

1 **Real-Time Flow Cytometry to assess qualitative and quantitative responses of**
2 **oral pathobionts during exposure to antiseptics**

3

4 **Authors:**

5 Chatzigiannidou, I.¹ Heyse, J.^{1,2} Props, R.^{1,2} Rubbens, P.³ Teughels, W.⁴ Van de Wiele, T.¹ Boon,
6 N^{1,2*}.

7

8 **Affiliation:**

9 ¹ Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent
10 University, Coupure Links 653, B-9000 Gent, Belgium

11 ² KYTOS, Technologiepark-Zwijnaarde 82, B-9052 Gent, Belgium

12 ³Flanders Marine Institute (VLIZ), Ostend, Belgium

13 ⁴Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, B-3000 Leuven, Belgium

14

15 * Correspondence to: Nico Boon, Ghent University; Faculty of Bioscience Engineering; Center
16 for Microbial Ecology and Technology (CMET); Coupure Links 653; B-9000 Gent, Belgium;
17 phone: +32 (0)9 264 59 76; fax: +32 (0)9 264 62 48; E-mail: Nico.Boon@UGent.be;

18 **Abstract:**

19 Antiseptics are widely used in oral healthcare to prevent or treat oral diseases, such as
20 gingivitis and periodontitis. However, the incidence of bacteria being tolerant to standard
21 antiseptics has sharply increased over the last few years. This stresses the urgency for
22 surveillance against tolerant organisms, as well as the discovery of novel antimicrobials.
23 Traditionally, susceptibility to antimicrobials is assessed by broth micro-dilution or disc
24 diffusion assays, both of which are time-consuming, labor-intensive and provide limited
25 information on the mode of action of the antimicrobials. The above-mentioned limitations
26 highlight the need for the development of new methods to monitor and further understand
27 antimicrobial susceptibility. Here, we used real-time flow cytometry, combined with
28 membrane permeability staining, as a quick and sensitive technology to study the quantitative
29 and qualitative response of two oral pathobionts to different concentrations of chlorhexidine,
30 cetylpyridinium chloride or triclosan. Apart from the real-time monitoring of cell damage, we
31 further applied a phenotypic fingerprint method to differentiate between the bacterial
32 subpopulations that arose due to treatment. We quantified the pathobiont damage rate of
33 different antiseptics at different concentrations within 15 minutes of exposure and identified
34 the conditions under which the bacteria were most susceptible. Moreover, we detected
35 species-specific and treatment-specific phenotypic subpopulations. This proves that real-time
36 flow cytometry can provide information on the susceptibility of different microorganisms in a
37 short time frame while differentiating between antiseptics and thus could be a valuable tool
38 in the discovery of novel antimicrobial compounds while at the same time deciphering their
39 mode of action.

40 **Keywords:** antiseptic susceptibility testing, chlorhexidine, cetylpyridinium chloride, triclosan,

41 oral bacteria, *Streptococcus mutans*, *Aggregatibacter actinomycetemcomitans*

42 **Introduction:**

43 Over the last decades the administration of antiseptics in oral healthcare for the treatment
44 and prevention of oral diseases, such as gingivitis and periodontitis, has been intensified.
45 However, there is increasing evidence that microorganisms become more tolerant to
46 antiseptics, and this phenomenon is often combined with increased resistance towards
47 antibiotics^{1,2}. This stresses the need for, on the one hand, better surveillance for the antiseptic
48 tolerance^{3,4} and, on the other hand, the acceleration of novel antimicrobial discovery.

49 Traditionally, antimicrobial susceptibility testing includes broth micro-dilution assays or disc
50 diffusion assays^{5,6} with which the Minimum Inhibitory Concentration (MIC) is determined.
51 These methods are confronted with limitations. They are based on the active growth of a
52 bacterial strain under specific antiseptic concentrations and are therefore time-consuming as
53 they need at least 24 hours of incubation from antiseptic application until endpoint
54 measurement. Furthermore, they cannot differentiate between bacteriostatic and
55 bactericidal conditions. To identify bactericidal conditions (determining the Minimum
56 Bactericidal Concentration – MBC) another 24 hours are required. Additionally, these bulk
57 based methods do not permit the detection of differences between bacterial subpopulations.
58 Nonetheless, it is reported that even isogenic bacterial populations can harbor phenotypically
59 variable subpopulations with different levels of tolerance towards antimicrobials^{7,8} and such
60 differential response can affect the treatment outcome. Furthermore, the above-mentioned
61 methods are not informative on the mode of action of tested compounds. Consequently, we
62 need rapid antimicrobial susceptibility testing methods which can further provide information
63 on the subpopulation level or the compounds mode of action. These methods can facilitate

64 better infection management, antimicrobial tolerance surveillance and research for novel
65 compounds.

66 Flow cytometry has already been described as a method to detect antimicrobial
67 susceptibility^{9,10}. One of the main advantages of this method is that it provides a large amount
68 of quantitative data in a short time frame as it can measure hundreds to thousands of cells in
69 a few seconds. Besides the rapid measurement, flow cytometry protocols can further
70 accelerate testing because they do not require long incubation times in contrast to the
71 conventional methods, allowing to move from 24-48 hours to 1-2 hours incubation
72 window^{10,11}. Moreover, with the use of appropriate dyes, it can directly detect cell damage
73 and lysis thus enabling the study of bactericidal or bacterolytic activity¹². In addition, the
74 application of real-time flow cytometry could increase the time resolution as it enables the
75 immediate observation of physiological changes of a given microbial subpopulation within a
76 few seconds¹³.

77 In this study, we evaluated real-time flow cytometry as an accurate and fast method to study
78 the response of two oral pathobionts when exposed to antiseptics commonly used in oral
79 care. *Aggregatibacter actinomycetemcomitans* was exposed to chlorhexidine (CHX) and
80 cetylpyridinium chloride (CPC), while *Streptococcus mutans* was tested under the above
81 mentioned antiseptics and triclosan. By exposing the bacteria to the antiseptics for 15
82 minutes, we evaluated the quantitative and qualitative response in real-time under different
83 concentrations of the antiseptics by respectively detecting cell damage and observing the
84 dynamics of the phenotypical subpopulations that arose during the exposure to the
85 antimicrobial.

86 **Results:**

87 To demonstrate the use of real-time flow cytometry as a method to assess the susceptibility
88 of oral bacteria to antiseptics, two species with different physiological properties that are
89 linked to oral diseases were incorporated in the study. More specifically, *Streptococcus*
90 *mutans*, a Gram⁺ coccus linked to dental caries¹⁴, and *Aggregatibacter*
91 *actinomycetemcomitans*, Gram⁻ coccobacillus that has been associated with more aggressive
92 forms of periodontitis¹⁵, were used. The bacteria were subjected to different antiseptics,
93 commonly found in oral care products, in different concentrations. A cell membrane
94 permeability staining protocol was employed to distinguish between intact and damaged cells.
95 SYBR Green I was used to stain all cells, while Propidium iodide, which only penetrates cells
96 with disrupted cell membrane, was used to stain damaged cells. After staining, the cells were
97 exposed to the respective antiseptics and continuously measured by flow cytometry for 15
98 min. Due to the antiseptic-induced cell damage, the cells were getting gradually stained with
99 Propidium iodide, thus allowing the real-time observation of cell damage.

100 **Real-time determination of the cell damage rates**

101 Our first objective was to measure the cell damage rate for each treatment, i.e. antiseptic type
102 and concentration. We quantified the number of intact and damaged cells over time and
103 segmented the 15 minutes continuous data in smaller time frames of 30 seconds. Two gates
104 were drawn manually in the Green (FL1) vs. Red fluorescence intensity (FL3) density plots
105 corresponding to the intact and damaged cell populations for each species (Supplementary
106 Figure 1). To define the gates, we used a non-treated sample as a control for the intact
107 population and a heat-killed sample as a control for the damaged population. Subsequently

108 these gates were used to count the number of intact and damaged cells in each 30 seconds-
109 frame.

110 The number of intact cells was used to further calculate the cell damage rate. More
111 specifically, we expressed the data as the percentage of surviving cells which corresponds to
112 the ratio of intact cells at each time point over the intact cells from the non-treated control
113 samples (Figure 1 and 2). To define the rate of cell damage of each treatment, log-logistic
114 models were fitted on the surviving cell percentage data. The Hill coefficient (slope) and the
115 effective time 50 (ET50), calculated based on the model, were used to evaluate the effect of
116 each treatment on the survival of the bacterial cells. The Hill coefficient describes the
117 steepness of the curve, while the ET50 indicates the time after which 50% of the cells were
118 damaged. A higher Hill coefficient means that the slope is steeper which corresponds to a
119 faster response. A smaller ET50 value means that less time was needed to get half of the
120 bacterial population in a damaged state.

121 Although CHX caused faster cell damage on *A. actinomycetemcomitans* cells, CPC could cause
122 more damage over time when 2 and 10 mg/mL were applied. After choosing a three-
123 parameter log-logistic model as the best-fitted model (Supplementary Figure 3A) and based
124 on the slope steepness, we observed that CHX treatment, independent of concentration,
125 exhibited a lower Hill coefficient, less steep killing curve, than the CPC treatment. The Hill
126 coefficient for CHX was increasing with increasing concentrations, while the opposite was true
127 for CPC (Figure 3). On the other hand, all CHX treatments exhibited a lower ET50 than the
128 equal concentrations of CPC (Figure 3). Besides calculating the time-response curves for
129 different treatments, the dose-response was calculated for samples that were exposed to
130 treatment for 10 minutes. This time was chosen to ensure sufficient time from the exposure

131 had passed. A three-parameter log-logistic model was used to calculate the Hill coefficient and
132 the ED50, the dose for which 50% of cell damage should be observed (Supplementary Figure
133 3B). CPC had an ED50 of 1.5 mg/mL, while CHX had an ED50 of 1.9 mg/mL (Table 1), indicating
134 that a slightly smaller concentration of CPC is needed to reach 50% of cell damage after 10
135 min of treatment.

