-squared units where groups with highly predictive random forest 415 

models (i.e., high R-squared values) have greater influence on the turnover functions than those 416 

with low predictive power (i.e., lower R-squared). These turnover functions can provide unique 417 

insights into the nature of how functional patterns vary along multiple environmental gradients, 418 

at the level of individual ecological groups as well as the mycobiome as a whole when these 419 

individual curves are averaged to obtain a global R-squared value. The incremental approach 420 
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to model fitting in GF makes it also well suited for the analysis of large datasets, whose size 421 

can be limiting in other approaches, such as generalized dissimilarity modelling 46. A detailed 422 

description of these methods can be found in 44-47.  423 

Following the GF approach described above, the model performance was assessed by the 424 

overall goodness-of-fit (R-squared) of predicted against observed values and by the cross-425 

validated out-of-bag R-squared values per ecological group, while the significance of each 426 

environmental variable was assessed by the relative importance weighted by R-squared values 427 
44. Subsequently, to visualize the importance and abruptness of specific thresholds and to 428 

identify common threshold locations among ecological groups, we plotted their cumulative 429 

importance, whereby the shape of the resulting distribution curves describes the magnitude of 430 

compositional change along the most important gradients, with the standardized ratio of split 431 

density >1 indicating the highest manifestation of a threshold 48. The concept of community 432 

threshold used here is defined as a zone along an environmental gradient where the change in 433 

community composition is enhanced as a result of sharp increases or decreases in the 434 

occurrence of several functional groups (depending on the direction of the gradient). Therefore, 435 

GF enabled us to identify critical values along environmental gradients that correspond to 436 

threshold changes in functional composition. 437 

Finally, to further illustrate the directionality of the response to environmental predictors, we 438 

run GradientBoost (GB) models with SHapley Additive exPlanations (SHAP) dependence 439 

plots. GB models were run individually for each ecological group and were done solely for the 440 

most important environmental variables and ecological groups best explained by the GF 441 

models. The SHAP method is derived from game theory and measures how much each feature 442 

of a model contributes to the increase or decrease of the probability of a single output with 443 

respect to the average of the ones used to train the model (ie, the richness of a particular 444 

ecological group in this case). In a nutshell, the SHAP value is derived from a regression tree 445 

model for a given feature and prediction. Its value is the effect of the predictor of interest in 446 

the model output for a given prediction and, thus it is provided in the same units as the response 447 

variable. SHAP values are actually homologous to evaluating the expression ꞵ1*x1 in a regular 448 

multiple regression (y~ꞵ1*x1+ꞵ2*x2+…+ꞵn*xn). This means that, essentially, a given 449 

predicted value of the model is the summation of all SHAP values obtained from the model 450 

given the values of predictors (74). By plotting the values of predictor vs the associated SHAP 451 

values we obtain a response curve analogous to the effects of that predictor over the response 452 

variable (i.e., a partial dependence plot). SHAP values are widely used in machine learning 453 

(75), economics (72), security (73) and ecology (76). SHAP values can be positive or negative, 454 

whereby a positive trend indicates that a feature is expected to positively influence the 455 

occurrence of a particular ecological group, and vice-versa. Models were built with the 456 

“xgboost” package and SHAP values were extracted with the “SHAPforxgboost” package in 457 

R. 458 

 459 

 460 

Quantification of biodiversity and environmental drivers of fungal community 461 

composition  462 

Alpha diversity was estimated using the R package ‘phyloseq’ 49, calculating biodiversity 463 
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indices as the species richness as a count of the observed taxa in each sample. A Random Forest 464 

(RF) model was built using the ‘randomForest package with 500 trees in R to assess the relative 465 

contribution of climatic, spatial and edaphic predictors on dryland fungal richness. Statistical 466 

analysis was performed to identify how overall richness changed across dryland types by one-467 

way analysis of variance (one-way ANOVA) and pairwise multiple comparison procedure 468 

(Tukey test); a small probability p-value (<0.05) indicated a significant difference.  The extent 469 

of the global distribution of soil fungal richness was estimated using a Random Forest 470 

regression analysis as described in the supplementary material. 471 

Data availability 472 

Metadata and samples ID are freely available in Figshare 473 

(https://doi.org/10.6084/m9.figshare.19243749.v1) 474 

Code availability 475 

The codes for the computational analyses are available in Figshare 476 

(https://doi.org/10.6084/m9.figshare.19243749.v1). 477 
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