

1 **Transition between conformational states of the TREK-1 K2P
2 channel promoted by interaction with PIP₂**
3

4 Adisorn Panasawatwong^{1,2}, Tanadet Pipatpolkai^{3,4,5,6*}, Stephen J. Tucker^{1,5,7*}
5

6 ¹ Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K.

7 ² Current address: Max Planck Institute of Physics for the Physics of Complex System,
8 Nöthnitzer Str. 38, 01187 Dresden, Germany

9 ³ Department of Physiology Anatomy and Genetics, University of Oxford, Parks Road, Oxford,
10 OX1 3PT, U.K.

11 ⁴ Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU,
12 U.K.

13 ⁵ OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, U.K.

14 ⁶ Current address: Science for Life Laboratory, Department of Applied Physics, KTH Royal
15 Institute of Technology, Tomtebodavägen 23, Solna, 17165, Sweden

16 ⁷ Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K.

17

18 *To who correspondence should be addressed: stephen.tucker@physics.ox.ac.uk or
19 tanadet.pipatpolkai@scilifelab.se

20

21

22

23 **Abstract**

24

25 Members of the TREK family of two-pore domain (K2P) potassium channels are highly
26 sensitive to regulation by membrane lipids, including phosphatidylinositol-4,5-bisphosphate
27 (PIP₂). This study used coarse-grained molecular dynamics (CG-MD) and atomistic MD
28 simulations to model the PIP₂ binding site on both the up and down state conformations of
29 TREK-1. We also calculated the free energy of PIP₂ binding relative to other anionic
30 phospholipids in both conformational states using potential of mean force (PMF) and free
31 energy perturbation (FEP) calculations. Our results identify state-dependent binding of PIP₂
32 to sites involving the proximal C-terminus and we show that PIP₂ promotes a conformational
33 transition from a down state towards an intermediate that resembles the up state. These
34 results are consistent with functional data for PIP₂ regulation and together provide evidence
35 for a structural mechanism of TREK-1 channel activation by phosphoinositides.

36

37 136/150 words

38

39 Keywords: K2P channel; PIP₂; TREK-1; Molecular Dynamics

40

41

42

43 **Introduction**

44

45 The TREK subfamily of two-pore domain (K2P) K⁺ channels contribute to the resting
46 membrane potential and electrical activity of a wide variety of cell types and tissues including
47 many within the central and peripheral nervous systems (Natale *et al.*, 2021). They are
48 involved in processes such as pain perception, neuroprotection, and anesthesia (Enyedi &
49 Czirják, 2010) and therefore make attractive therapeutic targets (Busserolles *et al.*, 2020).

50 TREK channel activity is regulated by a wide variety of physical and chemical stimuli.
51 This polymodal regulation allows them to integrate cellular electrical activity with a diverse
52 range of cellular signaling pathways. In particular, TREK channels are mechanosensitive and
53 highly sensitive to their lipid membrane environment. Previous studies have shown that
54 membrane tension increases channel activity by expanding the cross-sectional volume of the
55 channel within the bilayer thereby rendering it mechanosensitive (Aryal *et al.*, 2017). In
56 addition to the physical properties of the membrane, TREK channels are also highly sensitive
57 to different lipid species as well as both internal and external pH (Maingret *et al.*, 1999; Riel *et*
58 *al.*, 2021). For example, amino acids in the C-terminal domain (CTD) are involved in PIP₂
59 regulation and intracellular pH sensing (Chemin *et al.*, 2005b), whilst the CTD also provides
60 binding sites for proteins that can regulate lipid composition such as phospholipase D2
61 (Comoglio *et al.*, 2014; Petersen *et al.*, 2019). However, despite the obvious importance of its
62 lipid sensitivity and PIP₂ regulation in particular, relatively little is known about how PIP₂
63 interacts with TREK channels.

64 Crystal structures of TREK channels have revealed two distinct conformations: an 'up'
65 state (PDB entry: 6CQ6) and a 'down' state (PDB entry: 4XDJ) (Dong *et al.*, 2015; Lolicato *et*
66 *al.*, 2017). The up state has a broader cross-section than the down state within the lower leaflet
67 due to an upwards movement of the M2 and M4 transmembrane helices. However, the
68 structure of the full CTD remains unknown as this domain is truncated in all of the constructs
69 used for crystallization. Both conformations of the channel appear to be conductive

70 (McClenaghan *et al.*, 2016; Proks *et al.*, 2021) but several studies indicate that the channel
71 becomes more active when it is in the up state (Brennecke & de Groot, 2018; Proks *et al.*,
72 2021).

73 Movement of the TM helices therefore appears to regulate channel activity, but unlike
74 many other K⁺ channels, this movement does not appear to constrict the pore to provide a
75 simple switch between an open and closed state because TREK channels are gated primarily
76 within their selectivity filter (Bagriantsev *et al.*, 2011; Piechotta *et al.*, 2011; Lolicato *et al.*,
77 2017). The mechanism by which membrane tension shifts the channel into the more active
78 up state has been studied extensively (Aryal *et al.*, 2017; Clausen *et al.*, 2017; Rietmeijer *et*
79 *al.*, 2021). However, the mechanisms by which regulatory lipids such as PIP₂ interact with
80 TREK channels to influence these conformations remains unclear.

81 In this study we have used both coarse-grained and atomistic molecular dynamics
82 (MD) simulations to model PIP₂ binding to different conformations of TREK-1 and calculate its
83 energetics of binding relative to other anionic phospholipids. Our results indicate that PIP₂
84 promotes a conformational transition towards the up state and proposes a mechanism of
85 activation by PIP₂ that is consistent with a wide range of evidence from previous binding
86 studies, functional assays and mutagenesis data.

87 **Results**

88

89 *Identification of a PIP₂ binding site*

90 We conducted 10 μ s coarse-grained molecular dynamics (CG-MD) simulations to
91 investigate putative lipid binding sites to the up state (PDB entry: 6CQ6) (Lolicato *et al.*, 2017)
92 and the down state conformations of TREK-1 (PDB entry: 4XDJ) (Dong *et al.*, 2015). The distal
93 C-terminus of the down state structure was extended to match the longer α -helical structure
94 that was resolved in the up state structure (6CQ6). In our simulations, PIP₂ was initially placed
95 randomly in the lower leaflet with the mixture of PC:PS:PIP₂ at the ratio of 15:3:2 and simulated
96 for 10 μ s for each structure (**Fig 1A**). Similar to previous protein-PIP₂ interaction studies
97 (Stansfeld *et al.*, 2009; Pipatpolkai *et al.*, 2020; Duncan *et al.*, 2020), we used two criteria to
98 identify possible PIP₂ binding sites. First, the “residence time” of the PIP₂ in its binding site
99 was assessed, i.e. the period in which PIP₂ remained at least 0.6 nm to the residues of interest.
100 Second, we assessed the “occupancy”, defined as the fraction of time that PIP₂ spends at
101 least 0.6 nm in proximity to a particular residue. These metrics allowed us to cluster any
102 residues with similar residence time and occupancy, therefore defining them as a potential
103 interaction or binding sites.

104 We identified two binding sites with occupancy >90% and residence times >2 μ s (**Fig**
105 **1B,C and Fig S1**). Other sites with residence times less than 0.5 μ s were treated as non-
106 specific interactions. In the up state, the two binding sites are adjacent to each other and
107 located between M1 and M4 (**Fig 1B**). In contrast, the binding sites on the down state structure
108 were further away from each other (**Fig 1C**) and the binding site with the highest residence
109 time was similar to the site identified in the up state. However, the second binding site in this
110 conformation is located at the M2/M3 interface, and the two binding sites are separated from
111 each other by the M2 helix. In contrast, these two sites are much closer together when the
112 channel is in the up state (**Fig 1B**).

113

114 *PIP₂ binding affinities between up state and down state.*

115 Similar to a previous approach (Corey *et al.*, 2019), we next assessed the binding
116 affinity of PIP₂ in the most prominent binding site using potential of mean force (PMF)
117 calculations to calculate the free energy of binding. We compared the energetic difference
118 between the “bound” state (energy minima) and the “bulk”, where lipids are at least 1.2 nm
119 away from the binding site (**Fig 2A**). We showed that the binding free energy in the most
120 occupied binding sites are $-41 \pm 3 \text{ kJ mol}^{-1}$ and $-26 \pm 2 \text{ kJ mol}^{-1}$ for the up and down states,
121 respectively (**Fig 2B**). Thus, the binding of PIP₂ appears more favorable in the up state
122 compared to the down state. We also observed a shallower energy landscape in the down
123 state, implying less specificity in the binding site.

124 *Comparing lipid specificity in the primary binding site*

125 To determine the relative binding free energy between PIP₂ and other lipids in this
126 binding site, we applied the free-energy perturbation (FEP) method to perturb the PIP₂
127 headgroup to other lipid headgroups. Relative binding free energies were then calculated
128 relative to PC (**Fig 2C, 2D**). We define the binding free energy of PC to TREK-1 channel to be
129 ~0 kJ/mol as this is the most common lipid in the bilayer. In the up state, the binding free
130 energy difference between PIP₂ and PC is $-36 \pm 2 \text{ kJ mol}^{-1}$ which agrees well with our PMF
131 calculations ($-41 \pm 3 \text{ kJ mol}^{-1}$). This value is also remarkably close to the value calculated in a
132 fluorescent binding assay which yielded $-36 \pm 1 \text{ kJ mol}^{-1}$ from a dissociation constant (K_d) of
133 $0.80 \pm 0.34 \mu\text{M}$ (Cabanos *et al.*, 2017).

134 By comparing these binding free energies relative to PC, we observed that channel
135 affinity for PIP₂ is slightly higher than for PI4P. This suggests the first phosphate group
136 contributes only partially to the binding of PIP₂. However, the transformation from PIP₂ to PI
137 showed that the inositol group and the second phosphate group have a much more significant
138 contribution than the first phosphate group. This pattern has also been observed in inwardly
139 rectifying potassium (Kir) channels (Pipatpolkai *et al.*, 2020). In addition, we compared the
140 relative binding free energy of PIP₂ to other anionic phospholipids such as

141 phosphatidylglycerol (PG), phosphatidylserine (PS) and phosphatidic acid (PA) (**Fig 2D**). This
142 showed that the binding free energy of PG, PS and PA are relatively similar (-10 kJ/mol relative
143 to PC).

