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Abstract 

Th17 cells are a heterogenous cell population consisting of non-pathogenic Th17 cells (npTh17) 

that contribute to tissue homeostasis and pathogenic Th17 cells (pTh17) that are potent mediators 

of tissue inflammation. To reveal regulatory mechanisms underlying Th17 heterogeneity, we 

performed combined ATAC-seq and RNA-seq and discovered substantial differences in the 

chromatin landscape of npTh17 and pTh17 cells both in vitro and in vivo. Compared to other CD4+ 

T cell subsets, npTh17 cells share accessible chromatin programs with Tregs, and pTh17 cells have 

an intermediate profile spanning features of npTh17 cells and Th1 cells. Integrating single-cell 

ATAC-seq and single-cell RNA-seq, we inferred self-reinforcing and mutually exclusive 

regulatory networks controlling the different cell states and predicted transcription factors (TFs) 

shaping the chromatin landscape of Th17 cell pathogenicity. We validated one novel TF, BACH2, 

which promotes immunomodulatory npTh17 programs and restrains pro-inflammatory Th1-like 

programs in Th17 cells and showed genetic evidence for protective variants in the human BACH2 

locus associated with multiple sclerosis. Our work uncovered mechanisms that regulate Th17 

heterogeneity, revealed shared regulatory programs with other CD4+ T cell subsets, and identified 

novel drivers of Th17 pathogenicity as potential targets to mitigate autoimmunity.  
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Introduction 

Balancing proinflammatory and regulatory CD4+ T helper subsets is essential for an effective 

immune response towards pathogens, while avoiding uncontrolled inflammation and 

autoimmunity. Among those, IL-17-producing CD4+ T cells (Th17 cells) play a key role in the 

host defense against extracellular pathogens and contribute to mucosal barrier homeostasis 1,2. 

However, Th17 cells are also important pathogenic drivers of multiple autoimmune diseases, 

including multiple sclerosis (MS), psoriasis, and Sjogren’s syndrome 3-5. 

  

Mirroring this functional diversity, in vitro polarization of naïve CD4+ T helper cells with IL-6 and 

TGF-ß yields Th17 cells that instigate little or no tissue inflammation or autoimmunity (non-

pathogenic Th17 cells (npTh17)), while IL-6, IL-1ß and IL-23 jointly generate Th17 cells highly 

potent in transferring disease (pathogenic Th17 cells (pTh17)) 6,7. Previous work, focused on the 

expression programs that distinguish Th17 cell populations, revealed distinct gene signatures 

active in npTh17 cells vs. pTh17 cells 6,8. While npTh17 cells express the immunoregulatory genes 

Il10, Il9, Maf, and Ahr, pTh17 cells express proinflammatory genes Csf2, Ifng, Tbx21, Il23r and 

Gzmb. Similar subsets of Th17 cells have also been identified in humans, where Th17 cells express 

either IL-10 or IFNγ, depending on whether they are specific for Staphylococcus aureus or 

Candida albicans, respectively 9.  

 

Th17 cells demonstrate additional plasticity 4,10,11, with a capacity to acquire either beneficial 

functions associated with other Th cells or pathogenic pro-inflammatory states, often characterized 

by the expression of the Th1-cytokine IFNγ 12-16. For example, in the intestines Th17 cells trans-

differentiate into IL-10-producing T regulatory 1-like cells (Tr1-like cells) 17. Conversely, in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2022. ; https://doi.org/10.1101/2022.02.26.482041doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.26.482041
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

models of autoimmunity, such as experimental autoimmune encephalomyelitis (EAE), T cells that 

initially express IL-17 (ex-Th17 cells) upregulate the expression of IFNγ and GM-CSF 12,16, and 

the transition of Th17 cells to Th1-like cells is required for their ability to induce colitis in a transfer 

model 13,18. In human autoimmune diseases, T cells co-expressing IL-17A and IFNγ are correlated 

with pathogenicity 10,19-23.  

 

The extent to which npTh17 and pTh17 populations represent transient cell states or stable cell 

fates remains elusive, as is the relationship of pTh17 cells expressing Th1-lineage genes, such as 

Tbet and Ifng, to bona fide Th1 cells. In particular, it remains unclear whether pTh17 and npTh17 

cells are distinct, stable cell fates or are functional states, wherein Th17 cells toggle between the 

two states. In addition, the master regulators of different Th17 programs and their plastic 

transitions have yet to be comprehensively deciphered. Understanding these molecular switches 

can help design therapeutic strategies that specifically target pathogenic, disease-driving Th17 

populations yet retain non-pathogenic homeostatic Th17 cell function in barrier integrity and 

prevention of microbial invasion at mucosal surfaces.  

 

Accessible chromatin distinguishes active regulatory elements that drive gene transcription and 

define cell state, and chromatin accessibility profiles can stably distinguish cell lineages and 

foreshadow RNA expression changes during differentiation 24-27. Common genetic variants in cell-

type specific distal regulatory elements in immune cells have been associated to human 

autoimmune diseases, such as MS and inflammatory bowel disease (IBD) 28. Thus, we 

hypothesized that comparing the chromatin states of npTh17 and pTh17 cells can help determine 
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if Th17 functional plasticity is marked by distinct epigenomic features and identify regulators of 

the pTh17 cell fate.  

 

Here, we characterized the chromatin accessibility and associated expression profiles of in vitro 

and in vivo-derived npTh17 and pTh17 cells with ATAC-seq and RNA-seq in cell populations and 

single cells. We found highly distinct chromatin landscapes in npTh17 and pTh17 cells, such that 

npTh17 and pTh17 cells each also shared substantial accessible chromatin programs with Treg and 

Th1 cells, respectively. Integrating single-cell ATAC-seq (scATAC-seq) and single cell RNA-seq 

(scRNA-seq) allowed us to map chromatin signatures of Th17 pathogenicity to effector genes and 

to predict multiple novel TF regulators of the pathogenic Th17 program. Among these, we 

highlight BACH2, which we validated as a novel regulator of the Th17 chromatin landscape and 

Th17 pathogenicity in vitro and in vivo. Our analysis provides insights into the regulatory programs 

of Th17 cells, the relationship of Th17 cells to other CD4+ T cell subsets and identifies novel 

drivers of the Th17 pathogenic program.  
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Results 

Distinct chromatin landscapes for pathogenic and non-pathogenic Th17 cells  

We hypothesized that the distinct pro-inflammatory expression programs of pTh17 vs. npTh17 

cells 6,8 would be reflected in their respective epigenetic landscapes. To test this hypothesis, we 

performed ATAC-seq of in vitro differentiated npTh17 and pTh17 cells at 24h, 48h, and 72h after 

stimulation of naïve Th cells with TGF-b1 and IL-6 or IL-1b, IL-6 and IL-23, respectively (Fig. 

1A). To assess the relation of IL-17A expression to the chromatin landscape, we also compared 

Th17 cells selected for IL-17A-GFP expression to all CD4+ cells, using an Il17aGFP reporter mouse 

(Fig. S1A).  

 

Principal component analysis (PCA) revealed substantial differences in the chromatin landscape 

between npTh17 and pTh17 cells, consistently across time points (Fig. 1B,C). While principal 

component 1 (PC1) reflected changes over time consistently in both npTh17 and pTh17 cells, PC2 

separated npTh17 from pTh17 cells at each time point (Fig. 1B), showing that the two types of 

Th17 cells diverge into two cell fates at least as early as 24h after treatment with polarizing 

cytokines. The chromatin landscape of IL-17A-GFP Th17 cells largely resembled Th17 cells that 

were not selected for IL-17A expression (Fig. 1B), with only a few differences (65 differentially 

accessible chromatin regions (DACRs), FDR <0.05). Hence, for all subsequent comparisons, we 

used Th17 cells that were treated with polarizing cytokines, but not sorted for IL-17A-GFP. 

Overall, 5,685, 7,039, and 3,958 peaks were differentially accessible between npTh17 and pTh17 

cells at 24h, 48h, and 72h, respectively (11,346 unique peaks total, 1,090 shared across all three 

time points).  
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We focused on DACRs at 48h post-polarization, where we observed the greatest number (7,039) 

of differentially accessible peaks between pTh17 and npTh17 cells (Fig. 1C). The vast majority of 

DACRs were located in non-coding regions (intronic and intergenic), distally (>25K bp) from the 

nearest transcription start site (TSS) (Fig. 1D). Of the 7,039 DACRs detected at 48h, 4,645 were 

more accessible in npTh17 cells and 2,394 were more accessible in pTh17 cells. These includes 

DACRs at sites proximal to Th17 effector genes, including Il17a and Il17f (higher in npTh17), 

genes associated with regulatory Th17 programs (e.g., Il10; higher in npTh17), and genes 

associated with pro-inflammatory Th17 gene programs (e.g., Ifng and Csf2; higher in pTh17) (Fig. 

1E, shaded boxes). Overall, these results show that polarized pTh17 cells represent a distinct cell 

state from npTh17 cells, characterized by unique chromatin accessibility profile, including in key 

loci. 

 

Chromatin landscape changes correspond to expression differences between npTh17 and 

pTh17 cells 

There was a strong positive correlation between the differences between npTh17 and pTh17 cells 

in the chromatin landscape (as reflected by DACRs) and the differences in gene expression 

programs (by differentially expressed genes). Specifically, to relate differences in chromatin 

accessibility with changes in Th17 gene programs, we collected matched RNA-seq from in vitro 

polarized Th17 cell populations (Fig. S1B,C), and searched a 100kb window upstream and 

downstream of the gene body of the top 200 genes differentially expressed between npTh17 and 

pTh17 cells at each time point (FDR <0.05, ranked by fold-change, 416 genes) for the chromatin 

peak whose ATAC-seq signal correlated most with each gene’s expression across conditions (Fig. 
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1F and Table S1). Of the 416 genes tested overall, 240 had a nearby DACR with a significant 

positive correlation (average Pearson’s r = 0.70, FDR <0.05).  

 

The npTh17-specific genes with correlated chromatin changes included immunoregulatory genes 

previously associated with the npTh17 phenotype (Il9, Maf, Ahr, Cd5l, Il10) 6,8,29, as well as genes 

not yet associated with npTh17 cells (Gpr15, Havcr1, Twist2) but with previously defined 

regulatory functions in other immune cell types 30-32. The pTh17-specific genes included 

established proinflammatory genes (Il23r, Stat4, Batf3, Gzmb, Nkg7) 6,8 and novel genes (Il33, 

Ermn) not previously implicated in the pTh17 phenotype or function. Interestingly, several key 

loci with changes in chromatin accessibility (e.g. Ifng and Csf2) did not have corresponding 

changes in expression, suggesting that genes in these loci are poised for transcription by a 

permissive chromatin context. Overall, these results indicate that pathogenic and non-pathogenic 

Th17 cells have distinct epigenetic regulatory mechanisms that are associated with pro-

inflammatory and regulatory gene programs. 

 

Distinct chromatin landscapes of Th17 cells from the dLN and CNS during EAE are partly 

mirrored by npTh17 and pTh17 cells in vitro  

To relate the chromatin landscapes of npTh17 and pTh17 cells to in vivo states, we next collected 

ATAC-seq profiles of Th17 cells from EAE, a mouse model for MS and an in vivo model of Th17-

mediated autoimmunity. Previous scRNA-seq showed similarities between the cell states of in 

vitro differentiated npTh17 cells vs. pTh17 cells and those of draining lymph node (dLN)-derived 

Th17 cells vs. central nervous system (CNS)-derived Th17 cells in EAE mice 8. Hence, we induced 

EAE in Il17aGFP reporter mice, sorted viable IL-17A-GFP+ CD4+ T cells from the dLN and the 
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CNS at peak of disease, and profiled them by bulk ATAC-seq and RNA-seq (Fig. 2A-C, S2A-C 

and Table S2, S3).  

 

There were substantial differences in the chromatin landscape of Th17 cells from the dLN and 

CNS (24,694 DACRs of 137,282 total peaks assayed, FDR <0.05, Fig. 2B,C and S2C), with 

13,076 and 11,618 DACRs specific to dLN and CNS Th17 cells, respectively. dLN-specific peaks 

were proximal to genes associated with the non-pathogenic Th17 phenotype (Cxcr5, Sell, Tcf7, 

Il6ra, Maf) 6,8, whereas CNS-specific peaks were close to genes involved in Th17 pathogenicity 

(Rbpj, Tbx21, Bhlhe40, Csf2, Ifng, Il17a) 6,8,33 (GREAT analysis 34) as well as novel genes, 

including Bach2. Genes proximal to dLN-specific and CNS-specific DACRs were enriched for 

signatures previously identified from scRNA-seq of cells profiled from the dLN and CNS, 

respectively 8 (Fig. 2D and Table S4). 

 

DACRs of dLN- and CNS-derived Th17 cells were enriched for motifs of putative regulators of 

non-pathogenic and pathogenic Th17 cells in vivo (Fig. 2E). dLN-specific peaks were enriched 

for sites for TFs associated with stem-like and self-renewing-like Th17 programs, including TCF1, 

LEF1, and OCT4 8,16,35, whereas the CNS-specific peaks were enriched for sites for TFs known to 

play a role in Th17 differentiation and pathogenicity, including FOSL2, BATF, and JUNB 36-38.  