136 Different patterns were observed when *S. mutans* was exposed to the same antiseptics.
137 Besides, this strain was also exposed to triclosan, which has a different mode of action than
138 CHX and CPC. Exposure to CPC, either 2 or 20 mg/mL lead to immediate damage of the
139 majority of the cells (< 99%) (Figure 3.2). As a consequence, we could not fit a time-response
140 curve on this data and these conditions were not used in the next steps of the analysis. A four-
141 parameter log-logistic model was used to calculate the rate of cell damage under treatment
142 with the other two antiseptics (Supplementary Figure 8.4C). A higher Hill coefficient was
143 observed for 20 mg/mL CHX compared to 2 mg/mL (Figure 3.3). The Hill coefficient of 2 mg/mL
144 triclosan was almost 0, (0.02 ± 0.12), because no cell damage occurred during this treatment.
145 Concerning the dose-dependent data, a good model that would properly describe the
146 phenomenon could not be fitted, probably because of the lack of a range of concentrations
147 that will capture different phases of killing.

148 Another gate representing the total bacterial cells, thus separating both intact and damaged
149 populations from the background, was used to evaluate whether the tested conditions lead
150 only to cell damage or also to cell lysis. For most of the tested conditions, minimal cell lysis
151 was observed (< 10%) (Supplementary Figure 8.5 & 8.6). However, 20 mg/mL triclosan rapidly
152 caused cell lysis of the *S. mutans* cells (Supplementary Figure 8.6).

153 **Flow-cytometric phenotypic fingerprinting**

154 In the previous section, real-time flow cytometry data was used to calculate the effectiveness
155 and rate of permeabilization of different antiseptic treatments by dividing the cell
156 population in intact and damaged subpopulations. Nevertheless, we noticed that the response
157 to the different antiseptics was much more dynamic than could be captured by this binary
158 classification and that intermediate physiological phenotypes appeared through time. To
159 consider this information in our analysis, we employed an alternative approach which is based
160 on the phenotypic fingerprint of the samples. Instead of the binary split in the manually
161 designed gates, a Gaussian Mixture model was used to identify different physiological
162 subpopulations (phenotypes).

163 After denoising the data based on the 'total bacteria' gate (Supplementary Figure 2), a
164 representative subset of samples was chosen to estimate the parameters for the Gaussian
165 Mixture Model. The information of four parameters, i) forward scatter (FSC), ii) side scatter
166 (SSC), iii) green fluorescence intensity (FL1) and iv) red fluorescence intensity (FL3), was used
167 and the model was set to identify 20 phenotypes (i.e. Gaussian mixtures). Including the
168 forward and side scatter measurements on the model provided an extra layer of information
169 about morphological differences between the subpopulations. By observing the mean value
170 of each phenotype in the four channels, we found that separation was based on both
171 fluorescence intensity and scatter information (Figure 4). Subsequently, the model was used
172 to calculate the abundance of the different phenotypes in all time points.

173 The phenotypes clustered in two main groups according to the mean values of the four
174 parameters (Figure 4) and the members of the one group (names Aa phenotype 1-8) were
175 more abundant in the *A. actinomycetemcomitans* samples, while the members of the other
176 group were more abundant in the *S. mutans* samples (named Smu phenotype 1-9), except

177 from three phenotypes that were abundant in samples of both species (named Aa/Smu
178 phenotype 1-3). Aa phenotypes 3, 5 and 6 were the ones describing the intact *A.*
179 *actinomycetemcomitans* under no stress. We observed a transient shift from these
180 phenotypes with the higher green fluorescence to the newly appearing phenotypes, when *A.*
181 *actinomycetemcomitans* was exposed to the antiseptics. In the samples treated with CHX,
182 these phenotypes had similar values of green and red fluorescence (Aa/Smu phenotype 1 and
183 2). The shift to these newly appearing phenotypes was slower or faster depending on the
184 antiseptic concentration (Figure 5). We also observed that Aa phenotypes 7 and 8 appeared
185 only under 10 and 20 mg/mL CPC and in a very low abundance under 2 mg/mL but were not
186 present under treatment with CHX. Finally, it is noteworthy that the heat-killed cells clustered
187 in two completely different phenotypes (Aa phenotype 1 and Aa/Smu phenotype 3) and not
188 together with the cells damaged by antiseptics.

189 Intact non-stressed *S. mutans* cells were clustered in different phenotypes with the most
190 abundant being Smu phenotypes 1,2 and 3. When *S. mutans* was exposed to CHX, different
191 phenotypes appeared over time, moving from ones characterized from higher green
192 fluorescence to ones with higher red fluorescence (Figure 6), while their abundances were
193 dependent on the antiseptic concentration. Interestingly a range of different phenotypes was
194 also observed in the conditions that all cells were clustered as damaged according to the
195 previous method (Supplementary Figure 7). This was more clear for the CPC-treated *S. mutans*
196 cells were all damaged from the first time point. However, differences between the damaged
197 cells were observed with this method (Figure 6), with, for example, Smu phenotype 5 to be
198 the most abundant under treatment with 20 mg/mL CPC and to be mainly found in this
199 treatment. In addition, we observed that Smu phenotypes 5 and 6 that mostly characterized
200 20 mg/mL CPC treatment clustered together with Smu phenotype 4, more abundant in 20

201 mg/mL CHX, based on their mean values (Figure 3). The latter probably indicates that high
202 concentrations of the two antiseptics induce similar but distinct cell subpopulations.

203 Hence, with cytometric fingerprinting, we could observe the dynamic shift from phenotypes
204 that were describing intact cells to a range of damaged cells phenotypes. Most importantly,
205 we detected phenotypes that were either compound-specific or concentration-specific.

206

207 **Discussion**

208 Flow cytometry is a quick and reliable method for determining microbial susceptibility of
209 clinically important bacterial isolates^{9,12,16}, for detecting bactericidal conditions¹² and for
210 accelerating prognosis in a clinical setting from 1-2 days to a couple of hours^{10,11}. The
211 combination of viability dyes (Syto9/PI) ^{12,17} or membrane polarization dyes (DiOC_n(3),
212 DiBAC₄(3))⁹ allows corroborating membrane permeabilization and pore formation under
213 certain stress. Different methods are in place to quantify the antimicrobial induced changes,
214 such as manual gating¹² or averaging ratios of the green and red fluorescence intensity to
215 calculate the percentage of damaged cells¹⁷. Yet, our current approach of combining dynamic
216 flow cytometry analysis with SGPI staining allowed us to achieve unprecedented real-time
217 monitoring of membrane permeabilization of the bacterial population of two oral species
218 during exposure to the three different antiseptics.

219 Initially, the killing dynamics upon exposure to a certain antiseptic were calculated based on
220 the number of intact cells through time. *A. actinomycetemcomitans* was exposed to two
221 different antiseptics, CHX and CPC and it was observed that CHX was faster in damaging the
222 bacterial cells as it was indicated by the ET50 values (Figure 3). However, the rate of damage
223 was decreasing over time, as this was calculated by the Hill coefficient (Figure 3).
224 Contrastingly, when the two antiseptics were evaluated based on the concentration needed
225 to decrease the cell population by half, it was found that slightly less CPC was needed to
226 achieve the same effect (Table 1). Our findings suggest that, although CHX treatment acted
227 more rapidly than CPC in the beginning, CPC was slightly more potent than CHX.

228 *S. mutans* cells exhibited three different patterns of response depending on the supplemented
229 antiseptic. Immediate cell permeabilization was observed with CPC, gradual permeabilization

230 over 15 min with CHX and a biphasic response with triclosan, for which one concentration,
231 namely 20 mg/mL, led to immediate permeabilization while 10x lower concentration,
232 2mg/mL, caused no cell damage. Triclosan at low concentrations acts by blocking lipid
233 synthesis via inhibition of enoyl-acyl carrier protein (ACP) reductase (FabI)¹⁸ but at high
234 concentrations seems to act simultaneously on multiple targets, such as inhibition of lipid,
235 RNA, protein synthesis and membrane perturbations¹⁹. A different mode of action between
236 lower and higher concentrations could be the reason for the biphasic response we observed.
237 It is also important to note that 20 mg/mL triclosan was the only treatment under which cell
238 lysis was observed.

239 Despite the substantial information that was acquired by this approach, some limitations must
240 be considered. Short inactivation times of less than 1 minute prevented us from fitting a
241 mathematical model to the antimicrobial effects, thus making the approach non-applicable
242 for high concentrations of antiseptics. In addition, the subpopulations of intact and damaged
243 cells were based on the 2-dimensional space of green vs red fluorescence intensity and were
244 designed manually. Nonetheless, manual gating is subjected to bias²⁰ and antimicrobial stress
245 can affect not only cell permeability but also cell morphology²¹. Moreover, by splitting the
246 cells into two subpopulations, intact or damaged, we enforced a discretization of the data,
247 which in reality represented a continuous spectrum of phenotypes with intermediate levels
248 of cell permeability. Hence, meaningful biological information was not taken into account with
249 this approach.

250 To overcome the above limitations, i.e. avoid the bias of manual assigning populations and
251 make use of more dimensions, a cytometric fingerprinting approach was subsequently applied
252 to the data. Fingerprinting techniques have been successfully used in the past to discriminate

253 between different bacterial strains or the same strain in different physiological conditions^{22,23}.

254 They are superior to manual gating because they are not subjected to user bias²⁰ and, in
255 addition, they allow to observe phenotypical changes that might not be captured by the use
256 of a binary system for intact/damaged classification²⁰. Moreover, they take advantage of the
257 multi-parametric measurements using both fluorescence and scatter information. In the past,
258 very few efforts have been made to combine more than two-dimensions in susceptibility
259 studies by flow cytometry, such as the study by Huang et al, 2015 which use the three-
260 dimensional data to calculates the change between control and treated conditions as an one-
261 dimensional distance¹⁶.