144 We next conducted a similar CG-FEP calculation using the structure of the down state
145 TREK-1. Here, we observed a similar difference between the affinity of PIP₂, PI4P and PI
146 compared to the up state. However, we also observed a much smaller binding energy of PG,
147 PS and PA (~0 kJ/mol relative to PC) in the down state suggesting that any channel activation
148 these anionic phospholipids is only likely to occur in the up state.

149 Previous study has suggested that PA activates the channel because it competes PIP₂
150 away from the binding site. However, our free energy calculation showed that the PA affinity
151 is much lower than PIP₂ in the up state. Thus, we examined whether PA may accommodate
152 an alternative binding site to the channel, or possibly accumulate near the PIP₂ binding site.
153 To do so, we prepared a bilayer containing 10% PA and 90% PC and conducted a 10 μ s
154 unbiased simulation to identify PA binding to the channel. In the up state, the site where PA
155 binds with the highest occupancy and the longest residence time is not the same site as the
156 PIP₂ binding site. This PA binding site is located between M1 and M2 helices whereas the
157 PIP₂ site is located between M1 and M4 helices. At the PIP₂ site, the occupancy and residence
158 time of PA are much lower than for PIP₂ (0.46 μ s in PA binding site and 2.21 μ s in PIP₂ binding
159 site) (**Fig S2**). This suggests that PA is unlikely to directly compete with PIP₂ at the PIP₂
160 binding site we have identified.

161 *Atomistic simulation of TREK-1*

162 Full atomistic simulations allow us to observe conformational changes in the M4 helix
163 and can capture the geometry of the binding pocket at a much higher resolution. We therefore
164 took snapshots from the final frame of the CG-MD simulations and used these to seed
165 atomistic simulations. To assess the geometry of the binding pocket, we ran 500 ns
166 simulations of both up and down states with a single PIP₂ molecule in the binding site, in a
167 bulk PC bilayer (n=3). As TREK-1 is a homodimer, the data collected from each subunit was

168 treated as a single data point (n=6). We defined contact residues as those which spent more
169 than 50% of the simulation time at < 4 Å proximity of the PIP₂ headgroup.

170 In the up state, PIP₂ coordinates with 3 residues on M4 (R297, K301 and K304). These
171 3 residues are all on the same helical interface of M4 (**Fig 3A**). Within this binding site, R297
172 and K304 are coordinated between two phosphate groups (P1 and P5) on the inositol ring
173 (**Fig 3A, Fig S3**), whereas K301 is only coordinated to P5. However, the P4 phosphate group
174 is not coordinated by any amino acid residues. These variations may explain the lower relative
175 binding free energy differences when the first phosphate group is perturbed in our CG-FEP
176 calculation.

177 In the down state, PIP₂ only coordinates with 2 residues (K304 and R311). Both are
178 on M4 and form a site that is further away from the pore domain than the binding site in the
179 up state (**Fig 3B**). The phosphate group connected to C4 is also singly coordinated by R311,
180 whereas C5 is coordinated by K304. Interestingly, the C1 phosphate is not coordinated by any
181 amino acid residues within the C-terminus. The fewer contacts made in the down state may
182 therefore explain the lower binding free energy obtained from the PMF calculation.

183 Comparison of the coordination pattern between the up and down states revealed that
184 PIP₂ was in contact with K301 more often in the up state compared to the down state (n = 6,
185 Student's t-test: $P < 0.0001$). On the other hand, co-ordination with R311 is significantly more
186 favorable in the down state (n= 6, Student's t-test: $P < 0.0001$) (**Fig 3C**). We then calculated an
187 average number of hydrogen-bond formed in the last 100 ns of the simulation (**Fig S3**).
188 Assuming that the interaction is driven mostly by electrostatic interaction, this suggests that
189 the up state exhibits a greater degree of hydrogen bonding with the key PIP₂ -interacting
190 residues than the down state. This therefore allows us to postulate that PIP₂ binding is
191 stabilized in the up state, but not in the down state.

192

193

194 *Effect of PIP₂ on dynamics of the C-terminus*

195 We next investigated the conformational dynamics of TREK-1 in three 500 ns atomistic
196 simulations of both PIP₂ bound and unbound (apo) states. To assess the protein backbone
197 dynamics, we calculated the root mean square fluctuation (RMSF) on the C α atom on the
198 protein and compared the effect of PIP₂ relative to the apo state (control). This difference
199 (Δ RMSF) is shown in **Fig 4A**. This shows that M4 and the C-terminus fluctuates more when
200 PIP₂ is absent in the down state (Δ RMSF \sim 8 Å) and suggests that PIP₂ may stabilize the
201 conformation of the C-terminus in the down state. However, the dynamics of the C-terminus
202 are relatively unaffected by PIP₂ in the up state as the PC headgroups may stabilize the α -
203 helical content of the M4 helix (**Fig 4A**).

204 *PIP₂-induced conformational transition.*

205 We then focused on the down state where PIP₂ had large effects on the dynamics of
206 the C-terminus. Over 500 ns, our contact analysis showed that K304 and R311 on M4 bend
207 to interact more closely with PIP₂ (**Fig 3B, 3C**). This bending enables M2/M3 to move upward.
208 Together, this widens the cavity between M2 and M3 (**Fig 4B**). To quantify the functional
209 dynamics of TREK-1 when PIP₂ is bound, we calculated the first and the second eigenvector
210 on the protein backbone motion using principal component analysis (PCA). This decomposed
211 the backbone movement relative to the initial structure into orthonormal bases (components).
212 We then projected the movements from the simulations on these components to observe the
213 principal movement ordered by their eigenvalues. The first and second principal components
214 capture the motion of the extracellular cap domain (**Fig S4**) and we focused on the third
215 principal component (PC3), where the conformational change at the C-terminus occurs (**Fig**
216 **4C**).

217 To quantify this change in PC3 (7%), we used the 'Zipper' measurement between
218 W295 in M4 and R207 in M3 on the same chain (Aryal *et al.*, 2017), and plotted the distribution
219 of this distance (**Fig 4D, Fig S5**). When compared to the up state, where no conformational
220 change occurred at the C-terminus in response to PIP₂, the transition from the down to the up

221 state involved a re-orientation of W295 in M4. This transition breaks its interaction with R207,
222 which then allows an expansion between TM2 and TM4. We therefore used the distance
223 between the center of mass of R207 and W295 as a metric of the down to up transition (**Fig**
224 **4D, Fig S5**) and observed a bimodal distribution, where the majority of the population is
225 distributed between 10 to 20 Å, and a minority at ~ 8 Å.

226 In contrast, the distance between R207 and W295 is only distributed around 3-9 Å in
227 the down state in the absence of PIP₂. The down state also displayed a unique population at
228 about 11.5 Å, similar to the up state (**Fig 4D**). This suggests this simulation may capture an
229 initial path of a down to up conformational transition that is driven by PIP₂.

230

231 **Discussion**

232 This study used CG-MD simulation to predict PIP₂ binding sites on TREK-1 and
233 highlighted differences in PIP₂ binding between up and down states of the channel. We also
234 quantified the binding free energy of different lipids in both conformations and used principal
235 component analysis to examine the conformational changes induced by PIP₂. Our results not
236 only identify key residues involved in PIP₂ binding but also indicate that PIP₂ induces a
237 conformational transition from the down to the up state.

238 Although PIP₂ has a clear activatory effect on TREK channels (Chemin *et al.*, 2005a,
239 2005b; Lopes *et al.*, 2005; Soussia *et al.*, 2018; Rivas-Ramírez *et al.*, 2020; Riel *et al.*, 2021),
240 inhibitory effects of PIP₂ have also been reported (Chemin *et al.*, 2007; Woo *et al.*, 2016,
241 2018). In addition to PIP₂, other anionic phospholipids such as PA have also been shown to
242 increase channel activity (Chemin *et al.*, 2005b) and in one particular study (Woo *et al.*, 2016)
243 PIP₂ was shown to have a concentration-dependent biphasic effect on the channel, being
244 activatory at low concentration, and inhibitory at high concentration. The activatory effect is
245 proposed to result from PIP₂ being hydrolyzed to PA by phospholipase D2 bound to the C-
246 terminus of TREK channels with the increase in local concentration of PA directly activating
247 TREK-1 (Comoglio *et al.*, 2014); by contrast, the inhibitory effect is proposed to result from
248 PIP₂ competing PA out of its activatory site implying that PA may be the main channel
249 activator, not PIP₂ (Cabanos *et al.*, 2017).

250 Importantly, our results are consistent with mutagenesis and other functional studies
251 as well as with biochemical studies of lipid binding. The putative PIP₂ binding site we identify
252 in the up state includes residues R297, K301 and K304 which have previously been implicated
253 in PIP₂ binding (Chemin *et al.*, 2005b). Also, the PIP₂ binding site we identify in the down state
254 involves K304 and R311, and mutation of R311 also affects channel activity in a way that is
255 consistent with its role in PIP₂ binding (Chemin *et al.*, 2005b). Our results therefore support
256 the idea that PIP₂ directly interacts with this region of the proximal C-terminus (Chemin *et al.*,

257 2005b). Furthermore, our simulation proposes that the PIP₂ binding conformation of the
258 channel may change as it transits from the down to the up state.

259 We also show that PIP₂ has a lower binding affinity to the down state than to the up
260 state and our atomistic simulations indicate that in the presence of PIP₂, the down state begins
261 to transit towards the up state. This model is consistent with other studies (McClenaghan *et*
262 *al.*, 2016; Proks *et al.*, 2021) and computational electrophysiology studies also suggest that
263 the down state of TREK-2 is less active than the up state (Brennecke & de Groot, 2018). This
264 is also supported by single channel studies of the related TRAAK channel which suggest that
265 the up state is more conductive (Brohawn *et al.*, 2019). Thus, we propose that PIP₂ activates
266 TREK-1 by promoting a transition from the down state to an up state that is capable of
267 supporting a higher degree of channel activity. This change involves an expansion of the
268 distance between M2 and M4 and is accompanied by changing the coordination of PIP₂ from
269 R311 to K304 in the PIP₂ binding site.

270 We have also assessed the affinity of different anionic phospholipids in the PIP₂
271 binding site of TREK-1. Overall, the binding affinity of anionic phospholipids is much lower in
272 the down state than in the up state. Our simulations also shows that PA affinity to the channel
273 is approximately four-fold lower than for PIP₂ in the up state. whereas this affinity is almost
274 negligible in the down state. This suggests that PA may only bind and activate the channel
275 when it is in the up state with PIP₂ already bound to the channel though the mechanism
276 involved remains unclear.

