(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10

11

12

13

14

15

16

17

18

19

20

21

22

23

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.28.482280; this version posted March 2, 2022. The copyright holder for this preprint

available under aCC-BY 4.0 International license.

Stage dependent differential influence of metabolic and structural networks on memory
across Alzheimer’s disease continuum

Kok Pin Ng FRCP'*5*, Xing Qian PhD**, Kwun Kei Ng PhD?, Fang Ji PhD?, Pedro Rosa-Neto
MD PhD’8, Serge Gauthier MD FRCPC?, Nagaendran Kandiah FRCP'*°, Juan Helen Zhou

PhD?346 for the Alzheimer’s Disease Neuroimaging Initiative®

"Department of Neurology, National Neuroscience Institute, Singapore, Singapore

2Centre for Sleep and Cognition and Centre for Translational MR Research, Yong Loo Lin School
of Medicine, National University of Singapore, Singapore, Singapore

3Department of Electrical and Computer Engineering, National University of Singapore,
Singapore, Singapore

“Duke-NUS Medical School, Singapore, Singapore

SLee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore,
Singapore

®Integrative Sciences and Engineering Programme (ISEP), National University of Singapore,
Singapore, Singapore

"Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging,
Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire
de santé et de services sociaux (CIUSSS) de 1’Ouest-de-1’ile-de-Montréal, and Departments of
Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill University,
Montreal, Quebec, Canada

$Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada


https://doi.org/10.1101/2022.02.28.482280
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.28.482280; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

*Both authors contributed equally to the manuscript

*Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI and/or provided data but did not
participate in the analysis or writing of this report. A complete listing of ADNI investigators can
be found at http://adni.loni.usc.edu/wp-

content/uploads/how_to apply/ADNI_Acknowledgement List.pdf

Corresponding author:

Juan Helen Zhou, Ph.D.

Address: Tahir Foundation Building (MD1), 12 Science Drive 2, #13-05, National University of
Singapore, Singapore 117549

Tel: (65) 66014918

Fax: (65) 62218685

Email: helen.zhou@nus.edu.sg

Running title: Network-memory association trajectory

Keywords: metabolic and structural networks; memory; amyloid; tau, Alzheimer’s disease, mild
cognitive impairment

Abbreviations:

A = amyloid-beta plaques; AD = Alzheimer’s disease; ADNI = Alzheimer’s Disease
Neuroimaging Initiative; ANG = angular gyrus; ANOVA = analysis of variance; AP = amyloid-
beta; CDR = clinical dementia rating; CN = cognitively normal; DLPFC = dorsolateral prefrontal

cortex; DMN = default mode network; ECN = executive control network; FC = functional


https://doi.org/10.1101/2022.02.28.482280
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.28.482280; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

connectivity; FDG = [18F]Fluorodeoxyglucose; FWE = family-wise error; FWHM = Full-Width
at Half-Maximum; GM = grey matter; GMV = grey matter volume; HIP = hippocampus; ICV =
intracranial volume; INS = insular; LV = latent variable; MCI = mild cognitive impairment;
MMSE = mini-mental state examination; MNI = Montreal Neurological Institute; mPFC = medial
prefrontal cortex; MPRAGE = magnetization-prepare rapid-acquisition gradient echo; N =
neurodegeneration; PCC = posterior cingulate cortex; PLS = partial least squares; PPC = posterior
parietal cortex; SN = salience network; SOB = sum of boxes; SPGR = sagittal inversion-recovery
spoiled gradient-recalled; SUVR = standardized uptake value ratio, SVC = sparse varying

coefficient; T = tau neurofibrillary tangles accumulation; VBM = voxel-based morphometry
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ABSTRACT

Background: Large-scale neuronal network breakdown underlies memory impairment in
Alzheimer’s disease (AD). However, the differential trajectories of the relationships between
network organization and memory across pathology and cognitive stages in AD remain elusive.
We determined whether and how the influences of individual-level structural and metabolic
covariance network integrity on memory varied with amyloid pathology across clinical stages
without assuming a constant relationship. Methods: 708 participants from the Alzheimer’s
Disease Neuroimaging Initiative were studied. Individual-level structural and metabolic
covariance scores in higher-level cognitive and hippocampal networks were derived from
magnetic resonance imaging and ['®F]fluorodeoxyglucose positron emission tomography using
seed-based partial least square analyses. The non-linear associations between network scores and
memory across cognitive stages in each pathology group were examined using sparse varying
coefficient modelling. Results: We showed that the associations of memory with structural and
metabolic networks in the hippocampal and default mode regions exhibited pathology-dependent
differential trajectories across cognitive stages using sparse varying coefficient modelling. In
amyloid pathology group, there was an early influence of hippocampal structural network
deterioration on memory impairment in the preclinical stage, and a biphasic influence of the
angular gyrus-seeded default mode network metabolism on memory in both preclinical and
dementia stages. In non- amyloid pathology groups, in contrast, the trajectory of the hippocampus-
memory association was opposite and weaker overall, while no metabolism covariance networks
were related to memory. Key findings were replicated in a larger cohort of 1280 participants.
Conclusions: Our findings highlight potential windows of early intervention targeting network

breakdown at the preclinical AD stage.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by
neuropathological accumulation of amyloid-beta (AP) plaques (A), intraneuronal tau
neurofibrillary tangles (T), and neurodegeneration (N) in the brain 2. While AD is traditionally a
clinical-pathologic condition, the emerging development of biomarkers to profile AD
pathophysiology has led to the proposal of AD as a biological construct based on the AT(N) system
34 The incorporation of the AT(N) classification into the clinical continuum will offer robust
disease staging by combining both pathophysiological and cognitive phenotypes which span from
cognitively intact to mild cognitive impairment (MCI) before progressing to the dementia stage °.
Studies have suggested that AP is the first to become abnormal in AD, followed by downstream
pathophysiological changes of tauopathy, neurodegeneration, and cognitive impairment & 7- %,
While neurodegeneration is widely associated with worse cognitive impairment in neurocognitive
disorders, it remains unknown whether the influence of neurodegeneration on cognitive function
varies with AD biomarkers status and across the AD continuum.

Neurodegeneration represents neuronal injury in the forms of cerebral grey matter (GM)
atrophy and hypometabolism. In AD, it is widely postulated that AP triggers tau-mediated toxicity
leading to AD-type neurodegeneration in brain regions such as the hippocampus, the precuneus
and posterior cingulate cortex, bilateral angular gyrus, and medial temporal lobes ° !0 11 12,
Recently, amyloid and tau pathologies are also shown to have a synergistic effect on AD-type
hypometabolism, involving the basal and mesial temporal, orbitofrontal, and anterior and posterior
cingulate cortices '* 4. However, neurodegeneration may also occur prior to incident amyloid

positivity '3 and be influenced by the loss of microtubule stabilizing function and toxic effects of

tau pathology, independent of amyloid pathology °.
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Advancement in brain network analysis offers insights into the functional effects of AD
pathophysiology on cognitive changes. Work from our group has demonstrated that AD
pathophysiologies compromise brain sturcture and function systematically by capitalizing on the
intrinsic connectivities among brain regions !’. Accumulating evidence suggests that AD
pathological deposition around neurons which impairs synaptic communication, leads to specific
large-scale brain intrinsic network disorganization '* !°, Decreased functional connectivity in the
default mode network (DMN) derived from resting state functional MRI is well-described in MCI
and AD 20-21,22,23.24 while aberrant loss of functional connectivity in other higher-order cognitive
networks such as the executive control network (ECN) and salience network (SN) are being
increasingly reported 22 2526,

Brain networks can also be constructed based on similarity in GM structure and
metabolism between brain areas across individuals, known as the GM structural and metabolic
covariance network respectively 27-2%2°, Both structural and metabolic covariance networks show
convergent patterns with the intrinsic connectivity network in healthy individuals and mirror GM
atrophy patterns in distinct neurodegenerative disorders '*27-39, Using this approach, a recent study
revealed differential patterns of structural covariance networks within different amyloid pathology
groups classified by CSF ABi4, and P-tauisi levels 3'. However, existing studies on the GM
structural and metabolic covariance networks were largely reliant on group-level correlation maps
of cortical morphology and metabolism, which cannot be used to infer individual differences in
cognition. It is postulated that network analysis at the individual level will allow direct evaluation
of each individual’s structural and metabolic covariance networks, hence providing deeper
understanding on the effects of brain networks on cognitive performances *2. For instance, a cube-

based correlation approach to calculate the individual GM networks by computing intracortical
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similarities in GM morphology ** showed that single-subject GM graph properties were associated
with individual differences of clinical progression in AD 3% 35 3637 A network template
perturbation approach was also introduced to construct an individual differential SCN using
regional GM volume, though it required reference models derived from a group of normal control
subjects 3. Nevertheless, the relationships between changes in individual-level network-based
neurodegeneration across different amyloid pathology groups and cognitive stages, and their
influence on memory impairment, remain unclear.

