

1 **Nrf2 promotes thyroid**

2 **development and hormone**

3 **synthesis.**

4 Gillotay Pierre^{1,*}, Romitti Mirian^{1,*}, Dassy Benjamin¹, Haerlingen Benoit¹, Parakkal Shankar Meghna¹,
5 Faria Fonseca Barbara¹, Ziros G. Panos², Pal Singh Sumeet¹, Sykiotis P. Gerasimos² and Costagliola
6 Sabine¹.

7 1: Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université
8 Libre de Bruxelles (ULB), Brussels, Belgium

9 2: Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and
10 University of Lausanne (UNIL), Lausanne, Switzerland.

11 *: Both authors contributed equally to the present study.

12

13 **Abstract**

14 In all vertebrates, the function of the thyroid gland is to capture iodide to synthesize
15 hormones that act on almost all tissues and are essential for normal growth and metabolism.
16 Thyroid hormone production is a multistep process that ultimately leads to the coupling of
17 iodine to thyroglobulin, the matrix glycoprotein of hormone synthesis. This coupling is
18 dependent on H₂O₂, the accumulation of which in thyroid tissue, a true iodine trap, causes a
19 basal level of oxidative stress higher than in other tissues, which, if left unchecked, leads to
20 cellular damage. The thyroid has efficient antioxidant and detoxifying enzymes that help it
21 resist H₂O₂-induced oxidative stress and maintain the homeostasis necessary for hormone

22 synthesis. By regulating the expression of genes involved in cellular detoxification processes,
23 the transcription factor NRF2 acts as a master regulator of the cellular defense system
24 against oxidative stress. Using zebrafish embryos and mouse thyroid organoids, we show
25 here that direct control of thyroglobulin expression by NRF2 is an evolutionarily conserved
26 chore mechanism in vertebrates to complete the necessary molecular defense arsenal
27 against oxidative stress in thyroid tissue.

28

29 **Introduction**

30 Protection against oxidative-stress induced damage is a common feature of every living organisms
31 (Recently reviewed by R Siauciunaite and colleagues in 2019(Siauciunaite *et al.*, 2019)) and is
32 mediated by a wide range of biological process including (but not limited to) glutathione-induced
33 gene expression (Hayes and McLellan, 1999), regulation of NADPH levels via the pentose phosphate
34 pathways (Ralser *et al.*, 2007) and the superoxide dismutases (Muid, Karakaya and Koc, 2014) and
35 catalases (Chelikani, Fita and Loewen, 2004) activity. In addition, in many species, the nuclear
36 erythroid factor 2 like 2 transcription factor (NRF2, encoded by the NFE2L2 gene in Humans) acts as a
37 master-regulator of the cells oxidative and metabolic stress defence system (Mukaigasa *et al.*, 2012;
38 Loboda *et al.*, 2016; Thanas *et al.*, 2020). In physiological conditions, Nrf2 is sequestered in the
39 cytoplasm by its repressor the Kelch-like ECH-associated protein 1 (Keap1). To efficiently repress
40 Nrf2, Keap1 forms a complex with Cul3 to recruit an E3 ubiquitin ligase complex that will drive the
41 polyubiquitination and subsequent proteasomal degradation of Nrf2. Under stress conditions, the
42 conformation of the Keap1-Cul3 complex will change, preventing further ubiquitination and
43 degradation of newly formed Nrf2 protein, therefore allowing its translocation to the nucleus to
44 regulate detoxifying and antioxidant genes expression (Iso *et al.*, 2016; Yamamoto, Kensler and
45 Motohashi, 2018; Renaud *et al.*, 2019). To regulate gene expression, Nrf2 protein will bind to anti-

46 oxidant response element (ARE) located in the promoter or enhancer region of target gene
47 (Rushmore, Morton and Pickett, 1991; Zhu *et al.*, 2016).

48 Because of its functional need of H₂O₂, the regulation of O.S in the thyroid tissue has attracted
49 growing attention over the last few years (Renaud *et al.*, 2019; Thanas *et al.*, 2020). In all vertebrates,
50 the thyroid gland plays a primordial role during the development and acts as a central regulator of
51 the physiology of any individual (Yen *et al.*, 2006; Mullur, Liu and Brent, 2014; Ortiga-Carvalho *et al.*,
52 2016). During embryonic development, the thyroid enables the production of growth hormones
53 (Shields *et al.*, 2011; Liu *et al.*, 2015) and plays a critical role in brain organogenesis and maturation
54 (Mohan *et al.*, 2012; Moog *et al.*, 2017). In adults, it controls the basal metabolism, the cardiac
55 function and the body temperatures among other functions (Klein and Ojamaa, 2001; Kahaly and
56 Dillmann, 2005; Kim, 2008; Mullur, Liu and Brent, 2014; Ortiga-Carvalho *et al.*, 2016). Congenital
57 hypothyroidism (C.H.) is the most common congenital endocrine disorder (affecting 1 on every 3500
58 birth) and is characterised by a lack of physiological thyroid function at birth. This pathology can be
59 caused by a defect affecting either the thyroid organogenesis or the thyroid hormones synthesis *per*
60 *se* (Wassner, 2018). If left untreated, C.H. will cause severe mental and growth retardation in patient
61 among other physiological consequences (Persani *et al.*, 2018). Thyroid functions are mediated
62 through both triiodothyronine (T3 – biologically active but produced to a lesser extend) and
63 thyroxine (T4 – biologically less active but produced in high quantity) that are the main hormones it
64 produces (Carvalho and Dupuy, 2017). Thyroid hormones (T.H.) production is an evolutionary
65 conserved multi-step process ultimately leading to the H₂O₂-dependent coupling of iodine and
66 thyroglobulin thereby creating iodinated-thyroglobulin, the precursor of the thyroid hormones (Di
67 Jeso and Arvan, 2016; Carvalho and Dupuy, 2017). Consequently, as soon as the T.H. production
68 machinery is functional, the thyroid gland undergoes a higher basal level of H₂O₂-induced oxidative
69 stress (O.S) compared to other tissues.

70 Although a minimal level of O.S is mandatory for thyroid cells growth, function and proliferation
71 (Poncin, Colin and Gérard, 2009; Poncin *et al.*, 2010), if left unchecked, higher level of H₂O₂ will break

72 the balance between oxidant product and thyroid's antioxidant defences, ultimately resulting in O.S-
73 induced damage that can lead to genomic and epigenetic mutation (El Hassani *et al.*, 2019; Renaud *et*
74 *al.*, 2019).

75 Recent studies performed on adult mice thyroid glands demonstrated the role of Nrf2 as a direct
76 controller of the thyroglobulin (Tg) expression and as a central actor of the thyroid gland stress
77 defense system (Renaud *et al.*, 2019; Chartoumpekis *et al.*, 2020) Despite these important studies
78 related with oxidative stress in mature thyroid follicular cells, we lack information on the potential
79 role of *Nrf2* during thyroid development. Here, using zebrafish embryos and mouse-embryonic stell
80 cell (mESC)-derived thyroid follicles, we though to characterise the role of *Nrf2/nrf2a* during
81 mammalian and non-mammalian thyroid development.

82

83 **Results**

84 **Identification of *nrf2a* as an actor of zebrafish thyroid functional maturation.**

85 Due to whole genome duplication, zebrafish genome encodes for two orthologues of mammalian
86 Nrf2: *nrf2a* (encoded by the *nfe2l2a* gene, ZDB-GENE-030723-2) and *nrf2b* (encoded by the *nfe2l2b*
87 gene, ZDB-GENE-120320-3) both encoding for transcription factors (Hahn *et al.*, 2011). To assess
88 whether one of these two paralogues plays a role during thyroid development or thyroid functional
89 maturation, we generated single guide-RNA (sgRNA) targeting the DNA binding domain of *nrf2a* and
90 *nrf2b*, respectively located on their exon 5 and 4. To uncover potential thyroid developmental
91 defects, we took advantage of our previously published F0 Crispr/Cas9-based screening approach
92 (Trubiroha *et al.*, 2018). Here, following one-cell stage injection in Tg(*tg:nlsEGFP*) embryos (Trubiroha
93 *et al.*, 2018), thyroid development was monitored *in vivo* at 55, 72 and 144 hours post fertilisation
94 (hpf) for putative developmental defect affecting either early thyroid development, proliferation and
95 migration or thyroid functional maturation respectively. In these experiments two control were used:
96 1) the injection of a sgRNA targeting *adamtsl2* as a control for false positive phenotypes (Trubiroha *et*
97 *al.*, 2018) and 2) analysis and raising of non-injected embryos as a fertility and development quality
98 control. At 55 and 80hpf, the thyroid development of the *nrf2a* and *nrf2b* injected embryos were
99 similar and no gross developmental defect were observed compared to their *adamtsl2* crispants and
100 non-injected siblings (Sup Fig. 1 A-H). However, at 144hpf, thyroid tissue appeared enlarged in
101 around 55% (170/312) of the *nrf2a* crispants compared to their *adamtsl2* crispants and non-injected
102 siblings (Sup Fig. 1 I-L). Conversely, we could not uncover any gross or thyroid-related developmental
103 defect in *nrf2b* F0 crispants compared to their *adamtsl2* crispants and non-injected siblings despite
104 high mutagenic activity of the sgRNA used in these experiments (data not shown). Considering the
105 reproducibility of the observed phenotype in F0, we decided to generate a stable *nrf2a* mutant line
106 to further investigate the mechanism underlying the observed developmental defect of the thyroid
107 gland.

108 **Generation of a stable *nrf2a* mutant line**

109 To assess the transmission of the mutated alleles and associated thyroid phenotype, we raised F0
110 *Tg(tg:nlsEGFP) nrf2a* crispants to adulthood and outcrossed them with AB* wild-type (WT) animals in
111 order to identify and select transmitted mutated alleles. F1 progeny was raised to adulthood and
112 subsequently genotyped to characterise the transmitted mutated alleles using Sanger sequencing.
113 We identified several mutated *nrf2a* alleles harbouring insertion, deletion or a mix of both and
114 selected an allele presenting a deletion of 5 nucleotides between the nucleotides 1450 and 1454 of
115 the reference coding sequence, this deletion is located in the exon 5 prior to the DNA binding domain
116 of the Nrf2a protein (here after referenced as *nrf2aΔ5*) (Fig. 1A). The *nrf2aΔ5* allele is predicted to
117 induce a frameshift leading to a truncated Nrf2a protein of 550 amino acids (aa), while the WT
118 protein is 587 amino acids long, including 67 incorrect amino acids at the C-terminus. *In silico* analysis
119 of the mutated protein encoded by the *nrf2aΔ5* allele revealed that, out of the 112 amino acids
120 composing the WT protein coiled-coil domain in which the DNA binding region resides, only 8 amino
121 acids were conserved in the mutated protein, suggesting that it is non-functional. To experimentally
122 assess the functional consequences of our *nrf2aΔ5* mutated allele, we tested its ability to activate the
123 transcription of an ARE-driven firefly luciferase reporter gene following a previously published
124 protocol by Mukaigasa and colleagues in 2012 (Mukaigasa *et al.*, 2012). In these experiments,
125 comparison was made with wild-type Nrf2a protein and the previously published Nrf2a fh318
126 mutated protein known to be non-functional (Mukaigasa *et al.*, 2012). After transient transfection in
127 HEK cells, WT Nrf2a protein strongly activates the transcription of the firefly luciferase reporter gene
128 whereas both the *nrf2aΔ5* and *nrf2a fh318* mutants were able to induce only weak expression of the
129 reporter gene, if at all. (Fig. 1B). This shows that our *nrf2aΔ5* allele, like the *nrf2a fh318* mutant
130 alleles, encodes a nonfunctional transcription factor.

131 ***nrf2a* loss-of-function induces hypothyroidism in homozygous mutant zebrafish embryos.**

132 We then analysed, *in vivo*, the thyroid phenotype of *Tg(tg:EGFPnls) nrf2aΔ5* homozygous embryos to
133 see if they exhibited thyroid defects similar to those observed in F0 crispants. Similar to what we
134 observed previously in crispants, thyroid development at 55 (Fig. 1D and G) and 80 hpf (Fig. 1E and H)

135 in *nrf2aΔ5* hemi- and homozygous embryos does not differ from their WT siblings. However, at 144
136 hpf, the thyroid gland of *nrf2aΔ5* homozygous embryos appears enlarged along the antero-posterior
137 axis compared with the gland of their hemizygous mutant and WT siblings (Fig. 1F and I). To quantify
138 this apparent thyroid enlargement, we used confocal live imaging on progeny derived from an
139 incross of *Tg(tg:nlsEGFP); nrf2aΔ5* hemizygous adult animals to perform thyroid cell counting at 144
140 hpf (Fig. 1C). On average, thyroid glands of WT embryos were composed of 41.4 +/- 7.3 cells while
141 thyroids of homozygous *nrf2aΔ5* embryos were composed of 59.2 +/- 13.1 cells, showing an
142 enlargement of approximately 40% of their thyroid gland. Excessive proliferation of the thyroid
143 follicular cells (TFC) is often associated with continuous stimulation of the thyroid gland by the TSH
144 signalling pathway. Such continuous stimulation may result from a defect in thyroid hormones (T.H)
145 production, thus triggering the feedback loop controlling the hypothalamo-pituitary-thyroid axis
146 (Dumont, Maenhaut and Lamy, 1992; Ortiga-Carvalho *et al.*, 2016). To test this hypothesis, we
147 performed whole mount immunofluorescence (WIF) for thyroxine (T4) and its precursor the iodinate-
148 thyroglobulin (Tg-I) on 6 days post-fertilisation (dpf) progeny from *nrf2aΔ5* heterozygous carrier (Fig
149 2A-O). WIF staining for T4 and Tg-I confirmed that the thyroid enlargement observed in *nrf2aΔ5*
150 homozygous coincides with dyshormonogenesis as shown by the lack of or barely detectable T4 and
151 Tg-I staining (6.75×10^5 +/- 2.68×10^5 A.U for T4 and 1.36×10^6 +/- 6.61×10^5 A.U for TG-I) compared
152 with their WT siblings (2.10×10^6 +/- 6.13×10^5 A.U for T4 and 3.37×10^6 +/- 1.50×10^6 A.U for TG-I) (Fig.
153 2Q and R). To ensure that lack of detectable colloidal T4 was not caused by a defect in thyroid follicle
154 cell polarisation, we analysed the thyroid follicles by confocal imaging after immunostaining for ZO-1
155 protein which labels the apical junctions between the TFC. Imaging of WT and homozygous *nrf2aΔ5*
156 embryos revealed no discernible differences in follicular polarisation between embryos (Supp Fig 2),
157 suggesting that the observed deficiency of T4 production is not caused by a defect in thyroid follicle
158 morphogenesis *per se*.

159 **Loss of *nrf2a* function induces a down regulation of *tg* expression.**

160 The phenotype of thyroid dyshormonogenesis observed in homozygous *nrf2aΔ5* mutants may be due
161 to several causes. Indeed, T.H. synthesis requires a complex machinery allowing uptake and transport
162 of iodide from the bloodstream to the colloidal space, coupling of iodine to the thyroglobulin and
163 eventually proteolysis of iodinated-thyroglobulin and release of T.H. in the bloodstream (Carvalho
164 and Dupuy, 2017). As immunostaining for T4 and Tg-I reveals an absence of both signal in *nrf2aΔ5*
165 homozygous mutants, we decided to analyse the expression of thyroid functional markers and
166 stimulating factors by qPCR on 6dpf *nrf2aΔ5* zebrafish embryos (Fig. 2S). We first looked at the
167 thyroid stimulating signalling by analysing the expression of *tsh-β* and *tshr*. In *nrf2aΔ5* homozygous
168 mutants, expression of *tsh-β* was greatly increased compared with their WT siblings (Fig. 2S, 2nd from
169 the left), consistent with the known effects of a lack of T.H production (Shupnik *et al.*, 1985;
170 Chiamolera and Wondisford, 2009). On the other hand, qPCR experiments did not show any
171 difference in the expression of *tshr* in *nrf2aΔ5* homozygous mutant embryos compared to their WT
172 siblings (Fig. 2S, 3rd from the left). As the absence of Tg-I staining in *nrf2aΔ5* homozygous mutant
173 embryos seems to indicate a defect in the very first step of T.H. synthesis, we decided to analyse the
174 expression levels of *slc5a5*, *tpo* and *tg* as these genes are critical component to the formation of
175 iodinated-thyroglobulin (Carvalho and Dupuy, 2017). Consistent with the increase of *tshβ* expression
176 (Opitz *et al.*, 2011), the expression levels of *slc5a5* and *tpo* were greatly increase in *nrf2aΔ5*
177 homozygous mutants compared to their WT siblings (Fig. 2S, 4th and 5th from the left). However, the
178 expression of *tg*, although not statistically significant, appeared reduced in *nrf2aΔ5* homozygous
179 mutants compared with their wild-type siblings despite the increase of their TFC number (Fig. 2S, 6th
180 from the left). To confirm that the lack of *tg* upregulation was caused by defective *nrf2a* and not by
181 an insufficient Tsh stimulation, we treated *nrf2aΔ5* homozygous mutant and wild-type embryos with
182 1-phenyl 2-thiourea (PTU), a chemical commonly used to inhibit pigmentation but shown to inhibit
183 T.H production (Elsalini and Rohr, 2003; Opitz *et al.*, 2011). We treated wild-type and *nrf2aΔ5*
184 homozygous mutant embryos with PTU at a concentration of 30µg/mL from 24 to 144 hpf and
185 performed qPCRs analysis for *tsh-β*, *slc5a5* and *tg* at 144hpf. Upon PTU treatment, *tsh-β* and *slc5a5a*

186 expression were increased in both WT and *nrf2aΔ5* homozygous mutants compared to their non-
187 treated siblings (Fig. 2T and U, 2nd and 4th from the left), confirming the efficiency of our treatment to
188 inhibit T.H production and to trigger the Tsh-mediated feedback loop. Surprisingly, while PTU
189 treatment induced an increase of *tg* expression in WT embryos (Fig. 2T, 3rd from left), *tg* expression
190 remained unaffected in *nrf2aΔ5* homozygous mutant embryos compared to their non-treated
191 siblings (Fig. 2U, 3rd from the left). Interestingly, when we compared the modulation of *tg* expression
192 in both PTU-treated WT and *nrf2aΔ5* homozygous mutant embryos, we saw a marked reduction in *tg*
193 expression in *nrf2aΔ5* homozygous mutant embryos (Fig. 2V, 3rd from left). These results suggest that
194 the lack of functional *nrf2a* affects the modulation of *tg* expression in zebrafish thyroid.

195 **The thyroid dyshormonogenesis observed in *nrf2aΔ5* homozygous mutant embryos is a cell**
196 **autonomous phenotype.**

197 Although the initial characterisation of the *nrf2aΔ5* mutant phenotype seems to indicate a role for
198 *nrf2a* during thyroid functional maturation, we could not rule out the possibility that this phenotype
199 is secondary to another defect affecting the whole zebrafish embryos. To exclude non-cell-
200 autonomous effects, we sought to rescue the thyroid function by generating a new transgenic line
201 Tg(*tg:nrf2a^{T2A-mKO2nls}*) in which the thyroglobulin promoter drives the expression of a functional *nrf2a*
202 coding sequence specifically in the thyroid follicular cells. Further, for visualization, the *nrf2a* coding
203 sequence is linked, via a T2A viral peptide, to the nuclear localised monomeric Kusabira Orange 2
204 fluorescent protein (here after referred as the *nrf2a_mKO2* line or “rescue” allele). Although
205 fluorescent reporter allows easy selection of transgenic embryos, we wanted to confirm whether the
206 over-expression of *nrf2a* mRNA could be detected in the thyroid of transgenic embryos by WISH.
207 Indeed, due to its short half-life (McMahon *et al.*, 2004), detection of *nrf2a* mRNA in some tissue falls
208 below the sensitivity of WISH staining. Following WISH staining, *nrf2a* can be easily detected in tissue
209 such as the developing gills and the liver but remains undetectable in the developing thyroid in 72hpf
210 WT embryos. By contrast, in addition to the other tissue, *nrf2a* can be detected in the thyroid of

211 72hpf *nrf2a_mKO2* embryos confirming that our transgenic line displays a thyroidal over-expression
212 of *nrf2a* (Supp Fig 3).

