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connectivity; FDG = [18F]Fluorodeoxyglucose; FWE = family-wise error; FWHM = Full-Width 1 

at Half-Maximum; GM = grey matter; GMV = grey matter volume; HIP = hippocampus; ICV = 2 

intracranial volume; INS = insular; LV = latent variable; MCI = mild cognitive impairment; 3 

MMSE = mini-mental state examination; MNI = Montreal Neurological Institute; mPFC = medial 4 

prefrontal cortex; MPRAGE = magnetization-prepare rapid-acquisition gradient echo; N = 5 

neurodegeneration; PCC = posterior cingulate cortex; PLS = partial least squares; PPC = posterior 6 

parietal cortex; SN = salience network; SOB = sum of boxes; SPGR = sagittal inversion-recovery 7 

spoiled gradient-recalled; SUVR = standardized uptake value ratio; SVC = sparse varying 8 

coefficient; T = tau neurofibrillary tangles accumulation; VBM = voxel-based morphometry 9 

 10 

 11 

 12 

 13 

  14 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.28.482280doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482280
http://creativecommons.org/licenses/by/4.0/


 4 

ABSTRACT  1 

Background: Large-scale neuronal network breakdown underlies memory impairment in 2 

Alzheimer’s disease (AD). However, the differential trajectories of the relationships between 3 

network organization and memory across pathology and cognitive stages in AD remain elusive. 4 

We determined whether and how the influences of individual-level structural and metabolic 5 

covariance network integrity on memory varied with amyloid pathology across clinical stages 6 

without assuming a constant relationship. Methods: 708 participants from the Alzheimer’s 7 

Disease Neuroimaging Initiative were studied. Individual-level structural and metabolic 8 

covariance scores in higher-level cognitive and hippocampal networks were derived from 9 

magnetic resonance imaging and [18F]fluorodeoxyglucose positron emission tomography using 10 

seed-based partial least square analyses. The non-linear associations between network scores and 11 

memory across cognitive stages in each pathology group were examined using sparse varying 12 

coefficient modelling. Results: We showed that the associations of memory with structural and 13 

metabolic networks in the hippocampal and default mode regions exhibited pathology-dependent 14 

differential trajectories across cognitive stages using sparse varying coefficient modelling. In 15 

amyloid pathology group, there was an early influence of hippocampal structural network 16 

deterioration on memory impairment in the preclinical stage, and a biphasic influence of the 17 

angular gyrus-seeded default mode network metabolism on memory in both preclinical and 18 

dementia stages. In non- amyloid pathology groups, in contrast, the trajectory of the hippocampus-19 

memory association was opposite and weaker overall, while no metabolism covariance networks 20 

were related to memory. Key findings were replicated in a larger cohort of 1280 participants. 21 

Conclusions: Our findings highlight potential windows of early intervention targeting network 22 

breakdown at the preclinical AD stage. 23 
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INTRODUCTION  1 

Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by 2 

neuropathological accumulation of amyloid-beta (Aβ) plaques (A), intraneuronal tau 3 

neurofibrillary tangles (T), and neurodegeneration (N) in the brain 1, 2. While AD is traditionally a 4 

clinical-pathologic condition, the emerging development of biomarkers to profile AD 5 

pathophysiology has led to the proposal of AD as a biological construct based on the AT(N) system 6 

3, 4. The incorporation of the AT(N) classification into the clinical continuum will offer robust 7 

disease staging by combining both pathophysiological and cognitive phenotypes which span from 8 

cognitively intact to mild cognitive impairment (MCI) before progressing to the dementia stage 5. 9 

Studies have suggested that Aβ is the first to become abnormal in AD, followed by downstream 10 

pathophysiological changes of tauopathy, neurodegeneration, and cognitive impairment 6, 7, 8. 11 

While neurodegeneration is widely associated with worse cognitive impairment in neurocognitive 12 

disorders, it remains unknown whether the influence of neurodegeneration on cognitive function 13 

varies with AD biomarkers status and across the AD continuum. 14 

Neurodegeneration represents neuronal injury in the forms of cerebral grey matter (GM) 15 

atrophy and hypometabolism. In AD, it is widely postulated that Aβ triggers tau-mediated toxicity 16 

leading to AD-type neurodegeneration in brain regions such as the hippocampus, the precuneus 17 

and posterior cingulate cortex, bilateral angular gyrus, and medial temporal lobes 9, 10, 11, 12. 18 

Recently, amyloid and tau pathologies are also shown to have a synergistic effect on AD-type 19 

hypometabolism, involving the basal and mesial temporal, orbitofrontal, and anterior and posterior 20 

cingulate cortices 13, 14. However, neurodegeneration may also occur prior to incident amyloid 21 

positivity 15 and be influenced by the loss of microtubule stabilizing function and toxic effects of 22 

tau pathology, independent of amyloid pathology 16.  23 
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 Advancement in brain network analysis offers insights into the functional effects of AD 1 

pathophysiology on cognitive changes. Work from our group has demonstrated that AD 2 

pathophysiologies compromise brain sturcture and function systematically by capitalizing on the 3 

intrinsic connectivities among brain regions 17. Accumulating evidence suggests that AD 4 

pathological deposition around neurons which impairs synaptic communication, leads to specific 5 

large-scale brain intrinsic network disorganization 18, 19. Decreased functional connectivity in the 6 

default mode network (DMN) derived from resting state functional MRI is well-described in MCI 7 

and AD 20, 21, 22, 23, 24, while aberrant loss of functional connectivity in other higher-order cognitive 8 

networks such as the executive control network (ECN) and salience network (SN) are being 9 

increasingly reported 22, 25, 26.  10 

 Brain networks can also be constructed based on similarity in GM structure and 11 

metabolism between brain areas across individuals, known as the GM structural and metabolic 12 

covariance network respectively 27, 28, 29. Both structural and metabolic covariance networks show 13 

convergent patterns with the intrinsic connectivity network in healthy individuals and mirror GM 14 

atrophy patterns in distinct neurodegenerative disorders 18, 27, 30. Using this approach, a recent study 15 

revealed differential patterns of structural covariance networks within different amyloid pathology 16 

groups classified by CSF Aβ1–42 and P-tau181 levels 31. However, existing studies on the GM 17 

structural and metabolic covariance networks were largely reliant on group-level correlation maps 18 

of cortical morphology and metabolism, which cannot be used to infer individual differences in 19 

cognition. It is postulated that network analysis at the individual level will allow direct evaluation 20 

of each individual’s structural and metabolic covariance networks, hence providing deeper 21 

understanding on the effects of brain networks on cognitive performances 32. For instance, a cube-22 

based correlation approach to calculate the individual GM networks by computing intracortical 23 
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similarities in GM morphology 33 showed that single-subject GM graph properties were associated 1 

with individual differences of clinical progression in AD 34, 35, 36, 37. A network template 2 

perturbation approach was also introduced to construct an individual differential SCN using 3 

regional GM volume, though it required reference models derived from a group of normal control 4 

subjects 38. Nevertheless, the relationships between changes in individual-level network-based 5 

neurodegeneration across different amyloid pathology groups and cognitive stages, and their 6 

influence on memory impairment, remain unclear.  7 

The influence of cerebral GM loss and [18F]Fluorodeoxyglucose (FDG) hypometabolism 8 

on cognitive function in AD has often been modelled as a linear relationship 39, 40. However, 9 

emerging evidence suggests that structural and metabolic abnormalities in AD may follow a 10 

sigmoidal curve trajectory with an initial period of acceleration and subsequent deceleration 7, 41, 11 

42. While the dynamic effects of AD biomarkers on worsening cognition can be better modelled 12 

by sigmoid-shaped curves rather than a constant across disease stages 43, it remains largely 13 

unknown how brain structural and metabolic networks will influence cognition decline 14 

differentially in individuals stratified into different pathology groups and cognitive stages. Once 15 

these trajectories are defined across the AD continuum and subgroups, they can potentially 16 

highlight windows of opportunity for targeted  intervention at the appropriate cognitive stages to 17 

improve disease outcomes. 18 

To cover these gaps, we sought to determine the differential associations of brain 19 

metabolism and GM structural networks with memory function using a neurodegeneration 20 

covariance network approach, among cognitively normal (CN), mild cognitive impairment (MCI), 21 

and probable AD individuals stratified by their A and T biomarker status. We used the seed partial 22 

least squares (PLS) method 44 to evaluate the individual-level brain network integrity. We 23 
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employed the sparse varying coefficient (SVC) model which does not assume a constant 1 

relationship between brain measures and cognitive performance over different cognitive stages 45, 2 

