

1 **Genetic Variation and Disease Severity of Respiratory Syncytial Viruses**

2 Christopher S. Anderson¹, Yun Zhang², Anthony Corbett³, Chinyi Chu¹, Alexander Grier⁵, Lu Wang³, Xing
3 Qiu³, Mathew Mccall³, David J. Topham⁵, Edward E. Walsh⁶, Thomas J. Mariani¹, Richard Scheuermann²
4 and Mary T. Caserta⁷

5 ¹Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester,
6 NY, USA.

7 ²J. Craig Venter Institute, La Jolla, CA, USA.

8 ³Department of Biostatistics and Computational Biology, University of Rochester Medical Center,
9 Rochester, NY, USA.

10 ⁴Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.

11 ⁵Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY,
12 USA.

13 ⁶Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.

14 ⁷Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center,
15 Rochester, NY, USA.

16

17 Address for Correspondence:

18 Christopher S Anderson, PhD

19 Department of Pediatrics

20 University of Rochester Medical Center

21 601 Elmwood Ave, Box 850

22 Rochester, NY 14642, USA.

23 E-mail: christopher_anderson@urmc.rochester.edu

24

25 Mary T. Caserta, M.D.

26 Professor of Pediatrics

27 Division of Infectious Diseases

28 University of Rochester Medical Center

29 601 Elmwood Ave, Box 850

30 Rochester, NY 14642, USA.

31 E-mail: Mary_Caserta@URMC.Rochester.edu

32

33 This original work was supported by the NIH/NIAID HHSN272201200005C, the University of Rochester

34 Pulmonary Training Fellowship NIH/NHLBI T32-HL066988, University of Rochester HSCCI Pilot Award

35 OP211341, the University of Rochester SAC Incubator Award.

36

37 Running title: RSV Variation and Disease

38

39 **Abstract**

40 Respiratory Syncytial Virus (RSV) disease in newborns ranges from mild symptoms to severe disease
41 requiring hospitalization. RSV is classified into two subtypes (RSVA and RSVB) based on antigenic and
42 genetic differences. The role these genomic variations play in disease severity remains unknown. Genome
43 sequences were obtained using next-generation RNA sequencing on archived frozen nasal swabs of young
44 children (< 8 months-old) infected with RSV in Rochester, NY between 1977-1998. Samples were chosen
45 from both children hospitalized with severe RSV disease (inpatient) and those presenting with mild
46 symptoms (outpatient) during their first cold-season. Both A and B subtypes demonstrated significant
47 differences in the phylogeny and primary-protein structure during this time period. We found a significant
48 association between RSV phylogeny over this time period and disease severity. For both subtypes, the G-
49 protein demonstrated the greatest amino acid substitutions, although the number of amino acid substitutions
50 was higher in the RSVA subtype. We found a significant association between G-protein variation and
51 disease severity for RSVA, but not RSVB. For both subtypes, variation in the M2-2 protein was
52 significantly associated with disease severity. These results suggest that the genetic variability of RSV
53 proteins may contribute to disease severity in humans.

54

55 **Importance**

56 Each cold-season Respiratory Syncytial Virus (RSV) infects thousands of children in the US. Some will
57 display mild cold symptoms while others develop severe disease, sometimes resulting in lifelong lung
58 problems or fatality. RSV initiates infection and replicates in the nasopharynx. Substitutions in the RSV
59 genome can be found in clinically isolated nasal-swab samples of RSV infected children. Whether these
60 genome variations contribute to severe disease is unknown. Here we found a statistically significant
61 association between RSV phylogeny and disease severity. Furthermore, we found specific RSV proteins
62 (G and M2-2) whose amino acid variation was statistically associated with severe disease, although which

63 protein was associated depended on subtype. Taken together, our results suggest that RSV genotype
64 contributed to disease severity over this time period.