 

To understand how the chromatin signatures from in vitro polarized cells related to chromatin 

accessibility changes that occur in vivo during EAE, we compared chromatin peaks accessible in 

both in vitro-derived and in vivo-derived Th17 cells (Fig. 2F,G). Because the CNS 

microenvironment differs greatly from in vitro polarization conditions and cells harvested in vivo 
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represent a mixed ‘‘snapshot’’ of an asynchronous process with multiple heterogenous Th17 cell 

states 8, we focused only on 491 peaks with shared differential accessibility between npTh17 and 

dLN cells and 678 peaks shared between pTh17 and CNS cells (out of 41,168 peaks shared 

between in vitro and in vivo cells altogether, Methods). Peaks with shared differential accessibility 

in CNS-derived Th17 cells and pTh17 included loci involved in Th17 activation and pathogenicity 

(Cd44, Stat4, Fosl2, Tbx21, Bhlhe40) 6,8,36 as well as those not previously associated with Th17 

cells (Bach2, Ermn). Differentially accessible peaks in both dLN-derived and npTh17 cells 

included loci characteristic of homeostatic and non-pathogenic Th17 cells (Ccr6, Il6st, Maf, Il9) 

6,8 and novel candidates (Gpr15, Twist2) (FDR <0.05). These peaks are consistent with the 

corresponding PC scores of ATAC-seq profiles in vitro and in vivo: those specifically accessible 

in npTh17 cells and dLN-derived Th17 cells with PC2 in vitro, and those shared in pTh17 cells 

and CNS-derived Th17 cells with PC1 in vivo (Fig. 2F, color bars).    

 

Thus, chromatin accessibility profiles of Th17 cells from EAE-diseased mice revealed major 

differences between dLN-derived and CNS-derived Th17 cells in peaks near fate-defining genes, 

a subset of which is mirrored by in vitro generated npTh17 and pTh17 cells, respectively.  

 

The accessible chromatin features distinguishing pathogenic vs. non-pathogenic Th17 cells 

are shared with Th1 and Treg cells, respectively 

While Th17 cells are known to express genes typically attributed to other CD4+ T cell types 

(e.g.,Th1 genes Ifng and Tbx21 expressed by pTh17 cells 4,12-15), the relationship of Th17 cells to 

other T cell subsets and the extent of their plasticity have not been studied beyond selected 

markers. To better understand this, we next compared the ATAC-seq and RNA-seq profiles 
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between in vitro-derived npTh17, pTh17, Th0, Th1, and Treg cells (Fig. 3A and S3A and Table 

S5, S6). 

 

There were major differences between the CD4+ T cell subsets, with each subset grouping 

separately based on the first two PCs (Fig. 3B and S3B,C), forming two major “branches”, one 

from Th0 to Th1, pTh17 and npTh17 cells, and the other to Treg cells. In both PCA and by pairwise 

correlation analysis, Tregs were the most distinct (Fig. 3C, Pearson’s r = 0.034, -0.133, -0.101 

respectively for npTh17, pTh17, Th1 vs. Th0). While on PC1 (71% of variance) Tregs and 

npTh17cells were most distant (Fig. 3B), they were closest on PC2 (14% of variance), suggesting 

an underlying shared set of features. Indeed, this was also reflected in their RNA-seq profiles (Fig. 

S3B, PC2), possibly reflecting the shared requirement of TGF-β for their differentiation 39. 

Conversely, pTh17 cells were localized between the npTh17 and Th1 cells by both ATAC-seq 

(Fig. 3B) and RNA-seq (Fig. S3B), were most correlated to Th1 cells in their chromatin profiles 

(Pearson’s r = 0.810, 0.711, -0.101 Th1 vs. pTh17, npTh17, Treg, respectively, Fig. 3C), and 

DACRs that are more open in pTh17 vs. npTh17 cells displayed the highest signal in Th1 cells 

(Fig. 3D). NpTh17-specific DACRs were detected in Treg cells (Fig. 3D), supporting that the dual 

functional cell states of pro-inflammatory and homeostatic Th17 cells reflect Th17 plasticity for 

other CD4+ T cell types. 

 

To further compare chromatin landscapes across the Th cell subsets, we clustered the DACRs 

identified from pair-wise comparisons of npTh17, pTh17, Th1, and Tregs (k-means clustering; 

k=10, Fig. 3E), predicted genes associated with each DACR by proximity (using GREAT 34), and 

examined the expression of selected genes (from RNA-seq) (Fig. 3F and S3C and S4). Cluster 1, 
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shared by all effector CD4+ T helper cells, included peaks close to Cd28, providing co-stimulatory 

signaling during T-cell activation 40, and Satb1, involved in the specification of CD4+ T cell subsets 

41. Cluster 2 and 3 consisted largely of Treg-specific peaks with some in proximity to genes 

important for Treg function, such as Nrp1, Il10rb1 and Irf1 42-44. Cluster 4 had DACRs shared 

between npTh17 and Treg cells, including those near the genes Twist2, Il9, and Gpr15. IL-9 was 

previously implicated in Th17 differentiation and function and Treg-mediated immune suppression 

45-47, and GPR15 is important for homing of Treg cells to the large intestine 32. Cluster 5 and 6 

harbored peaks specific to npTh17 cells, including some in proximity to genes previously 

associated with the npTh17 phenotype, such as Procr, Il21, Ikzf3, Maf, Rorc 6,8,48 and novel genes 

including Bach2 (also associated by the in vivo analysis, Fig. 2E,F). Cluster 7 included peaks 

shared between both npTh17 and pTh17 cells and specific to the general Th17 phenotype, 

including those proximal to Il17a, Il17f, Rora, and Ahr genes 36,37. Strikingly, cluster 8 highlighted 

peaks distinguishing pTh17 from npTh17 cells that are also accessible in Th1 cells, including near 

genes involved in proinflammatory and pathogenic Th17 responses such as Bhlhe40 and Il6 49-51. 

Cluster 10 was specific to Th1 cells and included peaks close to Th1-marker genes, such as Stat1, 

Il12rb2, Nkg7, Ifng, and Plac8 52-56.  

 

Overall, the npTh17 and pTh17 chromatin landscapes are distinct from those of other CD4+ T cell 

subsets through a set of shared DACRs and from each other through features that are shared with 

other Th cells – either Tregs (for npTh17) or Th1 cells (for pTh17), highlighting plasticity in Th17 

cells that may drive differences in function. 
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PTh17 cells retain an intermediate polarization state as npTh17 and Th1 cells diverge during 

a time course of polarization 

To examine how the chromatin and expression changes at 48h arose over time we performed bulk 

ATAC-seq and bulk RNA-seq along in vitro polarization of Th1, pTh17 and npTh17 at 0hr, 1hr, 

6hr, 12hr, 20hr, and 48hr (Fig. 4A,B and S5A,B and Table S7). In both ATAC-seq and RNA-seq, 

there were 3 main axes of variation by PCA: “time” (PC1), where samples from all three types 

progress similarly (Fig. 4A,B and S5B), “activation” (PC2), where all types increase from 1 to 6h 

(Fig. S5B), and “polarization condition” (PC3) (Fig. 4A,B), where samples from the different 

conditions grow increasingly distinct with time. In particular, samples from the pTh17 and npTh17 

cells first both become distinct from Th1 cells (by 6h) and then npTh17 samples grow increasingly 

distinct from pTh17 cells, such that by 48h, pTh17 cells are an intermediate between Th1 and 

npTh17 cells. The similar patterns in ATAC-seq and RNA-seq (Fig. 4A,B and S5B) indicate that 

chromatin and expression changes are well-coordinated during T-cell polarization.  

 

Chromatin regions that were differentially accessible between the conditions over time partitioned 

into 10 clusters (Fig. 4C, k-means clustering, n = 10, 5,202 peaks), including cell type specific 

clusters (cluster 3, 4, 5, 9), and clusters that are shared between pTh17 and npTh17 cells (cluster 

2, 7, 8), between pTh17 and Th1 cells (cluster 6), or across all conditions (cluster 1). Of the 5,202 

top DACRs, 52% (2,708) were also in the top 20% peaks by loading from PC1, PC2, or PC3. Most 

(2,091 peaks, 77%) were shared with PC3, particularly in clusters 4, 5, 7, 8, 9, and 10, consistent 

with PC3 stratifying the polarization conditions (Fig. 4C, color bar). Of the 58,356 and 60,452 

peaks that respectively opened or closed over the 48h, 34% (19,739) and 62% (37,204) were shared 

among the different conditions (Fig. 4C,D and S5C). Notably, in both the opening and closing 
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peaks, the pTh17 condition shared more peaks with the npTh17 condition and the Th1 condition, 

than the Th1 condition shared with the npTh17 condition, further supporting that pTh17 cells are 

an intermediate state between npTh17 cells and Th1 cells.  

 

Individual pTh17 cells span an expression and chromatin spectrum between chromatin and 

expression features of Th1 and npTh17 cells  

The shared programs and divergence patterns between pTh17 cells and Th1 or npTh17 cells could 

represent either a cell-intrinsic intermediate state or cell-to-cell heterogeneity within the pTh17 

population (which would appear as an “intermediate” average bulk profile). To distinguish these 

possibilities, we next performed droplet-based scATAC-seq of in vitro differentiated npTh17, 

pTh17, and Th1 cells at 48h post-polarization. 

 

ScATAC-seq profiles grouped by cell type (Fig. 5A,B, S6A,B and S7A), largely mirroring the 

Th1 to pTh17 to npTh17 order observed at the population level, suggesting a continuous, cell 

intrinsic phenotype (Fig. 3B). After excluding two small low-quality clusters (mixed, npTh17-2), 

the profiles partition in 5 clusters: one of npTh17 cells, two of pTh17 cells, and two of Th1 cells 

(Fig. 5B), each associated with different marker genes (by a gene score 57 of the ATAC-signal in 

a 200kb spanning window, Fig. 5C). The marker genes were consistent with those earlier identified 

with bulk ATAC-seq (Fig. 1) for the npTh17 (Il17a, Il17f, Twist2, Il10, Havcr1), pTh17 (Themis, 

Il33, Fosl2, Il23r) and Th1 (Csf2, Ccl5, Tbx21) clusters. Interestingly, the pTh17 cells spanned a 

spectrum (reflected by two “consecutive” clusters) from a higher chromatin accessibility at 

npTh17 marker genes (pTh17-2) to a higher shared chromatin program with Th1 cells (pTh17-1) 

(Fig. 5B,C and S7B). Accordingly, in vivo signatures of pathogenic Th17 cells were enriched in 
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the pTh17-1 and Th1-1 clusters, while in vivo signatures of non-pathogenic Th17 cells were 

enriched in npTh17 and pTh17-2 clusters (Fig. S7C,D). 

 

To link accessible chromatin regions to the potential target genes they regulate, we also profiled 

in vitro polarized npTh17, pTh17, and Th1 cells by scRNA-seq, observing a similar ordering of 

Th1-pTh17-npTh17 profiles (Fig. S7E,F). We integrated scATAC-seq and scRNA-seq profiles, 

assigned RNA profiles to each cell from our scATAC-seq, and used these to correlate chromatin 

peak accessibility with gene expression 57 (Fig. 5D,E and Table S8). The 23,608 identified peak-

to-gene links (correlation >0.45, FDR <0.05) (Fig. 5D) partitioned to eight clusters (k-means 

clustering). These included both cell type-specific peak clusters for npTh17 cells (cluster 1, 2; 

8,260 peak-to-gene links, e.g., Ahr, Il10, Bach2, Il9, Havcr1, Il17a), pTh17 cells (cluster 4, 2,827 

links, e.g., Batf, Il23r), and Th1 cells (cluster 7, 8, 5,888 links, e.g., Gzmb, Ifng, Nkg7, Csf2, Fig. 

5D), as well as a shared npTh17 and pTh17 cluster (cluster 3, 3,442 links, Fosl2) and shared pTh17 

and Th1 clusters (clusters 5, 6, 3, 191 links, Tbx21). The peak-to-gene links included key Th17 

effector gene loci, such as Il17a, Il17f, Il10, Csf2, and Ifng, with peaks that highly correlated with 

gene expression and may act as potential regulatory elements (Fig. 5E).  

 

Consistent with our scATAC-seq analysis, cells in the pTh17-2 scRNA-seq cluster had higher 

signal for peaks shared with npTh17 cells, while pTh17-1 cluster cells had more accessible 

chromatin in clusters 5 and 6 that contain pro-inflammatory and Th1-specific genes. Notably, in 

the peak-to-gene linkage, a given gene can be correlated with multiple peaks (Fig. 5E). Multiple 

peaks associated with pTh17 gene markers (Il23r, Il22, Themis) were all highly specific to the 

same cell-type and thus members of the same single cluster. Conversely, genes associated with 
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npTh17 phenotypes (Il17a, Il10, Ahr, Bach2) and pro-inflammatory Th1-like states (Tbx21, Ifng, 

Gzmb, Tbx21) were matched to peaks found in different cell-type specific clusters, revealing how 

these genes may be regulated in a cellular context-dependent manner (Fig. S7G-I). 

 

Topic modeling on scATAC-seq data 58 captured 35 cellular programs and states (“topics”) some 

distinguishing one or two of Th1, pTh17 and npTh17 cells, others varying within a single cell 

subset, and yet others varying within two of the subsets in similar patterns (Fig. 5F and S8A). In 

the cell type specific topics, Topic 25 featured accessible chromatin regions defining npTh17 cells, 

including peaks linked to npTh17 marker genes Il17a, Batf, Il10, Twist2, and Rbpj; Topic 11 

distinguished pTh17 cells with accessible chromatin regions proximal to pathogenicity-associated 

genes such as Il23r, Il21, and Bhlhe40; and Topic 13 represented a Th1 program with accessible 

chromatin regions associated with pro-inflammatory gene programs (Csf2, Eomes, Fas, Cd44) 

(Fig. 5F and S8B). Notably, even such specific topics scored in minor portions of the other cell 

types, showing the malleability of these programs. This malleability was even more striking in 

other topics that captured variation within multiple cell types, such as a shared npTh17 and pTh17 

program (Topic 3), with peaks proximal to Il17a, Il17f, Satb1, and Bach2, and a shared pTh17-1 

and Th1-1 program (Topic 9) in pTh17-1 and Th1-1 clusters, defined by peaks near pro-

inflammatory genes Il12a, Il12rb2, Atf3, Il33, and Ccl5 (Fig. 5F and S8B).   