46, 47. Besides capturing the possible nonlinear brain-cognition relationship, SVC also allows the 3 

selection of significant predictors with the LASSO sparse penalty while eliminating the 4 

contribution of the less important predictors. We hypothesized that individual-level brain 5 

metabolic and structural network integrity would be non-linearly associated with memory 6 

performance across the AD continuum and such trajectories would vary depending on the presence 7 

of amyloid and tau protein deposition. Based on our previous findings 21, 22, 48, we further 8 

hypothesized that the posterior DMN and the medial temporal lobe regions would play an early 9 

and dominant role affecting the memory performance in individuals with amyloid pathology. 10 

Our study provides first evidence that both hippocampal structural and angular gyrus 11 

metabolic network integrity contributed to memory performance in the early cognitively normal 12 

stage in individuals with amyloid deposition. However, in the amyloid positive individuals with 13 

dementia, only the angular gyrus metabolic network dominated the memory-network association. 14 

Amyloid negative individuals did not have such patterns. These findings characterize the dynamic 15 

influence of brain structural and metabolic networks on memory function across the AD continuum 16 

and underscore the importance of early intervention targeting neuronal dysfunction in the 17 

preclinical AD stage to improve memory outcomes.  18 

 19 

RESULTS 20 

Group differences in brain metabolic and structural covariance networks  21 

We selected 812 participants (232 CN, 413 MCI and 167 probable AD) from the Alzheimer’s 22 

Disease Neuroimaging Initiative (ADNI) database with 3T T1-weighted MRI and [18F]FDG PET 23 
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scans to define seed regions for brain network derivation (Fig. 1, step 1). As our study focused on 1 

memory and AD pathology, we chose to study the individual-level structural and metabolic 2 

covariance within higher-order cognitive networks such as DMN, SN, ECN as well as the 3 

hippocampus (HIP)-based memory network 49, 50. We defined a set of 12 seed regions to derive 4 

these covariance networks on the basis that they have been shown to reliably produce the relevant 5 

network across imaging modalities. Specifically, the DMN included bilateral angular gyrus (ANG), 6 

posterior cingulate cortex (PCC), and medial prefrontal cortex (mPFC); the SN included bilateral 7 

anterior insular (INS); the ECN included bilateral dorsolateral prefrontal cortex (DLPFC) and 8 

posterior parietal cortex (PPC); the memory network included bilateral HIP. The seed coordinates 9 

were determined based on the group comparisons of the grey matter volume (GMV) probability 10 

and glucose metabolic spatial maps between CN and probable AD individuals (Supplementary 11 

Table 3, see details in Methods). 12 
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1 
Figure 1. Study design schematic. 708 participants with either healthy cognition (CN), mild 2 

cognitive impairment (MCI) or dementia were studied. Twelve brain seeds covering the key 3 

regions of hippocampus, the default mode network, the executive control network, and salience 4 

network were defined based on hypometabolism (via FDG) and grey matter atrophy (via MRI) 5 

patterns in all patients with probable AD compared to CN (step 1). Using seed-based partial least 6 

square (PLS) analysis (step 2), the covariance patterns in metabolism and GMV maps were 7 

identified and used to derive the individual-level brain metabolic network scores and structural 8 

network scores for each seed. The group difference was evaluated between different cognitive 9 

stages and pathology groups (step 3). We then investigated the differential stage-dependent 10 

associations between these key brain network scores with memory performance in each of the 11 

three pathology groups (A-T-, A-T+, and A+T-/A+T+) separately using sparse varying coefficient 12 

(SVC) modelling (step 4). Abbreviations: A = Aβ; T = tau; ‘-’ = negative; ‘+’ = positive. 13 
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To derive brain structural and metabolic networks from individuals with and without 1 

amyloid pathology, we further identified 708 out of the existing 812 participants who underwent 2 

neuropsychological assessments, and lumbar puncture, in addition to [18F]FDG PET and T1-3 

weighted MRI scans to form the main dataset (Table 1). Using seed PLS (Fig. 1, step 2, see details 4 

in Methods), we identified the structural and metabolic covariance network patterns associated 5 

with each seed at the group-level (Fig. 2A and Fig. 3A). We projected the original individual GMV 6 

and metabolic maps onto the covariance network maps to derive the individual brain structural or 7 

metabolic network scores, which reflected how strongly each brain network pattern was 8 

manifested in the individual’s metabolic and structural brain networks. 9 

First, we compared the brain metabolic and structural network scores between different 10 

pathology groups and cognitive stages (Fig. 1, step 3). At the same cognitive stage, amyloid 11 

positive CN and MCI individuals had lower metabolic and structural network scores than those 12 

amyloid negative CN and MCI individuals for all the networks (Fig. 2B & 3B). No such difference 13 

was observed at the dementia stage. 14 
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Table 1. Subject demographics for the main study cohort. 

 A-T-  A-T+  A+T-/A+T+ 

 CN MCI probable AD  CN MCI probable AD  CN MCI probable AD 

N 30 74 4  80 75 7  85 225 128 

Age, y 65.12~85.16 56.08~88.51 69.56~90.50  56.53~84.47 55.15~88.83 60.79~80.76  60.19~90.08 55.38~91.57 55.96~90.46 

72.24±4.54 69.78±7.20d 77.37±9.11m  71.95±5.87 70.21±8.16 74.57±7.70  75.37±6.59 73.17±6.93 74.12±8.19 

Gender (M/F) 12/18 39/35 4/0  45/35 38/37 6/1  37/48 127/98 72/56 

Handedness 

(R/L) 

29/1 60/14 4/0  69/11 67/8 7/0  79/6 203/22 118/10 

Education, y  16.63±2.68 16.45±2.59 17.50±1.29  16.88±2.67 16.00±2.65 16.71±2.43  16.34±2.36 16.12±2.74 15.78±2.71 

APOE e4 (+/-) 6/24 16/58 0/4  16/64 17/58 1/6  38/47md 140/85cd 93/35cm 

Memory 1.28±0.66md 0.75±0.64cd -0.12±0.68cm  1.17±0.57md 0.55±0.62cd -0.40±0.67cm  0.97±0.63md 0.20±0.63cd -0.87±0.53cm 

MMSE 28.70±1.68d 28.62±1.31d 25.75±2.36cm  29.15±0.99md 28.29±1.64cd 23.86±2.19cm  29.02±1.17md 27.81±1.86cd 23.21±2.24cm 

CDR-SOB 0.02±0.09md 1.22±0.60cd 4.38±3.04cm  0.05±0.15md 1.20±0.76cd 4.57±1.40cm  0.05±0.17md 1.53±0.90cd 4.64±1.70cm 

ICV 1523.77± 

152.57 

1520.05± 

127.78 

1540.83± 

36.50 

 1554.01± 

128.10 

1559.14± 

147.96 

1566.75± 

221.76 

 1524.87± 

148.29 

1558.61± 

148.25 

1549.78± 

163.05 

Note: Data on age are range and mean ± SD. Data on education, ICV, and memory are mean ± SD. Data on memory are in z-scores. 
Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer's disease; A= β-amyloid; T = tau; ‘+’ = 
positive; ‘-’ = negative; y = years; M = male; F = female; R = right; L = left; MMSE = Mini-Mental State Exam; CDR-SOB = Clinical 
Dementia Rating Sum of Box; ICV = intracranial volume. Superscripts (‘c’, ‘m’, ‘d’) represent significant group difference with CN, 
MCI and probable AD respectively.
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1 
Figure 2. The integrity of brain metabolic networks in participants with and without amyloid 2 
pathology across cognitive stages.  A. Brain slices of metabolic covariance networks associated 3 
with each brain seed defined from FDG-PET data highlighted in blue circles. Brain metabolic 4 
network resemabled canonical brain networks. The intensity of colorbar represents bootstrap ratios, 5 
derived from dividing the weight of the singular-vector by the bootstrapped standard error. B. 6 
Individual-level brain metabolic network scores were lower in individuals with worse cognition 7 
and amyloid pathology. Summary of individual-level metabolic network scores (mean ± SD) were 8 
presented in bar charts. ‘*’ indicates significant group difference (ANOVA; p < 0.05). Thick lines 9 
indicate group differences in brain network scores between different cognitive stages (grey dashed 10 
lines) or pathology groups (dark lines). Abbreviations: HIP = hippocampus; ANG = angular gyrus; 11 
PCC = posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = 12 
dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively normal; MCI = 13 
mild cognitive impairment; pAD = probable AD; A= β-amyloid; T = tau; ‘+’ = positive; ‘-’ = 14 
negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = 15 
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media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior 1 
parietal cortex. 2 
 3 

