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ABSTRACT 

Pharmacological and genetic studies over the past decade have established FSH as an 

actionable target for diseases affecting millions, notably osteoporosis, obesity and Alzheimer’s 

disease (AD).  Blocking FSH action prevents bone loss, fat gain and AD–like features in mice.  

We recently developed a first–in–class, humanized, epitope–specific FSH blocking antibody, MS-

Hu6, with a KD of 7.52 nM.  Using a GLP–compliant platform, we now report the efficacy of MS-

Hu6 in preventing obesity and osteoporosis in mice, and parameters of acute safety in monkeys.  

Biodistribution studies using 89Zr–labelled, biotinylated or unconjugated MS-Hu6 in mice and 

monkeys showed localization to bone, bone marrow and fat depots.  MS-Hu6 displayed a β phase 

t½ of 13 days (316 hours) in humanized Tg32 mice, and bound endogenous FSH.  We tested 215 

variations of excipients using the protein thermal shift assay to generate a final formulation that 

rendered MS-Hu6 stable in solution upon freeze–thaw and at different temperatures, with minimal 

aggregation, and without self–, cross–, or hydrophobic interactions or appreciable binding to 

relevant human antigens.  MS-Hu6 showed the same level of “humanness” as human IgG1 in 

silico, and was non–immunogenic in ELISPOT assays for IL-2 and IFNγ in human peripheral 

blood mononuclear cell cultures.  We conclude that MS-Hu6 is efficacious, durable and 

manufacturable, and is therefore poised for future human testing as a multipurpose therapeutic. 
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INTRODUCTION 

While obesity and osteoporosis are both diseases of public health concern, the paucity of 

therapies to prevent and treat them continues to represent a challenge (1, 2).  Accumulating 

clinical data suggest that the two disorders track together in women across the menopausal 

transition.  Particularly during the late perimenopause, there is precipitous bone loss, onset of 

visceral obesity, dysregulated energy balance, and reduced physical activity (3-9).  These 

aberrant physiologic changes across the menopausal transition are not fully explained by low 

estrogen, as estrogen levels are relatively unperturbed, while serum FSH levels rise to maintain 

estrogen secretion from an otherwise failing ovary (10-12). 

The question has been whether a rising FSH level is a driver for post–menopausal obesity 

and osteoporosis.  In 2006, we provided the first evidence for a direct action of FSH on bone (13).  

Since then, despite controversy fueled mainly from the over–interpretation of clinical studies with 

GnRH agonists that suppress not only FSH, but also GnRH and LH (14), there is replicable 

evidence that the selective inhibition of FSH action in mice, for example by using novel FSH–

blocking antibodies or a GST–FSH fusion protein as a vaccine, protects against hypogonadal 

bone loss (15-19).  Serum FSH, bone turnover, and bone mineral density also correlate well in 

women, particularly when FSH levels are rising during the late perimenopause [review: (20)].  

Likewise, activating FSHR polymorphisms in postmenopausal women are linked to a high bone 

turnover and reduced BMD (21).  Thus, it makes both biological and clinical sense to selectively 

inhibit FSH action to prevent bone loss. 

We and our collaborators have also shown that inhibiting FSH by FSH–blocking antibodies 

reduces white adipose tissue (WAT) in every fat compartment, induces thermogenic (or beige) 

adipose tissue, and increases energy expenditure in mice (16).  Reduced fat mass has also been 

documented with a vaccine containing tandem repeats of the 13–amino–acid–long FSH receptor–
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binding FSHβ sequence to which our antibodies were raised (22).  An interventional study in 

treatment–naïve prostate cancer patients comparing orchiectomy versus triptorelin showed that, 

with near–zero testosterone, patients on triptorelin (reduced serum FSH and LH) had significantly 

lower body weight and fat mass compared to those post–orchiectomy (23).  Even recognizing the 

constraints of using a GnRH agonist, this dataset suggests that lowering serum FSH could, in 

principle, have beneficial effects on body composition in people, despite concomitant reductions 

in GnRH and LH.  There is also new evidence that selective FSH blockade lowers serum total 

and LDL cholesterol (24, 25). 

We hypothesize that blocking FSH action will reduce obesity and bone loss in people.  

Towards this goal, we have developed our lead candidate, a first–in–class humanized FSH–

blocking antibody, MS-Hu6.  The latter binds a 13–amino–acid–long epitope of human FSHβ 

(LVYKDPARPKIQK) with high affinity, and by doing so, blocks the interaction of FSH with its 

receptor (26).  Here, we report a comprehensive characterization of MS-Hu6 in terms of its in vivo 

efficacy in mouse models of obesity and osteoporosis, acute safety in monkeys, a full evaluation 

of its pharmacokinetic, pharmacodynamic and biodistribution, and a compendium of its 

physicochemical properties.  This new information provides the framework for first–in–human 

studies towards the future use of MS-Hu6 in obesity and, osteoporosis. 

 

RESULTS 

 

Efficacy of MS-Hu6 in Reducing Body Fat and Inducing Beige Adipose Tissue 

In choosing MS-Hu6 as the lead candidate from an array of 30 humanized clones, we 

examined the electrostatic binding in silico and determined KD by surface plasmon resonance in 

vitro (26).  MS-Hu6 had the best affinity (KD = 7.52 nM), approaching that of trastuzumab.  We 

fine mapped the three top candidates to document subtle differences in binding modes (26).  In 
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addition, we established that MS-Hu6 blocked the binding of labeled recombinant human FSH to 

the FSHR, and in doing so, inhibited osteoclastogenesis and promoted beiging of adipocytes in 

vitro (26).  Here, we studied the effect of MS-Hu6 on body composition in male ThermoMice fed 

ad libitum on a high fat diet.  Mice were injected with MS-Hu6 or human IgG (7 µg/day, 5 days–

a–week) for 8 weeks.  The latter dose was based on the in vitro IC50 of MS-Hu6, which was ~30–

fold lower than our polyclonal Ab (26).  We determined net food intake and measured body weight 

weekly.  Of note was a trend towards an increase in food intake in MS-Hu6–treated mice 

compared with those given human IgG (Fig. 1A).  Despite this trend, there was a decline in body 

weight, with statistically significant decrements at weeks 7 and 8 (Fig. 1A).  We also performed 

quantitative nuclear magnetic resonance (qNMR) at week 8—this revealed a significant decrease 

in total mass and fat mass with an increase in lean mass (Fig. 1B).  This data mimics FSHR 

haploinsufficiency in male Fshr+/- mice (Fig. 1C).  Reduced fat mass was notable on manual 

weighing in the mesenteric, renal, and gonadal compartments—and, expectedly not in brown 

adipose tissue (BAT) in MS-Hu6–injected mice (Fig. 1D) (16).  Quantitative PCR showed 

evidence for reduced expression of fat genes, namely Pparg, Fabp4 and Cebpa—either 

significantly or with trends—in subcutaneous and gonadal WAT and BAT (Fig. 1E).  Of note is 

that serum LH, GnRH and testosterone, levels were unchanged after 8 weeks of MS-Hu6, with 

an unexplained drop in in serum activin (Fig. 1F).   

We explored the activation of interscapular BAT and beiging of WAT in vivo by IVIS 

imaging after 4 and 8 weeks of MS-Hu6 or human IgG treatment.  ThermoMice harbor a Luc2–

T2A–tdTomato dual reporter transgene on the Y chromosome driven by the Ucp1 promoter (27) 

(Fig. 2A).  Mice were injected with D-Luciferin (150 mg/kg), followed by imaging at 3, 5, 10 and 

12 minutes to calculate average radiance.  The peak radiance at 10 minutes was higher at 8 

weeks, with a trend at 4 weeks in mice receiving MS-Hu6 compared with those given human IgG 

(Fig. 2B).  The upper dorsal interscapular region showed profound BAT activation.  WAT beiging 
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and BAT activation were both confirmed by UCP1 immunohistochemistry in formalin–fixed, 

paraffin–embedded sections (Fig. 2C).  Of note is that the UCP-1–high beige adipocytes in MS-

Hu6–treated mice appeared highly condensed (Fig. 2C).  This effect on cell size was confirmed 

by morphometry in hematoxylin/eosin stained sections (Fig. 2D).  Certain beiging genes, including 

Ucp1, Cox7 and/or Cidea were upregulated in mice given MS-Hu6, again consistent with white–

to–beige transition (Fig. 2E). 

