

1 **Stage dependent differential influence of metabolic and structural networks on memory**
2 **across Alzheimer's disease continuum**

3 Kok Pin Ng FRCP^{1,4,5*}, Xing Qian PhD^{2*}, Kwun Kei Ng PhD², Fang Ji PhD², Pedro Rosa-Neto
4 MD PhD^{7,8}, Serge Gauthier MD FRCPC⁸, Nagaendran Kandiah FRCP^{1,4,5}, Juan Helen Zhou
5 PhD^{2,3,4,6} for the Alzheimer's Disease Neuroimaging Initiative[#]

6

7 ¹Department of Neurology, National Neuroscience Institute, Singapore, Singapore

8 ²Centre for Sleep and Cognition and Centre for Translational MR Research, Yong Loo Lin School
9 of Medicine, National University of Singapore, Singapore, Singapore

10 ³Department of Electrical and Computer Engineering, National University of Singapore,
11 Singapore, Singapore

12 ⁴Duke-NUS Medical School, Singapore, Singapore

13 ⁵Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore,
14 Singapore

15 ⁶Integrative Sciences and Engineering Programme (ISEP), National University of Singapore,
16 Singapore, Singapore

17 ⁷Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging,
18 Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire
19 de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, and Departments of
20 Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill University,
21 Montreal, Quebec, Canada

22 ⁸Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

23

1 *Both authors contributed equally to the manuscript
2 #Data used in the preparation of this article were obtained from the Alzheimer's Disease
3 Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the
4 ADNI contributed to the design and implementation of ADNI and/or provided data but did not
5 participate in the analysis or writing of this report. A complete listing of ADNI investigators can
6 be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

8

9 **Corresponding author:**

10 Juan Helen Zhou, Ph.D.
11 Address: Tahir Foundation Building (MD1), 12 Science Drive 2, #13-05, National University of
12 Singapore, Singapore 117549
13 Tel: (65) 66014918
14 Fax: (65) 62218685
15 Email: helen.zhou@nus.edu.sg

16 **Running title:** Network-memory association trajectory

17 **Keywords:** metabolic and structural networks; memory; amyloid; tau, Alzheimer's disease, mild
18 cognitive impairment

19 **Abbreviations:**

20 A = amyloid-beta plaques; AD = Alzheimer's disease; ADNI = Alzheimer's Disease
21 Neuroimaging Initiative; ANG = angular gyrus; ANOVA = analysis of variance; A β = amyloid-
22 beta; CDR = clinical dementia rating; CN = cognitively normal; DLPFC = dorsolateral prefrontal
23 cortex; DMN = default mode network; ECN = executive control network; FC = functional

1 connectivity; FDG = [18F]Fluorodeoxyglucose; FWE = family-wise error; FWHM = Full-Width
2 at Half-Maximum; GM = grey matter; GMV = grey matter volume; HIP = hippocampus; ICV =
3 intracranial volume; INS = insular; LV = latent variable; MCI = mild cognitive impairment;
4 MMSE = mini-mental state examination; MNI = Montreal Neurological Institute; mPFC = medial
5 prefrontal cortex; MPRAGE = magnetization-prepare rapid-acquisition gradient echo; N =
6 neurodegeneration; PCC = posterior cingulate cortex; PLS = partial least squares; PPC = posterior
7 parietal cortex; SN = salience network; SOB = sum of boxes; SPGR = sagittal inversion-recovery
8 spoiled gradient-recalled; SUVR = standardized uptake value ratio; SVC = sparse varying
9 coefficient; T = tau neurofibrillary tangles accumulation; VBM = voxel-based morphometry
10
11
12
13
14

1 ABSTRACT

2 **Background:** Large-scale neuronal network breakdown underlies memory impairment in
3 Alzheimer's disease (AD). However, the differential trajectories of the relationships between
4 network organization and memory across pathology and cognitive stages in AD remain elusive.
5 We determined whether and how the influences of individual-level structural and metabolic
6 covariance network integrity on memory varied with amyloid pathology across clinical stages
7 without assuming a constant relationship. **Methods:** 708 participants from the Alzheimer's
8 Disease Neuroimaging Initiative were studied. Individual-level structural and metabolic
9 covariance scores in higher-level cognitive and hippocampal networks were derived from
10 magnetic resonance imaging and [¹⁸F]fluorodeoxyglucose positron emission tomography using
11 seed-based partial least square analyses. The non-linear associations between network scores and
12 memory across cognitive stages in each pathology group were examined using sparse varying
13 coefficient modelling. **Results:** We showed that the associations of memory with structural and
14 metabolic networks in the hippocampal and default mode regions exhibited pathology-dependent
15 differential trajectories across cognitive stages using sparse varying coefficient modelling. In
16 amyloid pathology group, there was an early influence of hippocampal structural network
17 deterioration on memory impairment in the preclinical stage, and a biphasic influence of the
18 angular gyrus-seeded default mode network metabolism on memory in both preclinical and
19 dementia stages. In non- amyloid pathology groups, in contrast, the trajectory of the hippocampus-
20 memory association was opposite and weaker overall, while no metabolism covariance networks
21 were related to memory. Key findings were replicated in a larger cohort of 1280 participants.
22 **Conclusions:** Our findings highlight potential windows of early intervention targeting network
23 breakdown at the preclinical AD stage.

1 INTRODUCTION

2 Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by
3 neuropathological accumulation of amyloid-beta (A β) plaques (A), intraneuronal tau
4 neurofibrillary tangles (T), and neurodegeneration (N) in the brain ^{1, 2}. While AD is traditionally a
5 clinical-pathologic condition, the emerging development of biomarkers to profile AD
6 pathophysiology has led to the proposal of AD as a biological construct based on the AT(N) system
7 ^{3, 4}. The incorporation of the AT(N) classification into the clinical continuum will offer robust
8 disease staging by combining both pathophysiological and cognitive phenotypes which span from
9 cognitively intact to mild cognitive impairment (MCI) before progressing to the dementia stage ⁵.
10 Studies have suggested that A β is the first to become abnormal in AD, followed by downstream
11 pathophysiological changes of tauopathy, neurodegeneration, and cognitive impairment ^{6, 7, 8}.
12 While neurodegeneration is widely associated with worse cognitive impairment in neurocognitive
13 disorders, it remains unknown whether the influence of neurodegeneration on cognitive function
14 varies with AD biomarkers status and across the AD continuum.

15 Neurodegeneration represents neuronal injury in the forms of cerebral grey matter (GM)
16 atrophy and hypometabolism. In AD, it is widely postulated that A β triggers tau-mediated toxicity
17 leading to AD-type neurodegeneration in brain regions such as the hippocampus, the precuneus
18 and posterior cingulate cortex, bilateral angular gyrus, and medial temporal lobes ^{9, 10, 11, 12}.
19 Recently, amyloid and tau pathologies are also shown to have a synergistic effect on AD-type
20 hypometabolism, involving the basal and mesial temporal, orbitofrontal, and anterior and posterior
21 cingulate cortices ^{13, 14}. However, neurodegeneration may also occur prior to incident amyloid
22 positivity ¹⁵ and be influenced by the loss of microtubule stabilizing function and toxic effects of
23 tau pathology, independent of amyloid pathology ¹⁶.

1 Advancement in brain network analysis offers insights into the functional effects of AD
2 pathophysiology on cognitive changes. Work from our group has demonstrated that AD
3 pathophysiologies compromise brain structure and function systematically by capitalizing on the
4 intrinsic connectivities among brain regions ¹⁷. Accumulating evidence suggests that AD
5 pathological deposition around neurons which impairs synaptic communication, leads to specific
6 large-scale brain intrinsic network disorganization ^{18, 19}. Decreased functional connectivity in the
7 default mode network (DMN) derived from resting state functional MRI is well-described in MCI
8 and AD ^{20, 21, 22, 23, 24}, while aberrant loss of functional connectivity in other higher-order cognitive
9 networks such as the executive control network (ECN) and salience network (SN) are being
10 increasingly reported ^{22, 25, 26}.

11 Brain networks can also be constructed based on similarity in GM structure and
12 metabolism between brain areas across individuals, known as the GM structural and metabolic
13 covariance network respectively ^{27, 28, 29}. Both structural and metabolic covariance networks show
14 convergent patterns with the intrinsic connectivity network in healthy individuals and mirror GM
15 atrophy patterns in distinct neurodegenerative disorders ^{18, 27, 30}. Using this approach, a recent study
16 revealed differential patterns of structural covariance networks within different amyloid pathology
17 groups classified by CSF A β ₁₋₄₂ and P-tau₁₈₁ levels ³¹. However, existing studies on the GM
18 structural and metabolic covariance networks were largely reliant on group-level correlation maps
19 of cortical morphology and metabolism, which cannot be used to infer individual differences in
20 cognition. It is postulated that network analysis at the individual level will allow direct evaluation
21 of each individual's structural and metabolic covariance networks, hence providing deeper
22 understanding on the effects of brain networks on cognitive performances ³². For instance, a cube-
23 based correlation approach to calculate the individual GM networks by computing intracortical

1 similarities in GM morphology ³³ showed that single-subject GM graph properties were associated
2 with individual differences of clinical progression in AD ^{34, 35, 36, 37}. A network template
3 perturbation approach was also introduced to construct an individual differential SCN using
4 regional GM volume, though it required reference models derived from a group of normal control
5 subjects ³⁸. Nevertheless, the relationships between changes in individual-level network-based
6 neurodegeneration across different amyloid pathology groups and cognitive stages, and their
7 influence on memory impairment, remain unclear.

8 The influence of cerebral GM loss and [¹⁸F]Fluorodeoxyglucose (FDG) hypometabolism
9 on cognitive function in AD has often been modelled as a linear relationship ^{39, 40}. However,
10 emerging evidence suggests that structural and metabolic abnormalities in AD may follow a
11 sigmoidal curve trajectory with an initial period of acceleration and subsequent deceleration ^{7, 41,}
12 ⁴². While the dynamic effects of AD biomarkers on worsening cognition can be better modelled
13 by sigmoid-shaped curves rather than a constant across disease stages ⁴³, it remains largely
14 unknown how brain structural and metabolic networks will influence cognition decline
15 differentially in individuals stratified into different pathology groups and cognitive stages. Once
16 these trajectories are defined across the AD continuum and subgroups, they can potentially
17 highlight windows of opportunity for targeted intervention at the appropriate cognitive stages to
18 improve disease outcomes.

19 To cover these gaps, we sought to determine the differential associations of brain
20 metabolism and GM structural networks with memory function using a neurodegeneration
21 covariance network approach, among cognitively normal (CN), mild cognitive impairment (MCI),
22 and probable AD individuals stratified by their A and T biomarker status. We used the seed partial
23 least squares (PLS) method ⁴⁴ to evaluate the individual-level brain network integrity. We

1 employed the sparse varying coefficient (SVC) model which does not assume a constant
2 relationship between brain measures and cognitive performance over different cognitive stages ⁴⁵,
3 ^{46, 47}. Besides capturing the possible nonlinear brain-cognition relationship, SVC also allows the
4 selection of significant predictors with the LASSO sparse penalty while eliminating the
5 contribution of the less important predictors. We hypothesized that individual-level brain
6 metabolic and structural network integrity would be non-linearly associated with memory
7 performance across the AD continuum and such trajectories would vary depending on the presence
8 of amyloid and tau protein deposition. Based on our previous findings ^{21, 22, 48}, we further
9 hypothesized that the posterior DMN and the medial temporal lobe regions would play an early
10 and dominant role affecting the memory performance in individuals with amyloid pathology.

11 Our study provides first evidence that both hippocampal structural and angular gyrus
12 metabolic network integrity contributed to memory performance in the early cognitively normal
13 stage in individuals with amyloid deposition. However, in the amyloid positive individuals with
14 dementia, only the angular gyrus metabolic network dominated the memory-network association.
15 Amyloid negative individuals did not have such patterns. These findings characterize the dynamic
16 influence of brain structural and metabolic networks on memory function across the AD continuum
17 and underscore the importance of early intervention targeting neuronal dysfunction in the
18 preclinical AD stage to improve memory outcomes.

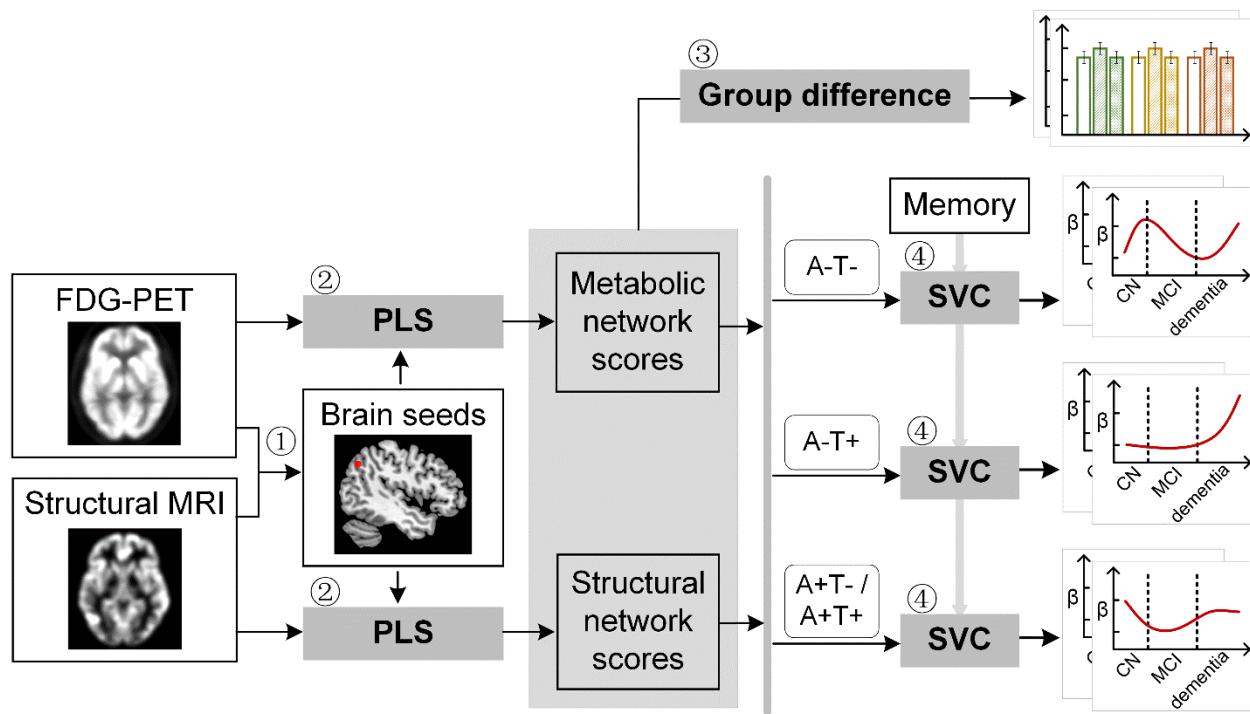
19

20 **RESULTS**

21 **Group differences in brain metabolic and structural covariance networks**

22 We selected 812 participants (232 CN, 413 MCI and 167 probable AD) from the Alzheimer's
23 Disease Neuroimaging Initiative (ADNI) database with 3T T1-weighted MRI and [¹⁸F]FDG PET

1 scans to define seed regions for brain network derivation (Fig. 1, step 1). As our study focused on
2 memory and AD pathology, we chose to study the individual-level structural and metabolic
3 covariance within higher-order cognitive networks such as DMN, SN, ECN as well as the
4 hippocampus (HIP)-based memory network ^{49, 50}. We defined a set of 12 seed regions to derive
5 these covariance networks on the basis that they have been shown to reliably produce the relevant
6 network across imaging modalities. Specifically, the DMN included bilateral angular gyrus (ANG),
7 posterior cingulate cortex (PCC), and medial prefrontal cortex (mPFC); the SN included bilateral
8 anterior insular (INS); the ECN included bilateral dorsolateral prefrontal cortex (DLPFC) and
9 posterior parietal cortex (PPC); the memory network included bilateral HIP. The seed coordinates
10 were determined based on the group comparisons of the grey matter volume (GMV) probability
11 and glucose metabolic spatial maps between CN and probable AD individuals (Supplementary
12 Table 3, see details in Methods).



1
2 **Figure 1. Study design schematic.** 708 participants with either healthy cognition (CN), mild
3 cognitive impairment (MCI) or dementia were studied. Twelve brain seeds covering the key
4 regions of hippocampus, the default mode network, the executive control network, and salience
5 network were defined based on hypometabolism (via FDG) and grey matter atrophy (via MRI)
6 patterns in all patients with probable AD compared to CN (step 1). Using seed-based partial least
7 square (PLS) analysis (step 2), the covariance patterns in metabolism and GMV maps were
8 identified and used to derive the individual-level brain metabolic network scores and structural
9 network scores for each seed. The group difference was evaluated between different cognitive
10 stages and pathology groups (step 3). We then investigated the differential stage-dependent
11 associations between these key brain network scores with memory performance in each of the
12 three pathology groups (A-T-, A-T+, and A+T-/A+T+) separately using sparse varying coefficient
13 (SVC) modelling (step 4). Abbreviations: A = A β ; T = tau; '-' = negative; '+' = positive.

1 To derive brain structural and metabolic networks from individuals with and without
2 amyloid pathology, we further identified 708 out of the existing 812 participants who underwent
3 neuropsychological assessments, and lumbar puncture, in addition to [¹⁸F]FDG PET and T1-
4 weighted MRI scans to form the main dataset (Table 1). Using seed PLS (Fig. 1, step 2, see details
5 in Methods), we identified the structural and metabolic covariance network patterns associated
6 with each seed at the group-level (Fig. 2A and Fig. 3A). We projected the original individual GMV
7 and metabolic maps onto the covariance network maps to derive the individual brain structural or
8 metabolic network scores, which reflected how strongly each brain network pattern was
9 manifested in the individual's metabolic and structural brain networks.

10 First, we compared the brain metabolic and structural network scores between different
11 pathology groups and cognitive stages (Fig. 1, step 3). At the same cognitive stage, amyloid
12 positive CN and MCI individuals had lower metabolic and structural network scores than those
13 amyloid negative CN and MCI individuals for all the networks (Fig. 2B & 3B). No such difference
14 was observed at the dementia stage.

Table 1. Subject demographics for the main study cohort.

	A-T-			A-T+			A+T-/A+T+		
	CN	MCI	probable AD	CN	MCI	probable AD	CN	MCI	probable AD
N	30	74	4	80	75	7	85	225	128
Age, y	65.12~85.16	56.08~88.51	69.56~90.50	56.53~84.47	55.15~88.83	60.79~80.76	60.19~90.08	55.38~91.57	55.96~90.46
	72.24±4.54	69.78±7.20 ^d	77.37±9.11 ^m	71.95±5.87	70.21±8.16	74.57±7.70	75.37±6.59	73.17±6.93	74.12±8.19
Gender (M/F)	12/18	39/35	4/0	45/35	38/37	6/1	37/48	127/98	72/56
Handedness	29/1	60/14	4/0	69/11	67/8	7/0	79/6	203/22	118/10
(R/L)									
Education, y	16.63±2.68	16.45±2.59	17.50±1.29	16.88±2.67	16.00±2.65	16.71±2.43	16.34±2.36	16.12±2.74	15.78±2.71
APOE e4 (+/-)	6/24	16/58	0/4	16/64	17/58	1/6	38/47 ^{md}	140/85 ^{cd}	93/35 ^{cm}
Memory	1.28±0.66 ^{md}	0.75±0.64 ^{cd}	-0.12±0.68 ^{cm}	1.17±0.57 ^{md}	0.55±0.62 ^{cd}	-0.40±0.67 ^{cm}	0.97±0.63 ^{md}	0.20±0.63 ^{cd}	-0.87±0.53 ^{cm}
MMSE	28.70±1.68 ^d	28.62±1.31 ^d	25.75±2.36 ^{cm}	29.15±0.99 ^{md}	28.29±1.64 ^{cd}	23.86±2.19 ^{cm}	29.02±1.17 ^{md}	27.81±1.86 ^{cd}	23.21±2.24 ^{cm}
CDR-SOB	0.02±0.09 ^{md}	1.22±0.60 ^{cd}	4.38±3.04 ^{cm}	0.05±0.15 ^{md}	1.20±0.76 ^{cd}	4.57±1.40 ^{cm}	0.05±0.17 ^{md}	1.53±0.90 ^{cd}	4.64±1.70 ^{cm}
ICV	1523.77± 152.57	1520.05± 127.78	1540.83± 36.50	1554.01± 128.10	1559.14± 147.96	1566.75± 221.76	1524.87± 148.29	1558.61± 148.25	1549.78± 163.05

Note: Data on age are range and mean ± SD. Data on education, ICV, and memory are mean ± SD. Data on memory are in z-scores.

Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer's disease; A = β-amyloid; T = tau; '+' = positive; '-' = negative; y = years; M = male; F = female; R = right; L = left; MMSE = Mini-Mental State Exam; CDR-SOB = Clinical Dementia Rating Sum of Box; ICV = intracranial volume. Superscripts ('c', 'm', 'd') represent significant group difference with CN, MCI and probable AD respectively.

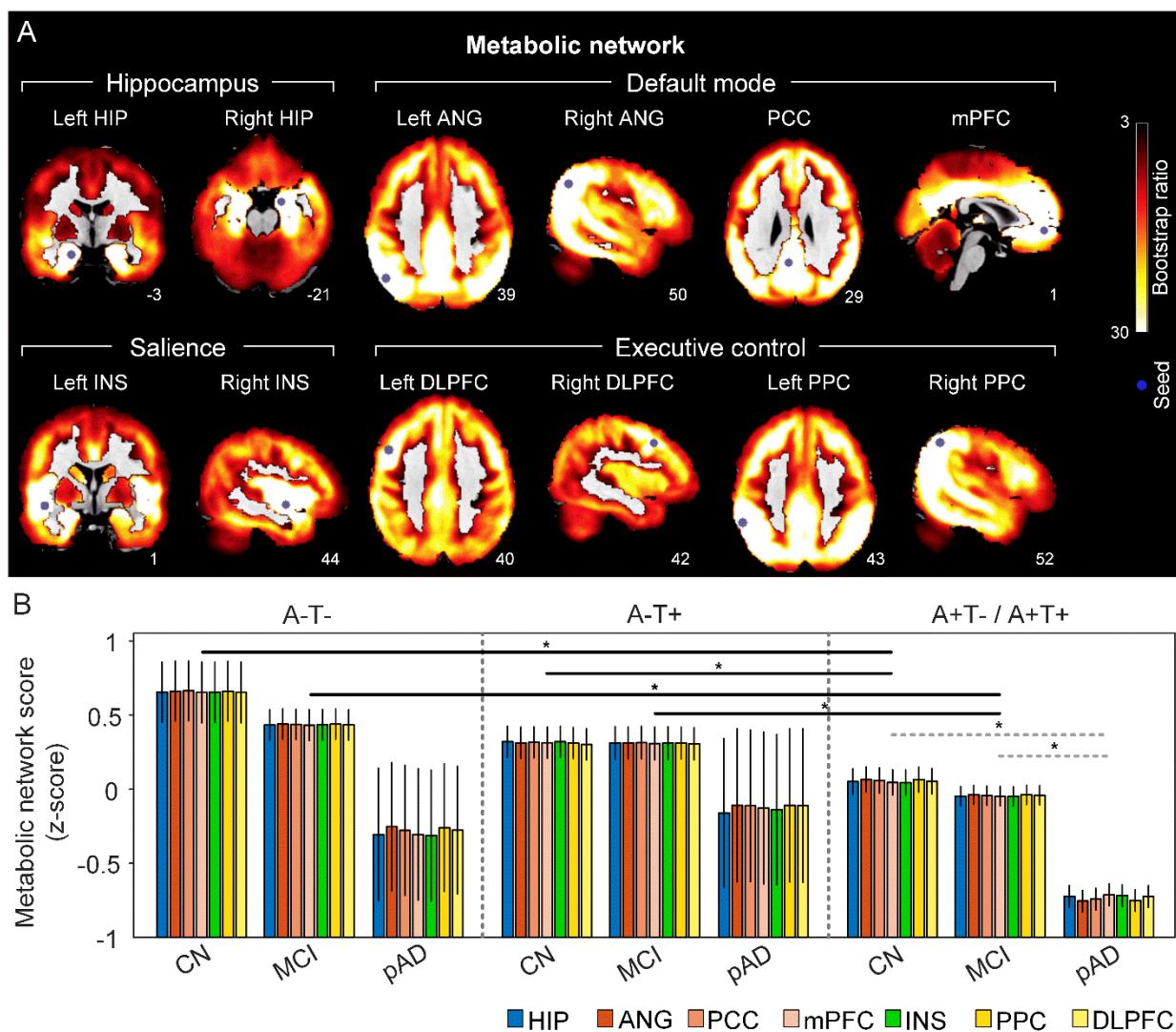
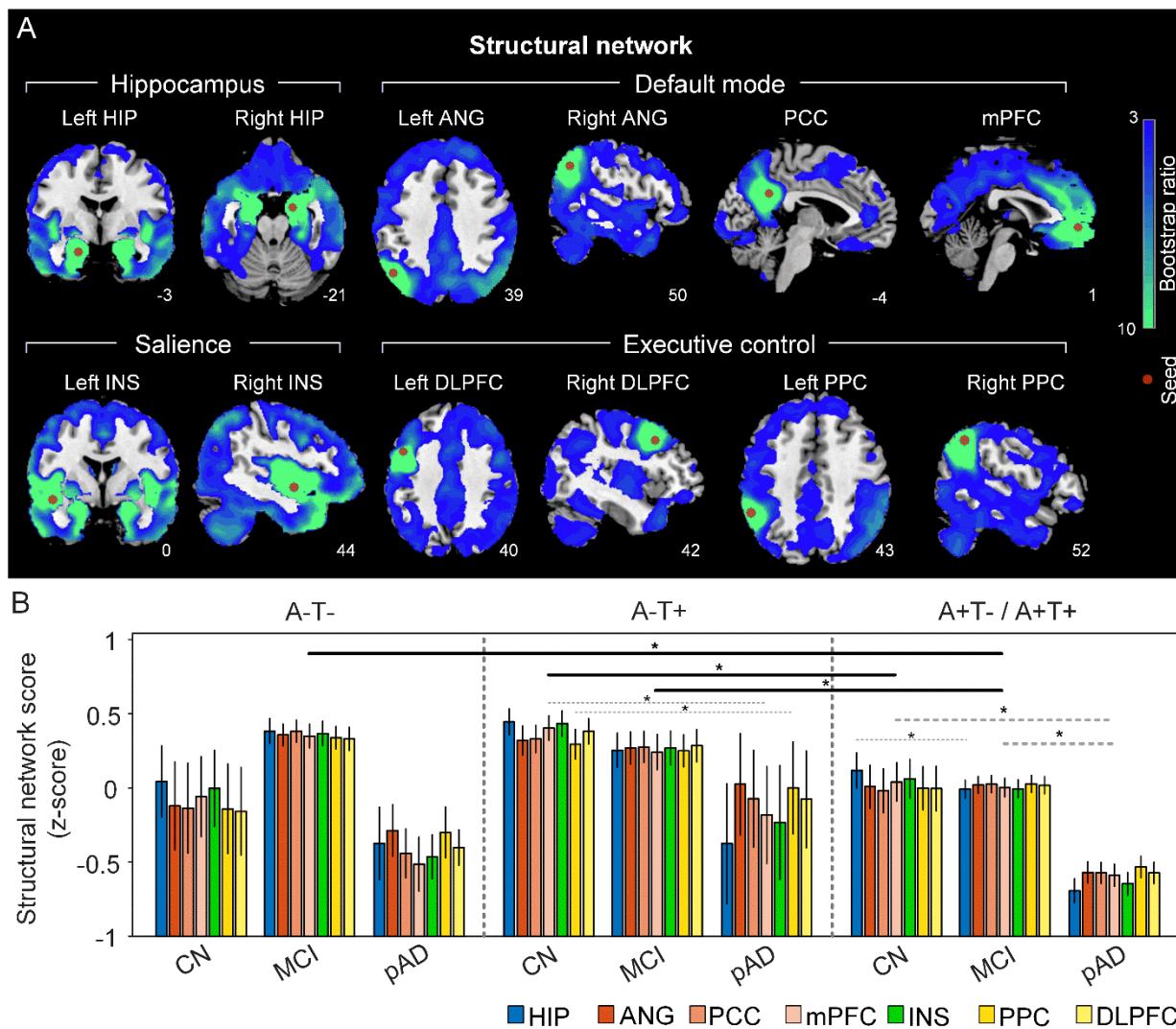


Figure 2. The integrity of brain metabolic networks in participants with and without amyloid pathology across cognitive stages. A. Brain slices of metabolic covariance networks associated with each brain seed defined from FDG-PET data highlighted in blue circles. Brain metabolic network resembled canonical brain networks. The intensity of colorbar represents bootstrap ratios, derived from dividing the weight of the singular-vector by the bootstrapped standard error. B. Individual-level brain metabolic network scores were lower in individuals with worse cognition and amyloid pathology. Summary of individual-level metabolic network scores (mean \pm SD) were presented in bar charts. '*' indicates significant group difference (ANOVA; $p < 0.05$). Thick lines indicate group differences in brain network scores between different cognitive stages (grey dashed lines) or pathology groups (dark lines). Abbreviations: HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively normal; MCI = mild cognitive impairment; pAD = probable AD; A = β -amyloid; T = tau; '+' = positive; '-' = negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC =

1 media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior
2 parietal cortex.
3



4
5 **Figure 3. The integrity of brain structural networks in participants with and without amyloid**
6 **pathology across cognitive stages.** A. brain slices of structural covariance networks associated
7 with each brain seed defined from GMV data highlighted in blue circles. The intensity of colorbar
8 represents bootstrap ratios, derived from dividing the weight of the singular-vector by the
9 bootstrapped standard error. B. Individual-level brain structural network scores were lower in
10 individuals with worse cognition and amyloid pathology. Summary of individual-level structural
11 network scores (mean \pm SD) were presented in bar charts. '*' indicates significant group difference
12 (ANOVA; $p < 0.05$). Thick lines indicate group differences in all brain network scores between
13 different cognitive stages (grey dashed lines) or pathology groups (dark lines). Abbreviations: HIP
14 = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal
15 cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex;

1 CN = cognitively normal; MCI = mild cognitive impairment; pAD = probable AD; A= β -amyloid;
2 T = tau; ‘+’ = positive; ‘-’ = negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior
3 cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal
4 cortex; PPC = posterior parietal cortex.

5

6

7 Within the same pathology group, we observed slightly different patterns in structural and
8 metabolic networks. Specifically, in participants with amyloid pathology (A+T-/A+T+), the
9 probable AD group had lower metabolic and structural network scores than the CN and MCI
10 groups in all the networks (Fig. 2B right and 3B right). The amyloid positive MCI group had
11 comparable metabolic network scores but lower structural HIP-based memory network scores than
12 the amyloid positive CN group. In contrast, participants without amyloid and tau pathology (A-T-)
13 did not show any differences in both metabolic and structural networks across the three cognitive
14 stages (Fig. 2B left and 3B left). Interestingly, participants with tau pathology (A-T+) had no
15 cognitive stage-related differences in all metabolic networks, while the tau positive dementia group
16 had lower structural integrity in the mPFC-based anterior DMN and PPC-based ECN than the tau
17 positive CN group (Fig. 2B middle and 3B middle).

18

19 **Divergent stage-dependent trajectories of the association between hippocampal structural
20 network integrity and memory performance in the three pathology groups**

21 Next, we sought to determine the differential nonlinear trajectories of the association between
22 brain network integrity and memory impairment in different pathology groups across the three
23 cognitive stages using the SVC model (Fig. 1, step 4) ⁴⁵. Note that we did not assume a constant
24 relationship here; instead, the network-memory association could vary across cognitive stages.
25 Instead of analyzing each brain measure in separate models, the SVC analysis allows all variables

1 to be entered as predictors in the same multivariate model, with the identification of the most
2 important predictors and the elimination of the less important predictors (i.e. feature selection)
3 implemented by minimizing the penalized least squares function.

4 To characterize the possible stage-dependent trajectories using SVC modelling, we
5 ordered the participants by their cognitive stages (i.e., CN → MCI → dementia; Supplementary
6 Fig. 4 A) in each of the three pathology groups (A-/T-, A-/T+ and A+T-/A+T+). Within each stage,
7 the participants were then ordered by their global cognition or dementia severity (i.e., no
8 impairment → severe impairment). Specifically, the participants within the CN group were
9 ordered by decreasing MMSE scores, while the participants within the MCI and dementia groups
10 were ordered by increasing CDR-sum of boxes (SOB) scores. Participants with the same MMSE
11 or CDR-SOB scores were further ordered by increasing age (i.e., young → old). Ordered
12 participants were distributed evenly into bins (i.e., 10 subjects/bin). In our SVC models, the
13 dependent variable was the ADNI memory composite score. Predictors included all the 14
14 FDG/GMV regional network scores with gender, education years, *APOE ε4*, intracranial volume
15 (ICV), and scanning site as nuisance variables. We performed the SVC modelling for each
16 pathology group separately to find the key predictors and the trajectories of their associations with
17 memory along the disease progression (see details in Methods).

18 The SVC models identified the HIP-based structural memory network score as a key
19 predictor of memory impairment in all three pathology groups (Fig. 4A and 5A). We found that
20 the lower HIP structural network scores, the lower the ADNI-mem scores (indicated by positive
21 beta coefficient). The strength of this association was higher (i.e., higher beta coefficient) in the
22 amyloid pathology group than the other two A- groups.

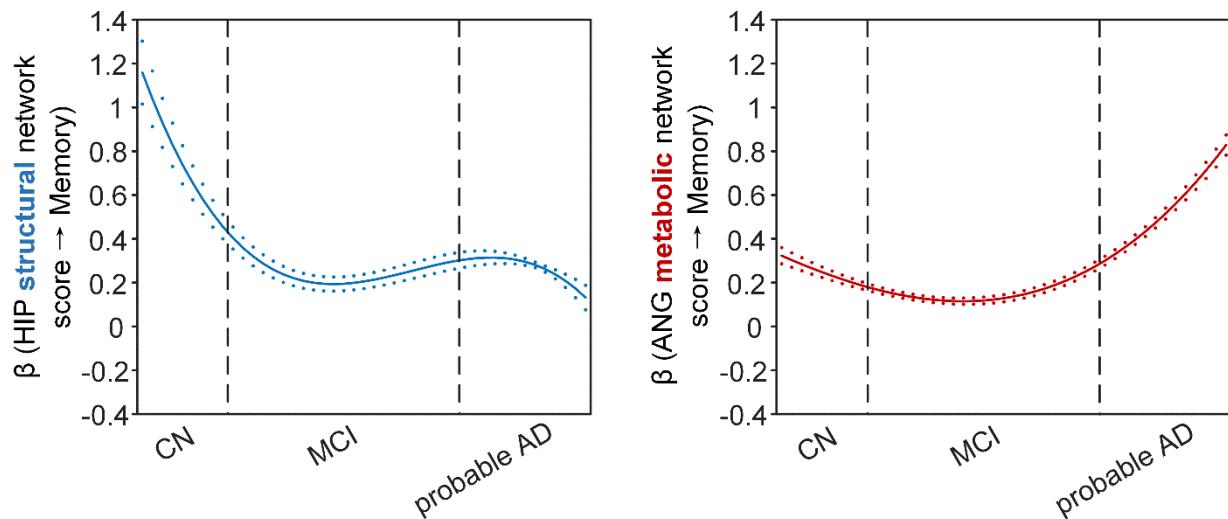
1 More importantly, not only was the relationship between the HIP structural network and
2 memory performance non-linearly dependent on cognitive stages as hypothesized, but such non-
3 linear trajectories were also different across the three pathology groups (Fig. 4A and 5A).
4 Specifically, in the amyloid pathology group, the strength of this association was highest in early
5 CN stage, and decreased from late CN to early MCI stage (Fig. 4A, left). The strength of this
6 association remained stable in MCI and then decreased in the dementia stage.

7

A

Main dataset

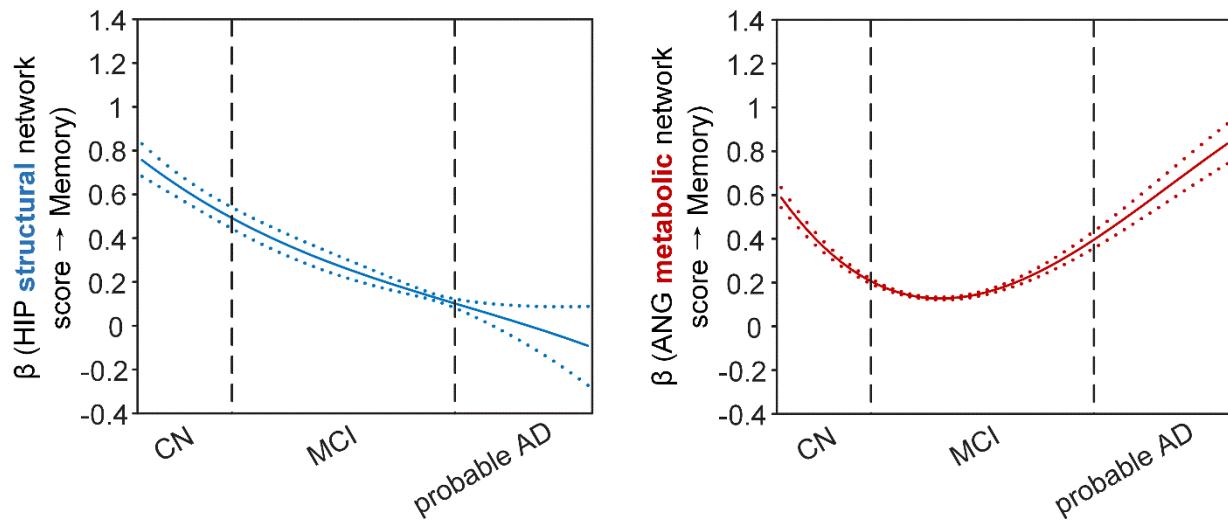
A+T- / A+T+



B

Validation dataset

A+T- / A+T+



1

2 **Figure 4. Brain metabolic and structural networks had differential stage-dependent**
3 **associations with memory in amyloid positive individuals.** Data from the main (panel A) and
4 validation dataset (panel B) exhibited consistent stage-dependent memory-network association
5 trajectory from cognitively normal to dementia stage in participants with amyloid pathology (i.e.
6 A+T-/A+T+ group). Both hippocampal-seeded structural network (left, in blue) and angular
7 gyrus-seeded default mode metabolic network (right, in red) integrity contributed significantly to
8 memory performance in early cognitively normal stage. Such impact decreased in MCI stage for
9 both metabolic and structural networks. In contrast, only the metabolic network had a major

1 influence on memory in late dementia stage. Solid curves represent the mean associations (beta
2 coefficients) of brain network scores with memory as a function of advancing AD continuum
3 estimated from 100 replicates. The dashed curves represent the point-wise 2* standard errors of
4 the solid curves estimated from 100 replicates. The participants were ordered by their cognitive
5 stages (i.e., CN → MCI → probable AD). Within each cognitive stage, the participants were then
6 ordered by general cognition (MMSE for CN) or dementia severity (CDR for MCI and dementia)
7 (i.e., no impairment → severe impairment). Participants with the same level of
8 impairment/severity were further ordered by increasing age (i.e., young → old). Ordered
9 participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: CN =
10 cognitively normal; MCI = mild cognitive impairment; HIP = hippocampus; ANG = angular gyrus.
11
12

13 The two amyloid negative groups had the opposite pattern of the amyloid positive group
14 (Fig. 5A). Specifically, in the A-T- group, the strength of the association between the HIP
15 structural network and memory performance was lowest in early CN stage and increased in the
16 late CN stage. It then remained stable in the MCI stage before a further increase in the dementia
17 stage. Similarly, in the A-T+ group, the strength of such association was low in the CN stage and
18 gradually increased in the MCI stage, reaching the highest in the late MCI and dementia stage.

19 Our findings suggest that the influence of the HIP-based structural network integrity on
20 memory performance begins early in the preclinical AD stage and the strength of this influence
21 gradually decreased as the cognitive stages progress. On the other hand, the influence of the HIP
22 network integrity on memory is weaker in individuals without A β pathology and peaks in the
23 dementia stage. The stronger hippocampus-memory association in the preclinical AD stage
24 supports the current strategy of early intervention to attain better cognitive outcomes.