The influence of cerebral GM loss and ['®F]Fluorodeoxyglucose (FDG) hypometabolism
on cognitive function in AD has often been modelled as a linear relationship * 4°. However,
emerging evidence suggests that structural and metabolic abnormalities in AD may follow a
sigmoidal curve trajectory with an initial period of acceleration and subsequent deceleration 7> 4!
42 While the dynamic effects of AD biomarkers on worsening cognition can be better modelled

43, it remains largely

by sigmoid-shaped curves rather than a constant across disease stages
unknown how brain structural and metabolic networks will influence cognition decline
differentially in individuals stratified into different pathology groups and cognitive stages. Once
these trajectories are defined across the AD continuum and subgroups, they can potentially
highlight windows of opportunity for targeted intervention at the appropriate cognitive stages to
improve disease outcomes.

To cover these gaps, we sought to determine the differential associations of brain
metabolism and GM structural networks with memory function using a neurodegeneration
covariance network approach, among cognitively normal (CN), mild cognitive impairment (MCI),

and probable AD individuals stratified by their A and T biomarker status. We used the seed partial

least squares (PLS) method * to evaluate the individual-level brain network integrity. We
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employed the sparse varying coefficient (SVC) model which does not assume a constant
relationship between brain measures and cognitive performance over different cognitive stages +>
46,47 Besides capturing the possible nonlinear brain-cognition relationship, SVC also allows the
selection of significant predictors with the LASSO sparse penalty while eliminating the
contribution of the less important predictors. We hypothesized that individual-level brain
metabolic and structural network integrity would be non-linearly associated with memory
performance across the AD continuum and such trajectories would vary depending on the presence

21,22, 48 we further

of amyloid and tau protein deposition. Based on our previous findings
hypothesized that the posterior DMN and the medial temporal lobe regions would play an early
and dominant role affecting the memory performance in individuals with amyloid pathology.

Our study provides first evidence that both hippocampal structural and angular gyrus
metabolic network integrity contributed to memory performance in the early cognitively normal
stage in individuals with amyloid deposition. However, in the amyloid positive individuals with
dementia, only the angular gyrus metabolic network dominated the memory-network association.
Amyloid negative individuals did not have such patterns. These findings characterize the dynamic
influence of brain structural and metabolic networks on memory function across the AD continuum

and underscore the importance of early intervention targeting neuronal dysfunction in the

preclinical AD stage to improve memory outcomes.

RESULTS
Group differences in brain metabolic and structural covariance networks
We selected 812 participants (232 CN, 413 MCI and 167 probable AD) from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database with 3T T1-weighted MRI and ['*F]FDG PET
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scans to define seed regions for brain network derivation (Fig. 1, step 1). As our study focused on
memory and AD pathology, we chose to study the individual-level structural and metabolic
covariance within higher-order cognitive networks such as DMN, SN, ECN as well as the
hippocampus (HIP)-based memory network #-3°. We defined a set of 12 seed regions to derive
these covariance networks on the basis that they have been shown to reliably produce the relevant
network across imaging modalities. Specifically, the DMN included bilateral angular gyrus (ANG),
posterior cingulate cortex (PCC), and medial prefrontal cortex (mPFC); the SN included bilateral
anterior insular (INS); the ECN included bilateral dorsolateral prefrontal cortex (DLPFC) and
posterior parietal cortex (PPC); the memory network included bilateral HIP. The seed coordinates
were determined based on the group comparisons of the grey matter volume (GMV) probability
and glucose metabolic spatial maps between CN and probable AD individuals (Supplementary

Table 3, see details in Methods).
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Figure 1. Study design schematic. 708 participants with either healthy cognition (CN), mild
cognitive impairment (MCI) or dementia were studied. Twelve brain seeds covering the key
regions of hippocampus, the default mode network, the executive control network, and salience
network were defined based on hypometabolism (via FDG) and grey matter atrophy (via MRI)
patterns in all patients with probable AD compared to CN (step 1). Using seed-based partial least
square (PLS) analysis (step 2), the covariance patterns in metabolism and GMV maps were
identified and used to derive the individual-level brain metabolic network scores and structural
network scores for each seed. The group difference was evaluated between different cognitive
stages and pathology groups (step 3). We then investigated the differential stage-dependent
associations between these key brain network scores with memory performance in each of the
three pathology groups (A-T-, A-T+, and A+T-/A+T+) separately using sparse varying coefficient
(SVC) modelling (step 4). Abbreviations: A = Af; T = tau; ‘-’ = negative; ‘+’ = positive.
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To derive brain structural and metabolic networks from individuals with and without
amyloid pathology, we further identified 708 out of the existing 812 participants who underwent
neuropsychological assessments, and lumbar puncture, in addition to ['*F]JFDG PET and T1-
weighted MRI scans to form the main dataset (Table 1). Using seed PLS (Fig. 1, step 2, see details
in Methods), we identified the structural and metabolic covariance network patterns associated
with each seed at the group-level (Fig. 2A and Fig. 3A). We projected the original individual GMV
and metabolic maps onto the covariance network maps to derive the individual brain structural or
metabolic network scores, which reflected how strongly each brain network pattern was
manifested in the individual’s metabolic and structural brain networks.

First, we compared the brain metabolic and structural network scores between different
pathology groups and cognitive stages (Fig. 1, step 3). At the same cognitive stage, amyloid
positive CN and MCI individuals had lower metabolic and structural network scores than those
amyloid negative CN and MCI individuals for all the networks (Fig. 2B & 3B). No such difference

was observed at the dementia stage.

11
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Table 1. Subject demographics for the main study cohort.

Age,y

Gender (M/F)

Handedness
(R/L)

Education, y

APOE e4 (+/-)

Memory
MMSE
CDR-SOB

ICV

A-T- A-T+ A+T-/A+T+

CN MCI probable AD CN MCI probable AD CN MCI probable AD
30 74 4 80 75 7 85 225 128
65.12~85.16  56.08~88.51  69.56~90.50 56.53~84.47  55.15~88.83  60.79~80.76 60.19~90.08  55.38~91.57  55.96~90.46
72.24+4.54  69.78+£7.20¢  77.3749.11™ 71.95+5.87 70.2148.16  74.57£7.70 75.37+6.59 73.1746.93  74.1248.19
12/18 39/35 4/0 45/35 38/37 6/1 37/48 127/98 72/56

29/1 60/14 4/0 69/11 67/8 7/0 79/6 203/22 118/10
16.63+2.68 16.45£2.59  17.50+1.29 16.88+2.67 16.00£2.65  16.71+2.43 16.34+2.36 16.1242.74  15.78+2.71
6/24 16/58 0/4 16/64 17/58 1/6 38/47™md 140/85¢ 93/35¢m
1.2840.66™  0.75+0.64%¢  -0.12+0.68°™ 1.17£0.57™  0.55+0.62°¢  -0.40+0.67°™ 0.97+0.63™  0.20+0.63¢  -0.8740.53°™
28.70+1.68¢  28.62+1.319  25.75+2.36™ 29.15+0.99m¢  28.29+1.64¢ 23.86+2.19™ 29.02+1.17™4 27.81+1.86%¢  23.21+£2.24m
0.02+0.09™¢  1.2240.60°¢  4.38+3.04™ 0.05+0.15™m¢ 1.20£0.76°¢  4.57+1.40°™ 0.05+0.17™¢ 1.53£0.90%¢  4.64+1.70°™
1523.77+ 1520.05+ 1540.83+ 1554.01+ 1559.14+ 1566.75+ 1524.87+ 1558.61+ 1549.78+
152.57 127.78 36.50 128.10 147.96 221.76 148.29 148.25 163.05

Note: Data on age are range and mean + SD. Data on education, ICV, and memory are mean + SD. Data on memory are in z-scores.
Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer's disease; A= B-amyloid; T = tau; ‘+’ =
positive; ‘-’ = negative; y = years; M = male; F = female; R = right; L = left; MMSE = Mini-Mental State Exam; CDR-SOB = Clinical

Dementia Rating Sum of Box; ICV = intracranial volume. Superscripts (*°’, ‘™,
MCI and probable AD respectively.