 

Efficacy of MS-Hu6 in Improving Bone Mass 

We examined the effect of MS-Hu6 on mouse bones in ThermoMice after 8 weeks of MS-

Hu6 or human IgG treatment.  Histomorphometry of femoral metaphysis showed significant 

increases in fractional bone volume (B.Ar/T.Ar) and trabecular thickness (Tb.Th), without an effect 

on trabecular number (Tb.N) (Fig. 3A).  This increase in fractional bone volume was consistent 

with areal BMD measures (Fig. 3B).  Dynamic histomorphometry showed evidence for increased 

mineral apposition rate (MAR) and bone formation rate (BAR) (Fig. 3C), confirming increased 

osteoblastic bone formation.  In line with a predominately anabolic action of MS-Hu6, the 

expression of osteoblast genes in bone extracts, such as Col1a1, Alp and Runx2, were either 

significantly increased or showed trends (Fig. 3D).  In contrast, while osteoclast surface (Oc.s/BS) 

was not reduced, there was a reduction in the expression of the osteoclast marker gene Acp5 

(Fig. 3E).  The latter finding is not surprising as male ThermoMice mice were not in a high bone 

turnover state, in which instance a further lowering of bone resorption from baseline would not 

normally be expected.  However, the ex vivo reduction of Acp5 expression suggests that MS-Hu6 

was inhibiting the effect of FSH on TRAP–positive osteoclasts. 

To further explore the anabolic action of MS-Hu6, and to replicate our dataset in C.J.R.’s 

lab, 3–month–old female C57BL/6 mice were ovariectomized, followed 24 weeks later by injection 

of MS-Hu6 or human IgG, daily, at 100 µg/day, for 4 weeks and then 50 µg/day for a further 4 
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weeks.  Total body and femoral BMD measured by Piximus was increased significantly in mice 

treated with MS-Hu6 (Fig. 3F).  Micro CT of the femoral epiphysis showed increased BV/TV 

(P=0.079), Conn.D (P<0.05), and Tb.N (P=0.057), reduced Tb.Sp (P<0.05), and no change in 

Tb.Th (Fig. 3G).  Expectedly, these anabolic effects were not seen in similarly treated C3H/HeJ 

mice, which are known to display a high bone mass phenotype (Supplementary Fig. 1) (28).  

Overall, therefore, our data show that consistent with previous studies using our polyclonal 

antibody (17), MS-Hu6 displays an anabolic action in replenishing lost bone. 

 

Pharmacokinetics and Pharmacodynamics of MS-Hu6 

Pharmacokinetic studies were performed in three mouse models—C57BL/6, CD1 and 

Tg32 mice—using 89Zr–labelled, unconjugated, or biotinylated MS-Hu6.  For 89Zr labeling, MS-

Hu6 was incubated with the chelator DFO-p-NCS for 3 hours, followed by incubation with 89Zr-

oxalate for 1 hour at 37oC, ultrafiltration (cut off 10 kDa), and thin layer chromatography for quality 

check (29) (see Methods).  89Zr–MS-Hu6 was injected as a single dose of 250 µCi (~250 µg) into 

the retroorbital sinus of 3–month–old male C57BL/6 mice (N=5 mice).  For γ–counting few drops 

of blood were drawn from the tail vein at 5, 30 and 60 minutes, and then at 2, 4, 24, 48, 72 and 

120 hours.  There was an increase in serum 89Zr–MS-Hu6 levels to a Cmax of 29.6 µg/mL, which 

was followed by a gradual decay of radioactivity with a β phase t½ of 32 hours (Fig. 4A). 

As C57BL/6 mice are inbred strains, we attempted to validate the pharmacokinetic studies 

in an outbred strain—CD1.  The latter mice display genetic diversity reminiscent of the human 

population, and are used widely for toxicology and efficacy testing (30).  For biotinylation, MS-

Hu6 was incubated in the presence of NHS ester–biotin in NaHCO3 (pH 8) and the product was 

purified through ultracentrifugation (cut off 10 kDa) (see Methods).  Biotinylated MS-Hu6 (200 µg) 

was injected intraperitoneally with blood sampling by cardiac puncture at 2, 4, 24, 48, 72, 144, 

336, 720, and 1440 hours (N=3 mice per time point), and ELISA–based measurements through 
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capture by streptavidin-HRP.  This yielded a Cmax of 63.8 µg/mL and a β phase t½ of 41 hours 

(Fig. 4B). 

To enable mouse–to–human comparisons, we studied the pharmacokinetics of MS-Hu6 

in Tg32 mice.  These mice express the FCGRT transgene encoding the human FcRn receptor on 

chromosome 2 on a Fcgrt-/- background.  Tg32 mice show decreased plasma clearance of human 

IgG–based therapeutics––thus, more closely mimicking human pharmacokinetics than C57BL/6 

mice.  We injected 3–month–old male Tg32 mice with 89Zr–MS-Hu6 (~250 µCi or 250 µg) into the 

retroorbital sinus followed by sampling at 1, 18, 24, 48, 72, 144, 192, 216 and 240 hours (N=5 

mice).  Expectedly, the β phase t½ increased to 4 days (95 hours), with a Cmax of 12.2 µg/mL (Fig. 

4C).  We further studied the profile of i.p. administered unconjugated MS-Hu6 in Tg32 mice by 

injecting a single bolus dose of 200 µg, and measuring human IgG by an in–house sandwich 

ELISA in which anti–human Fc and Fab were used to capture and detect bound MS-Hu6, 

respectively (N=3 mice).  This yielded Cmax of 20 µg/mL, with β phase t½ of 13 days (316 hours) 

(Fig. 4D).  Of note is that the β phase t½ for i.v. trastuzumab, currently in human use, is ~8.5 days 

in Tg32 mice (31)––this latter β decay translates into 21–day dosing intervals. 

We looked for engagement of circulating MS-Hu6 with its target—FSH.  For this, we 

injected groups of male and female C57BL/6 mice, intraperitoneally, with 200 µg MS-Hu6 or 

human IgG.  Mice were bled 16 hours later and total IgG (mouse and human) was pulled down 

using protein A beads.  The content of human IgG (control IgG or MS-Hu6) in the eluate, 

measured by a sandwich ELISA in which plates were coated with anti–human Fc and an anti–

human IgG for capture, remained unchanged.  We then subjected the same eluate to an sandwich 

ELISA, in which the plate was coated with anti–human Fc, and the MS-Hu6–FSHβα complex was 

captured by an antibody to the α subunit of FSH (incubation at 4oC, overnight).  We found that 

injected MS-Hu6, but control human IgG bound endogenous FSH in vivo (Fig. 4E). 
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Biodistribution and Excretion of MS-Hu6 

To study the biodistribution of 89Zr–MS-Hu6, we performed PET-CT scanning of the above 

treated mice at 24, 48 and 72 hours (N=3 mice).  The images show evidence of both decay of 

circulating radioactivity after 24 hours, and its persistence in multiple organs up to 72 hours (Fig. 

5A).  Maximal retention in terms of standardized uptake values (SUVs, normalized to muscle) was 

noted in the liver, with persistence in regions of interest, namely bone marrow, subcutaneous and 

visceral WAT depots, and the brain region (Fig. 5B).  Of note is that these values reflect the 

presence of 89Zr–MS-Hu6 in both blood and tissues. 

To determine the extent to which of 89Zr–MS-Hu6 persisted in individual tissues, we 

perfused the mice with 20 mL PBS before sacrifice and tissue isolation for γ–counting.  Significant 

concentrations of 89Zr–MS-Hu6 were detected in multiple organs, including bone, bone marrow, 

subcutaneous WAT, visceral WAT, and BAT (Fig. 5C).  Minimal amounts of 89Zr–MS-Hu6 were 

detected in isolated brain tissue at 72 hours—this is consistent with the low penetration of IgGs 

into the brain (0.05 to 0.1%) (Fig. 5C).  To hone into the early events, we monitored the uptake of 

89Zr–MS-Hu6 by dynamic PET-CT imaging over 240 minutes.  At 10 minutes, radioactivity was 

detected mainly in large vessels, which was followed at 60 and 240 minutes by permeation into 

organs (Fig. 5D).  As would be expected, radioactivity was not detected in the urine, but instead 

appeared in the feces (Fig. 5E). 

To complement the 89Zr–based biodistribution studies, we labelled MS-Hu6 with Alexa-

Fluor-750 (AF750), and injected C57BL/6 mice (N=3 mice) intravenously through the tail vein with 

AF750–MS-Hu6 (200 µg), AF750 alone or PBS.  At 16 hours post–injection, anaesthetized mice 

were imaged using the IVIS platform.  We found significant soft tissue distribution of AF750–MS-

Hu6 (Fig. 5F).  The mice were then perfused with PBS, followed by IVIS imaging of isolated tissue.  