 

Overall, this analysis showed that pTh17 cells span a spectrum, from cells where npTh17-like 

features are more prominent to cells with a stronger pro-inflammatory Th1-like chromatin state.  
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Combined scATAC-seq and scRNA-seq profiles recover a self-reinforcing, mutually 

antagonistic regulatory network across npTh17, pTh17, and Th1 cells 

Next, we used the integrated scATAC-seq and scRNA-seq profiles to predict putative TF 

regulators that bind at T-cell type-specific accessible chromatin sites, highlighting both known 

regulators of Th17 cells and novel candidates. To this end, we first identified TFs whose binding 

site motifs are enriched in Th1, npTh17, and pTh17-specific accessible chromatin regions (Fig. 

S9A). Next, we further identified TFs whose own RNA expression positively correlated with 

changes in the accessibility of regions with their corresponding motif across loci, by comparing 

the integrated RNA expression of a given TF to the TF motif deviation 59 (Fig. 5G and Table S9). 

This analysis highly ranked known regulators of Th17 cells including Ets1 60, Junb, and Fosl2 36-

38, as well as a novel candidate regulator, the transcription factor BTB Domain and CNC Homolog 

2 (BACH2). 

 

We further leveraged our matched scATAC-seq and scRNA-seq data to construct a TF:target 

regulatory network across the Th17 and Th1 programs. We identified differentially expressed 

genes from npTh17, pTh17, and Th1 scRNA-seq (FDR <0.01, fold change >2), and then searched 

for TF motifs in the peaks that were associated with these genes by peak-to-gene linkage analysis. 

The resulting network related a TF to a target gene if the TF motif was found in the peak linked to 

the gene and the TF and target gene expression were correlated across all cells in scRNA-seq 

(Pearson |r| >0.1, FDR <0.001). Focusing on the highly interactive TF regulators (with at least 10 

targets) and target genes (of at least 5 TFs), the resulting network had 78 TFs, 223 target genes 

(including 15 that were also TF regulators), and 3,749 edges in the full network (Fig. S9B). Within 

it, a focused subnetwork (Fig. 5H,I) spanned 24 TFs and 33 target genes with 201 activation (Fig. 
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5H) and 114 suppression (Fig. 5I) edges. Several of the network TFs, including Bach2, Fosl2, 

Irf1, Ets1, Nr4a1 and Rorc, were also predicted as top regulators of chromatin accessibility (Fig. 

5G).  

 

The network architecture suggests a largely self-reinforcing, mutually antagonistic organization, 

such that “activators” of gene programs for one state act as repressors for the other, and vice versa, 

including regulation between the TFs (Fig. 5H,I and S9B). Specifically, hierarchical clustering of 

the TF:target expression correlation matrix (Fig. 5H,I and Fig. S9B) recovered 4 TF modules and 

5 target gene modules (Fig. S9B). TF modules 1 and 2 positively correlated with target modules 1 

and 2 in npTh17 and pTh17 cells (Fig. 5H,I and S9B, blue and green edges). TF module 1 (17 

TFs) and 2 (24 TFs) included established master TFs of the Th17 cell fate, such as Rorc, Irf4, 

Stat3, Batf3, and Fosl2 36,37 and the novel candidate regulator Bach2. Target module 1 (36 genes) 

and 2 (64 genes) included Th17-marker genes (Il17f and Il9 in module 1; Ccr6, Il17a, Il21, and 

Pdpn in module 2). TF modules 3 and 4 positively correlated with the pTh17-Th1 target modules 

3 (50 genes) and 5 (47 genes), which included known pathogenicity genes (e.g., Nkg7 61, Ccl5 62, 

Fasl 63, Csf2 16). The smallest target module 4 (11 genes) included genes specifically expressed in 

pTh17 cells and did not show a strong correlation with any of the TF modules. At the same time, 

each of the TF module pairs negatively correlated with the target modules: TF modules 1 and 2 

with target modules 3 and 5 (in pTh17 and Th1 cells) and TF modules 3 and 4 with target modules 

1 and 2 (in npTh17 and pTh17 cells). In these contrasting roles of TFs in the network, positively 

correlating with target genes from npTh17 or Th1 cells but negatively correlating with genes from 

the other subset, is consistent with previous network architectures we have observed in Th17 cells 
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at the expression level 37. Notably, this pattern was also observed when considering only TFs as 

targets, consistent with a self-reinforcing, mutually exclusive regulatory architecture.  

 

Network analysis predicts regulators of Th17 cell pathogenicity 

In line with our previous findings, pTh17 TFs and genes were primarily in modules that are shared 

with either npTh17 or Th1, highlighting the regulatory architecture underlying our finding that 

pTh17 cells form a state within a spectrum that is intermediate between npTh17s and Th1s, and 

shared distinct features with each. For example, the pTh17-Th1 target modules 3 and 5 (Fig. 5H 

and S9B) are regulated by Tbx21, Eomes, Nr4a1, and Atf3. Eomes and Nr4a1 modulate Th17 and 

Th1 fates in autoimmunity and inflammation 64,65. ATF3 regulates Ifng in Th1 cells 66 and Il10 in 

Tr1 cells 67, but its roles in driving Th17 pathogenicity have not yet been described. Similarly, 

Rorc, Ets1, Fosl2, Rbpj, and Bach2 are among the TFs that regulate the npTh17-pTh17 target 

modules 1 and 2 (Fig. S9B, Fig. 5H). Rbpj is a known regulator of Th17 gene programs 33 and is 

identified here as a central regulator (168 target genes, Fig. S9B). Bach2 (46 target genes, Fig. 

S9B) has not been implicated in Th17 gene regulation but is predicted to be a top driver of the 

Th17 gene programs in this model. 

 

Many of the regulators identified by network analysis at 48h are also identified by TF motif 

enrichment analysis on the peaks of each cluster of chromatin regions that change along the 

polarization time course (Fig. 4 and Fig. S9C). For example, peaks in the Th1-specific cluster 

(cluster 4) are enriched with motifs of TFs involved in Th1 differentiation, NFAT, NF-κB, and 

NUR77 65,68-70. Cluster 7 included chromatin regions common in Th17 cells that opened early (6h) 

and were predicted to be regulated by known Th17 regulators, including BATF, JUNB, and FOSL2 
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36,38 and the novel regulators ATF3 and BACH2. Cluster 8 included Th17-specific peaks that 

appeared later during differentiation (20-48h) and were enriched with motifs of the known Th17 

regulators BATF, JUNB and RORγt 36-38,71, indicating that the same TFs regulate two different 

waves of Th17-specific peaks during Th17 differentiation.  

 

In summary, ATAC-seq and RNA-seq at the single cell level and across multiple time points of 

Th17 and Th1 differentiation allowed us to predict many known regulators of the Th17 chromatin 

landscape, organized in a self-reinforcing, mutually exclusive architecture across the cell 

programs, as well as novel ones, such as the TF BACH2, associated with npTh17 programs. 

 

BACH2 is a negative regulator of Th17 pathogenicity by restraining Th1 programs in Th17 

cells 

We next aimed to functionally validate BACH2, which emerged as a novel regulator of the Th17 

chromatin landscape predicted from our analysis across both in vitro and in vivo data. Multiple 

lines of evidence support Bach2 as putative driver of Th17 cell states: (1) BACH2 was a highly 

ranked candidate in the TF motif analysis of peaks more accessible in the CNS than in the dLN 

(Fig. 2E); (2) ATAC-seq peaks close to the Bach2 locus were more open in Th17 cells from the 

CNS than from the dLN (Fig. 2F); (3) npTh17-specific peaks were found in proximity to the Bach2 

locus (Fig. 3E); (4) BACH2 is a top positive regulator of npTh17 targets based on integrated 

scATAC-seq and scRNA-seq (Fig. 5G,H); and (6) BACH2 was predicted to regulate Th17-

specific chromatin regions over time, especially in npTh17 conditions (Fig. S9C). Notably, 

although the Bach2 motif was highly enriched in DACR peaks specific to CNS-derived Th17 cells, 

Bach2 gene expression in the bulk RNA-seq was only marginally higher in CNS Th17 cells 
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compared to dLN-derived Th17 cells (log2FC = 0.52, FDR = 0.25), highlighting the benefit of 

motif information derived from chromatin accessibility when searching for transcriptional 

regulators. 

 

To test our hypothesis, we used the CRISPR/Cas9 system to create loss-of-function mutations 

(LOF) in the protein-coding region of Bach2. We obtained naïve T cells from Cas9 knock-in mice 

72 and in vitro differentiated them to npTh17 and pTh17 cells while simultaneously transducing 

them with retroviral vectors encoding a Bach2-targeting single guide RNA (sgRNA) (Bach2 KO) 

or empty sgRNA as control. We confirmed highly efficient indel formation at the target Bach2 

locus in Th17 cells (Fig. S10A).  

 

Knockout (KO) of Bach2 during Th17 differentiation led to increased expression of the pro-

inflammatory cytokines IL-17A (p <0.05, unpaired t-test), IFN𝛾	 (p <0.001), and GM-CSF (p 

<0.01) in npTh17 cells (Fig. 6A), suggesting that BACH2 restrains Th17 pathogenicity in npTh17 

cells.  

 

BACH2 substantially impacted the chromatin landscape of Th17 cells but had little effect on Th1 

cells, based on bulk ATAC-seq of Bach2 KO and control npTh17, pTh17, and Th1 cells, shifting 

both pTh17 and npTh17 cells more towards a Th1 chromatin profile, suggesting that BACH2 

restricts the Th1 program in Th17 cells (Fig. 6B-D and Table S10). Specifically, while Bach2 KO 

in Th1 cells resulted in only modest chromatin accessibility changes (18 DACRs), the Bach2 KO 

npTh17 cells (1,118 DACRs) and pTh17 cells (627 DACRs) demonstrated substantial changes 

(FDR <0.05, |log2(fold change)| >0.5). Moreover, Bach2 KO profiles from both npTh17 and 
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pTh17 cells are shifted toward Th1 cells on PC1 (Fig. 6B), with opening of Th1-specific peaks in 

proximity to the genes Ifng, Fosl2, and Tigit, and closing of Th17-specific peaks in proximity to 

the genes Ahr, Gpr15, and Stat4 (Fig. 6C,D). In addition, there was Th17-specific closing of peaks 

in the Bach2 KO in the Il2ra locus and opening of a set of peaks in the Il1r1 locus in all Bach2 

KO cells (Fig. 6C). Accordingly, genes proximal to Bach2 KO-specific peaks in pTh17 and 

npTh17 cells were enriched for in vivo signatures of Th17 pathogenicity and depleted for 

signatures of non-pathogenic Th17 phenotype 8 (Fig. 6E and Table S11). Moreover, chromatin 

accessibility signatures of Treg and Th17 cells (Fig. 3E) are down-regulated in both npTh17 and 

pTh17 cells from Bach2 KO (Fig. S10B).  

 

Consistent with the KO phenotype, Bach2 overexpression (OE) in pTh17 cells polarized in vitro 

led to closing of Th1-like pathogenic features, suggesting it acts as a repressor (Fig. 7A,B). 

Specifically, we polarized naïve CD4+ T cells into pTh17 cells by simultaneous transduction of 

retroviral vectors with a constitutive Bach2 cDNA expression cassette (Bach2 OE) or an empty 

control and achieved a significant increase (~10-fold, p <10-4, unpaired t-test) in Bach2 expression 

compared to control (Fig. S11A). We profiled Bach2 OE and control populations by bulk ATAC-

seq. Bach2 OE led to major changes in the chromatin landscape of pTh17 cells (Fig. 7A,B and 

Table S12), opening 524 peaks, including close to genes associated with the stem-like, non-

pathogenic Th17 phenotype (Ccr7, Maf, Tcf7), and closing many more peaks (3,438 peaks), 

including in proximity to genes involved in Th17 pathogenicity, such as Bhlhe40, Csf2, Cxcr6, 

Ermn, Ifng, and Rbpj 6,8,16,33.  
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The changes in chromatin accessibility in Bach2 CRISPR KO and Bach2 OE in polarized Th17 

cells are often diametrically opposed. DACRs in 104 genes became more closed in Bach2 KO and 

more open in Bach2 OE compared to their controls (418 genes in Bach2 KO alone and 492 genes 

in Bach2 OE alone) (Fig. 7C). DACRs in 121 genes became more open in Bach2 KO and more 

closed in Bach2 OE (59 genes in Bach2 KO alone and 2,911 genes in Bach2 OE alone, Fig. 7C). 

Many of these target genes are potentially directly bound by BACH2, as indicated by the presence 

of a BACH2 binding motif found in the associated DACR, including stem-like T cell marker Tcf7 

and Slamf6 as well as pro-inflammatory genes Ifng and Csf2. In Bach2 KO, 147 of 211 (69.7%) 

gene peaks that became more open and 95 of 522 (18.2%) gene peaks that became more closed 

contained a BACH2 binding motif (p = 1 x 10-20 for Bach2 motif enrichment in opened vs. closed 

peaks). In Bach2 OE, a BACH2 binding motif was detected in 1,370 of 3,063 (44.7%) gene peaks 

that became more closed and 128 of 596 (21.5%) gene peaks that became more open (p = 1 x 10-

104 for Bach2 motif enrichment in closed vs. open peaks). This is consistent with the reported action 

of BACH2 as a transcriptional repressor 73,74. 