«ds

) represent significant group difference with CN,
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Figure 2. The integrity of brain metabolic networks in participants with and without amyloid
pathology across cognitive stages. A. Brain slices of metabolic covariance networks associated
with each brain seed defined from FDG-PET data highlighted in blue circles. Brain metabolic
network resemabled canonical brain networks. The intensity of colorbar represents bootstrap ratios,
derived from dividing the weight of the singular-vector by the bootstrapped standard error. B.
Individual-level brain metabolic network scores were lower in individuals with worse cognition
and amyloid pathology. Summary of individual-level metabolic network scores (mean + SD) were
presented in bar charts. ‘*’ indicates significant group difference (ANOVA; p <0.05). Thick lines
indicate group differences in brain network scores between different cognitive stages (grey dashed
lines) or pathology groups (dark lines). Abbreviations: HIP = hippocampus; ANG = angular gyrus;
PCC = posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC =
dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively normal; MCI =
mild cognitive impairment; pAD = probable AD; A= B-amyloid; T = tau; ‘+’ = positive; ‘-’ =
negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC =

13
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media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior
parietal cortex.

Structural network
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Figure 3. The integrity of brain structural networks in participants with and without amyloid
pathology across cognitive stages. A. brain slices of structural covariance networks associated
with each brain seed defined from GMV data highlighted in blue circles. The intensity of colorbar
represents bootstrap ratios, derived from dividing the weight of the singular-vector by the
bootstrapped standard error. B. Individual-level brain structural network scores were lower in
individuals with worse cognition and amyloid pathology. Summary of individual-level structural
network scores (mean + SD) were presented in bar charts. ‘*’ indicates significant group difference
(ANOVA; p<0.05). Thick lines indicate group differences in all brain network scores between
different cognitive stages (grey dashed lines) or pathology groups (dark lines). Abbreviations: HIP
= hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal
cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex;
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CN = cognitively normal; MCI = mild cognitive impairment; pAD = probable AD; A= -amyloid;
T =tau; ‘“+’ = positive; ‘-” = negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior
cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal
cortex; PPC = posterior parietal cortex.

Within the same pathology group, we observed slightly different patterns in structural and
metabolic networks. Specifically, in participants with amyloid pathology (A+T-/A+T+), the
probable AD group had lower metabolic and structural network scores than the CN and MCI
groups in all the networks (Fig. 2B right and 3B right). The amyloid positive MCI group had
comparable metabolic network scores but lower structural HIP-based memory network scores than
the amyloid positive CN group. In contrast, participants without amyloid and tau pathology (A-T-)
did not show any differences in both metabolic and structural networks across the three cognitive
stages (Fig. 2B left and 3B left). Interestingly, participants with tau pathology (A-T+) had no
cognitive stage-related differences in all metabolic networks, while the tau positive dementia group
had lower structural integrity in the mPFC-based anterior DMN and PPC-based ECN than the tau

positive CN group (Fig. 2B middle and 3B middle).

Divergent stage-dependent trajectories of the association between hippocampal structural
network integrity and memory performance in the three pathology groups

Next, we sought to determine the differential nonlinear trajectories of the association between
brain network integrity and memory impairment in different pathology groups across the three
cognitive stages using the SVC model (Fig. 1, step 4) *°. Note that we did not assume a constant
relationship here; instead, the network-memory association could vary across cognitive stages.

Instead of analyzing each brain measure in separate models, the SVC analysis allows all variables

15


https://doi.org/10.1101/2022.02.28.482280
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.28.482280; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

to be entered as predictors in the same multivariate model, with the identification of the most
important predictors and the elimination of the less important predictors (i.e. feature selection)
implemented by minimizing the penalized least squares function.

To characterize the possible stage-dependent tracjectories using SVC modelling, we
ordered the participants by their cognitive stages (i.e., CN — MCI — dementia; Supplementary
Fig. 4 A) in each of the three pathology groups (A-/T-, A-/T+ and A+T-/A+T+). Within each stage,
the participants were then ordered by their global cognition or dementia severity (i.e., no
impairment — severe impairment). Specifically, the participants within the CN group were
ordered by decreasing MMSE scores, while the participants within the MCI and dementia groups
were ordered by increasing CDR-sum of boxes (SOB) scores. Participants with the same MMSE
or CDR-SOB scores were further ordered by increasing age (i.e., young — old). Ordered
participants were distributed evenly into bins (i.e., 10 subjects/bin). In our SVC models, the
dependent variable was the ADNI memory composite score. Predictors included all the 14
FDG/GMYV regional network scores with gender, education years, APOE €4, intracranial volume
(ICV), and scanning site as nuisance variables. We performed the SVC modelling for each
pathology group separately to find the key predictors and the trajectories of their associations with
memory along the disease progression (see details in Methods).

The SVC models identified the HIP-based structural memory network score as a key
predictor of memory impairment in all three pathology groups (Fig. 4A and 5A). We found that
the lower HIP structural network scores, the lower the ADNI-mem scores (indicated by positive
beta coefficient). The strength of this association was higher (i.e., higher beta coefficient) in the

amyloid pathology group than the other two A- groups.
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More importantly, not only was the relationship between the HIP structural network and
memory performance non-linearly dependent on cognitive stages as hypothesized, but such non-
linear trajectories were also different across the three pathology groups (Fig. 4A and 5A).
Specifically, in the amyloid pathology group, the strength of this association was highest in early
CN stage, and decreased from late CN to early MCI stage (Fig. 4A, left). The strength of this

association remained stable in MCI and then decreased in the dementia stage.
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Figure 4. Brain metabolic and structural networks had differential stage-dependent
associations with memory in amyloid positive individuals. Data from the main (panel A) and
validation dataset (panel B) exhibited consistent stage-dependent memory-network association
trajectory from cognitively normal to dementia stage in participants with amyloid pathology (i.e.
A+T-/A+T+ group). Both hippocampal-seeded structural network (left, in blue) and angular
gyrus-seeded default mode metabolic network (right, in red) integrity contributed significantly to
memory performance in early cognitively normal stage. Such impact decreased in MCI stage for
both metabolic and structural networks. In contrast, only the metabolic network had a major
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influence on memory in late dementia stage. Solid curves represent the mean associations (beta
coefficients) of brain network scores with memory as a function of advancing AD continuum
estimated from 100 replicates. The dashed curves represent the point-wise 2* standard errors of
the solid curves estimated from 100 replicates. The participants were ordered by their cognitive
stages (i.e., CN — MCI — probable AD). Within each cognitive stage, the participants were then
ordered by general cognition (MMSE for CN) or dementia severity (CDR for MCI and dementia)
(i.e., no impairment — severe impairment). Participants with the same level of
impairment/severity were further ordered by increasing age (i.e., young — old). Ordered
participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: CN =
cognitively normal; MCI = mild cognitive impairment; HIP = hippocampus; ANG = angular gyrus.

The two amyloid negative groups had the opposite pattern of the amyloid positive group
(Fig. 5A). Specifically, in the A-T- group, the strength of the association between the HIP
structural network and memory performance was lowest in early CN stage and increased in the
late CN stage. It then remained stable in the MCI stage before a further increase in the dementia
stage. Similarly, in the A-T+ group, the strength of such association was low in the CN stage and
gradually increased in the MCI stage, reaching the highest in the late MCI and dementia stage.

Our findings suggest that the influence of the HIP-based structural network integrity on
memory performance begins early in the preclinical AD stage and the strength of this influence
gradually decreased as the cognitive stages progress. On the other hand, the influence of the HIP
network integrity on memory is weaker in individuals without AP pathology and peaks in the
dementia stage. The stronger hippocampus-memory association in the preclinical AD stage
supports the current strategy of early intervention to attain better cognitive outcomes.

Furthermore, demographical and genetic variables such as gender, education years and
APOE €4 genotype showed differential stage- and pathology-dependent associations with memory
performance (Supplementary Fig. 6). Females and fewer years of education were associated with

memory impairment in A-/T- and A-/T+ groups respectively. These associations were highest in
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the early CN stage and gradually decreased in late CN stage before increasing in the late MCI and
probable AD stages. In contrast, females, fewer years of education and APOE €4 carriers in the
amyloid pathology group were associated with memory impairment with a differential trajectory
(i.e., highest in the early CN stage and gradually decreased afterwards), although the strength of

this association was relatively lower overall compared to those in the A-/T- and A-/T+ groups.