Consistent with the 89Zr-based studies, there was uptake of AF750–MS-Hu6 by liver, kidney, fat 
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depots, bone, and brain (Fig. 5G).   In contrast, in the AF750 (dye only) control group, localization 

was noted only in the kidney due to dye excretion, and not in other organs—in all, confirming 

organ retention of the AF750–MS-Hu6, and excretion of the unconjugated dye.  Because of the 

expected minimal localization of MS-Hu6 in the brain, we further performed confirmatory studies 

by immunofluorescence.  For this, we injected AF488–MS-Hu6 or unconjugated AF488 into the 

tail veins of C57BL/6 mice (200 µg per mouse).  We detected immunofluorescence in liver, kidney 

and hippocampal sections in mice treated with AF488–MS-Hu6 (Fig. 5H).  In contrast, AF488–

treated mice showed fluorescence in kidney sections, but not in liver or brain (Fig. 5H).  Staining 

of hippocampal sections with an anti–human IgG confirmed localization (Fig. 5I). 

To understand MS-Hu6 biodistribution as it may apply to humans, we injected 89Zr-MS-

Hu6 as a single bolus dose (1.3 mg, ~1.3 mCi) into the tail veins of two male Cynomolgus 

monkeys aged 14 and 15 years, respectively.  Blood was drawn via tail vein at 5 minutes and at 

48 and 120 hours.  89Zr-MS-Hu6 peaked in the blood at 5 minutes, with an expected decline, albeit 

with persistence in the serum, at 48 and 120 hours (Fig. 5J).  PET/CT scanning revealed high 

SUV values in the liver and gall bladder, with lower SUVs in the kidney, spleen, fat depots, bone 

marrow, and the brain area (Fig. 5K). 

 

Acute and Chronic Safety of FSH Blockade 

We monitored standard safety parameters in treated monkeys up to 100 minutes, and did 

not observe significant acute or delayed changes post–injection in heart rate, respiratory rate, 

mean arterial blood pressure, systolic or diastolic blood pressure, or rectal temperature (Fig. 6A).  

We also drew bloods at day 0 (pre–injection) and at days 2 and 5 post–injection.  No concerning 

deviations from normative values were noted (Fig. 6B).  This suggests that, albeit at a low dose, 

MS-Hu6 as a single intravenous bolus injection into monkeys appeared to be generally safe. 
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MS-Hu6 was generated by swapping the mouse framework region of our parent mouse 

monoclonal antibody Hf2 with the human IgG1 framework, keeping the CDR itself unaltered.  

While both Fc and Fab region are human, mutations were introduced in the framework flanking 

the CDR region.  Because MS-Hu6 is not fully “human”, we first determined its “humanness” in 

silico by inputting the VL and VH sequences into abYsis.  Comparison of Z-scores revealed a right–

shift in comparison with the human–mouse chimeric antibody (26), and in correspondence with 

human IgG1 (Fig. 6C).  In addition, we inputted the primary amino acid sequences of commercially 

utilized humanized (“zumab”) and fully human (“mab”) to find that the Z-scores fell in a narrow 

range away from our chimera or mouse IgGs (Fig. 6C, Table).  We next tested immunogenicity 

experimentally using ELISPOT.  The production of inflammatory cytokines IL-2 and IFNγ in human 

peripheral blood mononuclear cell cultures was unaltered by MS-Hu6, in comparison with a 

standard CEFT peptide pool (positive control, Immunospot) (Fig. 6D).  Finally, we provide genetic 

evidence, using our Fshr+/- mouse, that haploinsufficiency of the FSHR—which mimics the effect 

of FSH blockade on obesity and osteoporosis (13, 15, 16)—does not affect lifespan negatively in 

male or female mice (Fig. 6E). 

 

Developability, Formulation and Physicochemistry of MS-Hu6 

Therapeutic antibodies selected on the basis of affinity, potency, specificity, functionality 

and pharmacokinetics might not have unsuitable physicochemical attributes making it difficult to 

streamline optimal manufacturing.  It is therefore imperative that, at an early stage, we determine 

physicochemical properties, after a rough in silico check for ‘red flags’ (32-34).  We thus used a 

computational tool, Protein–Sol, based on machine learning of amino acid sequences and 

physicochemical variables from 48 FDA–approved antibodies and 89 antibodies in late–stage 

clinical development (https://protein-sol.manchester.ac.uk/abpred) (32-34).  In the initial iteration, 

Protein–Sol provided predicted values for 12 separate physicochemical parameters that 
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determine manufacturability.  For all outputs, after inputting VH and VL regions, MS-Hu6 fell within 

acceptable thresholds, and was therefore deemed to be “safe” (Fig. 7).  In essence, the 

physicochemical properties of MS-Hu6 were likely to be broadly similar to FDA–approved 

antibodies. 

For validation, we inputted a version of MS-Hu6, wherein the CDR region was 

scrambled—5 of 12 outputs, namely affinity capture, cross interaction chromatography (CIC), 

polyspecificity reagent (PSR), expression titers in HEK cells (HEK), and differential scanning 

fluorescence (DSF), fell outside the respective thresholds—an early indication that the scrambled 

version was not manufacturable (Fig. 7).  In fact, while 65% FDA–approved monoclonal 

antibodies show no ‘red flags’, those with up to 4 red flags have been FDA–approved (34).  To 

complement data from individual outputs, we derived a meta value for both MS-Hu6 and its 

scrambled sequence (1=best; 100=worst) by averaging ranks for 8 experimental parameters.  We 

found that meta value pairs fell within the lower left quadrant, suggesting overall acceptable 

physicochemical properties, even in comparison with certain FDA–approved antibodies in the 

upper right quadrant (Fig. 7). 

Before testing the physicochemical characteristics of MS-Hu6 experimentally, we created 

an optimal formulation.  To prevent deamidation and isomerization at neutral and basic pHs, 

therapeutic antibodies are generally formulated at pHs away from their isoelectric pH (pI) (35, 36).  

Using Expasy, we predicted the pI for MS-Hu6 as 8.58.  Isoelectric focusing confirmed a pI pf 8.7 

(Fig. 8A).  We tested 215 combinations of salt, detergent and sugars for their thermal stability (not 

shown).  This yielded in a near–final formulation for MS-Hu6—stock solution of 2 mg/mL in 20 

mM phosphate, 0.001% (v/v) Tween-20, 1 mM NaCl, and 260 mM sucrose (pH = 6.58).  We found 

that both Fc and Fab regions of the formulated MS-Hu6 showed a thermal shift (Tm) compared 

with MS-Hu6 in PBS—and, hence, was confirmed as being more stable (Fig. 8B).  We also 

examined the binding of formulated MS-Hu6 to purified human FSH.  A Tm of 3.1 oC of the Fab, 
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and not the Fc region, established greater thermal stability due to FSH binding (Fig. 8C).  

Furthermore, and of note, is that compared with MS-Hu6 in PBS, formulated MS-Hu6 showed 

dampened peak signals (Fig. 8B).  The latter finding indicates that a lower number of antibody 

molecules underwent unfolding—implying enhanced stability—despite identical added 

concentrations (20 µg/well). 

For a full physicochemical characterization of the formulated MS-Hu6, we used a battery 

of biochemical tests, namely CIC, self–interaction chromatography (SIC), size exclusion 

chromatography (SEC), hydrophobic chromatography, and polyspecificity assays.  For CIC and 

SIC, we created an in–house NHS ester column conjugated either with human IgG (for CIC) or 

MS-Hu6 (for SIC).  MS-Hu6 was passed through an unconjugated column both in PBS and as a 

formulation, as well as through the two conjugated columns.  Figs. 8D and 8E show that retention 

times of MS-Hu6 in the respected conjugated columns were not different from those of the 

unconjugated column—this confirms that MS-Hu6 does not appreciably interact with itself or with 

human IgGs, also indicative of little or no aggregation. 

Highly soluble and hydrophilic monoclonal antibodies are expected to behave robustly 

during the manufacturing process.  On the other hand, hydrophobic antibodies with high sensitivity 

to salt may display problems, such as poor expression, aggregation or precipitation during 

purification.  Delayed retention times in a chromatographic assay with a hydrophobic matrix are 

indicative of a tendency for precipitation.  We used a butyl sepharose column, and passed MS-

Hu6 in 1.8 M NH2SO4 and 0.1 M Na2PO4 at pH 6.5 over 20 minutes at a flow rate of 1 mL/min.  

UV absorbance was monitored at 280 nm to yield a retention time of 7.1 minutes (Fig. 8F), which 

is below the theoretical threshold of 11.2 min (Fig. 7). 