213 Using this transgenic line we generated animals carrying the rescue allele and the *nrf2aΔ5* mutation.
214 We then assessed the thyroid function of the rescued embryos at 6dpf by T4 immunostaining as we
215 had done previously (Fig. 3A-P). In wild-type animals, quantification of the T4 fluorescence signal
216 showed that the presence of the rescue transgene within the thyroid cells did not significantly affect
217 the ability of the thyroid to produce T4 (2.62×10^6 +/- 8.55×10^5 A.U. in WT embryos vs 2.40×10^6 +/-
218 4.64×10^5 A.U. in WT *nrf2a_mKO2* embryos) (Fig. 3Q, 1st and 2nd from the left). However, in 6dpf
219 *nrf2aΔ5* homozygous embryos, we could observe that T4 production was restored to physiological
220 levels upon expression of the rescue allele (2.34×10^6 +/- 4.93×10^5 A.U. in rescued *nrf2aΔ5*
221 homozygous embryos; 2.62×10^6 +/- 8.55×10^5 A.U. in WT embryos and 1.67×10^6 +/- 5.72×10^5 A.U. in
222 non-rescued *nrf2aΔ5* homozygous embryos) (Fig 3Q, 3rd and 4th from left). In addition, in the
223 presence of the rescue allele, we observed that the thyroid of *nrf2aΔ5* homozygous mutant embryos
224 appeared to be of comparable size to that of WT *nrf2a_mKO2* embryos. To confirm this, we
225 performed cell counting following confocal live imaging on 6dpf *nrf2aΔ5* and WT embryos carrying or
226 not the rescue allele. The quantification of thyroid cell number revealed that the presence of the
227 rescue allele in WT embryos does not significantly affect the thyroid cell number (Fig 3R, 1st and 3rd
228 from the left). However, while the thyroid glands of *nrf2aΔ5* homozygous embryos were, on average,
229 composed of 60.4 ± 13.9 cells, they are composed of 43.4 ± 10 cells when homozygous mutant
230 embryos carry the rescue allele (Fig 3R, 2nd and 4th from left). Altogether these data support the cell-
231 autonomous nature of thyroid dyshormonogenesis phenotype observed in *nrf2aΔ5* homozygous
232 mutant zebrafish embryos.

233 Using zebrafish embryos, we showed that impairing the function of *nrf2a* strongly affects the thyroid
234 functional maturation, leading to a lack of T.H production. We also proved that such defect does not
235 results from a disorganisation of the thyroid follicular structure or from a lack of expression of genes

236 involved in the T.H production machinery such as *slc5a5* and *tpo*, but rather from a reduced ability of
237 the *nrf2aΔ5* homozygous mutant embryos to produce the thyroglobulin.

238 **Loss of *Nrf2* impairs differentiation of mESC-derived thyroid follicles**

239 Recently, the role of *Nrf2* in thyroid gland physiology has been investigated by P. Ziros and colleagues
240 using ubiquitous and thyroid-specific *Nrf2* Knock-out mouse model (Ziros *et al.*, 2018). In this study,
241 the authors described how loss of *Nrf2* function causes a thyroid phenotype only under stress
242 conditions such as iodine overload. Thereby demonstrating that *Nrf2* plays a critical role in the
243 regulation of oxidative and metabolic stress in adult thyroid gland. However, in the same study, the
244 authors described that the loss of *Nrf2* function causes a reduction of the thyroglobulin expression in
245 PCCL3 rat thyroid follicular cell culture. Importantly, this effect was observed without the need to
246 induce stress condition in *Nrf2* KO PCCL3 cells (Ziros *et al.*, 2018). Based on these results, we
247 hypothesized that adult *Nrf2* KO mice might develop body-wide resistance to the effects of *Nrf2*
248 deficiency which in turn, might reduce the visible effects on thyroid development and physiology.
249 Therefore, to explore this aspect, we decided to use the *in vitro* model of mESC-derived thyroid
250 follicles that we previously developed (Antonica *et al.*, 2012; Romitti *et al.*, 2021). mESC-derived
251 thyroid follicles offer the unique advantage of recapitulating thyroid development in an *ex vivo*
252 controlled medium which will help us characterise the effects of loss of *Nrf2* function on thyroid
253 development and functional maturation.

254 The mouse orthologue of the zebrafish *nrf2a* is encoded by the *Nfe2l2* gene (also known as *Nrf2*) and
255 is composed of five exons. Similarly to the zebrafish *nrf2a*, the DNA binding domain of the *Nrf2*
256 protein is located within the fifth exon. Thus, to generate a loss of function *Nrf2* similar to the
257 zebrafish mutant line we generated, we targeted a region immediately upstream of the DNA binding
258 domain using Crispr/Cas9 technology.

259 Following targeted mutagenesis, we identified two clones carrying mutations that lead to disruption
260 of the DNA binding domain and to appearance of a premature STOP codon. The first clone (here after

261 referred as “clone 16” or *Nrf2*KO, see Fig. 4A) harbours a deletion of 19 nucleotides and the second
262 clone (here after referred as “clone 19”) harbours a deletion of one nucleotide.
263 We firstly validated the ability of both clones to overexpress *Nkx2.1* and *Pax8* following dox
264 treatment at the 7th day of the differentiation protocol using immuno-staining experiments (data not
265 shown), suggesting that the loss of function of *Nrf2* does not affect the tetracyclin-inducible over-
266 expression of *Nkx2.1* and *Pax8*.
267 We then differentiated both clones into thyroid organoids following our previously published
268 protocol (Antonica *et al.*, 2012; Romitti *et al.*, 2021) to assess their ability to form thyroid follicles at
269 the end of the protocol (day 22). Immunofluorescence analysis of fixed samples at day 22 were
270 performed to analyse expression of thyroid markers (*Nkx2.1* and *Tg*). Although both *Nrf2* KO clones
271 can express *Nkx2.1*, they were unable to express *Tg* (Supp Fig. 4) and to organise into follicles.
272 Considering that both clones presented similar phenotype we decided to focus our investigations
273 using clone 16, therefore all following data and mention of the *Nrf2* KO refer to clone 16 cell line.
274 Analysis of this mutation revealed that it leads to the appearance of a premature stop codon
275 resulting in a truncated protein of 469aa length, of which only the first 441aa are conserved with the
276 597aa long WT protein.
277 To better characterise the phenotype observed upon loss of *Nrf2* function, we analysed the
278 expression of several thyroid markers at day 7 of our differentiation protocol. While *Nrf2* KO cells
279 expressed similar levels of *Pax8* and slightly increased levels of *Tshr* and exogenous and endogenous
280 *Nkx2.1* (Fig. 4B) compared with the control cell-line, they showed significant downregulation of *Tg*
281 expression (Fig 4B). On day 22 of the differentiation protocol, qPCR analysis revealed that *Nrf2* KO
282 cells expressed more *Nkx2.1*, *Pax8*, *Tshr*, *Nis* and *Tpo* and less *Tg*, similar to zebrafish embryos. In
283 addition, we observed higher expression of *Duox2* and *Duoxa2* (Fig. 4C). Interestingly, we also
284 observed a decrease in the expression of *Gstp1* and *Gclc* (Fig. 4C), two classical targets of *Nrf2*
285 (Mukaigasa *et al.*, 2012; Renaud *et al.*, 2019) confirming that our generated deletion of 19
286 nucleotides abrogates *Nrf2* function. Analysis of the initial *Nkx2.1* immunofluorescence experiments

287 suggested that a higher proportion of cells in the Nrf2 KO cell culture were Nkx2.1+. To confirm this
288 observation, we decided to perform flow cytometry analysis after Nkx2.1 immuno-staining and
289 taking advantage of our Tg reporter (bTg-eGFP+). Flow cytometry quantification demonstrated
290 higher percentage of Nkx2.1+ cells from the Nrf2 KO line (65.3%) compared with the control cell line
291 (27.1%). Moreover, we observed that the percentage bTg-eGFP+ cells among Nrf2 KO-NKX2-1+ cells
292 was significantly lower with only 6.1% of cells expressing eGFP while 37.4% expressed eGFP in the
293 control cell line (Fig. 4D).

294 Immunofluorescence analysis of the ability of our Nrf2 KO cell line to form thyroid follicles revealed a
295 lower number of follicular organised structures, defined by the presence of a lumen, than in the
296 control cell line. Moreover, these experiments confirmed the decreased Tg levels in Nrf2 KO-
297 differentiated cells, while the percentage of Nkx2.1 cells was higher compared with the control cell
298 line. (Fig. 4D 1st and 3rd from the left).

299 **Functional Nrf2 is essential for thyroid function in mESC-derived follicles**

300 One of the most important aspects of the *nrf2a* loss of function phenotype in zebrafish is the
301 absence of thyroid hormones and iodinated-thyroglobulin production. To assess the conservation of
302 this phenotype in our organoids, we analysed the presence of Nis at the basal membrane of follicles
303 and the ability of Nrf2 KO cells to produce iodinated thyroglobulin. After 22 days of differentiation,
304 we observed that Nis protein is well expressed at the membrane of both Nrf2 KO and control cell
305 lines. However, the presence of Tg-I is almost exclusively detected in the lumen of *Nrf2* WT-derived
306 follicles (Fig. 5A). Quantification analysis using iodine organification assays (Antonica *et al.*, 2017)
307 confirmed such observations. Indeed, while both cell lines are able to uptake iodine with the same
308 efficiency (Fig 5B), the levels of protein-bound ¹²⁵I were significantly lower in *Nrf2* KO thyroid cells
309 (Fig. 5C). This results in a lower proportion of cells able to promote iodide organification in *Nrf2* KO-
310 derived thyrocytes (3.43%) compared to control condition (22.45%) (Fig. 5D). Interestingly, as in the
311 *nrf2aΔ5* zebrafish mutants, lack of Tg appears to be the primary cause of this defect in thyroid
312 hormone production.

313 **Loss of *Nrf2* leads to important transcriptional changes in mESC-derived follicles**

314 To better characterize the loss of the *Nrf2* gene in our mESC model and to better understand the
315 molecular mechanisms leading to the observed phenotype, the mRNA profile of *Nrf2* WT and KO-
316 derived thyroid follicles were compared using bulk RNA-sequencing. Importantly, although our mESC
317 lines (*Nrf2* WT and KO) expressed the bTg-GFP reporter construct, downregulation of *Tg* expression
318 in *Nrf2* KO-derived cells prevented us from performing FACS-based cellular enrichment. Therefore,
319 RNA sequencing experiments were performed with a mixed cell population. Initial analysis revealed
320 significant differences between expression profiles of *Nrf2* WT and KO cells, with 1566 upregulated
321 and 5272 downregulated genes in *Nrf2* KO condition compared with the WT (Fig. 6 A). In addition,
322 the expression profile of key thyroid and *Nrf2* pathway markers confirmed what had been previously
323 observed by qPCR. Most of the thyroid markers were upregulated, whereas the effectors of *Tg* and
324 *Nrf2* pathway, such as *Gstp1*, *Gclc*, *Keap1*, *Gpx1* and *Nqo1*, were downregulated (Fig. 6B).

325 Gene Ontology (GO) classification of the most differentially expressed genes between WT and *Nrf2*
326 KO cells, revealed that *Nrf2* expressing cells show an endodermal signature, while *Nrf2* KO cells
327 seems to express more mesodermal markers. In addition, among NRF2 WT cells, we detected
328 upregulation of markers related to cell proliferation regulation (cell cycle regulation and DNA
329 replication), glutathione metabolism and mTORC1 signalling. On the other hand, absence of *Nrf2*
330 results in expression signatures associated to ECM-receptor interaction, kinases activation
331 (MAPK/RAS) and inflammation/stress (TNF- α , NF- κ B, IL2 and IL6) (Fig. 6 C-D). Interestingly, these
332 observed changes are consistent with what has been described previously in adult *Nrf2* KO mice
333 (Chartoumpekis *et al.*, 2020).

334 As *Nrf2* plays a critical role in redox homeostasis, we analysed the expression profile of *NRF2* target
335 genes which present an antioxidant responsive element (ARE) within their promoter and/or
336 regulatory regions (Raghunath *et al.*, 2018). Validating the loss of function of *Nrf2* in our model, we
337 demonstrate important downregulation in gene expression of this set of genes which are directly
338 involved in several processes such as detoxification and antioxidant activity (Fig. 6E).

339 Aiming to identify other key genes which could be involved in the impairment of thyroid function,
340 differential expression analysis revealed a set of transcription factors (TFs) significantly upregulated
341 in *Nrf2* KO cells (Fig. 6F). Interestingly, identified TFs have strong interaction (Supp Fig 5) and are
342 involved in oxidative stress response, AP-1 network and activation of several signalling pathways
343 such as MAPK, TNF- α , NF- κ B and TGF- β .

344

345 **Discussion**

346 In this study, we evaluated the role of the *Nrf2/nrf2a* transcription factor during the development of
347 the thyroid gland and, using zebrafish embryos and mESC-derived thyroid follicles, we highlighted its
348 importance in both mammalian and non-mammalian thyroid development.

349 Using zebrafish, we identified *nrf2a* as an actor of the thyroid functional maturation using F0
350 Crispr/Cas9-based mutagenesis (Trubiroha *et al.*, 2018). Based on these initial results we generated a
351 stable *nrf2a* mutant line and analysed consequence of this *nrf2a* variant on thyroid development.
352 Upon loss of *nrf2a* function, initial thyroid development occurs normally. However, functional
353 maturation of the thyroid gland appears impaired and characterized by an enlarged non-functional
354 thyroid gland, suggestive of a thyroid dyshormonogenesis phenotype.

355 Under physiological conditions, thyroid function is tightly regulated by the hypothalamo-pituitary
356 axis via the TSH signalling pathway (Vassart and Dumont, 1992; Carvalho and Dupuy, 2017).

357 Consistent with the lack of TH, *nrf2a* mutants showed increased levels of *tshb* mRNA as well as *slc5a5*
358 and *tpo* expression. Conversely to what was previously described in zebrafish lacking TH production
359 (Opitz *et al.*, 2011; Giusti *et al.*, 2020), *nrf2a* homozygous mutant embryos did not display an
360 increased *tg* expression, instead, a slight reduction of *tg* expression could be observed. Interestingly,
361 these results are consistent with the described control of *Tg* expression by Nrf2 in rodents (Ziros *et*
362 *al.*, 2018), suggesting that this role is evolutionary conserved across vertebrates.

363 Notably, when *nrf2a* loss of function was rescued by the *tg*-driven expression of a functional Nrf2a
364 protein, we observed complete recovery of the thyroid phenotype as shown by a number of TFC and
365 by the quantification of thyroxine production, thus demonstrating the cell-autonomous nature of the
366 observed phenotype.

367 Altogether the data we obtained using zebrafish embryos show that the role of *nrf2a* goes beyond
368 the expression control of metabolic and oxidative stress response genes and reinforce a recently
369 published report on the role of *Nrf2* in adult mouse thyroid physiology (Ziros *et al.*, 2018). In this
370 study, P. Ziros and colleagues showed that *Nrf2* KO mice display a euthyroid state characterized by
371 normal levels of Tsh but reduced basal levels of Tg as well as increased amount of iodinated-
372 thyroglobulin. Although we did not analysed the thyroid gland of adult *nrf2a* KO zebrafish, this study
373 prompted us to interrogate the role of *Nrf2* during mammalian thyroid development. Because mouse
374 pups are developing *in utero*, we hypothesized that the phenotypic differences between *nrf2a* KO
375 zebrafish embryos and *Nrf2* KO mice could arise from availability of maternal Tsh and T.H, thus
376 allowing the growing pups to develop compensatory mechanisms to the loss of Nrf2 function.
377 Therefore, in order to study the role of *Nrf2* during mammalian thyroid development without
378 maternal compensatory effects, we decided to use our previously published mESC-derived thyroid
379 organoids (Antonica *et al.*, 2012; Romitti *et al.*, 2021).

380 Nrf2 acts as a regulator of cellular resistance to oxidants by controlling expression of an array of
381 antioxidant response element (AREs)-dependent genes (Buendia *et al.*, 2016). As expected, we also
382 observed that in our mouse *in vitro* model of loss-of-function, AREs genes were significantly
383 downregulated as well as genes related to Nrf2 signalling, including Keap1 (Ziros *et al.*, 2018).

384 Importantly, this set of genes are directly involved in controlling oxidant homeostasis, detoxification
385 and elimination of exogenous and some endogenous chemicals (Ma, 2013).

386 Nrf2 also acts as an anti-inflammatory molecule. Nrf2 KO mice are more likely to develop age-
387 dependent autoimmune and inflammatory lesions (Yoh *et al.*, 2001; Ma, Battelli and Hubbs, 2006).

388 Nrf2 inhibits inflammation by inhibition of the NF- κ B pathway and proinflammatory cytokine

389 production (Li *et al.*, 2008). Similar effect seems to occur in our system, since GO analysis indicated
390 increase in TNF- α /NF- κ B and inflammation signature in Nnrf2 KO condition. In addition, Nrf2 has
391 been shown to regulate proteasomal protein degradation (Kwak *et al.*, 2003), cell proliferation
392 (Malhotra *et al.*, 2010), and metabolic reprogramming (Mitsuishi *et al.*, 2012), in our model
393 exemplified by inhibition of mTORC1 signalling, cell cycle/DNA replication and glycolysis, respectively.
394 Altogether, our results reinforce the literature data about Nrf2 role in several cellular processes as
395 well as confirm the Nrf2 loss-of-function organoid model here presented.
396 Interestingly, we observed that the proportion of Nkx2.1+ cells was higher in the Nrf2 KO cells
397 suggesting that an imbalance could occur in favour of endodermal cells within the embryonic bodies
398 at the beginning of the differentiation protocol. This hypothesis seems unlikely considering the
399 described role of Nrf2 in promoting mesendoderm cell fate in human and mouse embryonic stem
400 cells (Jang *et al.*, 2016; Dai *et al.*, 2020), which was here confirmed by GO analysis of our
401 transcriptomic data indicating mesodermal signature in our Nrf2 KO RNA sequencing analysis.
402 Another hypothesis could be that cells committed toward thyroid fate undergo higher proliferation
403 rate when lacking functional Nrf2. Nrf2 is well known to regulate the quiescence, proliferation and
404 differentiation rate of various stem and progenitor cell type (Dai *et al.*, 2020). This role is best
405 exemplified in haematopoietic stem and progenitor cells (HSPCs) which demonstrated that Nrf2 was
406 a critical factor to maintain the stemness and the quiescence (Tsai *et al.*, 2013). Recently, Murakami
407 and colleagues demonstrated that an over-activation of the Nrf2 signalling was as detrimental to the
408 stemness, quiescence and longevity of the HSPCs as the lack of functional Nrf2 (Murakami *et al.*,
409 2017). The authors propose that the role of Nrf2 in maintaining the HSPCs depends on a fine
410 regulation of the Nrf2 activity, over-expression or lack of Nrf2 leading to a higher proliferative and
411 differentiation rate ultimately causing the exhaustion of the HSPC niche (Murakami *et al.*, 2017). On
412 the other hand, RNA sequencing indicated a higher proliferative signature in Nrf2 WT cells, which
413 here could be due to the higher proportion of non-thyroid cells in that condition. Thus, the

414 mechanism inducing this higher proportion of Nkx2.1+ cells remains unknown and further studies
415 will be necessary to clarify it.

416 Nrf2 KO mESC-derived thyroid cells showed no defect in the uptake of iodine but were unable to
417 organify it and produce iodinated-thyroglobulin, similar to what we observed in *nrf2aΔ5* mutant
418 zebrafish embryos, which may be due to the lack of *Tg* production.