262 Here we used a Gaussian Mixture Model approach, to partition our data into different
263 phenotypic subpopulations, which allows for the use of a smaller number of phenotypes as
264 compared to the previous approaches²⁴ and thus can better reflect the complexity of the
265 physiological changes and cell damage caused by the treatment. Four parameters were taken
266 into account for identifying different phenotypes (forward and side scatter and green and red
267 fluorescence intensity), which provided information on the morphology, the nucleic acid
268 content and the membrane permeability of every single cell. Both fluorescence intensity and
269 scatter played a role in the separation of the phenotypes. This is in accordance with previous
270 studies that have shown that stress, which results in cell wall damage, can alter the
271 morphology of a bacterial cell^{21,25}.

272 Applying the Gaussian Mixture Model flow cytometric fingerprinting method increased the
273 resolution of our data analysis and revealed further information on how each treatment
274 affected the phenotypic fingerprint of the two bacterial populations. Our results indicate that
275 the relative abundances of the different phenotypes were dependent on the i). bacterial

276 species, ii) antiseptic and concentration of antiseptic used and iii) the time after the
277 application of the treatment. This method also revealed how the cells pass through different
278 phenotypical stages with different values of cell permeabilization and cell morphology,
279 revealing the dynamic process of antimicrobial action (Supplementary Figure 5 and 6). We
280 noticed that the two main groups, in which the phenotypes were clustered (Figure 4), could
281 be linked to one or the other species, which suggests that phenotypic differences of the two
282 species are even larger than their state after antiseptic treatment. This could be explained by
283 the lower forward and scatter values of the phenotypes mainly abundant on *A.*
284 *actinomycetemcomitans* samples, which suggests a smaller size of this species. Additionally,
285 the distinct phenotypes between antiseptic-treated *A. actinomycetemcomitans* and *S. mutans*
286 could be explained by the differential action of the antiseptics against Gram⁺ and Gram⁻
287 species, such as the location where the cell wall is disrupted²⁶. These findings indicate that
288 the method could be applied for species identification together with susceptibility testing,
289 which might be an advantage in the case of clinical isolates.

290 Some phenotypes only appeared under one of the antiseptic treatments and not another,
291 such as Aa phenotypes 7 and 8 that appeared only under CPC treatment of *A.*
292 *actinomycetemcomitans* and Smu phenotype 5 under CPC treatment of *S. mutans*. We
293 hypothesize that these distinct phenotypes could be linked to differences in the mode of
294 action of the compounds. CHX is a bisbiguanide compound and CPC is a quaternary
295 ammonium compound. Both of the compounds are positively charged and their mode of
296 action is linked to their ability to bind in the negatively charged cell membrane, destabilizing
297 the membrane and creating pores²⁷. The only difference between the two compounds is that
298 the hydrophobic region of CPC becomes solubilized within the hydrophobic core of the cell
299 membrane while the hydrophobic region of chlorhexidine does not²⁸. Therefore no major

300 differences in the damaged phenotype would be expected from the use of the two
301 compounds. However, for both species, it was apparent that CHX treatment resulted in
302 phenotypes with higher red fluorescence than the ones that appeared under CPC treatment
303 (Figure 3). Different pore sizes induced by each antiseptic could lead to the incorporation of
304 different amounts of Propidium Iodide in the cells and could potentially explain the distinct
305 phenotypes. Concerning triclosan treated *S. mutans*, when damage was observed, 20 mg/mL
306 triclosan, the most abundant phenotype was Aa/Smu phenotype 3, which was not so
307 abundant under treatment with CPC and CHX. Nevertheless, the mode of action of triclosan
308 in high concentrations is not clear. Generally, information on the exact mode of action is
309 lacking for many antiseptics and the above-described pipeline could help in understanding the
310 physiological changes that antiseptics induce in microbial cells. Furthermore, flow cytometric
311 fingerprinting can be used to detect persister subpopulations, by distinguishing phenotypes
312 whose cell concentrations do not change overtime. Identifying antimicrobial compounds that
313 will specifically target persister subpopulations can be of major importance as the increased
314 tolerance of those subpopulations to antimicrobials hinder the efficacy of antimicrobial
315 chemotherapy²⁹.

316 In general, in the present study, we demonstrated the applicability of real-time flow cytometry
317 for the study of antiseptic susceptibility. By using two different approaches, our analysis
318 provided information on the rate of cell damage under different concentrations of antiseptics
319 and allowed the comparison between treatments, while at the same time permitted the
320 observation of the physiological changes induced by the different compounds over 15 minutes
321 of exposure. We propose that the potential of this method can be further strengthened with
322 the use of alternative staining dyes, e.g. membrane polarity stains, that can detect different
323 physiological changes. Additionally, this method can be applied for other environmental

324 stressors with clinical or biotechnological relevance that induce phenotypic changes, e.g.
325 osmotic stress, UV, temperature. The temporal resolution can prove extremely beneficial to
326 observe and quantify the dynamics at high concentrations of the stressor where cell response
327 is instantaneous and thus distinct time points are insufficient to capture the intermediate
328 phenotypic states. We believe that our study may trigger the broader use of real-time flow
329 cytometry in the study of antimicrobial susceptibility, as it could be applied for the detection
330 of resistant strains or in the quest for novel antimicrobial compounds.

331 **Materials and Methods:**

332 **Strains and Growth conditions:**

333 *Aggregatibacter actinomycetemcomitans* ATCC 43718 and *Streptococcus mutans* ATCC 25175
334 were used in all described experiments. The strains were maintained on blood agar No2
335 (Oxoid, Hampshire, UK) supplemented with hemin (5 mg/mL) (Sigma Aldrich, Belgium),
336 menadione (1 mg/mL) (Sigma Aldrich, Belgium) and 5% sterile horse blood (Oxoid, Hampshire,
337 UK) or cultured in liquid medium in Brain Heart Infusion (BHI) (Carl Roth, Belgium) broth under
338 aerobic conditions at 37°C.

339

340 **Flow cytometric measurements:**

341 **Sample preparation and treatment:**

342 After overnight culture in the conditions that were previously described, the bacterial cultures
343 were measured by flow cytometry and SYBR Green/ Propidium Iodide (SGPI) staining to
344 determine the intact cell concentration. In more detail, the samples were diluted in sterile (br/>345 and filtered through 0.2 um) PBS (PBS tablet, Merck, Belgium) and stained with the nucleic
346 acid stain SYBR® Green I and Propidium Iodide that stains permeabilized cells³⁰. SYBR Green I
347 (10,000X concentrate in DMSO, Invitrogen) was diluted 100 times in 0.22 µm-filtered DMSO
348 (IC Millex, Merck, USA) and Propidium Iodide (20 mM in dimethyl sulfoxide (DMSO),
349 Invitrogen, USA) was diluted 50 times. Samples were stained with 10 µL/mL staining solution.
350 Next, they were incubated at 37°C for 20 min and measured with a benchtop Accuri C6+
351 cytometer (BD Biosciences, Belgium).

352 Overnight cultures were subsequently diluted in sterile dH₂O (for *S. mutans*) or sterile Evian
353 bottled water (Evian, France) (for *A. actinomycetemcomitans*) to a final concentration ~1x10⁶
354 cells/mL according to the previous measurement and further stained with SGPI with the above
355 mentioned approach. Just before measurement the corresponding concentration of
356 chlorhexidine digluconate (Merck, Belgium), cetylpyridinium chloride (Carl Roth, Germany) or
357 triclosan (Merck, Belgium) was added to the diluted culture and mixed well.*A.*
358 *actinomycetemcomitans* was subjected to CHX or CPC in 2 mg/mL, 10 mg/mL or 20 mg/mL. *S.*
359 *mutans* was subjected to CHX, CPC and triclosan either in 2 mg/mL or in 20 mg/mL.

360 **Sample measurement/ instrument settings:**

361 All samples were measured with a benchtop Accuri C6+ cytometer (BD Biosciences, Belgium).
362 The stability of the instrument was verified daily using CS&T RUO beads (BD Biosciences,
363 Belgium). The blue laser (488 nm) was used for the excitation of the stains. The filters for the
364 (fixed gain) photomultiplier detectors used during the measurements were 533 nm with a
365 bandpass of 30 nm for the green fluorescence (FL-1) and 670 nm longpass filter for the red
366 fluorescence (FL-3). The threshold was set on the 533/30 nm (FL-1) detector at the arbitrary
367 unit of 1200 and on the 670 nm(FL-3) at the arbitrary unit of 1200. The threshold was decided
368 based on measurements of control samples (growing culture, heat-killed culture, medium and
369 dH₂O/diluent) in order to avoid background noise and allow for maximum measurement of
370 total events in the same acquisition. Sample acquisition took place at a flow rate of 66 µL/min
371 continuously time of 15 min.

372

373 **Data analysis:**

374 **Data filtering and cleaning:**

375 Flow cytometric data were analyzed in R (version 4.0.3). The Phenoflow's (v1.1.2)³¹ function
376 '*time_discretization*' was used to concatenate the files into smaller files of fixed time frames
377 of 30 seconds.

378 Two different gating strategies were used for each species to gate a. intact cells, b. damaged
379 cells and c. total cells (Supplementary Figure 1 & 2). Non-treated and heat-killed samples were
380 used as control samples to define the intact and damaged cell gates.