65

66 **Keywords:** RSV, whole-genome, genetic variation, severe disease, respiratory infection

67 **Introduction**

68 RSV is the leading cause of severe disease in young children. Viral infection occurs
69 primarily in ciliated epithelial cells lining the human airways[1,2]. Acquisition of the virus
70 occurs through either inhalation of aerosolized virus particles or direct contact of the airway
71 epithelial cells with the virus, usually from our hands[3]. Infection usually presents clinically
72 as a mild respiratory disease with symptoms of rhinitis and cough being most common. For
73 some individuals, especially young children during their first cold season, the virus presents as
74 severe disease with severe fever, cough, and wheeze leading to significant morbidity and
75 sometimes death[4,5]. Long-term effects of severe early-life RSV disease have also been
76 reported[6,7].

77 The genomes of circulating RSV viruses are not the same and can be grouped into two
78 subtypes (RSVA and RSVB) [3]. Within both subtypes significant genetic variation has occurred
79 over time[8-12]. Moreover, a number of positively selected sites have been identified suggesting
80 the variation is not random but an adaption to external pressure[8].

81 Most studies have focused on comparisons between RSV subtypes in relation to disease
82 severity, with multiple studies demonstrating increased severity with RSVA, although these studies
83 have been inconsistent[13]. Specific mutations such as those found in the F protein have been
84 shown to result in differences in RSV severity in mice[14]. Furthermore, recent studies of the newly
85 emerged RSV strains have demonstrated differences both in vitro and in vivo[15].

86 Many methods have been developed in order to statistically associate species variability
87 and phenotype. Whole-viral-genome phylogenetics and phenotype (e.g. disease severity of host)
88 can be statistically compared using a Bayesian association of phylogenetic topologies and
89 phenotypes groups[16]. Additionally, non-parametric, distance-based methods that associate a trait
90 with species diversity, including genetic diversity, have been developed using permutation
91 methods[17,18]. These methods test the homogeneity of dispersion among groups or whether

92 composition among groups are similar[19-21]. Together, these methods provide means to associate
93 RSV genetic variability with disease severity.

94

95 **Methods**

96 **Sample Collection.** Medical record data was used to identify nasal swab samples positive for RSV
97 by PCR from children hospitalized for severe RSV disease and children seen in outpatient clinics
98 presenting as mild disease. Clinical data, including age at time of infection, was also collected.
99 Original sample collection occurred in the Rochester, NY area from 1977-1998. Nasal swabs were
100 frozen and stored at -80C. Frozen samples were thawed and immediately lysed with RNA lysis
101 buffer. An RNA sequencing library was prepared and sequenced and 160 samples with whole-
102 genome were obtained.

103 **Phylogenetics Analysis and Trait Association.** Full RSV genomes were aligned using MAFFT.
104 Phylogenetic analysis and trees were produced using RaXML 1000. Bayesian Tip-association
105 Significance testing (BaTS) was performed using the XXX software. The BaTS methods depend
106 on tree topology and use bootstrap replicate trees. The BaTS algorithm applies three statistical
107 methods to test the association between phylogeny and a trait (parsimony score, association index,
108 and maximum exclusive single-state clade size).

109 **Primary Protein Structure Analysis and Trait Association.** Protein peptide sequences were
110 translated in silico from each of the 11 protein-coding-regions for each RSV genome. Protein
111 sequences were aligned using MUSCLE[22]. Pairwise Hamming distances between all aligned
112 sequences were determined using the “stringdist” package in R version 3.4.4. Statistical relationships
113 between the primary protein structures Hamming distance matrix and disease severity phenotype
114 were determined using two statistical approaches. The first statistical method used to determine
115 statistically significant differences between “outpatient” and “inpatient” derived RSV strains was
116 a multivariate test of location in the Hamming distance matrix using the *adonis2* function from the
117 *Vegan* package in R version 3.4.4. 9999 permutations were performed to determine empirical null.

118 The second approach used a similar method, *anosim* function from the *Vegan* package in R version
119 3.4.4., but has been reported to be less effected by limited degrees of freedom. 9999 permutations
120 were performed to determine empirical null.

121 **Association with Disease Severity and Amino Acid Substitutions at each Residue.** We used the meta-
122 CATS pipeline [23] to identify statistically significant amino acid positions of RSVA or RSVB subtypes
123 with disease severity status (mild/severe). At each position a chi-square test of independence and Pearson's
124 chi-square test is performed to calculate a *p*-value.