277 Overall, these simulations provide additional mechanistic insight and understanding of
278 the conformational dynamics of TREK-1 and its activation by PIP₂ as well as by other anionic
279 phospholipids. The results also provide a better understanding of the different mechanisms of
280 state-dependent lipid activation of TREK channels and the complex allosteric processes
281 involved in their polymodal activation.

282 **Materials and methods**

283

284 *CG simulation set-up*

285 The TREK-1 amino acid sequence was taken from UniProt id O95069. The sequence
286 was then aligned to TREK-2 structure (PDB entry: 6CQ6 – up state) (Lolicato *et al.*, 2017);
287 (PDB entry: 4XDJ – down state) (Dong *et al.*, 2015) using SWISS-MODEL to generate two
288 all-atom structures (Waterhouse *et al.*, 2018). We generated a two-fold symmetry structure for
289 each conformational state of TREK-1 by transplanting the structure of one subunit onto
290 another using PyMOL (Schrodinger LLC, 2015). As the down state does not have an
291 extended C-terminus structure, we extended this segment of TREK-1 by superimposing the
292 α -helical structure based on the subunit A from 6CQ6. The structure was converted from
293 atomistic to coarse-grained using *martinize.py* (Monticelli *et al.*, 2008). In this study, all coarse-
294 grained simulations were calculated using the Martini2.3 forcefield. The protein is then placed
295 in the periodic simulation box at a minimum distance of 15 Å from the box edge in all directions.

296 Palmitoyl-2-oleylphosphatidylcholine (POPC) is a common lipid headgroup in a
297 mammalian plasma membrane (Casares *et al.*, 2019). We use palmitoyl oleyl (PO) as the lipid
298 tail for all lipid headgroups (PIP₂, PI4P, PI, PG, PA, PS). Bilayers were assembled around the
299 TREK-1 and flooded with the coarse-grained water particles using *insane.py*, with a similar
300 area per lipid between both the upper and the lower leaflet (Wassenaar *et al.*, 2015). The
301 bilayers have the ratio of POPC:POPS:PIP₂ at 1:0:0 for the upper leaflet and 15:3:2 for the
302 lower leaflet. We added POPS as PS is localized exclusively in the cytoplasmic leaflet and
303 accounts for 13-15% of anionic phospholipids in the human cerebral cortex. The CG model of
304 TREK-1 was aligned perpendicular to the bilayer. 0.15 mM NaCl was then generated using
305 *genion* to replace water particles with sodium (Na⁺) and chloride (Cl⁻) ions. Together, each
306 simulation box has a size of 13x13x13 nm³, containing ~19,000 CG beads (Abraham *et al.*,
307 2015).

308

309 **CG-MD simulations**

310 Simulations were run with GROMACS 2020.1, using the V-rescale thermostat for
311 temperature coupling (Bussi *et al.*, 2007) and the Parrinello-Rahman barostat for semi-
312 isotropic pressure (Parrinello & Rahman, 1981). The temperature was coupled to 310 K, and
313 the pressure is kept at 1 bar in xy direction. We applied position restraints force of 1000 kJ
314 mol⁻¹ nm⁻² to the backbone beads to maintain their crystal structures. Energy minimization was
315 carried out using the steepest descents algorithm with an energy cap of 1000 kJ mol⁻¹ nm⁻².
316 The system was then equilibrated for 100 ps with the Berendsen thermostat algorithm
317 (Berendsen *et al.*, 1984). For lipid-binding site analysis, each production MD was performed
318 for 10 μ s with 20 fs timesteps. The binding sites were then assessed using *pylipid.py* (Song
319 *et al.*, 2021). The interactions were counted when the distance between amino acid residue
320 and lipid headgroup was shorter than 0.6 nm and stopped counting when further than 0.8 nm.

321 **CG-PMF calculations**

322 Snapshots of the final frame were taken from CG-MD simulations for the PMF
323 calculation. TREK-1 and a single PIP₂ in the target binding site were isolated using PyMOL
324 (Schrodinger LLC, 2015) and re-assembled into POPC bilayers using *insane.py* (Wassenaar
325 *et al.*, 2015). The system was energy minimized and equilibrated with PIP₂ and the protein
326 backbone restrained for 15 ns. The system was then equilibrated further without PIP₂
327 restrained for an additional 15 ns. All position restraints were carried out at 1000 kJ mol⁻¹ nm⁻
328 ². To maintain a structural consistency with the crystal structures the protein was then
329 restrained throughout the PMF calculation. PIP₂ was then pulled from the binding site using
330 steered MD along the collective variable (CV). We defined the collective variable as distances
331 between the PIP₂ headgroup and reference points. We defined our reference points as the
332 backbone particle of the residue near the PIP₂ binding site (D294 for the up state, R297 for
333 the down state). To pull the headgroup, we applied an elastic force (1000 kJ mol⁻¹ nm⁻²) to pull
334 the PIP₂ headgroup along the collective variable as described. During our umbrella sampling,
335 we sampled C.V.s with 0.5 \AA spacing for optimal histogram overlap. These snapshots are
336 used to initialize independent MD simulations where umbrella potential with the force of 1000

337 $\text{kJ mol}^{-1} \text{ nm}^{-2}$ was applied to the PIP_2 headgroup in each window. MD simulations were
338 performed for 1.2 μs to allow for convergence, and the first 200 ns was removed from each
339 window as equilibration. These windows were then used to generate 1D energy landscapes
340 using the weighted histogram analysis method (WHAM) from the *gmx wham* tool with 200
341 Bayesian bootstraps (Hub *et al.*, 2010).

342

343 *CG-FEP*

344 The bound positions of PIP_2 were taken from the PMF simulations and used as input
345 for the FEP calculations. The PIP_2 headgroup was alchemically transformed into other lipid
346 headgroups (PI4P, PI, PG, PS, PA) using an approach similar to our previous study
347 (Pipatpolkai *et al.*, 2020). This was done in chemical space with λ as a coordinate parameter.
348 All transformations were performed separately in both bound states and in bulk bilayer to
349 create complete thermodynamic cycles.

350 During transformations, CG beads were altered to change PIP_2 into other lipids. Some
351 beads were transformed into dummies with no interaction properties or different beads with
352 properties matching the target. These alteration choices were made manually by aligning PIP_2
353 with other lipids structures. Each transformation was performed in steps where λ was slowly
354 changed from 0 (PIP_2) to 1 (other lipids). As in this report, each transformation was split into
355 15 windows where Coulombic and Van der Waals interactions were transformed separately,
356 with soft-core parameters ($\alpha = 0.5$ and $\sigma = 0.3$) for both interactions, similar to our previous
357 study (Corey *et al.*, 2021). Coulombic interactions' λ parameter was perturbed linearly in the
358 first 9 windows and converge to one at the end ($\lambda = 0.00, 0.10, 0.20, \dots, 1.00$), while Van der
359 Waals interactions' λ parameter was perturbed linearly started from the sixth window toward
360 the final window ($\lambda = 0.00 \dots 0.00, 0.10, 0.20, \dots, 0.90, 1.00$). Energy minimizations were
361 performed with the steepest descent algorithm for 200 steps. 15 independent production
362 simulations with randomized initial velocities were then run using leap-frog stochastic
363 dynamics integrator to 12 ns per window, where the first 2 ns was discarded as equilibration.
364 Using the *alchemical-analysis* software package, we constructed free energy pathways from

365 individual simulations window with Multistate Bennett Acceptance Ratio (MBAR) (Fajer *et al.*,
366 2009).

367

368 *Atomistic simulations*

369 The CG-MD simulation snapshots were taken to isolate the channel with PIP₂ in the
370 most prominent binding site. We generated a position of PIP₂ by transplanting the position of
371 the PIP₂ in the binding site onto another subunit using PyMOL. We then re-assembled the
372 PIP₂-bound TREK-1 into the POPC bilayer using *insane.py*. Energy minimization and
373 equilibration were carried out using the same method used in CG-PMF. The original CG
374 structures of up state and down state TREK-1 were inserted into 100% POPC bilayer using
375 *insane.py* for an unbound TREK-1 simulation. The system was energy minimized using the
376 steepest descent algorithm and equilibrate with protein backbone restrained for 30 ns at 1000
377 kJ mol⁻¹ nm⁻² using V-rescale thermostat for temperature coupling (Bussi *et al.*, 2007) and the
378 Berendsen barostat for semi-isotropic pressure coupling (Berendsen *et al.*, 1984).

379 The up state and down state coarse-grained structures were converted to atomistic
380 structures using *cg2at.py* (Vickery & Stansfeld, 2021). We inserted potassium (K⁺) ions from
381 the crystal structures into the selectivity filter and converted sodium (Na⁺) ions into potassium
382 (K⁺) ions. Thus, our system in atomistic simulation is solvated in a 0.15 KCl solution. Another
383 energy minimization was performed to adjust the position of the potassium (K⁺) ions inside the
384 selectivity filter. The system was then energy minimized using steepest-descent algorithm for
385 5000 steps and then equilibrated for 10 ns with the restraint of 1000 kJ nm⁻² mol⁻¹ on the C_α
386 atoms. During the equilibration, all systems (both with and without PIP₂) were coupled with V-
387 rescale thermostat to maintain simulation temperature at 310 K (Bussi *et al.*, 2007) and the
388 Berendsen barostat for semi-isotropic pressure coupling (Berendsen *et al.*, 1984). Three 500
389 ns production simulations for each state were performed with different randomized initial
390 velocities. During the production run, V-rescale thermostat is used to maintain the simulation
391 temperature at 310 K (Bussi *et al.*, 2007) and the Parrinello-Rahman barostat for semi-
392 isotropic pressure at 1 bar in xy direction (Parrinello & Rahman, 1981). All atomistic

393 simulations and analyses (Root mean square fluctuation, Hydrogen bonding, principal
394 component analysis and distance calculation) were performed using GROMACS 2020.1 with
395 CHARMM36 forcefields (Huang & Mackerell, 2013; Abraham *et al.*, 2015; Huang *et al.*, 2017).
396 95% confidence interval from Root mean square fluctuation (RMSF) analysis from each
397 simulation are calculated using $CI_{\Delta RMSF} = \sqrt{CI_{RMSF_{PIP_2}} + CI_{RMSF_{APO}}}$. We assessed the amino
398 acid residues that interact with the anionic headgroup of the PIP2 using *pylipid.py* with the cut-
399 off distance of 0.4 nm.