4 
Figure 3. The integrity of brain structural networks in participants with and without amyloid 5 
pathology across cognitive stages.  A. brain slices of structural covariance networks associated 6 
with each brain seed defined from GMV data highlighted in blue circles. The intensity of colorbar 7 
represents bootstrap ratios, derived from dividing the weight of the singular-vector by the 8 
bootstrapped standard error. B. Individual-level brain structural network scores were lower in 9 
individuals with worse cognition and amyloid pathology. Summary of individual-level structural 10 
network scores (mean ± SD) were presented in bar charts. ‘*’ indicates significant group difference 11 
(ANOVA; p<0.05). Thick lines indicate group differences in all brain network scores between 12 
different cognitive stages (grey dashed lines) or pathology groups (dark lines). Abbreviations: HIP 13 
= hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal 14 
cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; 15 
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CN = cognitively normal; MCI = mild cognitive impairment; pAD = probable AD; A= β-amyloid; 1 
T = tau; ‘+’ = positive; ‘-’ = negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior 2 
cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal 3 
cortex; PPC = posterior parietal cortex.  4 

 5 

 6 

Within the same pathology group, we observed slightly different patterns in structural and 7 

metabolic networks. Specifically, in participants with amyloid pathology (A+T-/A+T+), the 8 

probable AD group had lower metabolic and structural network scores than the CN and MCI 9 

groups in all the networks (Fig. 2B right and 3B right). The amyloid positive MCI group had 10 

comparable metabolic network scores but lower structural HIP-based memory network scores than 11 

the amyloid positive CN group. In contrast, participants without amyloid and tau pathology (A-T-) 12 

did not show any differences in both metabolic and structural networks across the three cognitive 13 

stages (Fig. 2B left and 3B left). Interestingly, participants with tau pathology (A-T+) had no 14 

cognitive stage-related differences in all metabolic networks, while the tau positive dementia group 15 

had lower structural integrity in the mPFC-based anterior DMN and PPC-based ECN than the tau 16 

positive CN group (Fig. 2B middle and 3B middle). 17 

 18 

Divergent stage-dependent trajectories of the association between hippocampal structural 19 

network integrity and memory performance in the three pathology groups 20 

Next, we sought to determine the differential nonlinear trajectories of the association between 21 

brain network integrity and memory impairment in different pathology groups across the three 22 

cognitive stages using the SVC model (Fig. 1, step 4) 45. Note that we did not assume a constant 23 

relationship here; instead, the network-memory association could vary across cognitive stages. 24 

Instead of analyzing each brain measure in separate models, the SVC analysis allows all variables 25 
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to be entered as predictors in the same multivariate model, with the identification of the most 1 

important predictors and the elimination of the less important predictors (i.e. feature selection) 2 

implemented by minimizing the penalized least squares function. 3 

 To characterize the possible stage-dependent tracjectories using SVC modelling, we 4 

ordered the participants by their cognitive stages (i.e., CN → MCI → dementia; Supplementary 5 

Fig. 4 A) in each of the three pathology groups (A-/T-, A-/T+ and A+T-/A+T+). Within each stage, 6 

the participants were then ordered by their global cognition or dementia severity (i.e., no 7 

impairment → severe impairment). Specifically, the participants within the CN group were 8 

ordered by decreasing MMSE scores, while the participants within the MCI and dementia groups 9 

were ordered by increasing CDR-sum of boxes (SOB) scores. Participants with the same MMSE 10 

or CDR-SOB scores were further ordered by increasing age (i.e., young → old). Ordered 11 

participants were distributed evenly into bins (i.e., 10 subjects/bin). In our SVC models, the 12 

dependent variable was the ADNI memory composite score. Predictors included all the 14 13 

FDG/GMV regional network scores with gender, education years, APOE ε4, intracranial volume 14 

(ICV), and scanning site as nuisance variables. We performed the SVC modelling for each 15 

pathology group separately to find the key predictors and the trajectories of their associations with 16 

memory along the disease progression (see details in Methods).  17 

The SVC models identified the HIP-based structural memory network score as a key 18 

predictor of memory impairment in all three pathology groups (Fig. 4A and 5A). We found that 19 

the lower HIP structural network scores, the lower the ADNI-mem scores (indicated by positive 20 

beta coefficient). The strength of this association was higher (i.e., higher beta coefficient) in the 21 

amyloid pathology group than the other two A- groups.  22 
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More importantly, not only was the relationship between the HIP structural network and 1 

memory performance non-linearly dependent on cognitive stages as hypothesized, but such non-2 

linear trajectories were also different across the three pathology groups (Fig. 4A and 5A). 3 

Specifically, in the amyloid pathology group, the strength of this association was highest in early 4 

CN stage, and decreased from late CN to early MCI stage (Fig. 4A, left). The strength of this 5 

association remained stable in MCI and then decreased in the dementia stage.  6 

 7 
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 1 

Figure 4. Brain metabolic and structural networks had differential stage-dependent 2 
associations with memory in amyloid positive individuals. Data from the main (panel A) and 3 
validation dataset (panel B) exhibited consistent stage-dependent memory-network association 4 
trajectory from cognitively normal to dementia stage in participants with amyloid pathology (i.e. 5 
A+T-/A+T+ group). Both hippocampal-seeded structural network  (left, in blue) and angular 6 
gyrus-seeded default mode metabolic network (right, in red) integrity contributed significantly to 7 
memory performance in early cognitively normal stage. Such impact decreased in MCI stage for 8 
both metabolic and structural networks. In contrast, only the metabolic network had a major 9 
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influence on memory in late dementia stage. Solid curves represent the mean associations (beta 1 
coefficients) of brain network scores with memory as a function of advancing AD continuum  2 
estimated from 100 replicates. The dashed curves represent the point-wise 2* standard errors of 3 
the solid curves estimated from 100 replicates. The participants were ordered by their cognitive 4 
stages (i.e., CN → MCI → probable AD). Within each cognitive stage, the participants were then 5 
ordered by general cognition (MMSE for CN) or dementia severity (CDR for MCI and dementia) 6 
(i.e., no impairment → severe impairment). Participants with the same level of 7 
impairment/severity were further ordered by increasing age (i.e., young → old). Ordered 8 
participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: CN = 9 
cognitively normal; MCI = mild cognitive impairment; HIP = hippocampus; ANG = angular gyrus. 10 
 11 

 12 

The two amyloid negative groups had the opposite pattern of the amyloid positive group 13 

(Fig. 5A). Specifically, in the A-T- group, the strength of the association between the HIP 14 

structural network and memory performance was lowest in early CN stage and increased in the 15 

late CN stage. It then remained stable in the MCI stage before a further increase in the dementia 16 

stage. Similarly, in the A-T+ group, the strength of such association was low in the CN stage and 17 

gradually increased in the MCI stage, reaching the highest in the late MCI and dementia stage.  18 

Our findings suggest that the influence of the HIP-based structural network integrity on 19 

memory performance begins early in the preclinical AD stage and the strength of this influence 20 

gradually decreased as the cognitive stages progress. On the other hand, the influence of the HIP 21 

network integrity on memory is weaker in individuals without Aβ pathology and peaks in the 22 

dementia stage. The stronger hippocampus-memory association in the preclinical AD stage 23 

supports the current strategy of early intervention to attain better cognitive outcomes.     24 

Furthermore, demographical and genetic variables such as gender, education years and 25 

APOE ε4 genotype showed differential stage- and pathology-dependent associations with memory 26 

performance (Supplementary Fig. 6). Females and fewer years of education were associated with 27 

memory impairment in A-/T- and A-/T+ groups respectively. These associations were highest in 28 
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the early CN stage and gradually decreased in late CN stage before increasing in the late MCI and 1 

probable AD stages. In contrast, females, fewer years of education and APOE ε4 carriers in the 2 

amyloid pathology group were associated with memory impairment with a differential trajectory 3 

(i.e., highest in the early CN stage and gradually decreased afterwards), although the strength of 4 

this association was relatively lower overall compared to those in the A-/T- and A-/T+ groups.  5 