 

Thus, KO of Bach2 in Th17 cells leads to an upregulation of a pathogenic Th1-like chromatin 

program in both npTh17 and pTh17 cells, and its OE in pTh17 cells leads to downregulation of 

this program (and induction of a stem-like non-pathogenic Th17 phenotype). BACH2 may thereby 

act as a repressor, restraining Th1-like features and Th17 pathogenicity in Th17 cells during 

differentiation.  

 

Increased expression of BACH2 ameliorates Th17 autoimmunity in vivo 
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Given the role of BACH2 in restraining chromatin features of Th17 pathogenicity in vitro (Fig. 6 

and 7A,B), we hypothesized that BACH2 overexpression in pTh17 cells could ameliorate EAE 

disease in vivo. To test this hypothesis, we used the 2D2 EAE transfer model, in which the adoptive 

transfer of CD4+ T cells from 2D2 T-cell receptor (TCR) transgenic mice  that express a TCR 

specific for the myelin oligodendrocyte glycoprotein (MOG) 75 induces severe paralytic disease in 

the recipient mice. We in vitro polarized naïve CD4+ T cells to pathogenic Bach2 OE or control 

2D2 Th17 cells (as above) and adoptively transferred them into congenically-marked recipient 

mice.  

 

While the transfer of T cells treated with the control virus induced severe EAE disease, transfer of 

T cells overexpressing Bach2 resulted in significantly milder disease (Fig. 7D, p <10-4) and had 

significantly lower frequencies (p <10-3, unpaired t-test) and numbers (p <10-3, unpaired t-test) of 

transduced (GFP+) T cells in the CNS (Fig. 7E), and those cells expressed the pathogenic cytokine 

GM-CSF at significantly lower frequencies (p <0.01, unpaired t-test) and the regulatory cytokine 

IL-10 at higher frequencies (p <0.05, unpaired t-test)  (Fig. 7F). Bulk RNA-seq of the transduced 

(GFP+) cells from the CNS of EAE-diseased mice showed that the expression profile of Bach2 OE 

cells was enriched for signatures of in vivo non-pathogenic and stem-like Th17 cells 8,16, while the 

control cells exhibited a highly pathogenic profile with signatures of Th17, pre-Th1 effector like 

cells (Fig. 7G and S11B and Table S13). Moreover, an in vivo stem-like Th17 signature 16 was 

enriched in Bach2 OE cells and down-regulated in Bach2 KO cells (Fig. S11C). This is consistent 

with a recent study showing that BACH2 is a regulator of the stem-like program in CD8+ T cells 

76, and further suggests BACH2 as a driver of a stem-like expression program in T cells more 

broadly.  
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Thus, the ameliorated in vivo pathogenicity of Bach2 overexpressing pTh17 cells validates Bach2 

as a novel regulator of the Th17 pathogenic chromatin landscape and suggests Bach2 as a potential 

target for the treatment of autoimmune conditions. 

 

BACH2 variants are associated with autoimmune disease risk in humans 

Finally, we examined a potential association of BACH2 with autoimmune disease in humans. In 

the genome-wide association study (GWAS) of MS 77, BACH2 is prioritized as a putative causal 

gene associated with a protective GWAS locus tagged by rs72928038 (odds ratio for G allele: 

0.8663; p = 8.38*10-29) (Fig. S12A,B). Fine mapping of the locus reports three variants that explain 

the GWAS signal: rs72928038 (posterior probability: 84.2%), rs10944479 (posterior probability: 

10.4%), and rs6908626 (posterior probability: 1.1%) 78.  

 

Chromatin accessibility, chromosome conformation and expression data further suggest that the 

most strongly associated variant, rs72928038, is located in a regulatory element whose function 

could be linked to BACH2 transcriptional regulation. First, rs72928038 resides in an open 

chromatin peak intronic on BACH2 that is open in all primary immune cells 78, suggesting potential 

for regulation of nearby genes. Moreover, promoter capture interaction data (PChiC) 79 shows an 

interaction between the rs72928038 locus and the BACH2 promoter in all 17 examined cell types 

and states, but only reaching study-wide significance (by FDR) in naïve CD4+ T cells (interaction 

score = 9.28) (Fig. S12C). Next, publicly available eQTL data (DICE consortium 80) showed that 

rs72928038 and rs10944479, the top two of the three putative causal variants, were associated only 

with changes of expression of BACH2. Carriers of the rs72928038 G allele had higher BACH2 
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expression in naïve CD4+ T cells (adjusted p = 0.0015) and in Treg cells (adjusted p = 0.0018) (Fig. 

S12D,E). These results suggest that the protective allele for MS susceptibility can result in 

increased BACH2 expression in CD4+ T cells, in agreement with our results in mouse Th17 cells.   

 

Discussion 

In this study, we leveraged the accessible chromatin landscape of CD4+ T cells along with RNA 

profiles in bulk populations and single cells to understand the distinctive cell fate features and 

relationships between Th17 cells, pTh17 cells and other CD4+ T cells, and decipher regulators of 

Th17 effector functions in vitro and in vivo. We compared the chromatin landscape of non-

pathogenic and pathogenic Th17 cells to each other and to other CD4+ T cell subsets revealing 

pTh17 cells as an intermediate between npTh17 and Th1 cells with a substantial overlap with the 

Th1 regulatory program. We predicted novel drivers of Th17 pathogenicity by analyzing matched 

scATAC-seq and scRNA-seq and by chromatin and RNA profiling along three polarization time 

courses. Lastly, we identified and validated the transcription factor BACH2 as a novel suppressor 

of Th17 pathogenicity in vitro and in vivo and showed relevant genetic evidence for protective 

variants in the BACH2 locus associated with MS disease risk in humans and with chromatin 

organization and higher BACH2 expression in T cells.  

 

Our discovery of distinct chromatin landscapes of npTh17 and pTh17 cells suggests major 

chromatin differences between them and supports a model in which these represent distinct cell 

fates. The concept of beneficial and pathogenic Th17 cells is now well established 2,4,81, associated 

with  expression differences between npTh17 and pTh17 cells 6,8,16,82 and different regulators 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2022. ; https://doi.org/10.1101/2022.02.26.482041doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.26.482041
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 27	

29,33,48,63. However, whether npTh17 and pTh17 cells represent plastic cell states or stable cell fates 

remained elusive.  

 

The chromatin signature distinguishing npTh17 from pTh17 cells in vitro and in vivo allowed us 

to identify mechanisms by which these distinct cellular fates are achieved. Our analysis of the 

chromatin accessibility in individual npTh17 and pTh17 cells, and along polarization time courses, 

showed how the two diverge from each other during polarization and allowed us to discover 

multiple novel putative regulators of Th17 pathogenicity. Several regulators, such as Bach2 and 

Atf3, were not appreciated in previous studies that only analyzed RNA profiles, highlighting the 

benefit of chromatin accessibility analysis combined with motif analysis when searching for novel 

regulators. Most differences in chromatin accessibility between npTh17 and pTh17 cells were 

identified in intronic and intergenic regions (>92%), demonstrating how distal ACRs are critical 

components of regulatory programs that drive cell fate. The substantial differences also open up 

the possibility of targeting pTh17 cells specifically in autoimmune diseases, leaving the beneficial 

functions of npTh17 cells intact. The chromatin signatures derived here with matched putative 

target genes by single-cell analysis provide a rich resource to find putative regulatory elements 

and pathways that can be modified to specifically alter Th17 cell states and tune Th17 cell function. 

 

pTh17 cells have previously been shown to up-regulate Th1-marker genes (e.g. Tbx21 and IFNg) 

4,81, in both disease models in mice 8,16,18 and in human disease 9,20-22. However, it remained unclear 

whether pTh17 cells up-regulate only a few Th1-marker genes or acquire entire Th1-like cellular 

programs, and if so, what genes and regulators belong to this Th1-like pathogenic Th17 program. 

Our analysis discovered a major regulatory network, at the chromatin, mRNA and regulator level, 
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that is shared between pTh17 cells and Th1 cells and positions pTh17 cells as an intermediate cell 

fate between npTh17 cells and Th1 cells. We defined a Th1-like pathogenic Th17 subnetwork and 

identified novel pathogenic effector and regulator molecules, including BACH2. Our study sets 

the foundation for future studies aiming to target these novel effector and driver molecules as novel 

treatment options for autoimmune diseases.  

 

BACH2 is a transcriptional repressor of the basic region leucine zipper (bZIP) TF family 74, and 

was shown to be required for the differentiation and homeostasis of Treg cells by repressing effector 

cell differentiation 73,83 and in CD8+ T cells to play an important role in memory formation after 

acute infection 84,85. However, the function of BACH2 in Th17 cells has not been studied. Here, 

we identify BACH2 as a novel repressor of Th17 pathogenicity, such that BACH2 deficiency leads 

to an induction of the Th1-like pathogenic program in npTh17 cells, whereas BACH2 

overexpression suppresses Th17 pathogenicity in vivo and converts pathogenic Th17 cells into 

stem-like Th17 cells that we have recently described 16. Interestingly, a recent study demonstrated 

an important role of BACH2 in the generation of stem-like CD8+ T cells 76. We and others have 

previously shown that npTh17 cells share multiple properties with stem-like CD8+ T cells, 

including a shared expression profile 8,16,86. This supports a model in which BACH2 acts as a 

mediator of the stem-like, non-pathogenic Th17 program and its overexpression in pTh17 cells 

suppresses and prevents their ability to shift into a highly pathogenic effector state by impacting 

the chromatin landscape and expression of the Th1-like program in pTh17 cells. 

 

We found strong support for the relevance of the role of BACH2 in human autoimmune disease. 

Single-nucleotide polymorphisms (SNPs) at the BACH2 locus are associated with multiple 
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autoimmune diseases, the protective allele for MS susceptibility results in an increase of BACH2 

expression in CD4+ T cells, and the locus contains a prominent T cell super-enhancer 77,87,88. 

Moreover, BACH2 has previously been predicted to regulate the transcriptional program of human 

TH17-IL-10+ cells 89. Hence, an induction of BACH2 expression and/or activity leading to the 

generation of homeostatic Th17 cells in human autoimmune diseases might yield a novel, 

promising treatment approach for inhibiting pathogenic effector T cells.  

 

In conclusion, we have used comprehensive analysis of the chromatin accessibility and associated 

gene expression of np and pTh17 cells and other CD4+ T cell subsets to identify a novel Th1-like 

pathogenic Th17 program that is shared between pTh17 cells and Th1 cells at both the chromatin 

and expression levels, and is governed along with other distinct programs by an integrated 

regulatory network with a self-reinforcing mutually exclusive architecture. We also predicted and 

validated BACH2 as a novel regulator of Th17 pathogenicity. Our work provides a framework to 

leverage chromatin profiles to yield novel insights into the regulation of CD4+ T cell diversification 

and yields a foundation for future explorations of novel drivers of Th17 pathogenicity.  
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Figure legends 

Fig. 1: Distinct chromatin landscapes in non-pathogenic and pathogenic Th17 cells 

(A) Experimental setup of in vitro system. Naïve CD4+ CD25- CD44- CD62L+ T cells (grey, top) 

were in vitro differentiated to npTh17 (blue, left) or pTh17 (purple, right) cell populations.  

(B,C) Distinct chromatin accessibility profiles for pTh17 and npTh17 cell populations. (B) First 

(x axis, PC1) and second (y axis, PC2) principal components of a PCA of ATAC-seq profiles (dots) 

of in vitro differentiated cell from all (dark color) or GFP+ (light color) cells sorted from npTh17 

(blue) and pTh17 (purple) populations at 24h (square), 48h (circle), and 72h (triangle) after 

polarization of naïve CD4+ T cells from Il17aGFP reporter mice. (C) Global chromatin accessibility 

(y axis, normalized reads) of npTh17 (blue) and pTh17 (purple) cell populations in chromatin 

regions that are more accessible in npTh17 (left) or in pTh17 (right) populations.  

(D) Differentially accessible chromatin regions (DACRs) are enriched in intronic and intergenic 

regions. Number of DACRs between in vitro differentiated npTh17 and pTh17 cells 48h after 

polarization (left, x axis) at different annotation locations (left, y axis) and their proportion (right, 

y axis) at different distances to nearest TSS (right).  

(E) Differentially accessible chromatin regions between npTh17 and pTh17 populations at key 

Th17 cell effector loci. Enrichment of ATAC-seq signal over background (y axis, log fold) for 

npTh17 (blue) and pTh17 (purple) cell populations profiled at 48h along the Il17a (top, x axis, 

chr1:20,710,909-20,765,000), Il10 (middle, x axis, chr1:130,989,883-131,026,008), and Ifng 

(bottom, x axis, chr10:118,439,591-118,475,730) loci.  

(F) Agreement in gene expression and chromatin accessibility profiles. Expression levels (left, z-

score of normalized counts, color bar) and ATAC counts at the peak 100kb upstream or 

downstream of gene body (right, z-score of normalized counts, color bar) for differentially 
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expressed genes (rows) with the highest correlation of accessibility signal with gene expression. 

Left purple column: Pearson’s correlation coefficient between gene expression and ATAC-seq.    
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Fig. 2: Distinct chromatin accessibility profile of CNS-infiltrating Th17 cells during EAE 

(A) Experimental setup of in vivo system. Active EAE was induced in Il17aGFP reporter mice and 

Th17 cells were harvested from the dLN (teal, left) and CNS (pink, right) at peak of disease for 

bulk ATAC-seq and bulk RNA-seq.  