Stage-dependent association between angular gyrus metabolic network integrity and
memory performance in amyloid pathology group

The SVC models identified the angular gyrus-based (ANG) metabolic network score (i.e., DMN)
to be associated with memory impairment only in the amyloid pathology group (Fig. 4A, right).
We found that the lower the ANG metabolic network score, the lower the ADNI-mem score. This
suggested that a breakdown in the ANG-based metabolic covariance network was related to worse
memory performance in the amyloid pathology group only. A non-linear relationship was also
observed between the ANG metabolic covariance network and memory performance across
different cognitive stages. The strength of this relationship showed an early peak in early CN and
gradually decreased in the late CN and MCI stages, before increasing in late MCI/dementia stage

again.
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Figure 5. Stage-dependent association of brain hippocampal structural network with
memory performance in A-T- and A-T+ pathology groups. Data from the main (panel A) and
validation dataset (panel B) exhibited consistent stage-dependent memory-network association
trajectory from cognitively normal stage to dementia stage in participants with A-T- and A-T+
pathology. The hippocampus-memory association was much weaker overall in non-amyloid/non-
tau and tau only groups compared to amyloid positive group (Figure 4). The memory-network
association was the lowest in early cognitively normal stage and gradually increased with clinical
progression in both groups, while the tau only group had stronger associations in dementia stage.
Solid curves represent the mean associations (beta coefficients) of brain network scores with
memory as a function of advancing AD continuum estimated from 100 replicates. The dashed
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curves represent the point-wise 2* standard errors of the solid curves estimated from 100 replicates.
The participants were ordered by their cognitive stages (i.e., CN — MCI — probable AD). Within
each cognitive stage, the participants were then ordered by general cognition (MMSE for CN) or
dementia severity (CDR for MCI and dementia) (i.e., no impairment — severe impairment).
Participants with the same same level of impairment/severity were further ordered by increasing
age (i.e., young — old). Ordered participants were distributed evenly into bins (i.e., 10
subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; HIP =
hippocampus.

Our findings are in line with the current literature which show that decreased glucose
uptake in the ANG is associated with worse cognitive performance in the later stages of AD. In
addition, we extend this field by demonstrating the early influence of the ANG-based metabolic
covariance network (mirroring the DMN) for memory performance in the preclinical AD stage.
This suggests that early metabolic dysfunction of the ANG and the extended DMN may predispose

individuals with preclinical AD to be more vulnerable to memory impairment.

Replication in the validation dataset

To test if the above findings from the main dataset can be replicated, we repeated the same
analyses using another larger validation dataset. We added an additional 468 individuals who
underwent 1.5T T1-weighted MRI scans and ['®F]FDG PET. With the original main dataset of 812
participants, we had 1280 participants in total for brain seed definition (Fig. 1, step 1). Out of 1280
participants, 859 participants had the same neuropsychological assessments, lumbar puncture for
the following analyses (Fig. 1, steps 2 & 3, Supplementary Table 3). The field strength (i.e., 1.5-
T or 3-T) was further included as an additional nuisance variable for analyses on the validation
dataset. We performed the same PLS-SVC analyses and replicated most of our key findings (Fig.

4B and 5B, Supplementary Fig. 2, 3, and 7, see Supplementary Results). Specifically, the HIP-
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based structural memory network and the ANG-based metabolic default mode network scores
were associated with memory impairment in the respective pathology groups with similar beta
curves as the main dataset. Furthermore, these observations remained robust when the analyses
were performed using the alternative ordering strategy of merging both MCI and dementia stages

(Supplementary Fig. 5 & 8).

High specificity of the SVC model

Lastly, we evaluated the specificity of the established SVC models using permutation tests. For
each null SVC model using the permuted datasets, the frequency distributions of variable selection
(i.e., the total times of selection as the key predictor of memory scores within the 100 permuted
datasets) appeared random (see Supplementary Fig. 9). As the selected variables in our main
findings were not favoured over the other variables in the null models, this indicated the high

specificity of the SVC models that were built on the original dataset.

DISCUSSION

This study revealed differential associations of brain structural and glucose metabolism covariance
networks with memory performance across the cognitive stages of CN, MCI and probable AD in
individuals stratified by AP and tau pathologies. Rather than assuming a constant brain-memory
association, we demonstrated that brain structural and metabolic network integrity had non-linear
associations with memory performance across different cognitive stages; such trajectories
exhibited opposing patterns in individuals with and without amyloid pathology. A lower HIP
structural network score was associated with a lower ADNI-mem score and among individuals

with amyloid pathology, the strength of this relationship was greatest in early CN and decreased
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in subsequent cognitive stages. In contrast, the strength of this association was lower and the
trajectory was opposite in those with both tau-only and non-amyloid/non-tau pathology. An
association between the breakdown of the default mode metabolic network seeded at the ANG
with memory deficit was also observed in individuals with amyloid pathology, with the strength
of this association peaking in early CN and decreasing gradually before rebounding in the late
MCl/dementia stage. Our findings support the AD biomarker hypothetical models by
characterizing the non-linear influence of brain structural and metabolic networks on memory
function across the AD continuum, hence paving the way for early interventions and stage-

dependent remedies to modify disease trajectory and improve clinical outcomes.

Early influence of hippocampal structural network deterioration on memory impairment in
asymptomatic amyloid-positive individuals

The HIP structural network is identified to be associated with memory impairment in all
three pathology groups which is consistent with the role that the hippocampus plays in memory

3152 However, the peak influence of the HIP structural integrity on memory

cognitive domain
differed among the three pathology groups. The early peak of the association at the CN stage in
the amyloid pathology group suggests an early influence of the hippocampal structural network
integrity on memory performance in the preclinical AD stage. Our findings are in line with a recent
study that compared MRI brain structure models of normal and AD participants across the entire
lifespan, showing that the AD model for hippocampus diverged early from normal aging trajectory
33, Accumulating evidence also suggests hippocampal volume and thickness as early imaging

correlates of verbal memory in preclinical AD 4. Furthermore, in a cohort of CN individuals,

decreased CSF AP42 was associated with hippocampal loss and poorer performance on episodic
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memory >, while an early effect of AP on memory mediated by hippocampal atrophy has been

demonstrated in non-demented older individuals ¢ 37: 3%

. These evidence supports our findings of
the early influence of structural covariance breakdown in the hippocampal networks on memory
performance in the preclinical AD stage.

In our cohort with amyloid pathology, the strength of the association between HIP
structural network and memory gradually decreased in the MCI and dementia stages. This suggests
that the HIP structural network integrity plays a lesser role on memory performance as the
cognitive stages progress. Given that memory impairment is expected to worsen as the cognitive
stage progresses, we postulate that structural networks outside the hippocampal/temporal lobes
may be increasingly affected while the influence from the hippocampal-based memory network
decreases. Indeed, the hippocampus system is well connected to various cortical brain regions in
processing memory information > and together with brain structures such as the prefrontal cortex
make up a large-scale network to support encoding and retrieval of episodic memory . While the
medial temporal lobe is well known to be affected early on in the AD process, gray matter regions
outside the medial temporal lobes are gradually implicated as the disease progresses to MCI and
dementia 4. Atrophy in brain regions within the DMN such as the precuneus and the posterior
cingulate gyrus are shown to be associated with episodic memory impairment ¢! and decreased

inferior frontal gyrus volume is associated with verbal memory decline in MCI patients who

converted to AD over time 2.

Angular gyrus-seeded default mode network metabolic deterioration plays a key role in

memory deficit in the asymptomatic and dementia stages of AD
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While impaired glucose uptake in the ANG is consistently shown to be an important feature
for predicting memory and executive functioning performance in the later stages of AD %4, our
present findings provide further insights into the early critical role of ANG-based metabolic
covariance network for intact memory (i.e., earlier peak of beta) in the preclinical AD stage. The
ANG, located in the posterior part of the inferior parietal lobule, is one of the major connector
hubs that links different subsystems such as the DMN 20 6 that are affected by AD
pathophysiology, and is involved in verbal working memory % ¢7 and episodic memory retrieval
%8, The role of ANG in memory performance is also implicated by its strong connectivity with the
hippocampal system ¢ that is critical in episodic and declarative memory functions °!. Furthermore,
a recent study showed that AP aggregation within the brain’s DMN is associated with regional
hypometabolism in distant but functionally connected brain regions, including the inferior parietal
cortices where the ANG is located . Therefore, early malfunctioning of the ANG, as indicated by
aberrant metabolic network patterns in our study, may predispose CN individuals with amyloid
pathology to a more vulnerable memory system.