We stressed formulated or PBS–containing MS-Hu6 through three freeze–thaw cycles 

(from –80oC to room temperature), and by incubation for 1 week at 4 oC, 37 oC or 50 oC, followed, 
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in all cases, by SEC (Fig. 8G).  We noted a major peak (#4) and three minor high molecular weight 

peaks (#1 to 3).  Areas under peaks 1 and 2 were between 0 and 0.91% of the total eluate under 

all conditions for both PBS–containing and formulated MS-Hu6.  Peak 3 remained generally low 

(<1.5%) with formulated MS-Hu6, but was considerably higher (up to 12.7%) during freeze–thaw 

in PBS.  Furthermore, the major peak 4 was consistently >99% with formulated MS-Hu6, 

particularly when compared to PBS–containing MS-Hu6 under freeze thaw (87.2%).  In all, the 

formulation protected against aggregation even under extreme stress conditions.  Extending the 

protocol to 25 mL elution yielded no fragment peaks under any condition (Fig. 8G). 

Therapeutic antibodies must undergo a test for polyreactivity to a panel of relevant 

antigens, including cardiolipin, hemocyanin (KLH), lipopolysaccharide (LPS), double and single 

stranded DNA, insulin, human albumin, flagellin, and baculovirus particles (BVP).  The fold 

change for MS-Hu6 binding to every molecule in ELISAs, except hemocyanin and BVP, was 

below a threshold of 3, and was therefore acceptable (Fig. 8H).  BVP scores greater than 5 have 

been shown to enhance antibody clearance, with potential effects on t½.  In contrast. binding to 

hemocyanin, an arthropod protein, often used as a carrier for synthetic peptides during 

immunization (37), was likely due its homology with the 13–amino acid sequence of FSHβ that 

binds MS-Hu6 (Fig, 8H).  However, as hemocyanin was not used during the production of the 

parent monoclonal antibody, Hf2, this is an irrelevant finding. 
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DISCUSSION 

Not many biologics, or indeed new therapeutics, undergo robust preclinical evaluations in 

academic medical centers outside of the pharmaceutical or biotechnology space.  Our 

comprehensive analysis of the biology and physicochemistry of a first–in–class, humanized FSH–

blocking antibody, MS-Hu6, establishing it as efficacious, safe and manufactureable may arguably 

be amongst the first attempts at an extensive in–house effort.  In 2003, we conceived the idea 

that pituitary hormones, including FSH, have direct actions on bone (13, 38-40); shifted this new 

paradigm to establish novel actions of FSH on fat, and more recently, on brain (16, 41); created 

the first polyclonal FSH–blocking antibody targeted to a 13–amino–acid–long receptor–binding 

epitope of FSHβ (17, 18); and finally developed a humanized multipurpose therapeutic (26) for 

future use in osteoporosis and obesity, and perhaps even in hyperlipidemia and Alzheimer’s 

disease.  Notably, the in–house studies described here have been carried out using our own 

platform that complies with Good Laboratory Practice, as mandated by the Food and Drug 

Administration’s Code of Federal Regulations [Title 21, Chapter 1A, Part 58].  This means, that 

this Investigational New Drug (IND)–enabling dataset forms the basis of late stage development 

and future first–in–human studies. 

It is now well recognized that targeting the receptor–binding epitope of FSHβ to block its 

interaction with the FSHR inhibits bone resorption, increases bone formation and bone mass, 

reduces body fat, and enhances thermogenesis (15-19, 22).  Notably, these effects are triggered 

not only with our polyclonal and monoclonal FSH–blocking antibodies (15-18), but also through 

the use by others of vaccines, such as a GST–FSHβ fusion protein (19) or tandem repeats of the 

epitope (22).  It is also important to note that even with high antibody doses, such as 200 

µg/mouse/day, serum estrogen levels are unchanged (16, 17), likely because of the abundance 

of FSHRs in the ovary that remain responsive to lowered levels of bioavailable FSH.  These 

preclinical data in mice establishing FSH as an actionable target are reinforced by striking 
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estrogen–independent correlations in women between serum FSH, rapid bone loss and visceral 

obesity during the menopausal transition, at which time serum estrogen is relatively normal and 

FSH levels are rising (4, 5, 9-12).  This window is likely the most opportune to prevent both bone 

loss and obesity through selective FSH blockade.  In this regard, while negative data with GnRH 

modulators are mostly confounded by concomitant changes in LH and GnRH (14), it is clear that 

low gonadotropin levels in triptorelin–treated men with prostate cancer are associated with lower 

fat mass and body weight than men undergoing orchiectomy, wherein gonadotropins are high 

(23).  Overall, therefore, the data together lend credibility to the idea that FSH–driven changes, 

at the very least in body composition, in both sexes can be rescued by blocking FSH.  The 

selective inhibition of FSH action therefore becomes a worthy imperative. 

Menopause is also associated with dyslipidemia, which has long been thought to result 

from estrogen deficiency.  However, there is compelling epidemiologic evidence that high serum 

FSH levels correlate with serum total and LDL cholesterol in post–menopausal women, and 

importantly, that total cholesterol rises across the perimenopausal transition, essentially tracking 

closely with bone loss and obesity (5, 7, 25, 42).  Impressively, exogenous FSH, in the presence 

of estrogen clamped at normal levels, increases serum total cholesterol in mice fed on a high 

cholesterol diet (24).  And, consistent with the idea that FSH is an estrogen–independent driver 

of menopausal hypercholesteremia, an FSH–blocking antibody, which we have previously shown 

to be active in bone cells, lowers serum cholesterol (18, 24).  There is also human evidence that 

reducing serum FSH by >30% from its zenith in post–menopausal women through estrogen 

replacement therapy lowers serum cholesterol (25).  As in the case of bone and fat cells (13, 16), 

hepatocyte FSHRs couple with Gi2α, which signals through Akt to inhibit FoxO1 binding with the 

Srebp2 promoter and prevent its repression.  Upregulated Srebp2, which drives de novo 

cholesterol biosynthesis, results in increased cholesterol accumulation and release (24).  This 

action is in addition to the lowering of LDLR expression by FSH (25).  Notwithstanding 
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cholesterol–lowering mechanism(s), which are likely to be explored even further, it is possible that 

an FSH–blocking therapeutic, such as MS-Hu6, could have additional actions on lipid metabolism 

in people. 

Furthermore, what underpins the preponderance of Alzheimer’s disease (AD) in post–

menopausal women, particularly in relation to disease risk, progression and severity, has 

remained unclear, now for decades.  A role for post–menopausal hypoestrogenemia remains 

controversial, with improvement (43), no change (44, 45) or worsening (46) of cognition with 

estrogen replacement therapy.  In contrast, high serum FSH is strongly associated with the onset 

of AD, and has thus been suggested as a possible mediator (47, 48).  More importantly, certain 

neuropathologic features, including neuritic plaques, neurofibrillary tangles, and gliosis often 

begin during the perimenopausal transition (49-53).  During this period, women also show a sharp 

decline in memory function and increased risk of mild cognitive impairment and dementia (11, 52, 

53).  We have recently documented exaggerated AD pathology and cognitive decline upon 

ovariectomy or exogenous FSH injection in three murine models of AD, even in the face of 

estrogen levels clamped in the normal range (41).  This phenotype arises from the action of FSH 

on hippocampal and cortical neuronal receptors using a pathway involving CEBP/β and the δ–

secretase asparagine endopeptidase (41).  Most notably, however, we found that our polyclonal 

FSH–blocking antibody, which shares the target epitope with MS-Hu6 (17, 26), prevented the 

AD–like phenotype induced upon ovariectomy (41)—providing a clear avenue for further 

exploration of the effects of MS–Hu6 in models of AD. 

In all, therefore, we and others have unraveled new actions of FSH that assign it as an 

actionable target requiring a highly specific approach to block its action in people.  We believe 

that MS–Hu6 with an affinity approaching that of trastuzumab (54), which we have carefully 

characterized in terms of structure, biological actions, pharmacokinetics, target engagement, 

biodistribution, safety and manufacturability, is poised for future testing in human trials.  
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Admittedly ambitious, we envisage, in a best case scenario, and if mouse data translates into 

people, of treating four diseases that affect millions of women and men worldwide—namely 

obesity, osteoporosis, dyslipidemia and neurodegeneration—with a single multipurpose FSH–

blocking agent. 
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METHODS 

Animals 

Colonies of male and female C57BL6 mice, and male Tg32, Fshr+/- mice, and ThermoMice 

were obtained from Jackson Labs.  Male CD1 mice were from Charles River Laboratories.  Mice 

were maintained in–house at Icahn School of Medicine at Mount Sinai and/or Maine Medical 

Center Research Institute.  They were either fed on normal chow or on a high–fat diet (DIO 

Formula D12492, 60% fat; Research Diets, Inc., New Brunswick, NJ.), with access to water ad 

libitum.  The mice were housed in climate–controlled conditions with standard 12–hour light/dark 

cycles (6 AM to 6 PM).  Nonhuman primates, namely Cynomolgus monkeys (Macaca 

fascicularis), were fed Teklad Global 20% Protein Primate Diet.  All protocols were approved by 

Institutional Animal Care and Use Committees of Icahn School of Medicine at Mount Sinai and 

Maine Medical Center Research Institute.   