419 The most striking difference we observed between the two models was the absence of follicular
420 organisation in *Nrf2* KO thyroid cells. Thyroid folliculogenesis is a poorly understood process and
421 recent studies suggest that thyroid follicle formation occurs in two steps. The first step is endothelial
422 cell-dependent basal laminal formation around unpolarised thyroid cells (Villacorte *et al.*, 2016;
423 Pierreux, 2021). The second step is the formation of microlumen through the migration of
424 thyroglobulin-filled microvesicles to the opposite side of the basal lamina (Gonay *et al.*, 2021).
425 Although follicular lumen expansion is a thyroglobulin-independent process (Liang *et al.*, 2018), it is
426 possible that the initial microlumen formation is thyroglobulin-dependent, although more studies are
427 necessary to confirm it.

428 In zebrafish, only few studies have described thyroid folliculogenesis and showed that soon after
429 budding out of the endoderm, thyroid cells are already organised as a multicellular follicle-like
430 structure (Alt *et al.*, 2006; Porazzi *et al.*, 2009; Opitz *et al.*, 2012). In addition, zebrafish thyroid gland
431 is able to produce thyroid hormones while proliferating and migrating toward its final location which
432 greatly differs from mammalian thyroid development (Opitz *et al.*, 2011, 2012; Nilsson and Fagman,
433 2017).

434 Evolutionarily, this difference is thought to be caused by the earlier need for thyroid hormones in
435 zebrafish embryos compared to the mouse embryos. Indeed, as soon as it hatches (between 2 and 3
436 days of age) the zebrafish embryos starts to feed on prey, which requires the maturation of its
437 gastro-intestinal apparatus, the inflation of its swim bladder and the maturation of its craniofacial
438 cartilages. All these processes are controlled by thyroid hormones (Liu and Chan, 2002; Bagci *et al.*,
439 2015; Campinho, 2019). In this context, although it is currently admitted, but not proven, that

440 zebrafish and mouse folliculogenesis are following similar mechanisms, our data might suggest that
441 this process could be Tg-dependent in mESC-derived thyroid organoids and Tg-independent in
442 zebrafish thyroid development.

443 Another difference between the thyroid phenotype of the two models concerns the extent of
444 thyroglobulin expression. Although both models show dysregulation of thyroglobulin expression, the
445 Nrf2 KO thyroid cells showed very low *Tg* expression whereas the *nrf2aΔ5* mutant zebrafish showed
446 only a slight reduction in *tg* expression. One possible explanation could be the availability of Tsh as a
447 signalling molecule. Conversely to our zebrafish model, where thyroid function is regulated by the
448 hypothalamo-pituitary-thyroid axis, mESC-derived thyroid organoids are not stimulated with Tsh
449 during the differentiation protocol. Instead, we used cAMP (Romitti *et al.*, 2021) as an alternative to
450 Tsh as it is known to mediate most of Tsh signalling effects in thyroid cells, from hormone
451 biosynthesis and release to thyrocyte proliferation and differentiation (Ortiga-Carvalho *et al.*, 2016).

452 The role of Tsh signalling in controlling thyroglobulin expression is still a matter of debate. While
453 some studies have demonstrated the TSH-independent onset of thyroglobulin expression in mouse
454 (Marians *et al.*, 2002; Postiglione *et al.*, 2002; Christophe, 2004), others have suggested that TSH
455 signalling could play a role in the maintenance of Tg expression, in adult rats and dog thyroids (van
456 Heuverswyn *et al.*, 1984; Gérard, Roger and Dumont, 1989; Christophe, 2004). In zebrafish embryos,
457 inhibition of Tsh signalling through *tshr* knock-down induced a reduction of thyroglobulin expression
458 (Opitz *et al.*, 2011). Although this reduction is not as striking as what was observed for *slc5a5* and *tpo*
459 expression in *tshr* morphants, it suggests that, despite not being not completely indispensable, Tsh
460 signalling modulates thyroglobulin expression in zebrafish.

461 At the transcriptional levels, analysis revealed a set of TFs upregulated in Nrf2 KO cells. Among those
462 TFs, several are important effectors of AP-1 network, such as *Atf*, *Jun* and *Fos* family. AP-1
463 transcription factors play an important role in controlling of cell proliferation, survival and death
464 (Karin, Liu and Zandi, 1997) and several mechanisms account for its stimulation such as, growth
465 factors, proinflammatory cytokines and UV radiation (Karin, 1995). It is suggested that most

466 important mediator of the growth factor response is likely to be the ERK/MAP kinase (MAPK) cascade
467 while the responses to proinflammatory cytokines and UV radiation are mostly dependent on two
468 other MAPK cascades, JNK and p38 (Karin, 1995). Interestingly, we also observed increase of MAPK
469 expression signature in our model, which might suggest that the effect of Nrf2 loss on thyroid
470 function might be promoted by hyperactivation of AP-1 network, in response to the changes in the
471 oxidative cell state.

472 Interestingly, we also observed a difference in the expression of our Tg reporter systems upon loss of
473 *Nrf2/nrf2a* function. In these systems, Tg expression is reported either by EGFP driven by the bovine
474 Tg promoter in mESC-derived organoids (Antonica *et al.*, 2012; Romitti *et al.*, 2021) or by EGFPnls
475 driven by the zebrafish *tg* promoter in zebrafish embryos (Trubiroha *et al.*, 2018). However, while the
476 loss of Nrf2 led to a drastic reduction of EGFP expression in mESC-derived organoids, the loss of *nrf2a*
477 in zebrafish embryos did not affect EGFPnls expression in thyroid cells. As it was previously shown
478 that rodent and humanTg is directly controlled by Nrf2 through two evolutionarily conserved AREs
479 located in its distal enhancer (Ziros *et al.*, 2018), we examined whether these ARE are conserved in
480 the bovine and zebrafish Tg regulatory sequences. Whereas the two AREs are present in the bovine
481 Tg regulatory sequence, they are absent from the zebrafish one (Supp Fig. 6). This suggests that
482 direct control of Tg by the binding of Nrf2 in the distal Tg enhancer is evolutionarily conserved in
483 mammalian vertebrates but not in non-mammalian vertebrates and indicates that the observed
484 discrepancy between the two reporter systems is due to the absence of AREs in the zebrafish *tg*
485 promoter.

486 In summary, our data demonstrate for the first time the evolutionarily conserved importance of
487 *nrf2/nrf2a* in thyroid development in mammals and other vertebrates. Using a combination of *in vivo*
488 and *in vitro* models, the present study characterized the effect of *nrf2* loss of function on thyroid
489 organogenesis at the morphological and transcriptomic levels. While our study highlighted the lack of
490 thyroglobulin expression as the main cause of the observed phenotypes, it also suggested that this is
491 driven by species-specific mechanisms. While direct control of Tg expression by *nrf2* has now been

492 clearly demonstrated in mice, our data suggest that this direct control appears to be absent in
493 zebrafish. Further studies will be necessary to unravel the mechanism by which nrf2a acts on
494 thyroglobulin expression in zebrafish. In addition, it would be interesting to analyze the role of nrf2
495 during thyroid organogenesis in a broader range of models, thereby expanding our knowledge of the
496 molecular mechanisms that control thyroid development in vertebrates.

497 **Materials and methods**

498 Animal husbandry.

499 Zebrafish embryos were collected by natural spawning of adult individuals, embryos and larvae were
500 raised at 28.5 °C under standard conditions (Westerfield, 2000) and staged according to hours (hpf)
501 or days post fertilization (dpf) as described (Kimmel *et al.*, 1995). Embryos were collected and raised
502 in 90mm petri dishes containing 25 mL of embryo medium. At 1 dpf, all embryos were dechorionated
503 by a 20 min treatment with 0.6 mg/mL pronase (Sigma). Screening and live imaging of embryos and
504 larvae were performed after anaesthesia using 0.02% tricain (Sigma) The following zebrafish lines
505 were used in this study: wild-type AB strain (WT), Tg(*tg:nlsEGFP*)^{ulb4} (Trubiroha *et al.*, 2018), *nrf2aΔ5*
506 mutant generated by Crispr/Cas9-based mutagenesis (this study) and Tg(*tg:nrf2a_T2A_mKO2nls*)
507 (this study). All zebrafish husbandry and all experiments were performed under standard conditions
508 in accordance with institutional (Université Libre de Bruxelles-ULB) and national ethical and animal
509 welfare guidelines and regulation. All experimental procedures were approved by the ethical
510 committee for animal welfare (CEBEA) from the Université Libre de Bruxelles (protocol 578 N).

511 Single-guide RNA design and synthesis.

512 Design and generation of single guide RNA (sgRNA) used in this study were performed as previously
513 described (Trubiroha *et al.*, 2018). Briefly, The Sequence Scan for CRISPR software
514 (<http://crispr.dfcf.harvard.edu/SSC/>) was used to identify sgRNA sequences with predicted high on-
515 target activity (Xu *et al.*, 2015). DNA templates for sgRNA synthesis were produced using the PCR-
516 based short-oligo method described by Talbot and colleagues in 2014 (Talbot and Amacher, 2014).
517 DNA templates for *in vitro* transcription of sgRNA were generated by annealing a scaffold

518 oligonucleotide (sequence:
519 AAAGCACCGACTCGGTGCCACTTTTCAAGTTGATAACGGACTAGCCTTATTTAACTTGCTATTTCTAGCTCTA
520 AAAC) with a gene-specific oligonucleotides containing the SP6 promoter sequence
521 (GCGATTAGGTGACACTATA), a 20 base target sequence (see Supplementary Table 1) and a
522 complementary sequence to the scaffold oligo (GTTTAGAGCTAGAAATAG). PCR amplification was
523 performed using Taq PCR Core Kit (QIAGEN). Reaction mix contained 20 nM scaffold oligo, 20 nM
524 gene-specific oligo, and 260 nM of each universal flanking primer (forward:
525 GCGATTAGGTGACACTATA, reverse: AAAGCACCGACTCGGTGCCAC). Purification of the PCR products
526 were performed using MinElute Reaction Cleanup kit (QIAGEN) followed by a phenol-chloroform-
527 isoamylalcohol extraction. sgRNAs were synthesized in vitro from purified PCR products by using the
528 SP6 RNA-polymerase (NEB). 20 µL reactions contained 1 µg DNA template, 1x reaction buffer, 2.5
529 mM of each rNTP (Roche), 40 U RNase Inhibitor (Thermo Fisher Scientific), and 6 U Large Fragment of
530 DNA Polymerase I (Thermo Fisher Scientific). After pre-incubation for 15 min at room temperature,
531 20 U SP6 RNA-polymerase were added and reactions were run over night at 40 °C. After treatment
532 with 3 U DNase I (AmpGrade; Thermo Fisher Scientific), sgRNAs were purified using High Pure PCR
533 Cleanup Micro Kit (Roche). Concentration of sgRNAs was measured by Nanodrop (Thermo Fisher
534 Scientific) and integrity was checked by gel electrophoresis. Aliquots of sgRNA solutions were stored
535 at –80 °C until use.
536 sgRNA and Cas9 injection.
537 Injection mix containing Cas9 protein (PNA Bio; 100 ng/µl final concentration), sgRNA (80 ng/µL final
538 concentration), 200 mM KCl and up to 0.15% phenol red (Sigma) was injected into one-cell stage
539 embryos. Approximately 3 nL of active sgRNA-Cas9 ribonucleoprotein complex were injected in each
540 one-cell stage Tg(tg:nlsEGFP) embryo. For each sgRNA, at least three independent injection
541 experiments were performed with spawns from at least three different founder fish.
542 Phenotypic analysis of F0 crispants and stable mutant embryos.

543 Following anaesthesia using 0.02% tricaine, thyroid development was monitored in live zebrafish at
544 55 hpf, 80 hpf and 6 dpf by visual inspection using a M165 FC fluorescence stereomicroscope (Leica).
545 For F0 crispants analysis, all injected and non-injected embryos were inspected for gross
546 developmental defects, deviations in size, shape or location of the thyroid, and for the overall
547 intensity of the fluorescent reporter signal. For imaging of the thyroid phenotypes, embryos and
548 larvae were immobilized in 1% low-melting point agarose (Lonza) containing 0.016% tricaine and
549 positioned in Fluoro-Dish glass bottom dishes (WorldPrecision Instruments). Imaging was
550 performed using a DMI600B epifluorescence microscope equipped with a DFC365FX camera and LAS
551 AF Lite software (Leica). If indicated, confocal live imaging was performed with a LSM780 confocal
552 microscope (Zeiss) using Zen 2010 D software (Zeiss).

553 Genotyping of zebrafish *nrf2aΔ5* mutants.

554 Genomic DNA was extracted by a 10min lysis treatment with 50mM NaOH at 95°C either from adult
555 tailfin clips or from whole larvae following. Subsequently, lysate was neutralized using 0.5M TRIS (Ph
556 8.0) and used as template PCRs using primers spanning the mutated site. The following primer
557 sequences were used: Forward 5'-TGATCATCAATCTGCCGTA-3' and Reverse 5'-
558 TCTCTTCAGGTTGCTGCTG-3'. PCR product were then analysed by Sanger sequencing to identify
559 wild-type, heterozygous and homozygous carriers.

560 Phenylthiourea treatment of zebrafish embryo.

561 Zebrafish embryos and larvae were treated with phenylthiourea (PTU; Sigma) from 24 hpf onwards in
562 order to induce hypothyroid conditions (Elsalini and Rohr, 2003; Opitz *et al.*, 2011). A stock solutions
563 of 100 mg/L PTU was diluted in embryo medium to make experimental treatment solutions of 30
564 mg/L PTU. A control group was maintained in embryo medium. Embryos and larvae were treated in
565 90 mm petri dishes containing 25 mL of treatment solution and solutions were renewed every other
566 day.

567 Whole-mount immunofluorescence (WIF).

568 144 hpf larvae were fixed in 4% PFA (pH 7.3) over night at 4 °C and stored in PBS containing 0.1%
569 Tween-20 at 4 °C until use. WIF experiments were performed as previously described (Opitz *et al.*,
570 2011) using the following antibodies: Goat anti-T4 polyclonal antibody (1:1000; Byorbyut), chicken
571 anti-GFP polyclonal antibody (1:1000; Abcam), Mouse anti-iodinated thyroglobulin polyclonal
572 antibody (1:1000; Dako), cy3-conjugated donkey anti-goat IgG antibody (1:250; Jackson
573 ImmunoResearch), Alexa Fluor 488-conjugated goat anti-chicken IgG antibody (1:250; Invitrogen) and
574 cy5-conjugated donkey anti-mouse IgG antibody (1:250, Jackson ImmunoResearch). Following
575 immunostaining, samples were postfixed in 4% PFA and gradually transferred to 100% glycerol for
576 conservation at 4°C. Phenotypical analysis was performed using a M165 FC fluorescence
577 stereomicroscope (Leica). Whole mount imaging of stained specimens was performed either with a
578 DMI600B epifluorescence microscope (Leica) equipped with a DFC365FX camera or, if stated, using a
579 LSM780 confocal microscope (Zeiss).

580 Quantitative analysis of T4 and Tg-I fluorescent signal intensities.

581 Quantification of fluorescent signal was performed as previously described (Thienpont *et al.*, 2011),
582 whole mount imaging of the thyroid region was performed on stained samples using a DMI600B
583 epifluorescence microscope. Using LAS AF imaging software (Leica), pixel sum values were obtained
584 for each thyroid follicular lumen (region of interest 1 to X, ROI 1-X) and adjacent non-fluorescent
585 regions (ROI-bg, background). For each embryo, the intensity of each ROI 1-X was corrected by
586 subtracting the intensity of ROI-bg. The sum of each individual background-corrected fluorescence
587 signal intensities of a single embryo constitutes the measurement of either its T4 or Tg-I content.
588 Values from individual fish were used in comparisons between treatment or mutant groups and
589 controls.

590 Generation of the lsce1 Meganuclease-based Tg(*tg:nrf2a T2A mKO2nls*) transgenic zebrafish line.

591 The Gateway cloning technology-based Tol2kit (Kwan *et al.*, 2007) was used to generate a rescue
592 construct in which the functional *nrf2a* coding sequence fused to a nuclear localised mKO2
593 fluorescent protein with a viral T2A linker peptide (Kim *et al.*, 2011) is expressed under the control of

594 a fragment of the zebrafish *tg* gene promotor previously shown to allow thyroid-specific transgene
595 expression (Opitz *et al.*, 2012). Generation of the plasmid was essentially performed as previously
596 described (Trubiroha *et al.*, 2018). The full *nrf2a* coding sequence fused to the mKO2 protein via the
597 T2A peptide was synthesized by Genewiz company and was subsequently cloned into a pME vector
598 to create a pME-*nrf2a*_T2A_mKO2nls vector. Assembly of the final Tol2Tg(*tg:nrf2a*_T2A_mKO2nls)
599 vector was performed using a LR reaction (Villefranc, Amigo and Lawson, 2007).
600 Capped mRNA encoding for transposase was generated by in vitro transcription of NotI-linearized
601 pCS-zT2TP plasmid (Kawakami, 2004) using mMessage mMachine SP6 kit (Ambion). Transgenic
602 embryos were generated by the co-injection of Tol2Tg(*tg:nrf2a*_T2A_mKO2nls) vector (25 ng/μL) and
603 Tol2 transposase mRNA (35 ng/μL) in one-cell stage *nrf2a*Δ5 heterozygous embryos. Injected
604 embryos were screened at 55 and 80 hpf for mKO2 expression in thyroid cells and only F0 fish
605 presenting thyroid-specific mKO2 expression were raised to adulthood to identify potential germline
606 transmitter. F0 founders with germline transmission were out-crossed with WT fish to generate
607 stable F1 transgenic Tg(*tg:nrf2a*_T2A_mKO2nls) animals. Transgenic F1 embryos were raised to
608 adulthood and genotyped for the presence of the *nrf2a*Δ5 mutation. Tg(*tg:nrf2a*_T2A_mKO2nls) line
609 was maintained in a WT and in a *nrf2a*Δ5 mutant genetic background.

610 Generation of the A2lox_Nkx2-1_Pax8_Nrf2^{-/-} mouse ESC line using CRISPR/Cas9.

611 SgRNAs targeting mouse Nrf2 coding sequence were selected using the prediction algorism CRISPR,
612 as described above. In order to compare the effect of Nrf2 knockout in mESC-derived thyroid with
613 zebrafish *nrf2a*Δ5 mutants, the selected gRNA targets the same genomic region chosen for zebrafish,
614 the DNA binding and transactivation of Nrf2 gene. The most suitable sgRNA was chosen and checked
615 for possible off-targets. Initially, gRNA sequence (GTGTGAGATGAGCCTCTAAG) was cloned inside the
616 pU-BbsI-T2A-Cas9-BFP plasmid (64323, Addgene). Then the A2Lox.Cre_TRE-Nkx2-1/Pax8_Tg-EGFP
617 mouse ESCs (Romitti, 2021) were transfected using Lipofectamine 3000 reagent (Invitrogen), and
618 after 24 h, BFP-expressing cells were sorted, clonal seeded, expanded and analysed by PCR and
619 sequenced. For that, genomic DNA was extracted from individual mESCs clones using the DNeasy

620 Blood and Tissue Kit from Qiagen (Qiagen). PCR was performed using 100 ng of genomic DNA and Q5
621 High-Fidelity Taq Polymerase (New England Biolabs) was used according to the manufacturer's
622 instructions. Primer sets (Fw: 5'-TCCTATGCGTGAATCCAAT-3' and Rv: 5'-TAAGTGGCCCAAGTCTTGCT-
623 3') were used to amplify the Crispr/cas9 target region. PCR products were cloned into TOPO-Blunt
624 plasmid by using Zero Blunt® PCR Cloning Kit (Thermo Fisher) and sequenced using Sanger method.
625 Clones were chosen based on the identification of frameshift mutations in *Nrf2* gene. For thyroid
626 differentiation, two different clones were selected and validated according to the maintenance of
627 pluripotency, tested by spontaneous differentiation into the three germ layers and induction of
628 *Nkx2-1-Pax8* transgenes under Dox stimulation.