381

382 **Time and Dose response Analysis :**

383 Intact cell numbers, based on the 'intact cells' gate, were used for calculating the killing rate
384 under the different antimicrobials. First the percentage of surviving cells was calculated as the
385 ratio of intact cells at each time point over the average intact cells of non-treated control
386 samples. Subsequently, the 'drm' function from the drc package (v3.0.1)³² was used to fit
387 different log-logistic models to the time-effect or dose response data. For all log logistic
388 models the maximum asymptote was constraint to 100. The fit of the different models was
389 evaluated with the 'mselect' function of the drc package to identify the model that best fitted
390 the data based on the Akaike's information criterion (AIC) and the lack-of-fit test (against a
391 one-way ANOVA model). The model with the lowest AIC and highest p-value in the lack-of-fit
392 test was chosen. The Hill coefficient and the effective time 50 or effective dose 50 were
393 calculated from the model. Effective time/dose 50 is the time or dose for which 50 per cent of
394 killing is reached.

395

396 **Phenotypic sub-populations PhenoGMM**

397 The '*PhenoGMM*' function²⁴ of the *PhenoFlow* package was used to determine phenotypes to
398 which cells can be assigned. Initially, the background was removed by applying the 'total cells'
399 gate (Supplementary Figure 2). Subsequently the '*PhenoGMM*' function was applied on a
400 representative subset of the data, using the FSC-H, SSC-H, FL1-H, and FL3-H parameters as
401 input. The fcs samples were resampled with replacement to 1,000 events. The best number
402 of mixtures/phenotypes to describe the dataset was chosen from 1:20 based on Bayesian
403 Information Criterion (BIC). Increasing the number of allowed phenotypes was leading to a
404 higher number by BIC but eventually 20 phenotypes limit was chosen as a number that
405 allowed to capture the data variation without increasing the complexity and result
406 interpretation. After the Gaussian Mixture Model wasfitted, it was used to calculate the
407 abundance of each mixture in the total dataset.

408

409 **Data Availability**

410 Flow cytometry data (.fcs format) are available on the FlowRepository archive under
411 repository ID FR-FCM-Z4VR.

412 **Acknowledgments**

413 This work was supported by 'Fonds voor Wetenschappelijk Onderzoek'—FWO (G0B2719N &
414 3G020119). R.P. is supported by a postdoctoral fellowship of the 'Fonds voor
415 Wetenschappelijk Onderzoek' —FWO (project 1221020N).

416 **Reference:**

417 1 Verspecht T, Herrero ER, Khodaparast L, Khodaparast L, Boon N, Bernaerts K, *et al.*
418 Development of antiseptic adaptation and cross-adapation in selected oral pathogens in
419 vitro. *Scientific Reports* 2019;9:8326. <https://doi.org/10.1038/s41598-019-44822-y>.

420 2 Saleem HGM, Seers CA, Sabri AN, Reynolds EC. Dental plaque bacteria with reduced
421 susceptibility to chlorhexidine are multidrug resistant. *BMC Microbiology* 2016;16:214.
422 <https://doi.org/10.1186/s12866-016-0833-1>.

423 3 Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-ahmad A. Resistance Toward
424 Chlorhexidine in Oral Bacteria – Is There Cause for Concern ? *Frontiers in Microbiology*
425 2019;10:587. <https://doi.org/10.3389/fmicb.2019.00587>.

426 4 Mao X, Auer DL, Buchalla W, Hiller K-A, Maisch T, Hellwig E, *et al.* Cetylpyridinium Chloride:
427 Mechanism of Action, Antimicrobial Efficacy in Biofilms, and Potential Risks of Resistance.
428 *Antimicrobial Agents and Chemotherapy* 2020;64:1–14. <https://doi.org/10.1128/aac.00576-20>.

430 5 Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: A review of general principles
431 and contemporary practices. *Clinical Infectious Diseases* 2009;49:1749–55.
432 <https://doi.org/10.1086/647952>.

433 6 Khan ZA, Siddiqui MF, Park S. Current and emerging methods of antibiotic susceptibility
434 testing. *Diagnostics* 2019;9:. <https://doi.org/10.3390/diagnostics9020049>.

435 7 Gefen O, Balaban NQ. The importance of being persistent: Heterogeneity of bacterial
436 populations under antibiotic stress: Review article. *FEMS Microbiology Reviews* 2009;33:704–
437 17. <https://doi.org/10.1111/j.1574-6976.2008.00156.x>.

438 8 Dhar N, McKinney JD. Microbial phenotypic heterogeneity and antibiotic tolerance. *Current
439 Opinion in Microbiology* 2007;10:30–8. <https://doi.org/10.1016/j.mib.2006.12.007>.

440 9 Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM. Multiparameter Flow Cytometric Analysis of
441 Antibiotic Effects on Membrane Potential , Membrane Permeability , and Bacterial Counts of
442 *Staphylococcus aureus* and *Micrococcus luteus*. *Antimicrobial Agents and Chemotherapy*
443 2000;44:827–34.

444 10 Huang TH, Tzeng YL, Dickson RM. FAST: Rapid determinations of antibiotic susceptibility
445 phenotypes using label-free cytometry. *Cytometry Part A* 2018;93:639–48.
446 <https://doi.org/10.1002/cyto.a.23370>.

447 11 Costa-de-Oliveira S, Teixeira-Santos R, Silva AP, Pinho E, Mergulhão P, Silva-Dias A, *et al.*
448 Potential impact of flow cytometry antimicrobial susceptibility testing on the clinical
449 management of gram-negative bacteremia using the FASTinov® kit. *Frontiers in Microbiology*
450 2017;8:1–7. <https://doi.org/10.3389/fmicb.2017.02455>.

451 12 O'Brien-Simpson NM, Pantarat N, Attard TJ, Walsh KA, Reynolds EC. A Rapid and Quantitative
452 Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity. *PLoS
453 ONE* 2016;11:e0151694. <https://doi.org/10.1371/journal.pone.0151694>.

454 13 Arnoldini M, Heck T, Blanco-fernández A, Hammes F. Monitoring of Dynamic Microbiological
455 Processes Using Real-Time Flow Cytometry. *PLoS ONE* 2013;8:e80117.
456 <https://doi.org/10.1371/journal.pone.0080117>.

457 14 Loesche W. Role of Streptococcus in Human Dental Decay. *Microbiological Reviews*
458 1986;50:353–80.

459 15 Slots J, Reynolds HS, Genco RJ. *Actinobacillus actinomycetemcomitans* in Human Periodontal
460 Disease : a Cross-Sectional Microbiological Investigation. *Infection and Immunity*
461 1980;29:1013–20.

462 16 Huang TH, Ning X, Wang X, Murthy N, Tzeng YL, Dickson RM. Rapid cytometric antibiotic
463 susceptibility testing utilizing adaptive multidimensional statistical metrics. *Analytical
464 Chemistry* 2015;87:1941–9. <https://doi.org/10.1021/ac504241x>.

465 17 Freire JM, Gaspar D, Garcia B, Torre D, Salomé A, Andreu D, *et al.* Monitoring antibacterial
466 permeabilization in real time using time-resolved flow cytometry. *BBA - Biomembranes*
467 2015;1848:554–60. <https://doi.org/10.1016/j.bbamem.2014.11.001>.

468 18 McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis. *Nature* 1998;394:531–2.
469 <https://doi.org/10.1038/28970>.

470 19 Schweizer HP. Triclosan: A widely used biocide and its link to antibiotics. *FEMS Microbiology
471 Letters* 2001;202:1–7. [https://doi.org/10.1016/S0378-1097\(01\)00273-7](https://doi.org/10.1016/S0378-1097(01)00273-7).

472 20 Rubbens P, Props R. Computational Analysis of Microbial Flow Cytometry Data. *MSystems*
473 2021;6:1–12. <https://doi.org/10.1128/msystems.00895-20>.

474 21 Heesterbeek DAC, Muts RM, van Hensbergen VP, de Saint Aulaire P, Wennekes T, Bardoel BW,
475 *et al.* Outer membrane permeabilization by the membrane attack complex sensitizes Gram-
476 negative bacteria to antimicrobial proteins in serum and phagocytes. *PLoS Pathogens*
477 2021;17:1–22. <https://doi.org/10.1371/journal.ppat.1009227>.

478 22 Buysschaert B, Kerckhof FM, Vandamme P, De Baets B, Boon N. Flow cytometric fingerprinting
479 for microbial strain discrimination and physiological characterization. *Cytometry Part A*
480 2018;93:201–12. <https://doi.org/10.1002/cyto.a.23302>.

481 23 García-Timermans C, Kerckhof F, Boon N, Rubbens P, Heyse J, Props R, *et al.* Discriminating
482 Bacterial Phenotypes at the Population and Single-Cell Level : A Comparison of Flow
483 Cytometry and Raman Spectroscopy Fingerprinting. *Cytometry Part A* 2019:cyto.a.239.
484 <https://doi.org/10.1002/cyto.a.23952>.

485 24 Rubbens P, Props R, Kerckhof F-M, Boon N, Waegeman W. PhenoGMM: Gaussian Mixture
486 Modeling of Cytometry Data Quantifies Changes in Microbial Community Structure. *MSphere*
487 2021;6:1–15.