(B) Distinct chromatin accessibility profiles of CNS-infiltrating Th17 cells. First (x axis, PC1) and 

second (y axis, PC2) principal components of a PCA of ATAC-seq profiles (dots) of dLN-derived 

(teal) and CNS-derived (pink) IL17A-GFP+ cells. dLN and CNS samples are matched for each 

biological replicate (shapes, n=5).  

(C) Differentially expressed genes in CNS-infiltrating Th17 cells are associated with differentially 

accessible chromatin peaks. Differentially expression (x axis, log2(fold change)) and significance 

(y axis, -log10(p-value)) between CNS-derived and dLN-derived Th17 cells profiled by bulk RNA-

seq. Differentially expressed genes with a corresponding differentially accessible chromatin peak 

(FDR <0.05 for CNS vs. dLN) are highlighted (teal for dLN, pink for CNS).  

(D) Chromatin accessibility changes in CNS-derived Th17 cells are enriched for pathogenic Th17 

signatures 8. Enrichment score (x axis, normalized enrichment score) of genes associated with the 

dLN-specific (teal) and CNS-specific (pink) ATAC peaks for different Th17 and Th1 gene 

signatures (y axis) (Table S4). 

(E) TF motifs differentially enriched in dLN or CNS-derived Th17 cells. Significance (-log10(p-

value), dot size) of fold enrichment (x axis) over background, of TF motifs (y axis) rank ordered 

by fold enrichment (x axis) in differential ATAC-seq peaks in Th17 cells from the dLN (left, teal) 

or CNS (right, pink).  

(F,G) Shared chromatin accessibility features between in vitro- and in vivo- derived Th17 cells. 

(F) Normalized counts (z-score, color bar) of DACRs (rows) shared between npTh17 and dLN-
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derived Th17 cells (bottom rows) or between pTh17 and CNS-derived Th17 cells (top rows). 

Selected genes associated with the ATAC-seq peaks are labeled on right. Color bars (left): PC 

loading from PCAs of ATAC-Seq of in vitro cells (PC2 of Fig. 1B; purple, left) and of in vivo 

cells (PC1 of Fig. 2B; cyan, right). (G) Enrichment of ATAC-seq signal over background (y axis, 

log fold) for npTh17 (blue, 72h), pTh17 (purple, 72h), dLN-derived (teal), and CNS-derived (pink) 

cell populations at the Il17a (top, chr1:20,710,909-20,765,000), Il10 (middle, chr1:130,989,883-

131,026,008), and Ifng (bottom, chr10:118,439,591-118,475,730) loci. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2022. ; https://doi.org/10.1101/2022.02.26.482041doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.26.482041
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 36	

Fig. 3: NpTh17 and pTh17 cells share different accessible chromatin features with other 

CD4+ T cells  

(A) Experimental setup of in vitro T cell differentiation. Naïve CD4+ CD25- CD44- CD62L+ T 

cells were in vitro differentiated to Th0 cells (yellow), Treg cells (green), npTh17 cells (blue), 

pTh17 cells (purple), or Th1 cells (red). 

(B-D) Unique and shared chromatin signatures define CD4+ T cell subsets. (B) First (x axis, PC1) 

and second (y axis, PC2) principal components of PCA of ATAC-seq profiles (dots) of in vitro 

differentiated Th0, npTh17, pTh17, Th1, and Treg cells at 72h. Gray arrows denote two arms of 

CD4+ T cell polarization. (C) Pearson correlation coefficient (color bar) between pairs of 

normalized ATAC-seq peak count profiles of the CD4+ T cell subsets (rows, columns). (D) ATAC-

seq normalized counts (color bars) in each CD4+ T cell subsets (panels) in the 1kb around the 

center of each peak of pTh17-specific (top rows) and npTh17-specific (bottom rows) DACRs, rank 

ordered by average signal in pTh17 and npTh17 cells, respectively.  

(E) Differential peaks in one or multiple different CD4+ T cell subsets. Z-score of normalized 

ATAC signal (color bar) in the replicate experiments in each cell type (columns) for the top 1,000 

differentially accessible peaks between every pair of cell types (FDR <0.05, rows), ordered by k-

means clustering (k=10, bar on left). Relevant genes associated with peaks are listed on the right.  

(F)  CD4+ T cell-specific chromatin peaks near key marker genes. Gene expression (left, y axis, 

normalized counts) and enrichment of ATAC-seq signal over background (right, y axis, log fold) 

in the Nrp1 (chr8:128,473,000-128,475,000), Gpr15 (chr16:58,699,000-58,720,000), Il21 

(chr3:37,270,375-37,273,500), Ermn (chr2:58,051,000-58,053,517), and Ifng 

(chr10:118,406,000-118,408,011) loci in each CD4+ T cell subset (x axis on left, colored tracks on 
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right). Gene bodies are displayed on the bottom. In cases of distal peaks the associated gene is 

indicated (right: downstream, left: upstream).  
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Fig. 4: Divergence of npTh17 and pTh17 cells in early polarization leads to higher 

resemblance of pTh17 and Th1 cells 

(A,B) Pathogenic Th17 cells occupy an intermediate chromatin and expression state between 

npTh17 and Th1 cells following polarization. First (x axis, PC1) and third (y axis, PC3) principal 

components of a PCA of bulk ATAC-seq (A) and bulk RNA-seq (B) of naïve and in vitro 

differentiated npTh17 (blue), pTh17 (purple) and Th1 (red) cells at 0h, 1h, 6h, 12h, 20h, and 48h 

(grey scale).  

(C) Changes in chromatin accessibility in npTh17, pTh17 and Th1 cells during polarization. 

Normalized counts (z-score, color bar) of the time dependent DACRs (FDR <0.05, rows) in Th1 

(left, red), pTh17 (middle, purple), and npTh17 (right, blue) cells over time (greyscale bar, top), 

ordered by k-means clustering (k=10). Relevant genes are listed on the left.  

(D) Cell type specific and shared chromatin peaks that open during polarization. Chromatin 

regions that become more accessible in npTh17 (blue), pTh17 (purple) and Th1 (red) cells by 48h 

and their intersections.  
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Fig. 5: Single-cell chromatin accessibility and RNA profiling reveal a spectrum of 

chromatin profiles of pTh17 cells and enable TF regulator discovery 

(A-C) Heterogeneity in scATAC-seq profiles of npTh17, pTh17, and Th1 cells at 48h. (A,B) 

Uniform Manifold Approximation and Projection (UMAP) embedding of scATAC-seq profiles 

(dots) colored by cell subset (A) or by cluster membership (B). (C) ATAC-seq signal (gene scores; 

z-score, color bar) at loci of marker genes (columns, 100kb on either side of the gene) for each 

cluster (rows).  

(D,E) Peak accessibility and gene expression are correlated across Th17 cells. (D) scATAC-seq 

(left) and scRNA-seq (right) signals (z-score of normalized counts) of peaks (left rows) and genes 

(right rows) related by peak-to-gene correlation. Peaks (left) and their related genes (right) are both 

ordered by k-means clustering of ATAC-seq peak profiles (k=8). Relevant genes are listed on the 

left. (E) Normalized ATAC-seq signal (y axis) at selected Th17 gene loci showing peak-to-gene 

links (bottom arcs, colored by peak-to-gene correlation, color bar). 

(F) Distinct and shared gene programs distinct across Th17 and Th1 cells identified by topic 

modeling. UMAP embedding of scATAC-seq profiles (dots) colored by topic scores per cell 

(normalized topic score, colorbar) for selected topics.   

(G) Inferred positive regulators of the Th17 chromatin landscape. Maximum motif delta (y axis), 

defined as the highest TF motif deviation score driving variation between clusters, and the 

correlation of the corresponding TF’s gene chromatin accessibility score with the motif deviation 

(x axis) across single cells. Red: significant positive regulators with a correlation >0.4 and 

maximum motif delta >4 (FDR <0.05). BACH2 is circled. 

(H,I) Inferred positive (H) and negative (I) regulatory interactions in a Th17 and Th1 regulatory 

subnetwork. A directed edge is shown from a TF (circles, top) to its predicted positively (H) and 
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negatively (I) correlated target gene (squares, bottom). Edge color: cell type(s) in which the 

association was detected (color legend). Only a selected subset of genes and their interactions are 

shown. 
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Fig. 6: BACH2 restrains Th1 cell fate programs in npTh17 and pTh17 cells 

(A) Bach2 KO increases pro-inflammatory cytokine expression in npTh17 cells. Percent (y axis 

bottom, mean with ± SEM) of npTh17 and pTh17 cells (x axis, bottom) expressing IL-17A (left), 

IFNγ (middle), and GM-CSF (right) by flow cytometry (illustrative top panels) in Th17 cells with 

retroviral transduction of a Bach2-targeting gRNA (Bach2 KO, green) or a non-targeting gRNA 

(controls, grey).  *, P <0.05; **, P <0.01; ***, P <0.001, NS, not significant, unpaired two-tailed 

t-test. 

(B-D) Bach2 KO shifts npTh17 and pTh17 cells toward a pro-inflammatory Th1-like state. (B) 

First (x axis, PC1) and second (y axis, PC2) principal components of a PCA of bulk ATAC-seq of 

Bach2 KO (squares), control (triangles), and untransduced (circles) cells in npTh17-, pTh17-, and 

Th1- differentiation. (C) ATAC-seq signal (z-score) in 1,476 DACRs (rows) that are differentially 

accessible (FDR <0.05, |log2(fold change)| >0.5) between Bach2 KO (green), control (grey) and 

not transduced (white) conditions, and clustered by k-means clustering (k=4). Peaks shown are the 

top 500 DACRs by positive log2(fold change) and bottom 500 DACRs by negative log2(fold 

change) comparing Bach2 KO vs. control in each cell type. Relevant genes associated with the 

ATAC-peaks are listed on the left. (D) Enrichment of ATAC-seq signal over background (log fold, 

y axis) in the Bach2 KO (dark color) and control (light color) conditions in npTh17 (blue), pTh17 

(purple) and Th1 (red) cells at the Gpr15 (chr16:58,700,000-58,719,516), Ifng 

(chr10:118,443,974-118,452,930), and Cxcr6 (chr9:123,808,813-123,817,000) loci. Gene bodies 

are displayed on the bottom.  

(E) Differentially accessible loci in Bach2 KO are enriched for pathogenic Th17 signatures. 

Enrichment (x axis) of Th17 pathway signatures 8 (y axis) in genes associated with the 
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differential ATAC-peaks in Bach2 KO vs. control in npTh17 cells (purple, 1,118 peaks) and in 

pTh17 cells (blue, 627 peaks) (Table S11).  
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Fig. 7: Bach2 overexpression diminishes Th17 pathogenicity 

(A,B) Bach2 OE in pTh17 cells reduces chromatin accessibility at pro-inflammatory genes. (A) 

Relative ATAC signal (z-score of normalized counts, color bar) in ATAC-seq peaks (rows) that 

are differentially accessible (FDR <0.05, |log2(fold change)| >0.5) between Bach2 OE (green 

columns) and control (grey columns) mice. Relevant genes associated with the peaks are 

highlighted on the left. (B) Enrichment of ATAC-seq signal over background (y axis, log fold) in 

the Bach2 OE (green) and the control (grey) mice in the Csf2 (top, chr11:54,213,319-54,216,630), 

Ifng (middle, chr10:118,443,974-118,452,930), Cxcr6 (bottom, chr9:123,808,813-123,817,000) 

loci. Gene bodies are displayed on the bottom. In cases of distal peaks the associated gene is 

indicated (right: downstream).  

(C) Key genes regulated by BACH2. Schematic of genes inferred as repressed (left) or activated 

(right) by Bach2 based on their respective association with differential accessibility in Bach2 OE 

or Bach2 KO vs. the respective control (FDR <0.05 and |log2(fold change)| >0.5; genes showing 

contradictory directions in OE and KO experiments were excluded). Bolded (underlined) gene 

names: genes with a Bach2 motif in the peak associated with Bach2 OE (KO). 

(D-F) Bach2 OE 2D2 cells transfer diminished EAE disease. (C) Clinical EAE score (y axis, mean 

with ± SEM) over time (x axis) of mice adoptively transferred with Bach2 OE (green) or control 

(grey) 2D2 cells. (E,F) Frequency (D, left) and number (D, right) of transduced (GFP+) cells and 

expression of GM-CSF (E, left) and IL-10 (E, right) in transduced cells (GFP+) in the CNS of EAE 

recipients of Bach2 OE (green) or control (grey) pTh17 2D2 cells by flow cytometry. Data are 

mean ± SEM. *, P <0.05; **, P <0.01; ***, P <0.001, unpaired two-tailed t-test. n=5 mice.  
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(G) Enrichment score (x axis) of Th17 pathway signatures 8 (y axis) in differentially expressed 

genes from bulk RNA-seq of transduced (GFP+) Bach2 OE vs. control 2D2 cells isolated from the 

CNS (Table S13).   
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Supplementary Figure legends 

Fig. S1: Bulk RNA-seq of in vitro differentiated Th17 cells 

(A) Gating strategy for FACS.  Exemplary plot of in vitro differentiated npTh17 cells at 72h sorting 

singlet viable CD4+ cells (all, black) and singlet viable CD4+ IL-17A-GFP+ cells (GFP+, green).  