 6 

Stage-dependent association between angular gyrus metabolic network integrity and 7 

memory performance in amyloid pathology group 8 

The SVC models identified the angular gyrus-based (ANG) metabolic network score (i.e., DMN) 9 

to be associated with memory impairment only in the  amyloid pathology  group (Fig. 4A, right). 10 

We found that the lower the ANG metabolic network score, the lower the ADNI-mem score. This 11 

suggested that a breakdown in the ANG-based metabolic covariance network was related to worse 12 

memory performance in the amyloid pathology group only. A non-linear relationship was also 13 

observed between the ANG metabolic covariance network and memory performance across 14 

different cognitive stages. The strength of this relationship showed an early peak in early CN and 15 

gradually decreased in the late CN and MCI stages, before increasing in late MCI/dementia stage 16 

again.  17 

 18 
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 1 

Figure 5. Stage-dependent association of brain hippocampal structural network with 2 
memory performance in A-T- and A-T+ pathology groups. Data from the main (panel A) and 3 
validation dataset (panel B) exhibited consistent stage-dependent memory-network association 4 
trajectory from cognitively normal stage to dementia stage in participants with A-T- and A-T+ 5 
pathology. The hippocampus-memory association was much weaker overall in non-amyloid/non-6 
tau and tau only groups compared to amyloid positive group (Figure 4). The memory-network 7 
association was the lowest in early cognitively normal stage and gradually increased with clinical 8 
progression in both groups, while the tau only group had stronger associations in dementia stage. 9 
Solid curves represent the mean associations (beta coefficients) of brain network scores with 10 
memory as a function of advancing AD continuum estimated from 100 replicates. The dashed 11 
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curves represent the point-wise 2* standard errors of the solid curves estimated from 100 replicates. 1 
The participants were ordered by their cognitive stages (i.e., CN → MCI → probable AD). Within 2 
each cognitive stage, the participants were then ordered by general cognition (MMSE for CN) or 3 
dementia severity (CDR for MCI and dementia) (i.e., no impairment → severe impairment). 4 
Participants with the same same level of impairment/severity were further ordered by increasing 5 
age (i.e., young → old). Ordered participants were distributed evenly into bins (i.e., 10 6 
subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; HIP = 7 
hippocampus. 8 
 9 

 10 

Our findings are in line with the current literature which show that decreased glucose 11 

uptake in the ANG is associated with worse cognitive performance in the later stages of AD. In 12 

addition, we extend this field by demonstrating the early influence of the ANG-based metabolic 13 

covariance network (mirroring the DMN) for memory performance in the preclinical AD stage. 14 

This suggests that early metabolic dysfunction of the ANG and the extended DMN may predispose 15 

individuals with preclinical AD to be more vulnerable to memory impairment.  16 

  17 

Replication in the validation dataset 18 

 To test if the above findings from the main dataset can be replicated, we repeated the same 19 

analyses using another larger validation dataset. We added an additional 468 individuals who 20 

underwent 1.5T T1-weighted MRI scans and [18F]FDG PET. With the original main dataset of 812 21 

participants, we had 1280 participants in total for brain seed definition (Fig. 1, step 1). Out of 1280 22 

participants, 859 participants had the same neuropsychological assessments, lumbar puncture for 23 

the following analyses (Fig. 1, steps 2 & 3, Supplementary Table 3). The field strength (i.e., 1.5-24 

T or 3-T) was further included as an additional nuisance variable for analyses on the validation 25 

dataset. We performed the same PLS-SVC analyses and replicated most of our key findings (Fig. 26 

4B and 5B, Supplementary Fig. 2, 3, and 7, see Supplementary Results). Specifically, the HIP-27 
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based structural memory network and the ANG-based metabolic default mode network scores 1 

were associated with memory impairment in the respective pathology groups with similar beta 2 

curves as the main dataset. Furthermore, these observations remained robust when the analyses 3 

were performed using the alternative ordering strategy of merging both MCI and dementia stages 4 

(Supplementary Fig. 5 & 8). 5 

 6 

High specificity of the SVC model 7 

Lastly, we evaluated the specificity of the established SVC models using permutation tests. For 8 

each null SVC model using the permuted datasets, the frequency distributions of variable selection 9 

(i.e., the total times of selection as the key predictor of memory scores within the 100 permuted 10 

datasets) appeared random (see Supplementary Fig. 9). As the selected variables in our main 11 

findings were not favoured over the other variables in the null models, this indicated the high 12 

specificity of the SVC models that were built on the original dataset.  13 

 14 

DISCUSSION 15 

This study revealed differential associations of brain structural and glucose metabolism covariance 16 

networks with memory performance across the cognitive stages of CN, MCI and probable AD in 17 

individuals stratified by Aβ and tau pathologies. Rather than assuming a constant brain-memory 18 

association, we demonstrated that brain structural and metabolic network integrity had non-linear 19 

associations with memory performance across different cognitive stages; such trajectories 20 

exhibited opposing patterns in individuals with and without amyloid pathology. A lower HIP 21 

structural network score was associated with a lower ADNI-mem score and among individuals 22 

with amyloid pathology, the strength of this relationship was greatest in early CN and decreased 23 
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in subsequent cognitive stages. In contrast, the strength of this association was lower and the 1 

trajectory was opposite in those with both tau-only and non-amyloid/non-tau pathology. An 2 

association between the breakdown of the default mode metabolic network seeded at the ANG 3 

with memory deficit was also observed in individuals with amyloid pathology, with the strength 4 

of this association peaking in early CN and decreasing gradually before rebounding in the late 5 

MCI/dementia stage. Our findings support the AD biomarker hypothetical models by 6 

characterizing the non-linear influence of brain structural and metabolic networks on memory 7 

function across the AD continuum, hence paving the way for early interventions and stage-8 

dependent remedies to modify disease trajectory and improve clinical outcomes. 9 

 10 

Early influence of hippocampal structural network deterioration on memory impairment in 11 

asymptomatic amyloid-positive individuals 12 

The HIP structural network is identified to be associated with memory impairment in all 13 

three pathology groups which is consistent with the role that the hippocampus plays in memory 14 

cognitive domain 51, 52. However, the peak influence of the HIP structural integrity on memory 15 

differed among the three pathology groups. The early peak of the association at the CN stage in 16 

the amyloid pathology group suggests an early influence of the hippocampal structural network 17 

integrity on memory performance in the preclinical AD stage. Our findings are in line with a recent 18 

study that compared MRI brain structure models of normal and AD participants across the entire 19 

lifespan, showing that the AD model for hippocampus diverged early from normal aging trajectory 20 

53. Accumulating evidence also suggests hippocampal volume and thickness as early imaging 21 

correlates of verbal memory in preclinical AD 54. Furthermore, in a cohort of CN individuals, 22 

decreased CSF Aβ42 was associated with hippocampal loss and poorer performance on episodic 23 
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memory 55, while an early effect of Aβ on memory mediated by hippocampal atrophy has been 1 

demonstrated in non-demented older individuals 56, 57, 58. These evidence supports our findings of 2 

the early influence of structural covariance breakdown in the hippocampal networks on memory 3 

performance in the preclinical AD stage. 4 

In our cohort with amyloid pathology, the strength of the association between HIP 5 

structural network and memory gradually decreased in the MCI and dementia stages. This suggests 6 

that the HIP structural network integrity plays a lesser role on memory performance as the 7 

cognitive stages progress. Given that memory impairment is expected to worsen as the cognitive 8 

stage progresses, we postulate that structural networks outside the hippocampal/temporal lobes 9 

may be increasingly affected while the influence from the hippocampal-based memory network 10 

decreases. Indeed, the hippocampus system is well connected to various cortical brain regions in 11 

processing memory information 59 and together with brain structures such as the prefrontal cortex 12 

make up a large-scale network to support encoding and retrieval of episodic memory 60. While the 13 

medial temporal lobe is well known to be affected early on in the AD process, gray matter regions 14 

outside the medial temporal lobes are gradually implicated as the disease progresses to MCI and 15 

dementia 54. Atrophy in brain regions within the DMN such as the precuneus and the posterior 16 

cingulate gyrus are shown to be associated with episodic memory impairment  61 and decreased 17 

inferior frontal gyrus volume is associated with verbal memory decline in MCI patients who 18 

converted to AD over time 62. 19 

 20 

Angular gyrus-seeded default mode network metabolic deterioration plays a key role in 21 

memory deficit in the asymptomatic and dementia stages of AD 22 
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While impaired glucose uptake in the ANG is consistently shown to be an important feature 1 

for predicting memory and executive functioning performance in the later stages of AD 63, 64, our 2 

present findings provide further insights into the early critical role of ANG-based metabolic 3 

covariance network for intact memory (i.e., earlier peak of beta) in the preclinical AD stage. The 4 