25 Furthermore, demographical and genetic variables such as gender, education years and
26 *APOE* ε4 genotype showed differential stage- and pathology-dependent associations with memory
27 performance (Supplementary Fig. 6). Females and fewer years of education were associated with
28 memory impairment in A-/T- and A-/T+ groups respectively. These associations were highest in

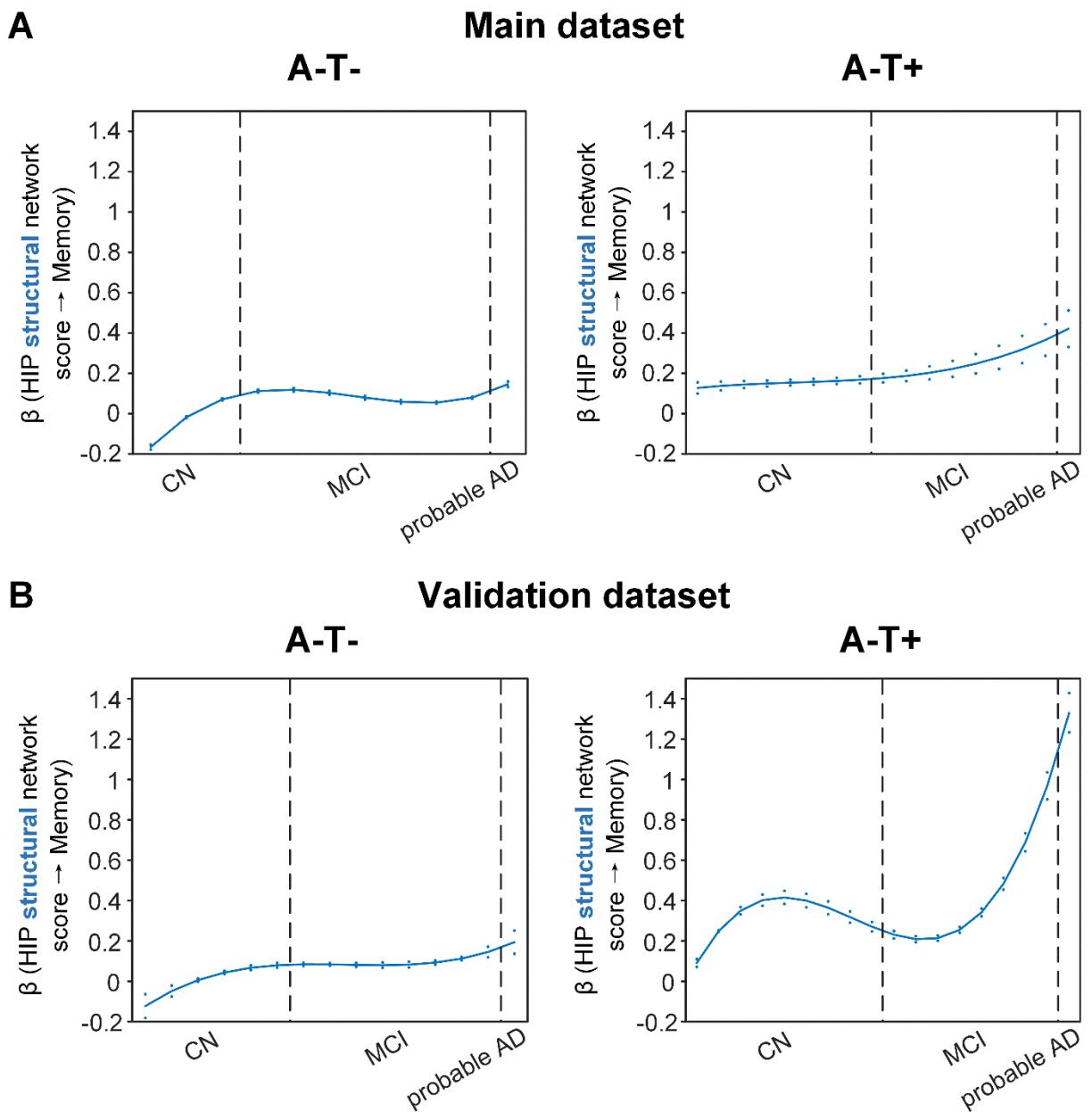
1 the early CN stage and gradually decreased in late CN stage before increasing in the late MCI and
2 probable AD stages. In contrast, females, fewer years of education and *APOE ε4* carriers in the
3 amyloid pathology group were associated with memory impairment with a differential trajectory
4 (i.e., highest in the early CN stage and gradually decreased afterwards), although the strength of
5 this association was relatively lower overall compared to those in the A-/T- and A-/T+ groups.

6

7 **Stage-dependent association between angular gyrus metabolic network integrity and**
8 **memory performance in amyloid pathology group**

9 The SVC models identified the angular gyrus-based (ANG) metabolic network score (i.e., DMN)
10 to be associated with memory impairment only in the amyloid pathology group (Fig. 4A, right).
11 We found that the lower the ANG metabolic network score, the lower the ADNI-mem score. This
12 suggested that a breakdown in the ANG-based metabolic covariance network was related to worse
13 memory performance in the amyloid pathology group only. A non-linear relationship was also
14 observed between the ANG metabolic covariance network and memory performance across
15 different cognitive stages. The strength of this relationship showed an early peak in early CN and
16 gradually decreased in the late CN and MCI stages, before increasing in late MCI/dementia stage
17 again.

18



1

2 **Figure 5. Stage-dependent association of brain hippocampal structural network with**
3 **memory performance in A-T- and A-T+ pathology groups.** Data from the main (panel A) and
4 validation dataset (panel B) exhibited consistent stage-dependent memory-network association
5 trajectory from cognitively normal stage to dementia stage in participants with A-T- and A-T+
6 pathology. The hippocampus-memory association was much weaker overall in non-amyloid/non-
7 tau and tau only groups compared to amyloid positive group (Figure 4). The memory-network
8 association was the lowest in early cognitively normal stage and gradually increased with clinical
9 progression in both groups, while the tau only group had stronger associations in dementia stage.
10 Solid curves represent the mean associations (beta coefficients) of brain network scores with
11 memory as a function of advancing AD continuum estimated from 100 replicates. The dashed

1 curves represent the point-wise 2* standard errors of the solid curves estimated from 100 replicates.
2 The participants were ordered by their cognitive stages (i.e., CN → MCI → probable AD). Within
3 each cognitive stage, the participants were then ordered by general cognition (MMSE for CN) or
4 dementia severity (CDR for MCI and dementia) (i.e., no impairment → severe impairment).
5 Participants with the same same level of impairment/severity were further ordered by increasing
6 age (i.e., young → old). Ordered participants were distributed evenly into bins (i.e., 10
7 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; HIP =
8 hippocampus.
9

10

11 Our findings are in line with the current literature which show that decreased glucose
12 uptake in the ANG is associated with worse cognitive performance in the later stages of AD. In
13 addition, we extend this field by demonstrating the early influence of the ANG-based metabolic
14 covariance network (mirroring the DMN) for memory performance in the preclinical AD stage.
15 This suggests that early metabolic dysfunction of the ANG and the extended DMN may predispose
16 individuals with preclinical AD to be more vulnerable to memory impairment.
17

18 **Replication in the validation dataset**

19 To test if the above findings from the main dataset can be replicated, we repeated the same
20 analyses using another larger validation dataset. We added an additional 468 individuals who
21 underwent 1.5T T1-weighted MRI scans and [¹⁸F]FDG PET. With the original main dataset of 812
22 participants, we had 1280 participants in total for brain seed definition (Fig. 1, step 1). Out of 1280
23 participants, 859 participants had the same neuropsychological assessments, lumbar puncture for
24 the following analyses (Fig. 1, steps 2 & 3, Supplementary Table 3). The field strength (i.e., 1.5-
25 T or 3-T) was further included as an additional nuisance variable for analyses on the validation
26 dataset. We performed the same PLS-SVC analyses and replicated most of our key findings (Fig.
27 4B and 5B, Supplementary Fig. 2, 3, and 7, see Supplementary Results). Specifically, the HIP-

1 based structural memory network and the ANG-based metabolic default mode network scores
2 were associated with memory impairment in the respective pathology groups with similar beta
3 curves as the main dataset. Furthermore, these observations remained robust when the analyses
4 were performed using the alternative ordering strategy of merging both MCI and dementia stages
5 (Supplementary Fig. 5 & 8).

6

7 **High specificity of the SVC model**

8 Lastly, we evaluated the specificity of the established SVC models using permutation tests. For
9 each null SVC model using the permuted datasets, the frequency distributions of variable selection
10 (i.e., the total times of selection as the key predictor of memory scores within the 100 permuted
11 datasets) appeared random (see Supplementary Fig. 9). As the selected variables in our main
12 findings were not favoured over the other variables in the null models, this indicated the high
13 specificity of the SVC models that were built on the original dataset.

14

15 **DISCUSSION**

16 This study revealed differential associations of brain structural and glucose metabolism covariance
17 networks with memory performance across the cognitive stages of CN, MCI and probable AD in
18 individuals stratified by A β and tau pathologies. Rather than assuming a constant brain-memory
19 association, we demonstrated that brain structural and metabolic network integrity had non-linear
20 associations with memory performance across different cognitive stages; such trajectories
21 exhibited opposing patterns in individuals with and without amyloid pathology. A lower HIP
22 structural network score was associated with a lower ADNI-mem score and among individuals
23 with amyloid pathology, the strength of this relationship was greatest in early CN and decreased

1 in subsequent cognitive stages. In contrast, the strength of this association was lower and the
2 trajectory was opposite in those with both tau-only and non-amyloid/non-tau pathology. An
3 association between the breakdown of the default mode metabolic network seeded at the ANG
4 with memory deficit was also observed in individuals with amyloid pathology, with the strength
5 of this association peaking in early CN and decreasing gradually before rebounding in the late
6 MCI/dementia stage. Our findings support the AD biomarker hypothetical models by
7 characterizing the non-linear influence of brain structural and metabolic networks on memory
8 function across the AD continuum, hence paving the way for early interventions and stage-
9 dependent remedies to modify disease trajectory and improve clinical outcomes.

10

11 **Early influence of hippocampal structural network deterioration on memory impairment in**
12 **asymptomatic amyloid-positive individuals**

13 The HIP structural network is identified to be associated with memory impairment in all
14 three pathology groups which is consistent with the role that the hippocampus plays in memory
15 cognitive domain ^{51, 52}. However, the peak influence of the HIP structural integrity on memory
16 differed among the three pathology groups. The early peak of the association at the CN stage in
17 the amyloid pathology group suggests an early influence of the hippocampal structural network
18 integrity on memory performance in the preclinical AD stage. Our findings are in line with a recent
19 study that compared MRI brain structure models of normal and AD participants across the entire
20 lifespan, showing that the AD model for hippocampus diverged early from normal aging trajectory
21 ⁵³. Accumulating evidence also suggests hippocampal volume and thickness as early imaging
22 correlates of verbal memory in preclinical AD ⁵⁴. Furthermore, in a cohort of CN individuals,
23 decreased CSF A β 42 was associated with hippocampal loss and poorer performance on episodic

1 memory⁵⁵, while an early effect of A β on memory mediated by hippocampal atrophy has been
2 demonstrated in non-demented older individuals^{56, 57, 58}. These evidence supports our findings of
3 the early influence of structural covariance breakdown in the hippocampal networks on memory
4 performance in the preclinical AD stage.

5 In our cohort with amyloid pathology, the strength of the association between HIP
6 structural network and memory gradually decreased in the MCI and dementia stages. This suggests
7 that the HIP structural network integrity plays a lesser role on memory performance as the
8 cognitive stages progress. Given that memory impairment is expected to worsen as the cognitive
9 stage progresses, we postulate that structural networks outside the hippocampal/temporal lobes
10 may be increasingly affected while the influence from the hippocampal-based memory network
11 decreases. Indeed, the hippocampus system is well connected to various cortical brain regions in
12 processing memory information⁵⁹ and together with brain structures such as the prefrontal cortex
13 make up a large-scale network to support encoding and retrieval of episodic memory⁶⁰. While the
14 medial temporal lobe is well known to be affected early on in the AD process, gray matter regions
15 outside the medial temporal lobes are gradually implicated as the disease progresses to MCI and
16 dementia⁵⁴. Atrophy in brain regions within the DMN such as the precuneus and the posterior
17 cingulate gyrus are shown to be associated with episodic memory impairment⁶¹ and decreased
18 inferior frontal gyrus volume is associated with verbal memory decline in MCI patients who
19 converted to AD over time⁶².

20
21 **Angular gyrus-seeded default mode network metabolic deterioration plays a key role in**
22 **memory deficit in the asymptomatic and dementia stages of AD**

1 While impaired glucose uptake in the ANG is consistently shown to be an important feature
2 for predicting memory and executive functioning performance in the later stages of AD^{63, 64}, our
3 present findings provide further insights into the early critical role of ANG-based metabolic
4 covariance network for intact memory (i.e., earlier peak of beta) in the preclinical AD stage. The
5 ANG, located in the posterior part of the inferior parietal lobule, is one of the major connector
6 hubs that links different subsystems such as the DMN^{20, 65} that are affected by AD
7 pathophysiology, and is involved in verbal working memory^{66, 67} and episodic memory retrieval
8 ⁶⁸. The role of ANG in memory performance is also implicated by its strong connectivity with the
9 hippocampal system⁶⁷ that is critical in episodic and declarative memory functions⁵¹. Furthermore,
10 a recent study showed that A β aggregation within the brain's DMN is associated with regional
11 hypometabolism in distant but functionally connected brain regions, including the inferior parietal
12 cortices where the ANG is located⁶⁹. Therefore, early malfunctioning of the ANG, as indicated by
13 aberrant metabolic network patterns in our study, may predispose CN individuals with amyloid
14 pathology to a more vulnerable memory system.

15 Interestingly, we observed that the relationship between ANG-based metabolic covariance
16 network and memory performance gradually decreased in the late CN and MCI stages before
17 increasing in the dementia stage. We postulate that this may represent a metabolic compensatory
18 mechanism in the MCI stage as a manifestation of cognitive reserve to preserve memory function,
19 which has been proposed in AD functional connectivity (FC) studies. Among amnestic MCI
20 individuals, increased FC compared to controls was found within the DMN and between DMN
21 and brain networks such as the frontoparietal control and dorsal attention networks. These
22 abnormal increased FC patterns are associated with lower cognitive performance which suggest a
23 maladaptive compensatory mechanism in the MCI stage^{70, 71}. Similarly, higher nodal topological

1 properties such as the nodal strength, nodal global efficiency and nodal local efficiency, and
2 increased local and medium-range connectivity located in the DMN-related brain regions were
3 also shown in the earlier subjective cognitive decline stage of AD relative to healthy controls ⁷².
4 While these evidence supports our hypothesis of a metabolic compensatory mechanism in the late
5 CN/MCI stage of AD, our findings will need to be confirmed in a larger cohort with longitudinal
6 follow up.

7

8 **Modest influence of hippocampal structural network deterioration on memory impairment**
9 **in individuals with non-amyloid pathology**

10 The strength of the association between HIP structural network covariance and memory
11 function was overall lower in non-AD groups compared to amyloid pathology group, which
12 suggested that the hippocampal network integrity had a more modest influence on memory in
13 individuals without A β pathology compared to those with A β pathology. In line with our finding,
14 a recent study on 531 deceased older community adults showed that neuropathologies such as AD,
15 cerebrovascular disease and hippocampal sclerosis accounted for 42.6% of the variation in global
16 cognitive decline, whereas hippocampal volume alone only accounted for an additional 5.4% of
17 this variation ⁷³. Furthermore, we demonstrated a non-linear and opposing trajectory of this
18 association as the cognitive stage progresses in non-AD groups compared to AD group. Although
19 prior studies have consistently demonstrated that hippocampal atrophy is associated with memory
20 deficits even before the presence of dementia and can predict dementia progression ⁷⁴, emerging
21 evidence suggests that the relationship between hippocampal atrophy and memory is also
22 dependent on other factors such as age and cognitive reserve ^{75, 76, 77}. Specifically, the association
23 between episodic-memory decline and atrophy in the hippocampus over time was stronger in older

1 than in the middle-aged participants⁷⁵. In middle age, hippocampal volume was related to memory
2 in those with low cognitive reserve, but not in those with high cognitive reserve⁷⁶. Excitingly, our
3 findings shed new insights that the associations of memory decline with both hippocampal
4 structural network integrity and years of education (i.e. a proxy for cognitive reserve) were also
5 dependent on the presence/absence of amyloid pathology and the level of cognitive impairment.

6

7 **Strengths and Limitations**

8 The main strength of the present study is the inclusion of individuals from the ADNI cohort
9 with well characterized neuropsychological, multimodal neuroimaging and AD biomarker data.
10 This enables the study of the relationships between metabolic, structural brain networks and
11 memory performance specifically in individuals within the AD continuum and those without
12 amyloid pathology. Nevertheless, there are a few limitations in our study. First, the ADNI cohort
13 consists of self-selected individuals participating in a study focusing on AD research which may
14 introduce selection bias and limit the generalizability of our findings to a broader community.
15 Second, our study design is cross-sectional thus provides only indirect evidence on the underlying
16 brain-behavior relationship. Therefore, a larger population-based longitudinal study is needed to
17 characterize within-subject trajectories of brain-behavior relationships across the disease
18 continuum. Lastly, while we characterised the amyloid and tau status of our cohort using CSF
19 amyloid and p-tau, we did not consider the spatial patterns of amyloid and tau brain deposition.
20 Further studies are needed to elucidate the complex spatial and temporal trajectories of structural
21 and metabolic networks in the various non-amyloid tauopathies and how the presence of amyloid
22 affects the tau-metabolism-memory associations across the disease continuum.

1 In conclusion, our findings support the AD hypothetical models that the association
2 between neurodegeneration and memory dysfunction is non-linear across cognitive stages and
3 depends on the type of pathology. The early influence of metabolic and structural covariance
4 breakdown in the default mode and hippocampal networks on memory performance underscore
5 the importance of early intervention in preclinical AD.

6

7 **METHODS**

8 **Participants**

9 Data used in this article were obtained from the ADNI database (adni.loni.usc.edu). The ADNI
10 was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.
11 Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other biological
12 markers, and clinical and neuropsychological assessment can be combined to measure the
13 progression of MCI and early AD.

14 In this study, we first selected 812 participants to define seed regions for brain network
15 derivation (Figure 1, step 1). All of the images passed the visual quality control. Among them, 232
16 were CN, 413 were MCI and 167 were probable AD. We then identified 708 participants (610
17 from ADNI-2 and 98 from ADNI-GO) from the above cohort who underwent neuropsychological
18 assessments, and lumbar puncture in addition to [18F]FDG PET and 3T T1-weighted MRI scans
19 to form the main study cohort (Figure 1, steps 2 & 3). Among them, 195 were CN, 374 were MCI
20 and 139 were probable AD (Table 1). Another larger validation dataset was created for replication
21 by including another 468 individuals (377 from ADNI-1, 38 from ADNI-2, and 53 from ADNI-
22 GO) who underwent 1.5T T1-weighted MRI scan. Supplementary Figure 1 showed the flowchart
23 of study participant selection.

1 Following ADNI diagnostic criteria ⁷⁸, we defined CN as those with mini-mental state
2 examination (MMSE) scores ≥ 24 and clinical dementia rating (CDR) 0, and showed no signs of
3 depression, mild cognitive impairment, or dementia. MCI was defined as those with MMSE scores
4 ≥ 24 and CDR 0.5, subjective and objective memory loss, absence of significant levels of
5 impairment in other cognitive domains, essentially preserved activities of daily living, and an
6 absence of dementia. Probable AD was defined as those with MMSE scores ≤ 26 , CDR ≥ 0.5 and
7 meeting the NINCDS/ADRDA criteria for probable AD.

8 A β (A) and tau (T) pathologies were measured using CSF A β_{1-42} and CSF p-tau_{181p}. More
9 details were in Supplementary Methods. Using the ADNI published cutoffs of A $\beta_{1-42} < 192$ pg/mL
10 and CSF p-tau_{181p} > 23 pg/mL to define the presence of A β and tau pathology respectively ⁷⁹, the
11 main study cohort was further stratified into three pathology groups: A-T- (non-amyloid/non-tau),
12 A-T+ (tau only) and A+T-/A+T+ (amyloid pathology) (Table 1). There was no significant
13 difference in age, gender, years of education, and *APOE* $\epsilon 4$ status among CN, MCI, and probable
14 AD individuals in the A-T- and A-T+ groups (Table 1). The proportion of *APOE* $\epsilon 4$ carriers was
15 lower in CN compared to MCI and dementia individuals in the A+T-/A+T+ group.