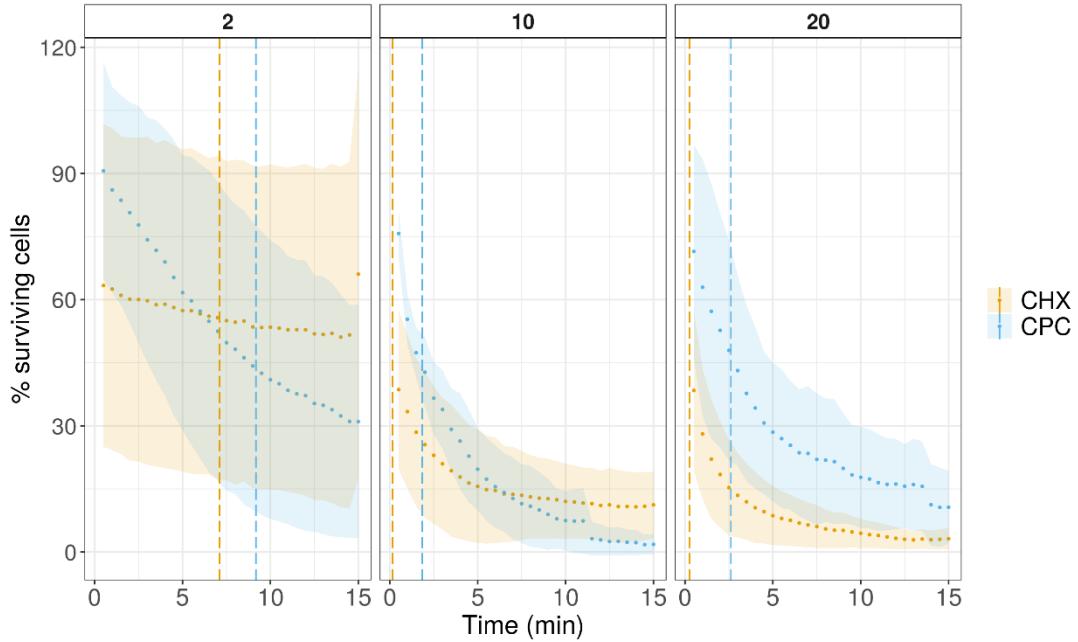
488 25 Booyens J, Thantsha MS. Fourier transform infra-red spectroscopy and flow cytometric
489 assessment of the antibacterial mechanism of action of aqueous extract of garlic (*Allium
490 sativum*) against selected probiotic *Bifidobacterium* strains. *BMC Complementary and
491 Alternative Medicine* 2014;14:1–11. <https://doi.org/10.1186/1472-6882-14-289>.

492 26 Cheung H, Wong MM, Cheung S, Liang LY, Lam Y, Chiu S. Differential Actions of Chlorhexidine
493 on the Cell Wall of *Bacillus subtilis* and *Escherichia coli*. *PLoS ONE* 2012;7:e36659.
494 <https://doi.org/10.1371/journal.pone.0036659>.

495 27 McDonnell G, Russell AD. Antiseptics and Disinfectants : Activity, Action, and Resistance.
496 *Clinical Microbiology Reviews* 1999;12:147–79.

497 28 Gilbert P, Moore LE. Cationic antiseptics: Diversity of action under a common epithet. *Journal*
498 *of Applied Microbiology* 2005;99:703–15. <https://doi.org/10.1111/j.1365-2672.2005.02664.x>.

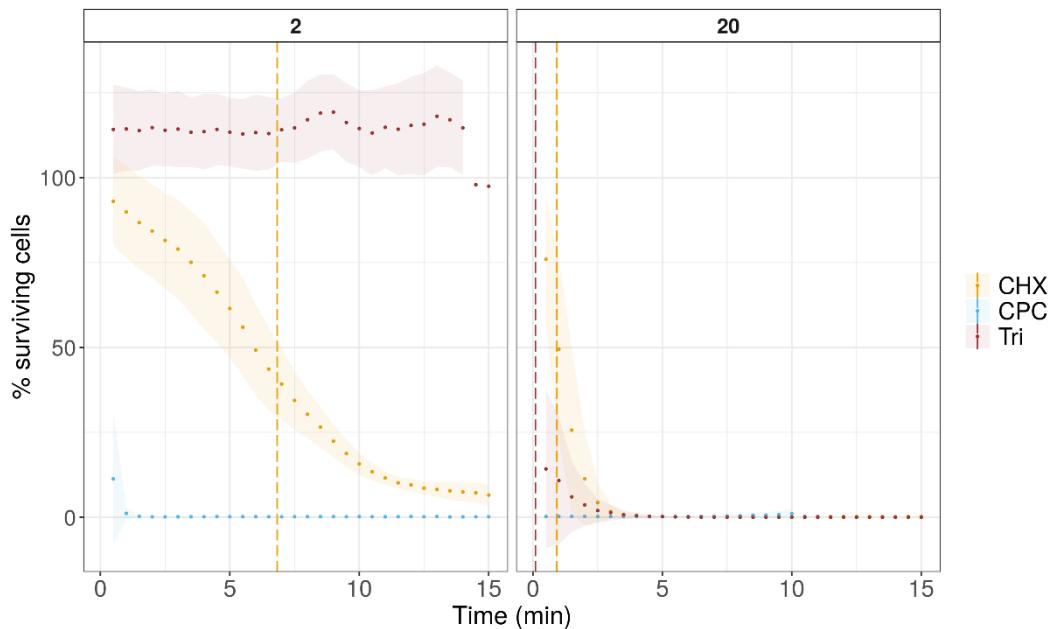
499 29 Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, *et al.* Definitions and
500 guidelines for research on antibiotic persistence. *Nature Reviews Microbiology* 2019;17:441–
501 8. <https://doi.org/10.1038/s41579-019-0196-3>.


502 30 Van Nevel S, Koetzsch S, Weilenmann H, Boon N, Hammes F. Routine bacterial analysis with
503 automated flow cytometry. *Journal of Microbiological Methods* 2013;94:73–6.
504 <https://doi.org/10.1016/j.mimet.2013.05.007>.

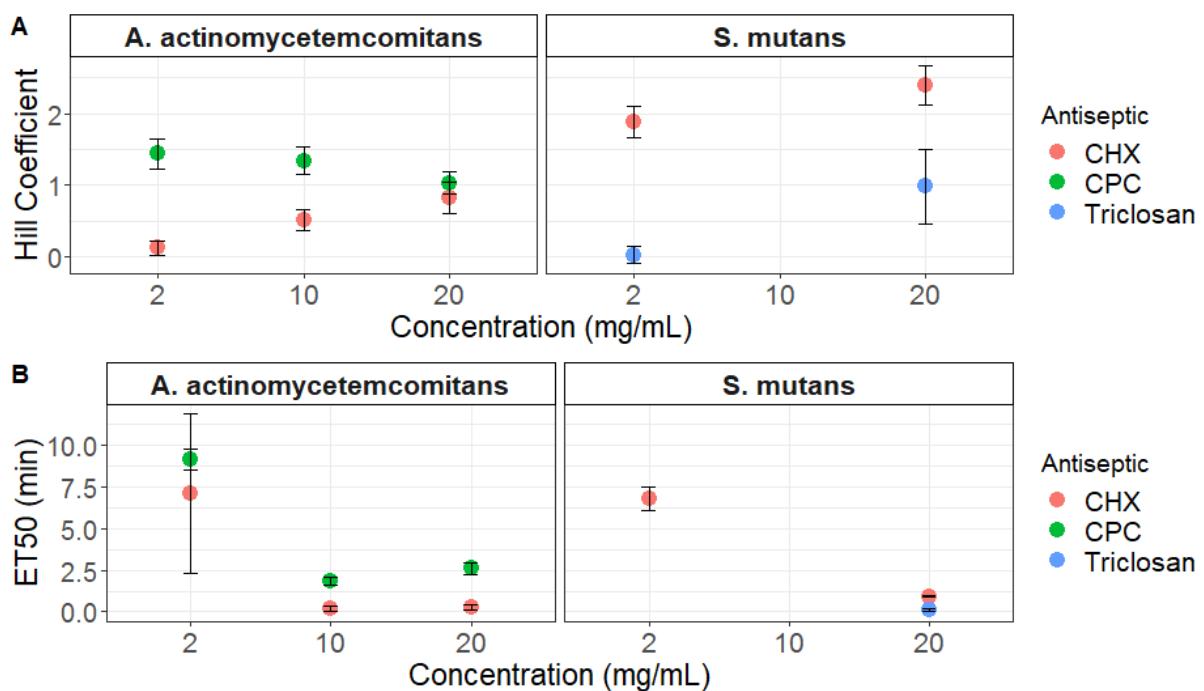
505 31 Props R, Monsieurs P, Mysara M, Clement L, Boon N. Measuring the biodiversity of microbial
506 communities by flow cytometry. *Methods in Ecology and Evolution* 2016;7:1376–85.
507 <https://doi.org/10.1111/2041-210X.12607>.

508 32 Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. *PLoS ONE* 2015;10:1–13.
509 <https://doi.org/10.1371/journal.pone.0146021>.

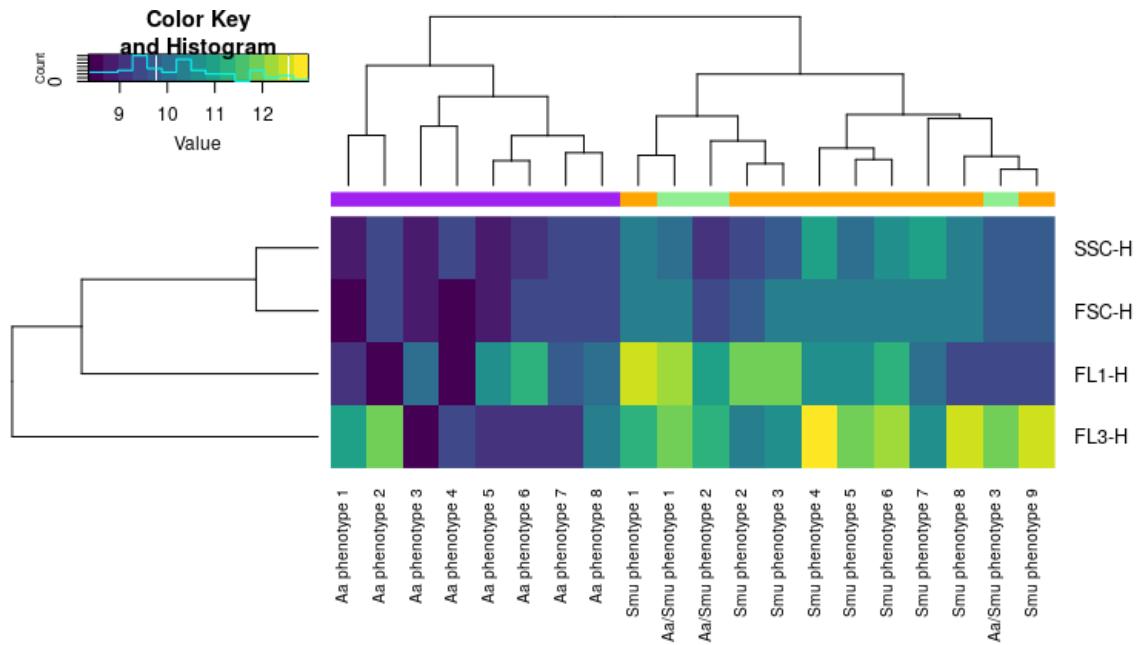
510


511

512


513 **Figure 1:** The percentage of surviving cells (intact cells) of *A. actinomycetemcomitans* over
514 the time of 15 min for two different antiseptics, chlorhexidine (CHX) and cetylpyridinium
515 chloride (CPC) in three different concentrations (2 mg/mL, 10 mg/mL and 20 mg/mL). The
516 points represent the average of three replicates, while the ribbon the sample standard
517 deviation. The vertical lines represent the ET50 time point.