ANG, located in the posterior part of the inferior parietal lobule, is one of the major connector 5 

hubs that links different subsystems such as the DMN 20, 65 that are affected by AD 6 

pathophysiology, and is involved in verbal working memory 66, 67 and episodic memory retrieval 7 

68. The role of ANG in memory performance is also implicated by its strong connectivity with the 8 

hippocampal system 67 that is critical in episodic and declarative memory functions 51. Furthermore, 9 

a recent study showed that Aβ aggregation within the brain’s DMN is associated with regional 10 

hypometabolism in distant but functionally connected brain regions, including the inferior parietal 11 

cortices where the ANG is located 69. Therefore, early malfunctioning of the ANG, as indicated by 12 

aberrant metabolic network patterns in our study, may predispose CN individuals with amyloid 13 

pathology to a more vulnerable memory system. 14 

Interestingly, we observed that the relationship between ANG-based metabolic covariance 15 

network and memory performance gradually decreased in the late CN and MCI stages before 16 

increasing in the dementia stage. We postulate that this may represent a metabolic compensatory 17 

mechanism in the MCI stage as a manifestation of cognitive reserve to preserve memory function, 18 

which has been proposed in AD functional connectivity (FC) studies. Among amnestic MCI 19 

individuals, increased FC compared to controls was found within the DMN and between DMN 20 

and brain networks such as the frontoparietal control and dorsal attention networks. These 21 

abnormal increased FC patterns are associated with lower cognitive performance which suggest a 22 

maladaptive compensatory mechanism in the MCI stage 70, 71. Similarly, higher nodal topological 23 
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properties such as the nodal strength, nodal global efficiency and nodal local efficiency, and 1 

increased local and medium-range connectivity located in the DMN-related brain regions were 2 

also shown in the earlier subjective cognitive decline stage of AD relative to healthy controls 72. 3 

While these evidence supports our hypothesis of a metabolic compensatory mechanism in the late 4 

CN/MCI stage of AD, our findings will need to be confirmed in a larger cohort with longitudinal 5 

follow up. 6 

 7 

Modest influence of hippocampal structural network deterioration on memory impairment 8 

in individuals with non-amyloid  pathology   9 

The strength of the association between HIP structural network covariance and memory 10 

function was overall lower in non-AD groups compared to amyloid pathology group, which 11 

suggested that the hippocampal network integrity had a more modest influence on memory in 12 

individuals without Aβ pathology compared to those with Aβ pathology. In line with our finding, 13 

a recent study on 531 deceased older community adults showed that neuropathologies such as AD, 14 

cerebrovascular disease and hippocampal sclerosis accounted for 42.6% of the variation in global 15 

cognitive decline, whereas hippocampal volume alone only accounted for an additional 5.4% of 16 

this variation 73. Furthermore, we demonstrated a non-linear and opposing trajectory of this 17 

association as the cognitive stage progresses in non-AD groups compared to AD group. Although 18 

prior studies have consistently demonstrated that hippocampal atrophy is associated with memory 19 

deficits even before the presence of dementia and can predict dementia progression 74, emerging 20 

evidence suggests that the relationship between hippocampal atrophy and memory is also 21 

dependent on other factors such as age and cognitive reserve 75, 76, 77. Specifically, the association 22 

between episodic-memory decline and atrophy in the hippocampus over time was stronger in older 23 
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than in the middle-aged participants 75. In middle age, hippocampal volume was related to memory 1 

in those with low cognitive reserve, but not in those with high cognitive reserve 76. Excitingly, our 2 

findings shed new insights that the associations of memory decline with both hippocampal 3 

structural network integrity and years of education (i.e. a proxy for cognitive reserve) were also 4 

dependent on the presence/absence of amyloid pathology and the level of cognitive impairment.  5 

 6 

Strengths and Limitations 7 

The main strength of the present study is the inclusion of individuals from the ADNI cohort 8 

with well characterized neuropsychological, multimodal neuroimaging and AD biomarker data. 9 

This enables the study of the relationships between metabolic, structural brain networks and 10 

memory performance specifically in individuals within the AD continuum and those without 11 

amyloid pathology. Nevertheless, there are a few limitations in our study. First, the ADNI cohort 12 

consists of self-selected individuals participating in a study focusing on AD research which may 13 

introduce selection bias and limit the generalizability of our findings to a broader community. 14 

Second, our study design is cross-sectional thus provides only indirect evidence on the underlying 15 

brain-behavior relationship. Therefore, a larger population-based longitudinal study is needed to 16 

characterize within-subject trajectories of brain-behavior relationships across the disease 17 

continuum. Lastly, while we characterised the amyloid and tau status of our cohort using CSF 18 

amyloid and p-tau, we did not consider the spatial patterns of amyloid and tau brain deposition. 19 

Further studies are needed to elucidate the complex spatial and temporal trajectories of structural 20 

and metabolic networks in the various non-amyloid tauopathies and how the presence of amyloid 21 

affects the tau-metabolism-memory associations across the disease continuum. 22 
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In conclusion, our findings support the AD hypothetical models that the association 1 

between neurodegeneration and memory dysfunction is non-linear across cognitive stages and 2 

depends on the type of pathology. The early influence of metabolic and structural covariance 3 

breakdown in the default mode and hippocampal networks on memory performance underscore 4 

the importance of early intervention in preclinical AD.  5 

 6 

METHODS 7 

Participants  8 

Data used in this article were obtained from the ADNI database (adni.loni.usc.edu). The ADNI 9 

was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 10 

Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other biological 11 

markers, and clinical and neuropsychological assessment can be combined to measure the 12 

progression of MCI and early AD.  13 

In this study, we first selected 812 participants to define seed regions for brain network 14 

derivation (Figure 1, step 1). All of the images passed the visual quality control. Among them, 232 15 

were CN, 413 were MCI and 167 were probable AD. We then identified 708 participants (610 16 

from ADNI-2 and 98 from ADNI-GO) from the above cohort who underwent neuropsychological 17 

assessments, and lumbar puncture in addition to [18F]FDG PET and 3T T1-weighted MRI scans 18 

to form the main study cohort (Figure 1, steps 2 & 3). Among them, 195 were CN, 374 were MCI 19 

and 139 were probable AD (Table 1). Another larger validation dataset was created for replication 20 

by including another 468 individuals (377 from ADNI-1, 38 from ADNI-2, and 53 from ADNI-21 

GO) who underwent 1.5T T1-weighted MRI scan. Supplementary Figure 1 showed the flowchart 22 

of study participant selection. 23 
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Following ADNI diagnostic criteria 78, we defined CN as those with mini-mental state 1 

examination (MMSE) scores ≥ 24 and clinical dementia rating (CDR) 0, and showed no signs of 2 

depression, mild cognitive impairment, or dementia. MCI was defined as those with MMSE scores 3 

≥ 24 and CDR 0.5, subjective and objective memory loss, absence of significant levels of 4 

impairment in other cognitive domains, essentially preserved activities of daily living, and an 5 

absence of dementia. Probable AD was defined as those with MMSE scores ≤ 26, CDR ≥ 0.5 and 6 

meeting the NINCDS/ADRDA criteria for probable AD.  7 

Aβ (A) and tau (T) pathologies were measured using CSF Aβ1-42 and CSF p-tau181p. More 8 

details were in Supplementary Methods. Using the ADNI published cutoffs of Aβ1-42 <192 pg/mL 9 

and CSF p-tau181p >23 pg/mL to define the presence of Aβ and tau pathology respectively 79, the 10 

main study cohort was further stratified into three pathology groups: A-T- (non-amyloid/non-tau), 11 

A-T+ (tau only) and A+T-/A+T+ (amyloid pathology) (Table 1). There was no significant 12 

difference in age, gender, years of education, and APOE ε4 status among CN, MCI, and probable 13 

AD individuals in the A-T- and A-T+ groups (Table 1). The proportion of APOE ε4 carriers was 14 

lower in CN compared to MCI and dementia individuals in the A+T-/A+T+ group.  15 

 The ADNI study was approved by the Institutional Review Boards of all of the 16 

participating institutions and informed written consent was obtained from all participants at each 17 

site.  18 

 19 

Neuropsychological assessment 20 

The ADNI-mem is a validated composite memory score derived using data from the ADNI 21 

neuropsychological battery 80. More details were in Supplementary Methods.  22 

 23 
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Image acquisition and preprocessing 1 