Interestingly, we observed that the relationship between ANG-based metabolic covariance
network and memory performance gradually decreased in the late CN and MCI stages before
increasing in the dementia stage. We postulate that this may represent a metabolic compensatory
mechanism in the MCI stage as a manifestation of cognitive reserve to preserve memory function,
which has been proposed in AD functional connectivity (FC) studies. Among amnestic MCI
individuals, increased FC compared to controls was found within the DMN and between DMN
and brain networks such as the frontoparietal control and dorsal attention networks. These
abnormal increased FC patterns are associated with lower cognitive performance which suggest a

maladaptive compensatory mechanism in the MCI stage 7% 7!, Similarly, higher nodal topological
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properties such as the nodal strength, nodal global efficiency and nodal local efficiency, and
increased local and medium-range connectivity located in the DMN-related brain regions were
also shown in the earlier subjective cognitive decline stage of AD relative to healthy controls 2.
While these evidence supports our hypothesis of a metabolic compensatory mechanism in the late
CN/MCI stage of AD, our findings will need to be confirmed in a larger cohort with longitudinal

follow up.

Modest influence of hippocampal structural network deterioration on memory impairment
in individuals with non-amyloid pathology

The strength of the association between HIP structural network covariance and memory
function was overall lower in non-AD groups compared to amyloid pathology group, which
suggested that the hippocampal network integrity had a more modest influence on memory in
individuals without A pathology compared to those with AP pathology. In line with our finding,
arecent study on 531 deceased older community adults showed that neuropathologies such as AD,
cerebrovascular disease and hippocampal sclerosis accounted for 42.6% of the variation in global
cognitive decline, whereas hippocampal volume alone only accounted for an additional 5.4% of
this variation 73. Furthermore, we demonstrated a non-linear and opposing trajectory of this
association as the cognitive stage progresses in non-AD groups compared to AD group. Although
prior studies have consistently demonstrated that hippocampal atrophy is associated with memory
deficits even before the presence of dementia and can predict dementia progression 74, emerging
evidence suggests that the relationship between hippocampal atrophy and memory is also
dependent on other factors such as age and cognitive reserve 7> 7% 77, Specifically, the association

between episodic-memory decline and atrophy in the hippocampus over time was stronger in older
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than in the middle-aged participants 7°. In middle age, hippocampal volume was related to memory
in those with low cognitive reserve, but not in those with high cognitive reserve 7°. Excitingly, our
findings shed new insights that the associations of memory decline with both hippocampal
structural network integrity and years of education (i.e. a proxy for cognitive reserve) were also

dependent on the presence/absence of amyloid pathology and the level of cognitive impairment.

Strengths and Limitations

The main strength of the present study is the inclusion of individuals from the ADNI cohort
with well characterized neuropsychological, multimodal neuroimaging and AD biomarker data.
This enables the study of the relationships between metabolic, structural brain networks and
memory performance specifically in individuals within the AD continuum and those without
amyloid pathology. Nevertheless, there are a few limitations in our study. First, the ADNI cohort
consists of self-selected individuals participating in a study focusing on AD research which may
introduce selection bias and limit the generalizability of our findings to a broader community.
Second, our study design is cross-sectional thus provides only indirect evidence on the underlying
brain-behavior relationship. Therefore, a larger population-based longitudinal study is needed to
characterize within-subject trajectories of brain-behavior relationships across the disease
continuum. Lastly, while we characterised the amyloid and tau status of our cohort using CSF
amyloid and p-tau, we did not consider the spatial patterns of amyloid and tau brain deposition.
Further studies are needed to elucidate the complex spatial and temporal trajectories of structural
and metabolic networks in the various non-amyloid tauopathies and how the presence of amyloid

affects the tau-metabolism-memory associations across the disease continuum.
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In conclusion, our findings support the AD hypothetical models that the association
between neurodegeneration and memory dysfunction is non-linear across cognitive stages and
depends on the type of pathology. The early influence of metabolic and structural covariance
breakdown in the default mode and hippocampal networks on memory performance underscore

the importance of early intervention in preclinical AD.

METHODS

Participants

Data used in this article were obtained from the ADNI database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment can be combined to measure the
progression of MCI and early AD.

In this study, we first selected 812 participants to define seed regions for brain network
derivation (Figure 1, step 1). All of the images passed the visual quality control. Among them, 232
were CN, 413 were MCI and 167 were probable AD. We then identified 708 participants (610
from ADNI-2 and 98 from ADNI-GO) from the above cohort who underwent neuropsychological
assessments, and lumbar puncture in addition to [18F]FDG PET and 3T T1-weighted MRI scans
to form the main study cohort (Figure 1, steps 2 & 3). Among them, 195 were CN, 374 were MCI
and 139 were probable AD (Table 1). Another larger validation dataset was created for replication
by including another 468 individuals (377 from ADNI-1, 38 from ADNI-2, and 53 from ADNI-
GO) who underwent 1.5T T1-weighted MRI scan. Supplementary Figure 1 showed the flowchart

of study participant selection.
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Following ADNI diagnostic criteria '8, we defined CN as those with mini-mental state
examination (MMSE) scores > 24 and clinical dementia rating (CDR) 0, and showed no signs of
depression, mild cognitive impairment, or dementia. MCI was defined as those with MMSE scores
> 24 and CDR 0.5, subjective and objective memory loss, absence of significant levels of
impairment in other cognitive domains, essentially preserved activities of daily living, and an
absence of dementia. Probable AD was defined as those with MMSE scores <26, CDR > 0.5 and
meeting the NINCDS/ADRDA criteria for probable AD.

AB (A) and tau (T) pathologies were measured using CSF Ai.42 and CSF p-tauisip. More
details were in Supplementary Methods. Using the ADNI published cutoffs of APi.42<192 pg/mL
and CSF p-tauisip >23 pg/mL to define the presence of AB and tau pathology respectively °, the
main study cohort was further stratified into three pathology groups: A-T- (non-amyloid/non-tau),
A-T+ (tau only) and A+T-/A+T+ (amyloid pathology) (Table 1). There was no significant
difference in age, gender, years of education, and APOE &4 status among CN, MCI, and probable
AD individuals in the A-T- and A-T+ groups (Table 1). The proportion of APOE &4 carriers was
lower in CN compared to MCI and dementia individuals in the A+T-/A+T+ group.

The ADNI study was approved by the Institutional Review Boards of all of the
participating institutions and informed written consent was obtained from all participants at each

site.

Neuropsychological assessment

The ADNI-mem is a validated composite memory score derived using data from the ADNI

neuropsychological battery . More details were in Supplementary Methods.
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Image acquisition and preprocessing

All participants from the main dataset underwent T1-weighted MRI scans according to the

standardized ADNI protocol using 3-Tesla scanners. Additional participants who underwent

structural MRI brain scans using 1.5-Tesla scanners were included to form a validation dataset

with a larger sample size. All participants also underwent ['*F]JFDG PET to study cerebral glucose

metabolism (185 MBq (5 mCi), dynamic 3D scan of six 5-min frames 30-60 min post-injection).
All T1-weighted MRI scans were corrected for field distortions and processed using the

CIVET image processing pipeline (www.bic.mni.mcgill.ca/ServicesSoftware/CIVET) to generate

the GM probability maps as previously described 8. ['8F]JFDG PET images were processed with
an in-house processing pipeline as described in our previous work *2. Further details on image

parameters and preprocessing were in Supplementary Methods.

Statistical analyses
Between-group differences in demographic characteristics and clinical assessments were tested
among CN, MCI, and probable AD groups. Either a one-way ANOVA or a chi-squared test was

used depending on the nature of the variable.