125

126 **Results**

127 RSV viruses were sequenced from nasal swab samples obtained from young children infected in
128 Rochester, New York between 1977 and 1998. Samples were chosen to represent roughly equal
129 sex (42% Female and 58% male). Samples were obtained from children in order to equally
130 represent both mild (outpatient; 87/160 (54%)) and severe (inpatient; 73/160 46%) disease.
131 Samples were chosen to enrich for primary infection sequences by choosing samples of subject that
132 were infected between 0 and 0.8 months old (single “cold season”). PCR-based RSV subtyping
133 data was used in attempt to equally represent A and B subtypes (RSVA = 58% and RSVB = 42%).
134 The number of samples varied year to year (2 - 14 samples per year) with an average of 7.27
135 samples per year over the 21-year time frame.

136

137 Phylogenetic analysis of RSV strains from 1977 until 1998 separated into two distinct lineages
138 corresponding to the RSV A and B subtypes (Figure 1). Using a Bayesian approach to phylogenetic
139 association (BEAST), we found a very high consensus on topology. The BaTS algorithm was used
140 to determine if any association between phylogenetics was associated with disease severity status.
141 Phylogeny-trait association demonstrated significant differences between trait (mild/severe
142 disease) distribution and tree topology (Table 1). Both the association index and parsimony
143 association showed statistically association with trait and phylogeny. Interestingly, the maximum

144 exclusive single-state clade size, which is expected to be larger when tips all share the same trait,
145 were significant for the severe trait, but not mild.

146

147 Of the 11 RSV proteins, the G protein, for both subtypes, showed the maximum number of total
148 amino acid substitutions (RSVA G protein = 64, RSVB G protein = 53; Figure 2A) as well as the
149 greatest percent change per amino acid length of any protein (RSVA G protein = 21%, RSVB G
150 protein = 17%; Figure 2B). The M2-2 protein was also one of the most variable proteins both in
151 the number of total amino acids (RSVA M2-2 protein = 16, RSVB M2-2 protein = 11) and percent
152 change per protein length (RSVA M2-2 protein = 18%, RSVB M2-2 protein = 12%). The L protein
153 showed many substitutions for both subtypes (RSVA L protein = 43, RSVB L protein = 30)
154 although the per amino acid change was moderate (RSVA L protein = 2%, RSVB L protein = 1%).

155 Alternatively, the SH protein and F protein showed lower numbers of amino acid substitutions
156 (RSVA SH protein = 5, RSVB SH protein = 6; RSVA F protein = 14, RSVB F protein = 10), but
157 SH showed a moderate change per amino acid compared to other proteins (RSVA SH protein =
158 8%, RSVB SH protein = 9%) and the F protein showed a minimal number of substitutions per
159 protein length (RSVA F protein = 2%, RSVB F protein = 2%). All other proteins showed both
160 minimal substitutions (3 - 6) and percent changes (1 – 4%).

161

162 We next determined if amino acid variation in specific viral proteins were associated with disease
163 severity. Using two permutation-based statistical approaches, we determined if amino acid
164 variability was associated with disease phenotype (mild/severe). We found that in both subtypes
165 the M2-2 protein was significantly associated with disease severity (Table 2; Figure 3). For the
166 RSV A subtype, the G protein was also significantly associated with disease severity. The NS2
167 protein was also significantly associated with disease severity in the RSVB subtype, although only
168 for one statistical test.

169

170 We sought to evaluate if any specific mutations were significantly associated with disease severity.
171 We compared each residue in the RSVA G and M2-2 proteins and RSVB M2-2 proteins with
172 disease severity. Two out of the three proteins, RSVA G and RSVB M2-2, had significant
173 mutations associated with disease severity (Table 3). RSV A G-protein had seven amino acids
174 associated severity status, while the RSVB M2-2 protein had three amino acids associated. Taken
175 together, our results suggest that certain genetic variations in RSV may be more likely to be seen
176 in viruses isolated from young children hospitalized with RSV.