 

Body Composition 

To study the effects of MS-Hu6 on body composition, we used male SV129 ThermoMice 

that were allowed ad libitum access to a high–fat diet and injected with MS-Hu6 or human IgG (7 

µg/day, 5 days–a–week, i.p.) for 8 weeks.  The latter dose was based on the in vitro IC50 of MS-

Hu6, which was ~30–fold lower than our polyclonal Ab (26).  We determined net food intake and 

measured body weight weekly, and performed quantitative nuclear magnetic resonance (qNMR) 

at 8 weeks.  For this, live mice were placed into a thin–walled plastic cylinder, with freedom to 

turn around.  An Echo3-in-1 NMR analyzer (Echo Medical) was used to measure fat, lean and 

total mass, per manufacturer.   

In ThermoMice, a luciferase reporter construct, Luc2-T2A-tdTomato, is inserted into the 

Ucp1 locus on the Y–chromosome (55).  Activation of Ucp1 expression leads to upregulation of 
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Luc2, which can be quantitated in vivo by radiance measurements using IVIS Spectrum In Vivo 

Imaging System (Perkin Elmer) following the injection of D-Luciferin (150 mg/kg).  At 4 and 8 

weeks, the mice were injected with D-Luciferin and radiance was captured from dorsal and ventral 

surfaces for optimal visualization of interscapular (BAT–rich) and inguinal (WAT–rich plus testes) 

regions, respectively.  Isolated fat depots were weighed manually, and RNA extracted for 

quantitative PCR (qPCR) for fat (Pparg, Fabp4 and Cebpa) and beiging (Ucp1, Cox 8a, Cox7, 

Cidea, and Prdm16) genes using appropriate primer sets and Prism 7900-HT (Applied 

Biosystems Inc.) (56).   

 

Histology and Immunodetection Methods 

Tissues were subject to hematoxylin/eosin staining, immunohistochemistry for UCP1 

(primary anti–UCP1 antibody: Abcam, Catalog# ab209483; secondary antibody: goat anti–rabbit 

IgG, Invitrogen, Catalog# 32260), or fluorescence for AF488 (conjugated to MS-Hu6) or AF750 

(conjugated to human IgG1) [human IgG, Sigma Cataog # I12511; Alexa Fluor 488 Antibody 

Labelling Kit, Invitrogen, Catalog # A20181; SAIVI Rapid Antibody Labelling Kit, Alexa Fluor 750, 

Invitrogen, Catalog # S30046].  Frozen brain sections or formalin–fixed, paraffin–embedded 

sections were examined using an Observer-Z1 microscope (Zeiss, Germany We used the 

following ELISA kits: FSH and LH (MILLIPLEX MAP Mouse Pituitary Magnetic Beads, Catalog #: 

MPTMAG-49K, CLHMAG and RFSHMAG, respectively), testosterone (R and D Systems, Catalog 

#: KGE010), and activin A (ThermoFisher, Catalog # EM3RB).   

 

Bone Phenotyping 

At Maine Medical Center Research Institute, BMD was measured by dual energy X-ray 

absorptiometry (DXA) (Piximus, Lunar) with a precision of <1.5% (57).  At Mount Sinai, we used 

Osteosys iNSIGHT and analyzed the DXA data using Insight v1.0.6.  In both instances, 
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anaesthetized mice were subject to measurements, with the cranium excluded.  The instruments 

were calibrated each time before use per manufacturer’s recommendation.   

For µ–CT measurements, femoral epiphyses were scanned non–destructively by using a 

Scanco µCT scanner (µCT-40; Scanco Medical AG, Bassersdorf, Switzerland) at 12 µm isotropic 

voxel size, with X-ray source power of 55 kV and 145 µA, and integration time of 300 milliseconds.  

Trabecular microstructure was evaluated after removing the noise from the scanned grey–scale 

images using a low-pass Gaussian filter.  A fixed bone mineral density threshold of 220 mg/cm3 

was used to extract the mineralized bone from soft tissue and the marrow phase.  Reconstruction 

and 3D quantitative analyses were performed using software provided by Scanco.  The same 

settings for scan and analysis were used for all samples.  Trabecular bone parameters included 

fractional bone volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), 

trabecular spacing (Tb.Sp), and connectivity density (Conn.D). 

Two–dimensional histomorphometry was performed in femoral epiphysis.  Frozen non–

decalcified sections (6–8 µm) were stained with a von Kossa staining kit (American MasterTech, 

Catalog #  KTVKO), per manufacturer’s procedure.  This provided measures of fractional bone 

volume (B.Ar/T.Ar), Tb.N, Tb.Sp and Tb.Th.  Bone formation was quantified by dynamic 

histomorphometry following sequential injections of calcein (15 mg/kg) followed by xylelol orange 

(90 mg/kg) eight days apart, with the last injection 4 days prior to sacrifice.  Parameters included 

mineral apposition rate (MAR) and bone formation rate (BFR),.  Osteoclast resorbed surface 

(Oc.S/BS) was measured following TRAP staining with Leukocyte Acid Phosphatase TRAP Kit 

(Sigma Aldrich, catalog # 387A-1KT).  RNA was extracted from isolated whole femur for qPCR 

for osteoblast (Col1a1, Alpl, Runx2 and Bglap) and osteoclast (Acp5) genes using appropriate 

primer sets using Prism 7900-HT (Applied Biosystems Inc.) (56).   
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Pharmacokinetics and Biodistribution in Mice 

We prepared 89Zr–MS-Hu6 by incubating MS-Hu6 first with the chelator DFO-p-NCS for 3 

hours at 37 oC (in steps of 5 µL until a 10–fold molar excess of chelator was achieved).  The DFO-

functionalized MS-Hu6 was washed 3 times with PBS in a 10 kDa ultracentrifugation tube before 

radiolabeling. 89Zr-oxalate was diluted with PBS and neutralized with 1M Na2SO4 before adding 

to functionalized MS-Hu6. This was followed by incubation with 89Zr-oxalate for 1 hour at 37 oC, 

ultrafiltration (cut off 10 kDa), and thin layer chromatography (with 50 mM EDTA) for quality check 

(29).  C57BL/6 or Tg32 mice were injected in separate experiments with 89Zr–MS-Hu6 as a single 

dose of ~250 µCi (~250 µg, 250 ± 40 µCi) into the retroorbital sinus.  Timed blood (few drops 

drawn from the tail vein) and excreta collection was followed by weighing and γ–counting 

(PerkinElmer Wizard 2480 Automatic Gamma Counter, PerkinElmer, Waltham, MA).  Values were 

corrected for decay and expressed as a percentage of injected dose per gram of tissue 

(%ID/gram). 

In complementary experiments, MS-Hu6 was biotinylated by incubating with NHS ester–

biotin (100 µg per mg MS-Hu6, dissolved in DMSO, Sigma, Catalog # H1759) for 4 hours at room 

temperature.  NaHCO3 (1 M) was then added for 10 minutes at room temperature (pH 8) and the 

product was purified through ultracentrifugation (cut off 10 kDa).  Biotinylated MS-Hu6 (200 µg) 

was injected i.p. into CD1 mice that underwent cardiac puncture for blood sampling and sacrifice 

at timed intervals.  We used an in–house ELISA in which the plate was coated with individual sera 

and biotinylated MS-Hu6 was captured by streptavidin-HRP (Millipore, Catalog # 18-152).  In a 

final experiment, unconjugated MS-Hu6 was injected i.p. into Tg32 mice (200 µg).  Serum was 

collected from groups of mice and an in–house assay was used in which anti–human IgG Fc 

(Sigma, Catalog # FAB3700259) was used to capture human IgG (MS-Hu6), with detection of the 

complex with goat anti–human IgG Fab (200 µg/well; Invitrogen, #31122).  
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For imaging, 89Zr–MS-Hu6–treated mice (above) were anesthetized using 1% isoflurane 

in O2 at a flow rate of ∼1.0 L/minute.  PET/CT scans were performed using a Mediso nanoScan 

PET/CT (Mediso, Budapest, Hungary).  For whole body CT scans, we used the following 

parameters: energy, 50 kVp; current, 180 µAs; and isotropic voxel size, 0.25 mm)—this was 

followed by a 30–min PET scan.  Image reconstruction was performed with attenuation correction 

using the TeraTomo 3D reconstruction algorithm from the Mediso Nucline software (version 3.04).  