16 The ADNI study was approved by the Institutional Review Boards of all of the
17 participating institutions and informed written consent was obtained from all participants at each
18 site.

19

20 **Neuropsychological assessment**

21 The ADNI-mem is a validated composite memory score derived using data from the ADNI
22 neuropsychological battery ⁸⁰. More details were in Supplementary Methods.

23

1 **Image acquisition and preprocessing**

2 All participants from the main dataset underwent T1-weighted MRI scans according to the
3 standardized ADNI protocol using 3-Tesla scanners. Additional participants who underwent
4 structural MRI brain scans using 1.5-Tesla scanners were included to form a validation dataset
5 with a larger sample size. All participants also underwent [¹⁸F]FDG PET to study cerebral glucose
6 metabolism (185 MBq (5 mCi), dynamic 3D scan of six 5-min frames 30-60 min post-injection).

7 All T1-weighted MRI scans were corrected for field distortions and processed using the
8 CIVET image processing pipeline (www.bic.mni.mcgill.ca/ServicesSoftware/CIVET) to generate
9 the GM probability maps as previously described ⁸¹. [¹⁸F]FDG PET images were processed with
10 an in-house processing pipeline as described in our previous work ⁸². Further details on image
11 parameters and preprocessing were in Supplementary Methods.

12

13 **Statistical analyses**

14 Between-group differences in demographic characteristics and clinical assessments were tested
15 among CN, MCI, and probable AD groups. Either a one-way ANOVA or a chi-squared test was
16 used depending on the nature of the variable.

17

18 *Seed definition: group comparison on GMV and glucose metabolic pattern between CN and
19 probable AD*

20 As shown in Fig. 1 (step 1), the 12 seed coordinates from the DMN, the salience network, the ECN
21 and the memory network were determined based on the group comparisons of the GMV
22 probability and glucose metabolic spatial maps between CN and probable AD individuals using a
23 permutation test (randomise, FSL, 5000 permutations). Effects of age, gender, years of education,

1 and APOE ε4 genotype were regressed out. The field strength (i.e., 1.5T or 3T) was included as
2 an additional covariate when the tests were performed using the validation dataset (Supplementary
3 Table 1). The resulting GMV and metabolic group difference maps (i.e., CN greater than probable
4 AD) were thresholded using threshold-free cluster enhancement with an alpha level of 0.05
5 (corrected at family-wise error (FWE) rate). We superimposed the two thresholded t statistical
6 maps (GMV and metabolic) and summed the t-scores at each voxel. Spherical seeds (with 4 mm
7 radius) were then defined based on the peak foci of the above network key regions showing atrophy
8 and hypometabolism in probable AD compared to CN (Supplementary Table 3).

9

10 *Brain metabolic and structural network derivation: seed PLS analyses*

11 We used seed PLS to identify covariance patterns between GMV/metabolism in each seed region
12 and those of all other voxels in the whole brain (Fig. 1, step 2). The seed value was defined as the
13 average GMV/metabolism values within each predefined seed from step 1. For each seed region,
14 the vector \mathbf{Y} representing the seed values concatenated across all the participants was cross-
15 correlated with a matrix \mathbf{X} , representing the GMV (or metabolism) images of all the participants.
16 Both the seed vector \mathbf{Y} and the image matrix \mathbf{X} were centered and normalized such that the vector
17 of correlations \mathbf{R} was computed as:

18
$$\mathbf{R} = \mathbf{Y}^T \cdot \mathbf{X}$$

19 Using singular value decomposition, the correlation vector \mathbf{R} was decomposed into a set
20 of mutually orthogonal latent variables (LVs) comprising three matrices:

21
$$\mathbf{R} = \mathbf{v} \cdot \mathbf{s} \cdot \mathbf{u}^T$$
,

22 where \mathbf{s} is the diagonal matrix of singular values, and \mathbf{v} and \mathbf{u} are the orthonormal matrices of left
23 and right singular vectors, which are also called saliences in the PLS terminology. The left and

1 right singular vectors respectively represent the seed profiles and the whole-brain patterns that best
2 characterize the correlation vector \mathbf{R} . Therefore, the brain salience \mathbf{u} captures the brain covariance
3 or network pattern that is of interest. The number of LVs derived is equal to the rank of the
4 correlations vector \mathbf{R} . The LVs were tested for statistical significance with 1000 permutations.
5 The stability of each voxel in the brain salience of the LV was validated using a bootstrap ratio,
6 calculated by dividing the voxel salience value by its standard error, estimated by bootstrapping
7 (500 times).

8 The resulting significant LV from the PLS analyses of each of the 12 seeds (all $p < 0.0001$)
9 corresponded to reliable patterns of structural or metabolic covariance network associated with
10 that seed (see Supplementary Fig. 2).

11 To represent individual-level brain salience maps of the identified LV for each seed PLS
12 model, the original matrix \mathbf{X} was projected onto the brain salience \mathbf{u} , which was computed by:
13
$$\mathbf{L}_\mathbf{X} = \mathbf{X} \cdot \mathbf{u},$$

14 where $\mathbf{L}_\mathbf{X}$ is a vector of brain structural or metabolic network scores across all the participants.

15 We calculated the brain network score for each of the 12 networks in both FDG and GMV
16 modalities separately. For HIP, ANG, INS, PPC, and DLPFC, we averaged the left and right brain
17 network scores. In total, each participant had 14 brain network scores (i.e., two for each of the 7
18 seed regions, including HIP, ANG, PCC, mPFC, INS, PPC, and DLPFC), which reflect structural
19 or metabolic network pattern expression.

20

21 *Stage- and pathology-dependent associations between brain networks and memory impairment:*
22 *SVC modelling*

23 With ADNI-mem as the dependent variable, the SVC models have the following form:

1 $y_i(t_k) = \sum_{j=1}^p \beta_j(t_k)x_{ij}(t_k) + \varepsilon_i(t_k),$

2 where the dependent variable $y_i(t_k)$ represents the cognitive score for subject i ($i = 1, 2, \dots, n$) at
3 the bin t_k ($k = 1, 2, \dots, K$), $x_{ij}(t_k)$ is the j^{th} ($j = 1, 2, \dots, p$) predictor (FDG/GMV network scores
4 and nuisance variables; see below) of subject i at the bin t_k . Both the dependent variable and all
5 predictors were standardized to z-scores. $\beta_j(t_k)$ is the coefficient function depending on bin t_k for
6 each feature j and $\varepsilon_i(t_k)$ is the independent and identically distributed random errors at t_k . The
7 coefficient function $\beta_j(t_k)$ is approximated using linear combinations of a set of B-spline basis.
8 To simultaneously achieve regression model fitting and variable selection, the least absolute
9 shrinkage and selection operator (LASSO)⁸³ is applied to estimate $\beta_j(t_k)$ by minimizing the
10 following penalized least squares function:

11
$$\frac{1}{2n} \sum_{i=1}^n \sum_{k=1}^K [y_i(t_k) - \sum_{j=1}^p \beta_j(t_k)x_{ij}(t_k)]^2 + \lambda \sum_{j=1}^p \sqrt{\int \beta_j^2(t) dt},$$

12 where λ is the sparse penalty tuning parameter, which was chosen by a five-fold cross-validation
13 method.

14 We ran each SVC model for 100 repetitions and reported the brain measures that were
15 consistently selected by more than 90 repetitions. These measures were interpreted as a set of
16 critical brain GMV/metabolism networks that contributed to memory across the cognitive stages,
17 with a vector of beta coefficients reflecting stage-dependent (non)linearity in the network-memory
18 association.

19 To assess the stability of these beta coefficients, we calculated the mean and standard error
20 of the stage/pathology-dependent coefficients estimated from all 100 repetitions. Moreover, to
21 assess the specificity of the selected networks, we randomly permuted the memory scores 100
22 times across the participants and repeated the SVC modelling 100 times within each of the 100

1 permuted data sets, following our previous approach ⁴⁵. These ‘null’ permutations should yield
2 inconsistent selection of predictors, if any, as compared to our actual models. SVC modelling was
3 performed by in-house R scripts based on Daye and colleagues ⁴⁶.

4 To further confirm that our findings were robust, we repeated the analyses with another
5 ordering strategy which did not divide MCI and probable AD into two separate groups (i.e., CDR-
6 SOB and age ordering were done across all individuals with either MCI or probable AD diagnosis)
7 in each pathology group (Supplementary Fig. 4B).

8 To compare the brain metabolic and structural network scores between different cognitive
9 stages and different pathology groups (Fig. 1, step 3), we performed ANOVA among the
10 cognitive stages for each pathology, and ANOVA among the pathology groups for each cognitive
11 stage, followed by post-hoc two-sample t-tests (alpha = 0.05).

12

13 **DISCLOSURE STATEMENT**

14 The authors have no potential conflicts of interest.

15

16 **ACKNOWLEDGEMENTS**

17 Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging
18 Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI
19 (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National
20 Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through
21 generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug
22 Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb
23 Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;

1 EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio;
2 GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.;
3 Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck
4 & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies;
5 Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda
6 Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health
7 Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions
8 are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee
9 organization is the Northern California Institute for Research and Education, and the study is
10 coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern
11 California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of
12 Southern California. We also acknowledge the funding support from Yong Loo Lin School of
13 Medicine, National University of Singapore (J.H.Z), the Duke-NUS/Khoo Bridge Funding Award
14 (J.H.Z., KBrFA/2019-0020), NMRC Open Fund Large Collaborative Grant (J.H.Z.,
15 OFLCG09May0035).

16

17 **AUTHOR CONTRIBUTIONS**

18 Kok Pin Ng: conception and design of the study, data analysis, results interpretation, drafting the
19 manuscript and figures
20 Xing Qian: conception and design of the study, data analysis, results interpretation, drafting the
21 manuscript and figures
22 Kwun Kei Ng: manuscript revision and scripting
23 Fang Ji: manuscript revision and scripting

1 Pedro Rosa-Neto: reviewing the manuscript
2 Serge Gauthier: reviewing the manuscript
3 Nagaendran Kandiah: reviewing the manuscript
4 Juan Helen Zhou: conception and design of the study, results interpretation, drafting and critical
5 review of the manuscript

6

7 **MATERIALS & CORRESPONDENCE**

8 Requests for data and code can be addressed to the Corresponding Author, Juan Helen Zhou.

9

10

11 **REFERENCES**

12

- 13 1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. *Acta*
14 *neuropathologica* **82**, 239-259 (1991).
- 15 2. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in
16 Alzheimer disease. *Cold Spring Harbor perspectives in medicine* **1**, a006189 (2011).
- 17 3. Jack CR, *et al.* A/T/N: an unbiased descriptive classification scheme for Alzheimer
18 disease biomarkers. *Neurology* **87**, 539-547 (2016).
- 19 4. Jack Jr CR, *et al.* NIA-AA research framework: toward a biological definition of
20 Alzheimer's disease. *Alzheimer's & Dementia* **14**, 535-562 (2018).
- 21 5. Knopman DS, *et al.* The National Institute on Aging and the Alzheimer's Association
22 Research Framework for Alzheimer's disease: perspectives from the research roundtable.
23 *Alzheimer's & Dementia* **14**, 563-575 (2018).
- 24 6. Bateman RJ, *et al.* Clinical and biomarker changes in dominantly inherited Alzheimer's
25 disease. *N Engl J Med* **367**, 795-804 (2012).

26

- 1 7. Jack Jr CR, *et al.* Tracking pathophysiological processes in Alzheimer's disease: an
2 updated hypothetical model of dynamic biomarkers. *The Lancet Neurology* **12**, 207-216
3 (2013).
- 4 8. Bertens D, Knol DL, Scheltens P, Visser PJ, Initiative AsDN. Temporal evolution of
6 biomarkers and cognitive markers in the asymptomatic, MCI, and dementia stage of
7 Alzheimer's disease. *Alzheimer's & Dementia* **11**, 511-522 (2015).
- 8 9. Chételat G, *et al.* Direct voxel-based comparison between grey matter hypometabolism
10 and atrophy in Alzheimer's disease. *Brain* **131**, 60-71 (2008).
- 11 10. Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in
13 MCI patients, and their use in prediction of short-term conversion to AD: results from
14 ADNI. *Neuroimage* **44**, 1415-1422 (2009).
- 15 11. Mosconi L, *et al.* FDG-PET changes in brain glucose metabolism from normal cognition
17 to pathologically verified Alzheimer's disease. *European journal of nuclear medicine
18 and molecular imaging* **36**, 811-822 (2009).
- 19 12. Kljajevic V, Grothe MJ, Ewers M, Teipel S, Initiative AsDN. Distinct pattern of
21 hypometabolism and atrophy in preclinical and predementia Alzheimer's disease.
22 *Neurobiology of aging* **35**, 1973-1981 (2014).
- 23 13. Hanseeuw BJ, *et al.* Fluorodeoxyglucose metabolism associated with tau-amyloid
25 interaction predicts memory decline. *Annals of neurology* **81**, 583-596 (2017).
- 26 14. Pascoal TA, *et al.* Amyloid- β and hyperphosphorylated tau synergy drives metabolic
28 decline in preclinical Alzheimer's disease. *Molecular psychiatry* **22**, 306-311 (2017).
- 29 15. Jack CR, *et al.* Amyloid-first and neurodegeneration-first profiles characterize incident
31 amyloid PET positivity. *Neurology* **81**, 1732-1740 (2013).
- 32 16. Ballatore C, Lee VM-Y, Trojanowski JQ. Tau-mediated neurodegeneration in
34 Alzheimer's disease and related disorders. *Nature reviews neuroscience* **8**, 663-672
35 (2007).
- 36 17. Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional
38 neurodegeneration from the healthy brain functional connectome. *Neuron* **73**, 1216-1227
39 (2012).

1 18. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases
2 target large-scale human brain networks. *Neuron* **62**, 42-52 (2009).

3

4 19. Marchitelli R, *et al.* Simultaneous resting-state FDG-PET/fMRI in Alzheimer disease:
5 relationship between glucose metabolism and intrinsic activity. *Neuroimage* **176**, 246-
6 258 (2018).

7

8 20. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity
9 distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI.
10 *Proceedings of the National Academy of Sciences* **101**, 4637-4642 (2004).

11

12 21. Zhou J, *et al.* Divergent network connectivity changes in behavioural variant
13 frontotemporal dementia and Alzheimer's disease. *Brain* **133**, 1352-1367 (2010).

14

15 22. Chong JSX, *et al.* Influence of cerebrovascular disease on brain networks in prodromal
16 and clinical Alzheimer's disease. *Brain* **140**, 3012-3022 (2017).

17

18 23. Chong JSX, *et al.* Amyloid and cerebrovascular burden divergently influence brain
19 functional network changes over time. *Neurology* **93**, e1514-e1525 (2019).

20

21 24. Zhou J, Liu S, Ng KK, Wang J. Applications of resting-state functional connectivity to
22 neurodegenerative disease. *Neuroimaging Clinics* **27**, 663-683 (2017).

23

24 25. Brier MR, *et al.* Loss of intranetwork and internetwork resting state functional
25 connections with Alzheimer's disease progression. *Journal of Neuroscience* **32**, 8890-
26 8899 (2012).

27

28 26. He X, *et al.* Abnormal salience network in normal aging and in amnestic mild cognitive
29 impairment and Alzheimer's disease. *Human brain mapping* **35**, 3446-3464 (2014).

30

31 27. Ripp I, *et al.* Integrity of Neurocognitive Networks in Dementing Disorders as Measured
32 with Simultaneous PET/Functional MRI. *Journal of Nuclear Medicine* **61**, 1341-1347
33 (2020).

34

35 28. Zielinski BA, Gennatas ED, Zhou J, Seeley WW. Network-level structural covariance in
36 the developing brain. *Proceedings of the National Academy of Sciences* **107**, 18191-
37 18196 (2010).

38

39 29. Montembeault M, *et al.* The impact of aging on gray matter structural covariance
40 networks. *Neuroimage* **63**, 754-759 (2012).

1
2 30. Lizarraga A, Ripp I, Yakushev I. Relationships between MRI-and PET-based measures
3 of brain connectivity. (ed^A(eds). Soc Nuclear Med (2021).
4
5 31. Li K, *et al.* Gray matter structural covariance networks changes along the Alzheimer's
6 disease continuum. *NeuroImage: Clinical* **23**, 101828 (2019).
7
8 32. Kim H-J, *et al.* Using individualized brain network for analyzing structural covariance of
9 the cerebral cortex in Alzheimer's patients. *Frontiers in neuroscience* **10**, 394 (2016).
10
11 33. Tijms BM, Seriès P, Willshaw DJ, Lawrie SM. Similarity-based extraction of individual
12 networks from gray matter MRI scans. *Cerebral cortex* **22**, 1530-1541 (2012).
13
14 34. Tijms BM, *et al.* Gray matter networks and clinical progression in subjects with
15 pre-dementia Alzheimer's disease. *Neurobiology of aging* **61**, 75-81 (2018).
16
17 35. Tijms BM, *et al.* Single-subject gray matter graph properties and their relationship with
18 cognitive impairment in early-and late-onset Alzheimer's disease. *Brain connectivity* **4**,
19 337-346 (2014).
20
21 36. Vermunt L, *et al.* Single-subject grey matter network trajectories over the disease course
22 of autosomal dominant Alzheimer's disease. *Brain communications* **2**, fcaa102 (2020).
23
24 37. Tijms BM, *et al.* Single-subject grey matter graphs in Alzheimer's disease. *PloS one* **8**,
25 e58921 (2013).
26
27 38. Liu Z, *et al.* Resolving heterogeneity in schizophrenia through a novel systems approach
28 to brain structure: individualized structural covariance network analysis. *Molecular
29 Psychiatry*, 1-13 (2021).
30
31 39. Habeck C, *et al.* Relationship between baseline brain metabolism measured using [18 F]
32 FDG PET and memory and executive function in prodromal and early Alzheimer's
33 disease. *Brain imaging and behavior* **6**, 568-583 (2012).
34
35 40. Bejanin A, *et al.* Tau pathology and neurodegeneration contribute to cognitive
36 impairment in Alzheimer's disease. *Brain* **140**, 3286-3300 (2017).
37
38 41. Sabuncu MR, *et al.* The dynamics of cortical and hippocampal atrophy in Alzheimer
39 disease. *Archives of neurology* **68**, 1040-1048 (2011).

1
2 42. Schuff N, *et al.* Nonlinear time course of brain volume loss in cognitively normal and
3 impaired elders. *Neurobiology of aging* **33**, 845-855 (2012).

4
5 43. Caroli A, Frisoni G, Initiative AsDN. The dynamics of Alzheimer's disease biomarkers in
6 the Alzheimer's Disease Neuroimaging Initiative cohort. *Neurobiology of aging* **31**, 1263-
7 1274 (2010).

8
9 44. Krishnan A, Williams LJ, McIntosh AR, Abdi H. Partial Least Squares (PLS) methods
10 for neuroimaging: a tutorial and review. *Neuroimage* **56**, 455-475 (2011).

11
12 45. Hong Z, *et al.* Differential age-dependent associations of gray matter volume and white
13 matter integrity with processing speed in healthy older adults. *Neuroimage* **123**, 42-50
14 (2015).

15
16 46. Daye ZJ, Xie J, Li H. A sparse structured shrinkage estimator for nonparametric varying-
17 coefficient model with an application in genomics. *Journal of Computational and*
18 *Graphical Statistics* **21**, 110-133 (2012).

19
20 47. Ji F, *et al.* White matter microstructural abnormalities and default network degeneration
21 are associated with early memory deficit in Alzheimer's disease continuum. *Scientific*
22 *reports* **9**, 1-11 (2019).

23
24 48. Zhang L, *et al.* Longitudinal trajectory of Amyloid-related hippocampal subfield atrophy
25 in nondemented elderly. *Human brain mapping* **41**, 2037-2047 (2020).

26
27 49. Veldsman M, *et al.* Degeneration of structural brain networks is associated with cognitive
28 decline after ischaemic stroke. *Brain communications* **2**, fcaa155 (2020).

29
30 50. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. Evidence for a frontoparietal
31 control system revealed by intrinsic functional connectivity. *Journal of neurophysiology*
32 **100**, 3328-3342 (2008).

33
34 51. Tulving E, Markowitsch HJ. Episodic and declarative memory: role of the hippocampus.
35 *Hippocampus* **8**, 198-204 (1998).