All participants from the main dataset underwent T1-weighted MRI scans according to the 2 

standardized ADNI protocol using 3-Tesla scanners. Additional participants who underwent 3 

structural MRI brain scans using 1.5-Tesla scanners were included to form a validation dataset 4 

with a larger sample size. All participants also underwent [18F]FDG PET to study cerebral glucose 5 

metabolism (185 MBq (5 mCi), dynamic 3D scan of six 5-min frames 30-60 min post-injection).  6 

 All T1-weighted MRI scans were corrected for field distortions and processed using the 7 

CIVET image processing pipeline (www.bic.mni.mcgill.ca/ServicesSoftware/CIVET) to generate 8 

the GM probability maps as previously described 81. [18F]FDG PET images were processed with 9 

an in-house processing pipeline as described in our previous work 82. Further details on image 10 

parameters and preprocessing were in Supplementary Methods. 11 

 12 

Statistical analyses  13 

Between-group differences in demographic characteristics and clinical assessments were tested 14 

among CN, MCI, and probable AD groups. Either a one-way ANOVA or a chi-squared test was 15 

used depending on the nature of the variable. 16 

 17 

Seed definition: group comparison on GMV and glucose metabolic pattern between CN and 18 

probable AD  19 

As shown in Fig. 1 (step 1), the 12 seed coordinates from the DMN, the salience network, the ECN 20 

and the memory network were determined based on the group comparisons of the GMV 21 

probability and glucose metabolic spatial maps between CN and probable AD individuals using a 22 

permutation test (randomise, FSL, 5000 permutations). Effects of age, gender, years of education, 23 
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and APOE ε4 genotype were regressed out. The field strength (i.e., 1.5T or 3T) was included as 1 

an additional covariate when the tests were performed using the validation dataset (Supplementary 2 

Table 1). The resulting GMV and metabolic group difference maps (i.e., CN greater than probable 3 

AD) were thresholded using threshold-free cluster enhancement with an alpha level of 0.05 4 

(corrected at family-wise error (FWE) rate). We superimposed the two thresholded t statistical 5 

maps (GMV and metabolic) and summed the t-scores at each voxel. Spherical seeds (with 4 mm 6 

radius) were then defined based on the peak foci of the above network key regions showing atrophy 7 

and hypometabolism in probable AD compared to CN (Supplementary Table 3).   8 

 9 

Brain metabolic and structural network derivation: seed PLS analyses 10 

We used seed PLS to identify covariance patterns between GMV/metabolism in each seed region 11 

and those of all other voxels in the whole brain (Fig. 1, step 2). The seed value was defined as the 12 

average GMV/metabolism values within each predefined seed from step 1. For each seed region, 13 

the vector Y representing the seed values concatenated across all the participants was cross-14 

correlated with a matrix X, representing the GMV (or metabolism) images of all the participants. 15 

Both the seed vector Y and the image matrix X were centered and normalized such that the vector 16 

of correlations R was computed as: 17 

! = #! ∙ %. 18 

 Using singular value decomposition, the correlation vector R was decomposed into a set 19 

of mutually orthogonal latent variables (LVs) comprising three matrices: 20 

! = & ∙ ' ∙ (!, 21 

where s is the diagonal matrix of singular values, and v and u are the orthonormal matrices of left 22 

and right singular vectors, which are also called saliences in the PLS terminology. The left and 23 
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right singular vectors respectively represent the seed profiles and the whole-brain patterns that best 1 

characterize the correlation vector R. Therefore, the brain salience u captures the brain covariance 2 

or network pattern that is of interest. The number of LVs derived is equal to the rank of the 3 

correlations vector R. The LVs were tested for statistical significance with 1000 permutations.  4 

The stability of each voxel in the brain salience of the LV was validated using a bootstrap ratio, 5 

calculated by dividing the voxel salience value by its standard error, estimated by bootstrapping 6 

(500 times). 7 

The resulting significant LV from the PLS analyses of each of the 12 seeds (all p < 0.0001) 8 

corresponded to reliable patterns of structural or metabolic covariance network associated with 9 

that seed (see Supplementary Fig. 2).  10 

To represent individual-level brain salience maps of the identified LV for each seed PLS 11 

model, the original matrix X was projected onto the brain salience u, which was computed by:  12 

)" = % ∙ (, 13 

where LX is a vector of brain structural or metabolic network scores across all the participants.   14 

We calculated the brain network score for each of the 12 networks in both FDG and GMV 15 

modalities separately. For HIP, ANG, INS, PPC, and DLPFC, we averaged the left and right brain 16 

network scores. In total, each participant had 14 brain network scores (i.e., two for each of the 7 17 

seed regions, including HIP, ANG, PCC, mPFC, INS, PPC, and DLPFC), which reflect structural 18 

or metabolic network pattern expression.  19 

 20 

Stage- and pathology-dependent associations between brain networks and memory impairment: 21 

SVC modelling  22 

With ADNI-mem as the dependent variable, the SVC models have the following form: 23 
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y#(t$) = ∑ β%(t$)x#%&
%'( (t$) + ε#(t$), 1 

where the dependent variable y#(t$) represents the cognitive score for subject i	(i = 1, 2, … , n) at 2 

the bin t$	(k = 1, 2, … , K), x#%(t$) is the <)*	(< = 1, 2, … , =) predictor (FDG/GMV network scores 3 

and nuisance variables; see below) of subject i at the bin t$. Both the dependent variable and all 4 

predictors were standardized to z-scores. β%(t$) is the coefficient function depending on bin t$ for 5 

each feature < and ε#(t$) is the independent and identically distributed random errors at t$. The 6 

coefficient function β%(t$) is approximated using linear combinations of a set of B-spline basis. 7 

To simultaneously achieve regression model fitting and variable selection, the least absolute 8 

shrinkage and selection operator (LASSO) 83 is applied to estimate β%(t$) by minimizing the 9 

following penalized least squares function: 10 

(
+,∑ ∑ [y#(t$) − ∑ β%(t$)x#%&

%'( (t$)]+-
$'(

,
#'( + λ∑ B∫β%+(t)dt&

%'(  , 11 

where λ is the sparse penalty tuning parameter, which was chosen by a five-fold cross-validation 12 

method.  13 

 We ran each SVC model for 100 repetitions and reported the brain measures that were 14 

consistently selected by more than 90 repetitions. These measures were interpreted as a set of 15 

critical brain GMV/metabolism networks that contributed to memory across the cognitive stages, 16 

with a vector of beta coefficients reflecting stage-dependent (non)linearity in the network-memory 17 

association.  18 

To assess the stability of these beta coefficients, we calculated the mean and standard error 19 

of the stage/pathology-dependent coefficients estimated from all 100 repetitions. Moreover, to 20 

assess the specificity of the selected networks, we randomly permuted the memory scores 100 21 

times across the participants and repeated the SVC modelling 100 times within each of the 100 22 
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permuted data sets, following our previous approach 45. These ‘null’ permutations should yield 1 

inconsistent selection of predictors, if any, as compared to our actual models. SVC modelling was 2 

performed by in-house R scripts based on Daye and colleagues 46. 3 

 To further confirm that our findings were robust, we repeated the analyses with another 4 

ordering strategy which did not divide MCI and probable AD into two separate groups (i.e., CDR-5 

SOB and age ordering were done across all individuals with either MCI or probable AD diagnosis) 6 

in each pathology group (Supplementary Fig. 4B).  7 

To compare the brain metabolic and structural network scores between different cognitive 8 

stages and differenct pathology groups (Fig. 1, step 3), we performed ANOVA among the 9 

cognitive stages for each pathology, and ANOVA among the pathology groups for each cognitive 10 

stage, followed by post-hoc two-sample t-tests (alpha = 0.05).  11 
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SUPPLEMENTARY METHODS 1 

CSF analysis 2 

CSF AD biomarkers of Aβ1-42 and CSF p-tau181p were measured using the Luminex multiplex 3 

platform (Luminex, Austin, TX, USA) and Innogenetics INNO-BIA AlzBio3 (Innogenetics, Ghent, 4 

Belgium) immunoassay reagents. The details of the ADNI methods for the acquisition and 5 

measurement of CSF can be found at www.adni-info.org. 6 

 7 

Neuropsychological assessment 8 

The ADNI-mem is a validated composite memory score derived using data from the ADNI 9 

neuropsychological battery 1. A modern psychometric approach was used to analyze the Rey 10 