(B,C) Bulk RNA-seq of in vitro differentiated npTh17 and pTh17 cell populations. PCA (B) of 

cell profiles and expression (C, z-score of normalized counts, color bar) of the union of the top 

200 differentially expressed genes (C, rows) at 24h, 48h, or 72h (FDR <0.05, rank ordered in C 

by fold change, 415 genes) in npTh17 (blue) and pTh17 (blue) cells populations from Il17aGFP 

reporter mice either after sorting for GFP+ cells (light color) or without sorting (all viable cells, 

dark color).  

 

Fig. S2: Comparison of in vitro and in vivo Th17 cell ATAC-seq peaks 

(A,B) Distinct gene expression profiles of CNS-infiltrating Th17 cells. (A) PCA of bulk RNA-seq 

profiles from viable CD45+ TCRb+ CD4+ IL17-A-GFP+ dLN-derived (teal) and CNS-derived 

(pink) Th17 cell populations. DLN and CNS samples are matched for each biological replicate 

(shapes, n=5). (B) Relative expression (z-score, color bar) of the 1,565 genes (rows) differentially 

expressed (FDR <0.05, |log2(fold change|) between dLN- (teal) and CNS- (pink) derived Th17 

cells (rows).  

(C) Distinct chromatin accessibility profiles of CNS-infiltrating Th17 cells. Chromatin 

accessibility (z-score of normalized counts, rows) in the top 5,000 DACRs (rows, FDR <0.05) 

between dLN- (teal) and CNS- (pink) derived Th17 cell populations, ranked by ranked by log2(fold 

change). 
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Fig. S3: Chromatin landscape of CD4+ T cell subsets 

(A) Expression of signature cytokines in in vitro differentiated Th1 cells, npTh17 cells, pTh17 

cells, and Treg cells. Illustrative flow cytometry plots are shown.  

(B,C) Distinct gene expression profiles of CD4+ T cell subsets. (B) PCA (first two PCs) of RNA-

seq profiles of in vitro differentiated Th0 cells (yellow), npTh17 cells (blue), pTh17 cells (purple), 

Th1 cells (red), and Treg cells (green) at 72h. (C) Differentially expressed genes between pairs of 

CD4+ T cell subsets. Relative expression (z-score) of the top 500 genes (rows) differentially 

expressed (FDR <0.05) between any two cell-type conditions (1,556 genes total) in cells of each 

type (columns), with genes ordered by k-mean clustering (k=8) into cell type specific clusters. Key 

genes are highlighted on the right.  

 

Fig. S4: ATAC-seq peaks across CD4+ T cell subsets 

RNA expression level (left, y axis, normalized transcript counts) and enrichment of ATAC-seq 

signal over background (right, y axis, log fold) of Il10rb (chr16:91,420,666-91,445,000), Il9 

(chr13:56,505,989-56,508,498), Maf (chr8:115,567,448-115,569,757), Il17a (chr1:20,727,418-

20,762,267) loci in in each CD4+ T cell subset. Gene bodies are displayed on the bottom. In cases 

of distal peaks the associated gene is indicated (right: downstream).  

 

Fig. S5: Time course analysis of chromatin accessibility during Th17 and Th1 differentiation 

(A) Expression of the marker cytokines at 48h. Flow cytometry plots for expression of IL-17A (y 

axis) and IFN𝛾	(x	axis) at 48h during the time course experiment. 

(B) Time and activation are captured by independent axes of variation (PCs) in both bulk ATAC- 

and RNA-seq. PCA plot of PC1 and PC2 of bulk ATAC-seq (left) and bulk RNA-seq (right) of 
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naïve and in vitro differentiated npTh17 (blue), pTh17 (purple) and Th1 (red) cells at 0h, 1h, 6h, 

12h, 20h, and 48h (grey scale).  

(C) Shared chromatin regions close during Th17 and Th1 differentiation. Venn diagram of 

chromatin regions that close by 48h in npTh17 (blue), pTh17 (purple) or Th1 (red) cells. 

 

Fig. S6: Quality control metrics of scATAC-seq  

Distribution of TSS enrichment (A, y axis) and number of fragments (B, y axis) for each scATAC-

seq cluster (x axis) (as in Fig. 5B). 

 

Fig. S7: ScATAC-seq and scRNA-seq of Th17 cells   

(A,B) ScATAC-seq profiles cluster by cell subset. (A) Fraction of cells (color bar) of each sample 

(columns) that are members of each scATAC-seq cluster (rows, defined as in Fig. 5B). (B) UMAP 

embedding of scATAC-seq profiles (as in Fig. 5B) colored by enrichment score of cluster markers 

(as in Fig. 5C). 

(C,D) ScATAC-seq profile clusters are enriched for distinct Th17 cell signatures. (C) Enrichment 

(color bar) of Th17 pathway signatures 8 (rows) with genes associated with differentially accessible 

ATAC peaks in each scATAC-seq cluster (columns). (D) UMAP embedding of scATAC-seq 

profiles (as in Fig. 5B) colored by enrichment score of Th17 pathway signatures. 

(E,F) ScRNA-seq of in vitro differentiated npTh17, pTh17, and Th1 cells at 48h. UMAP 

embedding of scRNA-seq profiles colored by treatment (E) or cluster assignment (F).  

(G) Differential peak-to-gene association of key Th17 effector genes in distinct scATAC-seq 

clusters. Relative signal (z-score, color bar) of peak-to-gene links for selected Th17 effector genes 

(columns) in each cluster (rows).  
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(H,I) Variation in chromatin accessibility of npTh17 and pTh17 marker genes across scATAC-

seq profiles. UMAP embedding of scATAC-seq profiles (as in Fig. 5B) colored by ATAC-signal 

as gene score (top) and predicted gene expression as gene integration (bottom) for selected marker 

genes of npTh17 (H) and pTh17 (I) cells.  

 

Fig. S8: ScATAC-seq topic modeling of Th17 and Th1 cells 

(A) Distinct and shared gene programs across Th17 and Th1 cells identified by topic modeling. 

UMAP embedding of scATAC-seq profiles (dots) colored by topic scores (normalized topic score, 

colorbar) for 30 of 35 topics (the remaining 5 topics are in Fig. 5F).  

(B) Chromatin peaks underlying key topics. Regions scores (colorbar) for each of the top 500 

accessible chromatin peaks (columns) in five selected topics (rows, same topics as in Fig. 5F). 

Selected genes associated with peaks in each topic are listed on the right. 

 

Fig. S9: TF motif enrichment in scATAC-seq peaks 

(A) TF motifs enriched in accessible peaks in different cell subsets. Significance (-

log10(Bonferoni adjusted p-value), y axis) and rank (x axis) of enrichment of motifs (dots) in 

npTh17- (left), pTh17- (middle), and Th1-specific (right) peaks.  

(B) Comprehensive inferred Th17 and Th1 regulatory network. Pearson correlation coefficients 

(red/blue color bar) between each TF in the network (row) and each target (column) for target 

genes that are (right) or are not (left) themselves TFs in the network. TFs and targets are clustered 

(color bars 1 and 2) and the cell type(s) where an interaction is detected are labeled (color bar 3). 
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(C) Transcription factor motif enrichment of DACR clusters. Significance (-log10(Bonferroni 

adjusted p-value), y axis), rank (x axis), and fold enrichment compared to background peak set 

(dot color) of enrichment of motifs (dots) in DACR clusters. 

 

Fig. S10: Validation of Bach2 CRISPR/Cas9 editing efficiency 

(A) Editing efficiency at the Bach2 locus. Editing efficiency (y axis; % loci with indels by Sanger 

sequencing) for a Bach2-targeting sgRNA (measured at the Bach2 locus) and for two sgRNAs 

targeting the GFP transgene locus (x axis).  

(B) Impact of Bach2 KO on chromatin accessibility in Treg and Th17 related loci. Global chromatin 

accessibility (y axis, average normalized reads) in npTh17 (blue) and pTh17 (purple) cell 

populations from Bach2 KO (light color) or control (dark color) cells in chromatin regions that are 

more accessible in Treg-specific clusters (2-4 in Fig. 3E) and in Th17-specific clusters (6,7 in Fig. 

3E).  

 
Fig. S11: Bach2 overexpression in Th17 cells 

(A) Bach2 overexpression validation. Bach2 transcript expression (y axis, fold change by qPCR, 

mean ± SEM) in Bach2 overexpressing (Bach2 OE) and control pTh17 cells (x axis). ****, P 

<0.0001, unpaired two-tailed t-test.  

(B) Differentially expressed genes in Bach2 OE pTh17 2D2 cells. Significance (-log10(p-value), y 

axis) and effect size (log2(fold change), x axis) of differential expression of each gene between 

transduced cells (GFP+) isolated from the CNS of recipients of Bach2 OE or control pTh17 2D2 

cells. Blue: FDR <0.2. 
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(C) BACH2 induces a stem-like Th17 cell program. Enrichment score (x axis) of the in vivo stem-

like Th17 cell signature 16 with genes associated with differentially accessible ATAC peaks in the 

Bach2 OE and Bach2 KO cells (y axis).  

 

Fig. S12: Association of MS-associated variant rs72928038 with increased BACH2 

expression  

(A,B) Rs72928038 is a variant associated with MS by GWAS and a BACH2 eQTL in T cells. 

Significance (–log10(p-value)) of association of each variant (dot) with MS risk in GWAS (x axis; 

from the discovery phase of IMSGC 77) and as a BACH2 cis-eQTL (y axis, from the database of 

immune cell expression study [DICE] 80) in CD4+ naïve (A) or CD4+ Treg (B) cells for variants in 

a region spanning 1MB up and downstream of rs72928038. Rs72928038 post-replication p = 

8.38*10-29 and odds ratio for G allele was 0.866. Variants are colored by statistical significance in 

both MS GWAS and eQTL study (dark blue), only in MS GWAS (light blue), only in eQTL study 

(light red), or neither (light grey). Statistical significance thresholds: MS GWAS: P <5*10-8 

(genome wide); eQTL: FDR <10% (locus only test).  

(C) Putative regulatory relationship of rs72928038 with BACH2 expression. Tracks from top to 

bottom display: position in chromosome 6; reference sequence genes (truncated view); alignment 

of mouse genome (mm9) to human genome (hg19; 

https://vizhub.wustl.edu/public/hg19/weaver/hg19_mm9_axt.gz); evolutionary conservation in 46 

vertebrate species; position of rs72928038; and promoter capture interaction loop between 

enhancer intronic region, overlapping rs72928038, and BACH2 promoter in CD4+ naïve cells 79. 

All positions are in human genome version 19. 
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(D,E) Association of rs72928038 variant with increased BACH2 expression. Distribution of gene 

expression (y axis, log2(transcripts per million) (log2(TPM)) for each rs72928038 genotype (x axis) 

in CD4+ naïve cells (D) and CD4+ Treg cells (E). P-values are from the respective cis-eQTL analysis 

of rs72928038 and BACH2 80.  
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Table legends 

Table S1: Bulk ATAC-seq and RNA-seq signal from gene-to-peak correlations in npTh17 vs. 

pTh17 cells 

Table S2: Bulk ATAC-seq of CNS-derived vs. dLN-derived Th17 cells 

Table S3: Bulk RNA-seq of CNS-derived vs. dLN-derived Th17 cells 

Table S4: GSEA for genes near differentially accessible peaks in cells harvested from the CNS 

vs. dLN during EAE 

Table S5: Bulk ATAC-seq of CD4+ T cell subsets 

Table S6: Bulk RNA-seq of CD4+ T cell subsets 

Table S7: Bulk ATAC-seq time course of Th17 differentiation 

Table S8: Peak-to-gene links of scATAC/RNA-seq of Th17 and Th1 cells 

Table S9: TF regulators from integrated scATAC-seq and scRNA-seq of Th17 and Th1 cells 

Table S10: Bulk ATAC-seq of Bach2 KO Th17 and Th1 cells 

Table S11: GSEA for genes near differentially accessible peaks in Bach2 KO vs. control Th17 

cells 

Table S12: Bulk ATAC-seq of Bach2 OE Th17 and Th1 cells 

Table S13: GSEA differentially expressed genes in Bach2 OE vs. control cells harvested from 

the CNS during EAE 
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Methods 

 
Mice 

C57BL/6J wild-type, C57BL/6-Il17atm1Bcgen/J (named Il17aGFP) mice, B6.SJL-PtprcaPepcb/BoyJ 

(named CD45.1), and B6(C)-Gt(ROSA)26Sorem1.1(CAG-cas9*,-EGFP)Rsky/J (named Cas9 knockin mice) 

were obtained from the Jackson Laboratory. C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J (named 

2D2) mice were generated in our laboratory 75. All mice were housed under specific-pathogen-free 

(SPF) conditions at the Brigham and Women’s Hospital (BWH) mouse facility in Boston. All 

experiments were carried out in accordance with and approved by the guidelines of the Brigham 

and Women’s Hospital (BWH) Institutional Animal Care and Use Committee (IACUC) in Boston. 

 

Primary cell culture 

Primary cells were cultured at 37°C and 10% CO2 in a humidified incubator in complete medium 

that consisted of DMEM medium (Gibco, Cat# 11-965-118) supplemented with 10% fetal bovine 

serum, sodium pyruvate (Gibco), L-glutamine (Gibco), penicillin/streptomycin (Gibco), MEM 

non-essential amino acids solution (Gibco), L-arginine/L-asparagine (Sigma Aldrich), folic acid 

(Sigma Aldrich), MEM vitamin solution (Gibco), 2-mercaptoethanol (Sigma Aldrich), and 

gentamicin sulfate (Lonza BioWhittaker).  