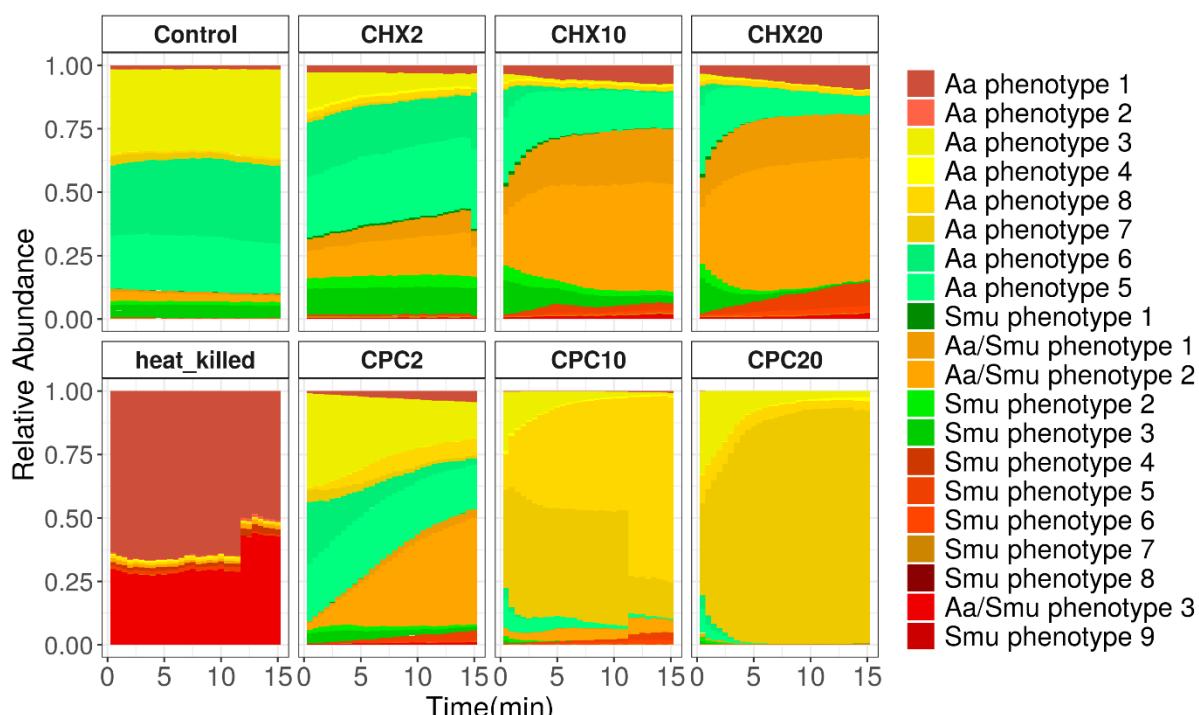
518



519

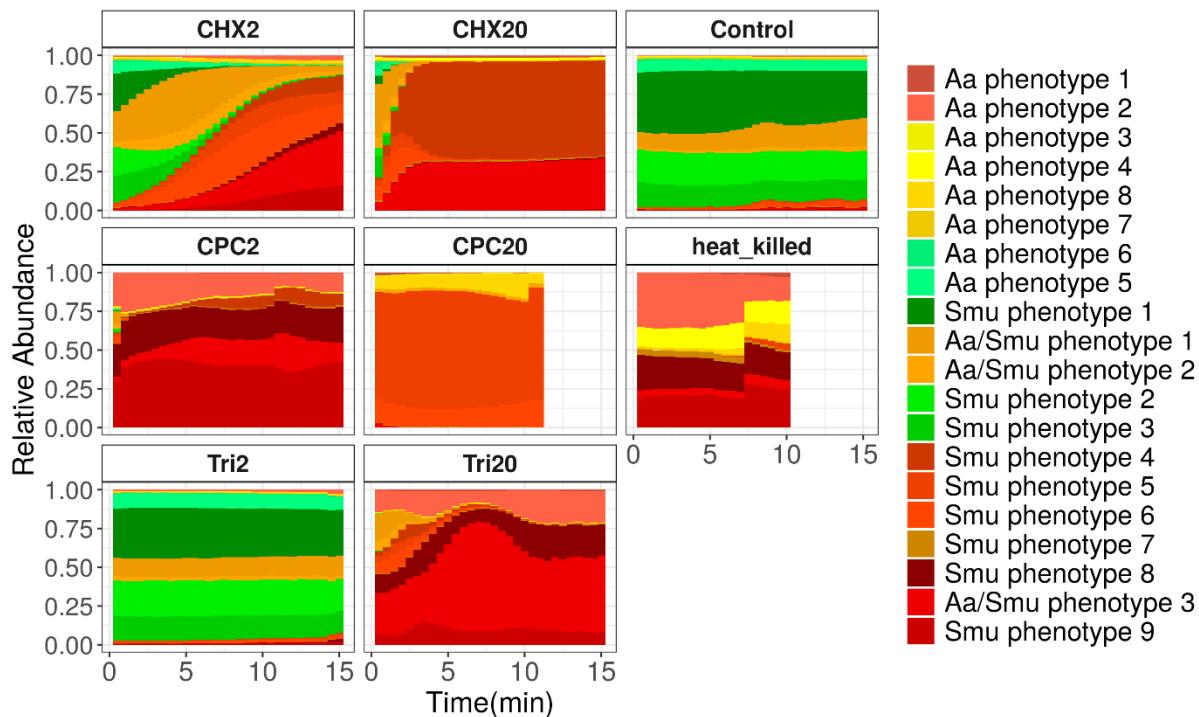
520 **Figure 2:** The percentage of surviving cells (intact cells) of *S. mutans* over the time of 15 min
521 for two different antiseptics, chlorhexidine (CHX), cetylpyridinium chloride (CPC) and triclosan
522 in two different concentrations (2 mg/mL and 20 mg/mL). The points represent the average
523 of three replicates, while the ribbon the sample standard deviation. The vertical lines
524 represent the ET50 time point.

525
526 **Figure 3:** A. The Hill coefficient (slope of the curve) and B. Median Effective Time (ET50) as
527 they were calculated based on time-dependent log-logistic models that were fitted in the cell
528 damage curves of *A. actinomycetemcomitans* and *S. mutans* for each treatment. The values
529 for *S. mutans* exposed to CPC could not be calculated as all cells were damaged in the
530 beginning of the measurement. The values for the same species exposed to 2 mg/mL triclosan
531 are not depicted as no killing was observed. The points represent the mean value of three
532 biological replicates, while the error bars the standard deviation.



533

534 **Figure 4:** Heat map representing the mean values (a.u.) for each parameter (FL1, FL3, FSC, SSC)
535 for the 20 phenotypes as they have been predicted by the Gaussian mixture model, when
536 allowed to identify a maximum of 20 phenotypes using 1000 cells per sample as a training set.
537 Phenotypes with higher red fluorescence represent damaged cells, while phenotypes with
538 high green but low red fluorescence represent intact phenotypes. The rest of the phenotypes
539 represent intermediate states most of which appeared during treatment. The color panel
540 indicate whether the phenotypes were more abundant in *A. actinomycetemcomitans* samples
541 (purple) or in *S. mutans* samples (orange) and the phenotypes have been
542 named accordingly.