177

178 **Discussion**

179 We sought to provide insight into RSV-associated severe respiratory disease in young children
180 experiencing their primary infection. Although many host factors are recognized as contributors to
181 severe disease[5], the contribution of the virus genetics has not been well explored. In the study,
182 we assessed genomic variation of RSV viruses that circulated in Rochester, New York from 1977
183 – 1998. Our findings confirm that the RSV genotype changes over time and multiple genotypes
184 circle each year. Furthermore, our results demonstrate that RSV genetic variation is not spatially
185 restricted and local regions are exposed to a multitude of unique RSV strains. We compared RSV
186 sequence variation and disease severity using both phylogenetic and non-phylogenetic approaches.
187 Phylogenetic approaches demonstrated that both tree topography, including monophyletic clades,
188 were associated with severe disease. Lastly, our results suggest that RSV strains with specific
189 amino acid substitutions in the G or M2-2 proteins contribute to disease severity in young children.

190

191 What specific impact amino acid substitutions in the surface proteins of RSV have on the host
192 defense and if these changes result in antigenic drift is still largely unexplored, although the recently
193 emerged ON1 RSVA strain containing a duplication in G has been shown to cause increase severe
194 disease[24]. We found changes in the G protein were the most predominant. Additionally, the SH
195 protein showed minor variation and was not associated with disease severity. The F protein also

196 varied, but was not associated with disease severity during primary infection, although others have
197 demonstrate changes in F that do increase disease severity[14]. Future studies will be needed to
198 better understand the relationship between surface protein mutation and RSV disease.

199

200 We were surprised to see the structural protein M2-2 was associated with severity. M2-2 has been
201 shown to be involved in viral RNA transcription and replication regulations. Furthermore, a current
202 vaccine candidate has a M2-2 gene deletion that attenuates the virus, potentially providing
203 protection, but resulting in mild disease. Whether variation in the M2-2 gene effects the
204 transcription/replication regulation process is unknown.

205

206 Taken together, our results suggest that RSV variation can impact disease severity. Although our
207 studies were not designed to investigate mechanism or causality, they do suggest that changes in
208 RSV genes are associated with disease severity in the very young experiencing a primary infection.
209 Whether these changes are due to the adaptive immune response, or random genetic drift, is still
210 unknown and future studies will be needed to confirm if variation in the RSV genome affects disease
211 severity.

212

213 **Acknowledgements**

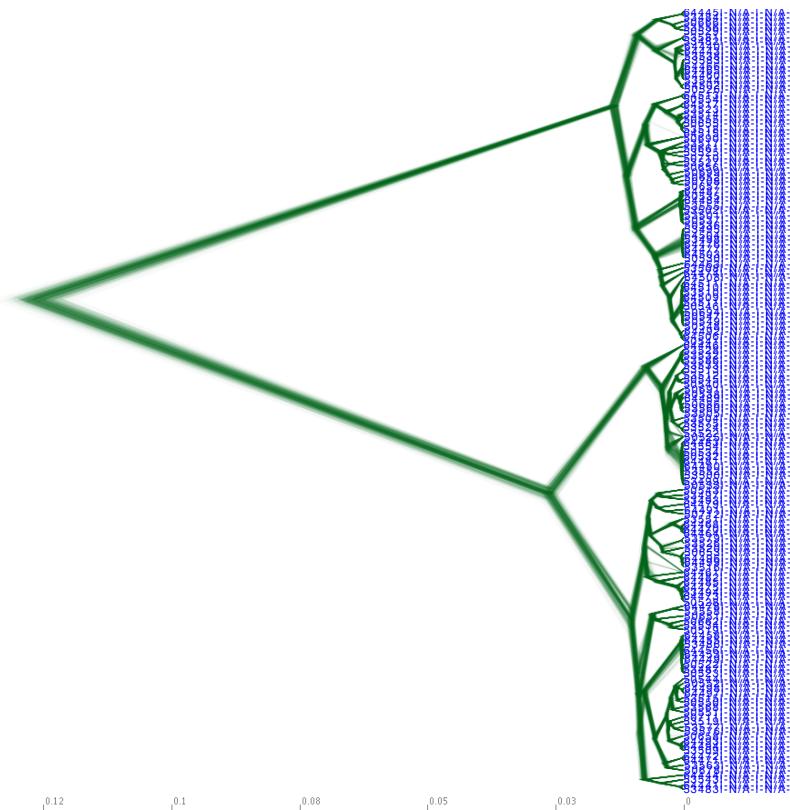
214 We would like to thank all sample donors for their contribution to the study. The original work was
215 supported by the University of Rochester Pulmonary Training Grant T32-HL066988, and the Health
216 Sciences Center for Computational Innovation Pilot Award OP211341.