 

Isolation and differentiation of naïve CD4+ T cells  

CD4+ T cells were isolated from the spleen and peripheral lymph nodes using anti-CD4 microbeads 

(Miltenyi Biotec) following the manufacture’s protocol. Naïve CD4+ CD44- CD62L+ cells were 

sorted using a BD FACS Aria IIIu flow cytometer (BD Biosciences). Naïve CD4+ T cells were 

activated with plate-bound anti-CD3 (1µg/ml, clone 145-2C11, Bio X Cell) and anti-CD28 
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(1µg/ml, clone PV-1, Bio X Cell) antibodies on flat-bottom 96-well plates in the presence of 

cytokines. Non-pathogenic Th17 cell differentiation was performed with IL-6 (25 ng/mL, R&D 

Systems) and TGF-β1 (2 ng/mL, Sigma Aldrich). Pathogenic Th17 cells were differentiated with 

IL-1β (20 ng/mL, R&D Systems), IL-6 (25ng/mL) and IL-23 (20ng/mL, R&D Systems). For Th1 

differentiation cultures, the medium was supplemented with IL-12 (20ng/mL, R&D Systems). 

Differentiation of Treg cells was performed with TGF-β1 (2ng/mL).  

 

Active induction of experimental autoimmune encephalomyelitis (EAE)  

6- to 8-week-old sex-matched mice were immunized subcutaneously into the flanks with an 

emulsion of the MOG35-55 peptide (100µg/mouse, Genemed Synthesis) and M. tuberculosis H37Ra 

extract (5mg/ml, Becton Dickinson) in CFA (200ul/mouse, Becton Dickinson). Pertussis toxin 

(100ng/mouse, List Biological Laboratories) was injected intravenously on day 0 and day 2 post 

immunization. EAE disease course was monitored daily, and each mouse was assigned a clinical 

score according to the following criteria: 0, no symptoms; 1, limp tail; 2, impairment in righting 

reflex and/or hind limb weakness; 3, hind limb paralysis; 4, total limb paralysis; 5, moribund or 

dead. All mice presenting a clinical score >4 were euthanized.  

 

Retroviral transduction in primary CD4+ T cells  

For the retrovirus production, HEK293T cells were transfected with gag/pol (1 µg/ml) and pCL-

Eco (0.5 ng/ml) retroviral plasmids and the transfer plasmids containing Bach2-targeting gRNA 

or non-targeting gRNA (retro-gRNA-mRFP1, 1.3 µg/ml, marked by dsRed), and Bach2 ORF 

(Origene, MR224703 cloned into Addgene, Cat# 52107, 1 µg/ml, marked by GFP) using the X-

tremeGENE transfection reagent (Sigma Aldrich) following the manufacturer’s directions. Media 
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was changed 12-14hr after transfection, and 36hr later, cell culture supernatant was collected and 

used for transduction of primary CD4+ T cells. T cells were activated with plate-bound anti-CD3 

and anti-CD28 antibodies (1µg/ml) in complete media in the presence of polarization cytokines 

and transduced at 24h after activation by spin transduction with polybrene (Santa Cruz 

Biotechnology, 8 µg/ml) at 2000 rpm, for 2hr at 35°C. To confirm CRISPR/Cas9-mediated Bach2 

knockout, genomic DNA was collected from treated cells and the region surrounding the gRNA 

target site was amplified. Indel efficiency was measured by Sanger sequencing trace 

decomposition, comparing targeting gRNA-treated samples to non-treated 90. To validate Bach2 

overexpression by qPCR, total RNA was extracted using the PicoPure RNA Isolation Kit (Applied 

Biosystems) and cDNA was synthesized with the SuperScript VILO cDNA Synthesis Kit 

(Invitrogen). QPCR was conducted using the TaqMan Fast Advanced Master Mix (Applied 

Biosystems) in the ViiA 7 Real-Time PCR system (Applied Biosystems). The following TaqMan 

probes (ThermoFisher Scientific) were used: Bach2 (Cat# Mm00464379_m1), 18S (Cat# 

4352930E), and Actb (Cat# 4352341E). Relative expression levels are depicted as 2-ΔCT values, 

ΔCT = (gene of interest CT) - (geoMean Housekeeper CT).  

 

Adoptive transfer EAE 

Naïve 2D2 transgenic T cells were differentiated in vitro for 7 days. Cells were first activated with 

plate-bound anti-CD3 and anti-CD28 antibodies (1µg/ml) in complete media containing 

differentiation cytokines for the pTh17 condition, rested for two days, and then reactivated for two 

days with anti-CD3 and anti-CD28 antibodies (1µg/ml) in complete media without cytokines. For 

the transfer of Bach2 OE cells, cells were transduced as described above. 2x106 cells were 

transferred intravenously into congenically marked, wild-type (CD45.1) recipients. 
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Isolation of lymphocytes from EAE mice 

Mice were sacrificed at the peak of EAE disease. Perfusion was performed intracardially with cold 

PBS. Brain and the spinal cord were flushed out with PBS by hydrostatic pressure. CNS was 

minced with a razor blade and digested with collagenase D (2.5mg/ml, Roche Diagnostics) at 37°C 

for 20 min. After passing the tissue through a 40 µm strainer, mononuclear cells were enriched by 

centrifugation through a Percoll gradient (37% and 70%). Mononuclear cells were harvested from 

the interphase and used for downstream analysis. Cells from draining lymph nodes were obtained 

by mashing lymph nodes through a 40 µm strainer.   

 

Flow cytometry and fluorescence-activated cell sorting (FACS)  

For flow cytometric analysis and FACS, single-cell suspensions were stained in flow buffer (2% 

fetal bovine serum in PBS) with corresponding antibodies for surface proteins for 30min at 4°C in 

the dark. Antibodies with specificity for the following cell surface proteins were purchased from 

Biolegend with different fluorochrome labels: CD4 (clone RM4-5), CD25 (clone PC61), CD44 

(clone IM7), CD62L (clone MEL-14), TCRb (clone H57-597). Viability staining was performed 

using the eF506 dye (eBioscience). Intracellular cytokine staining was performed by activating 

cells for 4-5h at 37°C with the Cell Stimulation Cocktail (plus protein transport inhibitors) 

(eBioscience) and subsequent fixing and staining per manufacturer’s instructions using the BD 

Fixation/Permeabilization Solution Kit (BD Biosciences). For intranuclear transcription factor 

staining, the FoxP3/Transcription Factor Staining Buffer Set (eBioscience) was used. Intracellular 

and intranuclear antibody staining was performed for 30min at 4°C in the dark. Antibodies with 

specificity for the following intracellular and intranuclear proteins were purchased from Biolegend 
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with different fluorochrome labels: GM-CSF (clone MP1-22E9), IFNγ (clone XMG1.2), IL-10 

(clone JES5- 16E3) IL-17A (clone TC11-18H10.1). For staining of FoxP3, clone FJK-16s was 

purchased from eBioscience. For flow cytometry analysis, samples were acquired on BD LSRII 

(BD Biosciences) or BD LSRFortessa (BD Biosciences) flow cytometers. FACS was performed 

on a BD FACS Aria IIIu flow cytometer (BD Biosciences). Flow cytometry data were analyzed 

with FlowJo software (FlowJo LCC) and GraphPad Prism software (GraphPad).  

 

Bulk ATAC-seq 

6,000 viable cells were sorted into PBS/2% FCS and were stored in BambankerTM cell freezing 

media (LYMPHOTEC Inc) at -80°C. For library preparation, cells were thawed at 37°C, washed 

with PBS, and lysed and tagmented in 40µl of 1X TD Buffer, 0.2µl TDE1 (Illumina), 0.01% 

digitonin, and 0.3X PBS as previously described 25. Transposition was performed at 300 rpm and 

37°C for 30min followed by DNA purification with the MinElute PCR Purification Kit 

(QIAGEN). Eluate was immediately amplified by PCR. In the first step, 5 cycles of pre-

amplification were performed using NEBNext High-Fidelity 2X PCR Master Mix (NEB) with 

indexed primers (Ad1 and Ad2). Additional cycle numbers were determined by SYBR Green 

(Invitrogen) qPCR. Libraries were then purified with the MinElute PCR Purification Kit 

(QIAGEN) and library quantification was performed with the KAPA Library Quantification Kit 

(KAPA Biosystems) and a Qubit dsDNA HS Assay kit (Invitrogen). Final libraries were sequenced 

on an Illumina NextSeq 550 system with paired-end reads of 37 base pairs in length. 

 

Bulk RNA-seq  
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6,000 cells were sorted by FACS into 5µl TCL buffer (QIAGEN) supplemented with 1% 2-

mercaptoethanol (Sigma Aldrich). Libraries were prepared using a modified SMART-Seq2 

protocol 91, including RNA secondary structure denaturation at 72°C for 3mins, reverse 

transcription with Maxima Reverse Transcriptase (ThermoFischer Scientific), and whole 

transcriptome amplification (WTA) using the KAPA HiFi HotStart ReadyMix 2X (KAPA 

Biosystems) for 12 cycles. WTA product quality was confirmed with a High Sensitivity DNA Chip 

run on a Bioanalyzer 2100 (Agilent, Cat# G2939BA) and quantified using a Qubit dsDNA HS 

Assay Kit (Thermo scientific). Libraries were prepared with a Nextera XT DNA Library 

Preparation Kit (Illumina) and sequenced using a high output V2 75 cycle kit (Illumina) on a 

NextSeq 500 sequencer (Illumina) with 2x38 paired-end reads. 

 

Single-cell ATAC-seq  

Naïve CD4+ T cells were in vitro differentiated to npTh17, pTh17, and Th1 cells as described 

above. After 48h, live cells were sorted into PBS/2%FCS. Cells were lysed in 10 mM Tris-HCl 

pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP40, 0.1% Tween20, 0.01% Digitonin, 1% BSA and 

permeabilized for 3 min on ice. Permeabilized cells underwent tagmentation and were 

encapsulated into droplets and libraries were prepared using the Chromium Single Cell ATAC 

Library & Gel Bead Kit (10x Genomics) following the manufacturer’s instructions. Each in vitro 

differentiation condition was separately loaded onto a 10X channel with n = 2 replicates for each 

condition. Libraries were sequenced on a NextSeq 500 sequencer (Illumina) with 2 x 50 paired-

end reads.  

 

Single-cell RNA-seq  
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Naïve CD4+ T cells were in vitro differentiated to npTh17, pTh17, and Th1 cells as described 

above. After 48h, live cells were sorted into PBS/2%FCS and were encapsulated into droplets and 

libraries were prepared using the Chromium Single Cell 5’ Library & Gel Bead Kit (10x 

Genomics) following the manufacturer’s instructions. Each in vitro differentiation condition was 

separately loaded onto a 10X channel with n = 2 replicates for each condition. Libraries were 

sequenced on a HiSeq X (Illumina) with paired-end reads of 28 cycles for read 1 and 91 cycles for 

read 2.   

 

Computational methods 

Bulk ATAC-seq pre-processing  

Reads were aligned, filtered for duplicates and mitochondrial reads, and assessed for quality 

control metrics using the publicly available ENCODE ATAC-seq pipeline 

(https://github.com/ENCODE-DCC/atac-seq-pipeline version 1.5.4). Briefly, fastq files were 

trimmed based on detected adapter sequences by cutadapt -m 5 -e 0.2. Bowtie2 was used to align 

reads to the mm10 reference genome (bowtie2 -X2000 -mm) 92. Resulting BAM files were filtered 

to remove PCR duplicates using PicardTools and to remove mitochondrial reads. Filtered BAM 

files were merged by condition and peaks were called using MACS2 (macs2 callpeak –nomodel –

nolambda –keep-dup all –call-summits) 93. A counts table of reads per peak was generated using 

the bedtools multicov tool 94. Read counts were normalized using DESeq2 95. Data were 

transformed using regularized log transformation with DESeq2 prior to visualization with principal 

component analysis (PCA). PCA was performed on the regularized log transformation (function: 

rld) of peak counts from DESeq2 using the prcomp function in R and the top 50,000 peaks. 

Differential peak analysis between conditions was performed by modeling the count data as a 
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negative binomial generalized linear model and using Wald’s test for significance followed by 

Benjamini-Hochberg FDR. Differentially accessible peaks were defined as FDR <0.05 and 

|log2(fold change)| >0.5. For heatmaps, data were visualized as a z-score across all conditions of 

log-normalized counts from DESeq2, unless otherwise noted. K-means clustering was performed 

using the kmeans function in R and number of clusters was determined empirically and is specified 

in the relevant Fig.s. Peak annotation with target genes was performed using GREAT (version 

4.0.4, http://great.stanford.edu/public/html/) with default parameters 34. Motif enrichment analysis 

was performed on bed files from selected differentially accessible peaks using homer 

findMotifsGenome v4.10 (http://homer.ucsd.edu/homer/motif/), with a bed file of peaks as input, 

-size given.  

 

Bulk RNA-seq pre-processing 

Reads were aligned to the mm10 genome using Tophat (v2.1.1, 

https://ccb.jhu.edu/software/tophat/index.shtml) 96 and after duplicate removal, counts tables of 

genes by sample were generated by htseq counts. Read counts were normalized using DESeq2 95. 

Data were transformed using regularized log transformation with DESeq2 prior to visualization 

with principal component analysis (PCA). PCA was performed on the regularized log 

transformation (function: rld) of gene counts from DESeq2 using the prcomp function in R and 

the top 5,000 genes. Differential gene expression analysis was performed by modeling the count 

data as negative binomial generalized linear model and using Wald’s test to test for significance 

followed by Benjamini-Hochberg FDR. Differentially accessible genes were defined as FDR 

<0.05 and |log2(fold change)| >0.5, unless otherwise noted. For heatmaps, data were visualized as 

a z-score across all conditions of log-normalized counts from DESeq2, unless otherwise noted.  
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Bulk ATAC-seq peak visualization 

To generate ATAC-seq signal tracks, fold enrichment bedgraph files were generated from merged 

bam files per condition using macs2 callpeak (-B -SPMR) followed by macs2 bdgcmp (-m FE). 