629 mESC_Nkx2-1_Pax8_Nrf2^{-/-} culture and thyroid differentiation:

630 Modified mESCs were_cultured and differentiated as previously described (Antonica *et al.*, 2012,
631 2017). Briefly, cells were cultured on irradiated mouse embryonic fibroblasts feeder-layer using a
632 mESC medium (Antonica et al 2012, 2017). For thyroid differentiation induction, *Nkx2-1_Pax8_Nrf2^{-/-}*
633 and *Nkx2-1_Pax8_Nrf2^{wt/wt}* (control) mES cells were cultured for four days in suspension using
634 hanging drops method in order to generate embryoid bodies (EBs). After four days, generated EBs
635 were collected and embedded in 50µl (around 40 EBs) of growth-factor-reduced Matrigel® (BD
636 Biosciences), plated in 12-well plates and treated for three days with 1 mg/ml Doxycycline (Sigma), in
637 order to stimulate *Nkx2-1* and *Pax8* transgenes expression. After Dox withdraw, cells were treated
638 for two weeks with 300µM 8-br-cAMP (Biolog Inc.) or 1mU/ml rhTSH (Genzyme) (Romitti *et al.*,
639 2021). Samples were collected at distinct time points for RNA expression and histological analysis.

640 Quantitative PCR (qPCR) Analysis:

641 qPCR was performed on cDNA generated from thyroid organoids derived from *Nrf2* WT and KO cells
642 at differentiation day 7 and 22 or from whole zebrafish embryos at 6 days of age. Total RNA was
643 extracted from samples using RNeasy micro kit (Qiagen) according to the manufacturer's
644 instructions. cDNA was generated by reverse transcription using Superscript II kit (Invitrogen). qPCR
645 was performed in triplicates using Takyon (Eurogentec) and CFX Connect Real-Time System (Biorad).

646 Results are presented as linearized values normalized to the housekeeping gene, B2microglobulin
647 and the indicated reference value (2-DDCt). The gene expression profile was obtained from at least
648 three independent samples and compared to their respective control (Nkx2-1_Pax8_Nrf2^{wt/wt} mESC
649 line or WT zebrafish embryos). Primers sequences are listed in the table 1.

650 Flow cytometry intracellular immunostaining:

651 Nrf2^{wt/wt} and Nrf2^{-/-}-derived cells were collected at day 22 (cAMP condition) and prepared for flow
652 cytometry immunostaining as follows: Matrigel-embedded organoids were digested using a HBSS
653 solution containing 10 U/ml dispase II (Roche) and 125 U/ml of collagenase type IV (Gibco, Thermo
654 Fisher) for 30-60 minutes at 37°C; then, enzymes were inactivated using 10% FBS followed by
655 incubation with TripLE Express solution (Thermo Fisher) for 10-15 min, at 37°C, to dissociate
656 remaining structures (including thyroid follicles) and finally obtain single cell suspension. After
657 inactivation by addition of differentiation medium, cells were centrifuged, rinsed with PBS and fixed
658 in 1.6% PFA solution in PBS for 15min at RT, followed by cell permeabilization with 0.1% Triton
659 solution in PBS for 15 min at 4°C under agitation. After centrifugation, cells were blocked using 4%
660 horse serum (HS) and 0.5% Tween 20 PBS blocking solution for 10 min (4°C under agitation). Primary
661 anti-rabbit Nkx2-1 antibody (1:100) was diluted in blocking solution and samples incubated for 30
662 min (4°C under agitation). Cells were then rinsed three times with washing solution (0.5% BSA and
663 0.5% Tween in PBS) and then incubated with Cy5-conjugated anti-rabbit antibody (1:300, in blocking
664 solution) for 30 min (4°C under agitation). Data concerning bTg-GFP (endogenous expression) and
665 Nkx2-1 expression were obtained and processed using a LSRFortessa X-20 flow cytometer and
666 FACSDiva software (BD Biosciences), respectively. Unstained cells and isotype controls were included
667 in all experiments. In addition, GFP+ cell quantification was used to estimate the proportion of Tg+
668 cells generated by Nrf2^{wt/wt} and Nrf2^{-/-} cells.

669 Immunofluorescence:

670 Protein immuno-detection experiments were performed as previously described (Antonica *et al.*,
671 2012; Romitti *et al.*, 2021). Briefly, organoids were fixed in 4% paraformaldehyde (Sigma) for 1 h at

672 room temperature (RT), washed three times in PBS and blocked in a solution containing 3% bovine
673 serum albumin (BSA; Sigma), 5% horse serum (Invitrogen) and 0.3% Triton X-100 in PBS (Sigma) for
674 30 min at RT. The primary and secondary antibodies were diluted in a PBS solution containing 3%
675 BSA, 1% horse serum and 0.1% Triton X-100. Primary and secondary antibodies dilutions and
676 specifications are described at table 2 and table 3 respectively. Coverslips containing the stained
677 organoids were mounted with Glycergel (Dako) and samples were imaged on Leica DMI6000 or Zeiss
678 LSM 780 confocal microscope.

679 Iodide Organification Assay:

680 Nrf2^{wt/wt} and Nrf2^{-/-}-derived organoids (cAMP treated) were tested for the ability of iodide uptake
681 and organification at differentiation day 22. Matrigel drops containing approximately same number
682 of organoids were initially washed with HBSS and incubated with 1 ml of a HBSS solution containing
683 ¹²⁵I (1,000,000 c.p.m./ml; PerkinElmer) and 100 nM of sodium iodide (NaI; Sigma) for 2 h at 37°C.
684 After incubation, 1 ml of 4 mM methimazole (MMI), was added and cells washed with ice-cold PBS. In
685 order to collect and dissociate the organoids from the MTG drops, cells were incubated with 0.1%
686 trypsin (Invitrogen) and 1 mM EDTA (Invitrogen) in PBS for 15 min. For iodide uptake evaluation, cells
687 were collected in polyester tubes and radioactivity was measured with a c-counter. After, proteins
688 were precipitated using 1 mg of gamma-globulins (Sigma) and 2 ml 20% TCA followed by
689 centrifugation at 2,000 r.p.m. for 10 min, at 4°C and the ¹²⁵I protein-bound (PBI) was measured.
690 Iodide organification was calculated by iodide uptake/PBI ratio and the values expressed as a
691 percentage. As control for iodide uptake and protein-binding cells were also treated with 30mM
692 sodium perchlorate (Nis inhibitor; NaClO₄, Sigma-Aldrich)) and 2 mM methimazole (TPO inhibitor;
693 MMI, Sigma-Aldrich), respectively. Experiments were performed using at least three independent
694 replicates.

695 Bulk RNA-Sequencing:

696 Bulk RNA-seq was performed in Nrf2^{wt/wt} and Nrf2^{-/-}-differentiated cells at day 22 of our
697 differentiation protocol. Total RNA isolation was performed as described above (qPCR section). The

698 RNA concentration and quality was accessed using Bioanalyser 2100 (Agilent) and RNA 6000 Nano Kit
699 (Agilent). RNA integrity was preserved, and no genomic DNA contamination was detected. Illumina
700 TruSeq RNA Library Prep Kit v2 was employed, as indicated by the manufacturer, resulting in high
701 quality indexed cDNA libraries, which were quantified using Quant-iT PicoGreen kit (Life Sciences)
702 and Infinite F200 Pro plate reader (Tecan); DNA fragment size distribution was examined on 2100
703 Bioanalyser (Agilent) using DNA 1000 kit (Agilent). The multiplexed libraries (10pM) were loaded on
704 flow cells and sequenced on the HiSeq 1500 system (Illumina) in a high output mode using HiSeq
705 Cluster kit v4 (Illumina). Roughly 10 million paired-end reads were obtained per sample. After
706 removal of low-quality bases and Illumina adapter sequences using Trimmomatic software (Bolger,
707 Lohse and Usadel, 2014), sequence reads were aligned against mouse reference genome
708 (Grcm38/mm10) using STAR software with default parameters (Dobin *et al.*, 2013). Raw counts were
709 obtained using HTSeq software (Anders, Pyl and Huber, 2015) using Ensembl genome annotation.
710 Normalization, differential expression and Gene Ontology analyses were performed using two
711 biological replicates per sample, using website iDEP version 0.93 (Ge, Son and Yao, 2018). Genes in
712 which the expression levels were lower than 5 were filtered out.

713 Regulatory sequence analysis:

714 The regulatory sequence for mouse Tg was downloaded from the EPDnew database ([http://epd.vital-
715 it.ch](http://epd.vital-it.ch), Promoter ID: TG_1) (Dreos *et al.*, 2017). Bovine and zebrafish Tg regulatory sequences used in
716 this study are the same as the one used to develop the previously published reporter mESC and
717 zebrafish lines (Antonica *et al.*, 2012; Trubiroha *et al.*, 2018). Identification of potential ARE
718 sequences was done through the JASPAR database (<http://jaspar.genereg.net>) (Mathelier *et al.*,
719 2016) using the ARE weight matrix MA0150.2. Only identified sequences with a p-value and a q-value
720 <0.05 were considered for the analysis.

721

722 Acknowledgment

723 We thank members of the Costagliola laboratory for comments on the manuscript and technical
724 assistance and members of IRIBHM fish facility for technical assistance. We thank J.-M.
725 Vanderwinden from the Light Microscopy Facility and Christine Dubois from the FACS facility for
726 technical assistance at ULB. Bulk RNA sequencing was performed at the Brussels Interuniversity
727 Genomics High Throughput core (BRIGHTcore: www.brightcore.be).

728

729 **Funding**

730 This work was supported by grants from the Belgian National Fund for Scientific Research (FNRS)
731 (FRSM 3-4598-12, PDR T.0140.14; PDR T.0230.18, CDR-J.0145.16, GEQ U.G030.19), the Fonds
732 d'Encouragement à la Recherche de l'Université Libre de Bruxelles (FER-ULB) and it has received
733 funding from the European Union's Horizon 2020 research and innovation programme under grant
734 agreement No. 825745. This work was also supported by a Privileged Partnership Grant between ULB
735 and UNIL (to G.P.S. and S.C.), the Swiss National Foundation Research Grants 31003A_182105 and
736 IZCOZO_177070 (to G.P.S.). Work by S.P.S. was supported by MISU funding from the FNRS (34772792
737 – SCHISM). G.P, D.B, H.B were supported by FRIA. R.M was supported in part by the Brazilian
738 National Council for Scientific and Technological Development (CNPq; Brazil). FNRS (Chargé de
739 Recherche) and by ULB. P.S.M was supported by FNRS, F.F.B by ULB. S.C is Research Director at FNRS.

740

741 **Bibliography**

742 Alt, B. *et al.* (2006) 'Analysis of origin and growth of the thyroid gland in zebrafish',
743 *Developmental Dynamics*, 235(7), pp. 1872–1883. doi: 10.1002/dvdy.20831.
744

745 Anders, S., Pyl, P. T. and Huber, W. (2015) 'HTSeq-A Python framework to work with high-
746 throughput sequencing data', *Bioinformatics*, 31(2), pp. 166–169. doi:
747 10.1093/bioinformatics/btu638.
748

749 Antonica, F. *et al.* (2012) 'Generation of functional thyroid from embryonic stem cells',
750 *Nature*, 490(7422), pp. 66–71. doi: 10.1038/nature11525.
751

752 Antonica, F. *et al.* (2017) 'Generation of Functional Thyroid Tissue Using 3D-Based Culture of

753 Embryonic Stem Cells.', *Methods in molecular biology* (Clifton, N.J.), 1597, pp. 85–95. doi:
754 10.1007/978-1-4939-6949-4_7.

755

756 Bagci, E. *et al.* (2015) 'Deiodinase knockdown during early zebrafish development affects
757 growth, development, energy metabolism, motility and phototransduction', *PLoS ONE*,
758 10(4), pp. 1–22. doi: 10.1371/journal.pone.0123285.

759

760 Bolger, A. M., Lohse, M. and Usadel, B. (2014) 'Trimmomatic: A flexible trimmer for Illumina
761 sequence data', *Bioinformatics*, 30(15), pp. 2114–2120. doi: 10.1093/bioinformatics/btu170.

762

763 Buendia, I. *et al.* (2016) 'Nrf2-ARE pathway: An emerging target against oxidative stress and
764 neuroinflammation in neurodegenerative diseases', *Pharmacology and Therapeutics*, 157,
765 pp. 84–104. doi: 10.1016/j.pharmthera.2015.11.003.

766

767 Campinho, M. A. (2019) 'Teleost metamorphosis: The role of thyroid hormone', *Frontiers in
768 Endocrinology*, 10(JUN), pp. 1–12. doi: 10.3389/fendo.2019.00383.

769

770 Carvalho, D. P. and Dupuy, C. (2017) 'Thyroid hormone biosynthesis and release', *Molecular
771 and Cellular Endocrinology*, 458, pp. 6–15. doi: 10.1016/j.mce.2017.01.038.

772

773 Chartoumpekis, D. V. *et al.* (2020) 'The transcriptomic response of the murine thyroid gland
774 to iodide overload and the role of the nrf2 antioxidant system', *Antioxidants*, 9(9), pp. 1–21.
775 doi: 10.3390/antiox9090884.

776

777 Chelikani, P., Fita, I. and Loewen, P. C. (2004) 'Diversity of structures and properties among
778 catalases', *Cellular and Molecular Life Sciences*, 61(2), pp. 192–208. doi: 10.1007/s00018-
779 003-3206-5.

780

781 Chiamolera, M. I. and Wondisford, F. E. (2009) 'Minireview: Thyrotropin-releasing hormone
782 and the thyroid hormone feedback mechanism', *Endocrinology*, 150(3), pp. 1091–1096. doi:
783 10.1210/en.2008-1795.

784

785 Christophe, D. (2004) 'The control of thyroid-specific gene expression: What exactly have we
786 learned as yet?', *Molecular and Cellular Endocrinology*, 223(1–2), pp. 1–4. doi:
787 10.1016/j.mce.2004.06.006.

788

789 Dai, X. *et al.* (2020) 'Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function',
790 *Trends in Molecular Medicine*, 26(2), pp. 185–200. doi: 10.1016/j.molmed.2019.09.007.

791

792 Dobin, A. *et al.* (2013) 'STAR: Ultrafast universal RNA-seq aligner', *Bioinformatics*, 29(1), pp.
793 15–21. doi: 10.1093/bioinformatics/bts635.

794

795 Dreos, R. *et al.* (2017) 'The eukaryotic promoter database in its 30th year: Focus on non-
796 vertebrate organisms', *Nucleic Acids Research*, 45(D1), pp. D51–D55. doi:
797 10.1093/nar/gkw1069.

798

799 Dumont, J. E., Maenhaut, C. and Lamy, F. (1992) 'Control of thyroid cell proliferation and

800 goitrogenesis', *Trends in Endocrinology and Metabolism*, 3(1), pp. 12–17. doi: 10.1016/1043-
801 2760(92)90086-G.
802
803 Elsalini, O. a and Rohr, K. B. (2003) 'Phenylthiourea disrupts thyroid function in developing
804 zebrafish.', *Development genes and evolution*, 212, pp. 593–598. doi: 10.1007/s00427-002-
805 0279-3.
806
807 Ge, S. X., Son, E. W. and Yao, R. (2018) 'iDEP: An integrated web application for differential
808 expression and pathway analysis of RNA-Seq data', *BMC Bioinformatics*, 19(1), pp. 1–24. doi:
809 10.1186/s12859-018-2486-6.
810
811 Gérard, C. M., Roger, P. P. and Dumont, J. E. (1989) 'Thyroglobulin gene expression as a
812 differentiation marker in primary cultures of calf thyroid cells', *Molecular and Cellular
813 Endocrinology*, 61(1), pp. 23–35. doi: 10.1016/0303-7207(89)90186-X.
814
815 Giusti, N. *et al.* (2020) 'Inhibition of the thyroid hormonogenic H₂O₂ production by
816 Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound', *Molecular and
817 Cellular Endocrinology*, 500(August 2019), p. 110635. doi: 10.1016/j.mce.2019.110635.
818
819 Gonay, L. *et al.* (2021) 'Modelling of Epithelial Growth, Fission and Lumen Formation During
820 Embryonic Thyroid Development: A Combination of Computational and Experimental
821 Approaches', *Frontiers in Endocrinology*, 12(June), pp. 1–15. doi:
822 10.3389/fendo.2021.655862.
823
824 Hahn, M. E. *et al.* (2011) 'Nrf2b, Novel Zebrafish Paralog of Oxidant-responsive Transcription
825 Factor NF-E2-related Factor 2 (NRF2)', *Journal of Biological Chemistry*, 287(7), pp. 4609–
826 4627. doi: 10.1074/jbc.m111.260125.
827
828 El Hassani, R. A. *et al.* (2019) 'Oxidative stress in thyroid carcinomas: Biological and clinical
829 significance', *Endocrine-Related Cancer*, 26(3), pp. R131–R143. doi: 10.1530/ERC-18-0476.
830
831 Hayes, J. D. and McLellan, L. I. (1999) 'Glutathione and glutathione-dependent enzymes
832 represent a co-ordinately regulated defence against oxidative stress', *Free Radical Research*,
833 31(4), pp. 273–300. doi: 10.1080/10715769900300851.
834
835 van Heuverswyn, B. *et al.* (1984) 'Thyrotropin controls transcription of the thyroglobulin
836 gene', *Proceedings of the National Academy of Sciences of the United States of America*,
837 81(19 I), pp. 5941–5945. doi: 10.1073/pnas.81.19.5941.
838
839 Iso, T. *et al.* (2016) 'Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within
840 Cells', *Molecular and Cellular Biology*, 36(24), pp. 3100–3112. doi: 10.1128/mcb.00389-16.
841
842 Jang, J. *et al.* (2016) 'Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human
843 Embryonic Stem Cells to a Neuroectoderm Fate', *Cell*, 165(2), pp. 410–420. doi:
844 10.1016/j.cell.2016.02.014.
845
846 Di Jeso, B. and Arvan, P. (2016) 'Thyroglobulin from molecular and cellular biology to clinical

847 endocrinology', *Endocrine Reviews*, 37(1), pp. 2–36. doi: 10.1210/er.2015-1090.

848

849 Kahaly, G. J. and Dillmann, W. H. (2005) 'Thyroid hormone action in the heart', *Endocrine*
850 *Reviews*, 26(5), pp. 704–728. doi: 10.1210/er.2003-0033.

851

852 Karin, M. (1995) 'The regulation of AP-1 activity by mitogen-activated protein kinases', *Journal of Biological Chemistry*, 270(28), pp. 16483–16486. doi: 10.1074/jbc.270.28.16483.

853

854

855 Karin, M., Liu, Z. G. and Zandi, E. (1997) 'AP-1 function and regulation', *Current Opinion in*
856 *Cell Biology*, 9(2), pp. 240–246. doi: 10.1016/S0955-0674(97)80068-3.

857

858 Kawakami, K. (2004) 'Transgenesis and gene trap methods in zebrafish by using the Tol2
859 transposable element', *Methods in Cell Biology*, 2004(77), pp. 201–222. doi: 10.1016/s0091-
860 679x(04)77011-9.

861

862 Kim, B. (2008) 'Thyroid hormone as a determinant of energy expenditure and the basal
863 metabolic rate.', *Thyroid*, 18(2), pp. 141–144. doi: 10.1089/thy.2007.0266.

864

865 Kim, J. H. *et al.* (2011) 'High cleavage efficiency of a 2A peptide derived from porcine
866 teschovirus-1 in human cell lines, zebrafish and mice', *PLoS ONE*, 6(4), pp. 1–8. doi:
867 10.1371/journal.pone.0018556.

868

869 Kimmel, C. B. *et al.* (1995) 'Stages of embryonic development of the zebrafish.',
870 *Developmental dynamics: an official publication of the American Association of Anatomists*,
871 203(3), pp. 253–310. doi: 10.1002/aja.1002030302.

872

873 Klein, I. and Ojamaa, K. (2001) 'Thyroid Hormone and the Cardiovascular System', *The New*
874 *England Journal of Medicine*, 344(7), pp. 501–509.

875

876 Kwak, M.-K. *et al.* (2003) 'Antioxidants Enhance Mammalian Proteasome Expression through
877 the Keap1-Nrf2 Signaling Pathway', *Molecular and Cellular Biology*, 23(23), pp. 8786–8794.
878 doi: 10.1128/mcb.23.23.8786-8794.2003.