543

544

545

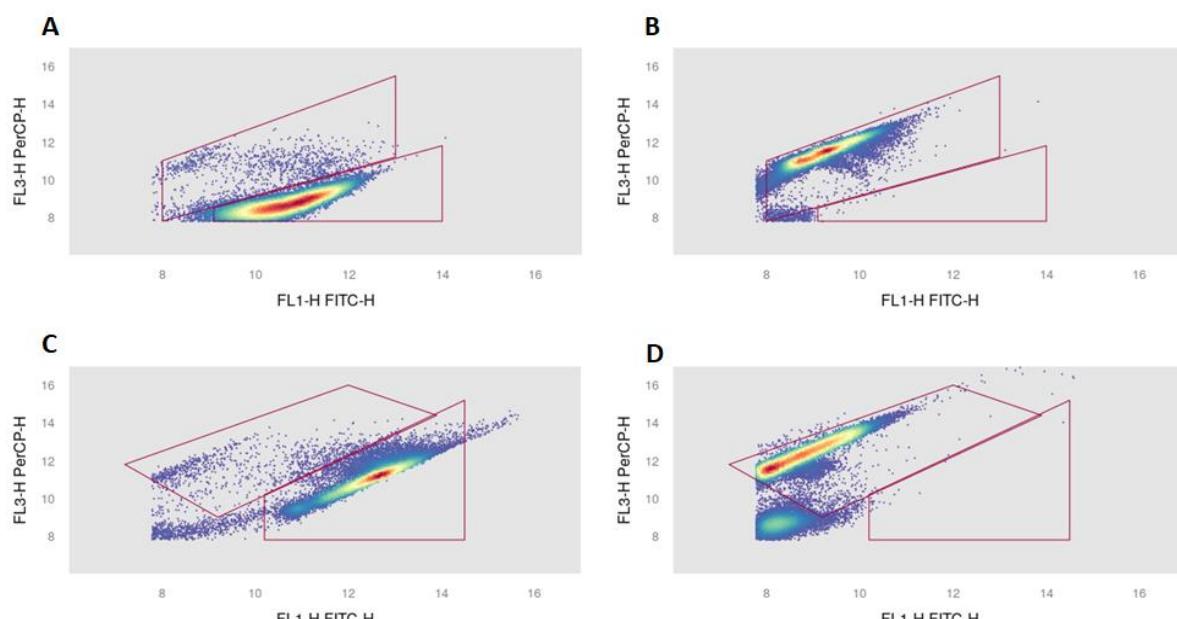
546 **Figure 5:** The relative abundances of phenotypic subpopulations in the different treatments
547 and concentrations of *A. actinomycetemcomitans* as they have been estimated based on the
548 Gaussian mixture model, which was allowed to identify a maximum of 20 phenotypes and
549 trained in a subsection of the data using 1000 cells per sample. The bars represent the average
550 of three biological replicates. The information about the mean value of the two fluorescence
551 parameters was used to accordingly color the phenotypes. Samples with high red fluorescence
552 are in different shades of red. Samples with high green and low red fluorescence are in shades
553 of green. Samples with low green and red fluorescence are in shades of yellow, while samples
554 of median green and red fluorescence in shades of orange.

555

556 **Figure 6:** The relative abundances of phenotypic subpopulations in the different treatments
557 and concentrations of *S. mutans* as they have been estimated based on the Gaussian mixture
558 model, which was trained in a subsection of the data using 1000 cells per sample. The bars
559 represent the average of three biological replicates. The information about the mean value of
560 the two fluorescence parameters was used to accordingly color the phenotypes. Samples with
561 high red fluorescence are in different shades of red. Samples with high green and low red
562 fluorescence are in shades of green. Samples with low green and red fluorescence are in
563 shades of yellow, while samples of median green and red fluorescence in shades of orange.

564 **Table 1:** The mean and standard deviation of the Hill coefficient (slope of the curve) and
565 Median Effective Dose (ED50) as they were calculated based on dose-dependent log-logistic
566 models that were fitted in the cell damage curves of *A. actinomycetemcomitans*.

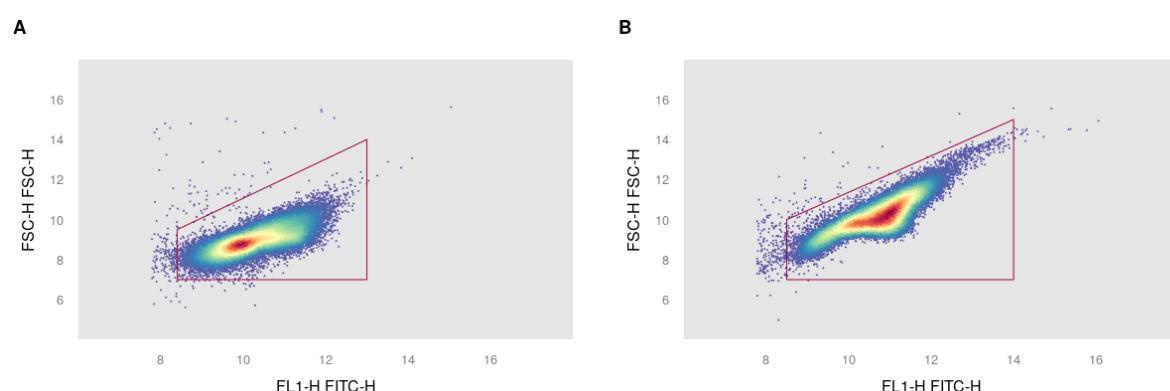
Species	Antiseptic	Time (min)	Hill coefficient	ED50 (mg/mL)
<i>A. actinomycetemcomitans</i>	CHX	10	1.29 (0.71)	1.9 (0.73)
<i>A. actinomycetemcomitans</i>	CPC	10	0.83 (0.5)	1.52 (1.06)


567

568

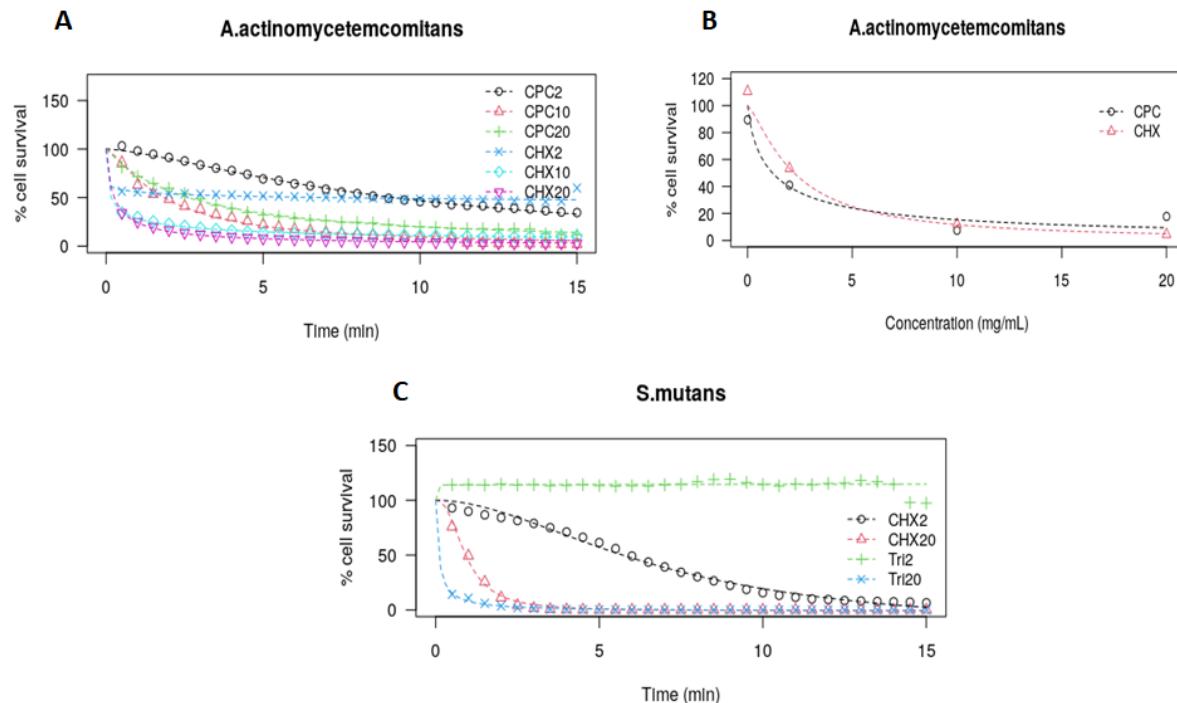
569 **Supplementary material:**

570 Real-Time Flow Cytometry to assess qualitative and quantitative responses of oral pathobionts
571 during exposure to antiseptics