Resulting bedgraph files were sorted and converted to bigWigs using bedGraphToBigWig 

(https://www.encodeproject.org/software/bedgraphtobigwig/). Tracks were visualized using 

pyGenomeTracks with a defined genome interval 

(https://github.com/deeptools/pyGenomeTracks). To generate heatmaps and line profiles of 

ATAC-seq peaks, bigwig files were converted to a matrix using deeptools’ (v3.4.3, 

https://deeptools.readthedocs.io/en/develop/) computeMatrix (--referencePoint center -b 1000 -a 

1000) with a bed file of selected peaks as input. Deeptools plotHeatmap (--perGroup) and 

plotProfile (--perGroup) were used to generate heatmaps and line profiles respectively. 

 

Gene signature scoring on population ATAC-seq  

When scoring genes based on ATAC-seq signal, differentially accessible peaks were assigned to 

genes by GREAT as described above. Signature scoring was performed with the fgsea package in 

R using the DESeq2 with a Wald test statistic and nperm = 10000. Each signature was split into a 

positive module of upregulated genes and a negative module of downregulated genes, and the 

overall signature score was calculated as the difference between the positive module signature 

score and the negative module signature score.  

 

Gene-to-peak correlation for bulk ATAC-seq and RNA-seq 
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Gene-to-peak correlation was calculated for the top differentially expressed genes between npTh17 

and pTh17 conditions at 24h, 48h, and 72h. Top differentially expressed genes were selected for 

each time point separately and defined as the 100 genes with highest log2(fold change) and 100 

genes with lowest log2(fold change) when comparing pTh17 to npTh17 cells in the same time point 

(FDR <0.05). The union was taken between the three time points. For each differentially expressed 

gene, a gene window was defined as +/- 100kb around the gene transcription start site (TSS). These 

genes were compared with the top differentially accessible peaks selected at each time point and 

defined as the 100 peaks with highest log2(fold change) and 100 peaks with lowest log2(fold 

change) when comparing pTh17 and npTh17 cells at the same time point (FDR <0.05). All 

differentially accessible peaks that intersected this gene window by at least one base were initially 

assigned to the gene. The Pearson correlation coefficent between normalized RNA-seq read counts 

and normalized ATAC-seq read count nearby differentially accessible peaks was calculated, and 

the differentially accessible peak within the 200kb window that had the highest correlation was 

matched to the gene. As a null model, the same number of non-differentially expressed genes from 

similar expression bins were randomly selected and randomly matched to non-differentially 

accessible peaks of similar accessibility bins and correlations were calculated. For the null model, 

data were partitioned into 10 bins based on average values across all conditions. Only peak-to-

gene matches with positive correlations (r >0) with a Benjamini-Hochberg FDR <0.05 in a t-test 

comparing to the null model were selected. Data were visualized as a z-score across all conditions 

of log-normalized counts from DESeq2 (described in Bulk ATAC pre-processing).  

 

Comparison of bulk ATAC-seq and RNA-seq of in vivo-derived Th17 cells 
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Bulk ATAC-seq and RNA-seq from CNS- and dLN-derived Th17 cells were pre-processed and 

visualized in tracks as described above. To relate the in vivo chromatin accessibility changes to 

those observed in vitro, all peaks called from the in vivo ATAC-seq dataset (dLN and CNS) were 

intersected with all peaks from the in vitro pTh17 and npTh17 ATAC-seq dataset (at time points 

24h, 48h, and 72h) using bedtools (v2.26.0) intersectBed (-wa -f 0.75) to determine peaks with a 

minimum 75% overlap. From this shared peak-space, peaks were identified that were significantly 

higher both in CNS vs. dLN Th17 cells (FDR <0.05) and in pTh17 vs. npTh17 cells (FDR <0.05 

using the 48h time point), or that were significantly higher both in dLN vs CNS Th17 cells (FDR 

<0.05) and in npTh17 vs pTh17 cells (FDR <0.05).  

 

Time course analysis of in vitro CD4 T cell polarization 

Population ATAC-seq and RNA-seq from CNS- and dLN-derived Th17 cells were pre-processed 

as described above. Specifically, for ATAC-seq, peaks were called from merged bam files from 

each condition at each time point and the union of these peak sets was defined as the universe of 

peaks to generate counts tables. Chromatin accessibility was compared for each pair of cell types 

(npTh17 and pTh17; pTh17 and Th1; npTh17 and Th1) at each time point. The top 500 changes 

were selected from each comparison (FDR <0.05, ranked by log2(fold-change)) and the union of 

these sets was defined as the differentially accessible peak set. To prioritize shared chromatin 

accessibility changes between any two groups in the dataset, peaks were identified that were 

differentially more open in each of any two cell subsets compared to the third at a given time point 

(e.g., peaks that were more accessible in both npTh17 and pTh17 cells compared to Th1 cells). 

The union of the top 500 of each comparison (FDR <0.05, ranked by average log2(fold-change)) 

was defined as a shared peak-set. The pair-wise differentially accessible peak set and shared-peak-
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set were combined and z-score of log-normalized counts were plotted for heatmap visualization. 

Clustering was performed using kmeans in R (k=10, determined empirically). To relate 

differentially accessible peaks from clusters to the principal components (PCs) related to time, 

activation, and polarization condition, peaks were assigned to PC1, PC2, and PC3 if their absolute 

loadings were in the top 20% of loadings. If a peak’s loadings were in the top 20% of multiple 

PCs, it was assigned to the PC with maximal absolute loading. This peak-set was intersected with 

the peaks assigned to each cluster to assign a PC (PC1, PC2, PC3, or none).   

 

Single-cell RNA-seq data pre-processing 

ScRNA-seq pre-processing was performed using the Cumulus analysis workflow version 0.11.0 

using CellRanger v2.2.0 97. Raw sequencing data were demultiplexed using CellRanger mkfastq 

and aligned to the reference mm10 (v 1.2.0) and a gene counts table was generated using 

CellRanger count (expect-cells = 3000). Cell by counts tables were combined for six channels (n 

= 2 of npTh17, pTh17, and Th1 cells) using CellRanger aggr for downstream analysis.  

 

Single-cell RNA-seq data analysis 

Downstream analysis, including normalization and clustering, was performed using Seurat v3.1.5, 

as follows 98. The gene counts matrix was used as input to Seurat and low-quality cells and doublets 

were filtered by number of genes >1000 and <6000, mitochondrial reads <3%, and number of 

unique molecules detected >3000. Gene counts were normalized by total expression, scaled by 

10000, and log transformed. Next, data were scaled using ScaleData. Principal component analysis 

was performed on the top 2000 variable features identified by FindVariableFeatures 

(selection.method = “vst”). A k-nearest-neighbor (k-NN) graph was generated with k=20 and the 
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top 10 principal components, clustered with the Leiden algorithm using FindClusters (resolution 

0.5), and embedded using RunUMAP. 

 

Single-cell ATAC-seq pre-processing 

ScATAC-seq pre-processing was performed using the Cumulus analysis workflow version 0.11.0 

running CellRanger-ATAC v1.0.1 97. Raw sequencing data were demultiplexed using CellRanger-

ATAC mkfastq and aligned to the reference mm10 genome (mm10_atac_v1.0.1). Cell by counts 

tables were combined for six channels (n = 2 of npTh17, pTh17, and Th1 cells) using CellRanger 

aggr for downstream analysis.  

 

Single-cell ATAC-seq data analysis 

Downstream analysis, including clustering, gene scoring, integration with matched scRNA-seq 

data, DNA peak-to-gene linkage, and transcription factor motif deviation scoring, was performed 

using ArchR v1.0.1 57 (according to manual instructions, 

https://www.archrproject.com/bookdown/index.html#section) and Seurat v3.1.5 98, as follows. 

Low quality cells were filtered based on number of unique peak fragments (nFrags >1500 and 

nFrags <75000) and signal-to-noise ratio (transcription start site enrichment >5), retaining a total 

of 27,515 cells. A gene score matrix was generated by summing accessibility signal within the 

100kb window on either side of each gene. Dimensionality reduction was performed using 

ArchR’s implementation of latent semantic indexing, addIterativeLSI (iterations = 2, resolution = 

0.5, varFeatures = 25000) and data were visualized by addUMAP (nNeighbors = 30). Of eight 

clusters identified using this method, two (“mixed” and “npTh17_2”) were removed from further 

analysis based on abnormally high fragments detected, suggesting doublets or low-quality cells. 
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Cluster markers were identified using getMarkerFeatures (FDR <=0.05, log2(fold change) >0.2, 

testMethod = “wilcoxon”). For visualization of sparse ATAC signal on UMAP, gene scores were 

imputed by addImputeWeights. Peaks were called on each cluster and on cells grouped by 

treatment condition using addGroupCoverages, which is a wrapper of macs2. Gene-set signature 

scores were calculated using addModuleScore, a wrapper from Seurat 98, with the gene score 

matrix as input.  

 

Integrating matched scATAC-seq and scRNA-seq datasets for peak-to-gene linkage 

Single cell profiles in the scATAC-seq data set were aligned to profiles from the scRNA-seq 

dataset by ArchR’s integration method 57. Briefly, a gene integration matrix is generated by 

addGeneIntegrationMatrix, a function based on Seurat’s integration method FindTransferAnchors 

98, which aligns gene score matrix values from scATAC-Seq data with gene expression values 

from scRNA-seq data to match each cell from the scATAC-seq dataset with a corresponding 

scRNA-seq expression profile. Gene integration was constrained to match scRNA-seq profiles to 

scATAC-seq profiles from cells that were treated with the same polarization condition. This gene 

integration is used as basis for peak-to-gene linkage analysis for correlation between peak 

accessibility and gene expression in single cells (addPeak2GeneLinks, Pearson correlation >0.45 

and resolution = 1 base-pair).  

 

Topic modeling on scATAC-seq data-set 

To model cell programs, a Latent Dirichlet Allocation (LDA) model was learned from the 

scATAC-seq data set using cisTopic  (v0.3.0, https://github.com/aertslab/cisTopic) 58. Region 

distributions per topic and topic contributions per cell were modeled using runWarpLDAModels 
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(iterations = 500) using a range for number of topics from 5 to 40. The final number of topics 

(n=35) was selected by finding the model with the lowest perplexity as a measure of how well the 

model predicts the data. Topic scores per cell were visualized on the UMAP embedding of the 

scATAC-seq dataset (as in Fig. 5A). The top 500 genome regions representing each topic were 

identified using binarizecisTopics (method = “Predefined”, cutoffs = 500). Annotation of genomic 

regions from each topic with target genes was performed using GREAT (version 4.0.4, 

http://great.stanford.edu/public/html/) with default parameters 34. 

 

Prediction of transcriptional regulators from single-cell profiling data 

Marker peaks for each cell type and cluster (FDR <0.1 and log2(fold change) >0.2) were annotated 

with enriched TF motifs from the Homer (v4.10) database and cisBP with addMotifAnnotations 

from ArchR (motifSet = “homer”, motifSet = “cisdb”). Motif enrichment was performed using 

peakAnnotationEnrichment (with FDR <=0.1 and log2(fold-change) >=0.2 set as cut-off 

parameters), which calculates enrichment of the motif using marker peaks of the test condition 

compared to background peaks. Adjusted p-values for enrichment were calculated using a 

hypergeometric test with Bonferroni correction. Motif deviations, a measure of how much the 

accessibility of peaks with a given motif differs from expected accessibility modeled on a set of 

background peaks, were calculated using addMotifDeviations, a wrapper of chromVAR 59. To find 

TF regulators of chromatin accessibility, the correlation between motif deviation and gene 

expression for TFs was found using correlateMatrices. The maximum motif deviation per cluster 

was plotted by correlation, and TFs with maximum motif delta >2 and correlation >0.4 were 

selected as candidate positive TF regulators. 
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Regulatory network analysis from scATAC-seq and scRNA-seq  

ScATAC-seq and scRNA-seq data were integrated to construct the regulatory network. First, 

candidate target genes were identified from pairwise differential expression using glmQLFit and 

glmQLFTest functions in edgeR package 99,100 (FDR <0.01, fold change >2). Next, peaks were 

linked to candidate target genes using ArchR 57 (see Integrating matched scATAC-seq and 

scRNA-seq datasets for peak-to-gene linkage). Peaks were scanned for TF motif binding sites 

using ArchR (see Prediction of transcriptional regulators from single-cell profiling data). TFs 

were then associated to each candidate target gene if their binding sites were observed in targets’ 

linked peaks, based on the homer motif database (v4.10, http://homer.ucsd.edu/homer/motif/) and 

cisBP database. To refine the network, Pearson correlations of scRNA-seq expression levels of 

TFs’ transcript and of associated targets were computed across all cells and the connections with 

low or insignificant correlations were removed 101 (restricted to |Pearson correlation| >0.1, FDR 

<0.001). Finally, the network was further pruned for by restricting to the TFs that regulates at least 

10 targets and targets that were regulated by at least 5 TFs. 

 

TF and target modules were identified by hierarchical clustering of the rows and columns of a TF-

by-target expression correlation coefficient matrix with a Euclidean distance and the Ward1 

agglomeration method 102. Clustering of targets was restricted to genes that were not detected to 

function as TFs in the network.  
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