Auditory Verbal Learning Test, AD assessment schedule-cognition (ADAS-cog), MMSE, and 11 

Logical Memory tests to obtain a composite memory score. In ADNI-mem composite scores, 12 

lower scores reflect poorer memory performance. The details of the ADNI protocols for the 13 

neuropsychological assessments and the methods for developing the ADNI-mem can be found at 14 

www.adni-info.org. 15 

 16 

Image acquisition and preprocessing 17 

All participants from the main dataset underwent T1-weighted MRI scans according to the 18 

standardized ADNI protocol using 3-Tesla GE, Philips, and Siemens MRI scanners with a sagittal 19 

volumetric magnetization-prepare rapid-acquisition gradient echo (MPRAGE) sequence 20 

(TR=2300ms, TE = minimum full, approximate TI=900ms, Slice Thickness=1.2, flip-angle = 9°) 21 

or T1‐weighted accelerated sagittal inversion‐recovery spoiled gradient‐recalled (SPGR) sequence 22 

(TR = 400 ms, TE = minimum full, flip-angle = 11°, slice thickness = 1.2 mm and FOV = 26 cm). 23 
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Additional participants who underwent structural MRI brain scans using 1.5-tesla GE, Philips, and 1 

Siemens MRI scanners were included to form a validation dataset with a larger sample size. For 2 

these participants, T1-weighted MRI scans were acquired using an MPRAGE sequence with 3 

TR=2400ms, minimum full TE, TI=1000ms, Slice Thickness=1.2, and flip angle of 8 degrees (scan 4 

parameters vary between sites, scanner platforms, and software versions).  5 

All participants also underwent [18F]FDG PET to study cerebral glucose metabolism (185 MBq (5 6 

mCi), dynamic 3D scan of six 5-min frames 30-60 min post-injection). Further details on MRI and 7 

PET acquisition parameters can be found at the ADNI website http://adni.loni.usc.edu/methods.  8 

 9 

Voxel-based morphometry 10 

All T1-weighted MRI scans were corrected for field distortions and processed using the CIVET 11 

image processing pipeline (www.bic.mni.mcgill.ca/ServicesSoftware/CIVET). The MRI images 12 

underwent non-uniformity correction, brain masking and segmentation, and normalization to the 13 

Montreal Neurological Institute (MNI) space with affine and nonlinear transformation. An in-14 

house processing pipeline based on MINC toolkits was then applied to generate voxel-based 15 

morphometry (VBM) images based on the CIVET outputs as previously described 2. In brief, a log 16 

Jacobian determinant was derived based on the nonlinear vector field from the CIVET outputs, 17 

followed by transformation into a scalar, modulated with grey matter probability mask. The GM 18 

probability maps were then smoothed with an 8mm Full-Width at Half-Maximum (FWHM) 19 

Gaussian kernel. 20 

 21 

 22 

 23 
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[18F]FDG PET processing 1 

[18F]FDG PET images were processed with an in-house processing pipeline as described in our 2 

previous work 3. The pre-processed images from the ADNI database were smoothed with an 8mm 3 

FWHM Gaussian kernel, followed by linear co-registration and non-linear spatial normalization 4 

to the MNI 152 standardized space with the use of transformation matrices derived from the PET 5 

native to MRI native space and the MRI native to the MNI 152 space. The voxel-wise brain glucose 6 

metabolism standardized uptake value ratio (SUVR) maps were then generated with the pons as 7 

the reference region.  8 

 9 

SUPPLEMENTARY RESULTS 10 

The ANG-based metabolic and HIP-based structural network findings were replicated in both the 11 

main and validation datasets (Supplementary Fig. 2, 3, and 7). In addition, in the main dataset, 12 

lower insular metabolic network score was identified to be associated with lower memory 13 

impairment only in the A-T+ group, the influence of which was highest in the early CN stage and 14 

gradually decreased across CN and MCI stages before regaining a minimum influence in the late 15 

MCI/dementia stages. However, this finding was not replicated in the validation dataset. 16 

 17 
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SUPPLEMENTARY TABLES 

Supplementary Table 1. Participants demographics for network seed definition step.  

 Main dataset   Validation dataset  

 CN probable AD p-value  CN probable AD p-value 

N 232 167 -  383 360 - 

Age, y 56.53~90.22 55.96~90.50   56.53~93.80 55.33~90.50  

73.52±6.27 74.35±8.07 0.25  74.90±6.35 75.48±7.62 0.26 

Gender (M/F) 110/122 99/68 0.02*  195/188 214/146 0.02* 

Handedness (R/L) 207/25 154/13 0.32  346/37 336/24 0.14 

Education, y  16.23±2.54 15.95±2.68 0.01*  16.31±2.77 15.66±2.87 0.002* 

APOE e4 (+/-) 158/74 53/114 <0.001*  274/108 120/239 <0.001* 

Memory 1.07±0.62 -0.82±0.59 <0.001*  1.02±0.60 -0.85±0.61 <0.001* 

MMSE 29.01±1.23 23.30±2.37 <0.001*  29.02±1.20 22.83±3.36 <0.001* 

CDR-SOB 0.05±0.16 4.59±1.70 <0.001*  0.02±0.47 4.77±2.08 <0.001* 

Note: Data on age are range and mean ± SD. Data on education and memory are mean ± SD. Data on memory are in z-scores. Abbreviations: CN = 

cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer's disease; A= β-amyloid; T = tau; ‘+’ = positive; ‘-’ = negative; y = years; M 

= male; F = female; R = right; L = left; MMSE = Mini-Mental State Exam; CDR-SOB = Clinical Dementia Rating scale-sum of box. * indicate 

significant group difference between CN and probable AD. 
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Supplementary Table 2. Study participant demographics of the validation dataset for the PLS-SVC model. 

 A-T-  A-T+  A+T-/A+T+ 

 CN MCI probable 

AD 

 CN MCI probable 

AD 

 CN MCI probable 

AD 

N 56 82 5  92 79 11  114 264 156 

Age, y 62.24~90.

13 

56.08~88.

51 

69.56~90.5

0 

 56.53~93.8

0 

55.15~88.

98 

60.79~81.3

7 

 60.19~90.0

8 

55.38~91.

57 

55.96~90.4

6 

74.0±6.09

m 

70.62±7.5

3cd 

79.51±9.22

m 

 72.81±6.36

m 

70.54±8.4

1cd 

76.22±6.52

m 

 75.65±6.33

m 

73.70±6.7

9c 

74.24±7.88 

Gender (M/F) 29/27 45/37 5/0  52/40d 40/39d 10/1cm  53/61 154/110 89/67 

Handedness 

(R/L) 

53/3 68/14 5/0  81/11 71/8 10/1  107/7 240/24 144/12 

Education, y  16.23±2.9

0 

16.40±2.5

8 

15.60±4.39  16.71±2.75 16.01±2.6

9 

16.27±2.41  16.27±2.56 16.11±2.7

5 

15.85±2.65 

APOE e4 (+/-) 9/47 17/65 0/5  17/75 18/61 1/10  49/65md 160/104cd 113/43cm 

Memory 1.06±0.66

md 

0.69±0.64c

d 

-

0.35±0.78c

m 

 1.12±0.57m

d 

0.53±0.62c

d 

-

0.54±0.64c

m 

 0.95±0.61m

d 

0.17±0.63c

d 

-

0.88±0.53c

m 
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MMSE 28.93±1.4

4d 

28.52±1.3

4d 

25.40±2.19

cm 

 28.96±1.19

md 

28.27±1.6

5cd 

24.0±2.05c

m 

 29.07±1.15

md 

27.77±1.8

2cd 

22.89±2.67

cm 

CDR-SOB 0.05±0.18

md 

1.23±0.64c

d 

4.20±2.66c

m 

 0.05±0.15m

d 

1.22±0.75c

d 

4.32±1.23c

m 

 0.04±0.15m

d 

1.52±0.91c

d 

4.73±1.85c

m 

ICV 1564.58± 

148.69 

1528.79± 

131.03 

1583.20± 

99.88 

 1554.05± 

135.70 

1559.29± 

145.90 

1599.97± 

183.02 

 1536.14± 

145.69 

1567.10± 

148.96.52 

1551.78± 

161.75 

Note: Data on age are range and mean ± SD. Data on education, ICV and memory are mean ± SD. Data on memory are in z-scores. Abbreviations: CN 

= cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer's disease; A= β-amyloid; T = tau; ‘+’ = positive; ‘-’ = negative; y = years; 

M = male; F = female; R = right; L = left; MMSE = Mini-Mental State Exam; CDR-SOB = Clinical Dementia Rating scale-sum of box; ICV = 

intracranial volume. Superscripts (‘c’, ‘m’, ‘d’) represent significant group difference with CN, MCI and probable AD respectively.           
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Supplementary Table 3. The coordinates of the peak foci of regions showing difference in 

metabolism and grey matter volume between probable AD and healthy controls.  