Seed definition: group comparison on GMV and glucose metabolic pattern between CN and
probable AD

As shown in Fig. 1 (step 1), the 12 seed coordinates from the DMN, the salience network, the ECN
and the memory network were determined based on the group comparisons of the GMV
probability and glucose metabolic spatial maps between CN and probable AD individuals using a

permutation test (randomise, FSL, 5000 permutations). Effects of age, gender, years of education,
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and APOE &4 genotype were regressed out. The field strength (i.e., 1.5T or 3T) was included as
an additional covariate when the tests were performed using the validation dataset (Supplementary
Table 1). The resulting GMV and metabolic group difference maps (i.e., CN greater than probable
AD) were thresholded using threshold-free cluster enhancement with an alpha level of 0.05
(corrected at family-wise error (FWE) rate). We superimposed the two thresholded t statistical
maps (GMV and metabolic) and summed the t-scores at each voxel. Spherical seeds (with 4 mm
radius) were then defined based on the peak foci of the above network key regions showing atrophy

and hypometabolism in probable AD compared to CN (Supplementary Table 3).

Brain metabolic and structural network derivation: seed PLS analyses
We used seed PLS to identify covariance patterns between GMV/metabolism in each seed region
and those of all other voxels in the whole brain (Fig. 1, step 2). The seed value was defined as the
average GMV/metabolism values within each predefined seed from step 1. For each seed region,
the vector Y representing the seed values concatenated across all the participants was cross-
correlated with a matrix X, representing the GMV (or metabolism) images of all the participants.
Both the seed vector Y and the image matrix X were centered and normalized such that the vector
of correlations R was computed as:
R=YT-X

Using singular value decomposition, the correlation vector R was decomposed into a set
of mutually orthogonal latent variables (LVs) comprising three matrices:
R=v-s-u’,
where s is the diagonal matrix of singular values, and v and u are the orthonormal matrices of left

and right singular vectors, which are also called saliences in the PLS terminology. The left and
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right singular vectors respectively represent the seed profiles and the whole-brain patterns that best
characterize the correlation vector R. Therefore, the brain salience u captures the brain covariance
or network pattern that is of interest. The number of LVs derived is equal to the rank of the
correlations vector R. The LVs were tested for statistical significance with 1000 permutations.
The stability of each voxel in the brain salience of the LV was validated using a bootstrap ratio,
calculated by dividing the voxel salience value by its standard error, estimated by bootstrapping
(500 times).

The resulting significant LV from the PLS analyses of each of the 12 seeds (all p <0.0001)
corresponded to reliable patterns of structural or metabolic covariance network associated with
that seed (see Supplementary Fig. 2).

To represent individual-level brain salience maps of the identified LV for each seed PLS
model, the original matrix X was projected onto the brain salience u, which was computed by:

Ly =X-u,
where Lx is a vector of brain structural or metabolic network scores across all the participants.

We calculated the brain network score for each of the 12 networks in both FDG and GMV
modalities separately. For HIP, ANG, INS, PPC, and DLPFC, we averaged the left and right brain
network scores. In total, each participant had 14 brain network scores (i.e., two for each of the 7
seed regions, including HIP, ANG, PCC, mPFC, INS, PPC, and DLPFC), which reflect structural

or metabolic network pattern expression.

Stage- and pathology-dependent associations between brain networks and memory impairment:
SVC modelling

With ADNI-mem as the dependent variable, the SVC models have the following form:
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yi(t) = ,P=1 B; (ti)xij (tw) + & (ty),

where the dependent variable y;(ty) represents the cognitive score for subjecti (i = 1,2, ...,n) at
the bin t, (k = 1,2, ...,K), x;;(ty) is the j** (j = 1,2, ..., p) predictor (FDG/GMYV network scores
and nuisance variables; see below) of subject i at the bin t,. Both the dependent variable and all

predictors were standardized to z-scores. B;(ty) is the coefficient function depending on bin ty for

each feature j and €;(ty) is the independent and identically distributed random errors at t,. The
coefficient function f;(ty) is approximated using linear combinations of a set of B-spline basis.

To simultaneously achieve regression model fitting and variable selection, the least absolute

shrinkage and selection operator (LASSO) ** is applied to estimate B;(t)) by minimizing the

following penalized least squares function:

P K [yt — B2 B (tx;; (612 +AZE, /f BZ(Hdt,
where A is the sparse penalty tuning parameter, which was chosen by a five-fold cross-validation
method.

We ran each SVC model for 100 repetitions and reported the brain measures that were
consistently selected by more than 90 repetitions. These measures were interpreted as a set of
critical brain GMV/metabolism networks that contributed to memory across the cognitive stages,
with a vector of beta coefficients reflecting stage-dependent (non)linearity in the network-memory
association.

To assess the stability of these beta coefficients, we calculated the mean and standard error
of the stage/pathology-dependent coefficients estimated from all 100 repetitions. Moreover, to
assess the specificity of the selected networks, we randomly permuted the memory scores 100

times across the participants and repeated the SVC modelling 100 times within each of the 100
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permuted data sets, following our previous approach #°. These ‘null’ permutations should yield
inconsistent selection of predictors, if any, as compared to our actual models. SVC modelling was
performed by in-house R scripts based on Daye and colleagues °.

To further confirm that our findings were robust, we repeated the analyses with another
ordering strategy which did not divide MCI and probable AD into two separate groups (i.e., CDR-
SOB and age ordering were done across all individuals with either MCI or probable AD diagnosis)
in each pathology group (Supplementary Fig. 4B).

To compare the brain metabolic and structural network scores between different cognitive
stages and differenct pathology groups (Fig. 1, step 3), we performed ANOVA among the
cognitive stages for each pathology, and ANOVA among the pathology groups for each cognitive

stage, followed by post-hoc two-sample t-tests (alpha = 0.05).
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SUPPLEMENTARY METHODS

CSF analysis

CSF AD biomarkers of APi.42 and CSF p-tauisi, were measured using the Luminex multiplex
platform (Luminex, Austin, TX, USA) and Innogenetics INNO-BIA AlzBio3 (Innogenetics, Ghent,
Belgium) immunoassay reagents. The details of the ADNI methods for the acquisition and

measurement of CSF can be found at www.adni-info.org.

Neuropsychological assessment

The ADNI-mem is a validated composite memory score derived using data from the ADNI
neuropsychological battery !. A modern psychometric approach was used to analyze the Rey
Auditory Verbal Learning Test, AD assessment schedule-cognition (ADAS-cog), MMSE, and
Logical Memory tests to obtain a composite memory score. In ADNI-mem composite scores,
lower scores reflect poorer memory performance. The details of the ADNI protocols for the
neuropsychological assessments and the methods for developing the ADNI-mem can be found at

www.adni-info.org.

Image acquisition and preprocessing

All participants from the main dataset underwent T1-weighted MRI scans according to the
standardized ADNI protocol using 3-Tesla GE, Philips, and Siemens MRI scanners with a sagittal
volumetric magnetization-prepare rapid-acquisition gradient echo (MPRAGE) sequence
(TR=2300ms, TE = minimum full, approximate TI=900ms, Slice Thickness=1.2, flip-angle = 9°)
or T1-weighted accelerated sagittal inversion-recovery spoiled gradient-recalled (SPGR) sequence

(TR =400 ms, TE = minimum full, flip-angle = 11°, slice thickness = 1.2 mm and FOV = 26 cm).
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Additional participants who underwent structural MRI brain scans using 1.5-tesla GE, Philips, and
Siemens MRI scanners were included to form a validation dataset with a larger sample size. For
these participants, T1-weighted MRI scans were acquired using an MPRAGE sequence with
TR=2400ms, minimum full TE, TI=1000ms, Slice Thickness=1.2, and flip angle of 8 degrees (scan
parameters vary between sites, scanner platforms, and software versions).

All participants also underwent ['*F]JFDG PET to study cerebral glucose metabolism (185 MBq (5
mCi), dynamic 3D scan of six 5-min frames 30-60 min post-injection). Further details on MRI and

PET acquisition parameters can be found at the ADNI website http://adni.loni.usc.edu/methods.

Voxel-based morphometry

All T1-weighted MRI scans were corrected for field distortions and processed using the CIVET

image processing pipeline (www.bic.mni.mcgill.ca/ServicesSoftware/CIVET). The MRI images
underwent non-uniformity correction, brain masking and segmentation, and normalization to the
Montreal Neurological Institute (MNI) space with affine and nonlinear transformation. An in-
house processing pipeline based on MINC toolkits was then applied to generate voxel-based
morphometry (VBM) images based on the CIVET outputs as previously described . In brief, a log
Jacobian determinant was derived based on the nonlinear vector field from the CIVET outputs,
followed by transformation into a scalar, modulated with grey matter probability mask. The GM
probability maps were then smoothed with an 8mm Full-Width at Half-Maximum (FWHM)

Gaussian kernel.
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[1®F]FDG PET processing

['8F]FDG PET images were processed with an in-house processing pipeline as described in our
previous work 3. The pre-processed images from the ADNI database were smoothed with an 8mm
FWHM Gaussian kernel, followed by linear co-registration and non-linear spatial normalization
to the MNI 152 standardized space with the use of transformation matrices derived from the PET
native to MRI native space and the MRI native to the MNI 152 space. The voxel-wise brain glucose
metabolism standardized uptake value ratio (SUVR) maps were then generated with the pons as

the reference region.