36
37 52. Eichenbaum H. Hippocampus: cognitive processes and neural representations that
38 underlie declarative memory. *Neuron* **44**, 109-120 (2004).

39

1 53. Coupé P, Manjón JV, Lanuza E, Catheline G. Lifespan changes of the human brain in
2 Alzheimer's disease. *Scientific reports* **9**, 1-12 (2019).

3

4 54. Bayram E, Caldwell JZ, Banks SJ. Current understanding of magnetic resonance imaging
5 biomarkers and memory in Alzheimer's disease. *Alzheimer's & Dementia: Translational
6 Research & Clinical Interventions* **4**, 395-413 (2018).

7

8 55. Wang L, *et al.* Spatially distinct atrophy is linked to β -amyloid and tau in preclinical
9 Alzheimer disease. *Neurology* **84**, 1254-1260 (2015).

10

11 56. Mormino E, *et al.* Episodic memory loss is related to hippocampal-mediated β -amyloid
12 deposition in elderly subjects. *Brain* **132**, 1310-1323 (2009).

13

14 57. Lim YY, *et al.* Relationships between performance on the Cogstate Brief Battery,
15 neurodegeneration, and A β accumulation in cognitively normal older adults and adults
16 with MCI. *Archives of Clinical Neuropsychology* **30**, 49-58 (2015).

17

18 58. Mattsson N, *et al.* Brain structure and function as mediators of the effects of amyloid on
19 memory. *Neurology* **84**, 1136-1144 (2015).

20

21 59. Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory.
22 *Hippocampus* **4**, 374-391 (1994).

23

24 60. Blumenfeld RS, Ranganath C. Prefrontal cortex and long-term memory encoding: an
25 integrative review of findings from neuropsychology and neuroimaging. *The
26 Neuroscientist* **13**, 280-291 (2007).

27

28 61. Doré V, *et al.* Cross-sectional and longitudinal analysis of the relationship between A β
29 deposition, cortical thickness, and memory in cognitively unimpaired individuals and in
30 Alzheimer disease. *JAMA neurology* **70**, 903-911 (2013).

31

32 62. Defrancesco M, *et al.* Changes in white matter integrity before conversion from mild
33 cognitive impairment to Alzheimer's disease. *PLoS one* **9**, e106062 (2014).

34

35 63. Jeong H, Park J, Song I, Chung Y, Rhie S. Changes in cognitive function and brain
36 glucose metabolism in elderly women with subjective memory impairment: a 24-month
37 prospective pilot study. *Acta Neurologica Scandinavica* **135**, 108-114 (2017).

38

39 64. Hammond TC, *et al.* β -amyloid and tau drive early Alzheimer's disease decline while
40 glucose hypometabolism drives late decline. *Communications biology* **3**, 1-13 (2020).

1
2 65. Tomasi D, Volkow ND. Functional connectivity hubs in the human brain. *Neuroimage*
3 **57**, 908-917 (2011).

4
5 66. Jonides J, *et al.* The role of parietal cortex in verbal working memory. *Journal of*
6 *neuroscience* **18**, 5026-5034 (1998).

7
8 67. Seghier ML. The angular gyrus: multiple functions and multiple subdivisions. *The*
9 *Neuroscientist* **19**, 43-61 (2013).

10
11 68. Ciaramelli E, Grady CL, Moscovitch M. Top-down and bottom-up attention to memory:
12 a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval.
13 *Neuropsychologia* **46**, 1828-1851 (2008).

14
15 69. Pascoal TA, *et al.* A β -induced vulnerability propagates via the brain's default mode
16 network. *Nature communications* **10**, 1-13 (2019).

17
18 70. Gardini S, *et al.* Increased functional connectivity in the default mode network in mild
19 cognitive impairment: a maladaptive compensatory mechanism associated with poor
20 semantic memory performance. *Journal of Alzheimer's Disease* **45**, 457-470 (2015).

21
22 71. Liang J, *et al.* Increased intrinsic default-mode network activity as a compensatory
23 mechanism in aMCI: a resting-state functional connectivity MRI study. *Aging (Albany*
24 *NY*) **12**, 5907 (2020).

25
26 72. Chen H, *et al.* The compensatory phenomenon of the functional connectome related to
27 pathological biomarkers in individuals with subjective cognitive decline. *Translational*
28 *neurodegeneration* **9**, 1-14 (2020).

29
30 73. Dawe RJ, Yu L, Arfanakis K, Schneider JA, Bennett DA, Boyle PA. Late-life cognitive
31 decline is associated with hippocampal volume, above and beyond its associations with
32 traditional neuropathologic indices. *Alzheimer's & Dementia* **16**, 209-218 (2020).

33
34 74. Ferrarini L, *et al.* Hippocampal atrophy in people with memory deficits: results from the
35 population-based IPREA study. *International psychogeriatrics* **26**, 1067-1081 (2014).

36
37 75. Gorbach T, *et al.* Longitudinal association between hippocampus atrophy and episodic-
38 memory decline. *Neurobiology of aging* **51**, 167-176 (2017).

39

1 76. Vuoksimaa E, *et al.* Cognitive reserve moderates the association between hippocampal
2 volume and episodic memory in middle age. *Neuropsychologia* **51**, 1124-1131 (2013).

3

4 77. Svenningsson AL, Stomrud E, Insel PS, Mattsson N, Palmqvist S, Hansson O. β -amyloid
5 pathology and hippocampal atrophy are independently associated with memory function
6 in cognitively healthy elderly. *Scientific reports* **9**, 1-9 (2019).

7

8 78. Petersen RC, *et al.* Alzheimer's disease neuroimaging initiative (ADNI): clinical
9 characterization. *Neurology* **74**, 201-209 (2010).

10

11 79. Shaw LM, *et al.* Cerebrospinal fluid biomarker signature in Alzheimer's disease
12 neuroimaging initiative subjects. *Annals of neurology* **65**, 403-413 (2009).

13

14 80. Crane PK, *et al.* Development and assessment of a composite score for memory in the
15 Alzheimer's Disease Neuroimaging Initiative (ADNI). *Brain imaging and behavior* **6**,
16 502-516 (2012).

17

18 81. Kang MS, *et al.* Amyloid-beta modulates the association between neurofilament light
19 chain and brain atrophy in Alzheimer's disease. *Molecular Psychiatry*, 1-13 (2020).

20

21 82. Ng KP, *et al.* Neuropsychiatric symptoms predict hypometabolism in preclinical
22 Alzheimer disease. *Neurology* **88**, 1814-1821 (2017).

23

24 83. Tibshirani R. Regression shrinkage and selection via the lasso. *Journal of the Royal
25 Statistical Society: Series B (Methodological)* **58**, 267-288 (1996).

26

27

28

1 **SUPPLEMENTARY METHODS**

2 **CSF analysis**

3 CSF AD biomarkers of A β ₁₋₄₂ and CSF p-tau_{181p} were measured using the Luminex multiplex
4 platform (Luminex, Austin, TX, USA) and Innogenetics INNO-BIA AlzBio3 (Innogenetics, Ghent,
5 Belgium) immunoassay reagents. The details of the ADNI methods for the acquisition and
6 measurement of CSF can be found at www.adni-info.org.

7

8 **Neuropsychological assessment**

9 The ADNI-mem is a validated composite memory score derived using data from the ADNI
10 neuropsychological battery ¹. A modern psychometric approach was used to analyze the Rey
11 Auditory Verbal Learning Test, AD assessment schedule-cognition (ADAS-cog), MMSE, and
12 Logical Memory tests to obtain a composite memory score. In ADNI-mem composite scores,
13 lower scores reflect poorer memory performance. The details of the ADNI protocols for the
14 neuropsychological assessments and the methods for developing the ADNI-mem can be found at
15 www.adni-info.org.

16

17 **Image acquisition and preprocessing**

18 All participants from the main dataset underwent T1-weighted MRI scans according to the
19 standardized ADNI protocol using 3-Tesla GE, Philips, and Siemens MRI scanners with a sagittal
20 volumetric magnetization-prepare rapid-acquisition gradient echo (MPRAGE) sequence
21 (TR=2300ms, TE = minimum full, approximate TI=900ms, Slice Thickness=1.2, flip-angle = 9°)
22 or T1-weighted accelerated sagittal inversion-recovery spoiled gradient-recalled (SPGR) sequence
23 (TR = 400 ms, TE = minimum full, flip-angle = 11°, slice thickness = 1.2 mm and FOV = 26 cm).

1 Additional participants who underwent structural MRI brain scans using 1.5-tesla GE, Philips, and
2 Siemens MRI scanners were included to form a validation dataset with a larger sample size. For
3 these participants, T1-weighted MRI scans were acquired using an MPRAGE sequence with
4 TR=2400ms, minimum full TE, TI=1000ms, Slice Thickness=1.2, and flip angle of 8 degrees (scan
5 parameters vary between sites, scanner platforms, and software versions).

6 All participants also underwent [¹⁸F]FDG PET to study cerebral glucose metabolism (185 MBq (5
7 mCi), dynamic 3D scan of six 5-min frames 30-60 min post-injection). Further details on MRI and
8 PET acquisition parameters can be found at the ADNI website <http://adni.loni.usc.edu/methods>.

9

10 *Voxel-based morphometry*

11 All T1-weighted MRI scans were corrected for field distortions and processed using the CIVET
12 image processing pipeline (www.bic.mni.mcgill.ca/ServicesSoftware/CIVET). The MRI images
13 underwent non-uniformity correction, brain masking and segmentation, and normalization to the
14 Montreal Neurological Institute (MNI) space with affine and nonlinear transformation. An in-
15 house processing pipeline based on MINC toolkits was then applied to generate voxel-based
16 morphometry (VBM) images based on the CIVET outputs as previously described ². In brief, a log
17 Jacobian determinant was derived based on the nonlinear vector field from the CIVET outputs,
18 followed by transformation into a scalar, modulated with grey matter probability mask. The GM
19 probability maps were then smoothed with an 8mm Full-Width at Half-Maximum (FWHM)
20 Gaussian kernel.

21

22

23

1 *[¹⁸F]FDG PET processing*

2 [¹⁸F]FDG PET images were processed with an in-house processing pipeline as described in our
3 previous work ³. The pre-processed images from the ADNI database were smoothed with an 8mm
4 FWHM Gaussian kernel, followed by linear co-registration and non-linear spatial normalization
5 to the MNI 152 standardized space with the use of transformation matrices derived from the PET
6 native to MRI native space and the MRI native to the MNI 152 space. The voxel-wise brain glucose
7 metabolism standardized uptake value ratio (SUVR) maps were then generated with the pons as
8 the reference region.

9

10 **SUPPLEMENTARY RESULTS**

11 The ANG-based metabolic and HIP-based structural network findings were replicated in both the
12 main and validation datasets (Supplementary Fig. 2, 3, and 7). In addition, in the main dataset,
13 lower insular metabolic network score was identified to be associated with lower memory
14 impairment only in the A-T+ group, the influence of which was highest in the early CN stage and
15 gradually decreased across CN and MCI stages before regaining a minimum influence in the late
16 MCI/dementia stages. However, this finding was not replicated in the validation dataset.

17

18 **References**

19 1. Crane PK, *et al.* Development and assessment of a composite score for memory in the
20 Alzheimer's Disease Neuroimaging Initiative (ADNI). *Brain imaging and behavior* **6**, 502-516
21 (2012).

22 2. Kang MS, *et al.* Amyloid-beta modulates the association between neurofilament light chain
23 and brain atrophy in Alzheimer's disease. *Molecular Psychiatry*, 1-13 (2020).

1 3. Ng KP, *et al.* Neuropsychiatric symptoms predict hypometabolism in preclinical
2 Alzheimer disease. *Neurology* **88**, 1814-1821 (2017).

3

4

SUPPLEMENTARY TABLES

Supplementary Table 1. Participants demographics for network seed definition step.

	Main dataset			Validation dataset		
	CN	probable AD	p-value	CN	probable AD	p-value
N	232	167	-	383	360	-
Age, y	56.53~90.22	55.96~90.50		56.53~93.80	55.33~90.50	
	73.52±6.27	74.35±8.07	0.25	74.90±6.35	75.48±7.62	0.26
Gender (M/F)	110/122	99/68	0.02*	195/188	214/146	0.02*
Handedness (R/L)	207/25	154/13	0.32	346/37	336/24	0.14
Education, y	16.23±2.54	15.95±2.68	0.01*	16.31±2.77	15.66±2.87	0.002*
APOE e4 (+/-)	158/74	53/114	<0.001*	274/108	120/239	<0.001*
Memory	1.07±0.62	-0.82±0.59	<0.001*	1.02±0.60	-0.85±0.61	<0.001*
MMSE	29.01±1.23	23.30±2.37	<0.001*	29.02±1.20	22.83±3.36	<0.001*
CDR-SOB	0.05±0.16	4.59±1.70	<0.001*	0.02±0.47	4.77±2.08	<0.001*

Note: Data on age are range and mean ± SD. Data on education and memory are mean ± SD. Data on memory are in z-scores. Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer's disease; A = β-amyloid; T = tau; '+' = positive; '-' = negative; y = years; M = male; F = female; R = right; L = left; MMSE = Mini-Mental State Exam; CDR-SOB = Clinical Dementia Rating scale-sum of box. * indicate significant group difference between CN and probable AD.

Supplementary Table 2. Study participant demographics of the validation dataset for the PLS-SVC model.

	A-T-			A-T+			A+T-/A+T+		
	CN	MCI	probable	CN	MCI	probable	CN	MCI	probable
	AD			AD			AD		
N	56	82	5	92	79	11	114	264	156
Age, y	62.24~90.	56.08~88.	69.56~90.5	56.53~93.8	55.15~88.	60.79~81.3	60.19~90.0	55.38~91.	55.96~90.4
	13	51	0	0	98	7	8	57	6
	74.0±6.09	70.62±7.5	79.51±9.22	72.81±6.36	70.54±8.4	76.22±6.52	75.65±6.33	73.70±6.7	74.24±7.88
	m	3 ^{cd}	m	m	1 ^{cd}	m	m	9 ^c	
Gender (M/F)	29/27	45/37	5/0	52/40 ^d	40/39 ^d	10/1 ^{cm}	53/61	154/110	89/67
Handedness	53/3	68/14	5/0	81/11	71/8	10/1	107/7	240/24	144/12
(R/L)									
Education, y	16.23±2.9	16.40±2.5	15.60±4.39	16.71±2.75	16.01±2.6	16.27±2.41	16.27±2.56	16.11±2.7	15.85±2.65
	0	8			9			5	
APOE e4 (+/-)	9/47	17/65	0/5	17/75	18/61	1/10	49/65 ^{md}	160/104 ^{cd}	113/43 ^{cm}
Memory	1.06±0.66	0.69±0.64 ^c	-	1.12±0.57 ^m	0.53±0.62 ^c	-	0.95±0.61 ^m	0.17±0.63 ^c	-
	md	d	0.35±0.78 ^c	d	d	0.54±0.64 ^c	d	d	0.88±0.53 ^c
			m			m			m

MMSE	28.93±1.4	28.52±1.3	25.40±2.19	28.96±1.19	28.27±1.6	24.0±2.05 ^c	29.07±1.15	27.77±1.8	22.89±2.67
	4 ^d	4 ^d	cm	md	5 ^{cd}	m	md	2 ^{cd}	cm
CDR-SOB	0.05±0.18	1.23±0.64 ^c	4.20±2.66 ^c	0.05±0.15 ^m	1.22±0.75 ^c	4.32±1.23 ^c	0.04±0.15 ^m	1.52±0.91 ^c	4.73±1.85 ^c
	md	d	m	d	d	m	d	d	m
ICV	1564.58± 148.69	1528.79± 131.03	1583.20± 99.88	1554.05± 135.70	1559.29± 145.90	1599.97± 183.02	1536.14± 145.69	1567.10± 148.96.52	1551.78± 161.75

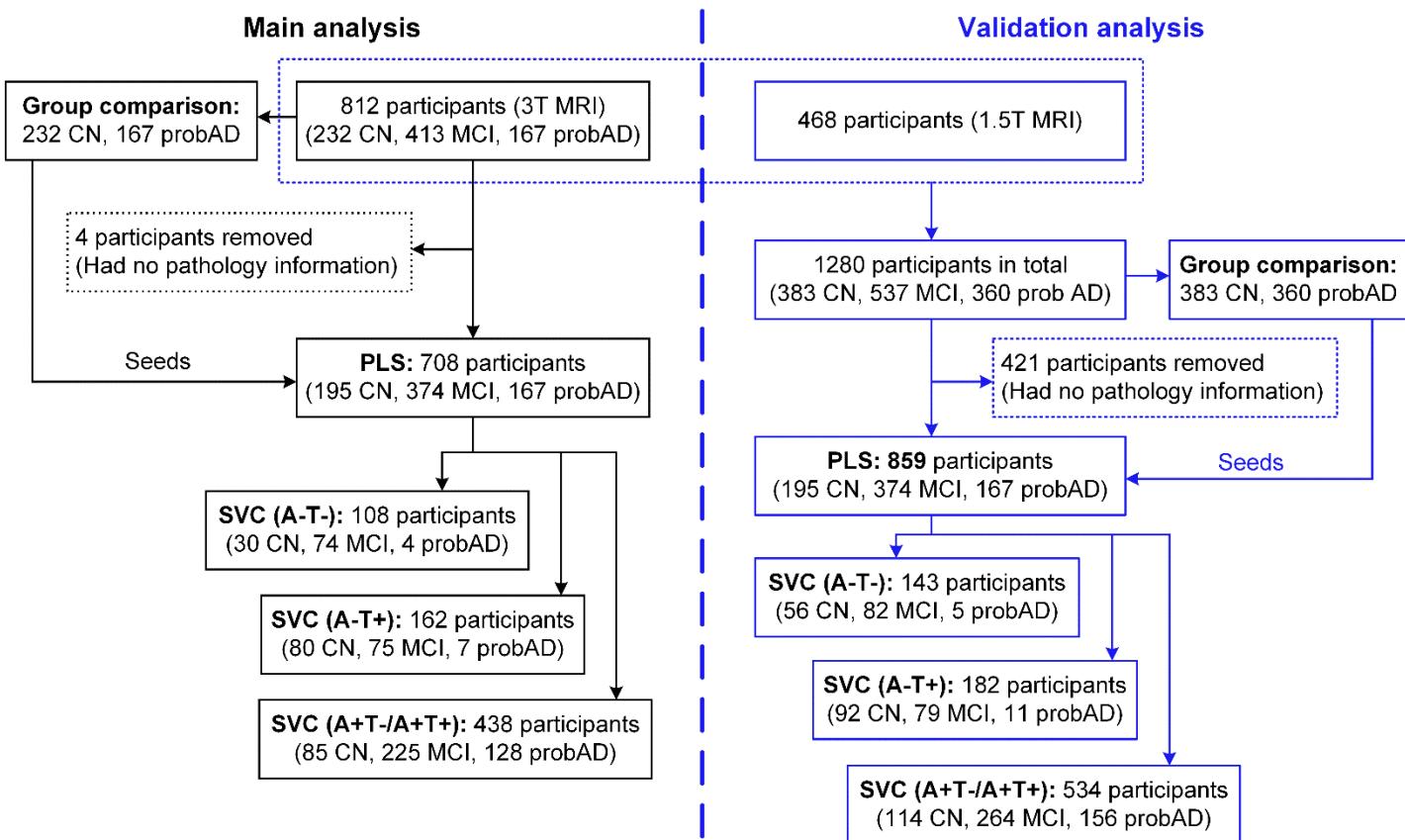
Note: Data on age are range and mean ± SD. Data on education, ICV and memory are mean ± SD. Data on memory are in z-scores. Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer's disease; A = β-amyloid; T = tau; '+' = positive; '-' = negative; y = years; M = male; F = female; R = right; L = left; MMSE = Mini-Mental State Exam; CDR-SOB = Clinical Dementia Rating scale-sum of box; ICV = intracranial volume. Superscripts ('^c', '^m', '^d') represent significant group difference with CN, MCI and probable AD respectively.

Supplementary Table 3. The coordinates of the peak foci of regions showing difference in metabolism and grey matter volume between probable AD and healthy controls.