400

401

402 **Acknowledgements**

403 This work was supported by grants from the Biotechnological and Biological Sciences
404 Research Council to S.J.T and by an OXION Programme Studentship from the Wellcome
405 Trust to T.P. A.P. was funded by a Royal Thai Government Scholarship. We also thank
406 members of the Tucker, Sansom, Stansfeld and Biggin groups for their helpful comments
407 during the development of this project.

408

409 **Figures and Figure legends**

410

411 **Figure 1 Coarse-grained molecular dynamics simulation.**

412 **A)** Schematic representation of the coarse-grained simulation conducted in this study. Only
413 the headgroup of the lower leaflet lipids (PC - grey, PS – black and PIP₂ – orange) are shown.
414 TREK-1 (blue) in the up state is embedded in the phospholipid bilayer. After a 10 μ s simulation
415 (right), PIP₂ headgroups are distributed more closely at their relative binding site (right)
416 compared to their initial distribution (left). The PIP₂ binding site on the TREK-1 (**B**) up state or
417 (**C**) down state. The binding site 1 (red) and 2 (yellow) are shown superimposing relative to
418 their crystal structure. Each site is annotated with their residence time within the binding site
419 (Res) and their occupancy (Occ)

420

421 **Figure 2 Calculation of PIP₂ binding free energy relative to other lipids**

422 **A)** Schematic description of the CG-PMF calculations. In this scheme, PIP₂ (green) in the
423 binding site was steered away from the protein (blue surface) along the collective variable
424 (arrow). The PMF is calculated using umbrella sampling with the force constraint at 1000
425 kJ/nm²/mol (red). **B)** 1D energy landscape calculated from PMF calculation as PIP₂ is steered
426 away from the binding site from up (black) or down (red) states to the bulk lipid bilayer (PC).
427 Energy landscape is marked at 0 kJ/mol when the PIP₂ is > 1.2 nm away from the binding site.
428 **C)** Schematic description of CG free energy perturbation (CG-FEP). The PIP₂ headgroup was
429 alchemically transformed to different lipids (PI4P, PC, PS, PG, PA) in both bound state (ΔG_2)
430 and in the bulk state (ΔG_3). This transformation allows relative affinities between two lipids
431 species to be calculated. **D)** Binding free energy of PIP₂, PI4P, PI, PG, PS and PA relative to
432 PC within TREK-1 PIP₂ binding site in the up (black) or down state (red). Error bars showed
433 95% confidence interval calculated based on t-statistics (n = 15).

434 **Figure 3 Atomistic simulation of PIP₂ and TREK-1.**

435 Representative interactions between **(A)** up state and **(B)** down state of TREK-1. The
436 backbone of the protein is represented in blue. Key contacting residues contacting to the
437 phosphate group on the PIP₂ molecule are shown in yellow. **C)** PIP₂ contact analysis showing
438 the fraction of time that residues are in 4 Å proximity to the PIP₂ molecule (contact probability)
439 of the up state (black) and down state (red) of TREK-1. Only residues with an average >50%
440 contact probability are shown. Data are collected from three repeats of 500 ns simulations.
441 Error bars showed 95% confidence interval calculated based on t-statistics (n= 6).

442

443 **Figure 4 PIP₂ induces conformational change on TREK-1 C-terminus.**

444 **A)** The difference between the C_α RMSF in the presence and absence of PIP₂ (ΔRMSF) of the
445 up state (black) and down state (red) of TREK-1. The positive ΔRMSF value implies that the
446 backbone is stabilised by PIP₂. Shaded region represents the propagation of 95% confidence
447 interval. **B)** The conformational change induced by PIP₂ in the down state. The initial
448 conformation at 0 ns (orange) is compared to the post-simulation at 500 ns (blue) with PIP₂
449 (dark green) in the binding site. The key conformational change in the CTD is described with
450 the red arrow. We defined the zipper measurement based on the distance (d) between R207
451 and W295. Residues co-ordinated with PIP₂ (K304 and R311) are highlighted before (yellow)
452 and after (blue) 500 ns simulation. **C)** The magnitude of the conformational change along the
453 vector describing the third principal component from the down state plotted against time in the
454 apo state (orange) and PIP₂-bound state (purple). The darker lines show the running average
455 for each simulation (500 ns) (n = 3). **D)** Distribution plot of the zipper distance collected from
456 the final 100 ns of each simulation for the PIP₂ bound up state (black), the PIP₂ bound down
457 state (purple), and apo down state (orange).

458

459 **Supplementary Figure Legends**

460 **Figure S1. Residence time and occupancy of PIP₂ binding sites from coarse-grained**
461 **simulations.**

462 (A) The residence time of PIP₂ in binding sites in up state (black) and down state (red), ordered
463 by their residence time in the binding site. (B) Bar plot of occupancy of residue in the most
464 prominent binding site in up state (black) and down state (red) from 10 μ s CG simulation.

465 **Figure S2. Phosphatidic acid (PA) binding site on the up and down state simulation.**

466 The phosphatidic acid binding site with highest occupancy and residence time (yellow) are
467 shown superimposing with (A) up state and (B) down state crystal structures (blue) after a 10
468 μ s CG simulation.

469 **Figure S3. Hydrogen bonding between PIP₂ and TREK-1 in the up and down states**

470 Median number of hydrogen bonds formed from the last 100 ns of the atomistic simulation of
471 TREK-1 in the up state (blue) or down state (orange). Each plot contains six data points from
472 three simulations and each subunit of the TREK-1 channel. The error bar represents the inter-
473 quartile range of the distribution.

474 **Figure S4. Principle component analysis of PIP2-induced movement in TREK-1**

475 The principal components are calculated from three simulations of TREK-1 channel in the
476 down state containing PIP₂. (Left) The backbone of the protein before the simulation (orange)
477 is aligned to the interpolation of the of the most extreme projection along (A) the first principle
478 and (B) the second principal component (purple) calculated from the simulation. (Right) The
479 magnitude of the conformational change along the vector describing the first and second
480 principal component derived from the simulation over 500 ns (n = 3). The simulations were
481 conducted with PIP₂ (purple) an without PIP₂ (orange).

482 **Fig S5. R207-W295 (zipper) distance in all simulations.**

483 Distances between R207-W295 were calculated in three different simulation set-up (up state
484 with PIP₂ - black, Down state with PIP₂ – purple, Down state without PIP₂ - orange). Each
485 measurement represents the distance within each subunit of the TREK-1 channel.

486

487

488 **References**

489

490 Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B & Lindah E (2015). Gromacs:
491 High performance molecular simulations through multi-level parallelism from laptops to
492 supercomputers. *SoftwareX* **1–2**, 19–25.

493 Aryal P, Jarerattanachat V, Clausen M V, Schewe M, McClenaghan C, Argent L, Conrad LJ,
494 Dong YY, Pike ACW, Carpenter EP, Baukrowitz T, Sansom MSP & Tucker SJ (2017).
495 Bilayer-Mediated Structural Transitions Control Mechanosensitivity of the TREK-2 K2P
496 Channel. *Structure* **25**, 708–718.e2.

497 Bagriantsev SN, Peyronnet R, Clark KA, Honoré E & Minor DLJ (2011). Multiple modalities
498 converge on a common gate to control K2P channel function. *EMBO J* **30**, 3594–3606.

499 Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A & Haak JR (1984). Molecular
500 dynamics with coupling to an external bath. *J Chem Phys* **81**, 3684–3690.

501 Brennecke JT & de Groot BL (2018). Mechanism of Mechanosensitive Gating of the TREK-2
502 Potassium Channel. *Biophys J* **114**, 1336–1343.

503 Brohawn SG, Wang W, Handler A, Campbell EB, Schwarz JR & MacKinnon R (2019). The
504 mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier
505 ed. Yellen G, Aldrich R, Sigworth F & Trimmer JS. *Elife* **8**, e50403.

506 Busserolles J, Ben Soussia I, Pouchol L, Marie N, Meleine M, Devilliers M, Judon C, Schopp
507 J, Clémenceau L, Poupon L, Chapuy E, Richard S, Noble F, Lesage F, Ducki S,
508 Eschalier A & Lolignier S (2020). TREK1 channel activation as a new analgesic
509 strategy devoid of opioid adverse effects. *Br J Pharmacol* **177**, 4782–4795.

510 Bussi G, Donadio D & Parrinello M (2007). Canonical sampling through velocity rescaling. *J*
511 *Chem Phys* **126**, 14101.

512 Cabanos C, Wang M, Han X & Hansen SB (2017). A Soluble Fluorescent Binding Assay
513 Reveals PIP2 Antagonism of TREK-1 Channels. *Cell Rep* **20**, 1287–1294.

514 Casares D, Escribá P V & Rosselló CA (2019). Membrane Lipid Composition: Effect on
515 Membrane and Organelle Structure, Function and Compartmentalization and

516 Therapeutic Avenues. *Int J Mol Sci* **20**, 2167.

517 Chemin J, Patel A, Duprat F, Zanzouri M, Lazdunski M & Honoré E (2005a).

518 Lysophosphatidic Acid-operated K⁺ Channels*. *J Biol Chem* **280**, 4415–4421.

519 Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M & Honoré E (2005b). A phospholipid

520 sensor controls mechanogating of the K⁺ channel TREK-1. *EMBO J* **24**, 44–53.

521 Chemin J, Patel AJ, Duprat F, Sachs F, Lazdunski M & Honore E (2007). Up- and down-

522 regulation of the mechano-gated K⁺ channel TREK-1 by PIP₂ and other membrane

523 phospholipids. *Pflügers Arch - Eur J Physiol* **455**, 97–103.

524 Clausen M V, Jarerattanachat V, Carpenter EP, Sansom MSP & Tucker SJ (2017).

525 Asymmetric mechanosensitivity in a eukaryotic ion channel. *Proc Natl Acad Sci* **114**,

526 E8343 LP-E8351.

527 Comoglio Y, Levitz J, Kienzler MA, Lesage F, Isacoff EY & Sandoz G (2014). Phospholipase

528 D2 specifically regulates TREK potassium channels via direct interaction and local

529 production of phosphatidic acid. *Proc Natl Acad Sci U S A* **111**, 13547–13552.

530 Corey RA, Song W, Duncan AL, Ansell TB, Sansom MSP & Stansfeld PJ (2021).

531 Identification and assessment of cardiolipin interactions with E.

532 coli inner membrane proteins. *bioRxiv*2021.03.19.436130.

533 Corey RA, Vickery ON, Sansom MSP & Stansfeld PJ (2019). Insights into Membrane

534 Protein-Lipid Interactions from Free Energy Calculations. *J Chem Theory Comput* **15**,

535 5727–5736.