SUPPLEMENTARY RESULTS

The ANG-based metabolic and HIP-based structural network findings were replicated in both the
main and validation datasets (Supplementary Fig. 2, 3, and 7). In addition, in the main dataset,
lower insular metabolic network score was identified to be associated with lower memory
impairment only in the A-T+ group, the influence of which was highest in the early CN stage and
gradually decreased across CN and MCI stages before regaining a minimum influence in the late

MClI/dementia stages. However, this finding was not replicated in the validation dataset.
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SUPPLEMENTARY TABLES

Supplementary Table 1. Participants demographics for network seed definition step.

Main dataset Validation dataset

CN probable AD p-value CN probable AD p-value
N 232 167 - 383 360 -
Age, y 56.53~90.22 55.96~90.50 56.53~93.80 55.33~90.50

73.52+6.27 74.35+£8.07 0.25 74.90+6.35 75.48+7.62 0.26
Gender (M/F) 110/122 99/68 0.02* 195/188 214/146 0.02%*
Handedness (R/L) 207/25 154/13 0.32 346/37 336/24 0.14
Education, y 16.23+£2.54 15.95+2.68 0.01%* 16.31£2.77 15.66+2.87 0.002*
APOE e4 (+/-) 158/74 53/114 <0.001* 274/108 120/239 <0.001*
Memory 1.07+0.62 -0.82+0.59 <0.001* 1.02+0.60 -0.85+0.61 <0.001*
MMSE 29.01+1.23 23.30+2.37 <0.001* 29.02+1.20 22.83+£3.36 <0.001*
CDR-SOB 0.05+0.16 4.59+1.70 <0.001* 0.02+0.47 4.77£2.08 <0.001*

Note: Data on age are range and mean + SD. Data on education and memory are mean + SD. Data on memory are in z-scores. Abbreviations: CN =
cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer's disease; A= B-amyloid; T = tau; ‘+’ = positive; ‘-’ = negative; y = years; M
= male; F = female; R = right; L = left; MMSE = Mini-Mental State Exam; CDR-SOB = Clinical Dementia Rating scale-sum of box. * indicate
significant group difference between CN and probable AD.
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Supplementary Table 2. Study participant demographics of the validation dataset for the PLS-SVC model.

Age,y

Gender (M/F)

Handedness

(R/L)

Education, y

APOE e4 (+/-)

Memory

A-T- A-T+ A+T-/A+T+

CN MCI probable CN MCI probable CN MCI probable
AD AD AD

56 82 5 92 79 11 114 264 156

62.24~90. 56.08~88. 69.56~90.5 56.53~93.8 55.15~88. 60.79~81.3 60.19~90.0 55.38~91. 55.96~90.4

13 51 0 0 98 7 8 57 6

74.0+6.09  70.62+7.5 79.51+9.22 72.81£6.36  70.54+8.4 76.22+6.52 75.65+6.33  73.70+6.7  74.24+7.88

m 3ed m m Jed m m 9c

29727 45/37 5/0 52/404 40/394 10/1em 53/61 154/110 89/67

53/3 68/14 5/0 81/11 71/8 10/1 107/7 240/24 144/12

16.23+2.9 16.40+£2.5 15.60+4.39 16.71£2.75 16.01£2.6  16.27+2.41 16.27+2.56 16.1142.7 15.85+2.65

0 8 9 5

9/47 17/65 0/5 17/75 18/61 1/10 49/65md 160/104°4  113/43°em

1.06+£0.66  0.69+0.64° - 1.1240.57™ 0.53+£0.62°¢ - 0.95+0.61™ 0.174£0.63° -

md d 0.35+0.78° d d 0.54+0.64¢ d d 0.88+0.53¢

m
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MMSE 28.93+1.4 28.52+1.3 25.40+2.19 28.96+1.19 28.27+1.6 24.0+2.05°¢ 29.07+1.15  27.77+£1.8 22.89+2.67

4d 4d cm md 5ed m md ed cm

CDR-SOB 0.05+£0.18  1.23+0.64° 4.20+2.66° 0.05+0.15™ 1.22+0.75¢ 4.32+1.23¢ 0.04+0.15™ 1.52+0.91°¢ 4.73+1.85°¢
md d m d d m d d m

ICV 1564.58+  1528.79+  1583.20+ 1554.05+ 1559.29+  1599.97+ 1536.14+ 1567.10+=  1551.78+
148.69 131.03 99.88 135.70 145.90 183.02 145.69 148.96.52 161.75

Note: Data on age are range and mean + SD. Data on education, ICV and memory are mean + SD. Data on memory are in z-scores. Abbreviations: CN
= cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer's disease; A= B-amyloid; T = tau; ‘+’ = positive; ‘-’ = negative; y = years;
M = male; F = female; R = right; L = left; MMSE = Mini-Mental State Exam; CDR-SOB = Clinical Dementia Rating scale-sum of box; ICV =
intracranial volume. Superscripts (‘°’, ‘™, ‘®") represent significant group difference with CN, MCI and probable AD respectively.
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Supplementary Table 3. TheX(06PaHIATARGTThe PeTRFEET 01 8Eions showing difference in

metabolism and grey matter volume between probable AD and healthy controls.

Main dataset Validation dataset
Network Label Anatomical Label x y z X y z
Hippocampus left HIP -19 -3 -22 -33 -18  -17
right HIP 19 -3 -21 19 -2 -22
Default mode left ANG -47  -63 39 -46  -63 39
right ANG 50 -60 37 51 -60 37
PCC -4 =52 29 -4 =52 27
mPFC 1 50 -5 -2 57 4
Salience left INS 43 0 -10 -43 -4 -5
right INS 44 -2 -7 44 -2 -5
Executive left DLPFC -46 11 40 -46 11 40
control right DLPFC 42 15 40 42 15 40
left PPC 53 45 43 52 46 45
right PPC 52 52 44 52 52 44

Abbreviations: HIP = hippocampus; ANG = angular gyrus; PPC = posterior parietal cortex;
mPFC = medial prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PCC
= posterior cingulate cortex.

52


https://doi.org/10.1101/2022.02.28.482280
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.28.482280; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

SUPPLEMENTARY FIGUR‘%@bIe under aCC-BY 4.0 International license.

Main analysis

Validation analysis

Group comparison:
232 CN, 167 probAD

812 participants (3T MRI)
(232 CN, 413 MCI, 167 probAD)

468 participants (1.5T MRI)

A 4

PLS: 708 participants

A 4

(195 CN, 374 MCI, 167 probAD)

|
!

SVC (A-T-): 108 participants
(30 CN, 74 MCI, 4 probAD)

A

SVC (A-T+): 162 participants

(80 CN, 75 MCI, 7 probAD)

A 4

SVC (A+T-/A+T+): 438 participants

(85 CN, 225 MCI, 128 probAD)

. S

Y

1280 participants in total
(383 CN, 537 MCI, 360 prob AD)

Group comparison:

383 CN, 360 probAD

A A

421 participants removed
(Had no pathology information)

Y

PLS: 859 participants

Seeds

(195 CN, 374 MCI, 167 probAD) [€

v

SVC (A-T-): 143 participants
(56 CN, 82 MCI, 5 probAD)

A 4

SVC (A-T+): 182 participants
(92 CN, 79 MCI, 11 probAD)

A

SVC (A+T-/A+T+): 534 participants
(114 CN, 264 MCI, 156 probAD)