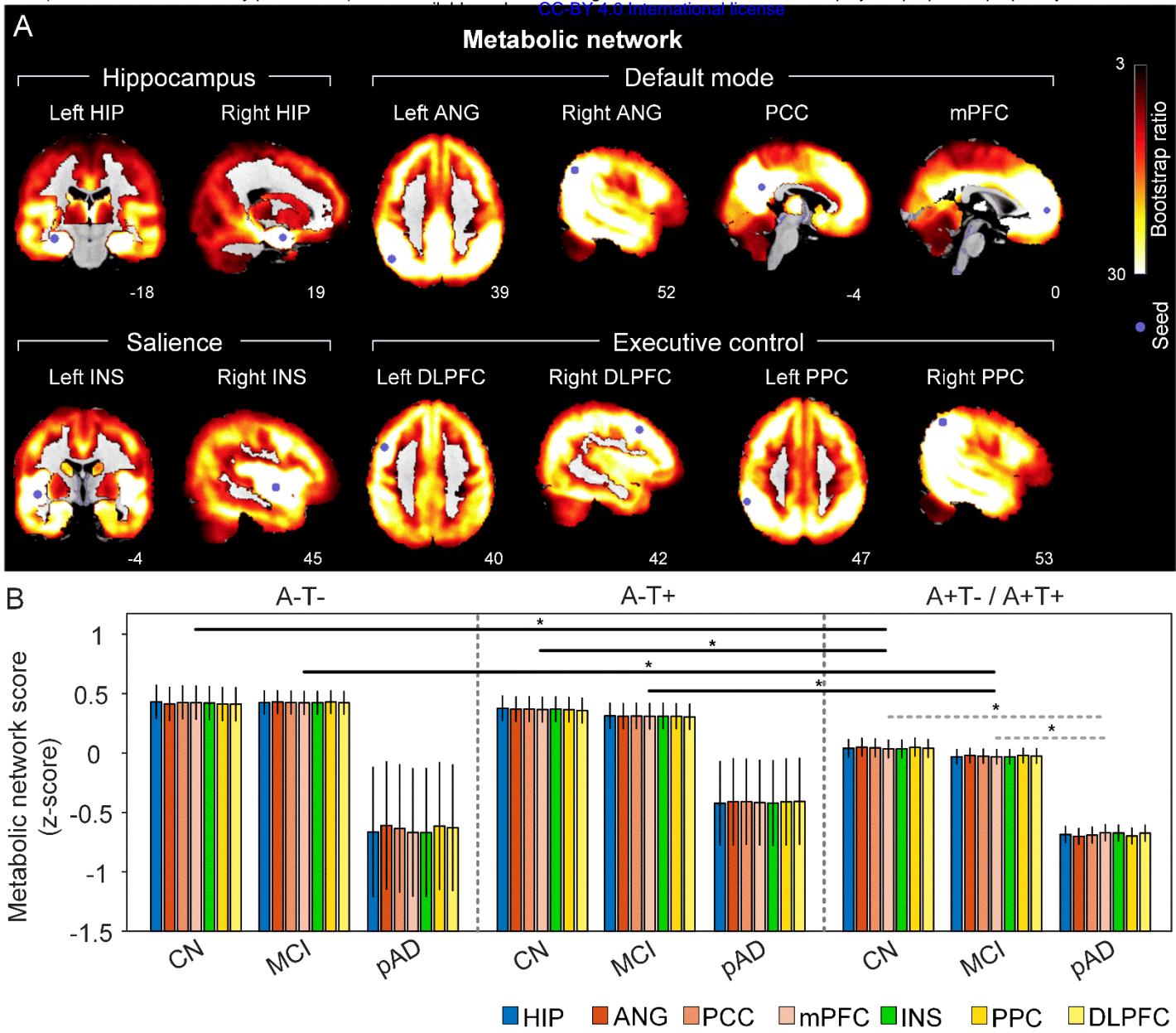
Network Label	Anatomical Label	Main dataset			Validation dataset		
		x	y	z	x	y	z
Hippocampus	left HIP	-19	-3	-22	-33	-18	-17
	right HIP	19	-3	-21	19	-2	-22
Default mode	left ANG	-47	-63	39	-46	-63	39
	right ANG	50	-60	37	51	-60	37
	PCC	-4	-52	29	-4	-52	27
Salience	mPFC	1	50	-5	-2	57	4
	left INS	-43	0	-10	-43	-4	-5
	right INS	44	-2	-7	44	-2	-5
Executive	left DLPFC	-46	11	40	-46	11	40
control	right DLPFC	42	15	40	42	15	40
	left PPC	-53	-45	43	-52	-46	45
	right PPC	52	-52	44	52	-52	44

Abbreviations: HIP = hippocampus; ANG = angular gyrus; PPC = posterior parietal cortex; mPFC = medial prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PCC = posterior cingulate cortex.

SUPPLEMENTARY FIGURES



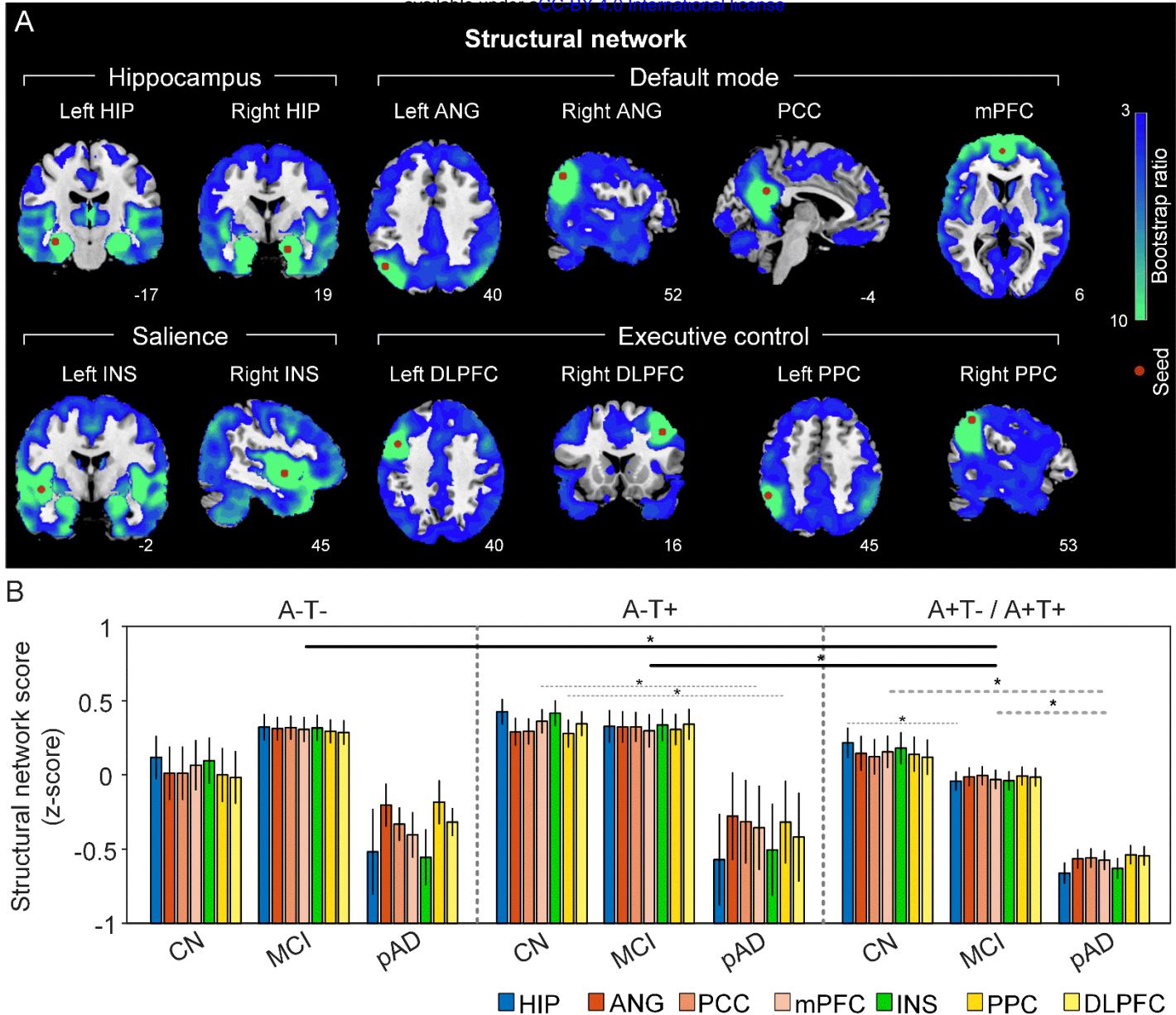
Supplementary Figure 1. Flowchart of participant pool selection. Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; probAD = probable AD; A = β -amyloid; T = tau; '+' = positive; '-' = negative; PLS = partial least square analysis; SVC = sparse varying coefficient modelling.



Supplementary Figure 2. The integrity of brain metabolic networks in participants with and without amyloid pathology across cognitive stages (validation dataset). **A.** Brain slices of metabolic covariance networks associated with each brain seed defined from FDG-PET data highlighted in blue circles. Brain metabolic network resembled canonical brain networks. The intensity of colorbar represents bootstrap ratios, derived from dividing the weight of the singular-vector by the bootstrapped standard error. **B.** Individual-level brain metabolic network scores were lower in individuals with worse cognition and amyloid pathology. Summary of individual-level metabolic network scores (mean \pm SD) were presented in bar charts. '*' indicates significant group difference (ANOVA; $p < 0.05$). Thick lines indicate group differences in brain network scores between different cognitive stages (grey dashed) or pathology groups (dark). Abbreviations: HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; CN = cognitively normal; MCI

bioRxiv preprint doi: <https://doi.org/10.1101/2022.02.28.482280>; this version posted March 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

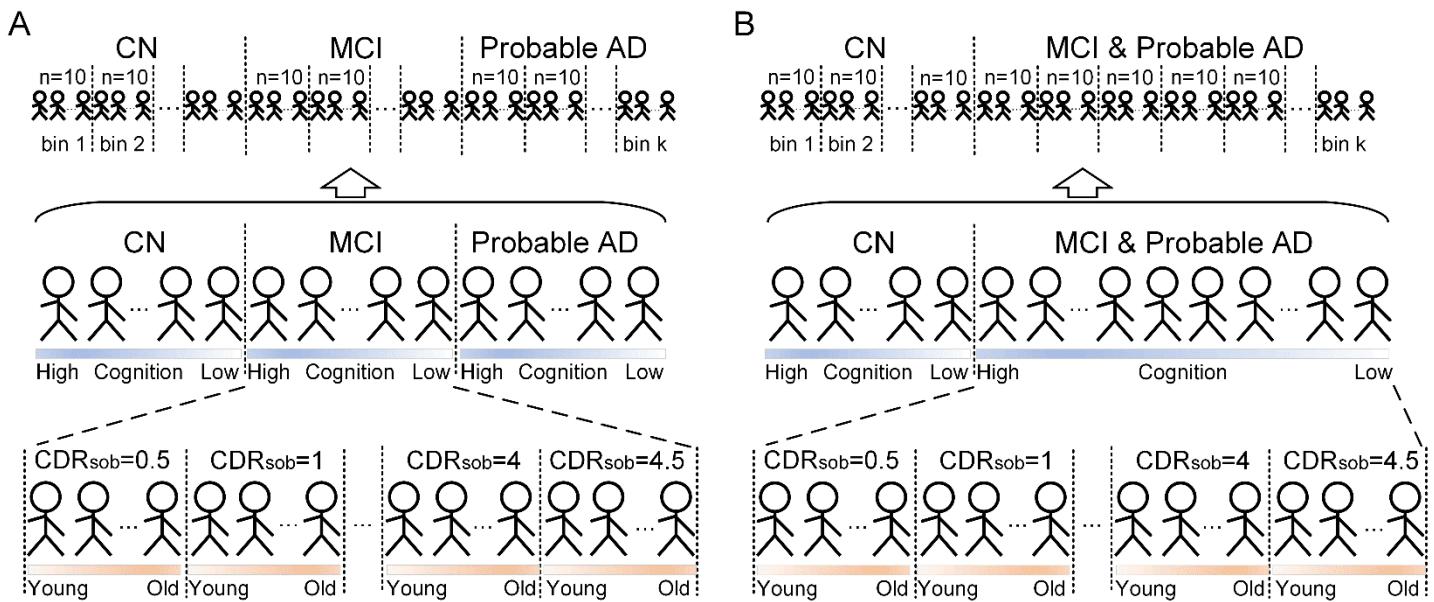
= mild cognitive impairment; pAD = probable AD; A = β -amyloid; T = tau; '+' = positive; '-' = negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex.



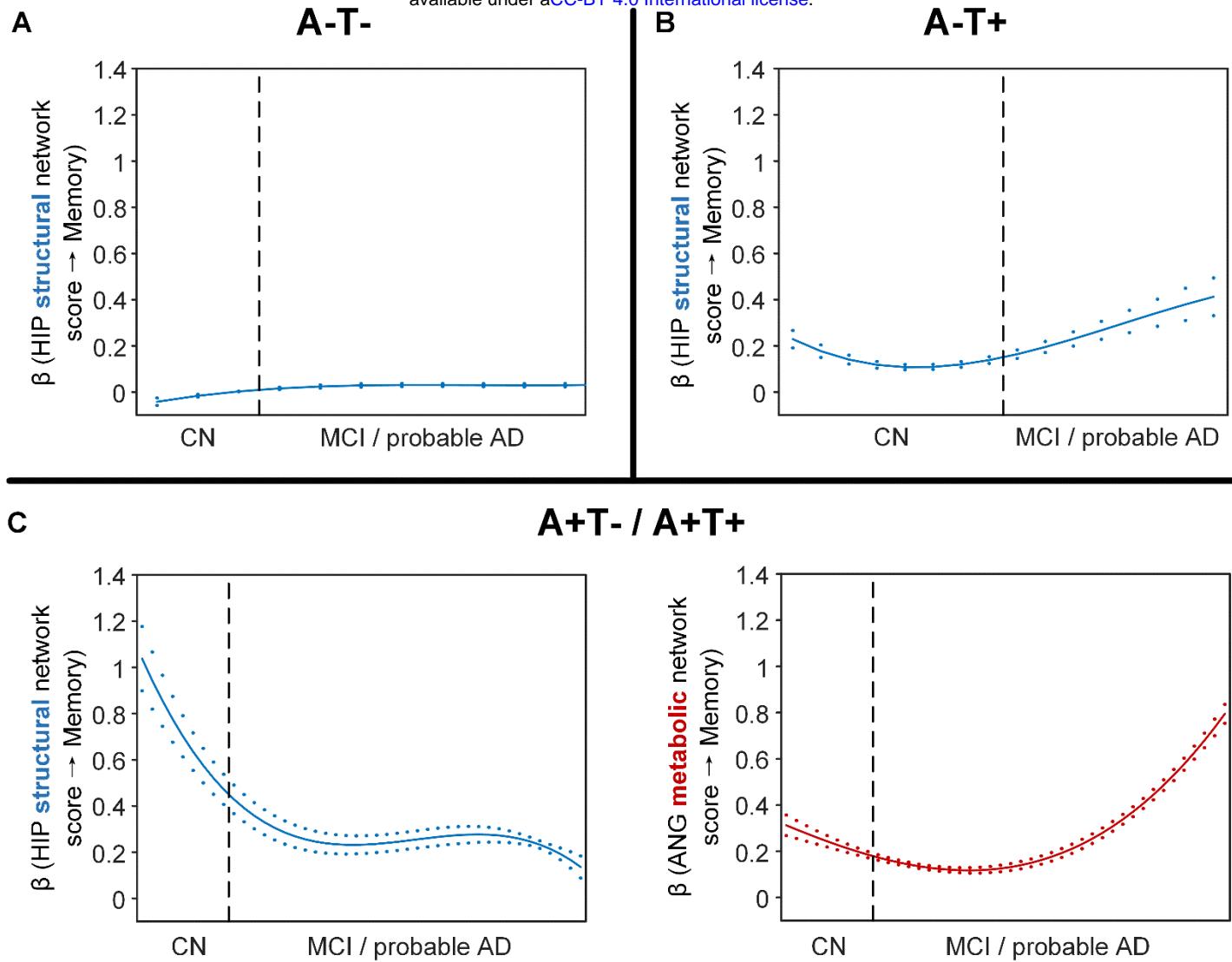
Supplementary Figure 3. The integrity of brain structural networks in participants with and without amyloid pathology across cognitive stages (validation dataset). A. brain slices of structural covariance networks associated with each brain seed defined from GMV data highlighted in blue circles. The intensity of colorbar represents bootstrap ratios, derived from dividing the weight of the singular-vector by the bootstrapped standard error. B. Individual-level brain structural network scores were lower in individuals with worse cognition and amyloid pathology. Summary of individual-level structural network scores (mean \pm SD) were presented in bar charts. '*' indicates significant group difference (ANOVA; $p < 0.05$). Thick lines indicate group differences in all brain network scores between different cognitive stages (grey dashed) or pathology groups (dark). Abbreviations: HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively normal; MCI = mild cognitive impairment; pAD = probable AD; A = β -amyloid; T = tau; '+' indicates significant group difference (ANOVA; $p < 0.05$).

bioRxiv preprint doi: <https://doi.org/10.1101/2022.02.28.482280>; this version posted March 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

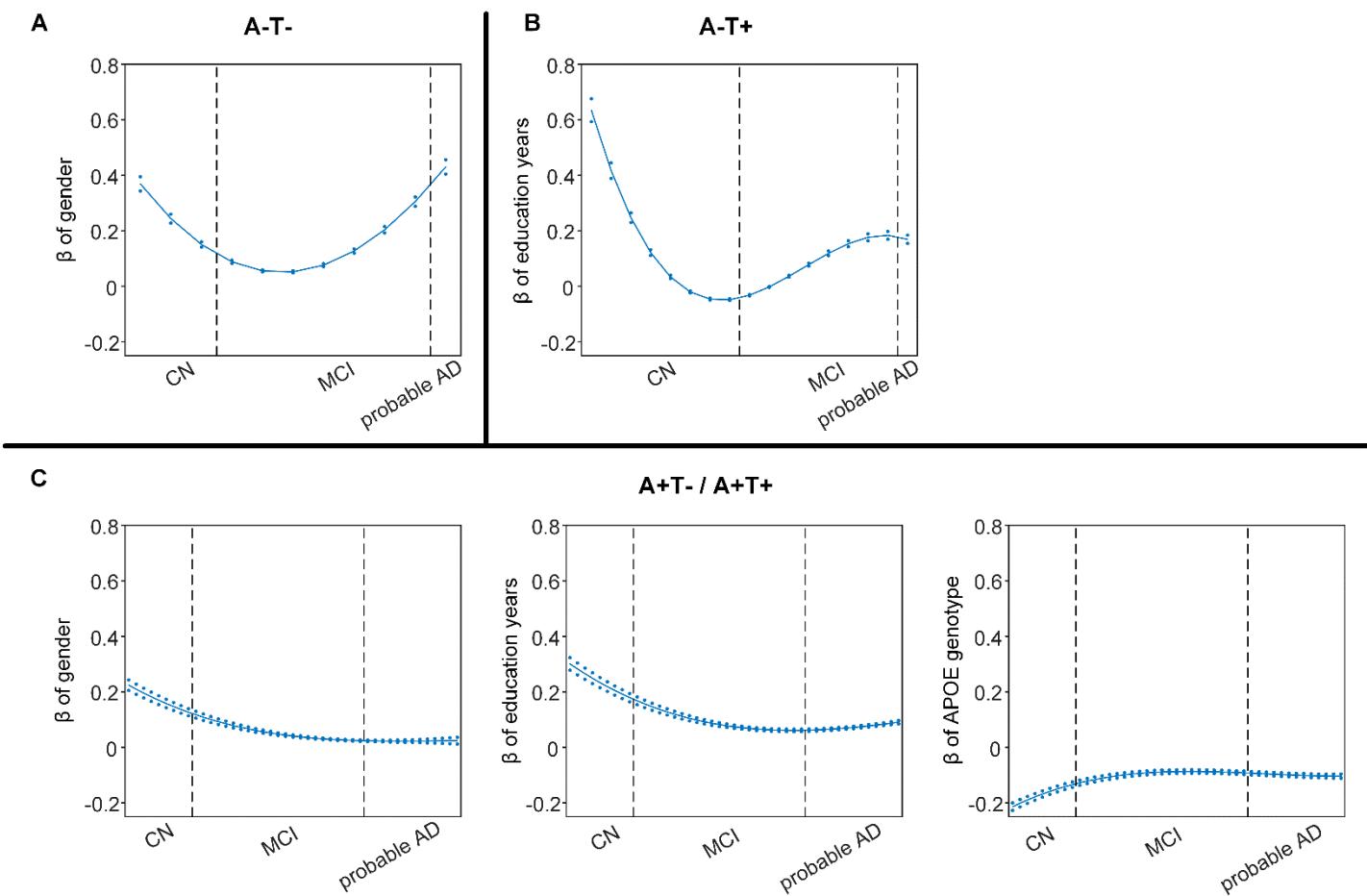
= positive; ‘-’ = negative; HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex.