536 Dong YY, Pike ACW, Mackenzie A, McClenaghan C, Aryal P, Dong L, Quigley A, Grieben

537 M, Goubin S, Mukhopadhyay S, Ruda GF, Clausen M V, Cao L, Brennan PE, Burgess-

538 Brown NA, Sansom MSP, Tucker SJ & Carpenter EP (2015). K⁺ channel gating

539 mechanisms revealed by structures of TREK-2 and a complex with Prozac. *Science*

540 **347**, 1256–1259.

541 Duncan AL, Corey RA & Sansom MSP (2020). Defining how multiple lipid species interact

542 with inward rectifier potassium (Kir2) channels. *Proc Natl Acad Sci* **117**, 7803 LP –

543 7813.

544 Enyedi P & Czirják G (2010). Molecular background of leak K⁺ currents: two-pore domain
545 potassium channels. *Physiol Rev* **90**, 559–605.

546 Fajer M, Swift R V & McCammon JA (2009). Using multistate free energy techniques to
547 improve the efficiency of replica exchange accelerated molecular dynamics. *J Comput
548 Chem* **30**, 1719–1725.

549 Huang J & Mackerell AD (2013). CHARMM36 all-atom additive protein force field: Validation
550 based on comparison to NMR data. *J Comput Chem* **34**, 2135–2145.

551 Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H & MacKerell
552 AD (2017). CHARMM36m: an improved force field for folded and intrinsically disordered
553 proteins. *Nat Methods* **14**, 71–73.

554 Hub JS, De Groot BL & Van Der Spoel D (2010). g_wham-A Free Weighted Histogram
555 Analysis Implementation Including Robust Error and Autocorrelation Estimates. *J Chem
556 Theory Comput* **6**, 3713.

557 Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C, Clark KA & Minor DL (2017). K2P2.1
558 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. *Nature* **547**,
559 364–368.

560 Lopes CMB, Rohács T, Czirják G, Balla T, Enyedi P & Logothetis DE (2005). PIP2
561 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore
562 domain K⁺ channels. *J Physiol* **564**, 117–129.

563 Maingret F, Patel AJ, Lesage F, Lazdunski M & Honoré E (1999). Mechano- or Acid
564 Stimulation, Two Interactive Modes of Activation of the TREK-1 Potassium Channel *. *J
565 Biol Chem* **274**, 26691–26696.

566 McClenaghan C, Schewe M, Aryal P, Carpenter EP, Baukrowitz T & Tucker SJ (2016).
567 Polymodal activation of the TREK-2 K2P channel produces structurally distinct open
568 states. *J Gen Physiol* **147**, 497–505.

569 Monticelli L, Kandasamy SK, Periole X, Larson RG, Tielemans DP & Marrink S-J (2008). The
570 MARTINI Coarse-Grained Force Field: Extension to Proteins. *J Chem Theory Comput*
571 **4**, 819.

572 Natale AM, Deal PE & Minor Jr. DL (2021). Structural insights into the mechanisms and
573 pharmacology of K2P potassium channels. *J Mol Biol*166995.

574 Parrinello M & Rahman A (1981). Polymorphic transitions in single crystals: A new molecular
575 dynamics method. *J Appl Phys* **52**, 7182–7190.

576 Petersen EN, Gudheti M, Pavel MA, Murphy KR, Ja WW, Jorgensen EM & Hansen SB
577 (2019). Phospholipase D Transduces Force to TREK-1 Channels in a Biological
578 Membrane. *bioRxiv*758896.

579 Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Ehrlich G, Andres-Enguix I,
580 Fritzenshaft H, Decher N, Sansom MSP, Tucker SJ & Baukrowitz T (2011). The pore
581 structure and gating mechanism of K2P channels. *EMBO J* **30**, 3607–3619.

582 Pipatpolkai T, Corey RA, Proks P, Ashcroft FM & Stansfeld PJ (2020). Evaluating inositol
583 phospholipid interactions with inward rectifier potassium channels and characterising
584 their role in disease. *Commun Chem* **3**, 147.

585 Proks P, Schewe M, Conrad LJ, Rao S, Rathje K, Rödström KEJ, Carpenter EP, Baukrowitz
586 T & Tucker SJ (2021). Norfluoxetine inhibits TREK-2 K2P channels by multiple
587 mechanisms including state-independent effects on the selectivity filter gate. *J Gen
588 Physiol*; DOI: 10.1085/jgp.202012812.

589 Riel EB, Jürs BC, Cordeiro S, Musinszki M, Schewe M & Baukrowitz T (2021). The versatile
590 regulation of K2P channels by polyanionic lipids of the phosphoinositide and fatty acid
591 metabolism. *J Gen Physiol* **154**, e202112989.

592 Rietmeijer RA, Sorum B, Li B & Brohawn SG (2021). Physical basis for distinct basal and
593 mechanically gated activity of the human K(+) channel TRAAK. *Neuron* **109**, 2902–
594 2913.e4.

595 Rivas-Ramírez P, Reboreda A, Rueda-Ruzafa L, Herrera-Pérez S & Lamas JA (2020). PIP2
596 Mediated Inhibition of TREK Potassium Currents by Bradykinin in Mouse Sympathetic
597 Neurons. *Int J Mol Sci* ; DOI: 10.3390/ijms21020389.

598 Schrodinger LLC (2015). The PyMOL Molecular Graphics System, Version 1.8.

599 Song W, Corey RA, Ansell TB, Cassidy CK, Horrell MR, Duncan AL, Stansfeld PJ & Sansom

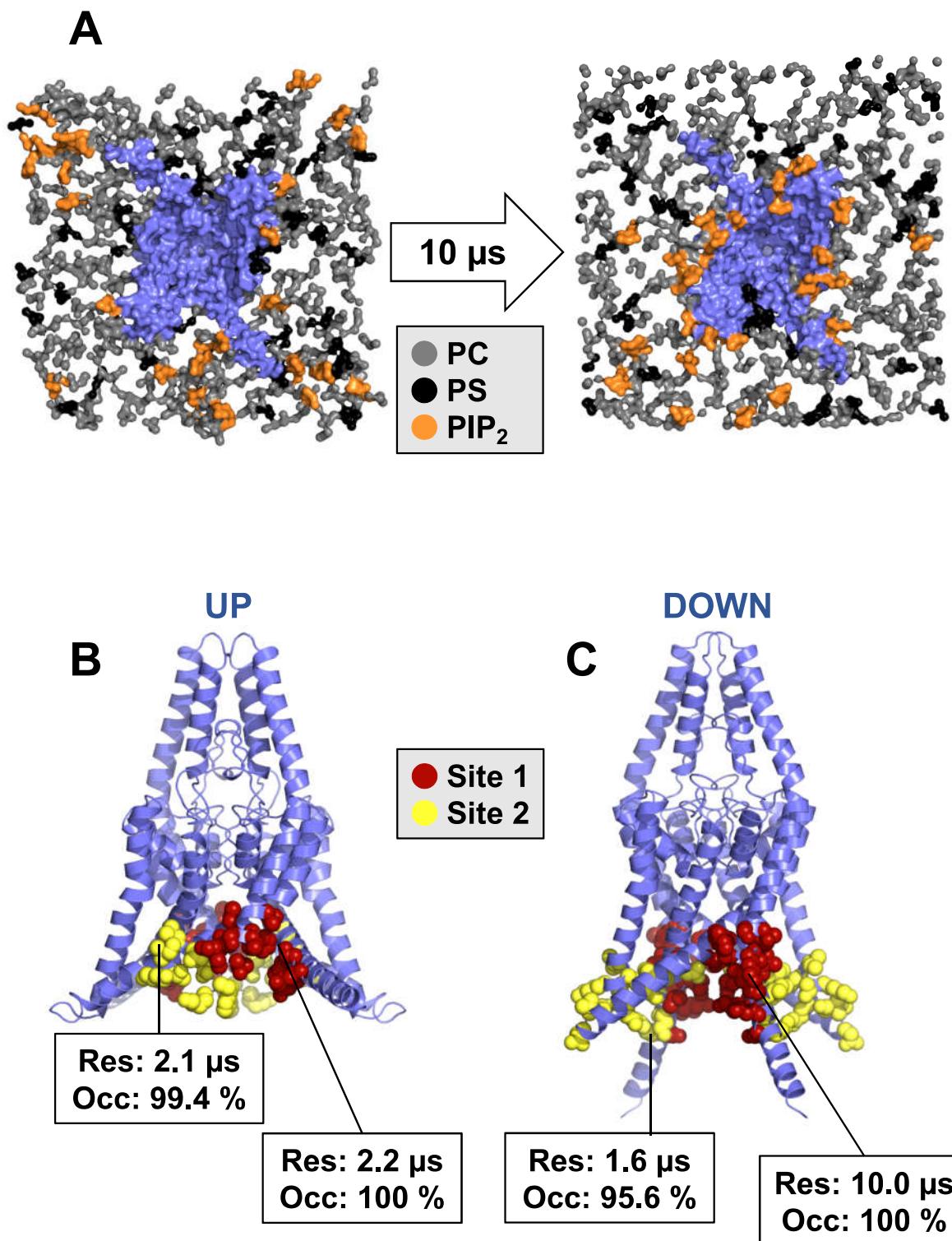
600 MSP (2021). PyLipID: A Python package for analysis of protein-lipid interactions from
601 MD simulations. *bioRxiv*2021.07.14.452312.

602 Soussia I Ben, Choveau FS, Blin S, Kim E-J, Feliciangeli S, Chatelain FC, Kang D, Bichet D
603 & Lesage F (2018). Antagonistic Effect of a Cytoplasmic Domain on the Basal Activity
604 of Polymodal Potassium Channels . *Front Mol Neurosci* **11**, 301.