Supplementary Figure 1. Flowchart of participant pool selection. Abbreviations: CN =
cognitively normal; MCI = mild cognitive impairment; probAD = probable AD; A= B-amyloid;
T =tau; ‘+’ = positive; ‘-’ = negative; PLS = partial least square analysis; SVC = sparse varying
coefficient modelling.
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Supplementary Figure 2. The integrity of brain metabolic networks in participants with
and without amyloid pathology across cognitive stages (validation dataset). A. Brain slices
of metabolic covariance networks associated with each brain seed defined from FDG-PET data
highlighted in blue circles. Brain metabolic network resemabled canonical brain networks. The
intensity of colorbar represents bootstrap ratios, derived from dividing the weight of the
singular-vector by the bootstrapped standard error. B. Individual-level brain metabolic network
scores were lower in individuals with worse cognition and amyloid pathology. Summary of
individual-level metabolic network scores (mean + SD) were presented in bar charts. “*’
indicates significant group difference (ANOVA; p < 0.05). Thick lines indicate group
differences in brain network scores between different cognitive stages (grey dashed) or
pathology groups (dark). Abbreviations: HIP = hippocampus; ANG = angular gyrus; PCC =
posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC =
dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively normal; MCI
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= mild cognitive impairment; PAP'EPISHHIE W, KLBAMGTEE; T = tau; “+° = positive; -’
= negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex;
mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC
= posterior parietal cortex.
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Supplementary Figure 3. The integrity of brain structural networks in participants with
and without amyloid pathology across cognitive stages (validation dataset). A. brain slices
of structural covariance networks associated with each brain seed defined from GMV data
highlighted in blue circles. The intensity of colorbar represents bootstrap ratios, derived from
dividing the weight of the singular-vector by the bootstrapped standard error. B. Individual-
level brain structural network scores were lower in individuals with worse cognition and
amyloid pathology. Summary of individual-level structural network scores (mean + SD) were
presented in bar charts. ‘*’ indicates significant group difference (ANOVA; p<0.05). Thick
lines indicate group differences in all brain network scores between different cognitive stages
(grey dashed) or pathology groups (dark). Abbreviations: HIP = hippocampus; ANG = angular
gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular;
DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively
normal; MCI = mild cognitive impairment; pAD = probable AD; A= B-amyloid; T = tau; ‘+’
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= positive; ‘-> = negative; HIP' R HPFoEanTHuL? ANe 02 4§fdtar gyrus; PCC = posterior
cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral
prefrontal cortex; PPC = posterior parietal cortex.
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Supplementary Figure 4. Subject ordering for SVC modelling within each pathology
group. The participants were ordered by their diagnosis. In the main ordering method (panel
A), CN was followed by MCI, and MCI was followed by probable AD. The validation ordering
method (panel B) did not differentiate MCI and probable, where CN subjects was followed by
subjects with MCI or probable AD. Within each diagnosis, the participants were ordered by
the severity of cognitive impairment (i.e., no impairment — severe impairment). Specifically,
the participants within CN diagnosis were ordered by decreasing MMSE scores, and the
participants within MCI or dementia diagnosis were ordered by increasing CDR-sum of boxes
(SOB) scores. If the participants had the same MMSE or CDR-SOB scores in the earlier
ordering step, they will then be further ordered by increasing age (i.e., young — old). After
ordering the participants, we distributed the participants evenly into bins (i.e., 10 subjects/bin).
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Supplementary Figure 5. Differential stage-dependent associations of metabolic and
structural network scores with memory impairment in different pathology groups (main
dataset with the alternative ordering strategy of treating MCI and probable AD as one
group). Solid curves represent the mean associations (beta coefficients) of brain network
scores with memory as a function of advancing AD continuum estimated from 100 replicates
(metabolic in red; structural in blue). The dashed curves represent the point-wise 2* standard
errors of the solid curves estimated from 100 replicates. The participants were ordered by their
cognitive stages (i.e., CN — MCl/probable AD). Within each of the two stages, the participants
were then ordered by general cognition or dementia severity (i.e., no impairment — severe
impairment). Participants with the same cognitive impairment severity were further ordered by
increasing age (i.e., young — old). Ordered participants were distributed evenly into bins (i.e.,
10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment.
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Supplementary Figure 6. Differential stage-dependent associations of demographic
variables with memory impairment in different pathology groups (main dataset). Solid
curves represent the mean associations (beta coefficients) of brain network scores with memory
as a function of advancing AD continuum estimated from 100 replicates. The dashed curves
represent the point-wise 2* standard errors of the solid curves estimated from 100 replicates.
The participants were ordered by their cognitive stages (i.e., CN — MCI — probable AD).
Within each diagnosis, the participants were then ordered by general cognition or dementia
severity (i.e., no impairment — severe impairment). Participants with the same cognitive
impairment severity were further ordered by increasing age (i.e., young — old). Ordered
participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: CN =
cognitively normal; MCI = mild cognitive impairment.
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Supplementary Figure 7. Differential stage-dependent associations of demographical
variables with memory impairment in different pathology group (validation dataset).
Solid curves represent the mean associations (beta coefficients) of brain network scores with
memory as a function of advancing AD continuum estimated from 100 replicates. The dashed

curves represent the point-wise 2* standard errors of the solid curves estimated from 100
replicates. The participants were ordered by their cognitive stages (i.e., CN — MCI — probable
AD). Within each diagnosis, the participants were then ordered by general cognition or
dementia severity (i.e., no impairment — severe impairment). Participants with the same
cognitive impairment severity were further ordered by increasing age (i.e., young — old).
Ordered participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations:
CN = cognitively normal; MCI = mild cognitive impairment.

61

availgble under aCC-BY 4.0 International license.
A aole
0.5 | : 0.5 i | 0.5
I [4) | I c
| 1 @ ! ! =
SRR e | B
° i I s W 2
g 0 | g o ! oz oo
5 | V3 i P2
@ | | 0 I | S
: 3 : e
0.5 i 1| 2-05 i i 0.5
| ! : {
\ W)
o RO o W& P
20 X
o oo°
& N
B A-T+
0.5 ! ! 0.5 ' ' 0.5 | | 0.5 ! !
i sl§ i - i s l l
= i | 3 | 1 = 1 I B I I
ko | I > | | % | | S \ |
I | I I — | |
5 0 l | £ 0 1 > w B Qe T
=] 1 | 3 1 1 Llo-l 1 1 o I I
5 i L3 i - i i 2 l l
«© | | o | | < | | 5 | |
1 | ‘G 1 | ‘s 1 1 g_ | |
05 : [l =05 : Y i i 05 1 1
I | I I I I | |
1 1 1 1 1 1 1 L
o RO S o W& e o RGN\ o ORI
\0’&‘0 \0’3\0 \06\0 ‘0'6\0
on Q(O Q(O on
C
A+T-/ A+T+
0.5 | | 0.5 | | 0.5 | |
1 | » B | | L 1 I
I | ® | | | |
o} F ) i = M ? | |
g M s ! 3 ! !
5 0 | - | L :
e 1 l 3 | l T
| | g | : : T
| | ‘5 | l ‘S | |
.05 i i @ 05 i i @ 05 i |
: | | | | |
1 1 1 1 1
N \ 0 Y \ O \ O
< W ¢ la © N ¢ s o N\ 2© s
Q(0° 9\0‘0 9\0\0



https://doi.org/10.1101/2022.02.28.482280
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.28.482280; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A

A-T+
£
@©
)
>
c
kel
©
Q
=
e}
)
©
(Lo
CN MCI / probable AD
B A+T- ] A+T+
0.6 : 0.6 :
I |
| |
(%] ()]
5 04 : o 04 :
C e . I ksl |
2 c N l . I
S S 02 Sk, © 02 !
5 vise L
E’ 8] | $oe. o |
: 3 | g :
i 2 0 | f 0 I
o | o |
(2% | @ W
|
-0.2 ! -0.21; ! r
CN MCI / probable AD CN MCI / probable AD CN MCI / probable AD

Supplementary Figure 8. Differential stage-dependent associations of demographical
variables with memory impairment in different pathology group (main dataset with the
ordering strategy merging the MCI and probable AD). Solid curves represent the mean
associations (beta coefficients) of brain network scores with memory as a function of
advancing AD continuum estimated from 100 replicates. The dashed curves represent the
point-wise 2* standard errors of the solid curves estimated from 100 replicates. The participants
were ordered by their cognitive stages (i.e., CN — MCI/ probable AD). Within each stage, the
participants were then ordered by general cognition or dementia severity (i.e., no impairment
— severe impairment). Participants with the same cognitive impairment severity were further
ordered by increasing age (i.e., young — old). Ordered participants were distributed evenly
into bins (i.e., 10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive
impairment.
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Supplementary Figure 9. Variable selection frequency distribution for permuted datasets

using sparse varying-coefficient (SVC) model.
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