  Main dataset  Validation dataset 

Network Label Anatomical Label x y z  x y z 

Hippocampus left HIP -19 -3 -22  -33 -18 -17 

right HIP 19 -3 -21  19 -2 -22 

Default mode left ANG -47 -63 39  -46 -63 39 

right ANG 50 -60 37  51 -60 37 

PCC -4 -52 29  -4 -52 27 

mPFC 1 50 -5  -2 57 4 

Salience left INS -43 0 -10  -43 -4 -5 

right INS 44 -2 -7  44 -2 -5 

Executive 

control 

left DLPFC -46 11 40  -46 11 40 

right DLPFC 42 15 40  42 15 40 

left PPC -53 -45 43  -52 -46 45 

right PPC 52 -52 44  52 -52 44 

Abbreviations: HIP = hippocampus; ANG = angular gyrus; PPC = posterior parietal cortex; 
mPFC = medial prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PCC 
= posterior cingulate cortex. 
 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.28.482280doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482280
http://creativecommons.org/licenses/by/4.0/


 53 

SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Flowchart of participant pool selection. Abbreviations: CN = 
cognitively normal; MCI = mild cognitive impairment; probAD = probable AD; A= β-amyloid; 
T = tau; ‘+’ = positive; ‘-’ = negative; PLS = partial least square analysis; SVC = sparse varying 
coefficient modelling. 
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Supplementary Figure 2. The integrity of brain metabolic networks in participants with 
and without amyloid pathology across cognitive stages (validation dataset). A. Brain slices 
of metabolic covariance networks associated with each brain seed defined from FDG-PET data 
highlighted in blue circles. Brain metabolic network resemabled canonical brain networks. The 
intensity of colorbar represents bootstrap ratios, derived from dividing the weight of the 
singular-vector by the bootstrapped standard error. B. Individual-level brain metabolic network 
scores were lower in individuals with worse cognition and amyloid pathology. Summary of 
individual-level metabolic network scores (mean ± SD) were presented in bar charts. ‘*’ 
indicates significant group difference (ANOVA; p < 0.05). Thick lines indicate group 
differences in brain network scores between different cognitive stages (grey dashed) or 
pathology groups (dark). Abbreviations: HIP = hippocampus; ANG = angular gyrus; PCC = 
posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = 
dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively normal; MCI 
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= mild cognitive impairment; pAD = probable AD; A= β-amyloid; T = tau; ‘+’ = positive; ‘-’ 
= negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; 
mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC 
= posterior parietal cortex. 
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Supplementary Figure 3. The integrity of brain structural networks in participants with 
and without amyloid pathology across cognitive stages (validation dataset). A. brain slices 
of structural covariance networks associated with each brain seed defined from GMV data 
highlighted in blue circles. The intensity of colorbar represents bootstrap ratios, derived from 
dividing the weight of the singular-vector by the bootstrapped standard error. B. Individual-
level brain structural network scores were lower in individuals with worse cognition and 
amyloid pathology. Summary of individual-level structural network scores (mean ± SD) were 
presented in bar charts. ‘*’ indicates significant group difference (ANOVA; p<0.05). Thick 
lines indicate group differences in all brain network scores between different cognitive stages 
(grey dashed) or pathology groups (dark). Abbreviations: HIP = hippocampus; ANG = angular 
gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; 
DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively 
normal; MCI = mild cognitive impairment; pAD = probable AD; A= β-amyloid; T = tau; ‘+’ 
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= positive; ‘-’ = negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior 
cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral 
prefrontal cortex; PPC = posterior parietal cortex.  
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Supplementary Figure 4. Subject ordering for SVC modelling within each pathology 
group. The participants were ordered by their diagnosis. In the main ordering method (panel 
A), CN was followed by MCI, and MCI was followed by probable AD. The validation ordering 
method (panel B) did not differentiate MCI and probable, where CN subjects was followed by 
subjects with MCI or probable AD. Within each diagnosis, the participants were ordered by 
the severity of cognitive impairment (i.e., no impairment → severe impairment). Specifically, 
the participants within CN diagnosis were ordered by decreasing MMSE scores, and the 
participants within MCI or dementia diagnosis were ordered by increasing CDR-sum of boxes 
(SOB) scores. If the participants had the same MMSE or CDR-SOB scores in the earlier 
ordering step, they will then be further ordered by increasing age (i.e., young → old). After 
ordering the participants, we distributed the participants evenly into bins (i.e., 10 subjects/bin).  
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Supplementary Figure 5. Differential stage-dependent associations of metabolic and 
structural network scores with memory impairment in different pathology groups (main 
dataset with the alternative ordering strategy of treating MCI and probable AD as one 
group). Solid curves represent the mean associations (beta coefficients) of brain network 
scores with memory as a function of advancing AD continuum estimated from 100 replicates 
(metabolic in red; structural in blue). The dashed curves represent the point-wise 2* standard 
errors of the solid curves estimated from 100 replicates. The participants were ordered by their 
cognitive stages (i.e., CN → MCI/probable AD). Within each of the two stages, the participants 
were then ordered by general cognition or dementia severity (i.e., no impairment → severe 
impairment). Participants with the same cognitive impairment severity were further ordered by 
increasing age (i.e., young → old). Ordered participants were distributed evenly into bins (i.e., 
10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment. 
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Supplementary Figure 6. Differential stage-dependent associations of demographic 
variables with memory impairment in different pathology groups (main dataset). Solid 
curves represent the mean associations (beta coefficients) of brain network scores with memory 
as a function of advancing AD continuum estimated from 100 replicates. The dashed curves 
represent the point-wise 2* standard errors of the solid curves estimated from 100 replicates. 
The participants were ordered by their cognitive stages (i.e., CN → MCI → probable AD). 
Within each diagnosis, the participants were then ordered by general cognition or dementia 
severity (i.e., no impairment → severe impairment). Participants with the same cognitive 
impairment severity were further ordered by increasing age (i.e., young → old). Ordered 
participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: CN = 
cognitively normal; MCI = mild cognitive impairment. 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.28.482280doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482280
http://creativecommons.org/licenses/by/4.0/


 61 

 

Supplementary Figure 7. Differential stage-dependent associations of demographical 
variables with memory impairment in different pathology group (validation dataset). 
Solid curves represent the mean associations (beta coefficients) of brain network scores with 
memory as a function of advancing AD continuum estimated from 100 replicates. The dashed 
curves represent the point-wise 2* standard errors of the solid curves estimated from 100 
replicates. The participants were ordered by their cognitive stages (i.e., CN → MCI → probable 
AD). Within each diagnosis, the participants were then ordered by general cognition or 
dementia severity (i.e., no impairment → severe impairment). Participants with the same 
cognitive impairment severity were further ordered by increasing age (i.e., young → old). 
Ordered participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: 
CN = cognitively normal; MCI = mild cognitive impairment. 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.28.482280doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482280
http://creativecommons.org/licenses/by/4.0/


 62 

 

Supplementary Figure 8. Differential stage-dependent associations of demographical 
variables with memory impairment in different pathology group (main dataset with the 
ordering strategy merging the MCI and probable AD). Solid curves represent the mean 
associations (beta coefficients) of brain network scores with memory as a function of 
advancing AD continuum estimated from 100 replicates. The dashed curves represent the 
point-wise 2* standard errors of the solid curves estimated from 100 replicates. The participants 
were ordered by their cognitive stages (i.e., CN → MCI/ probable AD). Within each stage, the 
participants were then ordered by general cognition or dementia severity (i.e., no impairment 
→ severe impairment). Participants with the same cognitive impairment severity were further 
ordered by increasing age (i.e., young → old). Ordered participants were distributed evenly 
into bins (i.e., 10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive 
impairment. 
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Supplementary Figure 9. Variable selection frequency distribution for permuted datasets 

using sparse varying-coefficient (SVC) model.  
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