217

218 **References**

219 [1] C.S. Anderson, C.-Y. Chu, Q. Wang, J.A. Mereness, Y. Ren, K. Donlon, et al., CX3CR1 as a
220 respiratory syncytial virus receptor in pediatric human lung, *Pediatr. Res.* 87 (2020) 862–867.
221 doi:10.1038/s41390-019-0677-0.

222 [2] K.-I. Jeong, P.A. Piepenhagen, M. Kishko, J.M. DiNapoli, R.P. Groppo, L. Zhang, et al.,
223 CX3CR1 Is Expressed in Differentiated Human Ciliated Airway Cells and Co-Localizes with


275 (2001) 290–297. doi:10.1890/0012-
276 9658(2001)082[0290:FMMTCD]2.0.CO;2@10.1002/(ISSN)1939-
277 9170(CAT)VirtualIssues(VI)scECY.
278 [20] M.J. Anderson, Distance-based tests for homogeneity of multivariate dispersions, *Biometrics*. 62
279 (2006) 245–253. doi:10.1111/j.1541-0420.2005.00440.x.
280 [21] M.J. Anderson, K.E. Ellingsen, B.H. McArdle, Multivariate dispersion as a measure of beta
281 diversity, *Ecol. Lett.* 9 (2006) 683–693. doi:10.1111/j.1461-0248.2006.00926.x.
282 [22] R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput,
283 *Nucleic Acids Res.* 32 (2004) 1792–1797. doi:10.1093/nar/gkh340.
284 [23] B.E. Pickett, M. Liu, E.L. Sadat, R.B. Squires, J.M. Noronha, S. He, et al., Metadata-driven
285 comparative analysis tool for sequences (meta-CATS): an automated process for identifying
286 significant sequence variations that correlate with virus attributes, *Virology*. 447 (2013) 45–51.
287 doi:10.1016/j.virol.2013.08.021.
288 [24] A. Streng, D. Goettler, M. Haerlein, L. Lehmann, K. Ulrich, C. Prifert, et al., Spread and clinical
289 severity of respiratory syncytial virus A genotype ON1 in Germany, 2011–2017, *BMC Infect.*
290 *Dis.* 19 (2019) 613–10. doi:10.1186/s12879-019-4266-y.
291

292 **Figure 1. Genomic Variation of the RSV Genome.** Aligned whole-genome RSV sequences of viruses
293 collected from nasal swabs of children >8 months-old infected in their first “cold season” between 1977–
294 1998 in Rochester, NY. Phylogenetic trees were fitted using a Bayesian approach (BEAST). To visualize
295 both uncertainty in node heights and uncertainty in topology phylogenetic trees were visualized using
296 DensiTree.
297