572 **Supplementary Figures**

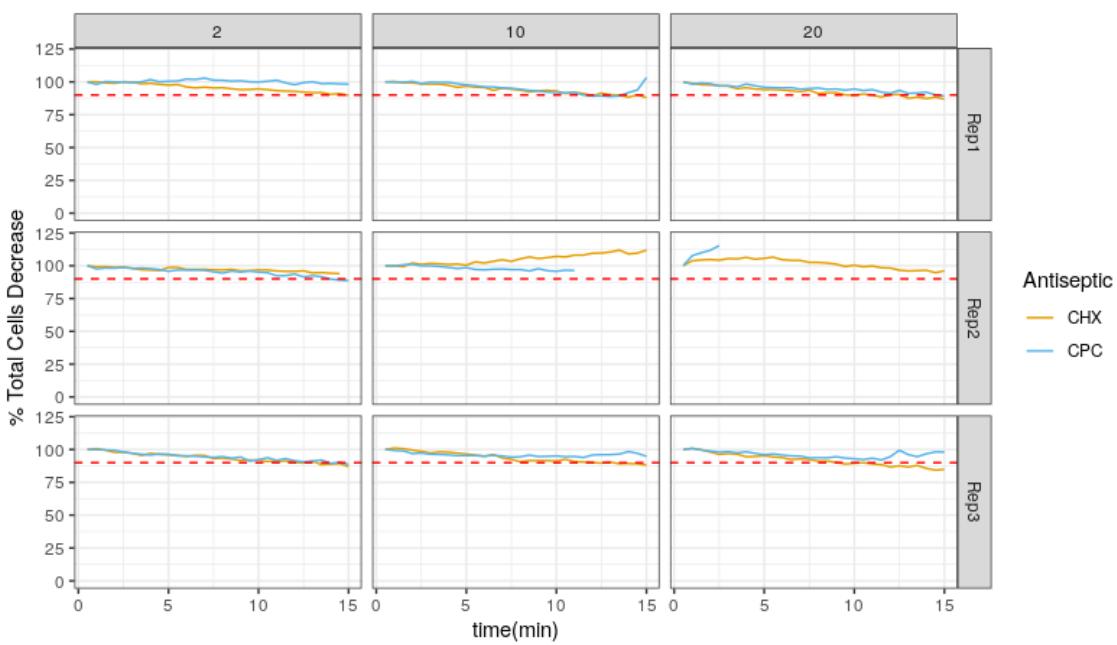
573

574

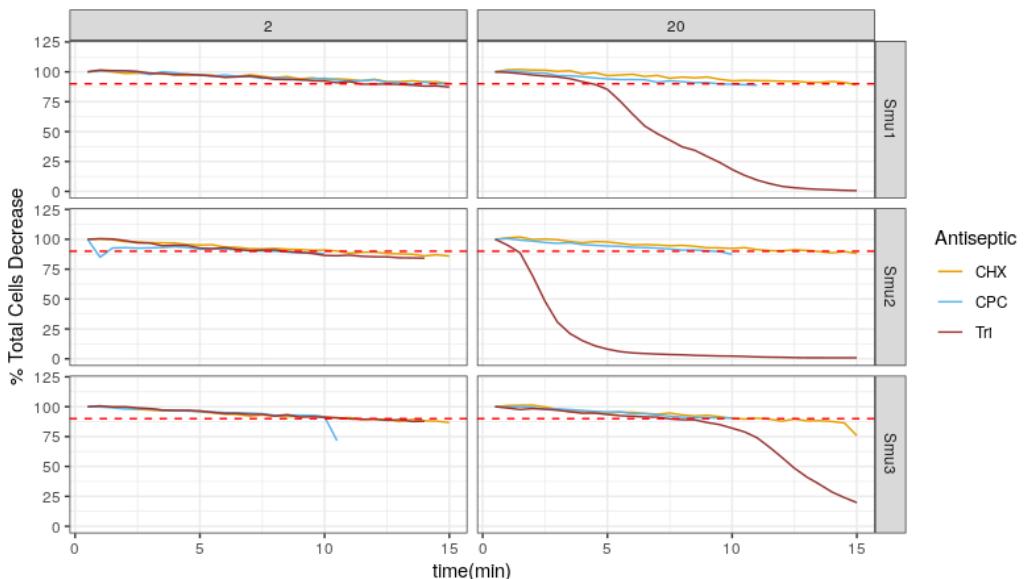

575 **Figure S1:** Examples of the manual gates that were drawn in the FL1/FL3 dot plots for the
576 intact and damaged cell populations based on non-treated control (A, C) and heat-killed cells
577 (B, D) for *A. actinomycetemcomitans* (A -B) and *S. mutans* (C- D)

578

579 **Figure S2:** Examples of the manual gates that were drawn in the FL1/FSC dot plots for total
580 cell populations to distinguish cells from background for *A. actinomycetemcomitans* (A) and
581 *S. mutans* (B)

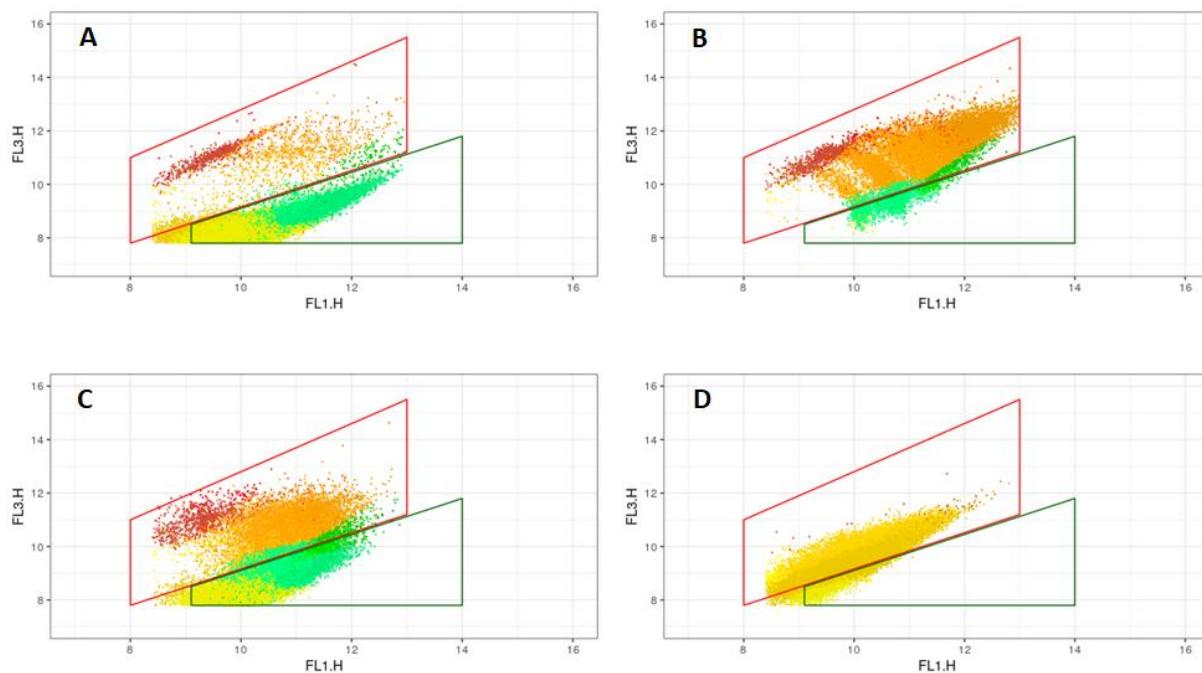

582

583


584 **Figure S3:** The log-logistic models fit on the percentage of surviving cells for a) *A.*
585 *actinomycetemcomitans* over time for the different treatments (3 parameter log-logistic model)
586 b) *A. actinomycetemcomitans* in different concentrations of the antiseptic at 10 min of treatment
587 (3 parameter log-logistic model) and c) *S. mutans* over time for the different treatments (4
588 parameter log-logistic model)

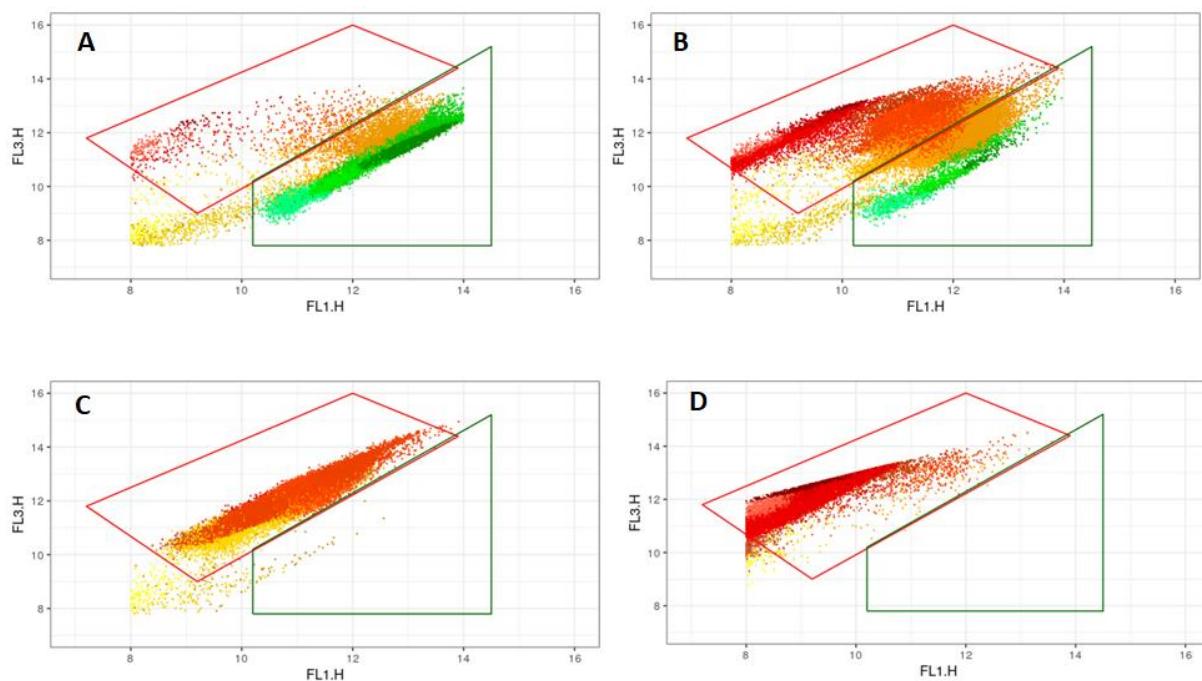
589

590


591 **Figure S4:** The percentage of total cells (intact and damaged cells) of *A.*
592 *actinomycetemcomitans* over time compared to the first time point, for the three antiseptic
593 concentrations and three replicates. The red dotted line represents 90% of the initial total cells.

594

595 **Figure S5:** The percentage of total cells (intact and damaged cells) of *S. mutans* over time
596 compared to the first time point, for the two antiseptic concentrations and three replicates. The
597 red dotted line represents 90% of the initial total cells.


598

599

600 **Figure S6:** Examples of *A. actinomycetemcomitans* cells coloured according to the phenotypes
601 as estimated based on the Gaussian Mixture model: a) untreated control after 4 min, B) cells
602 treated with 20 mg/mL CHX after 4 min, C) cells treated with 2 mg/mL CPC after 4 min and
603 D) cells treated with 20 mg/mL CPC after 4 min. The gates represent the manual gates that were
604 drawn for the first part of the experiment: a) green for the intact cells and b) red for the damaged
605 cells.

606

607

608 **Figure S7:** Examples of *S. mutans* cells coloured according to the phenotypes as estimated
609 based on the Gaussian Mixture model: a) untreated control after 4 min, B) cells treated with 2
610 mg/mL CHX after 4 min, C) cells treated with 20 mg/mL CPC after 4 min and D) cells treated
611 with 20 mg/mL triclosan after 4 min. The gates represent the manual gates that were drawn for
612 the first part of the experiment: a) green for the intact cells and b) red for the damaged cells.

613