The coincidences were filtered with an energy window between 400 and 600 keV.  Voxel size was 

isotropic with 0.4–mm width, and the reconstruction was applied for four full iterations, six subsets 

per iteration.  Image analysis was performed using Osirix MD, version 11.0.  Namely, whole body 

CT images were fused with PET images and analyzed in an axial plane.  Regions of interest 

(ROIs) were drawn on various tissues.  Testis, visceral WAT, subcutaneous WAT, kidneys, liver, 

and brain were traced in their entirety, and bone marrow uptake was assessed using three 

vertebrae in the lumbar spine.  Mean standardized uptake values (SUVs, normalized to muscle) 

were calculated for each ROI.  Subsequently, 89Zr–MS-Hu6 uptake of each tissue was expressed 

as the average of all mean SUV values per organ.  After imaging, the mice were sacrificed and 

perfused with 20 mL of PBS and tissues of interest, namely brain, heart, kidney, pancreas, liver, 

lung, bone, bone marrow, BAT, subcutaneous WAT, visceral WAT, adrenal, blood, testis, spleen, 

and muscle, were isolated for γ–counting..  

For biodistribution studies using AF750–labelled MS-Hu6, we first imaged the whole body 

16 hours after injection using IVIS Spectrum In Vivo Imaging System (Perkin Elmer).  Mice were 

then perfused with PBS, sacrificed and organs, namely heart, thymus, brain, gastronemus and 

soleus muscle, BAT, adrenals, liver, gall bladder, spleen, kindey, subcutaneous WAT, visceral 

WAT gonadal WAT, testes and bone were removed and imaged using the same IVIS platform to 

calculate average radiance efficiency per square area. 
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Biodistribution and Safety Studies in Monkeys 

After an overnight fast, two male Cynomolgus monkeys [Scott, aged 14 years, weight 9.8 

kg; and Andy, aged 15 years, weight 6.15 kg] were anesthetized with ketamine (5.0 mg/kg) and 

dexemedetomidine (0.0075 to 0.0015 mg/kg).  The monkeys were injected with 89Zr–MS-Hu6, 

and blood was drawn at 30 minutes, and at 48 and 120 hours from the tail vein.  Vitals, including 

mean arterial, systolic and diastolic blood pressure, respiratory rate, heart rate and rectal 

temperature, were recorded using Waveline Touch system (DRE) and Welch Allyn rectal 

thermometer.  PET and MR images were acquired on a combined 3T PET/MRI system (Biograph 

mMR, Siemens Healthineers).  Whole body MR images from each PET bed (head, thorax, pelvis) 

were automatically collated together with a scanner.  MR parameters were as follows: acquisition 

plane, coronal; repetition time, 1000 ms; echo time, 79 ms; number of slices, 224; number of 

average, 2; spatial resolution of 0.6 mm x 0.6 mm x 1.0 mm; and acquisition duration, 29 min and 

56 s per bed.  After acquisition, PET raw data from each bed were reconstructed and collated 

offline using the Siemens proprietary e7tools with an ordered subset expectation maximization 

(OSEM) algorithm with point spread function (PSF) correction.  A dual–compartment (soft tissue 

and air) attenuation map was used for attenuation.  Image analysis was performed using Osirix 

MD, version 11.0.  Whole-body MR images were fused with PET images and analyzed in an axial 

plane.  Regions of interest (ROIs) were drawn on various tissues.  The liver, kidney, BAT 

(interscapular region), subcutaneous WAT, visceral WAT, gonadal WAT, gallbladder, spleen, 

brain, and testes were traced in their entirety; bone marrow was imaged from the shoulder; and 

3 lumbar vertebrae; and muscle was imaged from the quadriceps.  Mean SUVs were calculated 

for each ROI.  89Zr–MS-Hu6 uptake of each tissue was expressed as the average of all mean 

SUV values per organ.  Serum was collected for blood chemistry analysis by IDEXX BioAnalytics. 

 

ELISPOT Assay 
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Human peripheral blood mononuclear cells (PMBCs, obtained from Immunospot, Cellular 

Technology Ltd.) were cultured for 12 days in FBS–free DMEM with regular medium change, and 

plated at a density of 105 cells/well in ImmunoSpot ELISPOT plates.  Cells were then exposed to 

MS-Hu6, CEFT or DMEM for 48 hours, following which IL-2 and IFNγ expressing cells were 

quantitated per manufacturer’s instructions. 

 

Target Engagement Assays 

For pharmacodynamic studies—namely engagement of MS-Hu6 with FSH as its target—

male and female C57BL/6 mice were injected i.p. with MS-Hu6 or human IgG (200 µg, for each).  

After 16 hours, mice were bled and total IgG (mouse and human) was pulled down using protein 

A beads (ThermoFisher, Catalog # 20333).  An in–house sandwich ELISA was used to measure 

human IgG (control IgG or MS-Hu6) in the eluate.  For this, plates were coated with anti–human 

Fc (Sigma, Catalog # FAB3700259) and goat anti–human HRP–conjugated IgG (H+L) 

(Invitrogen, Catalog # A18805) was used to for capture total human IgG.  The same elute then 

underwent a second in–house sandwich ELISA, in which the plate was coated with anti–human 

Fc (Sigma, Catalog # FAB3700259), and after overnight incubation at 4oC, the MS-Hu6–FSHβα 

complex was captured by an antibody to the α subunit of FSH.  In a separate study, a commercial 

ELISA for FSH (Biotechnology Systems, Catalog # M7581) was used to determine whether MS-

Hu6 binding to FSH interfered with its detection.   

 

In Silico Analyses 

We used Protein–Sol, a computational algorithm based on machine learning of amino acid 

sequences and physicochemical variables from 137 antibodies that are FDA–approved or in late–

stage clinical development (https://protein-sol.manchester.ac.uk/abpred) (32-34).  Protein–Sol 

uses antibody sequences (VH and VL) as inputs to provide predicted outputs for clone self–
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interaction by bio–layer interferometry (CSI-BLI), poly–specificity reagent (PSR), baculovirus 

particle ELISA (BVP-EL), cross–interaction chromatography (CIC), ELISA, accelerated stability 

(AS), hydrophobic interaction chromatography (HIC), stand–up monolayer adsorption 

chromatography (SMAC), salt gradient affinity capture (SGAC), expression titer in HEK cells 

(HEK), affinity capture (AC), and differential scanning fluorescence (DSF).  It also provides a meta 

value for each sequence (1=best; 100=worst) by averaging ranks for 8 experimental parameters.  

For predicting the pI value MS-Hu6, we inputted its sequence into Expasy (Swiss Bioinformatics 

Research Portal, https://web.expasy.org/compute_pi/).  For predicting the “humanness” of 

humanized MS-Hu6 versus parent chimera and other humanized or fully human molecules (26), 

we inputted sequences into abYsis (version 3.4.1; 

http://www.abysis.org/abysis/sequence_input/key_annotation/key_annotation.cgi) to obtain Z-

scores, and compared the scores with that of VH and VLĸ chain of IgG1. 

 

Protein Thermal Shift Assay 

The thermal shift assay used a fluorescent reporter, Sypro–Orange (Protein Thermal Shift 

Dye Kit, ThermoFisher, Catalog # 4461146), to detect hydrophobic domains that are exposed 

following the heat–induced unfolding of globular proteins.  MS-Hu6 (1.5 µg/µL), formulated or in 

PBS, was incubated with or without human FSH (0.5 µg/µL) at room temperature for 30 minutes, 

with fluorescence captured sequentially at 0.3 oC increments using a StepOne Plus Thermocycler 

(Applied Biosystems).  Tm was calculated based on the inflection point of the melt curve, and 

thermal shift was derived from Tm = TmA–TmB. 

 

Isoelectric Focusing 

For determining the isoelectric pH (pI), two dimensional electrophoresis was performed by 

first rehydrating MS-Hu6 (500 µg) for 2 hours at room temperature in rehydration buffer (8M urea, 
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2% CHAPS, 0.5% IPG buffer, and trace of bromophenol blue) without DTT.  The sample was then run 

on an 18 cm 3-10 strip using the Ettan IPGphor 3 Isoelectric Focusing System (GE Healthcare).  