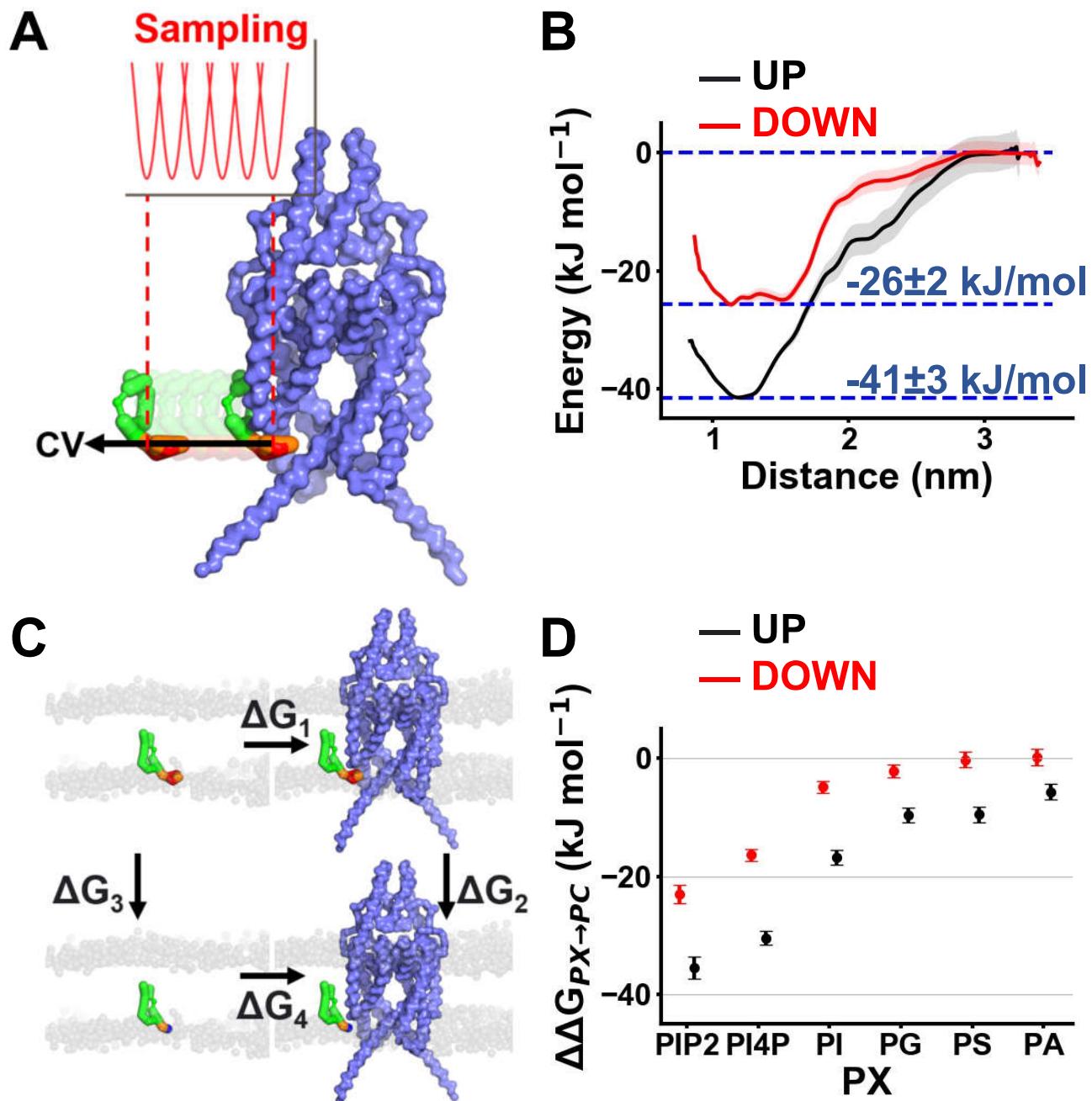
605 Stansfeld PJ, Hopkinson R, Ashcroft FM & Sansom MSP (2009). PIP2-binding site in Kir
606 channels: Definition by multiscale biomolecular simulations. *Biochemistry* **48**, 10926–
607 10933.

608 Vickery ON & Stansfeld PJ (2021). CG2AT2: An Enhanced Fragment-based approach for
609 Serial Multi-scale Molecular Dynamics simulations. *bioRxiv*2021.03.25.437005.

610 Wassenaar TA, Ingólfsson HI, Böckmann RA, Tielemans DP & Marrink SJ (2015).
611 Computational Lipidomics with insane: A Versatile Tool for Generating Custom
612 Membranes for Molecular Simulations. *J Chem Theory Comput* **11**, 2144–2155.


613 Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer
614 TAP, Rempfer C, Bordoli L, Lepore R & Schwede T (2018). SWISS-MODEL: homology
615 modelling of protein structures and complexes. *Nucleic Acids Res* **46**, W296–W303.

616 Woo J, Jeon YK, Zhang Y-H, Nam JH, Shin DH & Kim SJ (2018). Triple arginine residues in
617 the proximal C-terminus of TREK K⁺ channels are critical for biphasic regulation by
618 phosphatidylinositol 4,5-bisphosphate. *Am J Physiol Physiol* **316**, C312–C324.


619 Woo J, Shin DH, Kim HJ, Yoo HY, Zhang Y-H, Nam JH, Kim WK & Kim SJ (2016). Inhibition
620 of TREK-2 K(+) channels by PI(4,5)P₂: an intrinsic mode of regulation by intracellular
621 ATP via phosphatidylinositol kinase. *Pflugers Arch* **468**, 1389–1402.