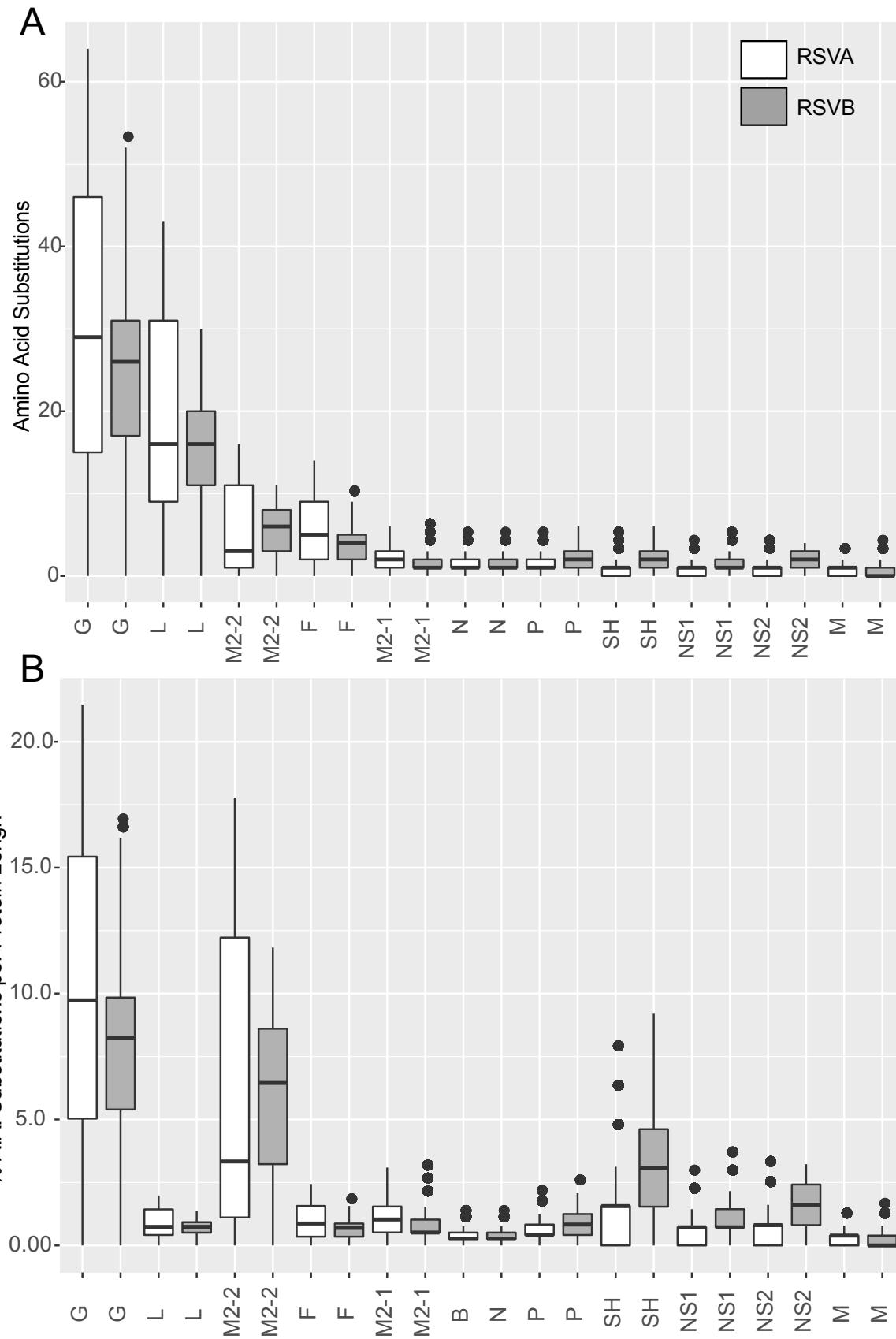
298 **Figure 2. Comparison of Amino Acid Variation in Across RSV Proteins.** RSV protein sequences within
299 subtypes were aligned using MUSCLE. The number of amino acid substitution between each RSV sequence
300 was calculated. (A) Boxplot of the number of amino acid substitutions between all RSV proteins by subtype.
301 (B) Boxplot of the percentage of number of amino acid substitutions divided by the amino acid length of
302 the protein between all RSV proteins by subtype.
303

304 **Figure 3. Primary Protein Structure Variability Among RSV G and M2-2 Proteins.** Protein sequences
305 for G and M2-2 proteins from RSVA and RSVB subtypes were aligned separately. The number of amino
306 acid substitutions were calculated between all strains resulting. Principal coordinate analysis was performed
307 to demonstrate amino acid variability in reduced dimensional space. Ellipses are centered on centroids with
308 1 standard deviation. Points are colored by disease severity status; red = mild/outpatient, black =
309 severe/inpatient. When points contain multiple sequences and from patients of both disease types, points
310 are colored by the more numerous disease type.
311
312

Figure 1

Table 1

Statistic	observed mean	lower 95% CI	upper 95% CU	null mean	lower 95% CI	upper 95% CI	significance
AI	7.025	6.305	7.752	8.862	7.387	10.371	0.023
PS	45.935	44.000	47.000	53.798	48.308	58.778	0.012
MC (Severe)	9.000	9.000	9.000	4.809	3.153	7.233	0.027
MC (Mild)	4.022	4.000	4.000	3.896	2.632	6.000	0.503