879

880 Kwan, K. M. *et al.* (2007) 'The Tol2kit: a multisite gateway-based construction kit for Tol2
881 transposon transgenesis constructs.', *Developmental dynamics: an official publication of*
882 *the American Association of Anatomists*, 236(11), pp. 3088–3099. doi: 10.1002/dvdy.21343.

883

884 Li, W. *et al.* (2008) 'Activation of Nrf2-antioxidant signaling attenuates NF κ B-inflammatory
885 response and elicits apoptosis', *Biochemical Pharmacology*, 76(11), pp. 1485–1489. doi:
886 10.1016/j.bcp.2008.07.017.

887

888 Liang, S. *et al.* (2018) 'A branching morphogenesis program governs embryonic growth of the
889 thyroid gland', *Development (Cambridge)*, 145(2). doi: 10.1242/dev.146829.

890

891 Liu, M. *et al.* (2015) 'Low growth hormone levels in short-stature children with pituitary
892 hyperplasia secondary to primary hypothyroidism', *International Journal of Endocrinology*,
893 2015(March 2010). doi: 10.1155/2015/283492.

894
895 Liu, Y. W. and Chan, W. K. (2002) 'Thyroid hormones are important for embryonic to larval
896 transitory phase in zebrafish', *Differentiation*, 70(1), pp. 36–45. doi: 10.1046/j.1432-
897 0436.2002.700104.x.
898
899 Loboda, A. *et al.* (2016) 'Role of Nrf2/HO-1 system in development, oxidative stress response
900 and diseases: an evolutionarily conserved mechanism', *Cellular and Molecular Life Sciences*,
901 73(17), pp. 3221–3247. doi: 10.1007/s00018-016-2223-0.
902
903 Ma, Q. (2013) 'Role of Nrf2 in oxidative stress and toxicity', *Annual Review of Pharmacology
904 and Toxicology*, 53, pp. 401–426. doi: 10.1146/annurev-pharmtox-011112-140320.
905
906 Ma, Q., Battelli, L. and Hubbs, A. F. (2006) 'Multiorgan autoimmune inflammation, enhanced
907 lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking
908 the antioxidant-activated transcription factor Nrf2', *American Journal of Pathology*, 168(6),
909 pp. 1960–1974. doi: 10.2353/ajpath.2006.051113.
910
911 Malhotra, D. *et al.* (2010) 'Global mapping of binding sites for Nrf2 identifies novel targets in
912 cell survival response through chip-seq profiling and network analysis', *Nucleic Acids
913 Research*, 38(17), pp. 5718–5734. doi: 10.1093/nar/gkq212.
914
915 Marians, R. C. *et al.* (2002) 'Defining thyrotropin-dependent and -independent steps of
916 thyroid hormone synthesis by using thyrotropin receptor-null mice', *Proceedings of the
917 National Academy of Sciences of the United States of America*, 99(24), pp. 15776–15781. doi:
918 10.1073/pnas.242322099.
919
920 Mathelier, A. *et al.* (2016) 'JASPAR 2016: A major expansion and update of the open-access
921 database of transcription factor binding profiles', *Nucleic Acids Research*, 44(D1), pp. D110–
922 D115. doi: 10.1093/nar/gkv1176.
923
924 McMahon, M. *et al.* (2004) 'Redox-regulated turnover of Nrf2 is determined by at least two
925 separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6
926 degron', *Journal of Biological Chemistry*, 279(30), pp. 31556–31567. doi:
927 10.1074/jbc.M403061200.
928
929 Mitsuishi, Y. *et al.* (2012) 'Nrf2 Redirects Glucose and Glutamine into Anabolic Pathways in
930 Metabolic Reprogramming', *Cancer Cell*, 22(1), pp. 66–79. doi: 10.1016/j.ccr.2012.05.016.
931
932 Mohan, V. *et al.* (2012) 'Maternal thyroid hormone deficiency affects the fetal
933 neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect
934 neurogenesis', *Experimental Neurology*, 237(2), pp. 477–488. doi:
935 10.1016/j.expneurol.2012.07.019.
936
937 Moog, N. K. *et al.* (2017) 'Influence of maternal thyroid hormones during gestation on fetal
938 brain development', *Neuroscience*, 342, pp. 68–100. doi:
939 10.1016/j.neuroscience.2015.09.070.
940

941 Muid, K. A., Karakaya, H. Ç. and Koc, A. (2014) 'Absence of superoxide dismutase activity
942 causes nuclear DNA fragmentation during the aging process', *Biochemical and Biophysical
943 Research Communications*, 444(2), pp. 260–263. doi: 10.1016/j.bbrc.2014.01.056.

944

945 Mukaigasa, K. *et al.* (2012) 'Genetic Evidence of an Evolutionarily Conserved Role for Nrf2 in
946 the Protection against Oxidative Stress', *Molecular and Cellular Biology*, 32(21), pp. 4455–
947 4461. doi: 10.1128/mcb.00481-12.

948

949 Mullur, R., Liu, Y.-Y. and Brent, G. A. (2014) 'Thyroid Hormone Regulation of Metabolism',
950 *Physiological Reviews*, 94(2), pp. 355–382. doi: 10.1152/physrev.00030.2013.

951

952 Murakami, S. *et al.* (2017) 'NRF2 Activation Impairs Quiescence and Bone Marrow
953 Reconstitution Capacity of Hematopoietic Stem Cells', *Molecular and Cellular Biology*,
954 37(19), pp. 1–16.

955

956 Nilsson, M. and Fagman, H. (2017) 'Development of the thyroid gland', *Development
(Cambridge)*, 144(12), pp. 2123–2140. doi: 10.1242/dev.145615.

957

958 Opitz, R. *et al.* (2011) 'TSH Receptor Function Is Required for Normal Thyroid Differentiation
959 in Zebrafish.', *Molecular endocrinology (Baltimore, Md.)*, 25(9), pp. 1579–1599. doi:
960 10.1210/me.2011-0046.

961

962 Opitz, R. *et al.* (2012) 'Transgenic zebrafish illuminate the dynamics of thyroid
963 morphogenesis and its relationship to cardiovascular development', *Developmental Biology*,
964 372(2), pp. 203–216. doi: 10.1016/j.ydbio.2012.09.011.

965

966

967 Ortiga-Carvalho, T. M. *et al.* (2016) 'Hypothalamus-pituitary-thyroid axis', *Comprehensive
968 Physiology*, 6(3), pp. 1387–1428. doi: 10.1002/cphy.c150027.

969

970 Persani, L. *et al.* (2018) 'Genetics and management of congenital hypothyroidism', *Best
971 Practice & Research Clinical Endocrinology & Metabolism*, 32(4), pp. 387–396. doi:
972 10.1016/j.beem.2018.05.002.

973

974 Pierreux, C. E. (2021) 'Shaping the thyroid: From peninsula to de novo lumen formation',
975 *Molecular and Cellular Endocrinology*, 531(February), p. 111313. doi:
976 10.1016/j.mce.2021.111313.

977

978 Poncin, S. *et al.* (2010) 'Oxidative stress: A required condition for thyroid cell proliferation',
979 *American Journal of Pathology*, 176(3), pp. 1355–1363. doi: 10.2353/ajpath.2010.090682.

980

981 Poncin, S., Colin, I. M. and Gérard, A. C. (2009) 'Minimal oxidative load: A prerequisite for
982 thyroid cell function', *Journal of Endocrinology*, 201(1), pp. 161–167. doi: 10.1677/JOE-08-
983 0470.

984

985 Porazzi, P. *et al.* (2009) 'Thyroid gland development and function in the zebrafish model',
986 *Molecular and Cellular Endocrinology*, 312, pp. 14–23. doi: 10.1016/j.mce.2009.05.011.

987

988 Postiglione, M. P. *et al.* (2002) 'Role of the thyroid-stimulating hormone receptor signaling in
989 development and differentiation of the thyroid gland.', *Proceedings of the National Academy
990 of Sciences of the United States of America*, 99(24), pp. 15462–15467. doi:
991 10.1073/pnas.242328999.

992

993 Raghunath, A. *et al.* (2018) 'Genome-wide identification and analysis of Nrf2 binding sites –
994 Antioxidant response elements in zebrafish', *Toxicology and Applied Pharmacology*,
995 360(September), pp. 236–248. doi: 10.1016/j.taap.2018.09.013.

996

997 Ralser, M. *et al.* (2007) 'Dynamic rerouting of the carbohydrate flux is key to counteracting
998 oxidative stress', *Journal of Biology*, 6(4). doi: 10.1186/jbiol61.

999

1000 Renaud, C. O. *et al.* (2019) 'Keap1/Nrf2 Signaling: A New Player in Thyroid Pathophysiology
1001 and Thyroid Cancer', *Frontiers in Endocrinology*, 10(August). doi: 10.3389/fendo.2019.00510.

1002

1003 Romitti, M. *et al.* (2021) 'Single-Cell Trajectory Inference Guided Enhancement of Thyroid
1004 Maturation In Vitro Using TGF-Beta Inhibition', *Frontiers in Endocrinology*, 12(May), pp. 1–
1005 13. doi: 10.3389/fendo.2021.657195.

1006

1007 Rushmore, T. H., Morton, M. R. and Pickett, C. B. (1991) 'The antioxidant responsive
1008 element: Activation by oxidative stress and identification of the DNA consensus sequence
1009 required for functional activity', *Journal of Biological Chemistry*, 266(18), pp. 11632–11639.
1010 doi: 10.1016/s0021-9258(18)99004-6.

1011

1012 Shields, B. M. *et al.* (2011) 'Fetal thyroid hormone level at birth is associated with fetal
1013 growth', *Journal of Clinical Endocrinology and Metabolism*, 96(6), pp. 934–938. doi:
1014 10.1210/jc.2010-2814.

1015

1016 Shupnik, M. A. *et al.* (1985) 'Transcriptional regulation of the thyrotropin subunit genes by
1017 thyroid hormone', *Journal of Biological Chemistry*, 260(5), pp. 2900–2903. doi:
1018 10.1016/S0021-9258(18)89450-9.

1019

1020 Siauciunaite, R. *et al.* (2019) 'Evolution shapes the gene expression response to Oxidative
1021 Stress', *International Journal of Molecular Sciences*, 20(12). doi: 10.3390/ijms20123040.

1022

1023 Talbot, J. C. and Amacher, S. L. (2014) 'A Streamlined CRISPR Pipeline to Reliably Generate
1024 Zebrafish Frameshifting Alleles', *Zebrafish*, 11(6), pp. 583–585. doi: 10.1089/zeb.2014.1047.

1025

1026 Thanas, C. *et al.* (2020) 'The Keap1 / Nrf2 Signaling Pathway in the Thyroid — 2020 Update',
1027 *Antioxidants*, 9(1082), pp. 1–14.

1028

1029 Thienpont, B. *et al.* (2011) 'Zebrafish eleutheroembryos provide a suitable vertebrate model
1030 for screening chemicals that impair thyroid hormone synthesis', *Environmental Science and
1031 Technology*, 45(17), pp. 7525–7532. doi: 10.1021/es202248h.

1032

1033 Trubiroha, A. *et al.* (2018) 'A Rapid CRISPR/Cas-based Mutagenesis Assay in Zebrafish for
1034 Identification of Genes Involved in Thyroid Morphogenesis and Function', *Scientific Reports*,

1035 8(1), pp. 1–19. doi: 10.1038/s41598-018-24036-4.

1036

1037 Tsai, J. J. *et al.* (2013) 'Nrf2 regulates haematopoietic stem cell function', *Nature Cell Biology*,
1038 15(3), pp. 309–316. doi: 10.1038/ncb2699.

1039

1040 Vassart, G. and Dumont, J. E. (1992) 'The thyrotropin receptor and the regulation of
1041 thyrocyte function and growth', *Endocrine Reviews*, 13(3), pp. 596–611. doi: 10.1210/edrv-
1042 13-3-596.

1043

1044 Villacorte, M. *et al.* (2016) 'Thyroid follicle development requires Smad1/5-and endothelial
1045 cell-dependent basement membrane assembly', *Development (Cambridge)*, 143(11), pp.
1046 1958–1970. doi: 10.1242/dev.134171.

1047

1048 Villefranc, J. A., Amigo, J. and Lawson, N. D. (2007) 'Gateway Compatible Vectors for Analysis
1049 of Gene Function in the Zebrafish', *Developmental Dynamics*, 236(11), pp. 3077–3087. doi:
1050 10.1002/nbm.3369.Three.

1051

1052 Wassner, A. J. (2018) 'Congenital Hypothyroidism', *Clinics in Perinatology*, 45(1), pp. 1–18.
1053 doi: 10.1016/j.clp.2017.10.004.

1054

1055 Westerfield, M. (2000) *The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish*
1056 (*Danio rerio*). 4th edn. Edited by M. Westerfield. University of Oregon Press.

1057

1058 Xu, H. *et al.* (2015) 'Sequence determinants of improved CRISPR sgRNA design', *Genome
1059 Research*, 25(8), pp. 1147–1157. doi: 10.1101/gr.191452.115.

1060

1061 Yamamoto, M., Kensler, T. W. and Motohashi, H. (2018) 'The KEAP1-NRF2 system: A thiol-
1062 based sensor-effector apparatus for maintaining redox homeostasis', *Physiological Reviews*,
1063 98(3), pp. 1169–1203. doi: 10.1152/physrev.00023.2017.

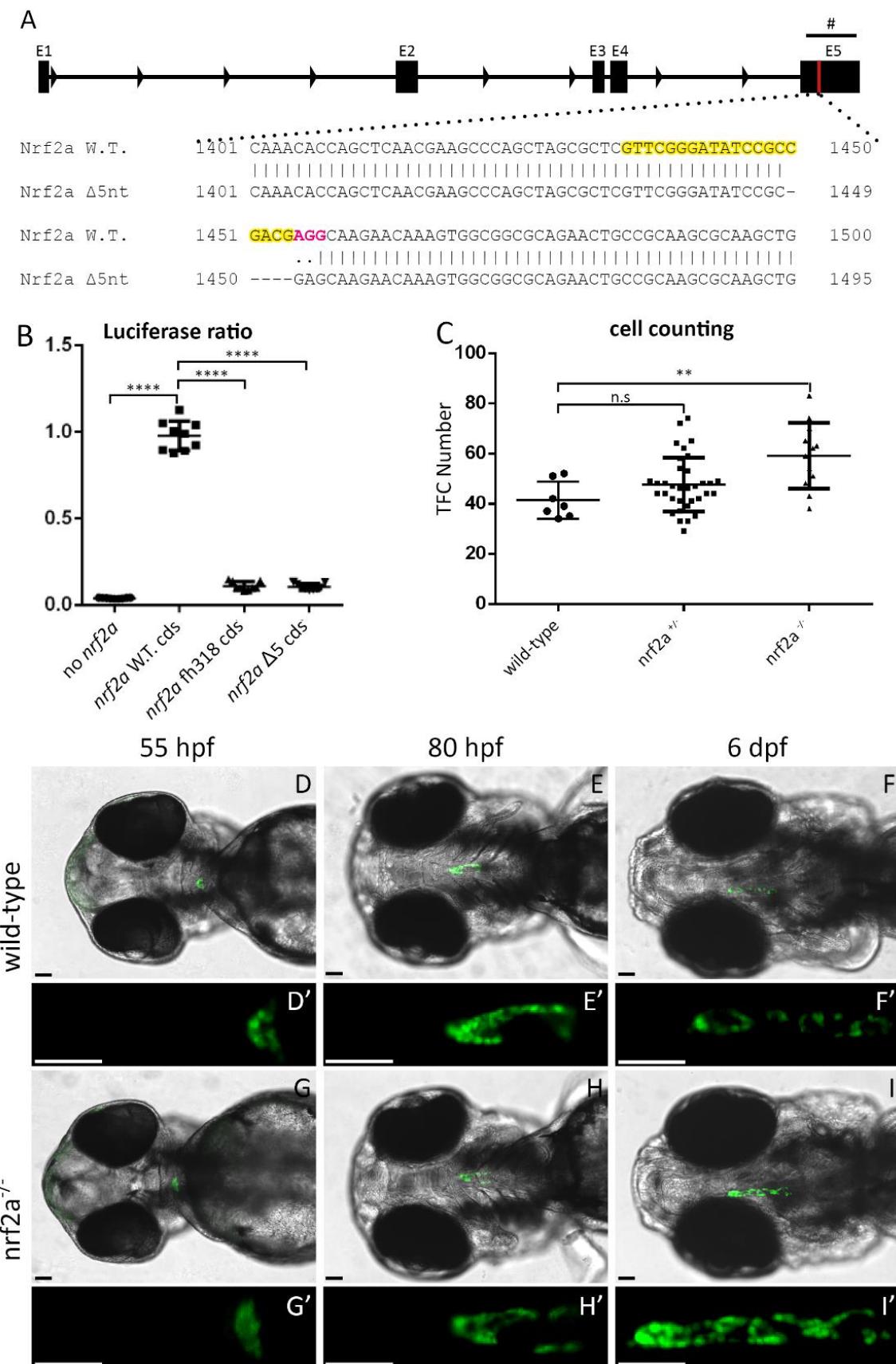
1064

1065 Yen, P. M. *et al.* (2006) 'Thyroid hormone action at the cellular , genomic and target gene
1066 levels', *Molecular and Cellular Endocrinology*, 246, pp. 121–127. doi:
1067 10.1016/j.mce.2005.11.030.

1068

1069 Yoh, K. *et al.* (2001) 'Nrf2-deficient female mice develop lupus-like autoimmune nephritis',
1070 *Kidney International*, 60(4), pp. 1343–1353. doi: 10.1046/j.1523-1755.2001.00939.x.

1071


1072 Zhu, J. *et al.* (2016) 'An overview of chemical inhibitors of the Nrf2-ARE signaling pathway
1073 and their potential applications in cancer therapy', *Free Radical Biology and Medicine*, 99,
1074 pp. 544–556. doi: 10.1016/j.freeradbiomed.2016.09.010.

1075

1076 Ziros, P. G. *et al.* (2018) 'NFE2-Related transcription factor 2 coordinates antioxidant defense
1077 with thyroglobulin production and iodination in the thyroid gland', *Thyroid*, 28(6), pp. 780–
1078 798. doi: 10.1089/thy.2018.0018.