622

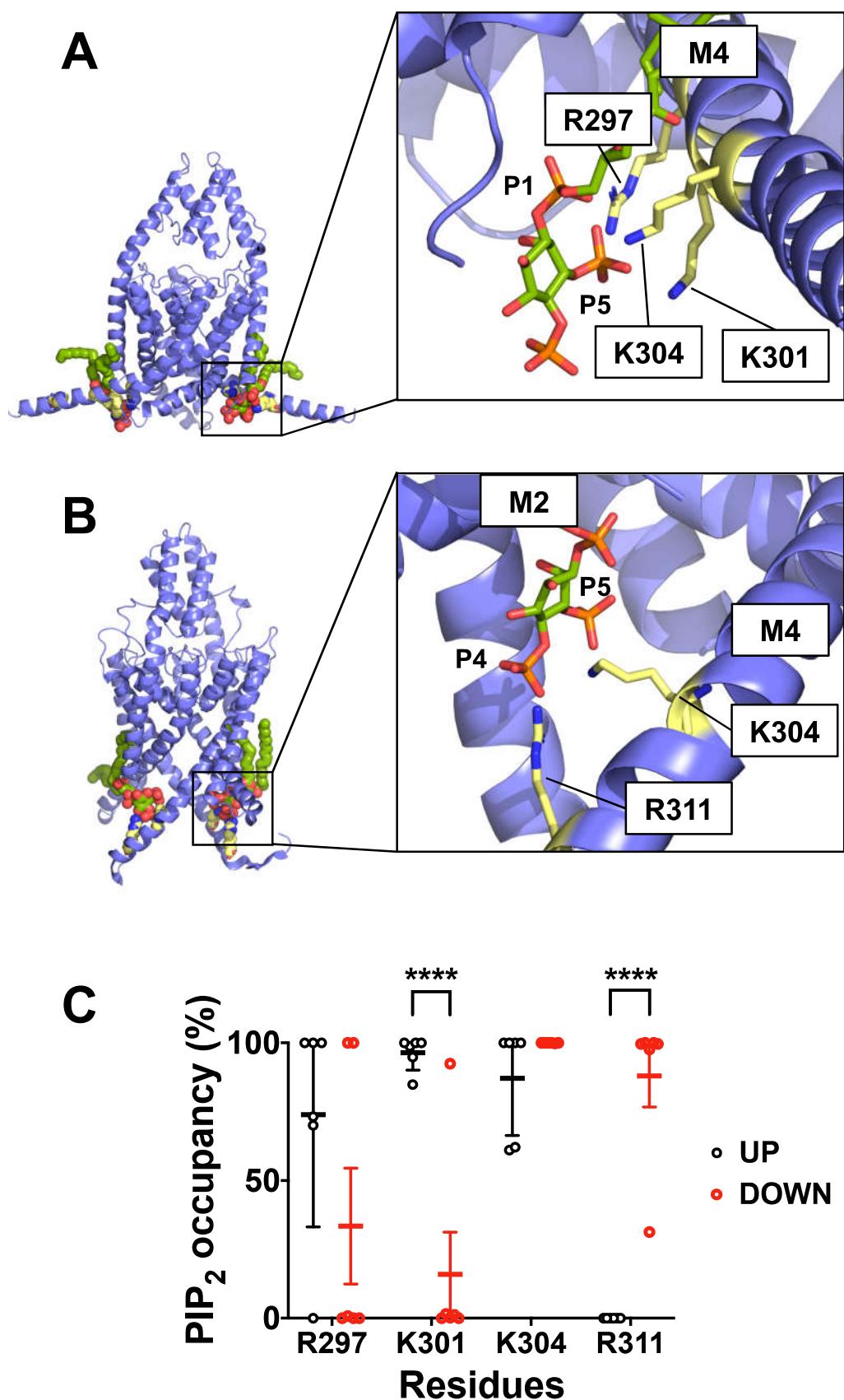

Figure 1

Figure 2

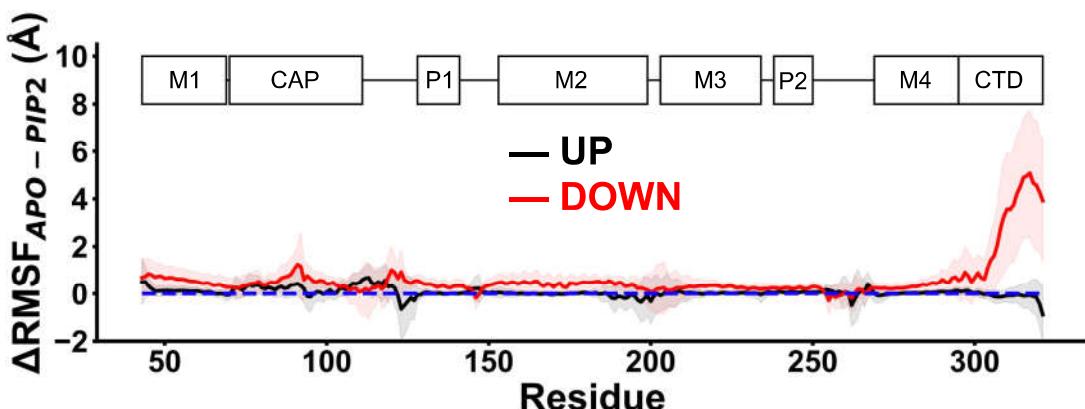


Figure 3

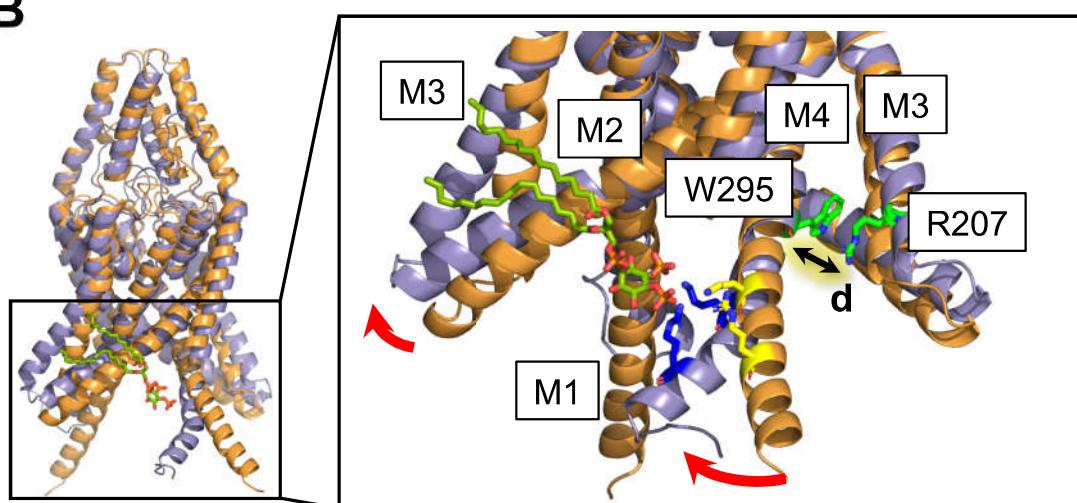
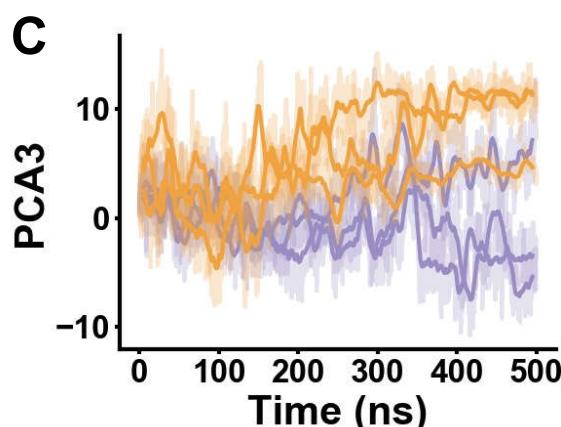
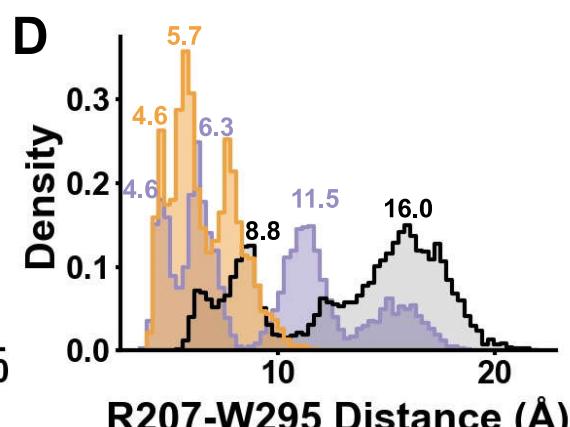
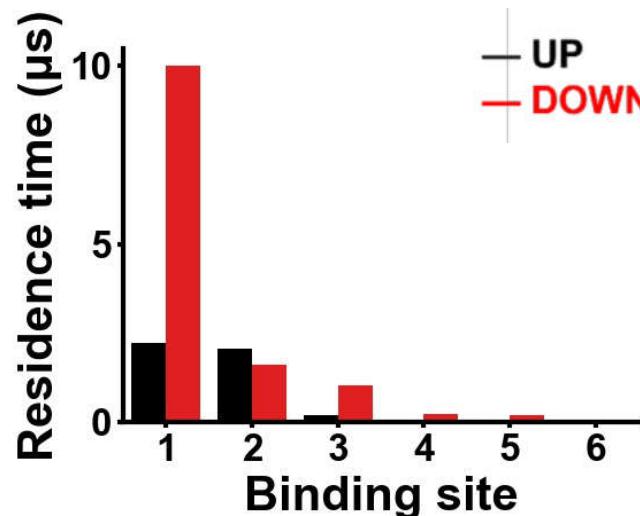