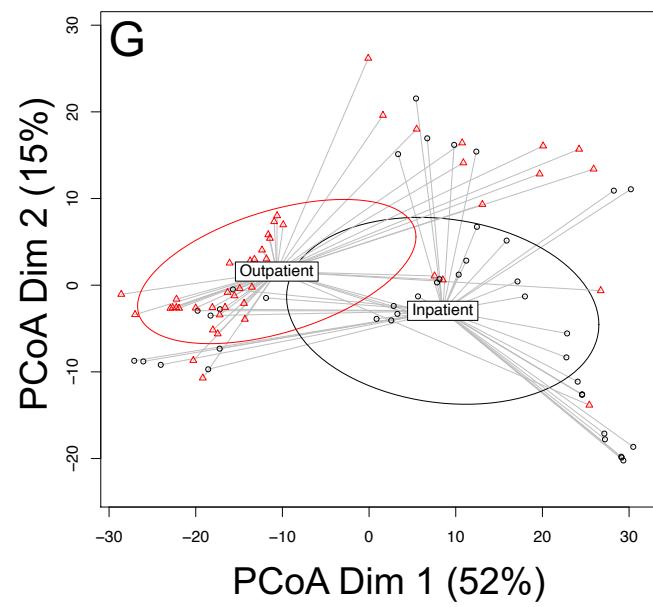
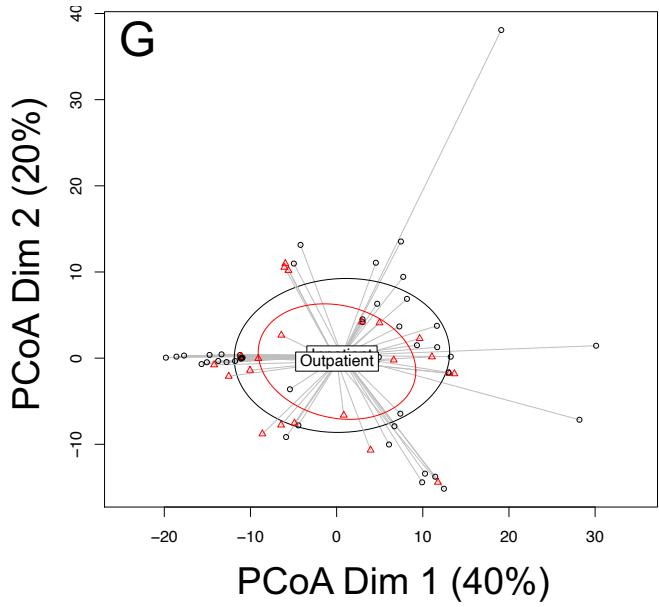
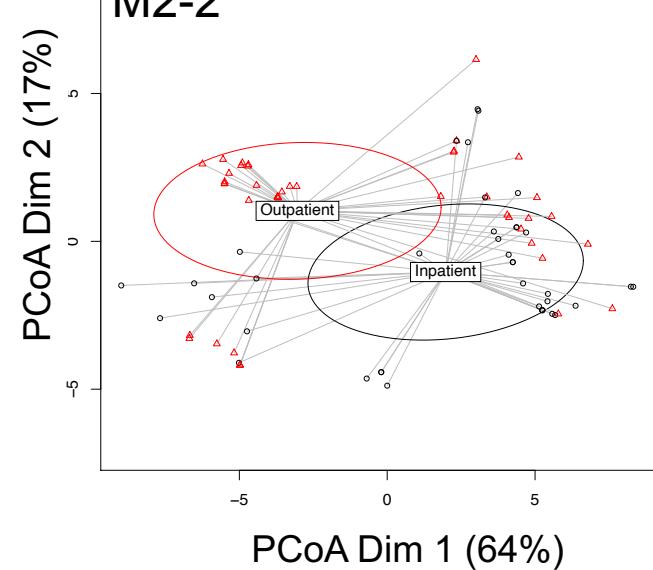
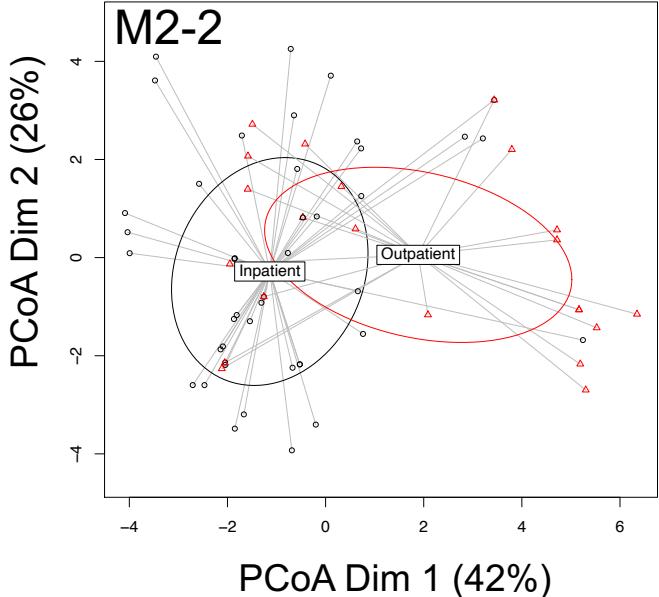