1079

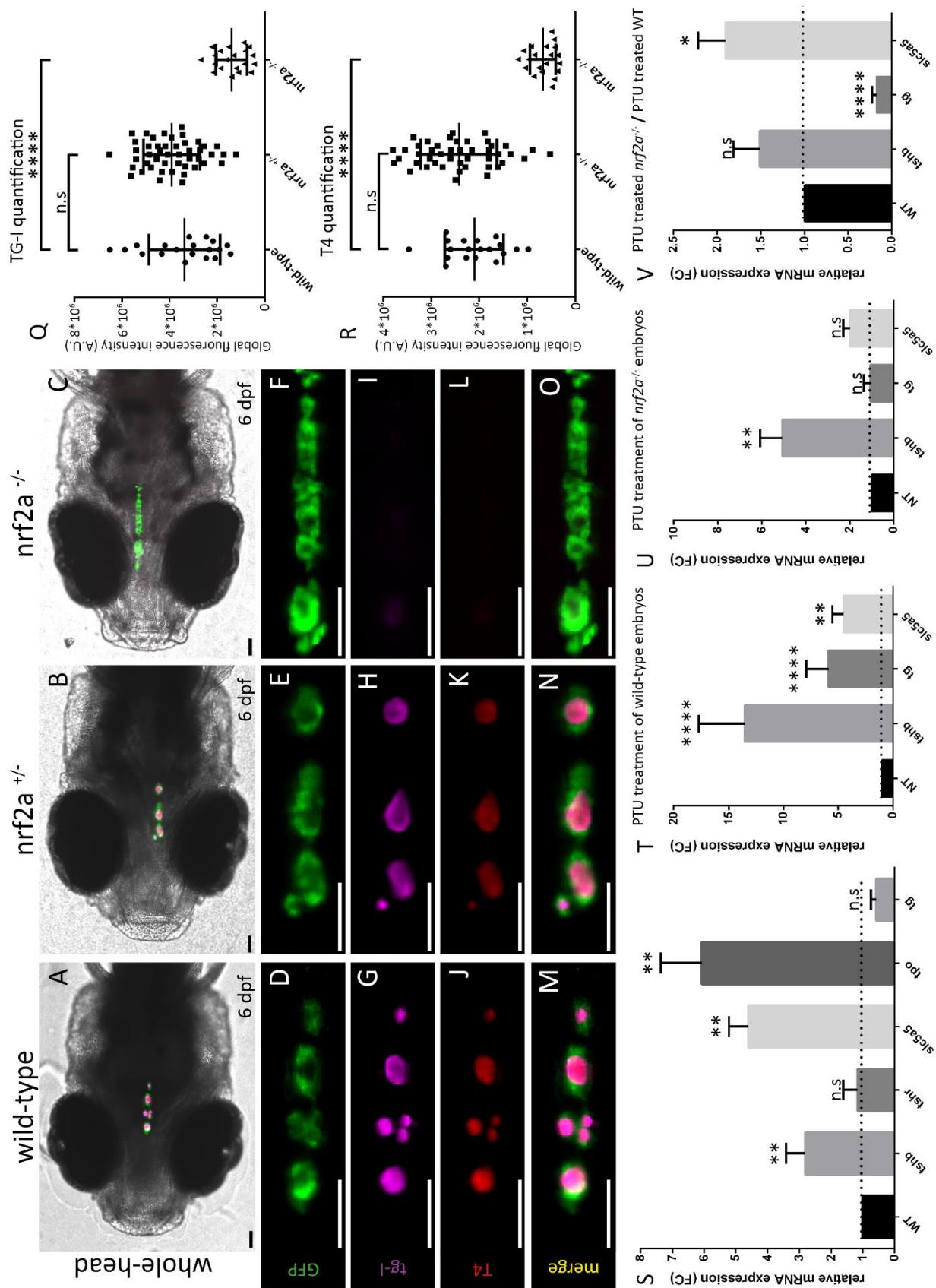

Figure 1

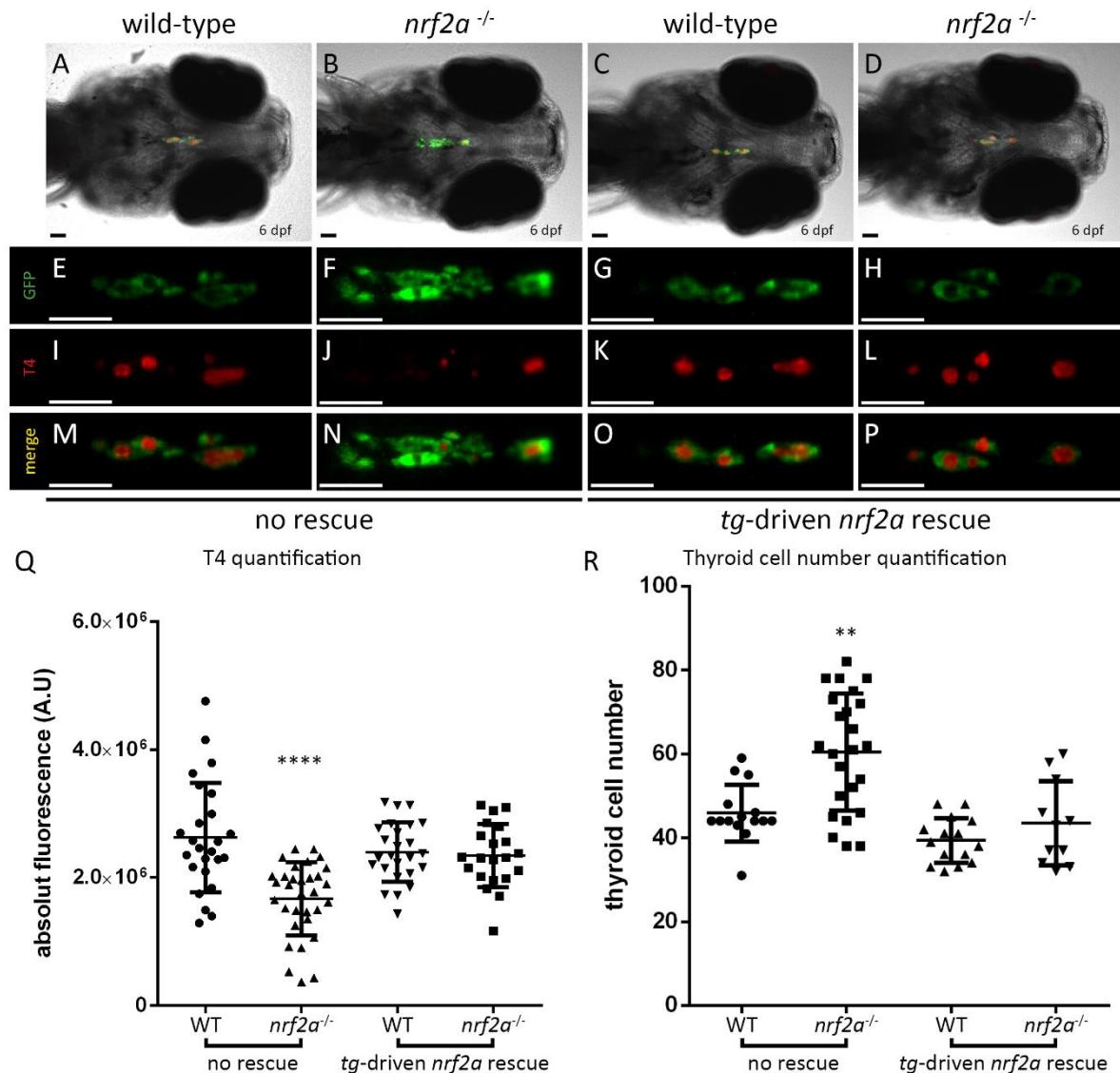
Figure 1. Live imaging of transgenic Tg(tg:nlsEGFP) zebrafish embryos carrying a 5nt deletion in *nrf2a*

allows real-time in vivo analysis of thyroid development. (A) A 5nt deletion was generated in the exon 5 (E5) of the *nrf2a* gene resulting in a frame-shift inducing premature stop codon disturbing the DNA binding domain of the gene. Guide sequence highlighted in yellow with PAM sequence highlighted in magenta. (B) Activation of an ARE-driven luciferase reporter by WT and mutated *nrf2a*. HEK cells were transfected with plasmids encoding for the full-length coding sequences of a WT *nrf2a*, *nrf2a* fh318 or *nrf2a* D5 to evaluate their respective ability to drive luciferase expression. Results show that WT *nrf2a* (second from the left) is able to drive expression of luciferase while *nrf2a* fh318 and Δ5 are unable to drive luciferase expression (third and fourth from the left respectively). Results are shown as mean +/- SD. Asterisk denotes significant differences between positive control (WT *nrf2a* cds) and test conditions (**** p <0.0001, Dunnett's multiple comparison test) (C) Quantification of thyroid follicular cell (TFC) number in individual wild-type (n=7), heterozygous (n=34) and homozygous mutant embryos (n=12) show significant difference between wild-type and homozygous mutant. Results are shown in mean +/- SD. Asterisk denotes significant differences between groups of embryos (** P < 0.01, Kruskal-Wallis multiple comparison test). (D-I) show pictures of the whole head of a representative embryo at specified developmental stage (ventral view, anterior is to the left). (D'-I') show an enlarged picture of the thyroid region of the corresponding embryo. Epifluorescence microscopy of live Tg(tg:nlsEGFP) zebrafish reveals an increase in the thyroid size at 6 days post fertilisation (dpf) in the mutant embryos compared to their wild-type and heterozygous (data not shown) siblings. Live-imaging also reveals that prior to 4dpf thyroid development shows no apparent differences between mutant, heterozygous (data not shown) and wild-type embryos. Scale bars: 50μm (D-I'). “#” indicates de DNA binding domain of the *nrf2a* gene.

Figure 2

Figure 2: Loss-of-function of *nrf2a* induces thyroid dysmorphogenesis. (A-O) immunofluorescence

on 6dpf Tg(tg:nlsEGFP) zebrafish embryos targeting GFP, thyroxine (T4 – Cy3 Red) and iodinated-thyroglobulin (TG-I – Cy5 magenta) reveals a defect in thyroid hormones production in *nrf2a* homozygous mutant compared to their wild-type and heterozygous mutant siblings. (A-C) show whole head pictures of a representative embryos of each genotype (ventral view anterior to the left). (D-O) enlarged views of the thyroid of the corresponding embryos demonstrated thyroid follicular organization in all embryos (D-F), however absence of TG-I and T4 was observed only in *nrf2a*^{-/-} embryos (F,I,L,O). Quantification of iodinated-thyroglobulin (Q) and colloidal thyroxine (R) immunofluorescence signal in individual wild-type (n=19), heterozygous (n=45) and homozygous mutant embryos (n=20) reveals significant reduction in *nrf2a*^{-/-} group. Results are shown in mean +/- SD. Asterisk denotes significant differences between groups of embryos (**** P < 0.0001, one way Anova multiple comparison test). Scale bars (A-O) 50 μ m. (S) Quantitative analysis of thyroid markers expression levels by qPCR showed no differential expression of *tshr* (p value = 0.7706) and indicates a slight reduction, although not significant, of *tg* expression (p value = 0.9125) between wild-type and homozygous mutant embryos at 6dpf. However, mRNA levels show significant differences for *tsh- β* (p value < 0.01), *slc5a5* (p value < 0.01) and *tpo* (p value < 0.01). “n.s” denotes no significant difference between groups of embryos. (T-U) Quantitative analysis of thyroid markers expression levels of 6dpf wild-type and *nrf2a*^{-/-} embryos following PTU treatment shows strong increase of *tsh- β* (p value < 0.0001), *tg* (p value < 0.0001) and *slc5a5* (p value < 0.01) in wild-type embryos and also shows an increase of *tsh- β* expression (p value < 0.01) in *nrf2a*^{-/-} embryos. However, analysis of the expression of *tg* (p value > 0.9999) and *slc5a5* (p value = 0.2499) in *nrf2a*^{-/-} showed no differences between PTU-treated and non-treated embryos. (V) Comparative analysis of the effect of PTU treatment between *nrf2a*^{-/-} embryos and their wild-type siblings. Quantitative analysis showed that the expression of *tsh- β* does not significantly change between *nrf2a*^{-/-} and their wild-type siblings (p value > 0.9999). However, analysis revealed that *nrf2a*^{-/-} embryos are not able to over-express *tg* upon PTU treatment (p value < 0.0001) while the increase of *slc5a5* expression is higher in *nrf2a*^{-/-} treated embryos (p value = 0.0183)


bioRxiv preprint doi: <https://doi.org/10.1101/2022.02.27.482168>; this version posted March 1, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

compared to their treated wild type siblings. All qPCR data are represented as mean +/- SD. Asterisk denotes significant difference between groups of embryos (* p < 0.05, ** p < 0.01 and **** p < 0.0001,

Kruskal-Wallis multiple comparison test). “n.s” denotes no significant difference between groups of

embryos. N varies between 5 and 6 individual pool of 10 embryos for each gene.

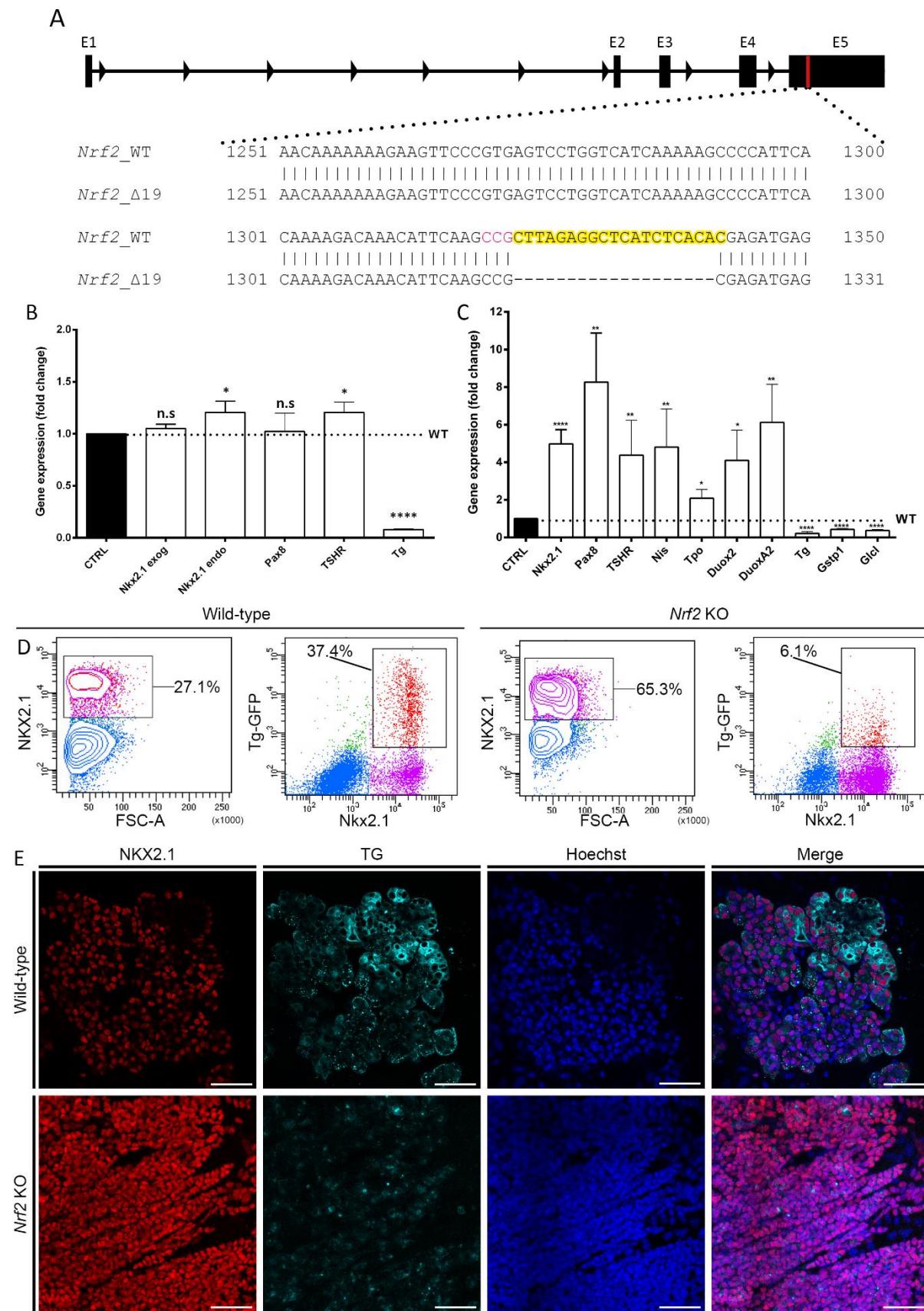

Figure 3

Figure 3: Thyroid-specific rescue of *nrf2a* function is sufficient to recover physiological T4 production.

Immunofluorescence on 6dpf Tg(*tg:nlsEGFP; tg:nrf2a*^{T2A_mKO2}) zebrafish embryos targeting GFP, and thyroxine (T4 – Cy3 Red) reveals that the presence of the *tg:nrf2a*^{T2A_mKO2} construct is sufficient to rescue the thyroid hormone production defect in *nrf2a* homozygous mutants compared to their wild-type and heterozygous mutant siblings (A-P). (A-D) show whole head pictures of a representative embryos of each genotype (ventral view anterior to the left). (E-P) enlarged views of the thyroid of the corresponding embryos demonstrates thyroid follicular organization in all embryos (E-H) and reveals that the absence of T4 staining observed in *nrf2a* homozygous mutant embryos (second column to the left) is rescued in *nrf2a* homozygous mutant embryos expressing the *tg:nrf2a*^{T2A_mKO2} transgene (last column to the left). Scale bars: 50 μ m. (Q) Quantification of colloidal thyroxine immunofluorescence signal in individual wild-type (n=25), *nrf2a* homozygous mutant embryos (n=32), WT *nrf2a*^{T2A_mKO2} (n=25) and *nrf2a* homozygous mutant *nrf2a*^{T2A_mKO2} embryos (n=21) confirmed the rescue of the T4 production in *nrf2a* homozygous mutant *nrf2a*^{T2A_mKO2} embryos group compares to their siblings from other genotypes. Results are shown in mean +/- SD. Asterisk denotes significant differences between groups of embryos (**** p value < 0.0001, one way Anova multiple comparison test). (R) Quantification of thyroid follicular cell (TFC) number in individual wild-type (n=15) and homozygous *nrf2a* mutant embryos (n=24) and WT (n=15) and homozygous *nrf2a* mutant (n=11) *nrf2a*^{T2A_mKO2} embryos show that the *nrf2a*^{T2A_mKO2} transgene rescued the thyroid cell number in homozygous *nrf2a* mutant embryos. Results are shown in mean +/- SD. Asterisk denotes significant differences between groups of embryos (** p value < 0.01, Kruskal-Wallis multiple comparison test).

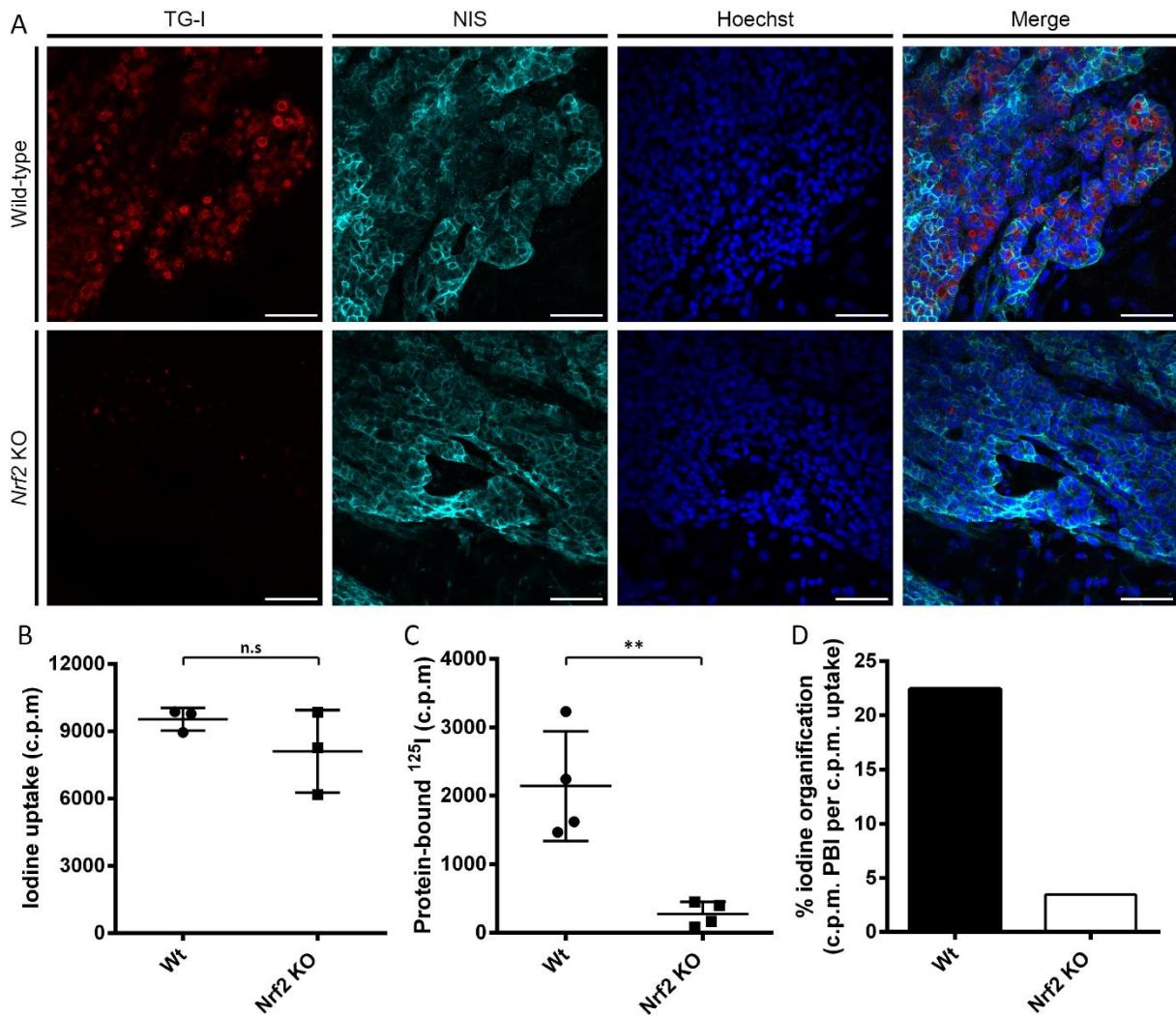

Figure 4

Figure 4: Analysis of Nrf2 KO mESC-derived thyroid organoids highlight the importance of Nrf2 during

mammalian thyroid development. (A) A 19nt deletion was generated in the exon 5 (E5) of the Nrf2 gene resulting in a frame-shift inducing premature stop codon disturbing the DNA binding domain of the gene. Guide sequence highlighted in yellow with PAM sequence highlighted in magenta. (B) qPCR analysis performed at day 7 of the differentiation protocol demonstrates significant downregulation in Tg gene expression and slight upregulation in Nkx2.1 and Tshr gene expression. (C) qPCR analysis performed at the end of the differentiation protocol (at day 22) demonstrates significant up regulation in Nkx2.1, Pax8, Tshr, Nis, Tpo, Duox2 and Duoxa2 gene expression and significant downregulation in Tg, Gstp1 and Gclc gene expression. All statistical analysis performed using Mann-Whitney test, asterisks denote a significant difference compared to the wild-type cell line: *p<0.05, **p<0.01 and ****p<0.0001. (D) Flow cytometry analysis of Wild-type (1st and 2nd panels from the left) and Nrf2 KO (3rd and 4th panels from the left) thyroid organoids after 22 days of differentiation. 1st and 3rd panel show the proportion of NKX2.1+ cells in the whole sample, percentage of NKX2.1+ cells are written. 2nd and 4th panel show the proportion of bTG+ cells within the Nkx2.1+ cell population, percentage of bTG+, NKX2.1+ cells are written. (E) Confocal images obtained following immunofluorescence experiments on fixed sample after 22 days of differentiation. Samples were marked for NKX2.1 (Red) and TG (Cyan). Nuclei were labelled using Hoechst (Blue).