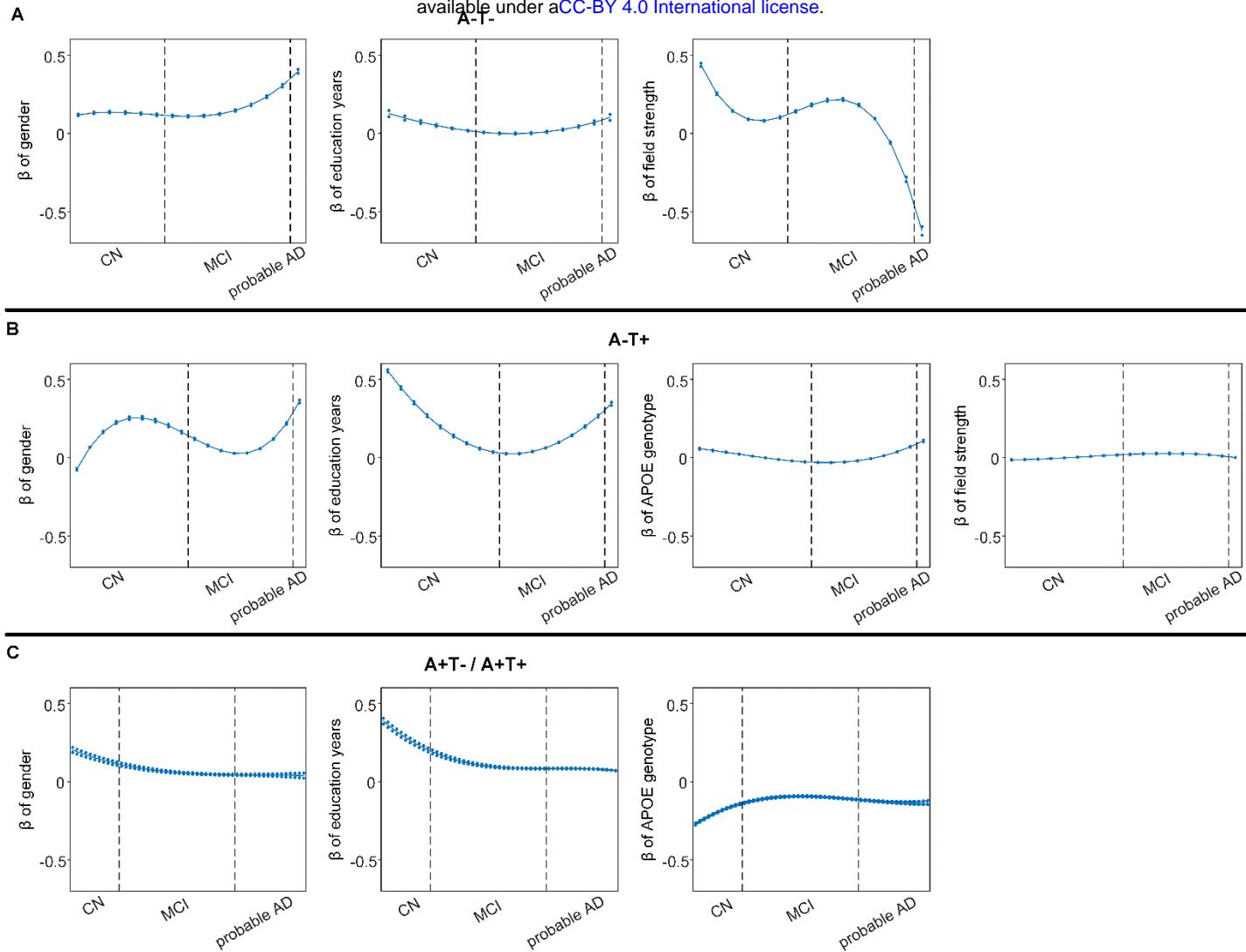
Supplementary Figure 4. Subject ordering for SVC modelling within each pathology group. The participants were ordered by their diagnosis. In the main ordering method (panel A), CN was followed by MCI, and MCI was followed by probable AD. The validation ordering method (panel B) did not differentiate MCI and probable, where CN subjects were followed by subjects with MCI or probable AD. Within each diagnosis, the participants were ordered by the severity of cognitive impairment (i.e., no impairment → severe impairment). Specifically, the participants within CN diagnosis were ordered by decreasing MMSE scores, and the participants within MCI or dementia diagnosis were ordered by increasing CDR-sum of boxes (SOB) scores. If the participants had the same MMSE or CDR-SOB scores in the earlier ordering step, they will then be further ordered by increasing age (i.e., young → old). After ordering the participants, we distributed the participants evenly into bins (i.e., 10 subjects/bin).



Supplementary Figure 5. Differential stage-dependent associations of metabolic and structural network scores with memory impairment in different pathology groups (main dataset with the alternative ordering strategy of treating MCI and probable AD as one group). Solid curves represent the mean associations (beta coefficients) of brain network scores with memory as a function of advancing AD continuum estimated from 100 replicates (metabolic in red; structural in blue). The dashed curves represent the point-wise 2* standard errors of the solid curves estimated from 100 replicates. The participants were ordered by their cognitive stages (i.e., CN → MCI/probable AD). Within each of the two stages, the participants were then ordered by general cognition or dementia severity (i.e., no impairment → severe impairment). Participants with the same cognitive impairment severity were further ordered by increasing age (i.e., young → old). Ordered participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment.

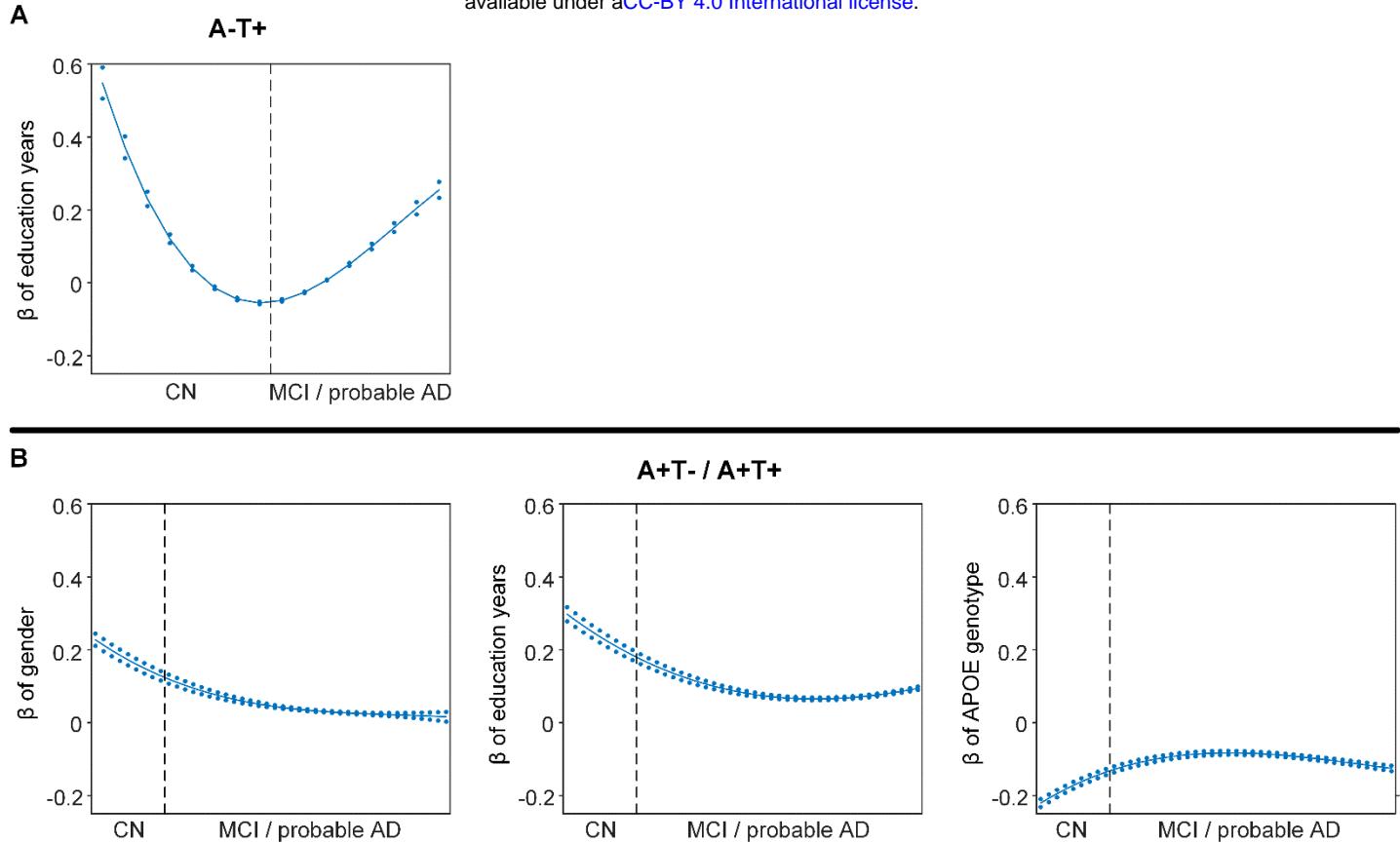


Supplementary Figure 6. Differential stage-dependent associations of demographic variables with memory impairment in different pathology groups (main dataset). Solid curves represent the mean associations (beta coefficients) of brain network scores with memory as a function of advancing AD continuum estimated from 100 replicates. The dashed curves represent the point-wise 2* standard errors of the solid curves estimated from 100 replicates. The participants were ordered by their cognitive stages (i.e., CN → MCI → probable AD). Within each diagnosis, the participants were then ordered by general cognition or dementia severity (i.e., no impairment → severe impairment). Participants with the same cognitive impairment severity were further ordered by increasing age (i.e., young → old). Ordered participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment.

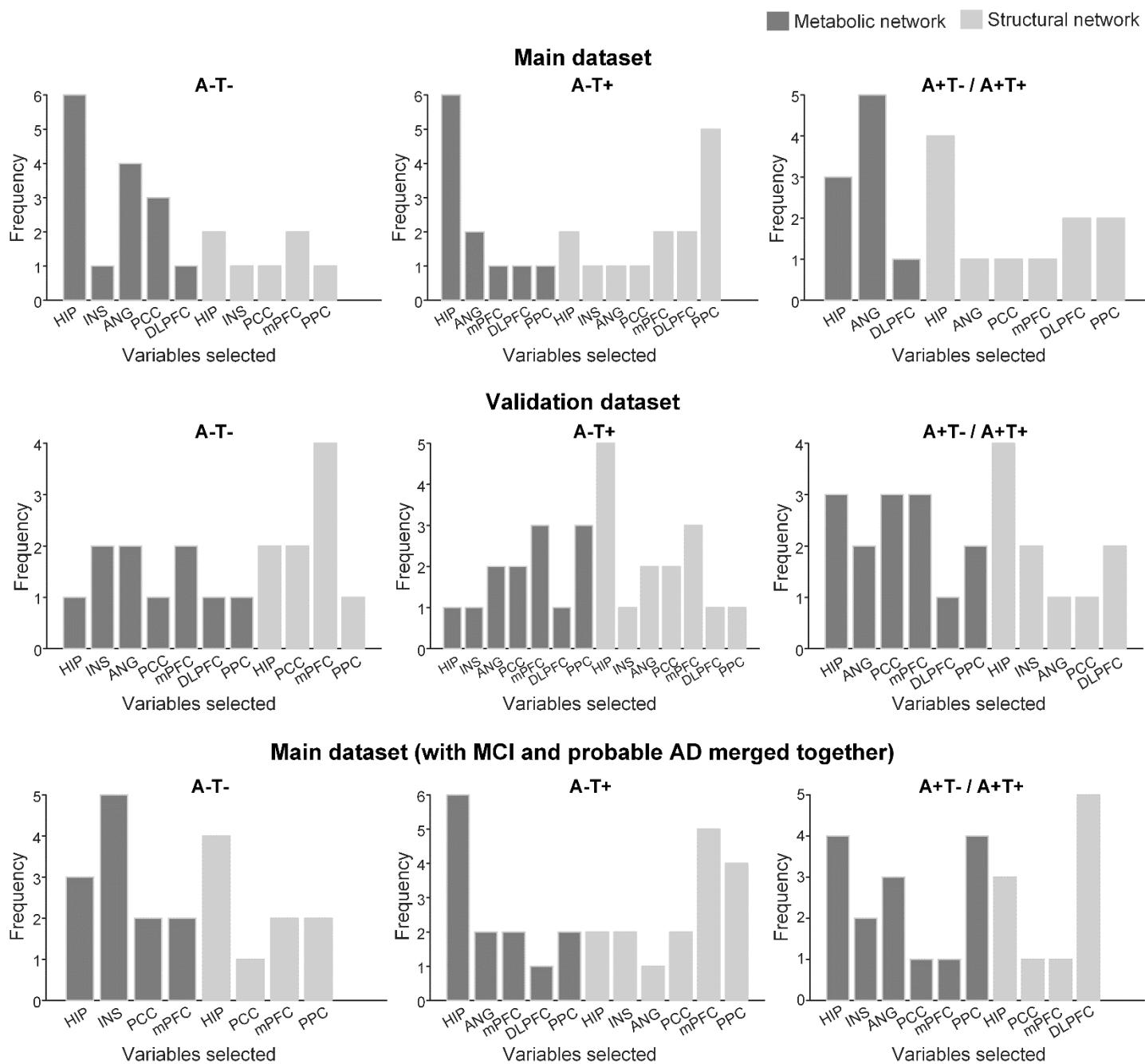


Supplementary Figure 7. Differential stage-dependent associations of demographical variables with memory impairment in different pathology group (validation dataset).

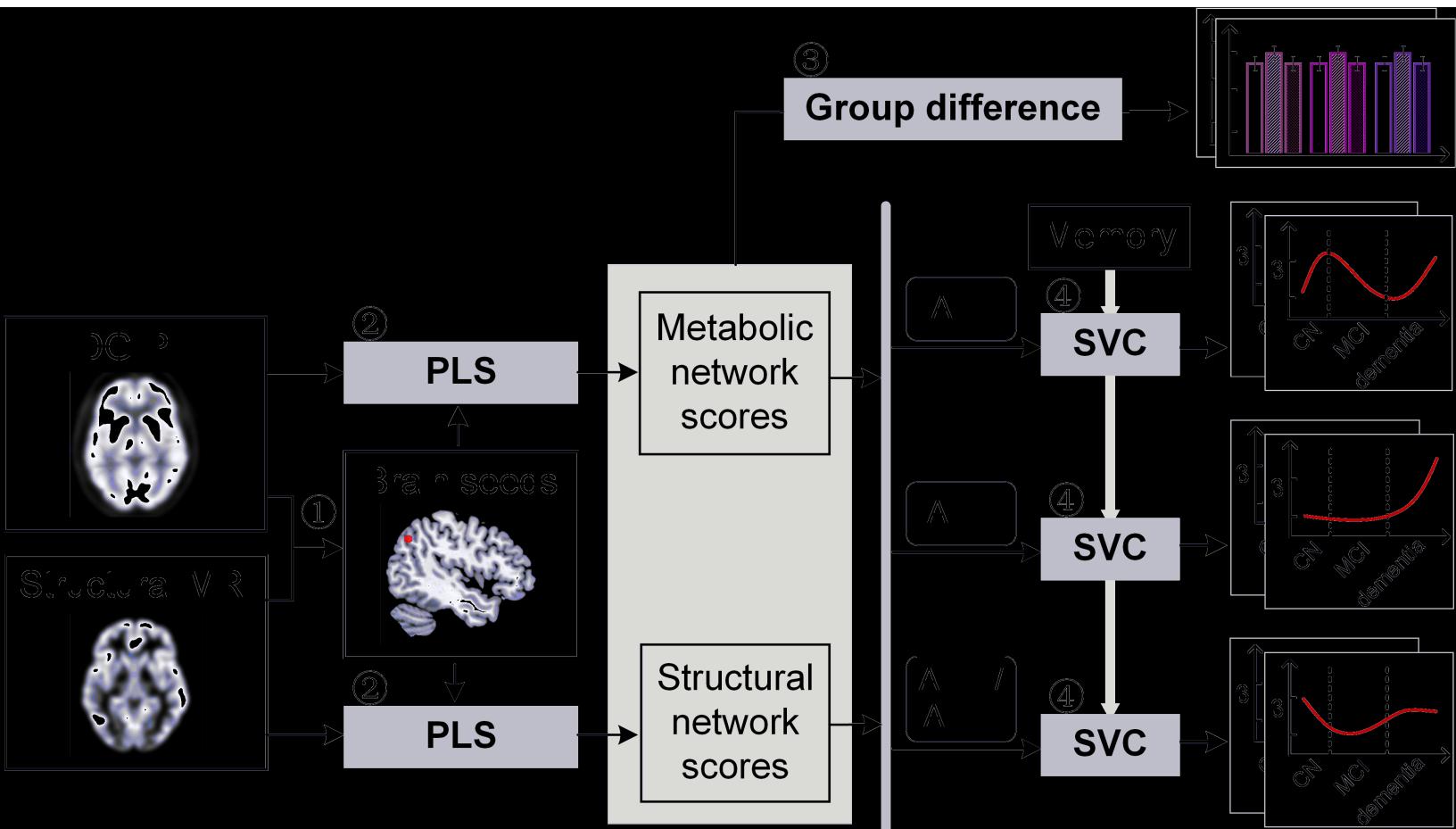
Solid curves represent the mean associations (beta coefficients) of brain network scores with memory as a function of advancing AD continuum estimated from 100 replicates. The dashed curves represent the point-wise 2* standard errors of the solid curves estimated from 100 replicates. The participants were ordered by their cognitive stages (i.e., CN → MCI → probable AD). Within each diagnosis, the participants were then ordered by general cognition or dementia severity (i.e., no impairment → severe impairment). Participants with the same cognitive impairment severity were further ordered by increasing age (i.e., young → old). Ordered participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment.