Figure 2

Table 2


Protein	Subtype	Anosim Rval	Anosim pval	Anosim pval.adj	Adonis2 Fval	Adonis2 pval	Adonis2 pval.adj
G	A	0.122	0.001	0.011*	9.438	0.001	0.011*
G	B	-0.140	0.999	0.999	-4.832	1.000	1.000
L	A	0.026	0.068	0.166	2.916	0.071	0.137
L	B	-0.005	0.515	0.629	2.083	0.081	0.137
M2-2	A	0.119	0.001	0.011*	7.251	0.004	0.022*
M2-2	B	0.105	0.007	0.051*	5.078	0.002	0.015*
F	A	0.038	0.040	0.126	2.602	0.093	0.138
F	B	0.085	0.068	0.166	3.573	0.023	0.072
M2-1	A	0.014	0.153	0.259	2.843	0.073	0.137
M2-1	B	0.040	0.209	0.307	3.178	0.036	0.088
N	A	0.004	0.306	0.396	2.398	0.100	0.138
N	B	0.101	0.024	0.114	2.179	0.095	0.138
P	A	0.011	0.197	0.307	1.129	0.337	0.412
P	B	0.109	0.026	0.114	6.393	0.017	0.072
SH	A	0.020	0.111	0.218	2.676	0.075	0.137
SH	B	-0.079	0.975	0.999	0.327	0.765	0.842
NS1	A	0.041	0.036	0.126	4.224	0.026	0.072
NS1	B	-0.066	0.940	0.999	0.097	0.885	0.927
NS2	A	0.020	0.119	0.218	1.148	0.321	0.412
NS2	B	-0.027	0.695	0.805	7.075	0.001	0.011*
M	A	0.021	0.091	0.200	5.191	0.021	0.072
M	B	0.022	0.303	0.396	0.244	0.721	0.835

* p value ≤ 0.05


RSVA


RSVB

M2-2

M2-2

Figure 3

Table 3

Subtype	Protein	Position	Chi-square Value	P-value	Degree Freedom	Severe Residue Diversity	Mild Residue Diversity
A	G	1528	8.913	0.0116	2	7 L, 15 P, 20 S	5 L, 34 P, 12 S
A	G	1327	7.558	0.02285	2	14 L, 4 P, 24 Q	11 L, 40 Q
A	G	1298	4.159	0.04142	1	22 N, 20 S	15 N, 36 S
A	G	1496	8.215	0.04176	3	22 H, 18 L, 2 N	37 H, 12 L, 2 Y
A	G	1524	4.007	0.0453	1	22 L, 20 P	38 L, 13 P
A	G	1324	6.123	0.04682	2	18 I, 4 N, 20 T	12 I, 2 N, 37 T
A	G	1414	3.923	0.04764	1	24 K, 18 R	40 K, 11 R
B	M2-2	2341	5.57	0.01827	1	30 I, 14 V	8 I, 15 V
B	M2-2	2354	4.905	0.02678	1	41 H, 3 Y	16 H, 7 Y
B	M2-2	2551	4.905	0.02678	1	3 D, 41 E	7 D, 16 E