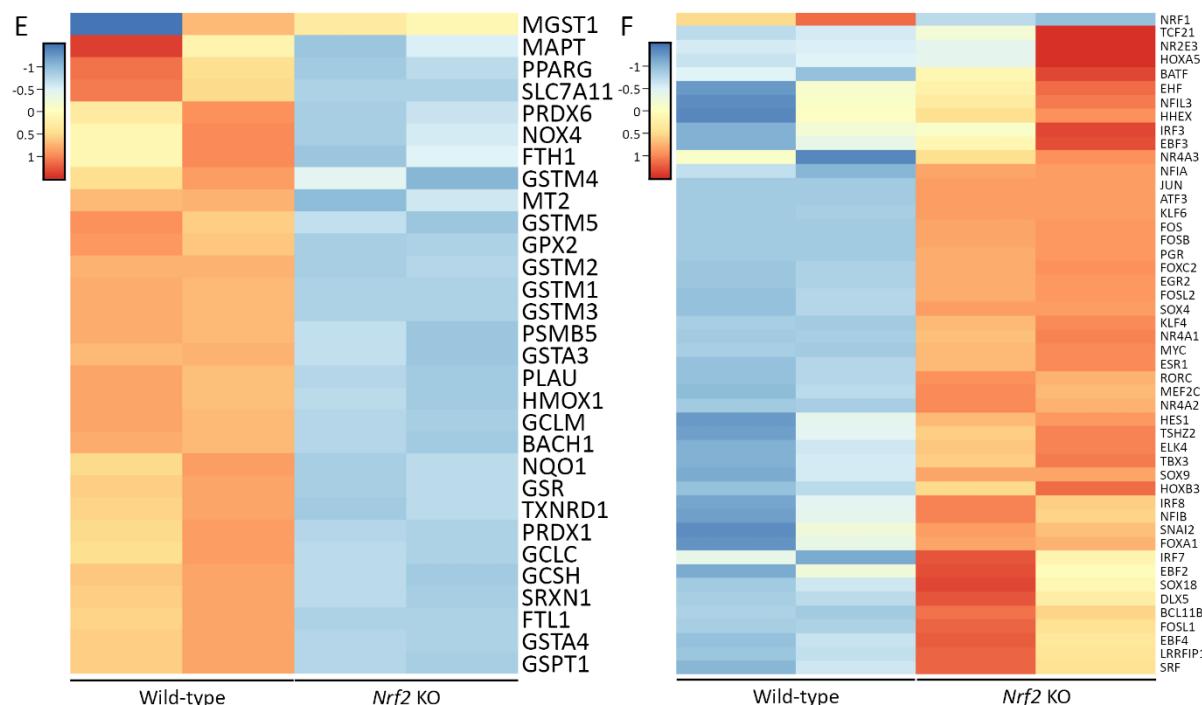
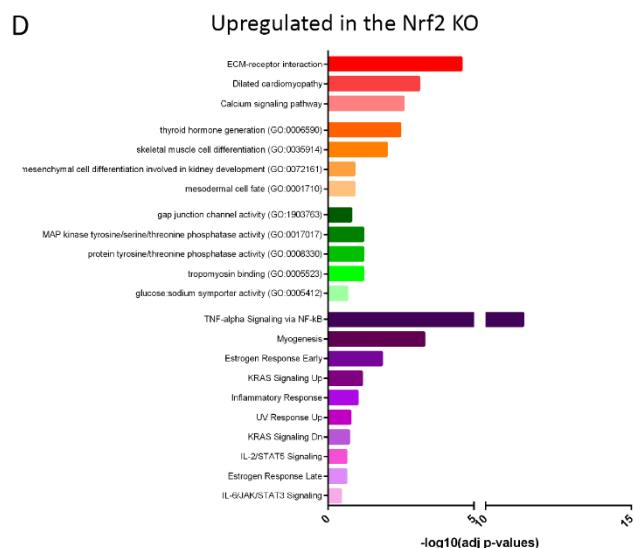
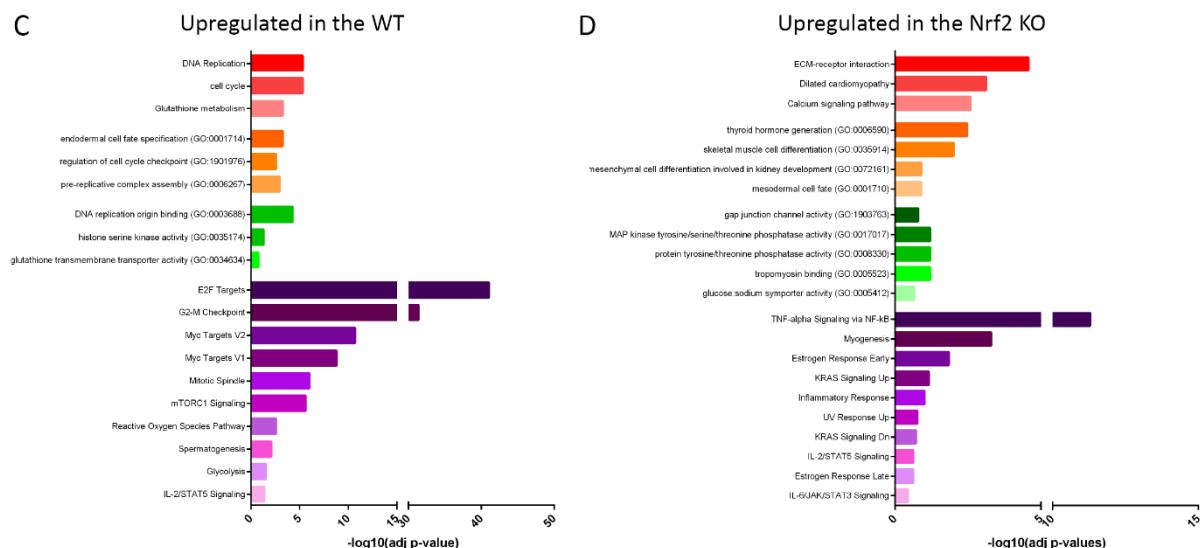
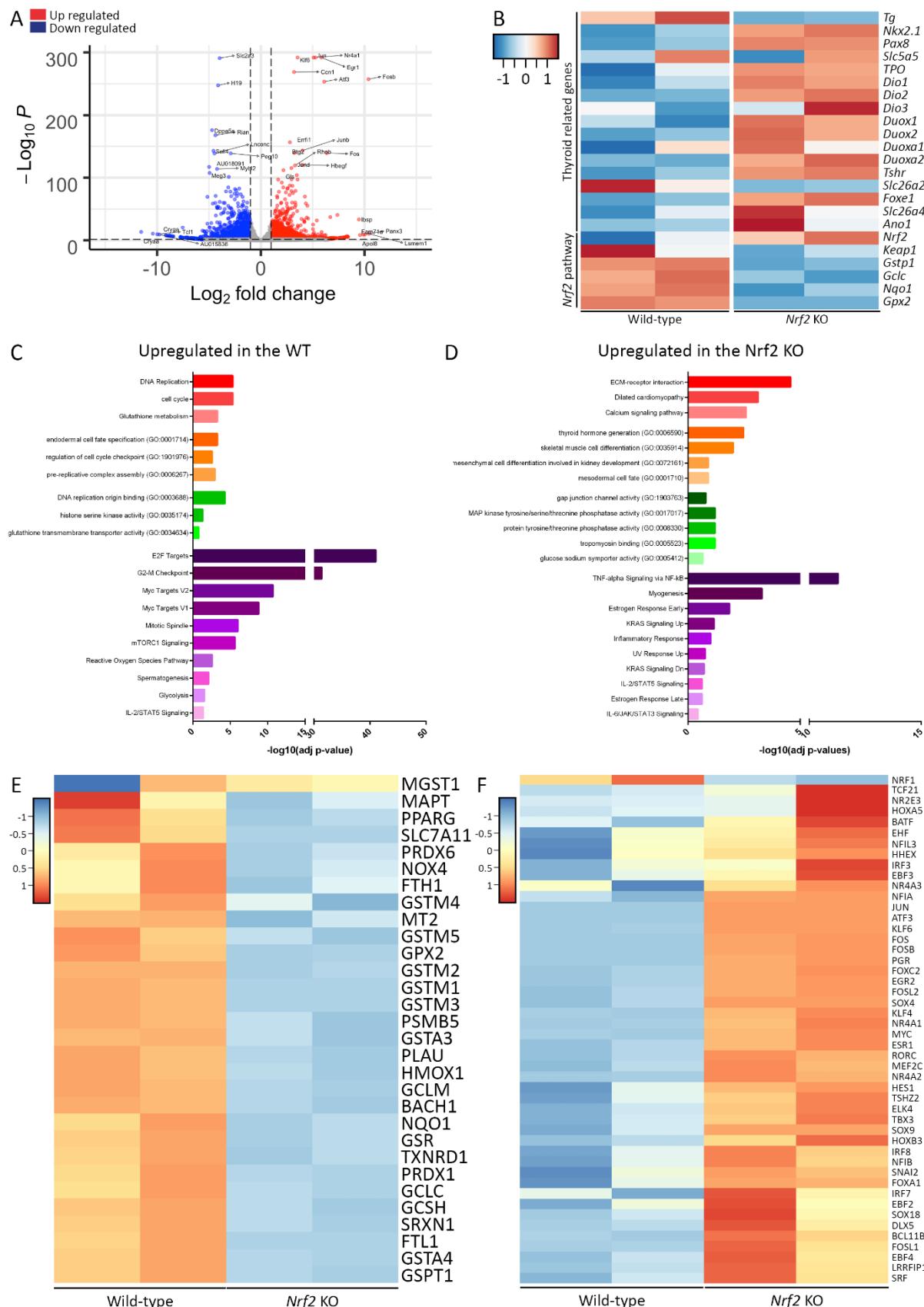




Figure 5

Figure 5: loss of Nrf2 impair thyroid function in mESC-derived thyroid follicle. Characterisation of

mESC-derived thyroid organoids' function reveals the critical need of functional Nrf2 for thyroid hormones synthesis. (A) Confocal imaging following immunofluorescence of WT and Nrf2 KO organoids after 22 days of differentiation. Samples were marked for iodinated-thyroglobulin (TG-I, Red) and NIS (Cyan). Nuclei were labelled using Hoechst (Blue). (B-D) Functional organification assay revealed equivalent ability of Nrf2 KO organoids 125I uptake (B) but reduced protein-bound 125I fraction in Nrf2 KO organoids (C), which results in a lower percentage of cells with capacity of 125I organification (D). Statistical analysis performed using Student's t-test. Asterisks denote significant differences between conditions: **p< 0.01. "n.s": no significant difference.

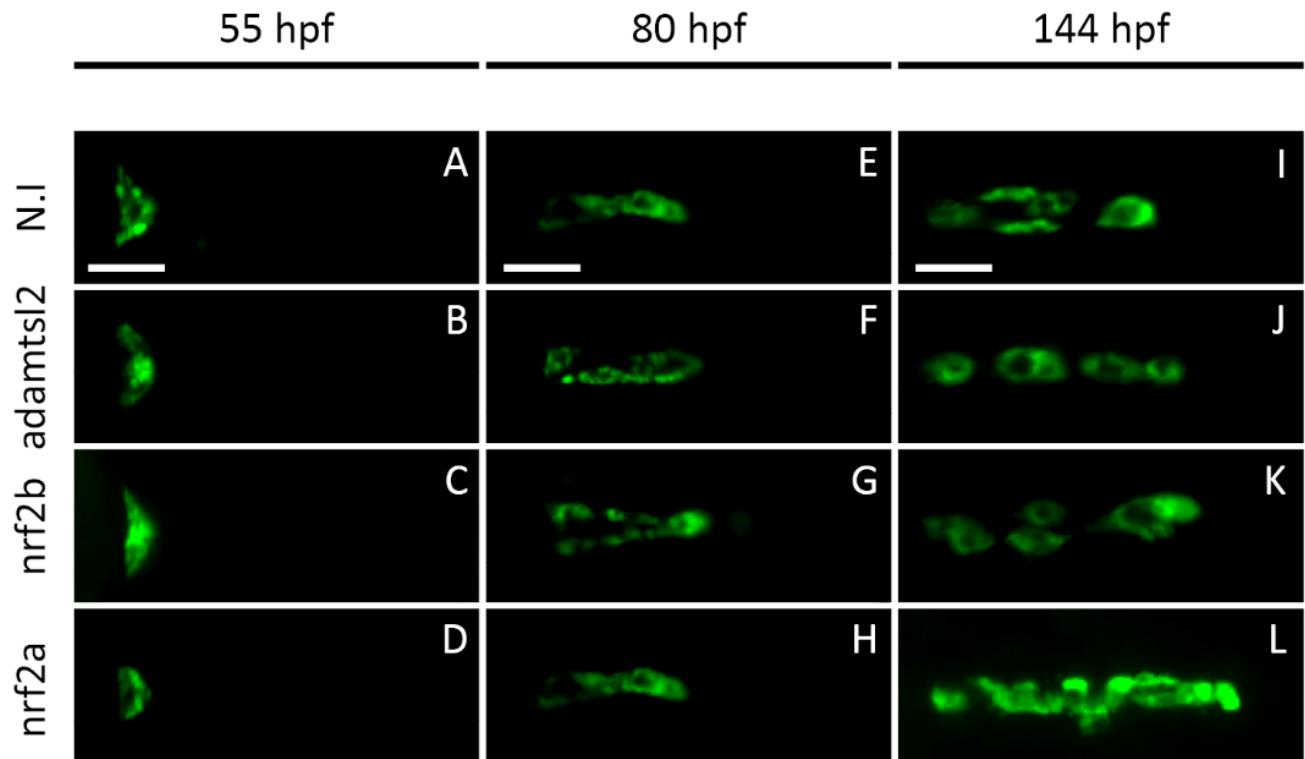
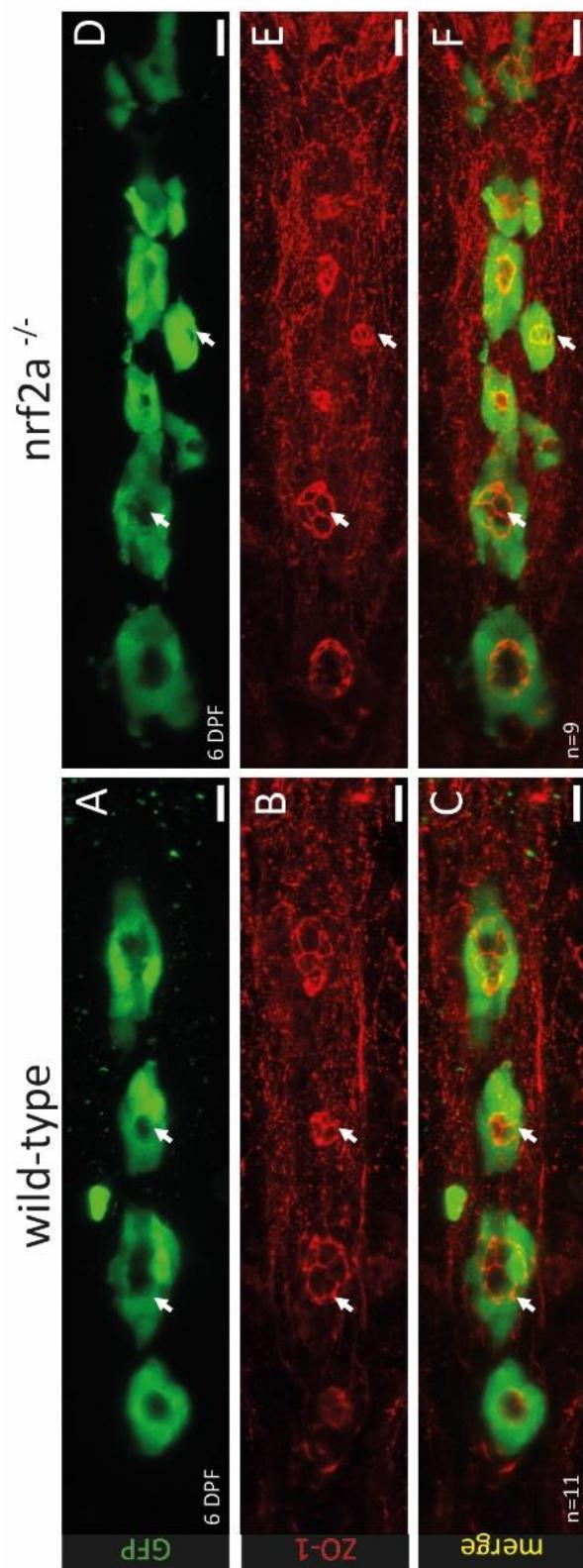

Figure 6

Figure 6: Transcriptomic profile comparison between hESC-derived Nrf2 WT and KO thyroid organoids.

(A) Volcano plot showing the distribution of the down and upregulated genes among Nrf2^{-/-} cells compared to the control condition (WT). (B) Heatmap of normalized bulk RNA-Seq expression of thyroid genes and Nrf2 pathway effectors among Nrf2 WT and KO cells. Rows represent markers and columns conditions. Colour values in the heatmap represent mean expression levels. Gene ontology classification of the upregulated genes in Nrf2 WT (C) and Nrf2 KO (D) cells (Red: KEEG pathway; Orange: Biological Process; Green: Molecular Function; Violet: MSigDB Hallmark 2020). (E) Heatmap representing the expression profile of Nrf2 target genes exhibiting an antioxidant responsive element (ARE) within their promoter and/or regulatory regions. (F) Set of upregulated transcription factors among Nrf2 KO cells.