Four voltage steps (50 V for 10 hours; 500 V for 1 hour; 1000 V for 1 hour; 8000V for 4 hours) 

were followed by Coomassie blue staining. 

 

Chromatography 

 An NHS ester column (HiTrap NHS Activated HP, Cytiva, Catalog # 17071601) was 

conjugated with either human IgG (for CIC) or MS-Hu6 (for SIC) in 0.2 M NaHCO3, 0.5 M NaCl 

(pH 8), per manufacturer.  Unbound IgG was removed by successive washings (x3) at a rate of 

0.4 mL/minute using Buffer A (0.5 M ethanolamine, 0.5 M NaCl, pH 8,3) and Buffer B (0.1 M 

sodium acetate, 0.5 M NaCl, pH 4).  An unconjugated column was prepared without including any 

IgG in the coupling step.  MS-Hu6, either as a formulation or in PBS, was run through the 

unconjugated column, followed by either conjugated columns at 0.2 mL/min.  For SEC, we used 

a Superdex 200 Increase 10/300 GL (GE Lifesciences, Catalog # 28990944) and passed MS-

Hu6 (2 mg) in either PBS or formulation buffer after 3 cycles of freeze–thaw or incubation for 1 

week at 4 oC, 37 oC or 50 oC.  For HIC, we used HiTrap Butyl FF Sepharose column (GE 

Lifesciences, Catalog # GE17-1357-01) to run MS-Hu6 at 1 mL/minute in a linear gradient from 1 

M to 0 M (NH4)2SO4 [generated using 1.8 M (NH4)2SO4 and 0.1 M Na2PO4 (pH 6.5), and 0.1 M 

Na2PO4 (pH 6.5)].  For CIC, SIC, SEC, HIC, absorbance was monitored at 280 nm using the 

AKTA PURE FPLC (GE Lifesciences), and the data analyzed by Unicorn version 6.4.   

 

Polyspecificity Testing 

We adapted a previous method to antibody determine polyspecificity (34), and developed 

an in–house ELISA by coating plates with multiple antigens (50 nM for each), namely double 

stranded DNA (Shear Salmon Sperm DNA, 5’-3’ Inc., Catalog # 5302-754688), single stranded 
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DNA (Deoxyribonucleic acid, single stranded from Calf Thymus, Sigma, Catalog # D8899), 

cardiolipin (Cardiolipin sodium salt from bovine heart, Sigma, Catalog # C0563), LPS-B5 

(Lipopolysaccharide E. coli 055:B5, Calbiochem, Catalog # 437625,), LPS-B4 (LPS-EB, 

InvivoGen, Catalog # tlrl-eblps, 50 nM), KLH (keyhole limpet, Hemocyanin from Megathura 

crenulata, Sigma, Catalog # H8283), insulin (Humulin R, Lilly, Catalog # HI213), baculovirus 

particle (Medna, Catalog #: E3001), flagellin (Adipogen, Catalog # AG-4013-0095-C100), human 

serum albumin (Sigma, Catalog # A9511) and human pituitary FSH (National Hormone and 

Pituitary Program, UCLA).  The antigens were exposed MS-Hu6 (100 nM), overnight at 4 oC, and 

any antigen–MS-Hu6 complex was captured by goat anti–human HRP–conjugated IgG 

(Invitrogen, Catalog # A18805). 

 

Statistical Methods 

Statistically significant differences between any two groups were examined using a two–

tailed Student’s t-test, given equal variance.  P values were considered significant at or below 

0.05. Data points were excluded if they were 2.5 standard deviations above or below means   

 

Ensuring Rigor and Reproducibility:  There is a nascent movement to ensure that preclinical 

data is true and accurate (58-63).  M.Z. and C.J.R. coined the phrase ‘contemporaneous 

reproducibility,’ which refers to the synchronous reproduction of data in more than one laboratory.  

As Zaidi’s discovery of the effects of FSH on body fat were novel and unexpected, he reached 

out to C.J.R. for help in form of a reproducibility study.  Key data sets were reproduced by C.J.R 

in a process that lasted over three years, as other validation studies were added by both 

laboratories.  The term replicability refers to the ability of one or more independent groups to 

replicate a finding using a different technology or method––replicability is a measure of truth or 

significance of a given finding(64).  Here, we have replicated a key finding that Hu6 increased 
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bone mass in the M.Z. and C.J.R. labs, with µCT data independently produced by J.C.  To further 

enhance transparency, we have hosted detailed procedures and raw datasets on our GLP–

compliant MediaLab Document Control System that all investigators have access to.  All data 

have undergone quality checks before the final product was signed off.  Such practices requiring 

unfettered transparency remain fundamental to ensuring rigor. 
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LEGENDS TO FIGURES 

Figure 1: MS-Hu6 Reduces Body Weight and Body Fat.  Effect of MS-Hu6 or human IgG (7 

µg/day, 5 days–a–week) injected i.p. for 8 weeks on food intake and body weight (A), and total 

mass, fat mass/total mass and lean mass/total mass (by quantitative NMR) (B) in male 

ThermoMice fed ad libitum on a high fat diet.  The effect of MS-Hu6 in reducing body fat mimics 

the effect of Fshr haploinsufficiency in Fshr+/- mice (C).  Weight–based measurements of white 

adipose tissue in various compartments, namely mesenteric (mWAT), subcutaneous (sWAT), 

renal (rWAT) and gonadal (gWAT), as well as interscapular brown adipose tissue (BAT) (D).  

Quantitative PCR showing the expression of fat genes, namely Pparg, Fabp4 and/or Cebpa were 

reduced in sWAT, gWAT and/or BAT (E).  Serum LH, GnRH, testosterone, activin A and total 

inhibin levels (F).  Statistics: mean + s.e.m.; N=9 mice/group for panels A, B and D; N=3 

mice/group for panel C; 4 to 5 biological replicates for panel E; N=7-9 mice/group for panel F; 

*P<0.05, **P<0.01. 

 

Figure 2: MS-Hu6 Induces Beiging of White Adipose Tissue.  (A) Transgenic construct of 

Luc2-T2A-tDtomato under control of the Ucp1 promoter.  (B) Effect of MS-Hu6 or human IgG (7 

µg/day, 5 days–a–week, i.p.) in male ThermoMice fed ad libitum on a high fat diet on emitted 

radiance from dorsal or ventral surfaces after 4 and 8 weeks post–injection following D-Luciferin 

(IVIS, 10 minute peak, average radiance, Ctrl: non–transgenic mice given D-Luciferin).  (C) UCP1 

immunohistochemistry of subcutaneous (sWAT) and gonadal white adipose  tissue (gWAT) and 

brown adipose tissue (BAT).  (D) Hematoxylin–eosin staining of WAT showing cell condensation 

in MS-Hu6–treated mice, measured morphometrically as average (Avg) diameter.  (E) 

Quantitative PCR showing increased expression of beiging genes, namely Ucp1, Cox8a, Cox 7, 

Cidea and/or Prdm16 in sWAT, gWAT and/or BAT in MS-Hu6–treated mice.  Statistics: mean + 
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s.e.m.; N=7 and 9 mice/group for panels B and D, respectively; 4 to 5 biological replicates for 

panel E; *P<0.05, **P<0.01, ***P<0.001, and as shown. 

 

Figure 3: MS-Hu6 Stimulates New Bone Formation and Increases Bone Mass.  (A) 

Representative images of von Kossa–stained femoral epiphyses of male ThermoMice mice that 

were treated with MS-Hu6 or human IgG (7 µg/day, 5 days–a–week, i.p.) and fed ad libitum on a 

high fat diet.  Two–dimensional histomorphometric parameters showing bone volume (B.Ar/T.Ar), 

and trabecular thickness (Tb.Th) and number (Tb.N).  The increase in B.Ar/T.Ar was confirmed 

on BMD measurements in live mice (B).  Dynamic histomorphometry showing representative 

images of double–labelled sections and quantitative data on mineral apposition rate (MAR) and 

bone formation rate (BFR).  (D) Quantitative PCR showing the expression of osteoblastogenesis 

genes, namely Bglap, Col1a1, Alpl and Runx2.  (E) Osteoclast surfaces (Oc.S.) remained 

unchanged, but with a reduction in Acp5 (TRAP) gene expression.  Parallel studies carried out at 

C.J.R.’s lab used 3–month–old ovariectomized C57BL/6 mice, which were injected 24 weeks 

post–ovariectomy with MS-Hu6 or human IgG, daily, at 100 µg/day, for 4 weeks and then 50 

µg/day for 4 weeks.  Shown are Piximus measurements of total body and femur bone mineral 

density (BMD) (F), as well as µCT images and quantitative estimates of fractional bone volume 

(BV/TV), trabecular number (Tb.N), spacing (Tb.S.) and thickness (Tb.Th), and connectivity 

density (Conn.D) (performed  at J.C.’s lab).  Statistics: mean + s.e.m.; N=7, 8 mice/group for panel 

A; N=9 mice/group for panel B; N=9, 8 mice/group for panel C; 4 biological replicates for panel D; 

N=7 mice/group and 4 biological replicates for the left and right bar graphs, respectively, for panel 

E; N=11 and 10 mice/group for panel F and G, respectively; *P<0.05, **P<0.01, **P<0.001, and 

as shown. 