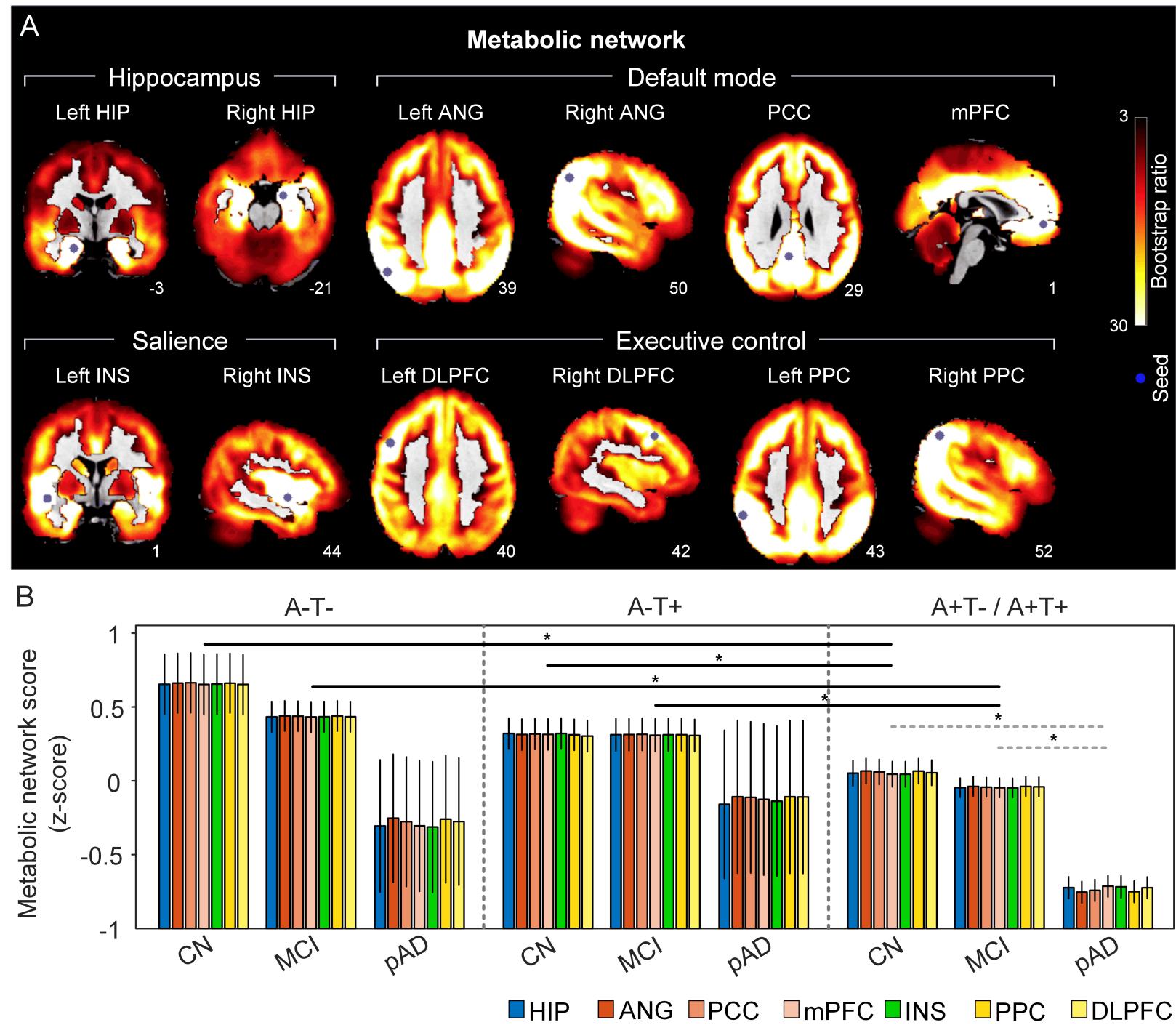


Supplementary Figure 8. Differential stage-dependent associations of demographical variables with memory impairment in different pathology group (main dataset with the ordering strategy merging the MCI and probable AD). Solid curves represent the mean associations (beta coefficients) of brain network scores with memory as a function of advancing AD continuum estimated from 100 replicates. The dashed curves represent the point-wise 2* standard errors of the solid curves estimated from 100 replicates. The participants were ordered by their cognitive stages (i.e., CN → MCI/ probable AD). Within each stage, the participants were then ordered by general cognition or dementia severity (i.e., no impairment → severe impairment). Participants with the same cognitive impairment severity were further ordered by increasing age (i.e., young → old). Ordered participants were distributed evenly into bins (i.e., 10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment.



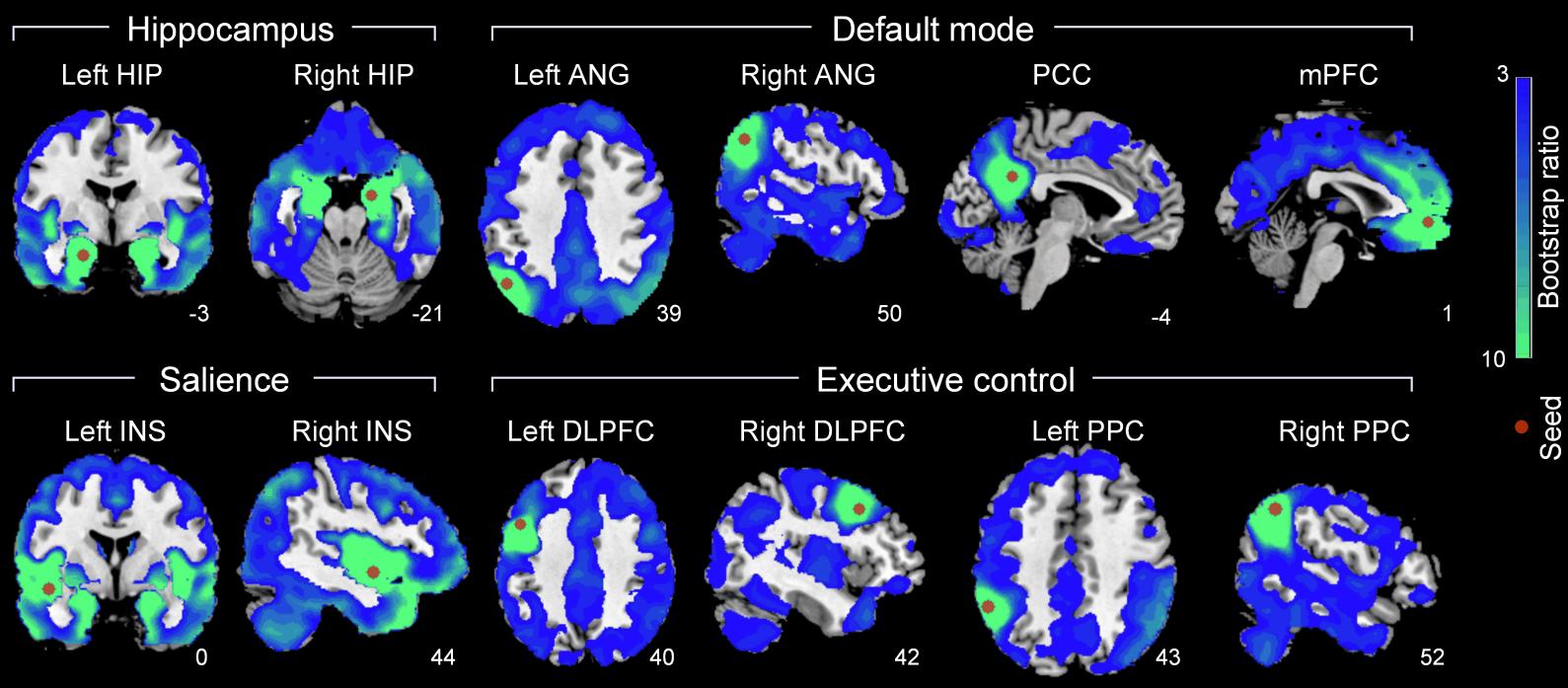
Supplementary Figure 9. Variable selection frequency distribution for permuted datasets using sparse varying-coefficient (SVC) model.





A

Structural network

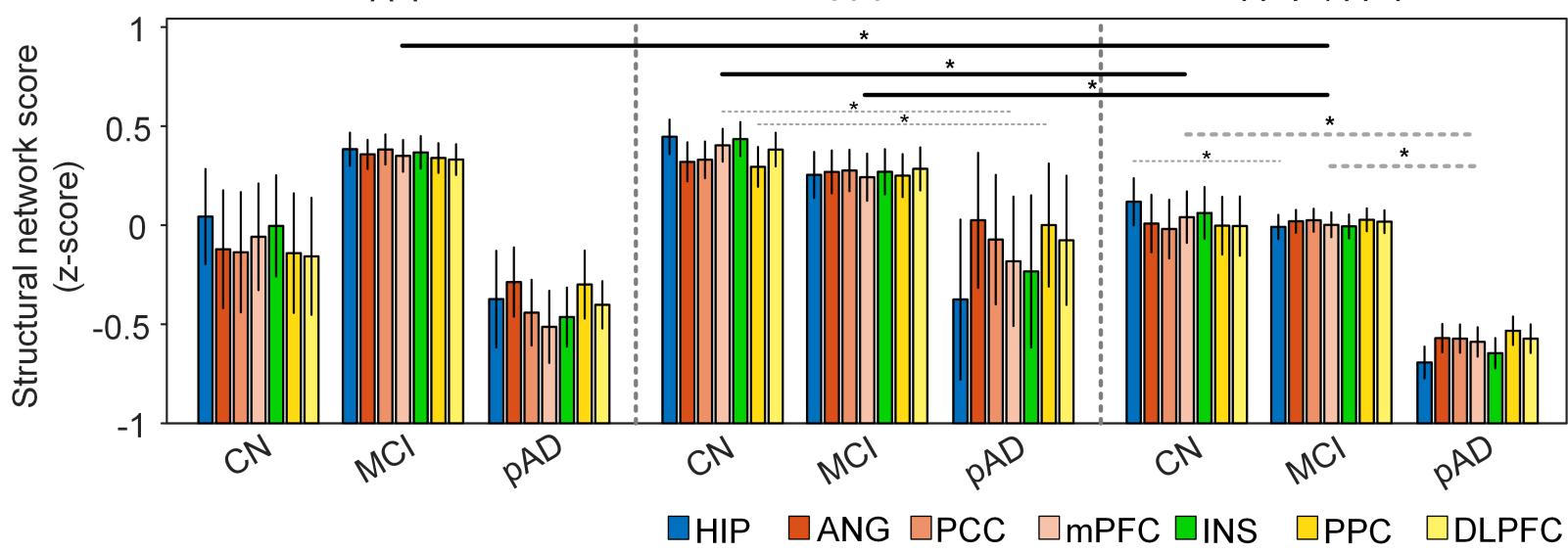


B

A-T-

A-T+

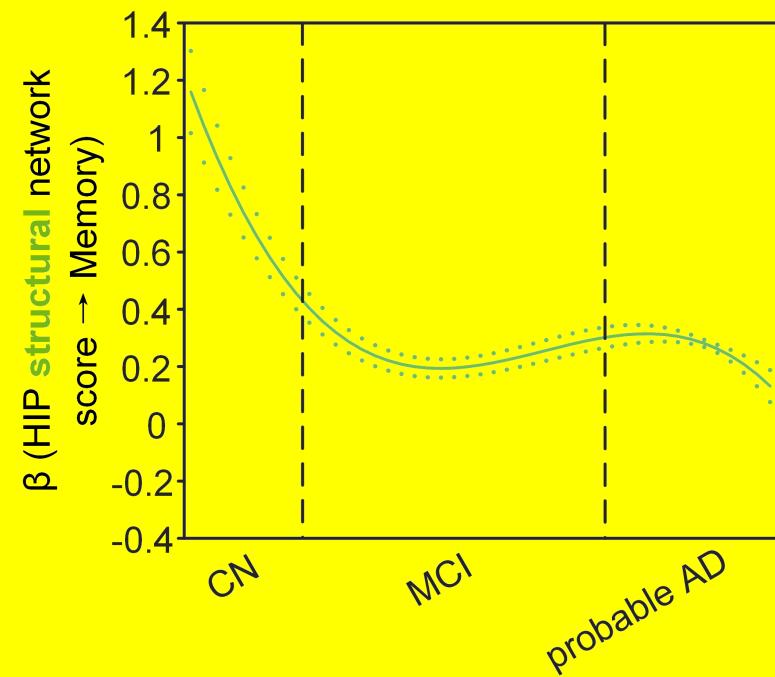
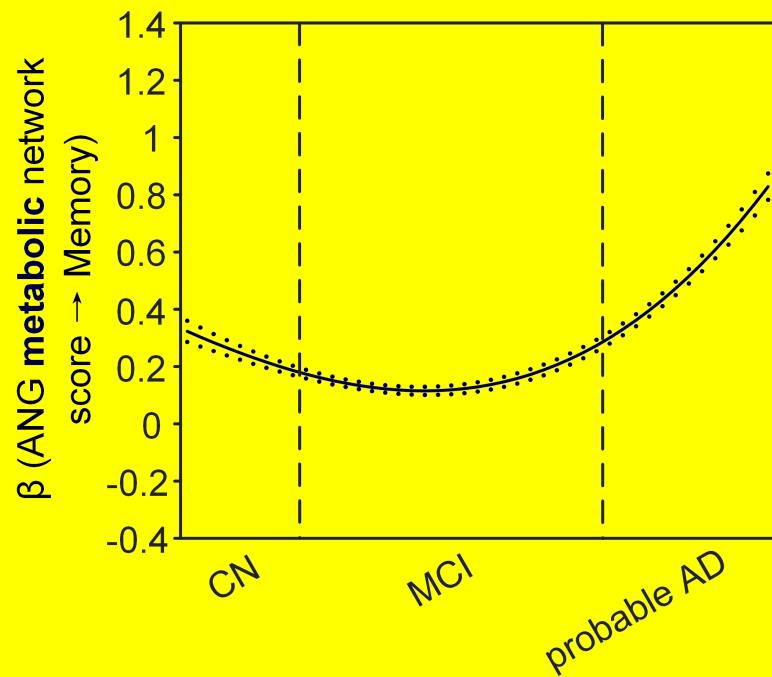
A+T- / A+T+



A

Main dataset

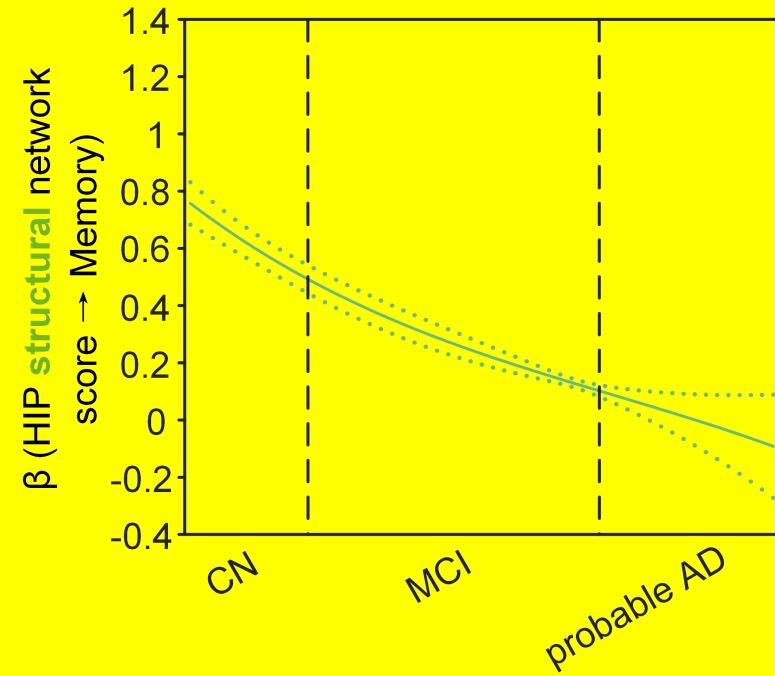
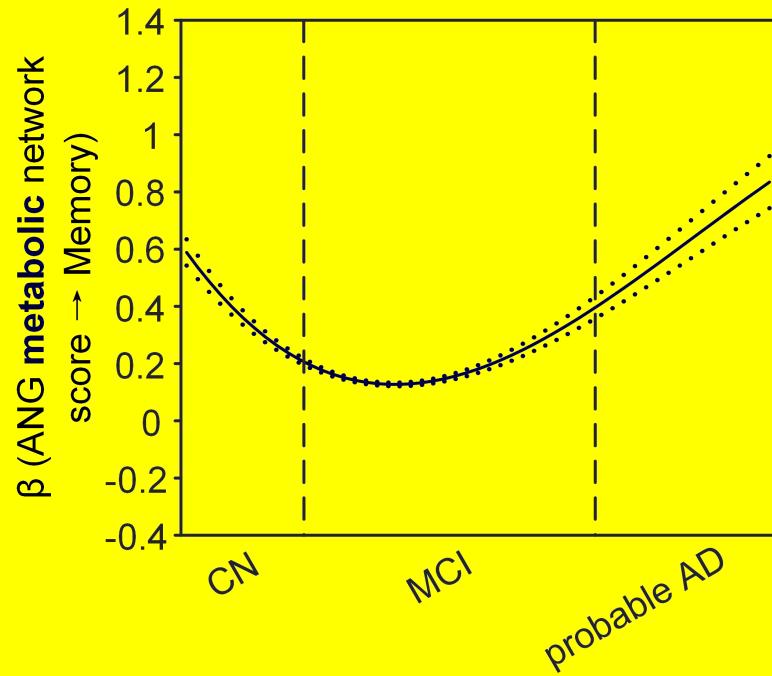
A+T- / A+T+



B

Validation dataset

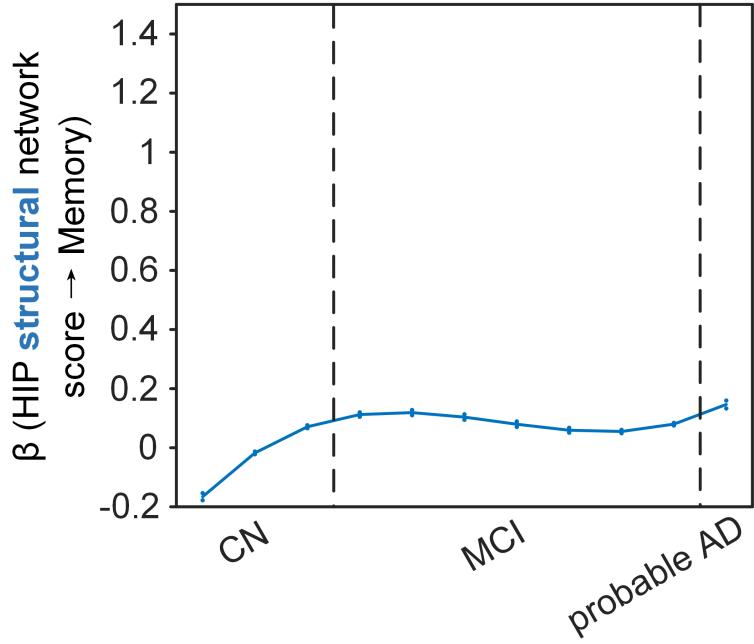
A+T- / A+T+



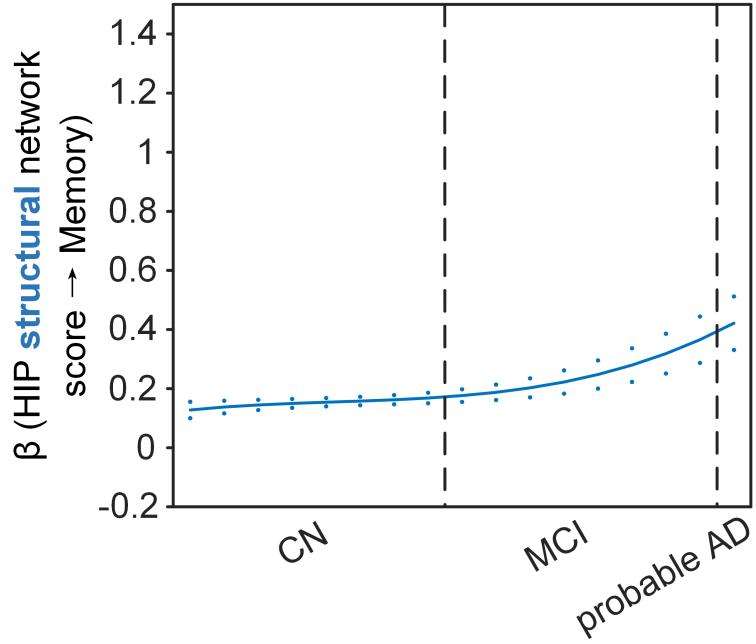
A

Main dataset

A-T-



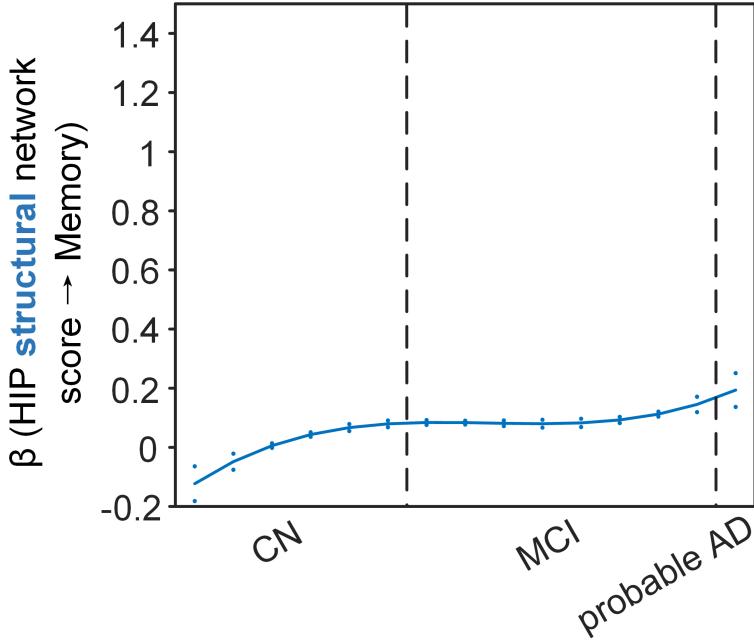
A-T+



B

Validation dataset

A-T-



A-T+