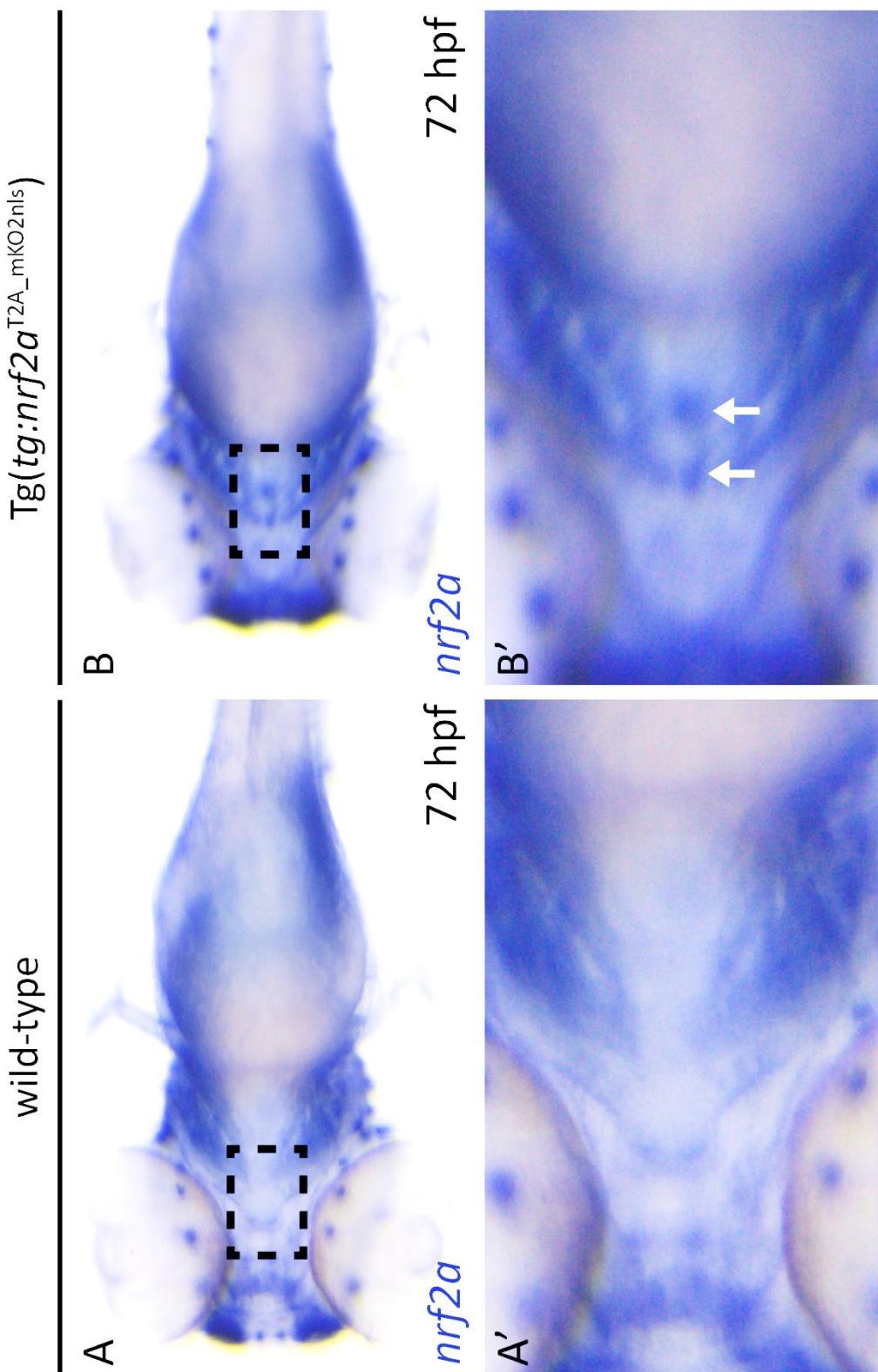
Supplementary Figure 1



Supplementary figure 1: F0 crisprants screening approach identifies *myf2a* as an actor of late thyroid

development in zebrafish. Live imaging of transgenic Tg(tg:nlsEGFP) zebrafish embryos from 55 to 144 hpf following one-cell stage injection of single-guide RNA and Cas9 protein targeting either *nrf2a*, *nrf2b* or *admatl2*. Epifluorescence live imaging showed that early stages of thyroid development are not affected in *nrf2a* and *nrf2b* crisprants embryos when compared to their *admatl2* crisprants and WT siblings. However, at 6dpf *nrf2a* crisprants displayed enlargement of their thyroid gland compared to their *nrf2b* and *admatl2* crisprants and non-injected siblings. (A-L) show pictures of the thyroid region of a representative embryo at specified developmental stage (ventral view, anterior is to the right).

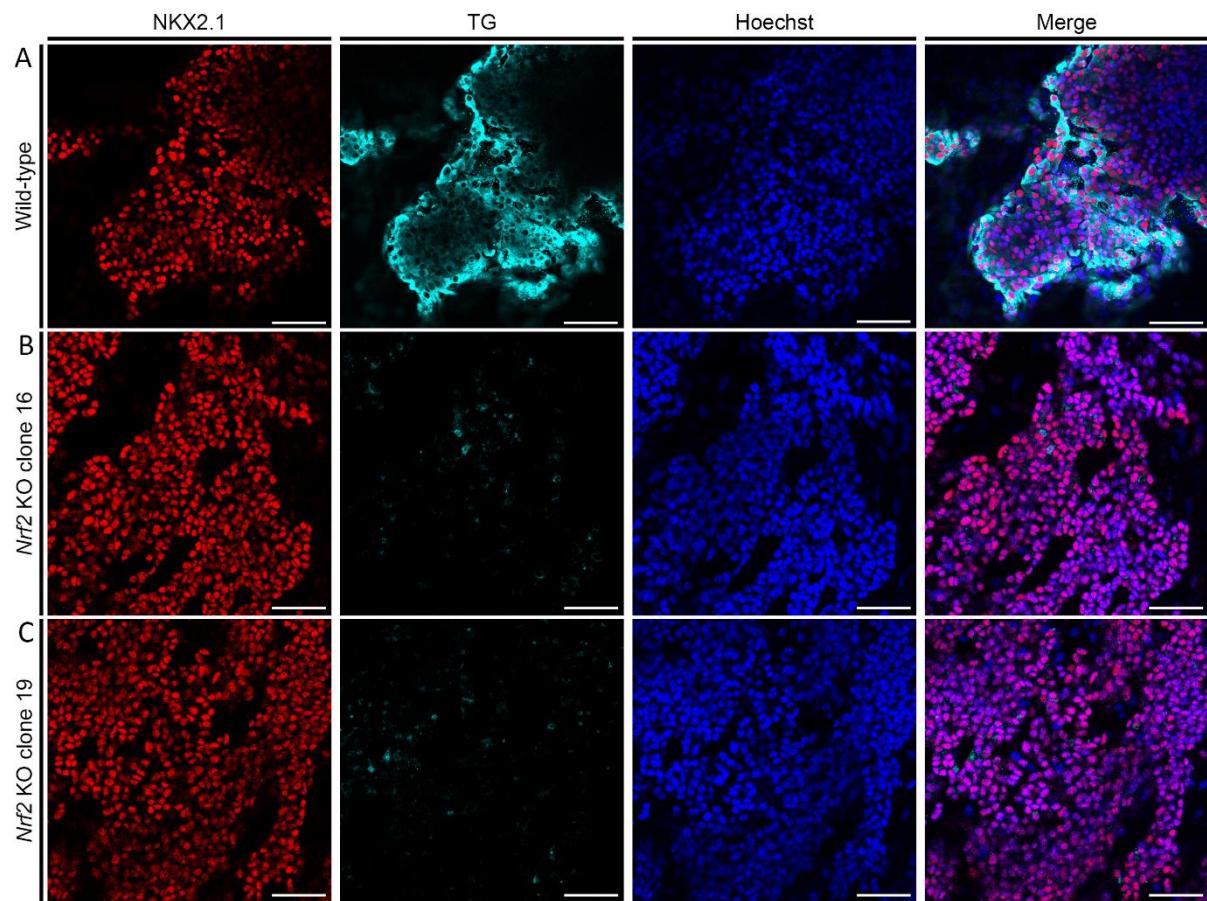
Scale bars: 100μm.


Supplementary Figure 2

Supplementary Figure 2: Loss of function of *myz2a* does not impair thyroid follicles polarisation.

Immunofluorescence on 6dpf *Tg(tg:nlsEGFP)* zebrafish embryos using antibodies targeting EGFP and ZO-1 (Cy3 - Red) reveals normal follicular polarisation in *nrf2a* homozygous mutant compared to their wild-type siblings (A-F). Upper row shows GFP staining only, middle row shows ZO-1 staining only and last row shows a merge of both staining. White arrows are showing representative follicles in both wild-type and homozygous mutant. Scale bars 10 μ m. Ventral view, anterior to the left.

Supplementary Figure 3



Supplementary Figure 3: Tg(*tg:nrf2a^{T2A_mKO2nls}*) embryos over-express *nrf2a* mRNA in their thyroid

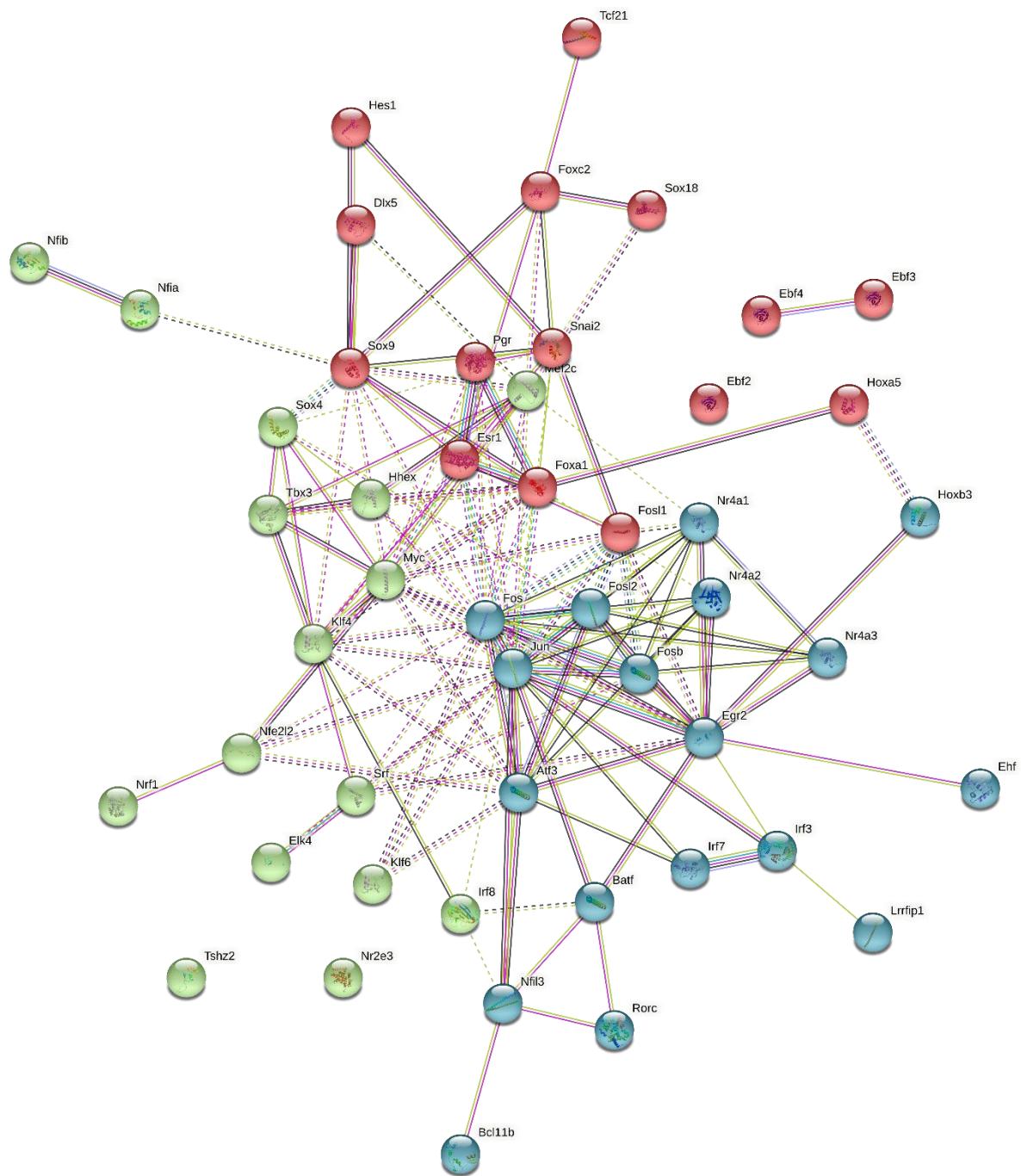
gland. (A-B) Detection of *nrf2a* mRNA using whole mount *in situ* hybridisation on 72hpf embryos.

Analysis of *nrf2a* expression pattern shows presence of *nrf2a* mRNA in a location corresponding to the developing thyroid gland in Tg(*tg:nrf2a^{T2A_mKO2nls}*) embryos but not in wild-type embryos. (A'-B') show higher magnification of the thyroid region (dashed line square in picture A and B) of the corresponding embryo. White arrows highlight the *nrf2a* mRNA in the developing thyroid. All images are ventral views, anterior to the left.

Supplementary Figure 4

Supplementary Figure 4: Initial characterisation of Nrf2 KO thyroid organoids. Immunofluorescence

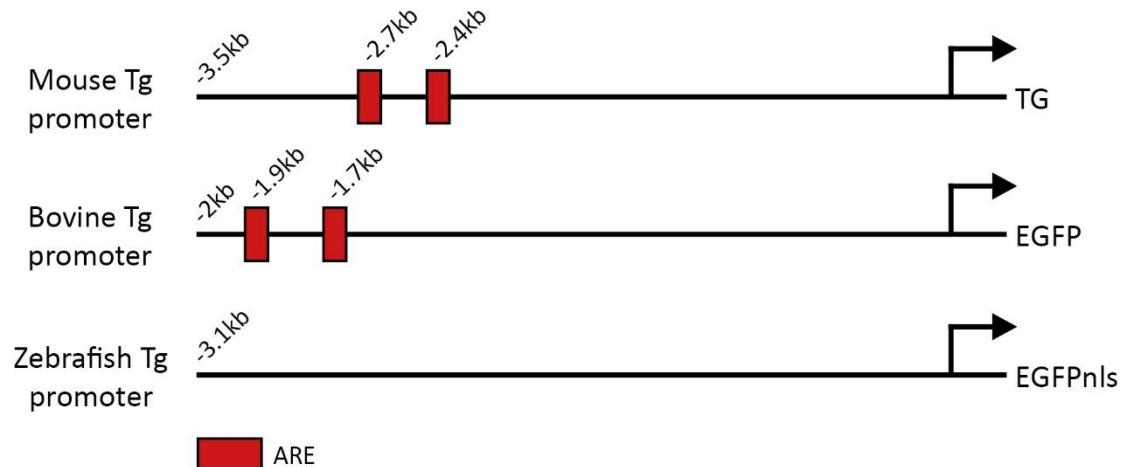
experiments revealed that loss of Nrf2 function impairs thyroid differentiation in both Nrf2 KO clones


(A-C). (A) Confocal images from Nrf2 wild-type cells at day 22 displaying differentiated organoids

marked with NKX2.1 (Red) and TG (Cyan), nuclei were labelled using Hoechst (Blue). (B-C) Confocal

images of Nrf2 KO clone 16 (B) and Nrf2 KO clone 19 (C) labelled as described for (A). Scale bars: 100

μm.


Supplementary Figure 5:

Supplementary Figure 5: STRING interaction. STRING analysis predicts a strong association network

involving the upregulated transcription factors observed in Nrf2 KO condition, with a main core comprising *Fos* and *Jun* genes.

Supplementary Figure 6: Thyroglobulin promoters analysis.

Supplementary Figure 6: Thyroglobulin promoters analysis. Analysis of the mouse, bovine and

zebrafish thyroglobulin promoter for the presence of ARE revealed that only mouse and bovine Tg promoters displays ARE in their sequence. Schematic representation of mouse, bovine and zebrafish Tg promoter based on available sequence (mouse promoter) and sequences used as reporter drivers (bovine and zebrafish promoters). ARE are represented as red boxes and their relative position to the end of the promoters are given.

Table 1 : qPCR primer table

primer sequence (5'-3')	target gene	orientation	species
ACCACTGAACCAAGCAAAGC	tg	Fw	zebrafish
CCACGAGCATCAAACACAAG	tg	Rv	zebrafish
GGTGGCATGAAGGCTGTAAT	slc5a5	Fw	zebrafish
GATACGGGATCCATTGTTGG	slc5a5	Rv	zebrafish
AAGGGATGTTCTGTTCTGT	tpo	Fw	zebrafish
GAAGGGTTCGGGATTATTAC	tpo	Rv	zebrafish
CAGGGACAGTAACATAAAGG	tsh β	Fw	zebrafish
GTAGGTGAAGTGAGGATCTG	tsh β	Rv	zebrafish
TGCTGCTGATCGCTCTGTG	tshr	Fw	zebrafish
GCGCTCAGGGTGTAGTTG	tshr	Rv	zebrafish
CGAGCAGGAGATGGGAACC	β -actin	Fw	zebrafish
CAACGCAAACGCTATTGC	β -actin	Rv	zebrafish
TCTGGAGGACTGTAAGAGGTATGC	I13	Fw	zebrafish
AGACGCACAATCTTGAGAGCAG	I13	Rv	zebrafish
GCTTCAGTCGTCAAGC ATGG	B2microglobulin	Fw	mouse
CAGTTCAGTATGTCGGCTTCC	B2microglobulin	Rv	mouse
GGCGCCATGTCTGTTCT	Nkx2.1	Fw	mouse
GGGCTCAAGCGCATCTCA	Nkx2.1	Rv	mouse
CAGCCTGCTGAGTTCCAT	Pax8	Fw	mouse
CTGTCTCAGGCCAACGTCCTC	Pax8	Rv	mouse
GTCTGCCAACATTTCCAGGATCTA	Tshr	Fw	mouse
GCTCTGTCAAGGCATCAGGGT	Tshr	Rv	mouse
AGCTGCCAACACTCCAGAG	Slc5a5 (Nis)	Fw	mouse
GATGAGAGCACCACAAAGCA	Slc5a5 (Nis)	Rv	mouse
GTCCAATGCCAAATGATGGTC	Tg	Fw	mouse
GAGAGCATCGGTCTGTTAAT	Tg	Rv	mouse
ACAGTCACAGTTCTCACGGATG	Tpo	Fw	mouse
ATCTCTATTGTTGACGCC	Tpo	Rv	mouse
AACGGCACTCTGTACATGG	Duox2	Fw	mouse
GGCCCCATTACCTTTGCC	Duox2	Rv	mouse
GCCTGGAATCCGTGGCACTC	Duoxa2	Fw	mouse
TCCCCACGAACCAGTCTCCACT	Duoxa2	Rv	mouse
TCTACGCAGCACTGAATCG	Gstp1	Fw	mouse
CTCACACCGCCCTCGAAC	Gstp1	Rv	mouse
GCTGTCCAAGGCTCGC	Gclc	Fw	mouse
TACTCACCTCGTACCCCC	Gclc	Rv	mouse
CCCAGCAGGACATGGATTGA	Nrf2	Fw	mouse
AGCTCATAGTCCTCTGTCGC	Nrf2	Rv	mouse
GGCGCCATGTCTGTTCT	Nkx2.1 exog	Fw	mouse
ACACCGGCCTATTCCAAG	Nkx2.1 exog	Rv	mouse

Table 1 : List of the primers used to perform qPCR analysis.