Figure 4


A


B

C



D

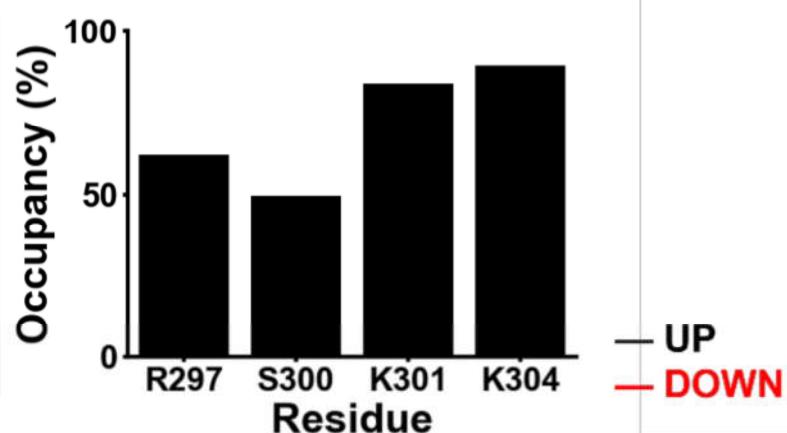
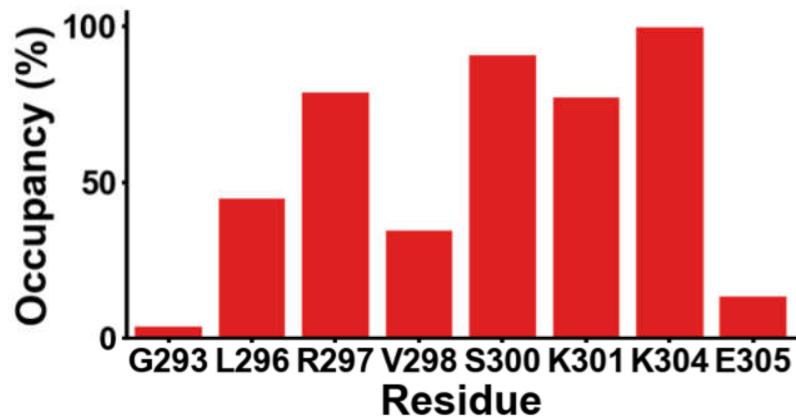
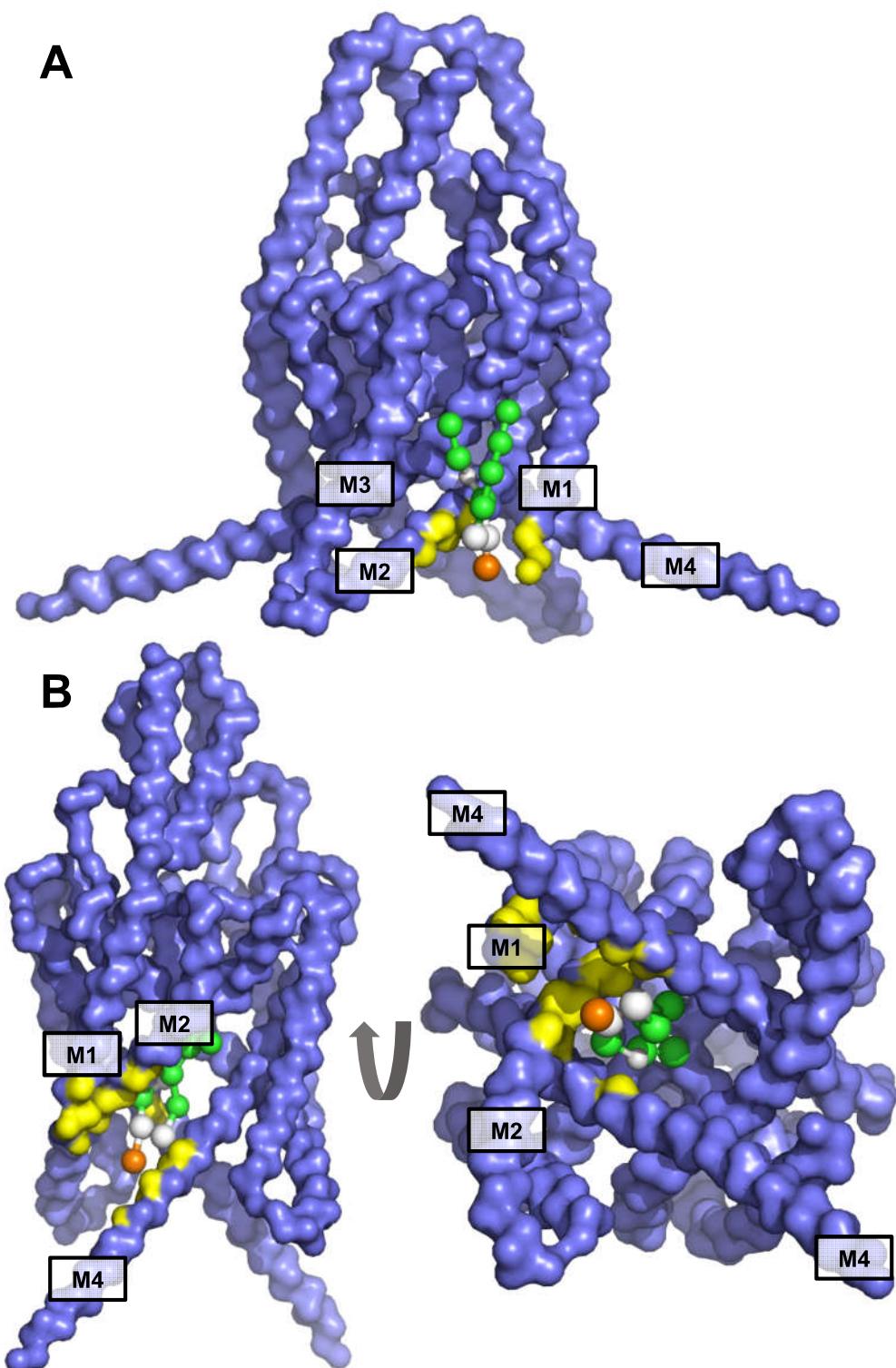
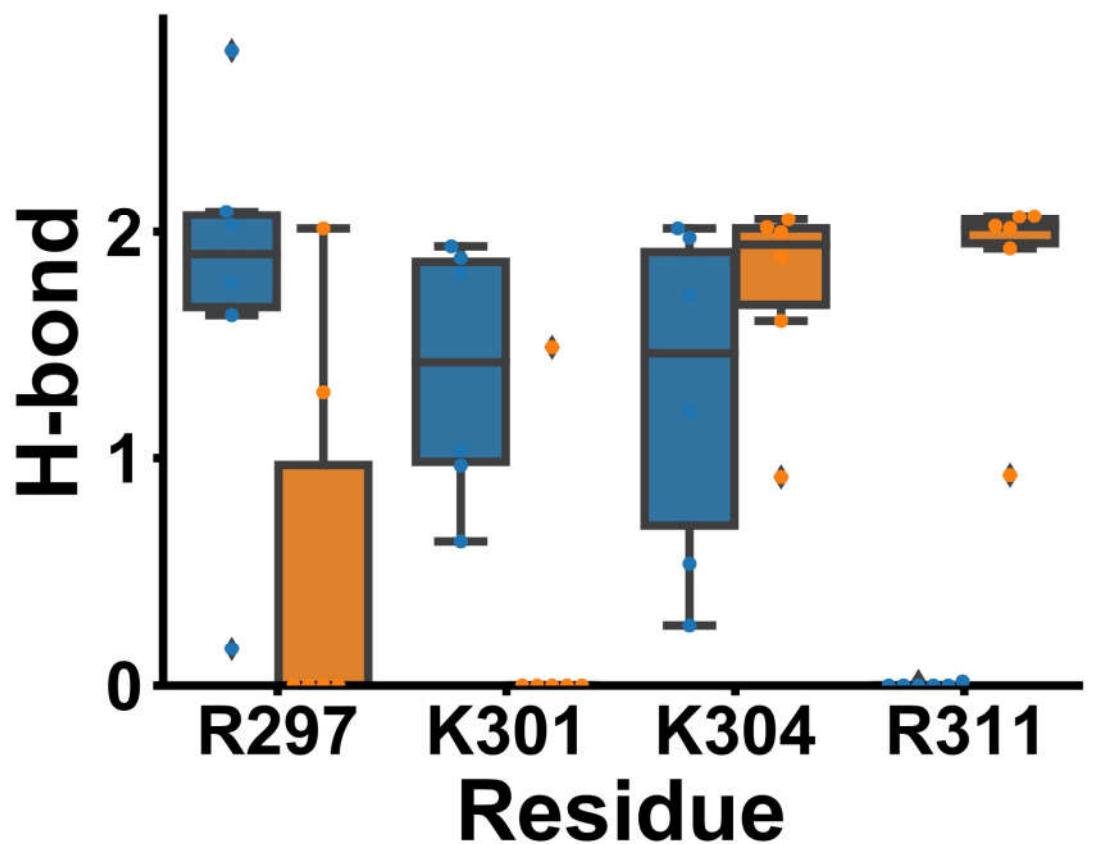
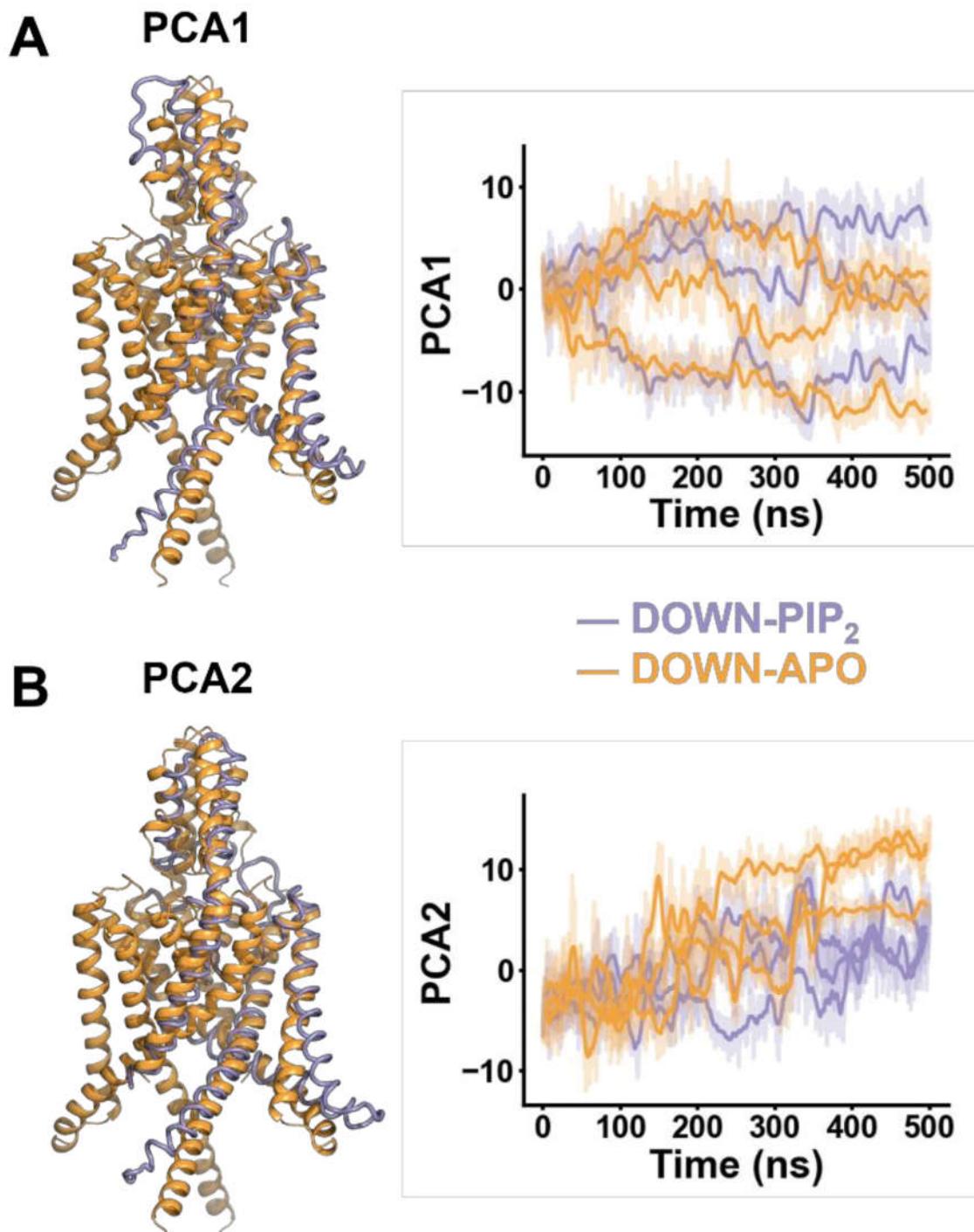


Figure S1


A


B


Occupancy (%)


Figure S2

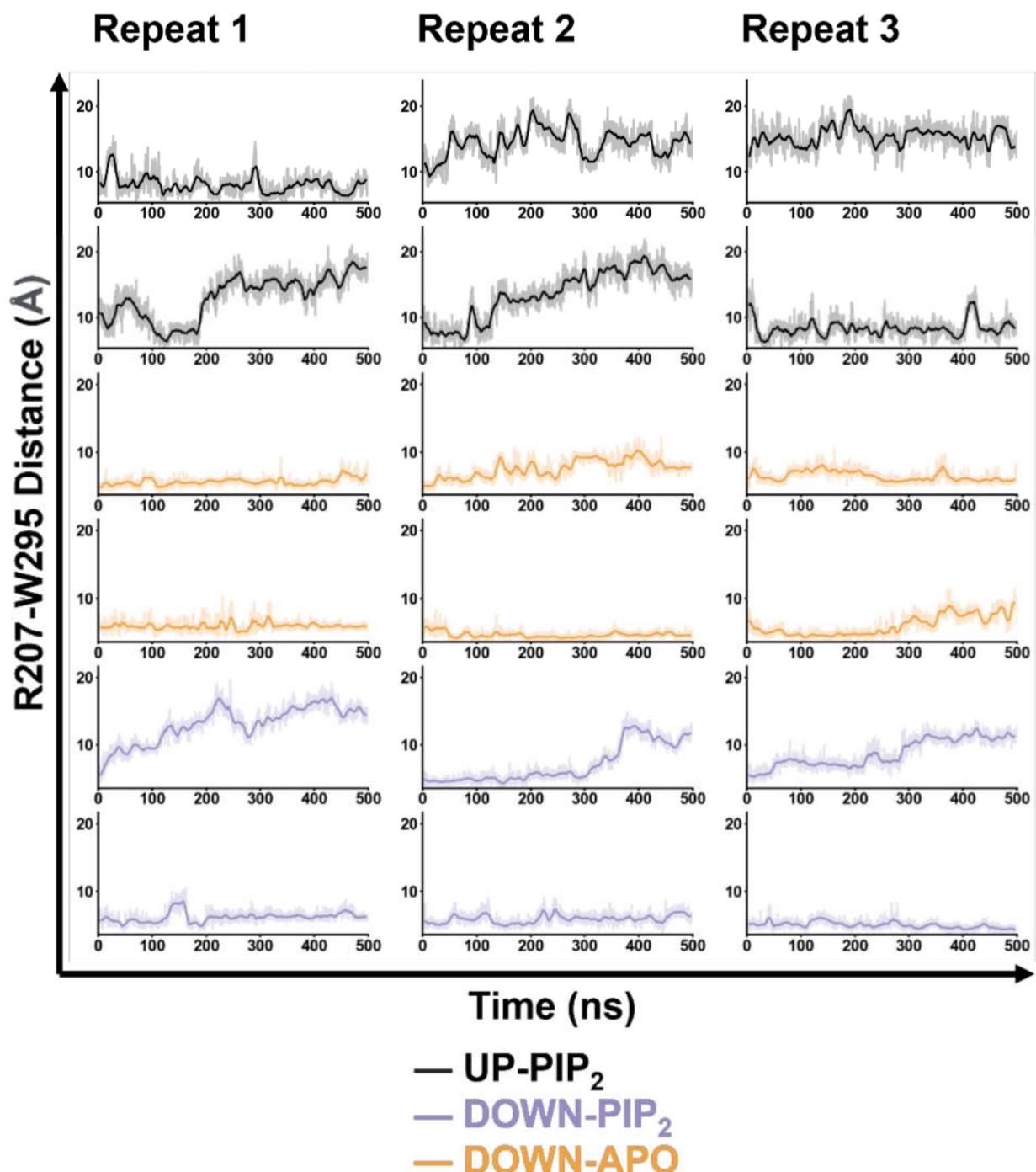

Figure S3

Figure S4

Figure S5