 

Figure 4: Pharmacokinetics and Target Engagement of MS-Hu6.  Plasma levels, Cmax and β 

phase t½ values for MS-Hu6 injected into C57BL/6 mice (250 µCi of 89Zr–MS-Hu6, N=5 mice 
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followed longitudinally) (A), CD1 mice (200 µg biotinylated MS-Hu6, N=3/time point) (B), Tg32 

mice (250 µCi of 89Zr–MS-Hu6, N=5 mice followed longitudinally) (C) and Tg32 mice (200 µg 

unconjugated MS-Hu6, N=3/time point) (D).  (E) Endogenous murine FSH in male and female 

mouse serum bound to injected MS-Hu6 versus that bound to control human IgG (hIgG).  

Detection of the MS-Hu6–FSHβα complex was achieved using an in–house ELISA in which the 

plate was coated with anti–human Fc and the complex captured by an antibody to the α subunit 

of FSH (N=3 biologic replicates).  Of note is that total human IgG (control IgG or MS-Hu6) captured 

by an in–house ELISA was not different across treatment groups (E, Table). 

 

Figure 5: Biodistribution and Excretion of MS-Hu6 in Mice and Monkeys.  Representative 

PET-CT images of mice treated with a single bolus dose of 89Zr–labeled MS-Hu6 (250 µCi) at 24, 

48 and 72 hours (A), together with quantitation in terms of standardized value uptake units (SUVs, 

normalized to muscle) in different organs (N=5, 4 and 2 mice for the three time points, 

respectively) (B).  89Zr–MS-Hu6 (γ–counts) in individual tissues isolated following perfusion of the 

mice with 20 mL PBS  (N=5, 4 and 5 mice for the three time point, respectively) (C).  Dynamic 

PET/CT images showing the uptake of 89Zr–MS-Hu6 over 240 minutes (D).  Time course of 

excretion of 89Zr–labelled MS–Hu6 in feces (N=5 mice/time point) (E).  Emitted whole body 

radiance on IVIS imaging of C57BL/6 mice injected with AF750-MS-Hu6 (200 µg) or PBS (F).  

IVIS imaging and quantitation (average radiance) of isolated perfused tissues, as shown. following 

AF750-MS-Hu6, AF750 or PBS injection (N=3 mice/group) (G).  Immunofluorescence 

micrographs of hippocampal, kidney and liver sections from C57BL/6 mice injected with AF488-

MS-Hu6 or unconjugated AF488 (200 µg/mouse, i.v.) (H).  Counterstaining with an anti–human 

IgG confirmed localization (I).  Whole body PET/CT image, quantitation (SUVs) of multiple organs 

and serum radioactivity (γ–counts) following a single i.v. injection of 89Zr-MS-Hu6 ((1.3 mg, ~1.3 

mCi) ) in two Cynomolgus monkeys aged 14 and 15 years, respectively (J).   
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Figure 6: Acute and Chronic Safety of MS-Hu6.  Effects on physiological parameters 

(monitored up to 100 minutes (A) and serum biochemistry (at days 0, 2 and 5) (B) after injecting 

89Zr-MS-Hu6 as a single i.v. bolus dose (1.3 mg, ~1.3 mCi) into the tail veins of Cynomolgus 

monkeys (Andy, 14 years/9.8 kg, and Scott, 15 years/6.15 kg).  Normative serum biochemistry 

data (green) from: (65).  In silico assessment of “humanness” using abYsis, with Z-scores 

comparing humanized MS-Hu6, mouse–human chimeric antibody (26), and human IgG1 (C).  

Table shows narrowly distributed Z-scores after inputting primary sequences of FDA–approved, 

clinically–utilized humanized (“zumab”) and fully human (“mab”) antibodies: bevacizumab (anti–

VEGF, Avastin®); trastuzumab (anti–Her2, Herceptin); atezolizumab (anti–PD-L1, Tecentriq®); 

adalimumab (anti–TNFα, Humira®); alirocumab (anti PCSK9, Praluent®); and canakinumab 

(anti–IL-β; Ilaris®) (C).  Assessment of immunogenicity using ELISPOT assays for the 

inflammatory cytokines IL-2 and IFNγ in human peripheral blood mononuclear cell cultures in 

response to added MS-Hu6, DMEM (Ctrl), or CEFT peptide pool (positive control, Immunospot) 

(D).  Kaplan–Meier survival curves showing that haploinsufficiency of Fshr, which otherwise 

mimics the effect of MS-Hu6 on body fat and bone mass (c.f. Fig. 1C) (13, 16) does not reduce 

lifespan compared with wild type littermates over 1100 days (3 years) (5, 10 mice for wild type 

male and female, and 23, 22 mice for male and female Fshr+/- mice, respectively) (E). 

 

Figure 7:  Manufacturability of MS-Hu6.  (A) Protein–Sol was used to compare twelve 

physicochemical parameters that were computationally–derived for MS-Hu6 against experimental 

derivations of 48 FDA–approved antibodies and 89 antibodies in late–stage (phase 2/3)  clinical 

development.  MS-Hu6 fell within the “safe” range and was therefore considered manufacturable.  

A variation of MS-Hu6, in which the CDR region was scrambled, failed 5 of 12 outputs, indicating 

non–manufacturability.  While 65% FDA–approved monoclonal antibodies show no ‘red flags’, 

those with up to 4 red flags have been approved by the FDA (34).  Also shown are meta values 

for both MS-Hu6 and its scrambled sequence (1=best; 100=worst) derived by averaging ranks for 
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8 experimental parameters.  MS-Hu6 fell within the lower left quadrant, confirming that 

physicochemical properties were acceptable for manufacturing. 

 

Figure 8:  Physicochemical Characteristics of MS-Hu6.  Isoelectric focusing confirmed a pI pf 

8.7 for MS-Hu6, consistent with its in silico prediction (Expasy) of 8.58 (A).  Thermal shift assays 

were used to examine stability of both Fc and Fab regions of formulated MS-Hu6 versus MS-Hu6 

in PBS (B), as well as stability of FSH binding to the Fab region of formulated MS-Hu6 (C).  UV 

absorbance (280 nm) readout of self–interaction chromatography (SIC) (D) or cross–interaction 

chromatography (CIC) (E) to assess binding of formulated MS-Hu6 versus MS-Hu6 in PBS with 

self or human IgG, respectively.   Hydrophobic chromatography showing UV absorbance (280 

nm) of the eluate from a butyl sepharose column upon passing MS-Hu6 at pH 6.5 over 20 minutes 

at a flow rate of 1 mL/min (retention time shown) (F).  Representative size exclusion 

chromatograms and area under the peak for MS-Hu6 in PBS or formulated MS-Hu6 following 

stress testing by 3 cycles of freeze–thaw or incubation at 4 oC, 37 oC and 50 oC for 1 week (G).  

Reactivity of MS-Hu6 to a standard panel of antigens, including cardiolipin, hemocyanin (KLH), 

lipopolysaccharides B4 and B5 (LPSB4 and LPSB5), double and single stranded DNA (dsDNA 

and ssDNA), insulin, human albumin, flagellin, and baculovirus particles (BVP) (ELISAs) (H).  

Homology of KLH with the epitope against which MS-Hu6 was raised, showing identical (*) and 

conserved (:) amino acid residues (H). 

 

Supplementary Figure 1:  Bone Phenotype of the C3H Mouse is Resistant to Anabolic 

Actions of MS-Hu6.  Piximus measurements of total body and femur bone mineral density (BMD) 

(A), as well as µCT images (B) and quantitative estimates of fractional bone volume (BV/TV), 

trabecular number (Tb.N), spacing (Tb.S.) and thickness (Tb.Th), and connectivity density 

(Conn.D) (C).  Experiment performed at C.J.R. lab, with µCT analysis independently at J.C’s lab. 
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